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Abstract

Building Extensible and Secure Networks

by

Lucian Popa

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

In this dissertation, we present a network design called Rule-Based Forwarding (RBF)
that provides flexible and policy-compliant forwarding. Our proposal centers around a new
architectural concept: that of packet rules. A rule is a simple if-then-else construct that
describes the manner in which the network should – or should not – forward packets. A
packet identifies the rule by which it is to be forwarded and routers forward each packet in
accordance with its associated rule. On one hand, rules are flexible, as they can explicitly
specify paths and invoke packet processing inside the network. This enables RBF to support
many previously proposed Internet extensions, such as explicit middleboxes, multiple paths,
source routing and support for host mobility. On the other hand, rules are certified, which
guarantees that packets comply with the policies of the parties forwarding them. This
property also enables a more secure architecture, since unwanted packets can be dropped
in the network, allowing RBF to stop denial of service (DoS) attacks. Using our prototype
router implementation we show that the overhead RBF imposes is within the capabilities of
modern network equipment.

We also describe how the ideas behind RBF can be used to improve access control in
cloud computing, and present CloudPolice an access control mechanism implemented in
hypervisors. CloudPolice scales to millions of hosts, is independent of the network topology,
routing and addressing, and can specify flexible access control policies. These properties
are not provided by traditional access control mechanisms, because these mechanisms were
originally designed for enterprise environments that do not share the same challenges as
cloud computing.
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Chapter 1

Introduction

A central component of a network design is its forwarding architecture that determines
the manner in which packets are transported between two endpoints. Today’s Internet
offers users a simple forwarding model: a user hands the network a packet with a destination
address and the network makes a best-effort attempt to deliver the packet to the destination.
Although simple, this architecture is also fairly limited and there have been repeated calls to
extend the Internet’s forwarding architecture for greater flexibility—allowing, for example,
the user to select the path his packets should traverse [36, 90, 98, 104] or to specify whether
packets can/should be processed by middleboxes and active routers [42,61,98,101,104].

Achieving a flexible forwarding architecture has thus been a long-held, if elusive, goal
of Internet research [36, 42, 61, 86, 98, 101, 104]. Our work in this dissertation shares this
goal. Our point of divergence from prior efforts starts with the observation that forwarding
flexibility is inherently coupled with issues of policy.

Our thesis is that achieving flexibility is not just a matter of augmenting packets with
more expressive forwarding directives that routers execute. Rather, in addition, for each
forwarding directive that enhances flexibility, the parties involved in forwarding should be
able to set policies that constrain that directive. By the policy of entity A (host, middlebox
operator or ISP) we refer to the decision whether to approve or reject a forwarding directive
based on A’s business or technical goals. By forwarding directive we refer to instructions
provided by endpoints to routers and middleboxes on how to forward their packets. For
example, a forwarding directive could specify that sender S can forward its packets through
middlebox M before reaching destination D. An example of policy would be M refusing to
accept packets from S.

To better illustrate our thesis, consider its application to the Internet. Since the main
forwarding directive in IP is for sender S to send packets to destination D, D should be able
to specify that the traffic from S should not reach it, i.e., either by explicitly allowing or
denying packets from D. Unfortunately, IP does not provide such functionality, effectively
leaving the end-hosts vulnerable to DoS attacks. Unsurprisingly, this lack of functionality
has been identified as one of the main security vulnerabilities of the Internet, and several
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solutions have been proposed to address this limitation [37,38,68,78,108,110].
Of course, forwarding directives and policies are only as good as the ability of the network

to enforce them and to guarantee their authenticity. What complicates policy enforcement is
the involvement of multiple parties in achieving the packet’s flexible behavior—the network
service providers along the path, potential middlebox operators and, of course, the source
and destination. As such, the network must ensure that a packet’s forwarding directive
complies with the policies of all parties involved. In our previous middlebox example, the
network must ensure that M is willing to relay packets from S to D. If M does not approve,
the network should simply drop the packets before reaching M.

In this dissertation, we propose a new rule-based forwarding architecture, RBF, that
treats flexibility and policy enforcement as equal design goals. RBF is based on a new archi-
tectural concept – that of packet rules. In RBF, instead of sending packets to a destination
(IP) address, end-hosts send packets to a rule. Rules are created by destinations. A sender
fetches the destination’s rule from a DNS-like infrastructure and inserts it in the packets
sent to that destination.

A rule is a simple if-then-else construct that describes the manner in which the net-
work should – or should not – forward packets. For example, a destination A can receive
packets only from source S using the rule:

RA : i f ( packet . source 6= S)
drop packet

Or a mobile client B might route certain video content through a 3rd-party transcoding proxy
with:

RB : i f ( packet .URL = videowebs i t e . com)
sendPacketTo transcoderProxy

The above examples are anecdotal (we present precise syntax Section 3 and additional
examples in Section 3.3) but serve to illustrate how destinations can control and customize
how the network forwards their packets in a manner not easily accommodated by current IP.
In effect, with rules, a receiving host must specify both which packets it is willing to receive
as well as how it wants these packets forwarded and processed by the network.

The rule-based architecture we develop offers the following properties:

1. Rules are mandatory: routers drop packets without rules

2. Rules are provably authorized: all recipients (end-hosts, middleboxes and/or
routers) named in the rule must explicitly agree to receive the associated packet(s).
Routers, middleboxes and end-users can verify a rule’s authorization.

3. Rules are provably safe: rules cannot exhaust network resources (e.g., cause for-
warding loops) and cannot compromise routers.



3

4. Rules allow flexible forwarding: rules are a (constrained) program that allows a
user to “customize” how the network forwards its packets.

The first two properties assist in policy enforcement by ensuring a packet is only forwarded
if explicitly cleared by all recipients (i.e., if it conforms with the policies of all recipients)
specified in the rule. Since RBF defines policies on rules, any recipient will have the ultimate
say on whether to accept any rule that contains forwarding directives sending packets to it.
Since all forwarding directives are encoded into rules, we achieve our goal of enabling any
entity affected by a forwarding directive to constrain that directive.

The third property ensures rules cannot be (mis)used to attack the network itself. As we
shall show, the last property provides flexibility since users can give the network fine-grained
instructions on how to handle their packets, enabling: explicit use of in-network functionality
at middleboxes and routers, loose path forwarding, multipath forwarding, anycast, multicast,
mobility, filtering of undesired senders/ports/protocols, recording of on-path information,
etc. In this dissertation, we present the design, implementation and evaluation of a forwarding
architecture that meets the above properties.

RBF relates to an extensive body of work on both forwarding flexibility and policy
enforcement. We discuss related work in detail in Section 7 and here only note that, at
a high level, we believe what distinguishes RBF is its focus on simultaneously supporting
flexibility and the multi-party policy requirements that such flexibility implies. As we shall
see, this goal leads us to a design that differs significantly from prior proposals.

We note up-front that RBF is more complex than the existing IP forwarding architecture,
which is frequently cited for its simplicity. In addition, RBF relies on strong assumptions such
as anti-spoofing, the existence of rule-certifying authorities and a DNS-like infrastructure
to distribute rules. The gain, relative to today’s IP forwarding, is significantly improved
flexibility and security; we posit that the greater complexity of our solution is a perhaps
inevitable consequence of this richer service model.

In this dissertation, we also explore the application of the core ideas behind RBF to
cloud computing. Cloud computing is growing in importance as a new paradigm for access
to computational resources. Core to cloud computing is the ability to share and multiplex
resources across multiple users. Since cloud computing environments are shared by multiple
users, they should ideally provide network-level access control mechanisms between users
(typically called tenants). The majority of existing access control techniques used for cloud
computing were originally designed for enterprise environments. However, compared to en-
terprises, cloud computing environments impose new challenges on access control techniques
due to multi-tenancy, the growing scale and dynamicity of hosts within the cloud infrastruc-
ture, and the increasing diversity of data center network architectures. Therefore, the access
control mechanisms inherited from enterprises are poorly suited for cloud environments. In
fact, as cloud computing services evolve, they run into analogous security and inflexibility
problems as the Internet. Clouds are expanding to very large sizes (currently, hundreds of
thousands of machines) and, like the Internet, they have tens of thousands of users. The
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latter also leads to growing concerns about potential DoS attacks between users inside the
cloud. One of the properties offered by RBF is access control at the Internet level.

Starting from this observation, we propose CloudPolice. Similarly to RBF, in CloudPolice
the access control decisions are specified by each destination on the control plane (conforming
to the destination’s policy) and are enforced on the data plane by having packets carry a
proof of their policy compliance. On the other hand, CloudPolice takes advantage of the
fact that, unlike the Internet, each cloud is owned by a single administrative domain that
owns not only the network, but also the servers. In particular, cloud computing is typically
a virtualized environment, where a trusted layer of software, the hypervisor, sits between
each customer machine and the network. In this context, we argue that it is both sufficient
and advantageous to implement access control only within hypervisors at end-hosts. For this
reason, CloudPolice has a lower overhead and is easier to adopt when compared to RBF. In
fact, cloud providers can adopt CloudPolice through a simple software update to hypervisors,
without requiring any hardware upgrades or changes to applications. Our evaluation shows
that CloudPolice does not impose a significant overhead on hosts.

1.1 Contributions

The contributions of this dissertation are as follows:

1. We present the design of RBF, a first network architecture that is both flexible and
policy compliant. While many have proposed more flexible networks, we argue that
adding more flexibility alone can, in fact, lead to less secure architectures. In addition,
we argue that respecting the policy of destinations is also necessary in order to improve
the security of today’s networks and block DoS attacks. Furthermore, the lack of a
guaranteed policy compliance property is one of the reasons that makes the adoption
of new architectural proposals difficult, since, without such a property, many of the
ISPs’ concerns are not addressed.

2. We analyze RBF’s flexibility and its security properties. We show that RBF can
support a large number of desirable and previously proposed extensions to today’s
networks such as explicit use of in-network functionality at middleboxes and routers,
loose path forwarding, multipath forwarding, anycast, multicast, mobility, filtering of
undesired senders/ports/protocols, recording of on-path information, etc. Our security
analysis shows that RBF is resistant to attacks from endpoints trying to forge, tamper
or evade rules and that users cannot create malicious rules to attack the network itself.

3. We evaluate RBF’s feasibility. We show that the increase in the traffic size for through-
put intensive applications can be as low as 6% on average. Using a prototype software
router implementation, we show that RBF’s overhead compared to the state of the art
software routers is minimal.
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4. We present CloudPolice, a mechanism to implement access control in cloud computing
inspired by RBF. Compared to the traditional access control mechanisms inherited
from enterprises, CloudPolice can scale to millions of hosts, is independent of the
network topology, routing and addressing, and can specify more flexible access control
policies. In addition, CloudPolice is easy to adopt by cloud providers, requiring only
a software update.

1.2 Organization

This dissertation is organized as follows. We start by presenting the design rationale and
the overview of RBF in Section 2. We then present the details of RBF’s data plane and a
set of examples that can be supported by using the described data plane (Section 3). Next,
we detail RBF’s control plane (Section 4). Section 5 presents a security analysis of RBF and
Section 6 presents details of the implementation and evaluation of RBF. We present related
work in Section 7 and discuss different concerns associated with RBF and RBF’s limitations
in Section 8. Section 9 presents CloudPolice, a mechanism inspired by RBF to provide access
control in data centers. Finally, Section 10 outlines our plans for future work and Section 11
concludes this dissertation.
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Chapter 2

Design Rationale and Overview

We start with the goal of network flexibility and allowing users control over how the net-
work processes their packets. The abstraction that perhaps best supports flexibility is simply
that of a program, leading to an architecture where users write packet-processing programs
that routers execute. This vision of code-carrying packets is, of course, the cornerstone
of active networking [101, 105] and we borrow this as our starting point in designing RBF.
However, as we shall see, RBF severely dials back on the full-fledged generality of the original
active networks’ vision to arrive at a significantly simpler and safer architecture.

Rules are thus a form of program. The challenge then is to appropriately constrain these
programs/rules to ensure that they cannot harm the network or other hosts. The key insight
behind RBF is that these constraints must extend along two dimensions. First, rules must be
safe, i.e., guaranteed not to corrupt or exhaust network resources. In addition, however, we
must constrain rules to respect the policies of all stakeholders involved—source, destination,
middleboxes and ISPs. This latter requirement is unique and yet critical to networking
contexts but was under appreciated in early active networking proposals.

To address policy safety, RBF incorporates two key design decisions:

• (D1) Layering: we believe network operators will be unwilling to relinquish control of
route discovery and computation and hence we layer RBF above current IP forwarding
and do not allow rules to modify the IP-layer forwarding information base (FIB).

• (D2) Verifiable stakeholder agreement: we require that a rule be authorized by
all entities it explicitly names (e.g., destination, middleboxes or routers). This ensures
agreement of the stakeholders’ policies with the rule’s intent; in particular it also
ensures that rules cannot violate ISPs’ routing policies, since providers must explicitly
agree to have their routers named in rules. To achieve this property, in RBF rules
are certified by trusted third parties, which in turn gather proofs of policy compliance
from each of the rule participants.

To address rule safety, we impose strict constraints on rule syntax, such that safety can
be verified through simple static analysis:
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• (C1) Rules cannot directly modify router state. This avoids corruption of router
state. However, this can be a limiting restriction, particularly to network operators
who wish to expose in-network services such as caching or monitoring to end users.
To accommodate this, RBF allows operators to deploy specialized packet-processing
functions at their routers and allows rules to invoke these functions. Such “router-
defined functions” do allow rules to update router state, but only indirectly via code
installed, and hence presumably trusted, by operators. This model for router-defined
functions thus represents a middle ground in the tradeoff between flexibility and safety.

• (C2) The rule “instruction set” is limited to only four possible action statements:
(a) forward the packet to the underlying IP layer, (b) invoke a router-defined function,
(c) modify the packet header and (d) drop the packet, plus conditionals that determine
whether an action should be taken based on reading packet headers and router state.
Note that there is no action that allows backward jumps across rule statements. This
prevents looping or resource exhaustion at routers and ensures execution time is linear
in program size.

The above constraints represent a stark departure from the rich generality of the active
networks vision. Indeed, rules are more a sequence of packet steering directives, rather than
a full-fledged program. The benefit is verifiable rule and policy safety. Moreover we find
that, despite these constraints, rules suffice to express a wide variety of forwarding behaviors
as we will later illustrate.

2.1 Architecture Overview

In this section we provide an overview of the main components and assumptions of the
RBF architecture and the rationale behind their design. The subsequent sections of this
dissertation will present the detailed design of these components.

With RBF, end-users control packet forwarding using rules. Each packet has an associ-
ated rule and contains a set of attribute-value pairs in its header. Upon receiving a packet,
the router forwards the packet conforming to the packet’s rule.

2.1.1 Distributing rules to routers

To process a packet, a router needs to know the rule associated with the packet. There are
two basic approaches by which routers can obtain rules: (1) rules are carried in packets, (2)
routers use an out-of-band mechanism to obtain the rules.

Carrying rules in packets frees routers from maintaining per-rule state, and implementing
costly rule distribution protocols. On the other hand, this approach incurs a high overhead
on the data plane as rules increase packet headers, and routers need to verify the rules to
ensure their validity.
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Figure 2.1: RBF router and rule forwarding

In contrast, installing rules at routers has a lower overhead on the data plane, as packets
need only to carry rule identifiers instead of the rules themselves. However, the process of
obtaining rules can be complex; the router can either get rules in advance, in which case it
may need to store a huge number of rules or the router can download rules on demand, in
which case the router may need to buffer the packets it receives until it obtains the rules
for those packets. Moreover, since we do not want to have any type of “special” traffic that
travels without using rules, the packets installing rules have to themselves travel on rules.
This makes the rule installation process very difficult.

For these reasons, we chose to have packets carry rules. In Section 6 we evaluate the
overhead of rules.

2.1.2 Applying Rules

Figure 2.1 illustrates the forwarding architecture of an RBF-enabled router. On receiving a
packet, the router hands it to the rule forwarding engine, which processes the packet’s rule.
Such processing may involve reading router state that the network operator has opted to
expose; we term such state router attributes. Examples of routing attributes may include the
router’s IP address, AS number, congestion level, flags indicating whether the router imple-
ments a specific functionality such as intrusion detection and so forth. Based on information
in the packet header (packet attributes) and router attributes, the rule forwarding engine may
update the value of the packet attributes (including its destination), invoke router functions,
drop the packet and/or hand the packet to the underlying IP forwarding engine. Recall that
for safety reasons the rule is not allowed to update router state.
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2.1.3 Distributing rules to end-hosts

As discussed above, in our instantiation of RBF, rules are carried in the packets. Since the
first router on the packet’s path expects each packet to carry its associated rule, rules need
to be inserted by senders. Furthermore, since in general rules are provided by destinations,
there needs to be a way for senders to obtain these rules.

RBF leverages an extended DNS infrastructure to distribute rules. The end-hosts (or
other entities on their behalf) publish rules to the infrastructure. In turn, each sender
queries this infrastructure to obtain the destination’s rule, similarly to the way the sender
queries DNS to obtain the receiver IP address. This is the common case of distributing rules.

2.1.4 Ensuring Rules Are Authorized

To guarantee that entities participating in a rule authorize the rule, each rule is certified by
a third party certifying authority, called Rule Certification Entity, or RCE for short. The
RCE guarantees that all nodes whose addresses appear explicitly in a rule (i.e., destinations,
middleboxes and indirection routers) agree with the rule. In addition, the RCE may verify
the rule for forwarding-loops before certifying it (see Section 5 and Appendices A and B).
Upon receiving a packet, an RBF router verifies the rule’s signature. If the verification fails,
the router drops the packet; otherwise, the router applies the rule.

Since a rule cannot use a router as an indirection point without the router agreement,
the ISP that owns the respective router retains full control on packet forwarding at the IP
layer.

Thus, the RBF architecture consists of four main components:

• The specification of packet rules – their syntax, packet encoding, constraints on what
rules can and cannot do. We discuss the details for the rule specification in Section 3.

• Certificate authorities called Rule Certification Entities (RCEs) that certify rules after
checking that they are well formed, and that every destination specified in the rule
agrees with (i.e., has signed) the rule. We discuss the details of rule certification in
Section 4.

• Modified IP routers that verify rule certificates and process packets as described above.
We present a prototype router implementation and evaluation in Section 6.

• A modified DNS infrastructure that either directly resolves a host D’s domain name to
D’s rule, or resolves D’s domain name to another rule resolution server which in turn
provides D’s rule. We discuss the details of rule distribution in Section 4.



10

2.1.5 Assumptions

RBF builds on three major assumptions.

Anti-Spoofing: First, RBF assumes the existence of an anti-spoofing mechanism. This is
required because rules may use source and destination IP addresses in their decision process
and hence addresses must be legitimate, otherwise policy compliance cannot be enforced.
Note that any solution for blocking undesired traffic inside the network requires a way to
identify sources. Anti-spoofing identifies users based on their addresses. An alternative, is
to identify users by their access path [108,110], however this approach ties communications
to a specific path restricting flexibility (e.g., for mobility, traffic engineering, multi-path
forwarding). In this dissertation we assume the use of ingress filtering as the anti-spoofing
mechanism, although RBF can accommodate alternate solutions, e.g., Passports [77]. The
rationale behind our choice of ingress filtering is described in Section 4.

RCE Key Distribution: Second, we assume routers know the public keys of RCEs and
can thus verify rule certificates. We assume the number of RCE organizations is relatively
small and these keys can be statically configured at routers, akin to how browsers today
are configured with the list of major certificate authorities. We discuss alternatives to this
deployment in §4. Note that although we assume a small number of RCE organizations, we
envisage each organization will run geographically replicated instances of their service for
improved scalability and robustness.

Provisioning of Rule Distribution Infrastructure: Finally, we assume that the rule
resolution infrastructure (whether DNS or the resolution servers the DNS points to) is well
provisioned, akin to how major Internet services (Google, DNS, Amazon) operate today,
relying on engineering approaches such as maintaining a presence at major ISPs, IP any-
casting, bandwidth provisioning, and so forth. As described in §4, we make this assumption
to protect against “denial of rule” attacks.

2.1.6 Summary

RBF can be succinctly described as:

1. Every packet contains a rule; there are no exceptions and no special traffic.

2. A rule is a set of forwarding directives associated to the packet by end-users; the
expressivity of rules enables forwarding flexibility.

3. Each rule bears a trusted entity’s signature, which guarantees the rule is authorized
and safe.

4. Routers verify the rule signature and forward conforming to the rule’s directives.
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The described architecture supports RBF’s target properties as follows:

• Rules are mandatory: This is easily enforced; if a router receives a packet without
a rule, it simply drops the packet.

• Rules are provably authorized: Each rule is certified by an RCE, which guarantees
that every destination or provider of router-defined function in the rule has authorized
(signed) the rule. Any router and end-host can verify a rule certificate thus preventing
attackers from modifying rules.

• Rules are provably safe: This follows from the constraints on rule syntax described
earlier. We constrain rules in three important ways that enable safety: (i) an RCE
certifies a rule only after checking that it cannot cause loops, (ii) a rule cannot directly
modify router state and hence cannot corrupt a router, (iii) rule execution time is
linear in the size of the rule. We analyze attacks using rules and defenses in §5.

• Rules allow flexible forwarding: We illustrate this through examples in Section 3.3.

RBF assumes routers will incorporate support for rules (i.e., implement a rule forwarding
layer, specialized functionality, etc.) and allows users to specify rules thereby achieving
flexibility. Importantly however, RBF’s design ensures that rules accommodate operator
policies and concerns – for example, the path specified in a rule cannot violate ISP routing
policies, providers must explicitly agree to have their routers named in rules, rules can only
operate on explicitly exposed router attributes, any modification of router state or specialized
packet processing can only be achieved through provider-installed functions, and so forth.

In effect, with RBF, users and network operators share control over how routers process
packets. This feature distinguishes RBF from prior network architectures. Current IP allows
users little control over how routers process their packets thereby limiting flexibility. At the
other extreme: the active networks vision of routers executing code carried in packets allowed
users almost unlimited control, leading to grave security concerns. In a different approach,
overlay-based architectures allow users flexibility without raising new security challenges
but cannot leverage in-network information and support and are thus less powerful. For
example, overlay-based architectures can only drop unwanted packets at overlay nodes and
hence cannot create a network that is fundamentally default-off, once the network-layer
address of a node is known, it can always be attacked at the underlying network layer.

To conclude this overview, the RBF architecture consists of a data plane component
that includes the rule forwarding mechanism and a control plane component that includes
rule creation, certification and distribution; we describe each in detail in Sections 3 and 4
respectively.
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Chapter 3

RBF Data Plane

In this section we describe the key components of the RBF data plane – how users specify
packet rules and how routers verify and execute these rules.

3.1 Rule Specification

A rule can be represented by a simple transition table: based on the current value of packet
attributes and router attributes, the rule may generate a new set of packet attributes and
forward/drop the packet. In practice, we encode rules using an if-then-else tree-like structure,
which has a more compact representation than a simple transition table.

Thus, a rule is represented by a sequence of actions that can be conditioned through
if-then-else structures of the following form:

i f (<CONDITION>)
ACTION1

e l s e
ACTION2

Conditions are comparison operators applied on the packet and router attributes.
The actions can be:

1. Forward the packet to the underlying IP forwarding engine;

2. Invoke a local function available at the router;

3. Drop the packet.

4. Update the value of the packet attributes;

Routers and hosts forward packets according to the actions specified by the rule. When
one of the first three actions listed above (forward, invoke, drop) is encountered, the
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Figure 3.1: Simple indirection example.

application of the rule is ended and the appropriate action is executed. When the update

action is encountered, the value of the packet attribute is changed accordingly, and the rule
execution continues.

The packet attribute set consists of the five-tuple in the IP header (i.e., IP addresses,
ports, protocol type), and a number of custom attributes with user-defined semantics. The
user-defined attributes can be used to identify different states that the packet finds itself
during its journey through the network or to record information from the path. For simplicity,
performance and security reasons, RBF does not allow rules to add new packet attributes.
By default, user-defined packet attributes are initialized with the value zero, but can be set
to a different value by senders.

