
Asynchronously Communicating Visibly Pushdown

Systems

Domagoj Babic
Zvonimir Rakamaric

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-108

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-108.html

October 3, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We would like to thank Brad Bingham, Jesse Bingham, Steven McCamant,
Jan Pachl, Shaz Qadeer, and Serdar Tasiran for their feedback on the
early drafts of this document, George Necula for sharing his insights on
development of distributed message-passing systems in practice, and Jim
Larus for pointing out the importance of synchronization in distributed
message-passing protocols.

Asynchronously Communicating Visibly Pushdown Systems

Domagoj Babić
UC Berkeley

babic@eecs.berkeley.edu

Zvonimir Rakamarić
Carnegie Mellon University

zvonimir.rakamaric@gmail.com

Abstract
We introduce an automata-based formal model suitable for spec-
ifying, modeling, analyzing, and verifying asynchronous task-
based and message-passing programs. Our model consists of vis-
ibly pushdown automata communicating over unbounded reliable
point-to-point first-in-first-out queues. Such a combination uni-
fies two branches of research, one focused on task-based models,
and the other on models of message-passing programs. Our model
generalizes previously proposed models that have decidable reach-
ability in several ways. Unlike task-based models of asynchronous
programs, our model allows sending and receiving of messages
even when stacks are not empty, without imposing restrictions on
the number of context-switches or communication topology.Our
model is strictly more general than the well-known communicating
finite-state machines and allows: (1) individual components to be
visibly pushdown automata, which are more suitable for modeling
(possibly recursive) programs, (2) the set of words (i.e., languages)
of messages on queues to form a visibly pushdown language, which
permits modeling of remote procedure calls and simple formsof
counting, and (3) the relations formed by tuples of such languages
to be synchronized, which permits modeling of complex interac-
tions among processes. In spite of these generalizations, we prove
that the composite configuration and control-state reachability are
still decidable for our model.

1. Introduction
The asynchronous message-passing programming paradigm isbe-
coming a de facto standard for parallel and distributed computing
(e.g., cloud applications, web services, scientific computing). Pro-
gramming such asynchronous systems is, however, difficult.In ad-
dition to having to reason about concurrency, programmers typi-
cally do not have full control over all the services they use.There-
fore, failures are rarely reproducible, rendering debugging all but
impossible. In response, programmers succumb to logging interest-
ing events and gathering various statistics, hoping that ifsomething
goes wrong the logs will reveal the source of failure. And unfortu-
nately, things occasionally do go wrong, often impacting millions
of customers, or opening gaping security holes, which have been re-
cently exploited to even “buy” goods on the Internet withoutpaying
for them [35].

On the positive side, this is a huge opportunity for the scientific
community to provide appropriate computationally tractable for-
mal models, as well as programming paradigms, languages, and
analysis tools based on such models. In this paper, we propose
such a formal model for asynchronous message-passing programs.
The model generalizes several existing well-known models,but we
prove that checking the system’s safety properties is stilldecidable.

More precisely, we propose an abstract automata-based model,
in which individual processes are modeled by visibly pushdown
automata (VPA) [2] that communicate via unbounded point-to-

point reliable first-in-first-out (FIFO) queues. VPA are single-stack
pushdown automata where all stack push and pop operations must
be visible (i.e., explicit) in the input language. Such automata are
commonly used to represent abstractions (e.g., computed using
predicate abstraction [5, 18]) of possibly recursive programs.

Unfortunately, reachability is undecidable even for finite-state
machines communicating over unbounded queues (a.k.a. CFSMs)
[10]. Researchers proposed a number of restrictions to regain de-
cidability: bounding the size of queues to some fixed size, restrict-
ing the communication topology, and restricting the expressiveness
of the languages representing the messages on queues. Pachl[26]
proved that if a CFSM has a recognizable channel property — all
the queue languages are regular and all those languages forma rec-
ognizable relation,1 then reachability is decidable.

Enforcing Pachl’s restrictions would be too restrictive inour
model. First, it would make little sense to model individualpro-
cesses as VPA, but not being able to remotely call their proce-
dures. To model remote procedure calls, the queue languagesneed
to be visibly pushdown, rather than just regular word languages.
Second, recognizable relations are a very inexpressive class of re-
lations that can model inter-dependencies among queues only if
languages describing the contents of each queue are finite. For in-
stance, if we have an invariant that there should be the same number
of messages, saya andb, on two queues in some composite control
state, the relation representing the configuration of queues would
be (an,bn), which is not a recognizable relation. Even simple sys-
tems, like a client sending some number of requests and expecting
the same number of responses, require queue relations that allow
inter-dependencies (i.e., synchronization) among individual queue
languages.

We relax Pachl’s restrictions by allowing queue (and stack)
configurations to form synchronized visibly pushdown relations,
which significantly broadens the applicability of our model. Al-
though in our model the two extensions, from regular to visibly
pushdown languages and from recognizable to synchronized rela-
tions, go hand-in-hand, it is worth noting that they are orthogo-
nal and each is valuable on its own. For instance, our relaxation
from recognizable to synchronized relations is applicableto other
models as well — a straightforward consequence of our results is
that reachability of CFSMs with synchronized channel property is
decidable. In practice, our relaxations enable formal analysis and
verification of significantly more complex asynchronous message-
passing systems than allowed by prior models.

In addition, there is an even larger class of relations that can be
algorithmically translated into synchronized relations,i.e., resyn-
chronized. We introduce a new type of automaton, called switching
multitape automaton, that characterizes relations that can be resyn-
chronized with prior preprocessing. We show that if a relation can
be algorithmically translated into a relation accepted by aswitch-

1 Informally, a relation is recognizable if the concatenation of all the lan-
guages that are elements of the relation tuple is a regular language.

1 2011/10/3

ing multitape automaton, then it can also be resynchronized. As our
proofs rely solely on the properties of synchronized relations, we
postpone the treatment of resynchronizable relations until after we
state and prove the main results.

The main technical contribution of this paper is a proof that
model checking safety properties — global control state andglobal
configuration reachability — is decidable for the model we pro-
pose. The result is non-trivial as the introduced model allows un-
bounded stacks and queues, arbitrary communication topologies, as
well as complex inter-dependencies of queue and stack languages.
We summarize the contributions of this paper as follows:

• A new formal model for asynchronous message-passing pro-
grams.

• A relaxation of known communication restrictions along two
dimensions: from regular to visibly pushdown languages, and
from recognizable to synchronized relations.

• A proof of decidability of global control state and global con-
figuration reachability in our model.

• An introduction of switching multitape automata characterizing
a family of relations that can be algorithmically resynchronized.