Router attribute, on the other hand, can include the router’s IP address, AS number,
congestion level, flags indicating whether the router implements a specific functionality such
as intrusion detection and so forth.

Packet attributes can be seen as having a local scope, since their semantics are associated
only with the packet’s rule. Router attributes, on the other hand, have a global scope, since
they have semantics shared by the rules of all the packets.

Each rule has an associated lease that ensures the rule can only be used for a limited
period of time. Routers drop packets with expired leases. For details on the lease mechanism
see Section 4.3.

Also, every rule has an identifier (ID) defined as the concatenation of a hash of the rule
owner’s public key and an index unique to the owner, hash(PK owner):index. In Section 6
we present an optimization to reduce packet overhead and identify most rules by using a
hash over their content. This optimization can be used in the common case when there is
no need for multiple rules with the same identifier; for example, mobile hosts may require
different rules with the same identifier (see §3.3).

For example, the following rule forwards a packet to a destination D via a waypoint router
R1; a packet attribute named state indicates whether or not the packet has already visited
R1:

R D :
i f ( packet . s t a t e == 0) // from source to R1
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i f ( r out e r . address != R1)
sendto R1

e l s e packet . s t a t e = 1 // at R1 sending to D
i f ( packet . s t a t e == 1)

sendto D

where the sendto action is a short form for the following: change the destination address to
D and forward the packet using IP if D is not the local address, or forward it to the transport
layer otherwise. Once the packet is forwarded or dropped, the rule execution stops; the packet
is by default dropped if it is not explicitly forwarded by the rule. Figure 3.1 illustrates this
example, when D is communicating with another host A, who’s rule is R A.

While RBF does not allow rules to modify the packet payload or replicate packets, RBF
enables rules to invoke such functionality at middleboxes or routers, if available. This
allows RBF to leverage recent advancements in router design that enable network operators
to provide new functionality through router extensions [27,28,81]. While the router function
invoked by a rule at a router may modify the packet payload, may replicate packets and
may change the router state, such actions are done by code that is trusted and controlled
by the network operator. The invoked router function will typically return the packet back
to the forwarding layer with the same header (IP, RBF and transport), but potentially with
modified payload, and multiple replicas.

The generic structure or rules enables RBF to provide a rich set of forwarding functionali-
ties, including explicit middlebox traversal, multi-path routing, anycast, multicast, and loose
source routing. We illustrate the generality of rules through a set of examples in Section 3.3.

Return rule: A packet with source S and destination D must include a destination rule,
R D, which is the rule specified and owned by D. In addition, each packet may include a
return rule; this is the rule specified and owned by S and is used for return traffic from D
to S.

Expressivity: At a high-level, our rule specification can be viewed as defining a finite state
machine (FSM): the state is encoded in the packet attributes, while the input is represented
by the attributes of the routers along the data path. The rule specifies the transition function
of the FSM. The RBF mechanism can theoretically implement any deterministic forwarding
function that can change the packet attributes only. However, due to the limited size of
packets, there are forwarding functions that cannot be efficiently expressed in RBF. This
limitation is similar to the impracticality of implementing complex functions with the simple
FSM mechanism due to the exponential growth in the number of states. In particular,
forwarding decisions based on any functions other than comparisons of packet and router
attributes (e.g., sum, hash, logarithm) are not practically expressible in RBF. For example,
forwarding based on the sum of the addresses of routers on the path could not be easily
written with rules. See Section 8.3 for a discussion on RBF’s limitations.
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3.2 Rule Verification

As mentioned earlier, rules are certified by a Rule Certification Entity (RCE) and all packets
carry a signature that routers must verify. The verification load at routers is eased by two
factors.

• First, not all routers need to verify rules but only routers at the boundaries between
trusted domains. The routers inside each trusted domain simply rely on these routers
to have verified the policy compliance of packets. Since trust boundary routers are
typically situated at the edge of the network, they also see less traffic than core routers
and can more easily accommodate the cost of verification.

• Second, routers can cache verification results by maintaining a hash of the rule and
its signature. With caching, the full signature verification is only required for the first
packet forwarded on a new rule (during the period in which the verification result is
cached).

Thus, verifications can be limited only to border routers and, assuming a large enough cache,
the verification rate is given by the arrival rate of packets with new rules. By contrast, the
signature length adds to the overhead of every packet.

Different cryptographic solutions offer different tradeoffs between signature length, sign-
ing time (incurred only at RCEs), verification time (incurred at routers) and security. RSA
is the most commonly used digital signature scheme. RSA signature verification is rela-
tively fast compared to other signature schemes, however, RSA signatures are large. Our
current RBF design assumes Elliptical Curve Cryptography (ECC) because ECC signatures
(ECDSA) are shorter than RSA ones, while exhibiting similar security properties. At the
same time, verification time in ECC is typically longer than RSA’s. However, in practice,
verification can be accelerated using ASIC-based implementations or dedicated specialized
co-processors. Such implementations are already commercially available [10, 15, 16] and in-
corporated into network appliances and routers. Furthermore, traffic measurements [9] show
that new flow arrivals represent less than 1% of the link capacity on average and less than
5% of the total number of packets, a volume that could be accommodated using commercial
ECC modules [10,15] or recent research proposals [70,112]. We evaluate the size overhead of
ECC signatures compared to RSA as well as the verification overhead of RSA in Section 6.

Note that the RBF design is independent of the signature scheme used. If fast enough
supporting hardware is built, other signature schemes such as DSA or very short signature
schemes such as those proposed in [40, 84] could be used. Since RSA is the only signature
scheme used at scale today, there are few high speed commercial products for other signature
types. However, this may change in the future.
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3.3 Usage Examples

RBF gives end-users four basic types of control:

1. Block unwanted packets in the network;

2. Redirect packets through a sequence of waypoints ;

3. Use enhanced functions at routers (if available) and middleboxes ;

4. Use router state in the forwarding decision and record such state (e.g., the maximum
congestion level).

Next, we present several examples to illustrate RBF’s flexibility.

Port-based filtering

A web server, D, can use the following simple rule – registered under its DNS name – to
make sure that it receives only packets destined to port 80:

R f i l t e r p o r t :
i f ( packet . d s t p o r t != 80)

drop ;
sendto D

Middlebox Support

In addition to accepting traffic directly on port 80, D can use the following rule to route all
the other incoming traffic through a packet scrubber [7,13], deployed either by D’s provider,
or a third party:

R mbox port :
i f ( packet . d s t p o r t == 80)

sendto D
e l s e

i f ( packet . s t a t e == 0) // be f o r e scrubber
i f ( r out e r . address != Scrb )

sendto Scrb
e l s e

packet . s t a t e = 1 //mark scrubbed
invoke S c r b s e r v i c e

e l s e i f ( packet . s t a t e == 1)
sendto D // packet has been scrubbed
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Thus, similar to other previous proposals [98, 104], RBF provides explicit support for
middleboxes, such as WAN optimizers, proxies, caches, compression or encryption engines,
transcoders, SSL offloaders, intrusion detection (IDS) boxes.

Secure Middlebox Traversal

In the previous example, an attacker can directly send a packet with the attribute values set
such as to appear that the packet has already visited the middlebox. The destination can
protect against this behavior in two ways, which we describe next.

In the first approach, D can simply ensure that the packet does indeed arrive from the
middlebox when the state attribute is set to the value of one (three lines have been added
to the previous rule):

R mbox port ant i spoof :
i f ( packet . d s t p o r t == 80)

sendto D
e l s e

i f ( packet . s t a t e == 0) // be f o r e scrubber
i f ( r out e r . address != Scrb )

sendto Scrb
e l s e

packet . source = Scrb //NEW −− mark from Scrb
packet . s t a t e = 1 //mark scrubbed
invoke S c r b s e r v i c e

e l s e i f ( packet . s t a t e == 1)
i f ( packet . source != Scrb ) //NEW −− check i f from Scrb

drop //NEW −− drop i f not
sendto D // packet has been scrubbed

This rule relies on the anti-spoofing mechanism used in RBF to block packets with spoofed
source address attributes.

Note that to avoid legitimate packets being dropped by the anti-spoofing mechanism, the
source address attribute should be set at all off-path waypoints and routers that change the
destination address; we omit this in the presented rules for readability purposes.

In a second approach, the destination can use stronger cryptographic guarantees. For this
purpose, the middlebox must implement a certifying function that creates a cryptographic
proof to certify that the packet visitied it. The destination must implement another function
that verifies these proofs before delivering the packet to the application. These functions are
invoked by the rule:

R mbox port crypto :
i f ( packet . d s t p o r t == 80)

sendto D
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e l s e
i f ( packet . s t a t e == 0) // be f o r e scrubber

i f ( r out e r . address != Scrb )
sendto Scrb

e l s e
packet . s t a t e = 1 //mark as scrubbed
invoke S c r b s e r v i c e

e l s e i f ( packet . s t a t e == 1)
packet . s t a t e = 2
invoke C e r t i f y // c r e a t e proo f at Scrb

e l s e i f ( packet . s t a t e == 2)
i f ( r out e r . address != D)

sendto D
e l s e

invoke Ver i fyAndDel iver // v e r i f y at D

One example for the Certify function at the middlebox signs an attribute that initially
represents a hash of the packet header (or payload) content that does not change during the
packet forwarding. The VerifyAndDeliver function checks if the certification function was
actually invoked at the middlebox; for this purpose it, has to know the public key of the
middlebox. If the verification condition is met, this functionality delivers the packet to the
transport layer. This process can be generalized to arbitrary rules, middleboxes signing this
attribute one after the other. To determine whether a sequence of signatures is valid, the
verification function must apply static analysis and check whether the packet attributes can
correspond to the sequence of signatures. Note that many other cryptographic procedures
can be used in this context, e.g., secret hash functions, secret keys, etc..

Also note that to increase the performance, the certifying function can be applied to an
entire batch of packets instead of individual packets. In this case, the entire batch must be
buffered and checked at the receiver before being delivered to the application.

DoS Protection

To protect against DDoS attacks, a server, D can create a custom rule for each client, which
drops packets from any source other than the client. By controlling the number of rules
active at a given time, D controls the maximum number of active clients (each rule has
associated a lease period). An example of a rule similar to a network capability [108,110] is:

R f i l t e r s r c :
i f ( packet . source != r e q u e s t e r I P )

drop ;
. . . / / r e s t o f the r u l e
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Similarly to capability based architectures [108,110], our solution is based on the premise
that destinations are able to grant rules on demand, and that any requester can ask for a
destination’s rule. In RBF, this task falls to the rule resolution infrastructure and raises
the possibility of a “denial of rule” attack on this infrastructure (akin to denial-of-capability
attacks in capability-based systems [87]). We present the details of rule resolution and discuss
denial-of-rule attacks in §4.

To see how different types of uses can be naturally combined in RBF, note that this
preamble can be applied to any other rule. For example, one can create a rule that only
accepts packets from one source on one port, or a rule that uses a middlebox but only accepts
packets from a given address prefix, etc.

DTN Support

An ISP can partner with a third-party storage provider gooInc to offer a delay-tolerant
network (DTN) service [52]. The ISP uses an intermediate router Ind that tracks the avail-
ability of a disconnection-prone destination D; this availability is indicated by the D online

router attribute. Packets destined to D are routed to Ind. When D is reachable, Ind forwards
the packets directly to D; otherwise it forwards D’s packets to a DTN storage box St provided
by gooInc. The following rule captures this functionality:

R DTN:
i f ( packet . s t a t e == 0) // to Ind

i f ( r out e r . address != Ind )
sendto Ind

e l s e
i f ( r ou t e r . D onl ine == TRUE)

packet . s t a t e = 1 // to host
e l s e

packet . s t a t e = 2 // to DTN−box
i f ( packet . s t a t e == 1)

sendto D
i f ( packet . s t a t e == 2)

sendto St

In this example we have assumed that the DTN host returns online having the same IP
address as earlier (D). Otherwise, the DTN host must update its rule in the rule distribution
infrastructure every time it gets online to reflect the new address, but can still recover the
packets sent to it while offline from the storage box St.

Mobility

The mobile node M changes its network IP address due to physical movement. In RBF, M
can continue an existing communication without having to re-establish it. To achieve this,
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M creates a rule for the new address with the same identifier as the rule used in the existing
communication, and places it in the packet as the return rule.

Multicast

For security reasons, RBF does not support packet replication, and thus multicast cannot be
implemented entirely at the RBF layer. Instead, multicast can be implemented by invoking
multicast functions deployed by ISPs at some of their routers; these functions maintain
(soft) state at routers to create a multicast (reverse path) tree. This approach implements
essentially an overlay multicast solution, which leverages the IP multicast functionality at
on-path routers. For simplicity, here we consider only single-source multicast trees.

Consider source S that wants to send packets to a multicast group uniquely identified by
G. S advertises (e.g., on the web) that receivers should use the following registration rule:

R m u l t i c a s t r e g i s t r a t i o n G :
i f ( r out e r . m u l t i c a s t a v a i l a b l e and

packet . c r t r o u t e r != route r . address )
packet . c r t r o u t e r = route r . address
invoke m u l t i c a s t r e g i s t r a t i o n

sendto S

where the crt router attribute makes sure multicast registration is called just once at each
multicast router.

When joining the multicast tree, a receiver, D, sends a registration packet using the above
rule. Prior to sending this registration packet, D creates a rule to receive the multicast packets
sent by S and inserts it in the packet’s payload:

R mcast forwarding to D :
packet . d s t p o r t = PORT D LISTENS MCAST G
sendto D

The packet payload also contains the identifier G. The first multicast enabled router
R processing the registration packet, stores the mapping G→R mcast forwarding to D. R
creates its own rule to receive these multicast packets, replaces D’s rule in the packet, and
sends the packet further. The registration continues recursively until it reaches a multicast-
capable router on the (reverse) path from D to S that already stores an entry for group
G.

To send a multicast packet, S sends a copy of the packet to every router from which it
has received a registration.

On top of the vanilla multicast functionality, this approach can easily implement other
functionalities, such as access control and traffic accounting, which have been previously
proposed to “fix” the IP multicast [67].
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Path Selection

We consider a web server D that wants traffic from its clients to travel along low congestion
paths. Similar to prior proposals [36], D achieves this using a form of loose source routing
although in this case routes are selected by the destination. We assume D has knowledge of
some small number of potential indirection points located in different ASes. While in general
these can be routers that D discovers through agreements with ISPs or middleboxes offered
by third-party service providers, our example below assumes these are routers.

Initially, D simply uses normal routing and records the congestion level on all packets it
receives using the following rule:

R congest ion :
i f ( r ou t e r . congested >= packet . c o n g e s t i o n l e v e l )

packet . c o n g e s t i o n l e v e l = route r . congested
sendto D

If D notices that incoming traffic from a source A is seeing high congestion, then D asks A

to switch to a new destination rule R congestion lsr1 that routes traffic from A to D via a
series of indirection points that D selects based on its knowledge of AS topology. D effects
this switch by simply setting R congestion lsr1 as the return rule on packets from D to A.
An example of such a rule using two indirection routers IR1 and IR2 is as follows:

R c o n g e s t i o n l s r 1 :
// record conges t i on
i f ( r out e r . congested >= packet . c o n g e s t i o n l e v e l )

packet . c o n g e s t i o n l e v e l = route r . congested

// f o l l o w the l o o s e path
i f ( packet . s t a t e == 0) // to IR1

i f ( r out e r . address != IR1 )
sendto IR1

e l s e
packet . s t a t e = 1

i f ( packet . s t a t e == 1) // to IR2
i f ( r out e r . address != IR2 )

sendto IR2
e l s e

packet . s t a t e = 2
i f ( pkt . s t a t e == 2) // to D

sendto D

Notice that D continues to measure the congestion level on all incoming traffic and can
hence continue experimenting with alternate incoming routes until it finds a satisfactory one.
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Also, note that unlike IP source routing and similar to other proposals [86, 90], RBF’s
loose paths are “secure”, bearing the approval of the waypoints; users cannot arbitrarily
select loose paths but these have to be contracted with the ISPs.

Multiple Paths

As we have shown in the previous example, a rule can encode a loosely specified path. This
enables RBF to route packets along multiple paths. For example, a multi-homed host D can
choose its network provider similar to [86, 90]; e.g., D could select one provider for VoIP
traffic and another provider for large data transfers. D can also use multiple paths for the
same flow to increase throughput. For this purpose, D could use a rule that encodes two
distinct paths, and ask the sender to set one attribute with random values to select between
the two paths; this selection could also be done through a random attribute at a router. In
another example, D could use two rules with the same name that encode different loosely
specified paths and alternate the two rules in the return packets.

On-path router function – Caching

Consider an ISP I that deploys caching functionality at some of its (border) routers. A
web-service D can contract with I and use this functionality. For this purpose, D creates and
publishes the following rule:

R caching :
i f ( r ou t e r . c a c h i n g a v a i l a b l e and

packet . c r t r o u t e r != route r . address )
packet . c r t r o u t e r = route r . address
invoke caching

sendto D

where the crt router attribute makes sure the caching functionality is called just once at
each caching-enhanced router.

In this example, the caching functionality can decide to respond to the requester directly
and not forward the packets further to D, which reduces the latency for the requester and
the traffic at D.

Anycast and on-path IDS function

In this scenario, we consider a CDN akInc that wants to direct clients to close by servers.
We assume that loc is a well-known packet attribute in which a source may optionally record
its AS number, and the CDN provider redirects packets based on their loc attributes and
its knowledge of the global AS-level topology. The CDN provider akInc thus publishes a
simple rule R ak of the form:
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R ak :
i f ( packet . l o c == L1) sendto D1
e l s e i f ( packet . l o c == L2) sendto D2
. . .
e l s e sendto Dn // d e f a u l t ( undef ined l o c a t i o n )

A source A then sets the loc attribute in its outgoing packets and uses R ak as its
destination rule.

Now let’s say that akInc is interested in leveraging the IDS infrastructure deployed by a
major ISP. On entering an agreement with the ISP, akInc is informed of the requisite router
attribute ids avail and handle ids func by which these IDS services might be invoked.
Then, akInc updates its rule as follows:

R ak ids :
i f ( ( packet . u s e d i d s == FALSE) and

( route r . i d s a v a i l == TRUE) )
packet . u s e d i d s = TRUE
invoke i d s f u n c

i f ( packet . l o c == L1) sendto D1
. . .

This allows akInc to quickly incorporate IDS functionality into its deployment and allows
the provider to offer use of its IDS service without revealing details of its IDS deployment
such as the IP addresses of IDS routers.

Note that this form of anycast may sometimes lead to large rules (e.g., the number of
servers can be large, the selection criteria can be complex). RBF users can augment the above
type of implementing anycast by using specific in-network anycast functionality deployed by
ISPs. Such functionality can use arbitrary metrics (e.g., a network map) to select the servers
to which to send the packet. However, when invoked, the anycast router function needs to
tunel the packet to the intended anycast destination since the rule inserted by the sender is
not authorized to send packets to the (unknown by the rule) anycast destination.

Network Probing

With RBF, end-users can record network monitoring information from the path, e.g., some of
the router attributes can be elements of the management information base (MIB) table. For
example a rule can record from the path the maximum/minimum link bandwidth, forwarding
table size, number of incoming/error packets, number of neighbors, queue size, etc. Also,
users can verify whether the path passes through a certain link type or through a particular
AS/country. Furthermore, specialized router probing functions, such as proposed in [96],
can be invoked for many other use cases.
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Path Identifier

A rule that records the last four routers of the path can easily be created with RBF; this is
similar to Pi [107]. Such a rule can be used to detect attackers, in case a partial anti-spoofing
mechanism is used and some of the hosts can spoof their addresses. Further potential
refinements of the path identifier recording (such as to record only the routers for which
the destination address was not learned through IGP, see [107]) can be done by invoking
specialized router functions.

On-path router function – Energy Saving

ISPs can deploy a router forwarding mechanism that saves energy at routers at the expense
of minor extra delay experienced by users [85]. Users are informed by the requisite router at-
tribute green avail and handle green func by which this service might be invoked. Energy
cautious users explicitly invoke this functionality to reduce the global energy usage:

R green :
i f ( r ou t e r . g r e e n a v a i l == TRUE and

packet . c r t r o u t e r != route r . address )
packet . c r t r o u t e r = route r . address
invoke green func

sendto D1

On-path router function – Content-based Routing

Recently, several research proposals [46, 69, 76] argue for embedding in routers an anycast
primitive that forwards packets to the closest copy of the data based on the name of the
requested data. This would help to reduce the cost of the anycast service, increase data’s
availability and reduce latency (as DNS queries might be be avoided). RBF can implement
content-based routing by invoking route-by-name functionality available at enhanced routers:

R route−by−name :
i f ( r ou t e r . route−by−name ava i lab le and

packet . c r t r o u t e r != route r . address )
packet . c r t r o u t e r = route r . address
invoke route−by−name

sendto DefaultDst

where DefaultDst is the original holder of the data. The route-by-name functionality reads
the data name from the packet (e.g., this could be applied to HTTP packets), and if it has
an entry for this data, it replaces the current rule with the rule of the next hop towards the
closest data copy, and then forwards the packet. The original destination rule used by the
sender should also be kept in the packet and be returned to the sender as the return rule.
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3.4 Source Rules

In some cases, the source may also desire control over how its outgoing packets are forwarded.
For example, the source might want to send packets through an anonymizer, behavior that
should not be under the control of the destination.

For this purpose, we incorporate the ability to have a source rule in packets in addition
to the destination rule. A packet is always forwarded first on the source rule (if present) and
once the source rule has been completed, the packet is forwarded as per the destination rule.
We use a special (one bit) packet attribute to denote which rule is currently active and only
allow this attribute to be set, thus ensuring that control does not return to the source rule
once the destination rule has been activated. This can be enforced through runtime checks
made by the rule execution engine (i.e., by specification this operation is not allowed) or can
easily be verified by static analysis before rule certification.

For example, while the scenario discussed in the previous section used loosely specified
paths and congestion recording based on destination rules, one could achieve a similar effect
using source rules for outgoing traffic, and the selected paths can be different paths to/from
the Internet core.

Note that the same result as when using source rules can be achieved by simply encap-
sulating packets. Specifically, the host S could encapsulate packets sent to host D with an
outer header which contains a rule desired by S; the recipient of that rule simply removes
the outer header and continues to forward the packets using D’s rule. However, having
support for source rules built in RBF does not require middleboxes/routers to be aware of
encapsulation nor to strip packets of the source-added headers.

Importantly, note that not all (destination) rules are compatible with the use of source
rules. Specifically, only the destination rules that accept traffic from any source address can
be used with arbitrary source rules. For example, in the communication between hosts S

and D, S can use a source rule that sends packets through an indirection host M, only if D’s
rule accepts packets generated by M. Otherwise, D’s rule will simply drop packets forwarded
through M since, in general, the anti-spoofing mechanism prevents M from sending packets
with S’s source address. These conflicts can simply be discovered by marking some of the
rules as incompatible with the use of source rules. Specifically, if the destination’s rule is
incompatible with source rules, the sender must not use any source rule (or otherwise it
cannot communicate with the destination). It is easy to statically verify the property of
being incompatible with source rules. For simplicity, this property could also be signaled
through a bit in the rule identifier.

One could generalize source rules to having a stack of rules in the packet, which are
executed one after the other. We leave to future work the decision of whether to incorporate
this abstraction within the rule mechanism.

Throughout this dissertation, unless otherwise specified, we assume there is no source
rule present in packets.
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3.5 Functions on Both Forward and Reverse Paths

Some middleboxes and router-defined functions change the data payload of packets before
sending them to the destination. Examples of such functionalities are compression engines,
encryption engines, transcoders and TCP accelerators. Examples of functionalities that are
not in this category are firewalls, intrusion detection systems, load balancers, deep packet
inspection boxes/packet classifiers, packet markers, simple proxies and some redundancy
elimination boxes.

Assume host S communicates with host D and that the rule of host D uses such a box
M (middlebox or router) that implements a function modifying the data payload. If the
communication between S and D requires end-to-end reliability (usually the case) D has to
request retransmissions of lost packets from M rather than the original source of packets S,
since the bytes received by D do not correspond to those sent by S.1 To enable D to request
retransmissions from M, the traffic returned from D to S should also pass through M. In other
words, instead of having only the direct traffic from the source to the destination going
through M (as specified in the destination’s rule), the return traffic from the destination to
the source should also pass through that middlebox or router. For example, a common
scenario in today’s Internet is for such types of functions to terminate TCP connections,
i.e., have two TCP connections one between S and M and one between M and D.

In addition, even functionalities that do not change the payload content of packets might
benefit from being on the return path as well, e.g., IDS may be able to more easily reconstruct
the state of some protocols, caches need to know the state of the TCP stack to be able to
take over the response from destinations, etc.

We call these types of middleboxes and router-defined functions that require to be on
both the forward as well as the return paths as “bidirectional”, in short BD.

Therefore, the reverse traffic from destination D must pass through the BD box M (mid-
dlebox or router) on its return to source S. Note that M is actually specified in D’s rule and
thus, D knows about M’s existence. We discuss two separate contexts: (i) M is a middlebox
specified in D’s rule and (ii) M is a router that implements a function invoked by D’s rule. In
the latter case D does not know M’s identity. We assume RD is D’s rule (containing M), RS is
S’s rule.

i) Middleboxes on return path: We describe two methods by which the reverse traffic
from the destination D can pass through the middlebox M on its way to the source S.

1. Explicit: RBF enables the explicit placing of middleboxes through rules. Therefore, in
order for M to be situated on the path from D to S, the natural solution is to have M

appear in S’s rule, RS, as well. In this way, M is explicitly located on both directions of
the communication and S is fully aware of M’s (off-path) presence for the traffic from

1Applications could require retransmissions of entire application data units, but this may lead to poor
throughput.
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D. This approach does, however, require S to communicate with M on the control plane
and, most likely, create a rule for sole purpose of communicating with D.

2. Source rule: D can use the source rule RM which directs packets to M; from M packets
are forwarded using RS. In this way, S does not need to create any new rule if simply
does not care about the middleboxes used by D. D and M can create rule RM out of
band, e.g., at the same time with RD. Alternatively, M could place RM in the payload
of some of the packets on their way from S to D; however, this latter approach would
not scale to multiple middleboxes.

The aforementioned limitation of the ability to use source rules applies when source rules
are used to place BD middleboxes on the reverse path. Specifically, in our previous example,
RS should accept packets generated by M, and cannot drop all packets not initiated by D,
since, in general, the anti-spoofing mechanism may prevent M from sending packets with D’s
source address. However, as we will discuss in Section 4.2.1, this limitation can be addressed
by having endpoints (or their RCEs) create DoS protection rules that also accept packets
from the middleboxes used in the endpoints’ rules, in addition to the endpoints.

ii) Router-defined functions on return path: We now discuss how router Rtr imple-
menting a BD function invoked by D’s rule RD can be placed on the return path from D to
S.

1. Implicit: Since routing paths are not controlled by end-users, ISPs should typically
deploy BD functions only at routers close to hosts, which are guaranteed to be on
both the forward and the return path of packets. In this case, the BD router function
invoked by RD and located on Rtr can simply inform the forwarding module of Rtr
to capture the return packets associated with the respective flow and forward them
through the BD function.

2. Source rule: The BD function could also be implemented at a router in the network
core. However, in this case, if the path changes, the communication will be broken and
needs to be re-established. To ensure packets go through Rtr on their way back from D

to S, source rules can be used as described above for the case of BD middleboxes. Since
Rtr is not known by D before S communicates with it, Rtr’s rule must be communicated
to D at runtime, e.g., by including it in some of the packets sent to D.

Importantly, note that rules using a BD function must not dynamically select waypoints
on the path based on router attributes or, otherwise, not all packets may pass through the
BD box (such a rule would be a poorly designed rule).
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Chapter 4

RBF Control Plane

In this section, we describe the RBF mechanisms for rule creation and certification (§4.1),
rule distribution (§4.2), lease enforcement (§4.3) and anti-spoofing (§4.4).

Setup: In RBF, ISPs must provide their clients rules to access a local DNS server, as well as
a Rule Certification Entity (RCE), which can certify clients’ rules. This information can be
provided through a modified DHCP service, similar to the way ISPs or organizations provide
the IP address of DNS servers today.

4.1 Rule Creation and Certification

To receive traffic, a client must create a rule that allows one or more sources to send traffic
to it. Before distributing this rule, the client must ask an RCE to certify it. If a rule is not
certified, the RBF routers will drop all packets using that rule.

RCE certification guarantees that rules obey the policies of all stakeholders. In particular,
certification guarantees the following properties:

1. Every destination in the rule (i.e., any address that appears as an argument of a sendto

instruction) has agreed to receive packets using that rule;

2. The operators providing router functions invoked by the rule approve the rule behavior
(i.e., the rule invoking those functions);

3. The rule cannot cause infinite loops;

4. The rule cannot bypass ISP routing policies (see §5).

A client can either create rules itself and directly ask an RCE to certify these rules, or
use a trusted DHCP-like service to create and certify rules on its behalf. In the remainder
of this section we present the former case. We simply note here that through DHCP-like
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services (the latter case) ISPs can use rules offer a broader ranger of services to clients, while
clients are not aware of the use of rules.

As mentioned earlier, the ISP provides each client with a rule to access an RCE that has
a contract with the ISP. The following example shows a possible rule that allows a client D

to access an RCE named C:

RD→C : i f ( source == D) sendto C

Before certifying a rule, an RCE verifies that the rule has been authorized by each
destination that appears in the rule. The client who has created the rule authorizes it
by simply signing the rule with its private key. A client that appears in the rule as a
destination, other than the rule’s creator, will first verify that the content of the rule obeys
its policies before signing the rule. For example, an intrusion detection box may verify that
the destination indeed belongs to a client allowed to use the service (e.g., based on a contract
between the client and the provider of the intrusion detection service), a waypoint router
may verify that the final destination is allowed to use source-routing, etc.

Let (KD, K−1
D ) denote the (public, private) key pair of client D, and let IPD be the IP

address of D. To prove to an RCE that the client signing the rule with private key K−1
D

indeed owns IP address IPD, client D sends a certificate along with the signed rule that
binds its public key KD and IP address IPD. This certificate is signed by an entity T,
i.e., [IPD, KD]K−1

T
, where K−1

T represents the private key of T. Clearly, the RCE must trust
entity T. In fact, in our solution we will assume that T is itself an RCE.

Next, we present the rule certification process in detail, initially for the case in which the
rule has a single destination, and then for the case in which the rule has multiple destinations
or waypoints/middleboxes.

Certify single-destination rules: Assume destination D wishes to certify a rule R that
forwards packets only to its address IPD, e.g., R: sendto IPD. Also, assume D already has
a rule RD on which it can be reached by the RCE C. D obtains this rule as part of the
bootstrapping process, which we discuss later.

Fig. 4.1(a) shows the certification of D’s rule, R, by C:

1. Host D signs rule R with its private key, and sends it to C using rule RD→C . In addition,
D sends the certificate binding its public key and address, i.e., [IPD, KD]K−1

T
. Upon

receiving this request, C verifies the certificate as well as the signature of the requested
rule. These ensure that the request has been made by the owner of KD and that the
requester is also the owner of IPD. In addition, C verifies that R is well formed (see
§5). For C to learn KD, KD should also typically be contained in the same packet or in
an earlier one (or instead of using a signed binding between the public key and the IP
address, one can use an encrypted such binding).

2. If rule verification succeeds, C signs the rule with its private key and sends it back
to D using the return rule in its certification request, RD. At this point, host D can
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Figure 4.1: Rule Certification

distribute rule R to other hosts directly (as a return rule) or through DNS.

The certification procedure (Fig. 4.1(a)) needs only to guarantee the authenticity of
the request. Since rules are public, confidentiality is not a concern. Since the lease is an
absolute value (§4.3), the only effect of replaying rule requests is increased traffic at the
RCE. The maximum lease value that C can sign for a rule is negotiated between D’s ISP and
C. Furthermore, RCEs can limit the number of clients contacting them and can limit each
user’s certification rate, as we discuss in this section.

Timeouts should be used to handle lost packets. We discuss the load of RCEs later this
section.

Certify multiple destination rules: In this case, every destination (i.e., any host, mid-
dlebox, or waypoint router that appears as an argument of a sendto instruction) in a rule
must agree to receive packets on that rule, i.e., the rule must respect its policies. In par-
ticular, every such destination must sign the rule. One of the destinations, D, collects the
signatures of all the other destinations along with their certificates binding their public keys
to their addresses. D then sends this information to its RCE. In turn, the RCE verifies that
all destinations in the rule have signed the rule and sends the signed rule back to D. The
lease signed by the RCE has the minimum duration between the requested lease and the
leases of all the certificates binding the addresses and the keys of the participants.
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Certify rules invoking functions: Operators providing router functions can restrict which
rules can invoke these functions. The certification process is similar to certifying multiple
destination rules. The identifiers of functions whose invocation requires authorization are
represented as hashes of public keys. RCEs certify a rule containing such an invocation only
if the rule is signed with the private key corresponding to the function identifier.

Bootstrapping: To certify rules, client D must contact an RCE. Recall that the ISP provides
D with a rule to access an RCE, C. In addition, D needs to provide C with a return rule.
Otherwise, C cannot send the certified rule back to D, since RBF requires every packet to
have a rule. The question is how can D get its first rule certified by C, without having a
return rule in the first place?

To get around this challenge, D asks C first to certify a rule that allows C to send packets
back to D, e.g.,

RC→D :
i f ( packet . source == C)

sendto D

Upon receiving such certification request, C certifies it and sends the certificate back using
the certified rule itself, RC→D. If the certification request has no return rule, C simply sends
the certificate back using the certified rule. Fig.4.1(b) illustrates the first rule’s certification.

Recall that when sending a rule certification request, client D also needs to provide the
RCE C with a certificate issued by a trusted authority, T, which signs the binding between
D’s key KD and its address IPD. In general T can be any authority trusted by C. For example,
T can be the ISP that provides service to D. For simplicity, in this dissertation, we assume
that T is also an RCE and, in particular, that T and C are the same.

Fig.4.1(c) shows how client D obtains a certificate of the binding between its address and
public key. First, D sends to C a request containing only KD and its address IPD with no
return rule (at this point D has no rule). Upon receiving this request, C signs the binding
between KD and IPD, and encrypts it with KD to guarantee D indeed owns the private key
K−1

D . To return this packet to D, C creates a rule with the same content as RC→D, but unlike
RC→D, this rule is named using one of C’s keys and not D’s key.1 The lease of the binding
also represents a contractual agreement between the D’s ISP and the RCE C.

This procedure for obtaining the binding between a public key and an address, relies on
the fact that D is indeed the actual owner of IPD. A malicious router on the reverse path
from C to D or another host2 that can spoof D’s IP and can intercept its incoming packets
could make such requests for IPD. These attackers can forge rules named with their keys
that send traffic to victim D’s IP. We discuss this attack in more detail in §5.

1Note that in general, an RCE can always contact a host by just creating a rule to its address.
2E.g. a host on the same wireless network as the victim.
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Source Rules: We note that there is no difference in the certification procedure between
rules logically imposed by sources and those of destinations.

RCE load and availability: To control its certification load, an RCE can rate-limit the
number of certification requests that it processes from each individual client. Clients are
identified by IP address; the anti-spoofing mechanism prevents clients from impersonating
each other. Alternatively, clients can be identified by the “personalized” rules provided by
the ISP to each customer to access the RCE; such rules may have a finer granularity than
the anti-spoofing mechanism. RCEs can indirectly protect themselves against link-level DoS
attacks by controlling the number of clients under contract.

RCEs must be highly available to enable rule certification at any time. RCEs can meet
this requirement by using multiple servers and multiple sites. ISPs and destinations can
protect themselves against RCE unavailability by contracting with multiple RCEs.

Automatic rule agreement: A host or middlebox appearing in a rule with multiple
destinations needs an automatic way to check if it agrees with the rule, in the case when
the rule was created by one of the other destinations. We expect an out-of-band process
by which operators of middleboxes decide which sources/destinations they are willing to act
for and the nature of acceptable rules (lease durations, other middleboxes, etc.). Given this
predetermined information, a rule participant M can automatically check if it agrees with a
rule created by another rule participant by verifying the following properties: (1) only sources
agreed by M are allowed to send packets on the rule, (2) the rule lease does not exceed M’s
desired duration for the rule. Optionally, some participants may verify whether certain
destinations are reached after themselves; e.g., middleboxes may want to verify whether
packets are indeed going to the desired destination afterwards. These properties are verified
by statically analyzing the rule. We leave implementing such tools to future work (see §10).

RCE Key Distribution and Revocation: In this dissertation we do not explore solutions
for the distribution and revocation of RCE keys to routers. Here, we simply mention two
possible approaches towards this goal. In one approach, RCE keys could be distributed and
revoked using DNSSEC. For example, in the txt or other RR type, one DNS entry contains
the number of RCEs and, for each RCE, there is one DNS entry (based on its index such
as “ID24.rce”) that contains the RCE’s key. Routers periodically update the RCE keys. In
another approach, RCEs could be deployed along AS boundaries, such that each AS would
have its own RCE. This approach has the advantage that additional security can be enforced,
e.g., the trust in some RCEs can be restricted to their own address ranges. Secure BGP can
be used to distribute RCE keys in this case, but at the expense of extra complexity.3

3Note that DNSSEC could also potentially be used to distribute keys when RCEs are deployed along AS
boundaries.
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4.2 Rule Distribution

RBF uses an extended DNS infrastructure to distribute rules, as illustrated in Fig. 4.2(a).
The destination D creates and certifies a rule for itself (step A) and inserts it into the DNS
(step B). A sender S that wants to contact D looks up D’s name in the DNS; the DNS is
extended to return D’s rule rather than its address (step 1).4 After obtaining a rule to D, S
directly sends packets to D (step 2).

For practical purposes, the rules of the DNS root servers should have long leases or never
expire. In this way, tedious reconfigurations or refresh protocols are avoided, similar to how
today DNS root servers have long-lived addresses.

In Section 3.3 we pointed out that rules can be used to block DDoS attacks. This relies
on (1) the ability to distribute customized rules to different senders (i.e., give a sender S

a rule that drops all packets not generated by S) and on (2) the ability to protect the rule
distribution itself from DoS attacks. We discuss distribution mechanisms to achieve these
next.

4For example, DNS could be incrementally extended with a new type of record to serve rules rather than
addresses.
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4.2.1 Distributing Rules for DDoS Protection

To protect against DDoS attacks, client D can contract with a large entity E, and redirect
its DNS entry to E, by registering E’s rule under its DNS name. Fig. 4.2(b) illustrates this
approach. DNS will reply to a lookup for D’s name with E’s rule (step 1). The DNS entry
that contains E’s rule must belong to a new type of DNS RR. This new class of entries is
returned directly to clients by DNS resolvers. Upon a receipt of such an answer to its DNS
query, the requester will continue the DNS lookup by contacting E (step 2). E rate-limits
rule requests and forwards them to D (step 3), thus protecting D from DoS attacks. For the
authorized requesters, D creates rules (step 4) and replies back to the requesters (step 5). E

forwards requests to D conforming to a policy (see §3.3), which can be updated by D at any
time.

Note that some malicious users may still get their requests forwarded by E and authorized
by D. To alleviate this attack, E can employ fair queuing across senders, and D can blacklist
known attackers at E. Such an approach offers a protection similar to network capabilities
that apply per-source fair queuing at routers [78].

Fig. 4.2(c) presents an alternative solution, in which E directly creates rules for requesters.
In this case, E has to incorporate the functionality of an RCE. To enable E to generate rules
on its behalf, D provides it a rule template parameterized by the requester’s address (step A).
For example, the template could be similar to the rule for protecting against DoS presented
in §3.3: if (packet.source != <requester>) drop; else ...; E uses this template to
generate a unique rule per client. Upon receiving a lookup request from client S, E replaces
the <requester> template parameter with S’s address(es) extracted from S’s return rule,
and sends the newly created rule to S (step 2). In addition to the rule template, D informs
E of a rule granting policy, which also contains the maximum number of active rules E can
grant at a given time. If under attack or heavy load, D informs E to stop granting new rules,
to reduce the maximum number of rules it can grant, or to block specific clients.

Compared to the approach presented in Fig.4.2(b), the solution from Fig.4.2(c) avoids
involving the destination in the rule certification process; however, it requires some of the
RCEs to be able to withstand DoS attacks (those that provide this service) and may require
more frequent policy updates between D and E.

Typically, to avoid the limitations of using middleboxes that should be on both the
forward and reverse paths (see §8.3), the rules created to protect against DDoS attacks
should allow packets generated from all the addresses expressed in the requester’s rule.

4.3 Rule Leases

The lease is an expiration time stamp certified along with the rule description. A router
drops a packet if its current time exceeds the rule expiration time.

To implement leases, we propose that all routers and RCEs are synchronized, via NTP
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[26] as recommended by router manufacturers [32]. In this context, a lease is an absolute
expiration time value (see Section 6.1 for details on our implementation).

In the absence of global clock synchronization, we next describe an alternative solution
in which lease times are relative to the RCE.

4.3.1 Alternative Lease Mechanism Not Using Global Synchro-
nization

At a high level, each router maintains one timer per RCE and the current time at routers
is set and updated from the flowing packets. For this purpose, rules also have associated a
creation time besides the lease expiration time.

Each RCE associates to each certified rule two time stamps: a certification time cer time,
and an expiration time exp time (when using NTP only the expiration is required). The
timestamps are relative to the time of the RCE certifying the rule.

Each router maintains a clock tC for each RCE C. tC advances at the router’s internal
clock rate. tC is initially in an uninitialized state and is initialized to the cer time value of
the first forwarded packet that is certified by C.

Upon receiving a packet certified by C with certification time cer time, the router updates
tC as follows:

tC = max(tC , cer time) (4.1)

In other words, the current time estimate for RCE C is set to the most accurate value; if
the cer time is higher than tC it means that the current time estimate is behind the actual
time of RCE C and it should be updated (the rule is seen as certified in the future).

Routers drop expired packets, i.e., packets containing an exp time greater than the
corresponding tC . This ensures that in the absence of clock drift between the router and the
RCE, and in the absence of router failure, a rule can be used for at most its lease period,
i.e., exp time−cer time.

To protect against clock drifts that cause tC to increase faster than the RCE time, the
router resets tC (marks it as uninitialized) if it has not been updated for a predefined interval
of time I (e.g., several hours or days). In particular, the router resets tC to the largest
cer time of any rule (certified by that RCE) that the router has seen during interval I. We
assume that clock drifts between any router in the Internet and any RCE are bounded by a
small value D within the interval I, such that D is much smaller than rule leases, e.g., D is
smaller than one second.

Finally, note that rules of unpopular RCEs could potentially be replayed by malicious
hosts (unpopular RCEs are those whose certified rules do not travel for long periods of time
through the network). However, we expect unpopular RCEs to not exist in practice, given
that collocated destinations of one ISP should typically be certified by the same RCE, and
thus all packets going to that ISP should use the same router timer. Moreover, even if
unpopular RCEs would exist, given that no traffic is being sent to the particular destination
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whose rules are replayed, the incentives for the attacker are small; more specifically, since no
clients are accessing the destination, there are almost no incentives for DDoS attacks.

4.4 Anti-spoofing mechanism

If a source can spoof addresses on packets it sends, it can send packets to a destination D even
if the rule does not allow it to, and in this way evade D’s policy. Moreover, one can mount
a DDoS attack by using a single rule distributed by a malicious source to a set of colluders.
To address this problem, RBF can use a previously proposed anti-spoofing mechanism. In
this dissertation, we propose the use of ingress filtering, which is already deployed by over
75% of today’s ASes [39]. When deploying RBF, RBF routers could also be used to apply
ingress filtering. Note that if malicious ASes do not apply ingress filtering, DoS protection
is not fully compromised as only hosts in these ASes can launch attacks.

Instead of ingress filtering, RBF could leverage other anti-spoofing mechanisms such
as Passport [77]. However, Passport [77] requires a secure routing layer and incurs extra
overhead in packets.

The anti-spoofing mechanism requires middleboxes and routers that change a packet’s
destination address also to change the packet’s source address attribute.

Finally, note that RBF can function even with a partially deployed anti-spoofing mech-
anism, such as the currently existing ingress-filtering. The default-off nature of RBF scales
down the bots available to attackers since it reduces the spreading potential of viruses
(e.g., viruses cannot perform random scanning because they have to know a rule for the
contacted destination). Moreover, a DoS attack will stop once the lease of the rule expires;
the victim can detect the attacker, and stop providing new rules to it for a period of time.
To detect attackers in this case, destinations can use a rule to record routers on the path
(i.e., such as the the Pi [107] example in Section 3.3.) In addition, RBF could be used to
incentivize the deployment of ingress filtering; destinations under attack can simply deny
rules to requesters from ASes known not to ingress filter (e.g., which can be learned through
an independent service).
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Chapter 5

Security Analysis

The RBF design aims to achieve the following three goals: (i) policy enforcement –
ensure that the authorized rules respect the policies of all participants (routers, middleboxes,
destinations), and packets with unauthorized rules are dropped inside the network; (ii) rule
enforcement - rules cannot be used by malicious senders and, if senders or rule participants
are untrusted, respect of rule directives can be enforced; and (iii) rule safety rules cannot
be used to attack the network. Next, we summarize RBF’s security properties, the threat
model and assumptions under which they hold, and the mechanisms that allow RBF to meet
these goals.

Assumptions: We assume that DNS resolution is secure, that distribution of RCE keys to
routers is secure, and that RCEs are not malicious.

Attackers: An attacker in RBF can be any host, middlebox, or router: sources can attempt
to attack destinations by forging, evading or tampering with their rules; destinations can
try to attack the network by creating rules that waste resources and slow down routers;
middleboxes and routers can attempt both of these attacks.

5.1 Security Properties

We decompose the aforementioned security goals into four specific desired properties:

1. No Rule Forging: A host S cannot manufacture a rule that sends packets to another
host D, unless D explicitly agrees with this rule, i.e., destinations and middleboxes
control the creation of rules that send traffic to them.

2. No Rule Tampering: Sources, routers and middleboxes cannot tamper with the
destination’s rules.
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\Mechanisms Certifi- Lease Anti- Static
Properties\ cation Spoofing Analysis
No Rule Forging × ×
No Rule Tampering ×
No Rule Evasion × ×
Network Safety × ×

Table 5.1: Properties and Defense Mechanisms

3. No Rule Evasion: Host S cannot send packets to destination D, if D’s rules do not
accept packets from S.

4. Network Safety: A destination D cannot create unsafe rules. In particular, D cannot
create rules that (a) cause infinite loops, (b) corrupt router state, (c) DoS routers or
RCEs, or (d) violate ISP policies.

5.2 Mechanisms

RBF uses four mechanisms to achieve the above properties:

1. rule certification

2. rule leases

3. anti-spoofing

4. static analysis.

Next, we discuss how these mechanisms achieve the four aforementioned security properties.
Table 5.1 summarizes this information at a very high level.

5.3 Analysis

Rule Forging

To forge a rule that sends packets to an address IPD of a destination D, an attacker has to
be able to receive packets addressed to IPD as well as to send spoofed packets as originated
at IPD. The set of attackers in this category are mainly represented by the routers on the
reverse path from the RCE to D. However, note that such attackers can already disrupt D at
the routing level (e.g., routers can drop/amplify packets to D, can insert malicious routing
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updates such that packets do not reach D, etc.). Furthermore, using forging rules to mount
a DoS attack is not easy. A malicious router creating a rule pointing to D would need to
employ a set of colluders to which it can distribute the rule, and then have these colluders
DoS the victim. In the absence of such colluders, the malicious router can only use the rule
to send itself packets to D. Finally, the victim can detect the attack by checking whether it
has authorized the rules used by the packets it receives. This also means that a malicious
router M cannot deceit D into using rules created by M that allow M to eavesdrop packets
sent to D, i.e., rules in which M is imposing itself as an unwanted middlebox. If D does not
recognize the rules it can immediately contact its ISP.