2. Background and Related Work
The research on abstract models of asynchronous computation
has progressed along two, mostly disjoint, paths. The first path
stemmed from the classical negative result of Ramalingam [30]
stating that the reachability of stack-based finite-data abstractions
of concurrent programs with preemption is undecidable. Further
research focused on computationally more tractable models, like
context-bounded [28] and task-based non-preemptive models. The
latter are more relevant to this paper. The second path originated
in the study of finite-state machines communicating over reliable
unbounded queues [10], known as CFSMs. Like the task-based
model, reachability is undecidable for general CFSMs. Further
research focused on restrictions of CFSMs, especially of queue re-
lations, and development of model checking algorithms exploiting
such restrictions. In this paper, we unify the two paths, proposing
a model suitable for the same class of applications as the task-
based non-preemptive models, while significantly generalizing the
CFSM-based models. We proceed by surveying the related work
along both paths, and then providing the necessary background on
synchronized relations, which allow us to express complex inter-
dependencies among queues and stacks.

2.1 Task-Based Models

The task-based model consists of a pushdown automaton and a
task buffer for storing asynchronous task invocations. After the
currently executing task returns, a scheduler takes another task
from the task buffer and executes it on the automaton. Tasks execute
atomically and can change the global state (of the automaton), but
new tasks can start executing only when the stack is empty, i.e., the
model is non-preemptive. Tasks cannot send messages to eachother
and communicate only by changing the global state. The model
is suitable for modeling event-based applications (e.g., JavaScript
programs) and worker-pool-based multithreaded applications (e.g.,
servers).

Sen and Viswanathan [32] proposed a task-based model where
the task buffer is modeled as a multiset (i.e., a bag) and showed that
the state exploration problem is EXPSPACE-hard. Ganty and Ma-
jumdar [16] did a comprehensive study of multiset task-based mod-
els, proving EXPSPACE-completeness of safety verification, and
proposed a number of extensions. For instance, they show that the
configuration reachability problem for the task-based model with
task cancellation is undecidable. Our model does not allow mes-
sage cancellation, but once the execution starts on some automa-

ton, it is possible to send an abort message, which can changethe
course of execution.

La Torre et al. [23] studied a different set of trade-offs. Sim-
ilarly to ours, their model allows unbounded reliable queues in-
stead of multisets, but either bounds the number of allowed context-
switches or restricts the communication topology to assurecom-
putational tractability. Similarly to the multiset-basedmodel, their
model can deque messages from queues only when the local stack
is empty. Each visibly pushdown automaton in our model can both
send and receive messages, independently of the state of thelocal
stack, as long as the languages of all the queues and stacks inthe
system can be described by a synchronized relation. Furthermore,
we neither impose restrictions on the communication topology, nor
require the number of context-switches to be bounded.

2.2 Communicating Finite-State Machines

Another line of research on formal models of asynchronous compu-
tation focused on CFSMs [10]. A CFSM is a system of finite-state
machines operating in parallel and sending messages to eachother
via unbounded FIFO queues. CFSMs can model preemption, but
finite-state machines are an overly coarse abstraction of (possibly
recursive) programs. As discussed earlier, reachability is undecid-
able for CFSMs, in general. Pachl [25, 26] found that if the lan-
guage of messages on each queue is regular and the tuple of such
languages for all queues is a recognizable relation, then the reach-
ability problem is decidable for CFSMs.

His work was followed by extensive research on, so called, reg-
ular model checking (e.g., [6, 8, 9, 34]), where queue contents are
described using recognizable relations over words. Model check-
ing is then done by computing (sometimes approximations of)a
transitive closure of the system’s transition relation, and checking
whether the image of the transitive closure is contained in the rela-
tion describing the queue contents. As the focus of this paper is on
proposing a new formal model for modeling asynchronously com-
municating programs, and proving that the model has a decidable
reachability problem, rather than on algorithms, we omit anexten-
sive account of the regular model checking work. Instead, wedirect
an interested reader to a survey [1]. We suspect that techniques sim-
ilar to the ones developed for regular model checking, especially to
those for regular tree model checking (e.g., [7]), could be applied
to model check the formal model we propose.

We generalize Pachl’s results along two dimensions. First,the
components of our formal model are visibly pushdown transduc-
ers, which can closely model the control flow of recursive pro-
grams. Therefore, they are a better candidate for modeling asyn-
chronously communicating programs (e.g., event-based programs,
web services, cloud applications, scientific computing applications)
than the less powerful finite-state machines. Second, we signifi-
cantly relax the restrictions on queue relations, allowingmore ex-
pressive communication patterns.

The first major relaxation allows queue relations in our model
to be visibly pushdown [2], rather than just regular. This relaxation
enables us to support remote procedure calls and limited forms of
unbounded message counting. The second major relaxation isre-
lated to the queue relations. More precisely, we show that our model
has a decidable reachability problem even when we move one step
up in the hierarchy of families of relations from the family used by
Pachl. Such more expressive relations allow us to model complex
inter-dependencies among queue and stack configurations.

2.3 Relations Over Words and Trees

In this section, we give an overview of the main results on relations
over regular sets (of words and trees) relevant to this paper. The
properties of those relations are the key to understanding the pre-
sented contributions. A property that we are particularly interested

2 2011/10/3

in is the decidability of language inclusion (⊆), which we use in
the proof of the decidability of reachability in our formal model.
We start with the most expressive family of relations.

Rabin and Scott [29] introduced a generalization of the finite
automata operating on words (single tape) to tuples of words(mul-
tiple tapes). There are two basic variants of such automata:non-
deterministic and deterministic.2 The relations accepted by the for-
mer are calledrational relations(Rat), and by the laterdetermin-
istic rational relations(DRat). While the equivalence problem of
DRat is decidable [20], inclusion is unfortunately undecidablefor
both classes. Therefore, our proof technique, which generalizes
Pachl’s [25] technique, cannot be used to prove decidability of
reachability in systems of CFMS or visibly pushdown transducers
whose queue languages form (deterministic) rational relations.

Synchronized relations(Sync) [13] restrict the tapes of ann-tape
automaton to move simultaneously at every step of any computa-
tion. Thus, synchronizedn-tape automata overΣ∗ × ·· · × Σ∗ can
be seen as the classical 1-tape automata over the alphabet that is a
cross-product of alphabets of all tapes, i.e.,(Σ×·· ·×Σ)∗. Such au-
tomata move all their tape heads synchronously in lock-step, as if it
is a single head reading a tuple of symbols. Synchronized relations
are sufficiently expressive to describe languages such as(am,bm),
which is useful for describing simple forms of counting in asyn-
chronously communicating programs. For example, it is possible to
describe a system that sends a number of requests asynchronously
and expects to get the same number of responses. By adding a spe-
cial padding symbol (#), synchronized relations can also beused to
describe languages such as(am,bk), wherek>m. Synchronized re-
lations have essentially the same properties as the classical 1-tape
automata (closure under union, intersection, etc.) and their inclu-
sion can be efficiently checked.

Frougny and Sakarovitch [15] definedresynchronizable rela-
tions, which describe languages ofn-tape automata whose tapes are
not synchronized, but the distance between tape heads is a-priori
bounded. They showed that such relations can be characterized as
a finite union of the component-wise products of synchronized re-
lations by finite sets, which in turn means they can be reducedto
synchronized relations. For instance,(bmaabk,cmdk) is an exam-
ple of a resynchronizable relation: after reading(bm,cm), the first
tape reads two more symbols (increasing the distance between tape
heads to two), and then both tapes can again move together in sync.
Relations like((a∗b)m,cm) are not resynchronizable, as the dis-
tance between tape heads can become arbitrarily large. Our proof
technique is applicable to all families of relations reducible to syn-
chronized relations.

Finally, recognizable relations(Rec) [33] have the weakest ex-
pressive power of all mentioned families of relations. Eachtape
of an n-tape automaton operates independently of others and has
its own memory. The relations accepted by such automata can be
represented as finite unions of cross-products of regular compo-
nent languages. Effectively, the component languages can be all
concatenated together (with a special delimiter symbol if the alpha-
bets are not disjoint) and recognized by a 1-tape automaton.Pachl’s
work and, to our knowledge, all the work on regular model check-
ing focuses on this family of relations, which are insufficiently ex-
pressive to describe complex inter-dependencies among queues.

3. A Motivating Example
We illustrate the expressive power of our formal model with a
small, yet intricate, example. The example models a client and a
server asynchronously communicating by sending messages over

2 In the deterministic multitape automata, the current statedetermines which
tape to read from, and given the state and the input symbol, there is only one
possible next state.

X X ⊘ ⊘
Rec ⊂ Sync ⊂ DRat ⊂ Rat
[33] [13] [29] [29]

Figure 1. Hierarchy of Relations Over Words and Trees. All the
inclusions are known to be strict. The checkmark (X) denotes the
families of relations for which inclusion is decidable. Anyof those
families, as well as relations reducible to those families,can be
used to describe the queue and stack languages in our model, while
maintaining the decidability of reachability.

reliable queues. The client asynchronously sends a potentially un-
bounded number of data requests. The server receives and imme-
diately acknowledges data requests, but postpones their processing
until later. When the data becomes available, the server responds
with data. When ready to process the received data, the client re-
moves the data message from the queue and acknowledges the re-
ceipt of data. Both the client and the server count messages:the
client checks that all the data requests have been served, and the
server checks that all the requests have been responded to. Un-
like our model, the previously proposed models of asynchronously
communicating processes are unsuitable for modeling and verifica-
tion of this example:

• CFSMs can count only a finite bounded number of messages.
The example requires unbounded message counting.

• This example features complex inter-dependencies among
queue and stack languages and previously proposed models
are too inexpressive to deal with such inter-dependencies.

• Bounded state-space exploration (e.g., bounding queue sizes
or the number of allowed context-switches) cannot explore the
whole unbounded state-space of the example.

• Both the server and the client send and receive messages with
non-empty stacks, which task-based models cannot model.

Fig. 2 illustrates the example. The communication between the
client and the server is established using queuesq1, q2, q3, and
q4. The call (resp. return) messages push (resp. pop) symbols from
a stack, and are denoted by anoverline (resp.underline), while
messages triggering internal transitions have neither. The server is
implemented using two automata communicating overq5 andq6.
The client initiates asynchronous communication by sending req
messages to the server. The server immediately acknowledges each
req, by sendingack, but postpones processing the request until later.
By pushingγ3 or γ4 on its stack, the server counts the number of
pending requests. The server usesγ3 to denote the bottom of its
stack and to detect when all the received requests have been served.
Upon receivingack, the client pushesγ1 or γ2 on its stack to count
the number of the requests that the server has initiated processing.
The client usesγ1 to denote the bottom of its stack and to detect
when all data requests (acknowledged by the server) have been
responded to. When ready, the server responds with the requested
data (data). Upon receivingdata, the client popsγ1 or γ2 from
its stack, indicating that one of the pending data requests has been
responded to, and acknowledges receiving data, by sendingdack.
The server pops its stack upon receivingdack, indicating that one
of the pending requests has been served.

The server is fully asynchronous and can postpone serving
data. To model such asynchrony, the server would need to non-
deterministically pop its stack on an empty (ε) transition, once the
data is ready. However, visibly pushdown automata cannot access
the stack on empty transitions, but rather all stack accesses have to
be visible at the level of the input language. To work around this
constraint, the server uses a small one-state repeater automaton on
the side. The repeater receives internal messagesdcnt, and bounces

3 2011/10/3

2

10

SERVER:

3

0

q3?req/q1!ack,γ3

q3?req/q1!ack,γ4

q5?dsnd/q2!data

ε/q6!dcnt

q4?dack,γ4/ε
q4?dack,γ3/ε

q6?dcnt/q5!dsnd

10

CLIENT:
q1?ack/ε ,γ1

ε/q3!req

q1?ack/ε ,γ2

ε/q3!req

q2?data,γ2/q4!dack
q2?data,γ1/q4!dack

Figure 2. An Example of an Asynchronous Client-Server Service.
Initial states are marked with arrows with no origin. Final states
are drawn as double circles. Stacks and queues are not shown.A
received message is preceded with the question mark and the queue
it was received from; a sent message with the exclamation mark
and the queue it was sent to. A received overline message (i.e.,
call message) pushes a symbol on a stack; a received underline
message (i.e., return message) pops from a stack. For example, the
transitionq3?req/q1!ack,γ3 receives messagereq from queueq3,
sends messageack to queueq1, and pushesγ3 to the server’s stack.

backdsnd. Since queues are assumed reliable, all yet unserved re-
quests are pending on eitherq5 or q6. Effectively, those two queues
keep track of the data being fetched (or computed) asynchronously.
The repeater could as well represent a service fetching datafrom
distributed storage, or a service computing the response. The server
can (in state 2) either receive more requests or process one of the
messages received from the repeater and send data back to the
client. Since languages on bothq5 and q6 are regular, and since
neither the server nor the repeater perform any calls (or returns)
on those messages, this workaround satisfies both the restrictions
imposed by visibly pushdown automata and the conditions forde-
cidability of reachability that we present later.