Based on these considerations, we believe that the possible rule forging attacks are rela-
tively benign. Still, if needed, these attacks could be prevented by (a) having ISPs upload
to the RCEs the binding between the IP and the public key of their customers, or (b) by
having the ISPs themselves sign the binding between their clients’ addresses and their keys
(e.g., through an extended DHCP like service). For example, in our presented approach,
a large enterprise could protect against malicious routers forging rules to its addresses by
having its ISP upload its public key to all RCEs, together with its address prefix.

Even though an attacker cannot forge a rule, it may still be able to send packets to a
host which did not approve the rule. Assume the address of host D changes from IPD to IP′D,
and that IPD is immediately assigned to host X. If D grants a rule to host A, then A can use
the rule to send packets to host X once the address has changed. However, we argue that
the impact of such attack is negligible. First, the attacker can use the stale rule only for the
duration of its lease. Second, the attacker cannot influence the selection of the new address
owner, so it cannot pick its victim.

Rule tampering

The fact that rules are signed prevents any router or middlebox along the path to tamper
with the rules.

Rule evasion

Host A can attempt to elude D’s rules by (a) spoofing its address, (b) mounting a replay
attack, or (c) using a reflection attack.

The anti-spoofing mechanism employed by RBF precludes an attacker (e.g., A) from
spoofing its address.

The lease mechanism mitigates the replay attacks, by limiting the ability of A to use the
rule beyond the time intended by D.

Finally, an attacker A can indirectly send packets to a destination D by sending packets
to a reflector R with a return rule pointing to D. D can defend against receiving reflected
packets by specifying in each of its rules the sources that are allowed to send packets on that
rule. Unless R is in this set, the routers will drop the packets reflected by R. A sophisticated



40

attacker might attempt to find rules that the victim D uses to communicate with R. If R is
a large entity (such as Google), the attacker might have the opportunity to mount a DoS
attack on D. However, to find such rules the attacker would typically need to collude with
compromised routers on the paths between R and D, which can most likely already harm D

as discussed earlier. In addition, R can detect whether the other communication endpoint
does not send meaningful responses (the attacker does not receive any traffic back) and can
detect such attacks.

Network safety

D can attempt to create rules which (a) cause infinite loops, (b) corrupt router state, (c)
DoS routers, and (d) violate ISP policies. Furthermore, D may also attempt to (e) DoS the
RCEs. Next, we consider each of these attacks in turn.

Infinite Loops – A rule could potentially create a forwarding loop by changing the packet
destination in a circular fashion (the packets using such a rule would be dropped only when
their TTL expires). To protect against such attacks, RCEs use static analysis to check
whether the rule may cause forwarding loops. In Appendix A, we present an algorithm,
called Loop-Free Rule (LFR), that detects forwarding loops, and we prove the following
result:
Theorem: A rule cannot create forwarding loops if it is validated by the LFR algorithm.

Similarly, in Appendix B we present an algorithm that detects rules that can lead to
invocation loops, i.e., the packet keeps invoking functionalities at one router.

Importantly, note that both these types of attacks (that form loops) can be avoided
through runtime mechanisms (see Appendices A and B). However, we take advantage of the
rule certification and keep the forwarding mechanism simple by using static analysis.

In a nutshell, to detect loops, it suffices to verify whether the finite state machine (FSM)
modeling the rule execution has cycles containing one or more destination addresses. The
states of the FSM are of the form <packet.attributes, router.attributes>. While given a rule
it is easy to find the transitions between these states, the number of states can be large.
Fortunately, the rule structure is very simple, and rules only allow comparison operations
and assignments. This allows us to use a highly simplified version of symbolic-execution [75]
to reduce the number of states to that of the number of destinations in the rule.

On the data plane, a malicious router can induce loops by changing the packet state. For
example, a packet that has just visited a middlebox can be turned back to the middlebox
by resetting its state to that before the middlebox. However, note that this attack does
not represent an infinite loop since it requires the attacker to process the packet every time
it comes back. For rules that filter out source addresses, the anti-spoofing mechanism can
prevent most of these attacks because the router cannot send packets back to the middlebox
while pretending to be the source.

Router corruption – The rule forwarding logic is simple enough so that we can assume
that routers implementation of this logic is correct. Together with the fact that rules cannot
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modify router attributes, this guarantees that rules cannot compromise router state.
Attackers might also try to corrupt routers by exploiting errors in the invoked router

functionalities. However, routers can use techniques such as virtualization [12,51] to protect
against such attacks.

DoS Routers – With RBF, an attacker can attempt to slow down routers by sending
packets with random certificates, causing the router to waste time verifying these bogus
signatures. RBF routers can simply blacklist such attackers. Moreover, this attack can only
occur at the first RBF router. For this reason, the incentives for it are low, as the attacker
ends up targeting its own access route and, at most, other collocated users. The attack can
further be alleviated by having two forwarding paths, a fast path for the already verified and
cached certifications, and a slow path for first time rules. A more sophisticated version of
this attack may use a large number of valid rules instead of random certificates. This attack
is both more difficult to mount and to detect, and can be mitigated by placing a cap on the
rate of new rules per host.

Another DoS attack on routers is to use rules that take a long time to forward. However,
the rule forwarding time is directly proportional with the rule size, which is bounded.

Attackers may also attempt to slow down a router by extensively invoking the function-
alities it exposes. In fact, there is a broader question about how one should architect router
implementations to accommodate functions invoked by end users and, in particular, to make
sure functions do not open additional vulnerabilities through resource exhaustion attacks.
While a comprehensive treatment of this question is an active research topic [41, 53, 113]
and beyond the scope of this dissertation, in Sections 6.1 and 6.2 we present and evaluate a
prototype software router that offers isolation between the plain forwarding traffic and traffic
invoking functionalities as well as isolation between different functionalities.

Path violation – Malicious hosts can create rules which violate ISP routing policies.
For example, two colluders A and B could create a rule as follows: the packet leaves the
source towards A but when reaching a certain AS or router (before reaching A), it suddenly
changes the destination to B. In this way, with multiple colluders, arbitrary AS path could
potentially be selected. To prevent such a malicious behavior, RCEs may use static analysis
to guarantee that the destination attribute is not changed before the packet reaches the
current rule destination.1

DoS RCEs – By sending certification requests at a high rate, attackers may attempt
to indirectly attack other destinations by slowing down their RCEs. However, RCEs can
control the number of destinations that use them and rate-limit the certification request
for each destination (§4.1). Moreover, to improve availability, each host can use multiple
RCEs. Malicious routers may also attempt to replay a destination’s certification requests at
a high-rate in an attempt to prevent it from certifying new rules. However, this does not
represent a new attack ability for malicious routers, which can already drop any packet of

1Similarly to the case of infinite loops, this attack could be prevented by restricting the rule forwarding
mechanism, but we again take advantage of the already existing certification.
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that destination, just as they can also drop the certification requests.
Source Rules – Given that the control from the destination rule is never returned to the

source rule, each packet containing a source rule can be considered as two distinct packets:
one using the source rule and one using the destination rule. Thus, the use of source rules
does not create any new threats compared to having a single rule in packets. Note that
a source rule is just as any other rule and must have at least one destination (middlebox,
indirection router, etc.). In order to prevent the path violation attack described before, the
attribute that switches the control from the source rule to the destination rule can be set
only when arriving at one of the destination addresses specified in the source rule.
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Chapter 6

Evaluation

6.1 Implementation

This section describes our prototype RBF router and rule compiler.

6.1.1 An RBF Rule Compiler

Our prototype implementation offers users a high-level language in which to write rules,
language that is largely identical to the rule syntax used in this dissertation. We wrote an
RBF compiler in C++ that translates this high-level language into a compact rule format
carried in packets. This compact format uses the following types of statements: drop,
sendto address, set the value of a packet attribute, compare attributes (with values or
between them), jump to a forward statement (always or on false/true conditions) and invoke

a router-defined function. The compare statement sets a flag depending on the result of the
comparison, which is used by the jump statements (the flag is initialized with zero at the start
of the rule). The jump statements can only take positive offsets. To reduce the size of rules,
we use variable-length encoding in representing the internal rule structure. We also use:
8B(ytes) for public-key hashes, 3B for the user-local index (contained in the rule identifier),
3B to identify the RCE, 3B to identify router-defined functions that do not require approval
to be invoked and 8B for those that do, and 2B as the default RBF packet attribute values.1

For the lease we use an absolute expiration time consisting of first 4B of the NTP format,
with second-level granularity and a wrap-around period of 136 years. The maximum rule
description size is 256B in our implementation.

1Our current prototype only supports this default size.
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6.1.2 A Prototype RBF Router

Rationale: We implemented RBF forwarding using Click [83] and RouteBricks [48]. Most
commercial routers implement packet processing using ASICs or specialized network proces-
sors (NPs) rather than general-purpose CPUs and, as such, our software-based prototype is
not entirely representative of currently deployed routers. To a large extent, our choice of pro-
totyping platform is borne of necessity since commercial routers are closed. Beyond necessity,
however, we believe a software-based prototype is valuable for multiple reasons. First, recent
research [48,50,65] has demonstrated that, with modern multi-core servers, it is now possible
to build high-speed software routers up to edge and even core speeds. Secondly, while not
directly reusable, several aspects of our implementation architecture such as our approach
to partitioning tasks across multiple cores should apply to network processor-based routers.
Finally, several research [23, 60] and commercial switches [8] augment ASIC-based switches
with some number of co-located general-purpose cores or servers for greater flexibility in
packet processing – our prototype architecture is directly applicable to such platforms.

Design requirements: We build our prototype in the context of modern multi-core servers
that incorporate multiple processors or “sockets”, each with multiple cores [5,29]. As shown
in Fig. 2.1, the software stack of an RBF router includes the following key components:
(1) an IP forwarding module, (2) the rule execution engine, and (3) some (possibly zero)
number of specialized forwarding function modules. All packets traverse the rule execution
and IP forwarding components, while different subsets of packets may traverse one or more
specialized functions. In addition, the resources required to process a packet may vary
widely across functions; e.g., an encryption function would use lots of CPU but little cache,
while a caching module may use more cache and less CPU. At a high level, our design goal
is to balance high performance (i.e., making efficient use of resources) with performance
isolation, both across different functions, and between functions and the rule execution engine
(i.e., sharing resources in a fair manner).

Approach: In its full generality, the above goal requires contention-aware scheduling that
simultaneously takes into account the multiple resources (cores, various caches, memory
bandwidth, I/O bandwidth) for which tasks might contend. For modern multi-core systems,
this is in itself an area of active research [41,113] and beyond the scope of this dissertation.
Instead, in our prototype, we address the issue as follows. The IP forwarding module and
the rule execution engine are the central, most critical, components of the router and hence
we assign these to a socket of their own and do not run specialized functions at cores in
this socket. This avoids having the IP and rule execution engines contend with specialized
functions for cache, CPU and other resources at the cost of some potential inefficiency since
these “reserved” cores (if unused) cannot be used by specialized functions (if needed). We
then assign specialized functions to the remaining “unreserved” cores. We rely on the existing
(Click and Linux in our implementation) system schedulers to ensure fair sharing of CPU
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Figure 6.1: Core Allocation Example in RBF Router

resources between functions on the same core.
To achieve high performance, we run a single thread performing both IP forwarding and

rule execution at each of the reserved cores; this ensures that packets that do not invoke any
specialized functions are processed entirely by a single core avoiding potentially expensive
cache misses and inter-core synchronization [48]. Packets that invoke specialized functions
must be relayed across cores and hence incur corresponding performance overheads due to
cache misses and so forth. To improve the efficiency of such transfers when these functions
are implemented in user space, we use shared memory pages and event queues. An example
of the resulting system architecture is depicted in Fig. 6.1.

6.2 Evaluation Results

We use our prototype to evaluate the overhead RBF imposes on packets (§6.2.1), routers
(§6.2.2) and RCEs (§6.2.4).

6.2.1 Packet Size Overhead

Fig. 6.2 presents rule sizes (in bytes) for a range of examples, including those from §3.3.
The figure captures all the RBF-related fields and presents the size broken down into (a)
the rule and the associated attributes’ binary encoding; (b) the control fields used for the
lease, RCE identification, to specify whether the return rule is in the packet, whether the
packet has a source rule, and so forth; and (c) the rule signature. We assume a 41B signature
obtained using ECDSA with ECC public keys for RCEs derived from the NIST B-163 or
K-163 curves [30], offering 80 bits of security. Note that RBF is independent of the exact
signature scheme used and that smaller (and faster) signatures can be used. However,
shorter RCE keys may require more frequent updates to compensate for the lower security



46

0

20

40

60

80

100

120

140

By
te
s

Rule Encoding Control Signature
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guarantees. The rules in Fig. 6.2 do not contain an identifier, and are identified by endpoints
and routers using a hash over their content. Rule identifiers are required for rules whose
content may change during a communication (such as the rules of mobile hosts) and incurs
an additional 11B overhead in our implementation (8B for the hash of the public key and 3B
for the user-selected index). Note that the rule identifier need be unique only with respect
to a single communication endpoint (i.e., all parties that a host X communicates with should
have unique rule identifiers).

From Fig. 6.2 we can see that many common forwarding scenarios (unicast, routing via
middleboxes, rules for DoS protection) can be expressed with around 60-80B rules while
more complex rules (e.g., loose source routing, secure middleboxes, anycast) can take as
much as 140B. The average rule size across all examples we have implemented is 85B, rep-
resenting 13% overhead for an average packet of 630B [9] and 6% overhead for a 1500B
packet. By comparison, using RSA-1024 signatures (instead of ECDSA) would incur 27%
overhead on a 630B packet and 11% overhead on a 1500B packet. Note that the packet size
overhead matters mainly when links are congested, in which case the goodput (application-
level throughput) of the participants to the traffic is reduced proportionally with the RBF
overhead.2 Links usually get congested when many endpoints use throughput-intensive ap-
plications. Since throughput-intensive applications typically use large packets, we expect

2The added latency due to the additional per-packet overhead is minimal.
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the observed goodput reduction to be in practice closer to the overhead associated with
large packets rather than average-sized packets. Moreover, we expect this overhead to be
significantly reduced in the future with the adoption of jumbo frames.

Potential Optimization - Rule Caching: Per-packet overhead can be significantly re-
duced by caching rules at endpoints and routers; packets whose rules have been cached need
only carry rule identifiers. There are two opportunities for caching. First, destinations can
cache return rules; this allows the return rule to be eliminated from all but the first packet
in a source-to-destination exchange. Second, rules can also be cached at routers. Here, how-
ever, we must ensure no packet carrying only a rule identifier arrives at a router that does
not store the corresponding rule description. This might occur, for example, due to a route
change or when a router deletes the rule from its cache. In such cases, the router can simply
drop the packet in question, if the endpoints include the rule on all retransmissions and
during periods of high packet loss. Of course, caching imposes additional storage overhead
at routers as we evaluate shortly.

In summary, based on our evaluation, we see that the per-packet overhead due to RBF can
range from as low as 24B when using caching and up to ∼250B in the bad case where there
is no caching and the packet carries complex destination and return rules. Sources can add
their own control for outgoing packets through source rules, at the expense of an additional
rule in the packet. In general, the more endpoints take advantage of the flexibility offered
by rules, the higher the overhead. Based on their interests, endpoints can select different
points on this tradeoff between flexibility and overhead.

6.2.2 Router Overhead

In this section, we evaluate the overhead RBF imposes on routers for rules that do not invoke
specialized processing functions; we consider router functions in the following section. The
primary overhead RBF imposes on routers is the additional processing required to execute
and authenticate rules and the additional storage capacity required if rules are cached.

Rule Forwarding

We first measure the overhead of rule processing by comparing the performance of RBF-on-
RouteBricks to that of unmodified RouteBricks running on a single high-end server machine.
We use a dual-socket server with four 2.8GHz Intel Xeon (X5560) cores per socket to (from)
which we generate (sink) traffic over two dual-port 10G NICs. In this experiment, we use
all 8 cores to forward packets and do not perform rule authentication (i.e., the RBF router
is assumed to be inside a trusted domain).

Fig. 6.3 plots forwarding rates for some of the examples from Fig. 6.2. The first column
represents a packet stream with sizes generated based on a packet trace collected on the
Abilene backbone [22]; since the packets from the trace do not have rules, we add to each
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Figure 6.3: Forwarding speed for RBF over RouteBricks

packet the slowest rule that fits in the packet. By “slowest” we mean the rule that takes the
longest time to forward, as determined by the number of conditions and actions encountered
during forwarding. To capture the performance impact for small packets, we profile each
rule without any payload and with no return rules. In the figure, packet sizes are shown next
to the example name and entries are sorted in order of increasing packet size; the packet
size also includes the Ethernet and IP headers. The last columns depict forwarding of larger
packets, i.e., that also contain data payload. To see the impact of the type of rule for these
packets, we profiled them with the fastest and the slowest rules. Note that all rules are
profiled in the worst case, meaning that the longest path through the rule is considered. For
the slowest rule we use a 145B anycast rule which selects one out of 10 destinations based
on the value of a packet attribute (the last destination is always selected in our tests to use
the longest path in the rule).

Overall, we see in Fig. 6.3 that the performance degradation due to RBF’s more complex
per-packet processing is always modest (<15%) and virtually non-existent at larger packet
sizes. For small packets the CPU is the forwarding bottleneck, and RBF’s added processing
slows the router. For larger packets the I/O system is the bottleneck, and there are enough
free CPU cycles to execute rules. A fine-grained profile of the rule execution module showed
that it uses between 120 CPU cycles per packet for the fastest rule and 600 CPU cycles
for the slowest rule; in comparison, the IP router used in our experiments requires around
3000 cycles per packet without rule execution. Also note that compared to the network-level
forwarding results from Fig. 6.3, application-level goodput is further reduced by the RBF
header.

RBF is also compatible with high-end routers that use specialized hardware, rather than
the general-purpose x86 hardware we consider. Increasingly, high-end routers rely on network
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processors [49,103] for data plane processing (e.g., Cisco’s flagship CRS router uses network
processors). We expect network processors can accommodate the flexibility RBF requires
in per-packet processing (since network processors are fully programmable, much like our
general-purpose server but simply use a different programming paradigm) with a similar
type of overhead.

Rule Authentication

Recall that routers must verify rule signatures. While signature verification is expensive,
there are two reasons we argue this overhead is manageable. First, only routers at trust
boundaries need to authenticate rules; border routers see lower traffic loads than core ones,
and hence can more easily accommodate the cost of authentication. Second, routers can
cache the results of authentication checks, maintaining a hash of the rule and signature.
With caching, the full signature verification is only required for the first packet forwarded
on a new rule, within a certain caching period. Thus verifications can be limited to only
border routers and, assuming a large enough cache, the rate of verifications is on the order
of the rate of arrival of packets with new rules.

In this dissertation we proposed the use of ECC signatures applied on rules and we
are pursuing a hardware based implementation of RBF that uses ECC signatures. In the
meantime, we have evaluated RBF with a software implementation of RSA which is more
amenable to software implementations (we have compared the packet overheads of ECC and
RSA previously, in Section 6.2.1). New CPU hardware can handle thousands of public key
signature verifications per second. For example one core of the router machine that we used
to forward rules in the previous experiment can perform over 38k verifications per second for
RSA 1024. Moreover, these verifications can be parallelized; if all the 8 cores of the router
machine are used, the machine can process almost 300k 1024bit RSA signatures per second.
However, if the same hardware is used both to verify signatures and to forward packets, the
extra processing required by authentication may slow down forwarding.

In Fig. 6.4 we evaluate the impact of rule verification on forwarding, using the same two
machine setup as before. On the X axis we show the percent of packets with rules being
authenticated. For the rest of the packets (which are not authenticated), we assume the
router has cached authentication information, since those packets belong to flows already
established. Note that we ignore the cache lookup time. We use 1024 bit RSA keys. To
decouple the effect of rule processing from that of authentication, we profiled different packet
sizes containing the slowest rule; to capture the impact of authentication for small packet,
we also profiled this rule with no data payload. The vertical line at approximately 5% in
Fig. 6.4 shows the average rate of packets corresponding to new flows in the Internet; we
extracted this rate from recent backbone traffic monitoring at [9]3 However, we think this

3This ratio represents the number of flows to the number of packets (i.e., the inverse of the flow length
in packets). We use this value in this experiment because we fill up the entire available bandwidth. As
mentioned in §3, we have observed a rate of less than 1% when comparing the bandwidth used by packets
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Figure 6.4: Forwarding speed when verifying packets.

rate represents a pessimistic estimate for average rate of packets with new rules seen by
a router because multiple connections share the same rule, e.g., a client makes multiple
connections to a web server all sharing the same rule.

As we can see, authentication does impact forwarding as the CPU becomes the scarce
resource. As expected, this impacts mostly the smaller packets. However, the rate for the
packets generated using real traffic data (Abilene) is not significantly impacted up to the
5% threshold derived from the Internet’s average rate of new flows. Moreover, the good
news is that by adding more cores, this process can be parallelized; current industry trends
seem to indicate that end-hosts as well as routers will increase their number of cores. We
thus expect a linear increase in performance as more and more cores are used, up to the
forwarding results presented earlier in Fig. 6.3.4

Slowing down routers by purposely sending many valid new rules is difficult. First, the
attacker has to find a large number of valid rules and use them before they expire. For
example, assuming a 1 million rule cache, the attacker would have to find over 1 million
valid rules. Second, routers can detect such behavior and block attackers, similar to the
attack with random certifications described in §5. For example, a typical user is expected
to send packets containing only a few new rules per second. In addition, as mentioned in
§5, the incentives to mount such attacks are not as high as, for example, DoS attacks, since
attackers would have a short range of action. Essentially, attackers can only attempt to slow
down their access path and attack their own provider.

indicating new flows to the link capacity, because the link is not fully utilized.
4In addition, historically, network speed has increased at a smaller pace than computational power (see

Nielsen’s law [18] vs. Moore’s law); accordingly, we expect such a trend to persist in the future, in which
case, authentication will be more and more easy to perform at line speed.
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Figure 6.5: Performance Isolation Between Router Functions and Regular Traffic

Router cache sizes

We earlier proposed that routers cache rule authentications and/or even rule descriptions.
In each case, the number of cache entries required depends on the number of distinct rules
the router sees. If we assume that all packets in a flow share the same rule, then the
number of distinct rules passing through a given router varies between the worst case of
O(#flows) to the best case of O(#destinations) seen by the router. The former corresponds
to a destination that uses a different rule for every source it communicates with, the latter
to a destination that uses a single rule for all potential sources.

In our implementation, each cached authentication is 19 bytes – 11B for the rule identifier
and an 8-byte hash value used to verify whether the rule has changed since it was authen-
ticated. Each router uses its own secret hash function to prevent attackers from using hash
collisions. Thus, one million rules would require only 19MB of memory. For caching entire
rules, Fig. 6.2 reveals average and worst-case rule sizes of 85 and 133 bytes, respectively. If
we conservatively assume traffic is uniformly distributed across these forwarding categories,
we arrive at an estimated cache size of 85MB (average) to 133MB (worst-case) for 1M rules,
which is within the scope of memory available in current routers.

6.2.3 Router Functions

Our router prototype supports specialized functions implemented at either kernel-level or
user-level. We currently support three router functions: (i) the Snort IDS [24] adapted to
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Figure 6.6: Fairness Between Router Functions

run as a user-level function, (ii) a kernel-mode firewall implemented in Click and (iii) a
kernel-mode encryption engine also implemented in Click. Each function runs as a separate
process/kernel thread isolated from the packet forwarding path through queues. We measure
performance and fairness using the above functions on the same hardware as before. We
dedicate four cores to the standard forwarding path and the remaining four cores to custom
functions.

Fig. 6.5 illustrates the resource isolation between forwarding and router functions; the
function used in this experiment is Snort (running on four cores). To generate traffic we
use real traces of malicious traffic created particularly for IDS testing [20, 64]. The average
packet size of the trace used in Fig. 6.5(a) was 1065 bytes while in Fig. 6.5(b) was 195 bytes.
To avoid biasing our results, we modify Snort not to drop any malicious packets so packets
are only dropped due to resource exhaustion. Our test maintains constant total input traffic
while increasing the percentage of input traffic that invokes Snort (X-axis). We see from
Fig. 6.5 that Snort traffic does not affect the “regular” traffic that does not invoke Snort,
in the sense that no regular traffic is dropped, even as a growing percentage of input Snort
traffic is dropped.5

Fig. 6.6 illustrates isolation between router functions. We use two functions, firewall

5We also measured the performance of the system with all the eight cores running both forwarding and
Snort, and all the packets directed to Snort. While this configuration does not provide isolation for the
regular traffic, it can forward a higher total throughput of 22Gbps when using large packets.
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and encryption, and we run three experiments: (1) all traffic invokes the firewall function
and no traffic invokes encryption; (2) all traffic invokes encryption; and (3) equal halves of
traffic invoking firewall and encryption. In the third (shared) test the CPU is shared fairly
between functions (we use Click-level scheduling); thus, the ratio between the maximum
throughputs achieved by each router function is expected to roughly match the ratio between
the throughputs of the functions when running in isolation. Fig. 6.6(a) plots the resulting
forwarding rates under increasing input traffic, when generating packets from a trace with
an average packet size of 1065 bytes. Perhaps surprisingly, in Fig. 6.6(a) the encryption
throughput is higher for a mix of firewalled and encrypted traffic than 50% of the throughput
when encryption is executed alone. The reason is that the trace contains large packets. In
this case, the CPU is not the bottleneck for the firewall functionality, but is the bottleneck for
encryption (since it is more CPU-intensive), and thus encryption ends up using the leftover
firewall CPU cycles. Fig. 6.6(b) shows this result when using a trace with very small packets
– the average size is only 195 Bytes. In this case, both functionalities achieve around 50%
of their throughput in isolation. In general, the high throughput achieved when running
each function in isolation illustrates the benefit of running instances of a single function at
multiple cores, as opposed to one function per core, since this allows the unused resources
from one function to be seamlessly utilized by other functions.

6.2.4 RCE Load

We use a simple back-of-the-envelope calculation to estimate the total number of RCE servers
required for the Internet. The bulk of requests to RCEs are determined by IP address changes
and per-client certifications requested by sites that protect against DoS (by redirecting DNS
requests to powerful entities, see §3.3,§4.2). Note that in the latter case, requests to RCEs
are made only for approved customers. There are currently around 800 million hosts in the
Internet [31]; for simplicity, we consider 1 billion hosts. We assume a worst-case scenario in
which all hosts request certifications in the same second, i.e., these requests are made either
by hosts individually or by DoS-concerned websites that hosts are trying to access. We
implemented RCE rule certification in software using RSA signatures, and measured it on
the same 8-core server used throughout our evaluation. We find a single server can achieve a
certification rate of over 16,000 rules per second. Based on benchmarks of our implementation
and assuming an oversubscription rate of 10× (ISPs today commonly oversubscribe by 100×),
the total load due to certifying rules above could be accommodated by around 6,000 servers;
e.g., handled by 20 RCEs with 300 servers each. Hardware implementations might reduce this
number by more than an order of magnitude. For example, using recent ECC prototypes [70,
112] a single ASIC could potentially perform 40,000 RCE certifications per second, requiring
a total of only 2500 such devices.



54

Chapter 7

Related Work

RBF is inspired by and extends several directions in past research. At a high level,
RBF’s contribution is in offering extensive flexibility while respecting policies, where prior
approaches tended to focus on one or the other. We next contrast RBF to a large body
of work proposing more flexible or more secure network architectures. At the end of this
section we present a table summarizing most of the properties by which RBF differs from
other proposals. We then also show that key to RBF’s ability to provide both flexibility and
policy compliance is a new division between the data-plane and control plane compared to
previous work.

RBF’s focus on flexibility in forwarding is, of course, similar to that of active net-
works [101]. Where RBF differs is in constraining this flexibility—RBF forwarding directives
are simple if-then-else constructs rather than arbitrary code. And while RBF does accom-
modate specialized functions at routers, we assume these are installed by network providers.
Nor does RBF permit endpoints to introduce or manipulate router state (unlike, for example,
schemes such as ESP [42]). Because of this constraint, RBF cannot support as complex forms
of packet processing – e.g., RBF cannot support the forms of reliable multicast and multi-
cast feedback thinning that ESP does. The flip side is that, because of RBF’s constraints on
rules and because RBF mandates the use of these rules, it achieves greater security through
provable rule safety and the ability to prevent unwanted traffic by default.

More generally, previous architectures that aim to provide flexible forwarding e.g., [37,
42,78,86,90,98,101,104,106] can be divided into four classes based on whether end-users are
allowed to (i) modify router forwarding state, or/and (ii) modify forwarding information in
packet headers (e.g., destination address):

1. Modify both router forwarding state and forwarding information in packet headers
(e.g., most Active Network proposals [101], ESP [42]).

2. Modify router state but not packet headers (e.g., Active Networks focusing on “active
storage” [102]).



55

3. Modify packet forwarding information but not routing state (e.g., i3 [98], DOA [104]).

4. Modify neither router forwarding state nor packet state (e.g., IP). 1

RBF belongs to the third class above, which we argue provides the best tradeoff between
flexibility and security. The first two classes allow data packets to modify router forwarding
state, which poses significant security risks. Indeed, at the limit, an application could imple-
ment complicated distributed protocols (e.g., routing protocols) whose safety is notoriously
hard to verify. In contrast, the last class offers limited flexibility, as end-users can exercise
no control on packet forwarding.

RBF is likewise inspired by the growing body of research advocating a default-off model
for network connectivity [38, 43, 66, 72, 91]. What RBF adds is a focus on flexibility (unlike,
for example, [38, 66] that only consider simple access control), extending this flexibility to
the wide-area (unlike [43, 72] that focus on enterprise or data-center environments) and
in providing forwarding directives with end-to-end semantics (unlike [91]). Moreover RBF
achieves the above without requiring the dynamic creation/teardown of state at routers
(unlike [38]) or centralized policy entities (unlike [43,72]).

RBF also shares aspects of the work on capability-based architectures (e.g., [87,108,110])
since rules are essentially capabilities. RBF uses capabilities/rules in all packets and (again)
adds a focus on flexibility in forwarding, showing how endpoints can choose to incorporate
middleboxes and router extensions, implement multicast, anycast, multipath routing and so
forth. RBF also differs in the mechanisms adopted. In particular, RBF does not require
different router-level treatment for control traffic, opting instead for a scalable distributed
infrastructure to alleviate DoS attacks on the control plane.

More generally, there are a vast number of proposals for DoS protection [37,47,68,78,79].
RBF offers similar protection while introducing a focus on flexible forwarding. Fundamen-
tally, RBF’s ability to offer flexibility is because rules are not bound to in-network state
(unlike, for example, [37] or [68]).

RBF also draws inspiration from overlay-based architectures that aim to extend IP for-
warding [34, 71, 98, 104] but instead operates at the network layer. This offers improved
security (since RBF can block unwanted packets even if the attacker knows the target’s IP
address) and the ability to influence path selection at the router-level.

NUTSS [61] employs on path middleboxes to provide control access, and off-path mid-
dleboxes to implement per-domain on/off policies. Compared to NUTSS, rules in RBF are
global, which allows RBF to block traffic closer to the source. In addition, RBF provides
a more flexible data plane, and does not require inter-domain synchronization to support
functionality such as mobility.

RBF also adopts the philosophy of decoupling forwarding and routing proposed by path-
pinning architectures such as Platypus [90] and SNAPP [86] but extends these for greater

1Of course, routers perform logging and monitoring tasks which change their state, and routers modify
the TTL value which represents state in packet, but here we refer to user-controlled forwarding abilities.
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Figure 7.1: A comparison of RBF to: Active Networks [101,105], ESP [42], i3 [98], DOA [104],
Platypus [90], SNAPP [86], TVA [110], SIFF [108], NUTSS [61], PushBack [68], AITF [37],
StopIt [78], Predicate Routing [91], Off-by-default [38], ICING [93]

generality in forwarding.
Karsten et al. [74] propose an axiomatic model for network communication. The for-

warding primitives used in [74] differ from rules in two ways. First, RBF can modify the
packet header (attributes) in a more general way than the axiomatic model that only sup-
ports packet encapsulation. Second, RBF does not allow packet replication for safety and
manageability reasons. Note that both RBF and [74] do not enable the forwarding process
to modify state at routers.

RBF is complementary to recent efforts proposing open router APIs [27, 28, 81] – we
offer an overall network design by which endpoints use the new functionality these router
architectures promise to enable.

Comparison Table: Fig. 7.1 presents a summary of comparing various flexibility and secu-
rity properties of RBF with those of several previous proposals: Active Networks [101,105],
ESP [42], i3 [98], DOA [104], Platypus [90], SNAPP [86], TVA [110], SIFF [108], NUTSS [61],
PushBack [68], AITF [37], StopIt [78], Predicate Routing [91], Off-by-default [38], IC-
ING [93]. Each column in Fig. 7.1 represents a property related to flexibility and/or security.
For example, only the traditional active network proposals, ESP and RBF are architectures
that expose router extensions (i.e., router-defined functions) to end users, allowing them
to invoke these extensions; however, only RBF guarantees that the use of these in-network
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functionalities is policy compliant. Note that by reachability control we refer to destination’s
ability to specify which packets can reach it and which packets should be dropped in the
network.

Data-plane vs. Control-plane division: A key feature that distinguishes RBF from
previous proposals and allows it to achieve both flexibility and policy compliance is its
division of functionality between the data and control planes. Active Networks typically
make little use of the control plane, as they deploy the forwarding functionality and enforce
security on the data plane. This makes policy compliance hard to achieve. In contrast, more
recent proposals such as OpenFlow [23] rely heavily on the control plane and install flow state
in the network to make sure the data plane respects the appropriate policies. This approach,
while simplifies the data plane, results in a more rigid architecture. For example, supporting
host mobility and traffic engineering require tearing down the old paths and instantiating
new ones. These are expensive operations which have a negative impact on the scalability of
these proposals. In contrast, with RBF, each packet contains (in its rule) enough information
to prove to routers that it respects the policies of all participants involved in forwarding the
packet. RBF achieves this property despite the fact that neither the routers nor the packet
contain the policies. Thus, RBF retains the datagram model of the IP, unlike other recent
proposals (e.g., network capabilities [108, 110], ICING [93] and OpenFlow [23]), which are
more akin to a connection-oriented model.

Finally, in RBF we mainly focus on the flexibility and policies available to end-points
rather than to ISPs and, as a consequence, rules are not tightly coupled with routing algo-
rithms, e.g., unlike in ICING [93], NIRA [109] or Pathlets [57]. We have taken this decision
because forwarding flexibility is typically associated with end-points rather than ISPs, and
because ISPs are likely unwilling to directly involve end-points in the routing decisions. ISPs
can reuse RBF to achieve their own desired flexible forwarding patterns by defining them-
selves the rules of end-points (rules could be returned by DHCP) or by “rule tunneling”
(i.e., stamping the ISP rule on the packets).
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Chapter 8

Discussion and Limitations

RBF is an architecture that we argue strikes a desirable balance between flexibility and
the ability to guarantee policy compliance of all network entities. We started this work with
two high level goals in mind. First, we wanted a complete architecture that supports not only
previously proposed communication primitives, but also future ones. Second, we wanted an
efficient architecture in that a packet unwanted by a receiver along its path is dropped as
early as possible.

While completeness in this context is difficult to formalize, intuitively we have reduced
it to (1) supporting arbitrary communication paths, and (2) allowing all network entities
(i.e., sender, receivers, middleboxes, and routers) to be involved in the decision process. In
other words, we wanted to be able to define virtually any forwarding path and give all involved
parties a say in defining it. We noted that such a path can be encoded by associating with
each node an “if-then-else” code snippet, which specifies the next node down the path. We
further noted that allowing different network entities to define the communication pattern
is equivalent to allowing them to define these code snippets. This is roughly what the RBF
proposal is.

These goals are ambitious – they subsume, unite and extend many years of proposals for
greater flexibility and security in networks – and much of RBF’s complexity follows from
these goals.

In addition to RBF’s complexity, there are a number of aspects concerning RBF’s design
that might raise concerns such as: Can RBF be used to violate the polices of some of the
ASes? Can RBF be deployed incrementally? What are RBF’s limitations? In the rest of this
section we try to answer these questions by discussing: RBF’s definition of policy compliance
and its implications (Section 8.1), incremental deployment paths for RBF (Section 8.2) and
RBF’s limitations (Section 8.3).
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8.1 Discussion on Policy Compliance

A rule is explicitly guaranteed to comply with the policies of all the entities named in the
rule (in fact the policies of the organizations owning these entities). The entities named in
the rule are: (1) the waypoint routers, middleboxes and invoked functions, which enable the
rule’s flexible forwarding and (2) the destination. This property enables RBF to address
the security concerns associated with previous proposals for more flexible forwarding such
as source routes and active networks, making sure that any extra flexibility can be fully
constrained by the policies of the participants; this property also enables destinations to
protect against DoS attacks.

However, rules do not name all the entities participating in forwarding a packet. Thus,
a legitimate concern is whether rules respect the policies of all the ASes on the path. More
specifically, there are two distinct concerns that we discuss next.

First, some regard the current IP forwarding layer as not policy compliant, since it does
not guarantee that the agreed path (given by routing) has been respected by ASes [93]. In
this context, one might question whether RBF is able to enforce stronger guarantees for
policy compliance than the current IP. In short, the answer is no. RBF operates on top
of a routing-controlled point-to-point forwarding layer and is not concerned with how this
forwarding occurs. In a different design, RBF’s mechanism could (in theory) be applied to
enforce path-compliant forwarding by specifying a waypoint in each AS along the desired
path (and potentially using cryptographic functions to prove that the path was obeyed).
However, we leave such exploration to future work. We note that RBF can run on top of
any improved (policy-compliant) version of a point-to-point forwarding layer.

Second, due to its ability to use loosely specified paths (through waypoints), there is
the question of whether RBF can violate the policies of some ASes. For example, ASes
between two waypoints may not want to relay traffic from the original source to the final
destination. We argue that this is equivalent to the question of whether overlay networks
violate ISP policies or not, i.e., waypoint routers/middleboxes can be seen as participating
in an overlay. Although RBF belongs to the network layer, rules cannot change the state
at routers and, compared to overlays, the only mechanism added by rules that can affect
ASes is the ability to invoke router functions. However, function invocation is fully policy
compliant, since each AS can restrict which rules can invoke its functions. The debate of
whether overlays violate ISP policies is arguably an open question, which still generates
powerful debates in the community and we leave a comprehensive discussion on this topic
to future work. Our position in this debate is that as long as overlay participants agree
on a loosely specified path, the lower level point-to-point forwarding cannot and should
not distinguish this traffic from other traffic occurring between the waypoints, because the
waypoints pay for the relayed traffic as if that traffic was received/generated by them.

Finally, to offer stronger policy-compliance guarantees, one could combine the RBF layer
and the routing-controlled forwarding layer into a single layer. This is a valid point that
can be applied to any monolithic vs. layered design, and we leave its exploration to future
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work. The principles and mechanisms of RBF can be used to guide the design of such an
approach. We note, however, that such a layer would be more complex, in that (1) the control
plane is concerned with both routing as well as the enhanced flexibility offered through in-
network functions, middleboxes, multiple paths, mobile hosts, etc. (for example a distributed
implementation of such an algorithm in a similar way to BGP would be quite difficult) and
(2) the data plane would be more heavyweight, as it has to always contain information about
both the policy-compliant flexibility as well as the policy-compliant routing.

8.2 Incremental Deployment Through Infrastructure

Upgrade

RBF requires upgrading routers, DNS servers and end-hosts, but is nonetheless amenable
to incremental deployment through strategies similar to those proposed by prior clean-slate
proposals [46, 55, 76]. In this section we discuss strategies for deploying support for RBF in
the network infrastructure.

Initially, only a part of the infrastructure and a part of the traffic could be RBF-enabled.
Indeed, all the benefits of RBF shown in Fig. 7.1 except receiver reachability control and
DDoS protection can be achieved with a partial deployment of RBF routers and middleboxes.
In a partial deployment, not all routers within an AS are upgraded to handle RBF packets.
For example, an AS might start by upgrading only border routers and a selected part of
the other routers and middleboxes. Such an arrangement should suffice for a wide category
of uses of rules (e.g., to leverage middleboxes, for filtering, path selection, mobility, etc.)
although it is non-ideal for rules that require the participation of every router along a path
(e.g., a rule that records the worst-case congestion along a path).

In an initial deployment phase, RBF routers could support both RBF and legacy (non-
RBF) traffic. Techniques such as network slicing and virtualization (e.g., [19,45,94]) can be
used to enable RBF traffic to coexist with legacy one. We also note that rules can always
incorporate RBF-aware middleboxes located in ASes that do not support RBF. To also
offer DoS protection and reachability control, individual ASes can fully upgrade to RBF by
dropping legacy traffic.

Until all ASes are upgraded to RBF, some hosts in ASes that have already upgraded to
RBF may want to communicate with hosts in ASes using legacy traffic. A simple way to
achieve this is through multihoming, i.e., have two interfaces one to an RBF-enabled AS
and one to a legacy AS. However, multihomed hosts will be vulnerable to DoS attacks on
legacy interfaces. An alternative to multihoming is to have RBF-enabled ASes support the
communication with legacy ASes by encapsulating/decapsulating packets at their borders.
To allow RBF-enabled and legacy end-hosts to communicate, an RBF-enabled AS would
know its customers’ rules and have its border routers actively add rules on packets arriving
from a legacy host destined to one of its RBF-enabled customers. Likewise, a default rule
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forwarding on IP can be used as a stub rule for legacy destinations outside the RBF-enabled
AS, and border routers can strip this rule from packets sent from a customer of the RBF-
enabled AS to a legacy destination.

ISP are incentivized to upgrade to RBF, since by upgrading to RBF, ISPs gain a network
that is fundamentally more secure (because of its default-off nature) while also allowing
ISPs to deploy a variety of higher-level network-based services (intrusion detection, caching,
transcoders, etc.). This diversified set of services can be made available for customers to
use as they see fit, in a flexible and controlled manner. In addition, ISPs can also partner
with other businesses, which are not their direct customers, offering them services such as
on-path caches or multicast.

8.3 Limitations of RBF

The RBF architecture has several limitations. A first limitation arises when one endpoint
changes its network address, while the rule of the other endpoint makes use of that address
(see Section 8.3.1). A second limitation is that rules may not be able to express all the
forwarding behaviors useful to users (see Section 8.3.2). Lastly, some protocols involving
feedback from routers may be more difficult to implement due to RBF’s default-off nature
(Section 8.3.3).

8.3.1 Using Mobility and DoS Protection Simultaneously

As we have described in Section 3.3, RBF supports host mobility. When a host changes
its address from A1 to A2, it can update its rule to send packets to A2 rather than A1. By
preserving the same name for the rule, an existing communication will not be disrupted.
However, if the other endpoint of the communication, B, uses a rule that drops all packets
not sent from the address A1 (e.g., to protect against DoS attacks), packets will not reach B

after the change of addresses (as they will be dropped by B’s rule). Thus, a communication
cannot be maintained while one endpoint changes its network address if the rule of the
other endpoint is aimed at protecting against DoS attacks. Next, we briefly discuss how this
limitation could be alleviated.

In the simplest instance, the destination could use a different type of rule for the sources
that might change their address (information specified by the source). Compared to the
other rules used by B to protect against DoS, this rule, RX , should simply not filter packets
based on the source address. The destination will be vulnerable to DoS attacks on RX up
to its expiration, and for this reason, RX should have a shorter lease than the typical rules
protecting against DoS attacks. Before RX expires, if no attack was detected, RX ’s lease is
renewed. However, if an attack was detected, the destination can stop granting such rules
for a period of time as well as reject regular DoS-protection rules to the hosts from which it
has received packets on RX during the attack.
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In a more complex solution, but which does not create any vulnerability periods, the
destination rule RB could filter packets based on the name of the return rule RA (that contains
the public key of A) rather than the address of A. This would prevent hosts with other return
rules than RA to send packets to B. However, this approach alone is not enough to protect
against DDoS attacks, and we also need to make sure other hosts cannot use the same name
as RA for their rules. To enable its colluders to create return rules with the same rule name
as RA, A could simply share with them its private key. To prevent this, RCEs should restrict
each host to using a single key (or a small number of keys in a predetermined period). Very
well coordinated colluders could potentially start many hosts using the same key, but they
could attack the destination only once, up to the expiration of the rule RB. A could also
simply distribute its rule to colluders to be used as return rule, i.e., host X would use RA

as its return rule. This can be prevented by the anti-spoofing filters for a restricted set of
rules, e.g., unicast rules. Specifically, the anti-spoofing routers can verify whether the source
address appears in the return rule. In turn, the destination rule RB should specify that only
such return rules (belonging to the class can be verified by the anti-spoofing machines) are
allowed in packets using RB as the destination rule. We leave the full description of this
approach and its implications to future work.

8.3.2 Rule Expressivity

The forwarding behaviors that can be expressed by users through rules are limited in three
dimensions.

First, rules cannot modify state at routers, but can only modify state inside the packets.
Therefore, users cannot hold state at routers on the path and share this state between packets
at the RBF layer (see §7 for a discussion on this topic).

Second, as describes in Section 3, in RBF it is not practical to express forwarding decisions
based on any functions other than comparisons of packet and router attributes, e.g., RBF
cannot implement forwarding logics based on sum, hash, logarithm of router attributes and
addresses.

Third, forwarding patterns requiring variable length fields (such as recording all routers
from the path) are also difficult to support in RBF, since the rule forwarding mechanism
does not allow adding new attributes during packet forwarding.

These limitations of the rule expressivity were all traded for simplicity, the ability to
have provable rule safety and the ease of ensuring policy compliance. The aforementioned
limitations of rule expressivity are partly compensated by rules’ ability to invoke router-
defined functions. The router-defined functions can change the router’s state, can implement
arbitrary functions and can record variable-sized data in packets, but these functions are
controlled by ISPs rather than endpoints. Throughout this dissertation, we showed that a
wide range of desirable and previously-proposed forwarding scenarios can be easily expressed
using our simple rule syntax.
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8.3.3 ICMP-like protocols

Finally, another limitation of RBF is that ICMP-like protocols, in which routers send infor-
mative packets back to the source, may not be supported. This limitation is a consequence
of RBF’s default-off nature, since routers may not be able to send unexpected packets to a
host. The ability to deploy such protocols depends on the type of anti-spoofing mechanism
used. Specifically, if routers on the path are not be able to send back packets to the source
by using the return rule of the packet, such protocols cannot be deployed. Typically, routers
could have difficulties sending back packets only for return rules that filter packets based
on the source address. Even for such return rules, most anti-spoofing mechanisms, such as
ingress filtering or Passport [77] would allow routers on the path to initiate packets back to
the source by spoofing the source’s address.

Importantly, note that in RBF, for troubleshooting and probing purposes (the typical use
of the ICMP-like protocols), endpoints can use router-defined functions deployed by ISPs.
For example, router-defined functions can be used to trace routes, record timestamps or
perform tracing similar to XTrace [54].
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Chapter 9

CloudPolice - Applying RBF to Data
Centers and Cloud Computing

RBF describes a general network model that can be applied to other networks than the
Internet. In particular, RBF can be applied to data centers and cloud computing environ-
ments. Cloud computing is a growing business paradigm in which customers (typically called
tenants) temporarily rent machines in data centers owned by cloud computing providers. In
essence, cloud computing brings the “pay as you go” model to data centers, allowing clients
to dynamically scale up/down to as many machines as needed inside the cloud.