An example of a safety property one would want to establish
for this protocol is absence of deadlocks (or livelocks). Wecan
verify such properties as follows. Since there is a finite number
of composite control states and messages (resp. symbols) tobe
removed (resp. popped) from queues (resp. stacks) in the next
transition, we can enumerate all symbolic configurations leading
to a deadlock (or livelock). For instance, if the client is instate 0
(waiting for ack) and the server in state 3 (waiting fordack), the
service is livelocked ifq1 andq4 are empty, irrespectively of the
contents of other queues. That composite configuration turns out to
be unreachable for the given example.

4. Notations and Terminology
Sets. Given a setS, we write|S| to denote its size, i.e., the number
of elements inS. We definedisjoint union A·∪B as the standard set
unionA∪B, but with an implicit side-constraint that the setsA and
B are disjoint, i.e.,A∩B = /0. Let I be a set. AnI -indexedsetA
is defined as a disjoint union of sets indexed by elements ofI , i.e.,
A= ·∪i∈I Ai .

Tuples and Relations. Tuples are finite lists of objects. For
instance,(obj1,obj2,obj3) is a 3-tuple. We denote tuples by a
vector sign, e.g.,~t. If ~t = (obj1,obj2, . . . ,objn) is a tuple,n is
called thesizeof the tuple and denoted|~t|. The cross-productof
setsA1, . . . ,An, denoted ∏

1≤i≤n
Ai , is a set ofn-tuples defined as

{(a1, . . . ,an) | ai ∈ Ai}. The i-th element of a tuple~t is denoted~t|i .
We writeSn for a set ofn-tuples in which all elements are fromS,
i.e.,

{

~t such that~t|i ∈ S,1≤ i ≤ n
}

. An n-ary relationis a subset of
a cross-product ofn sets.

Strings (Words). We shall often refer to finite sets of symbols as
alphabetsand denote them byΣ, possibly with indices. LetΣ be
an alphabet; the set of all finite sequences of elements ofΣ will
be denoted byΣ∗; such sequences will be referred to asstrings
(or words) overΣ. More formally,Σ∗ is the free monoid generated
by Σ with concatenation(·) as the operation and the empty word
ε as the identity. We shall also refer to concatenation asproduct.
If w = a1 · a2 · · ·an is a word andai ∈ Σ, n is called thelength
of w and denoted|w|. Let ~u and~v be tuples of words such that
|~u| = |~v|, thecomponent-wise productis defined as~u ·~v =~t, such
that~t|i = ~u|i ·~v|i , for all 1≤ i ≤ |~u|. The power of a word wis
defined recursively:w0 = ε, wk+1 = wk ·w. If A,B are languages,
then their concatenationA ·B is the language{u·v | u∈ A,v∈ B}.
If w is a word andA is a language, thenw ·A= {w·u | u∈ A}, A ·
w= {u·w | u∈ A}. (Left) language quotient a−1A is the language
{u | a·u∈ A}. Let u,v ∈ Σ∗ be words overΣ. Theprefix order≤
is defined as:u≤ v for u,v ∈ Σ∗ iff there existsw ∈ Σ∗ such that
v= u·w. We say that a setSis prefix-closedif u≤ v∧v∈S⇒ u∈S.

5. The Formal Model
In this section, we describe our formal model. We begin by de-
scribing the basic component — a visibly pushdown transducer,
continue with a definition of a system of such transducers commu-
nicating over reliable unbounded queues, and finish with a discus-
sion of relations describing queue and stack configurations.

5.1 Visibly Pushdown Transducers

The individual processes receive and process words of inputmes-
sages, and generate words of output messages. Thus, they canbe
modeled as transducers — state machines translating one language
into another. We introduce such a machine with a finite-statecon-
trol, a single stack, and a finite set of unbounded FIFO queues. On
each step it can read a symbol from one queue and write to another;
if the symbol read is a call (resp. return), it can simultaneously push
to (resp. pop from) its stack.

DEFINITION 1 (Communicating Visibly Pushdown Transducer).
A communicating visibly pushdown transducer(CVPT) is a tuple
of finite sets T= (Σrcv,Σsnd,Q,S, I ,F,Γ,∆), whereΣrcv is an input
alphabet,Σsnd is an output alphabet, Q is a set of unbounded FIFO
queues, S is a set of states, I⊆ S is a set of initial states, F⊆ S is
a set of final states,Γ is an alphabet of stack symbols, and∆ is a
transition relation. The input alphabetΣrcv and the output alphabet
Σsnd are Q-indexed sets such thatΣrcv∩Σsnd= /0. Another way to
partition the input alphabet isΣrcv = Σc ·∪Σr ·∪Σi . TheΣc symbol
is an alphabet ofcall symbols, while Σr is an alphabet ofreturn
symbols, such that for each return inΣr there exists a matching
call in Σc, more formally:Σr = {c | c∈ Σc} and |Σr | = |Σc|. The
Σi set denotes theinternalalphabet. The set of queues Q contains a
special symbol⊥ ∈Q used in transitions that do not receive input
from (or send output to) a queue.

Given a wordv ∈ Σ∗rcv, we say thatv has matched returns
(resp.calls) if it is a production of the grammarW ::= a | W ·
W |V |U, V ::= a |V ·V | c·V ·c such thatU ::= c (resp.U ::= c),

4 2011/10/3

wherea∈ Σi , c∈ Σc, c∈ Σr . A word iswell-matchedif it has both
matched returns and calls.

A configuration C of a CVPTis a tuple(s,σ ,~ρ) = (s,σ ,ρ1, . . . ,
ρ|Q|) ∈ S×Γ∗× ∏

q∈Q

(Σsndq
∪Σrcvq)

∗, representing a control state, a

word on the stack, and contents (represented as words) of each of
CVPT’s queues. For stacks, the leftmost symbol of the word isthe
top of the stack. For queues, the leftmost symbol of the word rep-
resents the next message to be processed (i.e., the oldest yet unpro-
cessed message), while the rightmost symbol represents themost
recently received message. To simplify the notation, we assume
thatρi represents the contents of queueqi ∈ Q andρ the contents
of queueq. We use theC[oldstate← newstate] parallel substitution
notation to represent incremental modifications of configurations.
For example,C[s1← s2,σ ← a ·σ ,ρ3← ρ3 ·b] denotes a config-
urationC modified so that the control state is changed froms1 to
s2, messagea is pushed on the stack, and messageb is appended
to queueq3; C[m· ρ ← ρ] denotes a configurationC modified so
that messagem is removed from queueq. We define the transition
relation of a CVPT as follows.