As cloud computing services evolve, they run into analogous security and inflexibility
problems as the Internet. Clouds are expanding to very large sizes (currently, hundreds of
thousands of machines) and, like the Internet, they have tens of thousands of users. The
latter also leads to growing concerns for DoS attacks between users inside the cloud.

In this context, we focus on the problem of providing network-level access control between
the machines in the cloud, i.e., drop packets undesired by the destination inside the network
(close to the source if possible) such that they do not reach their intended destination. Access
control is important for security reasons, in order to prevent customers compromising the
machines of other customers or mounting DoS attacks on them. Current mechanisms to
implement access control policies in clouds are inherited from enterprises, i.e., mechanisms
such as VLANs and firewalls. But compared to clouds, enterprise networks have fewer
distinct organizations using them, fewer requirements for the flexibility of access control
policies, and fewer concerns with internal DoS attacks (for more details see Section 9.1). On
the other hand, access control mechanisms designed for the Internet already accommodate
all these constraints (large scale, high dynamicity and DoS attacks). In particular, RBF
provides access control as one of its properties. Thus, RBF can be applied as previously
described in the smaller context of data centers and cloud computing. Moreover, unlike the
Internet, each data center or cloud is owned by a single administrative entity and hence it
is much easier to adopt new network designs.

However, the same observation (that clouds are owned by a single administrative entity)
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leads us to another observation: compared to the Internet, today’s data centers are closed
environments. In particular, since a single administrative entity owns the entire infrastruc-
ture, all the traffic sources in the network can be controlled, monitored and accounted for
much better than in the Internet. This observation, leads us to the conclusion that RBF
might be simplified when applied to cloud computing.

To this end, we propose CloudPolice, a simplified version of RBF tailored to provide
access control in cloud computing. Similarly to RBF, CloudPolice aims to respect the access
control policies of the destination and block unwanted traffic close to the source. And, again
similarly to RBF, the access control decisions based on destination’s policy are made on the
control plane and enforced on the data plane by having packets carry a proof of their policy
compliance.

On the other hand, CloudPolice takes advantage of the fact that, unlike the Internet, each
cloud is owned by a single administrative domain that owns not only the network but also
the servers. In particular, cloud computing is typically a virtualized environment, where
a trusted layer of software, the hypervisor, sits between each customer machine and the
network. In this context, we argue that it is both sufficient and advantageous to implement
access control only within hypervisors at end-hosts. In this way, CloudPolice has a lower
overhead and is easier to adopt. In fact, Cloud providers can adopt CloudPolice through a
simple software update to hypervisors, without requiring any hardware upgrades or changes
to applications.

Compared to access control techniques inherited from enterprises, CloudPolice can sup-
port more sophisticated access control policies, and it can do so in a manner that is simpler,
more scalable and more robust.

Next, we describe in more detail the challenges faced by solutions for access control inher-
ited from enterprises when applied to cloud computing and a set of motivating access control
policy examples (Section 9.1). We then present an overview of CloudPolice (Section 9.2).
Finally, we present more details on the implementation and overhead of CloudPolice (Sec-
tions 9.3) as well as on the comparison with other proposals (Section 9.4).

9.1 Background

A major hurdle to the widespread adoption of cloud computing is security, as customers
often want to export sensitive data and computation into the cloud. Threats arise not only
from privacy leaks to the cloud operating company (outsourcing of data center management
is in fact common) but also due to the multi-tenant nature of clouds. For this reason,
network-level access control policies are a critical component for preserving security when
migrating to the cloud computing model. For example, tenants would want their traffic to
be, by default, isolated from all other tenants.

Today, access control in cloud environments is typically provided using techniques such
as VLANs and firewalls. These techniques, however, were originally designed for enterprise
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environments and as such are ill suited to meet the challenges unique to cloud computing.
Specifically, we argue that existing techniques are challenged by three key characteristics of
emerging cloud environments:

1. The large scale and high dynamism of cloud infrastructures

2. Diversity in cloud network architectures

3. Multi-tenancy

We expand on each of these challenges in what follows.
Today’s clouds house tens of thousands of physical machines, and even more virtual

machines that are constantly added and removed (AWS [3] reports over 100 thousand VMs
started per day). Current access control mechanisms were not designed to handle such scale
and churn. For example, firewalls have problems scaling to large numbers of entries and
coordinating access control across multiple firewalls is complex (as described in §9.4), while
VLANs do not support dynamic configuration, are limited in scalability and complex to
setup and configure [99, 111]. More generally, our observation is that as clouds scale to
large numbers of users (AWS reports over 10 thousand users), they will face many of the
problems traditionally associated with the public Internet, including DoS attacks between
cloud tenants. Such attacks are known to be very difficult to tackle [35,37,108,110] but are
not typically the concern of (internal) enterprise access control mechanisms.

Network-diversity is another new challenge for access control. The architecture of data
centers has evolved significantly from that of the traditional enterprises and is currently in
flux, with many new architectures being proposed, e.g., [33, 59, 62, 63]. These new architec-
tures typically employ multiple paths and require specific routing algorithms and address
assignments. Therefore, they severely limit the applicability of current mechanisms such as
VLANs and firewalls (as we discuss in §9.4).

Furthermore, multi-tenancy introduces new requirements to access control as intra-cloud
communication (i.e., provider-tenant and tenant-tenant) is becoming more popular. For ex-
ample, Amazon provides their tenants with services such as SimpleDB and Simple Queue
Service (SQS); there are also tenants that provide services to other tenants, e.g., mapre-
duce++ and desktop services [25]. Thus, the intra-cloud communication is likely to require
new types of access control policies. Starting from this observation, we next examine a
few examples of access control policies that we believe are important for cloud computing
environments.

9.1.1 Examples of Cloud Access Control Policies

Our focus for these example policies is on intra-cloud traffic. As we will discuss, several of
these policies bring new challenges to cloud policy support and are not supported by existing
access control mechanisms or cloud provider APIs. From these examples we will derive a
desirable policy model for cloud computing environments (§9.3.1).
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Note that the access control policies should have the ability to be defined at a finer
granularity than per tenant, e.g., for intra-tenant access control. In this dissertation, we
refer to the security principals used in the cloud access control policies as groups ; this means
that a common policy can be defined for all the VMs belonging to the same group and also
that policies can be based on (source/destination) groups. A group can be viewed as similar
to an AWS security group [3].

Traditional Access Control Policies

The traditional access control lists enable administrators to allow/block traffic through the
network based on packet headers. We argue that support for such policies is fundamentally
needed in clouds and that new access control mechanisms are required even for implementing
these basic access control policies.

Tenant Isolation: The simplest and most common type of access control policy is to block
all traffic from other tenants (in particular groups) and this is the default policy in the
current cloud environments. Isolation prevents hosts from being compromised and blocks
DoS attacks if correctly implemented, i.e., if the traffic from the other tenants is blocked at
the source. Note that DoS attacks in the cloud environment can be easier to mount than in
the Internet because attackers may not need to compromise hosts to create botnets, but can
also simply pay for the hosts used for the attack. Traffic isolation is traditionally implemented
by VLANs, which, however, are not a good fit for the cloud environment (§9.4).

Inter-tenant Communication: We expect that the shared environment of cloud comput-
ing will enable users to offer each other services more easily than with traditional business
models. The main ingredient enabling tenants to more easily offer each other services is the
close coupling between the machines in the cloud, i.e., the small latencies and large band-
widths. For example, real time advertising [6, 17] is a fast growing ad-paradigm, projected
by Google to serve over 50% of the traffic in the next five years [82]. In real time advertising,
a website sends (anonymized) information about a visiting client to a set of ad-providers.
The ad-providers send back bids to the website for the ads that should be served to the
client. The website then returns to the client the ad of the highest bidder. This ad paradigm
requires low latency between advertising providers and providers of web content (which are
advertising consumers). Cloud computing offers the perfect environment for such a collabo-
ration between tenants. This example requires the ability to communicate between the ad
provider and the ad consumer (for ad bidding, ad retrieval) and to isolate the traffic from
the other consumers to avoid DoS attacks.1 Even this simple communication pattern is not
well supported by the traditional enterprise mechanisms such as firewalls and VLANs in the

1A mechanism for isolation that also protects against DoS attacks can be very important for services such
as bidding and betting, where tenants can indirectly influence each other’s bids / bets by creating large drop
packet rates for those services.
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cloud environment (§9.4).

New Potential Types of Access Control Policies

In addition to the traditional types of access control policies, we believe clouds would likely
benefit from new types of access control policies that involve: rate-limiting, fair sharing
of the access bandwidth and stateful information on past traffic. Existing mechanisms are
(again) not able to support these access control policies.

Fair-Sharing among Tenants: Since multiple tenants may access the services offered by
one tenant or by the cloud provider, the entity offering the service may want to implement
bandwidth fair-sharing among the groups accessing the service. For example, tenants that
have more machines or higher available bandwidth (e.g., are better positioned in the network
topology) should not be able to get better service nor impact the services available to other
tenants more than their fair share. This is not a feature supported by traditional access con-
trol mechanisms, but we believe that it should be supported in cloud computing. Scenarios
that show the importance of fair-sharing are storage and database services, e.g., Amazon’s
SimpleDB [2] and Simple Queue Service (SQS) [1].

Rate Limiting Tenants: As a mechanism, rate-limiting is required by access control to
implement the previously mentioned fair-sharing policies. But we argue that in clouds rate-
limiting is also important as a policy. For example, in a cloud that charges for bandwidth
usage, one tenant A may want to rate-limit tenant B when accessing A’s services. In this case,
attackers can financially damage their victims by increasing the bandwidth usage of each
VM being attacked; the “pay-as-you-go” pricing model will automatically charge the victim.
Moreover, tenants and cloud providers may implement elastic services that automatically
add more VMs if the demand increases (e.g., AWS auto scaling). Thus, if there is a DoS
attack, more VMs will be added automatically; the charge for the added VMs will fall to the
victim.

Allowing Locally Initiated Connections: A common envisioned usage of cloud com-
puting is for virtual desktops [25]. The machines hosting the virtual desktops could use
various services also located inside the cloud (to take advantage of the low latencies and
large bandwidths), such as SMTP, HR database, EPMAP, a service provided by Facebook,
etc. Different users with different security credentials can log in the virtual desktop hosts.
In these circumstances, it is hard to know in advance what cloud services will be accessed
by the virtual desktops. Therefore, it is desired to allow incoming traffic from all of the
other groups (of the same tenant or not), but only in response to connections initiated by
the virtual desktops. This behavior is typically implemented by stateful firewalls and is not
available in current cloud provider APIs.
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Time Restricted Access: Tenants offering services may want the other tenants to use these
services only during specific time intervals. For example, one tenant could offer backup or
archival services, but may be willing to provide these services only during the nighttime in
US, when its servers are not heavily serving other clients. Such an access control policy is
not typically supported by enterprise mechanisms, and is not currently offered by the cloud
provider APIs.

9.1.2 Properties Required for Cloud Access Control

In summary, we believe that the aforementioned challenges call for a new access control
mechanism that provides three properties:

1. Scalability in handling hundreds of thousands of machines and users.

2. Network-independence in decoupling access control from the network topology, routing
and addressing.

3. Flexibility in providing support for policies in multi-tenant environments such as tenant
isolation, fair-sharing, and rate-limiting policies.

9.2 CloudPolice Overview

We now describe CloudPolice, a new access control mechanism implemented in hypervisors,
which provides the aforementioned properties. We choose to implement CloudPolice in
hypervisors because hypervisors are:

1. Trusted. For security reasons, access control needs to be implemented inside a compo-
nent controlled by hypervisors.

2. Network-independent. In this way, our solution is independent of the network archi-
tecture and we are avoiding needlessly tying the development of access control to that
of specific network equipment and protocols that are known to be slow to change.

3. Close to VMs. Thus, unwanted traffic can be blocked before even reaching the network.

4. Have full software programmability. For this reason, CloudPolice can provide a broad
class of access control polices needed for multi-tenancy.

To achieve scalability, CloudPolice proposes a distributed solution, where hypervisors
communicate with each other to exchange access control information. More specifically,
CloudPolice uses an approach for enforcing access control on the data plane inspired by
Internet mechanisms such as RBF, network capabilities [108, 110] and push-back filters [35,
68]. In CloudPolice, hypervisors of traffic sources attach security credentials to the outgoing
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packets, and hypervisors of destination VMs push blocking and rate-limiting filters back to
the hypervisors of the sources according to the access control policies of destinations.

We start by discussing the design space for mechanisms by which hypervisors can learn
and apply access control policies (Section 9.2.1) and then present the details of our specific
mechanism (Section 9.2.2).

9.2.1 Design Space

Although the access control policies are defined by the destination, the policies should be
enforced close to the source rather than at the destination. This prevents unauthorized
traffic from abusing the network (e.g., causing congestion, mounting DoS attacks, etc.).

A näıve solution for applying the destination’s access control policy at the source is to
install all policies and the entire mapping between active VMs and groups in all hypervisors.
In this way, the source hypervisor can directly apply the policy of the destination to all the
flows sent by its hosted VMs. Unfortunately, this solution scales poorly due to the high
churn rate expected for the active VMs. For example, AWS reports about 100 thousand new
VMs started per day; in a data center with 100 thousand servers [3, 21, 58], this translates
into more than 100 thousand update messages sent per second on average (peak update rates
would likely be much higher).

Another extreme solution is to distribute no policies to hypervisors, but use a centralized
repository for policies and group membership. Hypervisors then consult this repository
for each new flow and possibly cache the access control policies. However, the centralized
resolution service is likely to represent a tempting target for DoS attacks. Moreover, the
centralized service has to sustain very high availability and low response times. For example,
assuming an average of 10 new flows per second per server [97], and a 100K server cloud,
the centralized service would need to process 1M flows per second on average (again, with
higher peak rates expected). Note also that caching may be ineffective since the traffic is
expected to be randomly distributed [73, 97] and since policies and VM locations change in
time.

For these reasons, we propose a distributed solution. In CloudPolice, hypervisors need
only know the policies of their hosted VMs and not the policies of any other group in the
cloud, nor the group membership. In order to learn which flows should be allowed, blocked or
rate limited, CloudPolice uses a runtime approach in which hypervisors communicate with
one another using a secure channel as we describe next.

9.2.2 CloudPolice’s Design

Fig. 9.1 shows a high level description of the operation of CloudPolice.
When a new flow is initiated by a VM, the source hypervisor sends a control packet

containing the security credentials of the source VM (step 1). In particular, the control
packet contains the security group to which the source VM belongs to; this packet is sent
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Figure 9.1: CloudPolice Overview

before the the packets belonging to the flow. When the destination hypervisor receives such
a control packet, it checks the policy of the group of the destination VM (step 2). If the
policy allows the traffic, the destination hypervisor creates state for this flow; subsequent
packets will be forwarded up to the destination VM by using this entry. If the traffic is not
allowed or should be rate limited, the destination hypervisor will send a control packet back
to the source hypervisor to block or rate-limit the flow or the VM (step 3). By default, VMs
are blocked if the policy contains no rule for that traffic.

Note that the control packets containing the source’s security credentials can be seen as
similar to how each RBF packet contains a proof of its policy compliance. However, unlike
RBF, the security credentials are contained in a separate packet for each flow (rather than
in each packet) and do not use cryptographic techniques. These simplifications are meant
to make the scheme more easily deployable and are specific to data center environments. In
data centers, one can guarantee that each misbehaving host can be blocked by its hypervisor
and also that control packets cannot be injected by malicious VMs (for more details see the
security discussion in Section 9.3.4).

9.3 Detailed Design and Implementation

We now present more details on the design and implementation of CloudPolice.

9.3.1 Proposed Policy Model

We aim to design a policy model that supports the examples presented earlier in Section 9.1.1.
Table 9.1 presents the syntax of one such policy model. The policy is formed by a sequence
of entries processed in order. Each entry is of the form if condition then action . For
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Policy := [Entry]+

Entry := if Condition then Action

Condition := Predicate [(and | or) Predicate]∗

Predicate := Field Op (value | ANY ) | locally initiated
Op := > | < | ≤ | ≥ | == | 6=
Field := source group | HeaderField | crt time | StatisticsField

HeaderField := src addr | src port | protocol | dst port | ... (others)

StatisticsField := StatisticsType period (vm-level | group-level)
StatisticsType := in bytes | out bytes | in flows | out flows | rej flows

Action := block | allow | rate-limit RateType

RateType : (absolute value | relative weight) (vm-level | group-level)

Table 9.1: CloudPolice’s access control policy model for incoming traffic.

every new incoming flow, CloudPolice iterates over all entries and checks the condition of
each entry. CloudPolice applies the action corresponding to the first matching condition.

Conditions are designed to capture three new types of access control necessary for clouds
— (i) group-based, (ii) time-based, and (iii) usage-based. Group-based access control allows
applying the same action over a group of VMs, e.g., all VMs that belong to a tenant. Time-
based access control allows tenants to control traffic at specific periods of time. Usage-based
access control allows tenants to control traffic based on statistics such as the number of active
connections or traffic volume. For example, if we want to prevent port scanning, we can keep
a count on how many ports (or how many rejected flows) have been used by a group of VMs
within a given period of time, and block the traffic if the count exceeds a threshold.

Table 9.1 presents the specific syntax of the policy model. To simplify the explanation,
we assume the access control policy belongs to a given group A. src group represents the
group of the remote (source) VM trying to contact the VM belonging to group A at which
the policy is applied. crt time represents the current GMT time; for ease of use, the syntax
could expose specific parts of the current time like day, month, hour, etc. To enable the use
of the current time in the access control policy, we assume servers are using a form of time
synchronization such as NTP. locally initiated is a predicate that is true if the current flow
(for which the policy is applied) has been initiated by the VM belonging to group A, i.e., the
received traffic for which the policy is applied is only in response to this locally-initiated
traffic. HeaderField represent fields in the packet header, while StatisticsType encodes
different types of statistics gathered in a given period such as the number of incoming flows
(in flows), rejected flows (ref flows), etc. vm-level statistics are maintained at each VM
belonging to group A while group-level statistics represent an aggregate value for all the
VMs belonging to A. Rate limiting at vm-level means that the rate-limit value is applied
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independently at each machine belonging to group A, while rate-limiting at the group-level
means that the rate-limit value specified in the policy is an aggregate at the level of all the
machines in group A. For example, if groups B and C are rate-limited at the group level by
A’s policy, the entire aggregated traffic from B and C to A is rate-limited at the value specified
in the policy.2 For a better understanding, please also see the examples below.

Examples

We now present a few examples in order to illustrate how the above policy model is able
to express the desired access control policies in clouds. We assume the following examples
represent the access control policy of group A.
• Tenant isolation: Group A blocks all traffic except that generated from its own group.

if source group 6= A then block
• Providing services: Group A provides a service to group B on port 80.

if source group == B and dst port == 80 then allow
• Rate limiting: Rate limit traffic incoming at any machine belonging to group A from the

set of all machines belonging to group B to at most 100Mbps.
if source group == B then rate-limit absolute 100Mbps vm-level

• Timed access: Tenant A provides a backup service to tenant B but wants B to be able to
access it only during nighttime (within a given time zone, we assume GMT here).

if source group == B and (crt time.hour > 22 or crt time.hour < 6) then allow
• Traffic size limit: Tenant A wants to limit the total traffic received from group B to 1GB

per day.
if source group == B and in bytes < 1GB day then allow

• Fair sharing: Group A would like to provide equal service throughput in case of congestion
to groups B and C. The following policy assigns them equal relative weights.

if source group == B then rate-limit relative 1 group-level
if source group == C then rate-limit relative 1 group-level

Policy restrictions

We now discuss how policies should be restricted to ensure that different entries of the policy
do not conflict with each other, causing inconsistent semantics. The described policy model
is more prone to conflicts than traditional access control policies since it is more complex.

First, we require that the locally initiated predicate, which has semantics only at the
destination VM, is not used with the group-level rate-limiting action, which has semantics
at the level of the entire destination group.

The second restriction is that the policy does not contain multiple entries with rate-
limiting actions defined on overlapping flow sets, i.e., that the set of conditions that can

2Note that the access control policy does not specify how the rates should be distributed between the
different source or destination VMs, but only that the entire traffic is rate-limited.
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lead to rate-limiting actions have void intersections. For example, if one entry rate-limits
the total traffic from port range 50-100 to 20Mbps, while another entry rate-limits the traffic
from group B to 10Mbps, the semantics of the rate-limit value for the traffic sent by group
B using port range 50-100 are not clear. One can simply apply the first matching entry
and restrict the flow along with the rest of the flows that are matched by the same entry,
however, we impose this restriction for the clarity of policies.

Note that there can be other policies with difficult to understand semantics. For example,
when some tenants are rate-limited to an absolute value and others using a relative value,
the latter are in fact sharing the remaining bandwidth of the former. In another example,
some tenants could be rate-limited at the entire group level while others at the VM-level,
which results in the relation between the service allocation between the different tenants
dependent on the communication pattern. However, we leave further restrictions that could
ease the use of the policy model to future work

Limitations of current implementation

Our implementation currently supports a limited subset of the described policy model in
two ways. First, our current implementation does not support the group-level keyword,
i.e., it does not support group-aggregated state, nor rate-limiting policies at the group level.
Second, our implementation does not handle rate-limiting across an aggregate set of flows,
i.e., we only support rate-limiting of individual flows or entire VMs. We plan to address
these limitations in future work (see Section 10).

In the rest of this section we describe a detailed design an implementation with the
aforementioned limitations.

9.3.2 Design Details

CloudPolice requires maintaining state at hypervisors as well as communicating policy in-
formation and actions between hypervisors using special control packets. Next, we discuss
these in turn.

Soft State: CloudPolice maintains soft state (i.e., removed after expiration) to enforce the
policy actions (block, remove and rate-limit). After the expiration of the soft state, the
entire process for setting up the state is restarted. Soft state makes it easier to support VM
migration and handle packet losses. In our current design, revocation (of state and policies)
is also handled through the expiration of the soft state. However, explicit state invalidation
on policy updates could be implemented, by using control packets between hypervisors, in a
similar fashion with the rest of CloudPolice’s design.

Control Packets: There are three types of control packets sent between hypervisors:

1. source: This type of control packets is sent by a source hypervisor to inform the
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destination about the security credentials of the source. The source control packet is
presented in step 1 in Fig. 9.1.

2. action: This type of control packet is sent by a destination hypervisor to block or rate
limit the traffic of a specific source. The action control packets are presented in step
3 in Fig. 9.1.

3. query: Finally, the query control packets are sent by a destination hypervisor to query
the source hypervisor about the security credentials of a specific VM (i.e., requesting
the hypervisor of the source VM to resend the source control packet). As we shall
describe, the query control packet is used when the original source control packet is
lost.

The source control packet contains the group to which the source address belongs to.
When receiving a source control packet, hypervisors insert the mapping between the network
address of the source VM and its group into an internal cache. The action control packet
specifies the type of action that should be applied, which can be one of (a) block or (b) rate-
limit. The action control packet also contains the granularity at which this action should
be applied. The granularity can be per flow or per VM in our current implementation. Rate-
limiting actions also contain the value of the rate to which the respective flow/VM should
be limited.

In our current design, control packets are distinguished from the rest of the data packets
by using a special transport protocol number in the IP header, e.g., the protocol number
254, which is reserved for testing. Note that CloudPolice is independent of the mechanism
used to distinguish control packets from data packets and, in the future, other approaches
are possible. Also note that only hypervisors can send control packets. The control packets
sent by VMs or incoming to the data center from outside Internet hosts are dropped.