DEFINITION 2 (CVPT Transition Relation).Let C be a configura-
tion of a CVPT T. If m∈ Σsndq

, for some q∈Q, let q!m (resp. q?m)
be an alias name for message m sent to (resp. received from) queue
q.3 If m= ε, then q=⊥. The transition relation∆= δc ·∪δr ·∪δi , such
that δc ⊆ S×Σc× (Σsnd∪{ε})×Γ×S,δr ⊆ S×Σr ×Γ× (Σsnd∪
{ε})×S, andδi ⊆ S× (Σi ∪{ε})× (Σsnd∪{ε})×S, is defined as
follows (−→

x
is the infix notation forδx):

Call If (s1,q1?m1,q2!m2,γ ,s2) ∈ δc, then C
q1?m1/q2!m2,γ
−→

c
C[s1 ←

s2,σ ← γ ·σ ,m1 ·ρ1← ρ1,ρ2← ρ2 ·m2];

Return If (s1,q1?m1,γ ,q2!m2,s2)∈ δr , then C
q1?m1,γ/q2!m2
−→

r
C[s1←

s2,γ ·σ ← σ ,m1 ·ρ1← ρ1,ρ2← ρ2 ·m2];

Internal If (s1,q1?m1,q2!m2,s2) ∈ δi , then C
q1?m1/q2!m2
−→

i
C[s1 ←

s2,m1 ·ρ1← ρ1,ρ2← ρ2 ·m2].

When we do not care about the exact type of a transition, we use
−→ to represent any of the−→

x
transitions defined above. Arun of

a CVPT on a wordw = a0 · · ·an ∈ Σ∗rcv from a configurationC is
a finite sequence of configurationsC0,C1, . . . ,Cn, such thatC0 =C
and for each 0< i ≤ n there exist a transitionCi−1 −→ Ci . We

extend the infix notation defined above to words:C
w/p
−→C′ if there

exists a run onw from C to C′ yielding output wordp. When we
are interested only in the input word, sayw, we omit the output
word, e.g.,C1

w
−→C2. The transitive closure of the−→ relation is

denoted
∗
−→. Let JTK be the transduction induced byT: if there is

a run(s0,ε,~ε)
w/p
−→ (s,σ ,~ρ), wheres0 ∈ I and~ε is a tuple of empty

strings, thenp ∈ JTK(w). We generalize the transductionJTK to
languages as usual, i.e.,JTK(L) = {JTK(w) | w∈ L}.

We use Definition 1 for two purposes. First, we use it to define
individual components of a system of asynchronously communi-
cating processes. The set of final states could be empty for such
components, if we are interested in the computation those compo-
nents perform, rather than the language they accept. Second, we use
Definition 1 to define visibly pushdown languages (VPLs), which
in turn we use to define conditions under which reachability is still
decidable for our model. When defining VPLs, the set of final states
will be non-empty, but the output alphabetΣsnd will be empty.

3 Note that formallym= q!m= q?m for anyq andm. The alias names are
just a notational convenience.

DEFINITION 3 (Visibly Pushdown Automaton and Language).A
CVPT withΣsnd = /0 is a visibly pushdown automaton(VPA). A
language of finite words L⊆ Σ∗rcv is a visibly pushdown language
(VPL) if there exists a VPA A overΣrcv accepting the language, i.e.,
if ∃A.L (A) = L. LetV be the set of all VPL languages.

We now informally sketch how to model a (possibly recursive)
Boolean programP (i.e., a program with a finite number of vari-
ables over a finite domain) as a CVPTT. We choose a suitable
alphabet of call, return, and internal symbols for representing state-
ments ofP. Then, every call statement ofP is mapped into a call
transition ofT, and every return statement into a return transition.
Statements that send or receive messages are mapped into send or
receive transitions, respectively. All other statements are mapped
into simple internal transitions. Furthermore, the model could be
extended with pre-initialized queues, with only one receiver and
no senders, initialized to the language describing the program to
be executed on the receiving automaton. However, such extensions
significantly complicate the exposition, without contributing to the
expressiveness of our model.

5.2 Systems of CVPTs

We compose CVPTs into more complex systems as follows.

DEFINITION 4 (Asynchronous System of CVPTs).An asynchro-
nous system of CVPTsM = (T1, . . . ,Tn), where Ti =

(

Σrcvi ,Σsndi
,

Qi ,Si , Ii ,Fi,Γi ,∆i), is a tuple of CVPTs, such that each FIFO queue
has exactly one receiver and one sender. Any pair of CVPTs, say
Tj and Tk, can share one or more queues q∈

⋃

1≤i≤n Qi such that
sender’sΣsndj q

is equivalent4 to receiver’sΣrcvkq.

Since each queue in the system has a single receiver, we intro-
duce a convention to avoid redundancy in specifying contents of
the same queue: when we refer to a CVPTTi as a part of a system,
we consider that~ρ in Ti ’s configuration(s,σ ,~ρ) represents only
the contents ofTi ’s input queues, i.e., the queues are considered to
belong to the receiver.

A composite configurationis a tuple~C = (C1, . . . ,Cn). LetCi =
(si ,σi ,~ρi) represent the configuration of thei-th CVPT in the sys-
tem. We define thecomposite control state~s of a system as a tu-
ple of states(s1, . . . ,sn), composite stack configuration~σ as a tu-
ple of words(σ1, . . . ,σn), and composite queue configuration~ρ
as a tuple of words(ρ11, . . . ,ρ1m1,ρ21, . . . ,ρ2m2, . . . ,ρn1, . . . ,ρnmn),
wheremi = |~ρi | andρi j =~ρi | j . For a configuration~C, we write~C.s,
~C.σ , and~C.ρ for the composite control state~s, composite stack
configuration~σ , and composite queue configuration~ρ.

We define the transition relation of a system in terms of transi-
tion relations of its individual components. Let~C0 = ∏

1≤i≤n
(si ,~ε,~ε),

wheresi ∈ Ii , be an initial composite configuration. Arun of a sys-
tem is a finite sequence~C0 −→ ~C1 −→ ·· · −→ ~Ck, where−→ is
defined as in Definition 2, with a minor difference that the output
queues belong to another component, and not the one making the
transition.

Now, we have all the formal machinery needed to define the
configuration reachability problem for a system of CVPTs. Further
discussion will focus on the composite configuration reachability,
but we show later that our results can be somewhat generalized
(e.g., to the composite control state reachability problem).

4 Note that we indexΣ in three different ways:Σi is the alphabet ofTi , Σq is
the alphabet of the messages on queueq, andΣiq is Ti ’s alphabet projected
on the set of messages allowed on queueq.

5 2011/10/3

PROBLEM 1 (Reachability in an Async. System of CVPTs).For
a given composite configuration~C of an asynchronous system M of
CVPTs, does there exist a run of M ending in~C?

5.3 Relations Describing Configurations

For a given composite state~s and a particular queue (resp. stack),
we refer to the set of all words over messages (resp. stack symbols)
describing the possible queue (resp. stack) contents in~s as a queue
(resp. stack) language. To define relations among those languages,
we introduce stack and queue relations:

DEFINITION 5 (Stack and Queue Relations).Let M= (T1, . . . ,Tn)
be a system of CVPTs. Let~C0 be an initial composite configuration.
We define thequeue relationLq ⊆ ∏

1≤i≤n
Si × ∏

q∈Q
Σ∗rcvq

as

Lq(~s) =
{

~C.ρ | ~C0
∗
−→ ~C∧~C.s=~s

}

,

and thequeue-stack relationLqs⊆ ∏
1≤i≤n

Si × ∏
q∈Q

Σ∗rcvq
× ∏

1≤i≤n
Γ∗i :

Lqs(~s) =
{

~C.ρ,~C.σ | ~C0
∗
−→ ~C∧~C.s=~s

}

.

where Q=
⋃

1≤i≤n
Qi is the set of all queues in M.

In the next section, we introduce a family of synchronized tree
relations, which we use to relax Pachl’s restrictions (Sec.2.2).
Later, we prove that Problem 1 is decidable, despite our relaxations.

6. Tree Relations
In this section, we first develop a connection between VPLs and
regular tree languages, building on top of prior work by Alurand
Madhusudan [2]. We then define synchronized tree relations,using
the appropriate encoding operator [12, p. 75].

6.1 Isomorphism Between VPLs and Stack-Tree Languages

VPLs can be characterized in terms of, so called, stack-treelan-
guages. We use this characterization to define the relationswe are
interest in. We start by defining trees and then develop the connec-
tion to VPLs.

DEFINITION 6 (Trees).LetN be the set of natural numbers. Atree
domainis a finite non-empty prefix-closed set D⊂N

∗ satisfying the
following property: if u·n∈D then∀1≤ j ≤ n . u· j ∈D. A ranked
alphabetis a finite setF associated with a finiteranking relation
arity ⊆ F ×N. DefineFn as a set{ f ∈F |(f ,n) ∈ arity}. The
setT(F) of termsover the ranked alphabetF is the smallest set
defined by:

1. F0 ⊆ T(F);
2. if n≥ 1, f ∈Fn, t1, . . . , tn ∈ T(F) then f(t1, . . . , tn) ∈ T(F).

Each term can be represented as a finite orderedtreet : D→F ,
which is a mapping from a tree domain into the ranked alphabet
such that∀u∈ D:

1. if t (u) ∈Fn, n≥ 1 then{ j | u· j ∈ D}= {1, . . . ,n};
2. if t (u) ∈F0 then{ j | u· j ∈ D}= /0.

Theheight‖ t ‖ of a tree t= f (t1, . . . , tk) is the number of symbols
along the longest branch in the tree, i.e., max(‖ t1 ‖, . . . ,‖ tk ‖)+1.

Fig. 4 shows an example of a tree and its tree domain. Following
Alur and Madhusudan [2], we define an injective mapη : Σ∗rcv→
T(F), illustrated in Fig. 3, that translates VPL words tostack-trees

f

g

a b

a h

b

1

11

111 112

12 13

131

Figure 4. An Example of a Treet and its Tree Domain.D =
{1,11,111,112,12,13,131}, F = { f ,g,h,a,b}, ‖ t ‖= 3, t(1) = f .

as follows:
η(ε) = #;
η(cw) = c(η(w),#), if there is no returnc matchingc in w;
η(cwcw′) = c(η(w),η(cw′)), assumingw is well-matched;
η(aw) = a(η(w)), if a∈ Σi ∪Σr .

The ranked alphabetF = F0 ·∪F1 ·∪F2 used in the translation is

r1

c2

a2

c3

a3 r3

r2

a5

c4

a6

Figure 3. An Illus-
tration of the η :
Σ∗rcv → T(F) Map-
ping for a Word:r1 ·
c2 ·a2 ·c3 ·a3 · r3 · r2 ·
a5 ·c4 ·a6.

defined as follows:F0 = {#}, where
is a special symbol,F1 = Σi ∪ Σr ,
and F2 = Σc. Regular sets of stack-
trees form stack-tree languages, which
are isomorphic to VPLs [2].

We use this isomorphism to define,
indirectly, VPL relations. Such rela-
tions can, broadly, be classified into
those recognizable by various types of
finite automata and those that are not
recognizable. For instance,(an,b2n

) is
an example of a relation not recogniz-
able by any finite-state machine. The
Recclass of recognizable relations, in-
troduced in Sec. 2.3, can be extended
to regular (stack-) tree languages, in
which case it correspond to relations
that are finite unions of cross-products
of regular (stack-) tree languages, de-
noted RecV . The RecV class is rec-
ognizable by a tree automaton, but is
insufficiently expressive. In particular,
the languages that are elements of the cross-product are indepen-
dent and cannot express relations like(an,bn). This means that if
we restricted the cross-product of queue languages to belong to
RecV , we could not express protocols that sendn messages (saya)
asynchronously and than expect the same number of acknowledg-
ments (sayb). In other words,RecV does not allow us to express
even simple forms of counting and synchronization.

6.2 Synchronized Tree Relations

To define a more expressive class of recognizable relations,we use
the concept ofoverlap encoding[12, p. 75], inductively defined for
binary trees fromT(F) as

[t1, .., tn] =











t1(1) · · · tn(1) if arity(ti(1)) = 0
t1(1) · · · tn(1)([t1(11), .., tn(11)]) if arity(ti(1))≤ 1
t1(1) · · · tn(1)([t1(11), .., tn(11)] , otherwise
[t1(12), .., tn(12)])

whereti(1k) is equal to # ifk > arity(ti(1)). An example of the
overlap encoding is shown in Fig. 5. Using the notion of the overlap
encoding, we can define synchronized tree relations as follows:

DEFINITION 7 (Synchronized Tree Relations).SyncV is a family
of relations R⊆ T(F ∪{#})n such that{[t1, . . . , tn] | (t1, . . . , tn) ∈
R} is recognized by a finite tree automaton over the alphabet
(F ∪{#})n.