Lost/Reordered Control Packets: First, assume the original source control packet is
lost. If a destination hypervisor receives a flow for which it has no entry, it sets up a
querying state for the flow and sends a query control message to the source hypervisor.3 At
the receipt of the query control message, the source hypervisor resends the source control
packet. There is a timer associated with the querying state and a new query request is made
to the source hypervisor when that timer expires, i.e., in the case the query control packet
is lost.

Second, assume an action control packet, sent by the destination hypervisor, is lost and
the destination keeps receiving unwanted traffic. After sending each action packet to block
traffic, the destination hypervisor sets up a short term state to block the incoming traffic,
waiting for the action message to arrive at the source hypervisor. If packets are still received
after the short timeout expires, the destination hypervisor resends the action packet. In

3Note that the rest of the incoming packets belonging to this flow may be buffered into a small sized
queue for performance reasons.



76

case of rate limiting, the destination monitors the incoming rate and, if the limit is not
respected, it sends back a new action control packet to the source hypervisor. However,
rate-limiting control packets are usually sent periodically to the source due to policies based
on traffic statistics (which are updated periodically) or policies at the group-level (which
need periodic refreshing).

Note that the above timers used to retransmit lost control packets can be set proportional
to the maximum latency of the network.

Policy Distribution and Updates: We envision two models for distributing and updating
policies to hypervisors. In the first model, the cloud provider uploads the group policy
to the hypervisor at the VM startup and updates it at all the group members when the
policy changes. Since policy changes should be infrequent, we do not expect this service
to be a burden for the cloud provider. Moreover, cloud providers must have a service for
starting and shutting down VMs; we expect that installing and updating policies can be
easily piggybacked on top of this existing service.

In a second model, VMs can directly communicate their policies to hypervisors. This
model does not require a policy management service from the cloud provider but requires
and additional API in both the hypervisor and the VMs.

Stateful Policies: As we have described, some policies can be based on past history of
traffic (i.e., traffic statistics). For each entry of the policy that uses traffic statistics and that
has been activated by one or several of the incoming flows, we start a thread that collects
the desired statistics. The tread is waken periodically, using the period(s) specified in the
entry of the policy. The policy is re-applied at the end of each period for the active flows
matching the respective policy entry.

The policies containing the group-level keyword require state maintained at the granu-
larity of a group. Such policies require either direct communication between the hypervisors
hosting one group’s VMs or the use of a centralized state repository offered by the provider,
to which all the hypervisors hosting VMs of that group communicate. As mentioned, we do
not discuss these options in this dissertation.

9.3.3 Implementation and Evaluation of Overhead

We have implemented CloudPolice using Open vSwitch [88]. More specifically, we have
prototyped CloudPolice as a NOX module [100] that controls a single Open vSwitch instance
and is co-located with it on the same physical machine. Thus, we control the virtual switch
of the hypervisor with a controller that runs as well in the (user space of the) hypervisor.
We use this approach for the simplicity of the implementation (Open vSwitch already has
control hooks implemented through OpenFlow [23]) and since we have observed that the
performance is not significantly affected compared to running Open vSwitch alone. A future
and more efficient implementation might be directly performed inside Open vSwitch.
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Figure 9.2: Overhead of CloudPolice in terms of utilization of a single CPU core compared
to using no virtual switch and to using the default (built-in) switch of the hypervisor.

As described earlier, we use soft state and timeouts to invalidate the actions specified by
the CloudPolice policy.

In this dissertation, we only evaluate the overhead added by our implementation of
CloudPolice to the end hosts. We use a setup formed by two machines running Xen connected
through a 10Gbps cable. Each machine is a dual-socket server with four 2.8GHz Intel Xeon
(X5560) cores per socket.

Due to extra processing of packets and of policies, CloudPolice adds extra latency and
incurs additional CPU utilization at the end hosts compared to other types of access control
mechanisms such as VLANs and in-network firewalls (which incur other types of costs). We
measure the overhead of CloudPolice compared to two different baselines. (1) The common
case of using a virtual switch inside hypervisors (as it seems to be performed by today’s
cloud providers). (2) We assume that VMs can access the network interface card directly,
bypassing the virtual switch, e.g., see [14].

Measuring overhead in virtualized environments is complex, because the overhead resides
in many components: guest domain (DomU), driver domain (Dom0) and the virtual machine
monitor (Xen in our case) [80, 92]. Since our setup does not support accessing the network
interface directly from the VM (the second baseline above), we assume the overhead in the
guest domain to be similar for CloudPolice and the two aforementioned baselines, and we
restrict to measuring the overhead in the driver domain. The purpose of this evaluation is
not to measure overhead associated with a specific virtualization environment, but instead,
provide a relative comparison among different forwarding schemes.
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Latency: There are two types of latency that can be added by CloudPolice: to all packets
and to the flow setup (i.e., to the first packet only). The virtual switch in the hypervisor
adds a negligible latency to each packet – less than 0.1ms per round-trip. CloudPolice adds
essentially no additional latency compared to that, assuming that the state allowing the
traffic has been instantiated in the virtual switch (i.e., the flow has been set up).

For the flow setup, in our measurements, CloudPolice, adds ≈ 1.5ms round-trip latency.
Note that this additional latency of CloudPolice is mostly an artifact of our prototype imple-
mentation, done as a NOX controller in userspace. We expect a production implementation
to reduce this latency significantly.

Therefore, in practice, CloudPolice adds no noticeable overhead in terms of flow comple-
tion time.

CPU overhead: Typically, the additional CPU usage incurred by CloudPolice on top of the
virtual switch is negligible, since CloudPolice is not acting on a per-packet basis. However,
different virtual switches have different overheads. Fig. 9.2 shows the CPU overhead of
CloudPolice (built on top of Open vSwitch) compared to the built in bridge module of Xen
and compared to not using any virtual switch. Since CloudPolice has an analogous CPU
utilization as Open vSwitch (not displayed in the charts), we believe that the additional
overhead of CloudPolice compared to the switch built in the hypervisor can be reduced in
the future through improved implementations (e.g., either by implementing CloudPolice in
a different virtual switch module or by improving the Open vSwitch module). Note that
we use a simple allow/deny access control policy and we leave the evaluation of the policy
engine to future work.

Fig. 9.2(a) shows the CPU utilization when using multiple concurrent TCP flows that
send as much traffic as possible. As mentioned, we start these flows from the driver domain
(Dom0). The CPU utilization is scaled to a single core, i.e., 50% means half of one CPU core
is used and the others are idle (remember that our testing machine has 8 cores). Starting
from around two TCP flows we fully utilize the 10Gbps link (the throughput is the same
for the different plotted series). As one can see, the price paid for using a virtual switch
compared to using no virtual switch is at most 20% of one CPU core for 10Gbps of traffic.
For example, assume we divide the machine to four VMs, each with two CPU cores. If each
VM is sending at 2.5Gbps4 the added overhead associated with using the virtual switch for
each VM relative to its CPU power is 2.5% (5% of a single CPU core for each VM and the
VM has two cores). Since, I/O intensive applications are typically not concurrently CPU
intensive, this small overhead should not be noticed by users. More generally, the use of a
virtual switch allows us to implement access control and achieve all the advantages described
for CloudPolice (scalability, network independence, flexibility), and thus we believe that this
overhead is a modest price to pay.

Fig. 9.2(b) shows the CPU utilization when using a single variable rate UDP flow (again

4In our tests, VMs with two cores can communicate with more than 2.5Gbps.
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sent from Dom0). We believe the higher CPU utilization compared to the case of TCP
is due to the hardware and kernel support for TCP in the network stack, and due to the
inefficiency of the traffic generator/sink when manipulating UDP packets. In this case, at
4Gbps the largest overhead due to using a virtual switch is about 30% of one CPU. For our
previous example with four VMs running on the server, the overhead for each VM when
sending 1Gbps of UDP traffic is less than 4%.

9.3.4 Security Analysis

We now analyze possible attacks originated inside clouds by either malicious tenants or
compromised VMs. We consider three classes of attacks: (1) circumvent the access control
policies and reach a destination VM with unauthorized traffic, (2) mount a DoS attack using
unauthorized traffic, and (3) mount DoS attacks by using authorized traffic. Next we discuss
how CloudPolice addresses each of them.

Circumvent CloudPolice Policies

There are two potential cases in which a VM could receive undesired packets that circumvent
its policies.

The first case is when the hosting hypervisor is compromised. However, when a hyper-
visor is compromised, access control is not the main concern. For example, a compromised
hypervisor might directly corrupt and spoof on the private data of the VMs that it hosts.

The second case is when a hypervisor receives fake information about the sender. This
could occur even without compromised hypervisors, e.g., if VMs could inject spurious control
packets into the network. To prevent this case, CloudPolice requires hypervisors and ingress
routers to drop control packets sent by VMs or incoming to the cloud from external sources.
Therefore, only hypervisors can send control packets. For this reason, CloudPolice does not
require packet encryption or other security protocols to protect control packets, and thus
can generate control packets with low overhead.

Above, we have assumed hypervisors are not compromised. However, if hypervisors are
compromised, they could send spurious control packets. Next, we discuss mechanisms to
protect against the case when some of the hypervisors are compromised.

Compromised Hypervisors: If at least one hypervisor is compromised, the attacker can
inject arbitrary control packets into the network. By inserting fake source control packets,
destinations can be fooled into accepting packets from unauthorized sources. These packets
can be used to corrupt the destination. By inserting spurious action control packets, other
VMs can be blocked and not allowed to communicate.

To prevent these attacks, CloudPolice needs extra support from the network. The sim-
plest solution is to implement an anti-spoofing mechanism. This prevents corrupted hyper-
visors from sending packets with spoofed IP addresses, which do not belong to any of the
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Figure 9.3: Unwanted traffic received by recipient. We simulate large drop rates for control
packets.

VMs running on it. Thus, anti-spoofing prevents corrupted hypervisors from lying about
the credentials of any VM in the network except for the VMs located on that machine. It
also prevents a corrupted hypervisor H from blocking a communication that does not involve
any of the VMs running on top of H. Note that cloud providers today already implement
anti-spoofing mechanisms to prevent hosts inside the cloud to be used to mount DoS attacks
on hosts external to the cloud [4].

The cloud provider can further prevent a compromised hypervisor H to lie even about
the credentials of the VMs running on top of it. For this purpose, in conjunction with anti-
spoofing, the cloud provider must sign the binding between the VM’s IP address and its
group. In this way, each source control packet contains the binding between < source ip,
source group > signed with the private key of the cloud provider. The destination hypervisor
uses the public key of the cloud provider to verify whether these credentials are correct.
Therefore, even compromised hypervisors cannot send malicious source control packets
containing fake groups, and cannot circumvent the access control policies.

DoS with unauthorized traffic

In order to not add additional latency to the flow setup, CloudPolice optimistically allows all
flows and requires destination hypervisors to block unwanted traffic through action control
packets sent back to the source hypervisor. Thus, some amount of unauthorized traffic can
be injected into the network. Attackers can try to take advantage of this and attempt to
DoS a victim VM V by sending it unauthorized traffic. Since, as we shall see, only a small
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amount of unauthorized traffic is allowed through the network, attackers can attempt to
increase the amount of unauthorized traffic in the network in two ways.

First, an attacker VM X can try to prevent control packets from reaching its hypervisor
HX . In this way, HX would not know that X’s traffic should be blocked. To mount this attack,
X’s group can flood HX (possibly with authorized traffic), and in this way induce losses of
control packets. A simple fix for this attack is to prioritize control packets in switches (most
switches today support QoS). However, even in the absence of traffic prioritization, with a
loss rate of 50%, only two control messages are required to block one VM.

Fig. 9.3 quantifies the previous attack by showing the amount of unwanted traffic received
at a destination from a source blasting at 3Gbps with UDP packets. We use the same two-
machine setup described in Section 9.3.3. To simulate the worst case scenario for the cloud
provider, we assumed control plane traffic is not prioritized and competes directly with data
plane traffic. Thus, we simulated significant loss rates for control packets. The amount
of unwanted traffic received in case of lost control packets depends on the retransmission
timeout for control packets; we use a retransmission timeout of 50ms, which we believe
can accommodate even large data centers.5 The amount of unwanted traffic received also
depends on the round-trip time (RTT) between the source and the destination. In our setup,
the RTT is very small (less than 1ms); for larger networks, the values in Fig. 9.3 should be
increased with the amount of traffic sent in the additional RTT. For example, if the RTT is
10ms larger, we should add 3.75MB for each data point in Fig. 9.3 and also add the same
amount for each lost control packet. However, we leave further investigation of larger RTTs
to future work. We note that the received traffic shown in Fig. 9.3 is higher than the traffic
sent during the RTT even when there are (almost) no control packets lost, amounting to
≈50ms of traffic. We believe this additional traffic is due to (1) buffering at endpoints,
buffers that are sent by the virtual switch despite the blocking signal and (2) the fact that
the blocking state is not instantiated immediately in the virtual switch. For example, the
virtual switch may not update the same flow entry immediately (an entry allowing the flow
is always inserted at the flow start), the software path installing the blocking state competes
for a lock on the flow table with the forwarded packets, etc. We believe these shortcomings
can be addressed by improved future implementations.

Importantly, the amount of traffic shown in Fig. 9.3 is received periodically, where each
period equals the timeout of the soft state associated with blocking a VM. In our implemen-
tation, we use a value of 20 seconds for this period. Hence, even with a very high loss rate of
50%, to fill up 3Gbps of traffic at a single victim VM, the attacker would need ≈300 VMs,
each of them being able to send 3Gbps.

In a second attack, X tries to exhaust the filters available at hypervisors (either at HX or
at V’s hypervisor HV ). In the unlikely event for this to occur (since we expect CloudPolice to
store a small amount of memory and memory to be abundant), CloudPolice can aggregate

5We use this timeout for both the retransmission of a block control packet, as well as for the query
control packet sent in case the source packet was lost.
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the per-flow state into per-VM state and block the VMs that have a significant fraction of
their flows blocked.

Note that compromised hypervisors can send any amount of unauthorized traffic. How-
ever, if the rate of compromised hypervisors is that high to mount a DoS attack, DoS is in
fact not the main worry of the cloud provider.

DoS with authorized traffic

Access control policies ensure that only authorized traffic competes for bandwidth. However,
access control does not protect against floods of authorized traffic between colluders that have
access to a shared link with the victim (a well known limitation of network capabilities [110]).
Due to the virtualized environment, this situation is much more common in clouds than in
the Internet. For example, an attacker can attempt to DoS a VM V by sending a lot of
authorized traffic to VM X located on the same physical machine with V.

Preventing DoS attacks in the above scenario requires performance isolation between
VMs, in addition to access control. Performance isolation can be implemented using an
orthogonal mechanism, and we do not discuss it in this dissertation.

However, we point out that CloudPolice’s mechanism could be used to implement perfor-
mance isolation by rate limiting VMs in case of congestion with the same mechanism used for
access control. For example, if the hypervisor runs N VMs, the VMs sending traffic to each
one of these N VMs can be rate-limited together to 1/N (with equal shares between them
or a more sophisticated distribution algorithm). In other words, the bandwidth is evenly
shared between the destination VMs. This approach does not guarantee the fair sharing of a
congested link, but does guarantee fair sharing of the bandwidth at the destination. In this
way, a performance isolation framework based on CloudPolice can prevent DoS attacks with
authorized traffic as well. For instance, a legitimate VM cannot be DoSed with authorized
traffic sent to another VM located on the same physical machine. Existing approaches to
implement performance isolation do not block DoS attacks with authorized traffic because
the sharing is based on the source VMs rather than the destination ones. For example, one
solution for performance isolation is to statically share the bandwidth, i.e., if there are N
VMs on each machine, each can send up to 1/N of the available bandwidth. This approach
cannot prevent DoS attacks since the attacker can use an arbitrary number of VMs to send
traffic. In another example, (dynamic) fair sharing per source VM has been recently pro-
posed to be implemented in clouds [95]. This approach is more effective in mitigating DoS
attacks compared to static bandwidth sharing, but still suffers from the problem that the
attacker can use more source VMs than the legitimate traffic, and thus reduce the bandwidth
of the destination VMs proportionally.
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9.4 Related Work

A traditional mechanism to implement access control is through the use of VLANs. How-
ever, VLANs have several limitations. First, since VLANs couple access control and switch-
ing, they cannot be applied to new network topologies such as FatTrees [33], BCube [62],
DCell [63], etc., nor to topologies that use L3 routing instead of switching. In addition,
VLANs have much overhead both in spanning tree creation/maintenance and in switching
between VLANs (which typically requires L3 routing) [56,99]. VLANs are also limited by the
number of hosts in one VLAN and the number of VLANs in a network [111]. Furthermore,
VLANs do not offer the flexible policies proposed in this dissertation.

Firewalls can also be used to block unwanted traffic at the source, e.g., by placing them
at the first-hop switches. However, this approach presents a major maintenance overhead,
since every time a destination changes its policy, all the firewalls at all possible sources need
to be updated. Moreover, in order to support group-based policies, firewalls either need to
create an entry for each VM in the group, or group the VMs by the same IP prefixes and
create an entry for each prefix. Neither of the solutions is desirable because the former faces
a scalability limit, and the latter makes VM address management unnecessarily complex.

Centralized controllers such as OpenFlow and Ethane [23, 43] can be used to provide
access control. However, these approaches are network-dependent, i.e., they require changes
to the switching hardware. Open vSwitch [88] can be used to achieve network-independence,
but it still requires a centralized controller. Using Open vSwitch with a centralized controller
inherits all the drawbacks of centralized approaches – the centralized controller could be a
scaling bottleneck, and a potential attraction for DoS attacks from the tenants. Moreover,
the OpenFlow API implemented by Open vSwitch is designed for switches, but much richer
policies can (and should) be implemented in hypervisors. VL2 [59] also discusses a mechanism
to make address assignment independent of the underlying topology, but still makes use of a
centralized service for access control. Thus, it suffers from the same drawbacks listed above
for Open vSwitch.

AWS [3] offers a limited set of access control policies [4] such as isolation and on/off access
between groups. We are not aware of public information describing AWS’s implementation.
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Chapter 10

Future Work

In this section, we list a few avenues for future work for RBF and CloudPolice.

10.1 Extending RBF

Automated Tools for Rule Creation and Policy Compliance Verification: The
deployability of RBF depends, in addition to incentives for ISPs, on the ease of use for
end users. We envision most end users to not have to do anything else compared to today.
Specifically, rules will be created for end users by their ISPs, enterprises (for employees),
by third parties (e.g., middlebox service providers) or by firewall-like tools located on the
end user’s machines. We envision all these entities will use automated tools to create rules.
For example, such tools could be similar to the current firewall configuration programs and
create simple rules given various properties desired by end users. An end user could select
for which ports to receive data, could chose to enable mobility or could decide to use a
middlebox service such as intrusion detection. Note that middlebox rules can be created
by programs located on the end user’s machine or can be created by the middlebox service
provider (e.g., the user fills out an application form to use the middlebox service on the
website of the provider of the service). Thus, the existence of automated tools to create
rules is fundamental for the ability to deploy RBF and is an important place for future work.

In addition to the tools for creating rules, providers and end-users should also use auto-
mated tools for verifying the policy compliance. Typically, these tools should verify simple
properties of the rules, such as which senders are allowed to send and which other destinations
are named in the rule (as discussed in §4).

High-speed RBF Router: In this dissertation we have presented a software router pro-
totype to evaluate the performance of forwarding on rules. RBF is also compatible with
high-end routers that use specialized hardware, rather than the general-purpose x86 hard-
ware we have used. Increasingly, high-end routers rely on network processors [49,103] for data



85

plane processing (e.g., Cisco’s high end CRS routers [11] use network processors). We expect
network processors can accommodate the flexibility RBF requires in per-packet processing,
and we leave building such a prototype to future work.

RBF is also a candidate for implementations based on “hybrid” forwarding planes as
proposed by Casado et al. [44]; In brief, the proposal in [44] is to use TCAMs to cache
recent forwarding decisions. Incoming packets that hit in the cache are forwarded at high-
speed using TCAM lookups while the remaining packets are forwarded using in-software
processing. The software processing creates entries in the TCAM for future packets. Since
rules are deterministic and likely shared across multiple packets, we expect RBF would
achieve the high cache hit rates required by a router design similar to the one in [44].

Extending RBF’s Design: In Section 8.3 we have describe a set of limitations of RBF.
While we have hinted to possible solutions to address the respective limitations, we leave a
full integration of such approaches into the architecture to future work.

We also leave to future work a full extension of RBF to enable ISPs, in addition to sources
and destinations, to benefit from the flexibility offered by RBF. ISPs can encapsulate packets
and use their own rules (i.e., a form of tunneling), however, one might imagine integrating
such support into the rule forwarding mechanism in the future.

10.2 Deploying RBF Through HTTP

Fueled by the explosive growth of video traffic and HTTP infrastructure (e.g., CDNs, web
caches), HTTP is fast becoming an integral part of the Internet architecture. Starting from
this observation, we argue that HTTP may be a fertile ground (more so than IP) for deploying
solutions and techniques provided by the clean slate proposals. There are three reasons for
this. First, HTTP is more extensible than IP in that is easier to add functionality to an
HTTP server or proxy than an IP router. Second, HTTP allows incremental deployability,
as clients are able to explicitly pick the the proxies and servers implementing the desired
functionality. Third, HTTP already provides a massive infrastructure, thus alleviating a
major hurdle a clean-slate architecture needs to overcome.

Many of the ideas proposed by RBF can be implemented through HTTP. In particular,
the HTTP header can contain an RBF rule. This would improve the current Internet in two
ways.

First, it would enable end users to have better control over HTTP proxies. Through
instructions in the HTTP header rule, clients and servers could configure forward and reverse
proxies, as well as specify which functionality should or should not be invoked for different
requests. For example, endpoints could redirect packets across a set of HTTP proxies to
avoid failed routes (e.g., similar to RON [34]), and activate intrusion prevention to detect
malware for some of the requests.

Second, RBF can also be used to provide access control for one endpoint A, assuming
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that all the communication of A is enforced to occur through (a) an HTTP proxy or through
(b) a set of indirection servers that relay HTTP requests between endpoints as proposed
in [89]. Specifically, the HTTP proxy / relay server can verify whether the endpoints trying
to contact A have valid rules to grant them access as discussed in this dissertation. In
addition, A could also use rules to push packet filters and firewall rules at these proxies /
relaying servers.

Note that having rules in the HTTP header also inherits RBF’s policy compliance prop-
erty. Specifically, the ability of the end users to use the respective proxies and invoke their
functionalities is contained by the rule’s policy compliance mechanism. This should reduce
CDN’s and ISP’s concerns for exposing a larger API at their HTTP proxies and servers.

We leave a comprehensive description of the detailed components necessary to deploy
RBF through HTTP to future work.

10.3 Extending CloudPolice

There are two directions we are actively pursuing to extend CloudPolice as presented in this
dissertation.

First, we are working on implementing global policies that require state maintained at the
level of an entire security group. For example, to rate-limit the traffic between two groups,
we need to maintain aggregated state about the rates experienced by all the machines in
both groups. This extension requires a mechanism to share state between the hypervisors
hosting VMs belonging to the same group, as well as distributed algorithms for how to use
this state to implement the access control policies.

Second, we are investigating a class of dynamic policies that are controlled at runtime
by VMs based on application-level semantics. For example, source VMs could obtain access
capabilities dynamically (e.g., obtained through external websites), allowing them to access
certain groups. Destinations, on the other hand, could block unwanted traffic at runtime,
based on application-level semantics.
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Chapter 11

Conclusion

In this dissertation we introduce the idea of forwarding rules and develop the design of
a rule-based forwarding (RBF) architecture. A network based on RBF is flexible and, at
the same time, policy compliant. To demonstrate flexibility, we consider a wide variety of
forwarding scenarios and show how rules can be used to implement them, e.g., forwarding
through waypoints, middleboxes, using router extensions, achieving mobility, etc. We show
that policy compliance is a required architectural property in order to (a) prevent the addi-
tional flexibility available to end users to enable new malicious attacks and (b) be able to
prevent DoS attacks. Through a prototype implementation and evaluation of RBF-related
overheads we show that RBF is feasible for implementation at Internet scale.