SyncV inherits all the properties from regular tree languages:
it is closed under Boolean operations and both the equality and

6 2011/10/3

[[[

r1

c2

a2

c3

a3 r3

r2

a5

c4

a6

c5
]]]

c6

a7

a8

a9

r6

c7

a10

a11

r7

a12

r1 ·c5

c2 ·c6

a2 ·a7

c3 ·a8

a3 ·a9 r3 ·#

r2 · r6

a5 ·c7

c4 ·a10

a6 ·a11 #·#

#· r7

#·a12

#·#

,,, ===

Figure 5. An Example of the Overlap Encoding. The left
(resp. middle) tree represents ther1 ·c2 ·a2 ·c3 ·a3 · r3 · r2 ·a5 ·c4 ·a6
(resp.c5 ·c6 ·a7 ·a8 ·a9 · r6 ·c7 ·a10 ·a11 · r7 ·a12) VPL word.

containment are decidable. Furthermore,SyncV is known to be a
strict superclass ofRecV [12, p. 79] and allows us to express limited
forms of counting, e.g.,(an,bn) ∈ SyncV . We use the introduced
family of relations,SyncV , to define sufficient conditions for the
decidability of reachability for a system of CVPTs in the next
section.

7. Decidability of Reachability
In this section, we state and prove the main result of this paper.
We begin by introducing sufficient conditions for decidability of
reachability of a system of asynchronously communicating CVPTs
and state the main theorem in Sec. 7.1.2, which we prove in the
section that follows it. We end the section with a discussionon how
programmers could help the model checking process by writing
suitable invariants, and how the presented results on composite
configuration reachability can be used to check composite control
state reachability.

7.1 Sufficient Conditions for the Decidability of Reachability

As discussed in Sec. 2.2, reachability is undecidable even for CF-
SMs. However, if relations representing queue configurations are
restricted to regular and recognizable, reachability is decidable. In
this section, we relax those restrictions, while maintaining decid-
ability. First, we allow the languages representing contents of each
queue to be visibly pushdown, rather than just regular. We require
CVPTs not to generate context-free outputs, to assure that CVPTs
in a system are composable. Second, we allow relations to be syn-
chronized, rather than just recognizable. These relaxations are or-
thogonal and each is valuable on its own, but the combinationis, of
course, more powerful.

7.1.1 CVPT Composition

CVPTs are, in general, not closed under composition. As defined in
Definition 1, CVPTs accept exactly VPLs. However, even for VPL
inputs, CVPTs can generate context-free outputs [31]. As context-
free relations do not have the properties we require (e.g., contain-
ment is undecidable), we introduce the following requirement:

PROPERTY1 (Composition Property).LetπX : Σ∗→ X∗ be a pro-
jection operator that erases all symbols from a word that arenot
in set X. For instance, if X= {a,b} thenπX (a·d ·d ·b·d) = a ·b.
Let M= (T1, . . . ,Tn) be a system of CVPTs. A CVPT Tj is said to
becomposableif a projection of its output language (i.e., a trans-
duction of some VPL L) onto the input alphabet of any Ti is a VPL.
More formally:∀1≤ i ≤ n . L ∈ V =⇒ πΣrcvi

(

JTjK(L)
)

∈ V .

To understand the property better, supposeG is a graph repre-
senting a systemM, such that vertices represent component CVPTs

01 2
?a/!a,γ1

?a/!a,γ2

?b,γ2/!b

?b,γ1/!b
0

?a/!b,γ

?b,γ/!a

Figure 6. Examples of CVPTs not Satisfying the Composition
Property. The left CVPT generates a context-free languageanbn,
a,b∈ Σi , while the right CVPT reverses calls and returns, generat-
ing bnan, which is not a VPL. Each shown CVPT has one input and
one output queue, which are omitted in the transition labels.

and edges represent communication between CVPTs; there is adi-
rected edge between two nodesTj andTk if Tj sends messages to
Tk. The above property assures that a non-VPL will never be gen-
erated on any path inG. Further on, we shall consider all CVPTs to
have the composition property. Fig. 6 illustrates a few examples of
CVPTs that do not have the composition property.

7.1.2 Synchronization

According to Property 1, the language representing the contents of
each queue is a VPL. Thus, the contents of queues can be described
by a cross-product of VPLs in every composite control state.Sim-
ilarly to word relations, such VPL relations can be recognizable,
synchronized, or rational (see Fig. 1). We use the concept ofsyn-
chronized tree relations, introduced in Sec. 6.2, to define synchro-
nized VPL relations. As we prove later, if queue and stack relations
in every reachable composite control state are synchronized VPL
relations, then the reachability is decidable for our model.

PROPERTY2 (Synchronized Configuration Property).We say that
an asynchronous system of CVPTs has thesynchronized configura-
tion propertyiff in every composite control state~s reachable from
an initial configuration~C0, the encoding[η

(

Lqs(~s)
)

] is a synchro-
nized tree relation, i.e.,

{[η(σ1), . . . ,η(σn),η(ρ1), . . . ,η(ρk)] |
(σ1, . . . ,σn,ρ1, . . . ,ρk) ∈ Lqs(~s)

}

∈ SyncV .

We now state the main result of this paper:

THEOREM1. Reachability is decidable for a system of composable
CVPTs with the synchronized configuration property.

7.2 Proof

The proof is structured similarly as Pachl’s proof of decidabil-
ity of reachability for CFSMs with a recognizable channel prop-
erty5 [25]. The structure of the proof is as follows. Before prov-
ing Theorem 1, we prove two helper lemmas. The first lemma
proves that given a synchronized relationL , it is decidable to check
whether it is a sound over-approximation of the set of reachable
composite configurations, i.e., whether it is consistent. The second
lemma proves that a composite configuration~C is unreachable if
and only if there exists a consistent synchronized relationL , such
that(~C.σ ,~C.ρ) 6∈ L(~C.s). Finally, the proof combines two semial-
gorithms, one of which is guaranteed to terminate. The first semi-
algorithm terminates if~C is reachable, and the second if it is un-
reachable. The second semialgorithm enumerates synchronized re-
lations and checks consistency of each relation, which is decidable

5 Informally, a system has the recognizable channel propertywhen a cross-
product of queue languages in any composite state is a recognizable relation
over words.

7 2011/10/3

according to the first lemma. If~C is unreachable, the semialgorithm
is guaranteed to eventually find a relation that does not include~C,
which exists according to the second lemma. We want to stressthat
although the proof is constructive, we focus on proving thatreach-
ability is decidable for our model, and ignore the issues of com-
plexity. In other words, our proof is unlikely to serve as a starting
point for an efficient algorithm. We discuss the issues of practical-
ity and efficiency in Sec. 7.3, to which a reader not interested in the
technicalities of the proof can safely jump to.

DEFINITION 8 (Consistency).Let M= (T1, . . . ,Tn) be a system of
CVPTs. We say that relationL ⊆ ∏

1≤i≤n
Si × ∏

q∈Q
Σ∗rcvq

× ∏
1≤i≤n

Γ∗i is

consistent(with respect to M) if~C1
∗
−→ ~C2 and

(

~C1.ρ,~C1.σ
)

∈

L(~C1.s) imply
(

~C2.ρ, ~C2.σ
)

∈ L(~C2.s).