We also show how to apply the concepts behind RBF to cloud computing. We describe
CloudPolice, an access control mechanism implemented in hypervisors that is scalable, net-
work independent and provides flexible policies.

We hope that the ideas developed in this dissertation will help the computer science
community to arrive at better network designs in the future, as the importance of networks
in the human society continues to grow.
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Appendix A

Static Analysis of Rules for
Forwarding Loops

We describe an algorithm called Loop-Free Rule (LFR) that signals whether a rule can
result in a forwarding loop. A rule can result in a forwarding loop when the packet is sent
from one destination to another indefinitely (or through a sequence of destinations); dropping
such a packet requires the forwarding layer to rely on the TTL field in the IP header or other
similar mechanisms. 1

Importantly, this static analysis is required due to our design decision to keep the rule
forwarding mechanism as simple as possible. Indeed, forwarding loops could be avoided by
using runtime mechanisms. In one example, all the destinations in a rule can be encoded
in the packet using a loop-free data structure such as a Directed Acyclic Graph (DAG); the
forwarding mechanism can impose the restriction that the destination address attribute can
only be set such as to advance in this data structure (i.e., can only set the destination to
children of the current destination in the DAG). Note that such a mechanism is not restricting
rule expressivity (all rules that cannot generate forwarding loops can be expressed this way),
but it incurs some extra overhead for storing the loop-less data structure in the packet.

Rules have to be loop-free regardless of the attributes inserted by senders. However, we
are not concerned with the fact that attributes can be changed outside the rule forwarding
engine by malicious routers or by functionality invocations; such changes could lead to loops
at the overlay level rather than at the forwarding level, i.e., malicious routers have to per-
petually change the attributes to preserve the loop. Indeed, changing the packet attributes
by a malicious router is equivalent to the insertion of random attributes by the sender, and
the packet has to be loop-free unless it is changed again by another malicious router.

We next present the LFR algorithm that detects those rules that can result in forwarding
loops. LFR is based on the creation and analysis of the rule finite state machine (FSM),
which captures the states in which the packet can be during forwarding – we defined the

1Note that obviously we are assuming there are no routing loops, which are outside the scope of RBF.
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rule FSM in the next section. LFR relies on the following observation: a forwarding loop
is possible only if the rule FSM has a cycle that involves states with multiple destination
addresses.

Note that in RBF all attributes have unsigned integer values.

A.1 Rule FSM

We assume a rule R with packet attributes pa1,...,pan using router attributes ra1,...,ram. The
possible sets of values for these attributes are PA1,...,PAn and respectively RA1,...,RAm.
We note the concatenation of all the packet attributes with pa = pa1...pan and PA =
PA1×PA2× ...PAn. Similarly, RA = RA1× ...RAm. Note that PAi and RAi are finite sets
whose size depends on the binary representation of the attributes; in our current implemen-
tation most attributes are represented using two byte values. Without loss of generality, we
commonly assume in this section that these values represent positive integers.

We define the following finite state machine: (Σ, S, S0, δ, F ). The input alphabet is
Σ = RA. The set of states S = (PA × Invoke) ∪ {drop}. The last state is a special
state where the packet has been dropped. Invoke can be seen as equivalent to a special
attribute encoding whether the packet is currently in process at a higher layer functionality
or not. The Invoke attribute equals the value of the invoked functionality in R. Specifically,
Invoke = {invokei|invokei ∈ R} ∪ {NO INV OKE}, where invokei is the identifier of a
router defined function invoked by R, and NO INV OKE is a special value for all other
cases when the packet is simply in the process of being forwarded (which is the common
case).

By R(s, r) = sr we note the application of the rule R when the packet is in state s ∈ S,
the router attributes at the current router are r ∈ RA, and the resulting state of the packet
is sr ∈ S. Note that it does not make sense to apply the rule to the drop state (since the
packet is dropped). The Invoke attribute is ignored at the application of the rule, but its
value is set as the invoked functionality identifier, in case a router function was invoked, or
to NO INV OKE otherwise. Also, note that some of the state transitions occur irrespective
of the router attribute values; these are similar to the FSM λ transitions.

In this dissertation, we are interested in the properties of the FSM regardless of the initial
state or of the final states, and thus S0 and F are not of interest for our analysis (all states
can be considered both as initial and final).

Lemma 1. A forwarding loop is possible in a rule R iff. R’s FSM contains a cycle and at
least two of the states from the cycle have different values for the destination address packet
attribute.

Proof. First, assume the rule can lead to a forwarding loop. This means that the packet
destination address attribute has to change during the packet’s forwarding. Since the space
of all packet attribute values is finite (PA), this implies there is a cycle in the FSM.
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Second, if such a cycle in the FSM exists, this means that the rule could oscillate between
multiple destinations indefinitely if the router attribute values match specific requirements.

The problem with the rule FSM is that the number of states ca be very large. Next, we
present aggregated states, a method used by LFR to reduce the number of states.

Aggregated States: We define an aggregated state sagg as a subset of PA × Invoke,
sagg ⊂ PA×Invoke, i.e., for an aggregated state, the packet attribute values are generalized
to have multiple values (such as entire intervals).

We generalize the rule application for aggregated states as such: ∀sagg ⊂ PA× Invoke,
R(sagg, r) = ∪s∈sagg(R(s, r)). In other words, R(sagg, r) = {So}, s.t. ∀s ∈ sagg, then, R(s, r) ∈
So and ∀so ∈ So, ∃s ∈ sagg s.t. R(s, r) = so.

Similarly to above, we also extend the rule application notation to subsets of the router
attribute space. If Rs ∈ RA, we define R(sagg, Rs) = ∪r∈Rs(R(sagg, r))

We note with Sp ⊂ S, the subset of all possible states after the rule application, Sp =
R(PA×Invoke,RA), i.e., we obtain all possible states at the end of the rule if we apply the
rule to the aggregated state representing all the possible inputs. In other words, Sp contains
all the possible packet states before the packet is forwarded to IP or to upper layers; in the
latter case, the invoke attribute captures the identifier of the invoked functionality. Note
that not all possible states are in Sp, i.e., in general S 6= Sp. For instance, if an attribute X

is always set to the value 3 in the rule, all states where X 6= 3 are not in Sp.

A.2 The Loop-Free Rule (LFR) algorithm

The high level idea is to reduce the states of the rule FSM to a set of aggregated states (such
that the analysis is feasible), but, at the same time preserve a large enough number of states
to permit an accurate detection of one rule’s ability to create forwarding loops.

LFR has three steps. The first step identifies a set of k aggregated states S FSMagg =
{s1agg,...skagg} such that s1agg ∪ s2agg ∪ skagg = Sp and s1agg ∩ s2agg ∩ skagg = Φ. These are
the states of the reduced FSM. The second step creates all the possible transitions between
these states. Note that we are not interested in the inputs to the FSM that make these
transitions possible (i.e., the router attributes) since we want to prevent loops regardless of
the value of the router attributes, which are under router control. Finally, the third step
takes the decision of whether the rule can lead to a forwarding loop or not based on whether
the FSM graph created has cycles or not.

The first two steps of LFR rely on a procedure that computes R(sagg, RA), i.e., the set
of states that can result by applying the rule R to any input state in sagg and using any
value for the router attributes. This procedure is called Rule Application Procedure (RAP)
and we present it next.
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RAP: Rule Application Procedure: RAP simulates the rule application and in fact
performs a simple form of symbolic execution (simple because rules have a very constrained
format). RAP identifies an aggregated state as the “current state” in which the packet is
during the rule application. For conditional branches, this analysis is replicated and the
simulation continues for each branch. The current state is initialized with an input value
sstart and is modified during the rule application, when some of the attributes are set to
specific values or when conditional branches are taken.

The input of RAP is an aggregated state sstart that corresponds to the states the packet
can be in at the beginning of the rule application.

The output of RAP is a set of aggregated states, S OUTagg = {s1agg, ..., skagg}. There
are two important properties of the resulting aggregated states. First, s1agg ∪s2agg ∪skagg =
R(sstart, RA). Second, these states correspond to different sendto and invoke actions in the
rule, and thus, they capture the essential properties for detecting loops.

Below, we note with “*” an attribute not set, i.e., can have any value.
RAP defined by the following procedures to be applied when the corresponding rule

actions are encountered:

1. if(packet.a <op> value): If the current state can accommodate both decision
branches, we replicate the state, one for each branch, and continue to apply RAP
for each of the resulting states. We set the value of the a attribute in each resulting
state to an interval or value conforming to the decision taken. For example, if the ini-
tial value of attribute a is * and a takes positive integer values, then for the condition
if(packet.a < 5) the two created states will have intervals 0 − 4 and 5 −max for
a’s value.

2. if(router.a <op> b): The state is replicated as before, but remains unchanged for
both branches, regardless of b, which can be a packet attribute or a constant.

3. if(packet.a <op> packet.b): The state is replicated and the generalized values for
a and b are possibly constrained if one of them is constrained; e.g., if <op> is “<”,
b is constrained to the range 2 − 7 and a is unconstrained (i.e., *), the two resulting
states will constrain a to 0− 6 on one branch and 3−max on the other.

4. packet.a = value: The a attribute is set in the current state to that specific value.

5. packet.a = router.b: a’s value in the current state is set to *.2

6. packet.a = packet.b: a takes the generalized value of b.

2If we assume that a router attribute’s value is the same throughout the rule execution, an improvement
can be made to this algorithm, to also constrain the value of the packet attribute, if previous constraints
have already been made on the router attribute’s value. For simplicity, here we make no such assumption.



98

7. sendto D: Set packet.destination to D, set the Invoke attribute to NO INV OKE
and add the aggregated state to S OUTagg.

8. drop (or the end of the rule): Discard current aggregated state and add drop to
S OUTagg (if not already in).

9. invoke func id: Set the Invoke attribute to func id and add the current state to
S OUTagg.

RAP terminates when all states resulted from different branch replication are added to
S OUTagg.

Lemma 2. R(sstart, RA) = s1agg ∪ s2agg ∪ ...skagg, where siagg states are computed as the
result of applying RAP to sstart, i.e., RAP (sstart). This means that RAP simulates all
possible rule executions.

Proof. This lemma is proven by the construction of RAP and by exhaustively taking into
consideration all the possible statements in rules. After each rule action or decision, the
set of aggregated states maintained by RAP covers all the possible states resulted from the
application of that action/decision.

Explaining this argument a bit more, assume there is sx ∈ R(sstart, RA) but sx /∈ s1agg ∪
...skagg. This means ∃s0 ∈ sstart, ∃r0 ∈ RA s.t. R(s0, r0) = sx. Since we apply the rule
to sstart 3 s0, this situation can only occur if: (1) the presented algorithm does not take
a possible rule branch or (2) the generalized state at the end of the branch of sx does not
contain sx. First, by branching, RAP covers all possible branches, by definition setting
the value of all attributes to the most general value that the attribute can have on that
branch regardless of the value of the router attributes. Second, within each branch, for each
possible rule action, it is easy to see from the algorithmic RAP steps above that the value
of any attribute is set to the most general subset that can result from that action. Thus,
R(sstart) ⊂ s1agg ∪ s2agg ∪ ...skagg.

On the other hand, assume that exists state sy ∈ s1agg ∪ ...skagg but sy /∈ R(sstart, RA).
This means RAP maintained as current states, some states that are not actually possible. By
analyzing all the rule actions and decisions exhaustively captured by RAP , one can see that
such a situation cannot occur unless the router attributes or the initial packet attributes have
constrained value ranges; however, we cannot make such an assumption in the presence of
malicious adversaries and arbitrary semantics associated to router and packet attributes.

First Step of LFR: The first step is to apply the RAP algorithm to the most general
aggregated input state PA× Invoke, by computing RAP (PA× Invoke), i.e., all attributes
have the value ∗. This can be seen as computing R(PA× Invoke,RA), i.e., all the possible
results of the rule applications when the values of the packet attributes and of the router
attributes are not constrained.
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The result of the first step of LFR is a set of aggregated states S FSMagg. The elements
of S FSMagg represent the aggregated states of the finite state machine we will use to detect
loops.

S FSMagg is initialized with the output S OUTagg of RAP (PA× Invoke). LFR makes
two further (simplifying) adjustments to this set. First, if ∃i, j s.t. sjagg ⊂ siagg, we only
retain siagg in S FSMagg. Second, if ∃i, j s.t. the destination attribute in sjagg is equal to
that in siagg and siagg∩sjagg 6= Φ and both aggregated states have the invoke attribute equal
to NO INV OKE, we remove siagg and sjagg from S FSMagg and insert siagg∪sjagg. These
adjustments do not pose security threats since the destination address attribute (relevant in
loop detection) is not aggregated.

Lemma 3. Sp = s1agg ∪ s2agg ∪ ...skagg, where siagg ∈ S FSMagg, i.e., are the aggregated
states computed by the first step of LFR.

Proof. This simply results from Lemma 2 and the definition of Sp, Sp = R(PA×Invoke,RA).
The two minor adjustments described above do not remove states nor introduce new states
to S FSMagg.

Note here that a malicious router could create states that are not in Sp (e.g., set random
values to the packet attributes) but, as mentioned, this is equivalent to having the sender
insert random attribute values; the state of the packet after the next (non malicious) router
will get back in Sp.

Lemma 4. s1agg ∩ s2agg ∩ ...skagg = Φ, where siagg ∈ S FSMagg.

Proof. By construction, all states with the invoke attribute set to NO INV OKE are dis-
joint either by having different destination address attributes or by the fact that we join
overlapping aggregated states with the same destination address (see above adjustments).
All the other states have different invoke attribute values (for simplicity, we assume here that
the functionalities invoked in the rule are distinct, i.e., no functionality is invoked by two
different invoke statements).3. This shows that there are no states that belong to multiple
aggregated states identified by the first step of LFR.

Second Step of LFR: We now create the transitions between the states in S FSMagg

identified at the previous step. For this purpose we use the following algorithm:

for all siagg ∈ S FSMagg do
compute R(siagg, RA) // i.e. apply RAP (siagg)
for all sjagg ∈ S FSMagg do

if R(siagg, RA) ∩ sjagg 6= � then
add link from siagg to sjagg

3The algorithm can easily be extended when this is not the case (e.g., by uniquifying the identifiers).
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end if
end for

end for

In other words, the second step of LFR applies the RAP algorithm for each of the
aggregated states siagg in S FSMagg (identified at the first step). If some of the states
resulted belong to other aggregated states sjagg from S FSMagg then we create an edge from
siagg to sjagg. Such a link means that it is possible for the packet to go from a state in siagg

to a state in sjagg for some values of the router attributes; given the above construction of
the aggregated states, this signifies that the destination address or the invoked functionality
changed.

Third Step of LFR: In this step, LFR decides whether the rule R can lead to forwarding
loops.

At the end of the second step, we obtain a graph of aggregated states; the nodes in this
graph are the members of the S FSMagg set and are the result of the first step of LFR, while
the edges are added in the second step. We name this graph R FSM , since it simulates an
(aggregated) finite state machine of the rule R.

We further remove all the ”invocation” states in R FSM , i.e., those states that have the
invoke attribute different than NO INV OKE, since these are not relevant for forwarding
loop detection. When removing such an aggregated state siagg, we connect each of the neigh-
boring states sjagg that have transitions to siagg to each neighboring state skagg reachable
from siagg, unless sjagg and skagg are already connected through a direct edge.

If the resulting graph has cycles, LFR returns TRUE, meaning that the rule can lead to
cycles, otherwise LFR returns FALSE.

A.3 Proving Rule Safety

Theorem Forwarding-loop Safety. A rule R is guaranteed to not result in forwarding
loops if the LFR algorithm returns FALSE.

Proof. A network loop requires at least two distinct destination address attributes. The
packet finds itself at each point during its life in exactly one of the states in S FSMagg; this
is proven by Lemma 3 and Lemma 4. All the possible transitions between the aggregated
states in S FSMagg are captured by the transitions created at the second step of the LFR
algorithm; this is true since the RAP algorithm captures the rule application, see Lemma 2.
(Note that the removal of states with the invoke attribute different than NO INV OKE at
the third step of the LFR algorithm does not remove any possible path between two of the
remaining states since we add extra edges between all neighbors.) Finally, by construction,
each state has a single value for the packet destination attribute.

Therefore, a forwarding loop actually requires a cycle in the graph constructed by the
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LFR algorithm. Thus, if the LFR algorithm returns FALSE, the rule cannot lead to forward-
ing loops regardless of the value of the router attributes encountered on its path.

Although we do not present it here, the LFR algorithm does not create false positives,
i.e., cases when LFR returns TRUE but the rule cannot lead to a forwarding loop.

A.4 Complexity

We make the following notations: RS represents the rule size, measured in the number
of statements: actions (sendto and invoke), settings of attribute values and branching
conditions in the rule; D is the number of destinations in the rule (the number of distinct
targets of sendto actions); and A is the number of packet attributes of rule R.

The complexity of the first step of the LFR algorithm is O(RS). (We ignore here the
complexity of maintaining the generalized attribute values.) This represents the complexity
of applying the RAP procedure. The complexity of the second step is: O(|S FSMagg|·(RS+
(|S FSMagg| ·A)). To understand this result, see that the RAP algorithm is applied for each
aggregated state resulted from the first step; the result of each such application is also
compared with all the other states to check for intersections; finally, this check depends on
the number of packet attributes in the rule. The number of aggregated states (|S FSMagg|)
is on the order of the number of sendto actions in the rule. Therefore, the complexity of the
second step is O(D · RS + D2 · A)). The complexity of the last step of the LFR algorithm
is, in the worst case, O((|S FSMagg|+ |E|) · |S FSMagg|), where |E| is the number of edges
between the aggregated states in S FSMagg. This step tries to detect whether there are
cycles in the R FSM graph and we apply DFS from each of the aggregated states. Hence,
the last step of the LFR algorithm has a worst case complexity of O(D3).

In conclusion, the complexity of the LFR algorithm is O(D · RS + D2 · A + D3). If we
consider RS to be dominated by D2 (RS also contains the sendto actions) and A to be on
the same order as D, we obtain a simplified worse case complexity of O(D3) .

Since rules are bounded to a small size (the rule description is bounded to 256 bytes in our
current implementation), we expect all rules to be easily statically analyzable; e.g., we expect
the number of destinations D to be well less than a dozen. For example, with our current
implementation, one could fit 24 destinations in a 256B rule encoding using an anycast-like
rule (note that RS for such a rule has a value around 50).
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Appendix B

Static Analysis of Rules for Local
Loops

A local loop is a continuous invocation of functionality at a router; the packet invokes a
router functionality, then it returns to the forwarding layer after the functionality invocation
ends, but the rule invokes the functionality again creating a loop. Such a loop could also be
created by looping among multiple functionalities offered by the same router.

Similarly to forwarding loops, local loops can be prevented through the use of runtime
mechanisms. For example, invocation statements can be associated an order number in the
rule; at each host, the forwarding layer remembers which functionality returned the packet
back to it and prevents the rule from accessing another functionality with the same order
number or a smaller one. This approach does not constrain the rule expressivity, since the
invoked functionalities at a router can always be consistently ordered, but it does incur extra
overhead for packet forwarding and packet payload (to store the ordered of the invocation
statements).1

To detect the rules that can lead to local loops, one could use the same LFR algorithm
as for detecting forwarding loops presented in Appendix A. The difference is in the condition
to be checked on the R FSM graph.

However, the assumption used in Appendix A that router attributes can have arbitrary
values at each rule application is sometimes too constraining for this type of analysis. More
precisely, since local loops occur at a single router, we can assume that the router attributes
have the same value before and after the functionality invocation. For example, the router
address will not change between each functionality invocation. This relaxation of the algo-
rithm comes in handy for functionalities that are accessed over and over again at multiple
routers such as the multicast registration example in Section 3.3. We expect that router
attributes have the same value before and after the functionality invocation, because we
expect the duration of the packet processing at the invoked functionality to be much shorter

1This approach would not allow invoking a function twice at the same router.
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than the period between router attribute updates.2

For this reason, we modify slightly the algorithm presented in Appendix A. Each packet
attribute pai can take values in PAi ∪ RA ID (instead of only PAi), where RA ID is a
set containing the identifiers for each router attribute used by the rule R. This extends the
symbolic execution of the RAP algorithm in the following way: the value of each packet
attribute can also signify that the respective attribute has been set to the value of a router
attribute. To achieve this change, the RAP algorithm presented in Appendix A is modified
in the following case:

5. packet.a = router.b: a’s value is set to the identifier of the attribute b ∈ RA ID.

We construct an algorithm called Local Loop-Free Rule (LLFR) to detect whether a rule
can result in a local loop. As the LFR algorithm presented in the Appendix A, LLFR has
three steps; the first two steps are identical to those of LFR (but using the modified RAP
algorithm as described above). Thus, at the end of these two steps the R FSM graph is
computed.

The third step of the LLFR algorithm removes all the states in the R FSM graph that
have the invoke attribute different than NO INV OKE; the edges adjacent to these states
are also removed. Note that these states are not relevant for local loops since the packet is
being forwarded between different network nodes.

LLFR returns FALSE (i.e., the rule cannot result in a local loop) if the remaining graph
has no cycles, otherwise returns TRUE.

Theorem Local-loop Safety. A rule R is guaranteed to not result in local loops if the
LLFR algorithm returns FALSE.

Proof. The argument is similar to the forwarding loops, so we rely on Lemmas 2, 3, and a
similar Lemma to 4 from Appendix A.

Assume the rule forms a local loop. This means that after each functionality invocation,
the rule directly uses another functionality invocation. Since the number of functionalities
is limited, and since each state of the reduced FSM created by our algorithm are disjoint,
representing distinct functionalities, this implies a cycle between one or more aggregated
states has to exist. But such cycle is detected by the LLFR algorithm. Note that for
a local loop, all the aggregated states in the cycle have to invoke functionality (i.e., the
invoke attribute be different than NO INV OKE) and so, we can safely ignore the other
(forwarding) states as described above.

2Even if this were not the case, loops could hardly be created because the rule creator would have to
guess the new value of the router attribute.


	Introduction
	Contributions
	Organization

	Design Rationale and Overview
	Architecture Overview
	Distributing rules to routers
	Applying Rules
	Distributing rules to end-hosts
	Ensuring Rules Are Authorized
	Assumptions
	Summary


	RBF Data Plane
	Rule Specification
	Rule Verification
	Usage Examples
	Source Rules
	Functions on Both Forward and Reverse Paths

	RBF Control Plane
	Rule Creation and Certification
	Rule Distribution
	Distributing Rules for DDoS Protection

	Rule Leases
	Alternative Lease Mechanism Not Using Global Synchronization

	Anti-spoofing mechanism

	Security Analysis
	Security Properties
	Mechanisms
	Analysis

	Evaluation
	Implementation
	An RBF Rule Compiler
	A Prototype RBF Router

	Evaluation Results
	Packet Size Overhead
	Router Overhead
	Router Functions
	RCE Load


	Related Work
	Discussion and Limitations
	Discussion on Policy Compliance
	Incremental Deployment Through Infrastructure Upgrade
	Limitations of RBF
	Using Mobility and DoS Protection Simultaneously
	Rule Expressivity
	ICMP-like protocols


	CloudPolice - Applying RBF to Data Centers and Cloud Computing
	Background
	Examples of Cloud Access Control Policies
	Properties Required for Cloud Access Control

	CloudPolice Overview
	Design Space
	CloudPolice's Design

	Detailed Design and Implementation
	Proposed Policy Model
	Design Details
	Implementation and Evaluation of Overhead
	Security Analysis

	Related Work

	Future Work
	Extending RBF
	Deploying RBF Through HTTP
	Extending CloudPolice

	Conclusion
	Bibliography
	Static Analysis of Rules for Forwarding Loops
	Rule FSM
	The Loop-Free Rule (LFR) algorithm
	Proving Rule Safety
	Complexity

	Static Analysis of Rules for Local Loops