Intuitively, a relation is consistent if it over-approximates the
set of reachable composite configurations. For synchronized VPL
relations, checking consistency effectively reduces to a few simple
operations (quotient and concatenation) and language inclusion, all
efficiently computable.

LEMMA 1. Let M be a system of (restricted) CVPTs with the syn-
chronized configuration property. Checking consistency (with re-
spect to M) ofL is decidable.

PROOF Since each component has a finite number of control
states, the number of composite control states is also finite. The
number of possible transitions from those states is finite aswell.
Thus, by checking consistency with respect to every individual
transition, we can checkL ’s consistency.

Accordingly, theL relation is consistent iff for every two com-
posite control states~s1 and~s2, such that~C1.s = ~s1, ~C2.s = ~s2,

and ~C1 −→ ~C2, it follows that
(

~C1.ρ,~C1.σ
)

∈ L(~s1) implies
(

~C2.ρ,~C2.σ
)

∈ L(~s2). There are three possible ways how a transi-
tion can change the queue configuration: send — appends a mes-
sage, receive — removes a message, send-receive — does both,
and two possible ways how a transition can change the stack con-
figuration: call — pushes a symbol on a stack, and return — pops
a symbol. All these six combinations can be synthesized by com-
posing four basic operations: append to and remove from a queue,
and push to and pop from a stack. Thus, we can check consistency
by composing these basic operations and checking consistency of
their compositions:

• append(L(~s),qk,m) =
{

(~σ ,~ρ1)
∣

∣ (~σ ,~ρ) ∈ L(~s),~ρ1|k =~ρ|k ·m,~ρ1| j =~ρ| j for j 6= k
}

whereqk denotes the queue to which a messagem is appended,
• remove(L(~s),qk,m) =
{

(σ ,~ρ1)
∣

∣ (σ ,~ρ) ∈ L(~s),m·~ρ1|k =~ρ|k,~ρ1| j =~ρ| j for j 6= k
}

,

• push(L(~s),σk,γ) =
{

(~σ1,~ρ)
∣

∣ (~σ ,~ρ) ∈ L(~s),~σ1|k = γ ·~σ |k,~σ1| j = ~σ | j for j 6= k
}

whereσk denotesTk’s stack andγ ∈ Γk, and
• pop(L(~s),σk) =
{

(~σ1,~ρ)
∣

∣ (~σ ,~ρ) ∈ L(~s),γ ·~σ1|k = ~σ |k,~σ1| j = ~σ | j for j 6= k
}

.

The effect of any transition on the queues and stacks of the system
can be composed of the operations above. Computing the effect of
these operations amounts to applying the quotient and concatena-
tion operations, which are both efficiently computable for synchro-
nized tree relations.

Thus, givenL(~s1), we can compute how the relationL changes
after transitioning to~s2. Let us name the computed relationR.

Hence, to check
(

~C2.ρ,~C2.σ
)

∈ L(~s2), it suffices to checkR ⊆

L(~s2). Inclusion is decidable for synchronized tree relations and
can be performed efficiently. �

The following lemma is the key component of the later proof of
Theorem 1. The lemma says that if a composite configuration~C is
unreachable, there must exist a consistent relationL that does not
include~C.

LEMMA 2. Let M be a system of CVPTs. A configuration~C is un-
reachable from an initial configuration iff there exists a consistent

synchronized relationL and
(

~C.ρ,~C.σ
)

6∈ L(~C.s).

PROOF (⇐=) If ~C is reachable, then by the induction on the

path by which is reachable,
(

~C.ρ,~C.σ
)

∈ L(~C.s).

(=⇒) Conversely, if~C is unreachable, then theLqs relation
in Definition 5 satisfies the lemma condition, i.e.,(~C0.ρ,~C0.σ) ∈

Lqs

(

~C0.s
)

and (~C.ρ,~C.σ) 6∈ Lqs

(

~C.s
)

, where ~C0 is an initial
configuration. �

Finally, we have all the formal machinery to prove the main
result of this paper:

PROOF OFTHEOREM 1 We develop two semialgorithms, such
that one of them always terminates. The first semialgoritm attempts
to prove reachability of~C, while the second attempts to prove
unreachability of~C.

Given a composite configuration~C, the first semialgorithm
searches for a path from an initial composite configuration~C0

∗
−→

~C in a breadth-first manner. It terminates if~C is reachable.
To prove unreachability, we use Gold’s [17] language identifi-

cation by enumeration method, which requires that the languages
from a particular family can be effectively enumerated. Synchro-
nized tree relations satisfy this requirement. One can keepenu-
merating (albeit not efficiently)L relations and check consistency
(Lemma 1) of every guessed relation. If~C is unreachable, there ex-

ists a consistent relationL and
(

~C.ρ,~C.σ
)

6∈ L(~C.s) — according
to Lemma 2 — and the second semialgorithm will eventually guess
it, thereby proving unreachability of~C. �

Next, we discuss the efficiency of the consistency check, explain
why it is important, and generalize our definition of reachability to
symbolically defined composite configurations.

7.3 Discussion

While finding the relation that describes queue and stack configu-
rations is likely to be computationally expensive (we ignored the
complexity issues in the proof, and focused on the question of de-
cidability), once the relation is known, one can efficientlycheck
consistency and reachability. (CFSMs have a similar property, first
noted by Pachl [25].) Thus, if programmers provided the relation,
which can be seen as a system invariant, reachability can be effi-
ciently checked, by computing quotient, concatenation, and con-
tainment of VPL relations. Asking programmers to provide such
invariants for all composite states would be unproductive,but Pachl
showed that if the invariants are provided for at least one edge in
each loop in the composite state reachability graph, the remain-
ing invariants can be automatically constructed. While we have not
proven a generalization of Pachl’s result to our model, we conjec-
ture that the same principle applies. Therefore, if programmers pro-
vided only loop invariants (for the loops in the composite state tran-
sition graph), and if our conjecture is correct, reachability could be

8 2011/10/3

checked efficiently. Such a loop-invariant-based technique could be
a viable path towards designing practical type-state (e.g., [14]) sys-
tems that would automatically check the communication contracts.
Similar contracts, albeit far less expressive than ours, have been
implemented in the Singularity [24] operating system.

An interesting research challenge is how to design a specifi-
cation language for expressing such contracts (and the invariants
that programmers would write). Such a language should not betoo
expressive; it is undecidable to check whether an arbitraryratio-
nal relation is synchronized [11]. Thus, the contract specification
language should be able to express only the systems for which
the queue and stack relations are algorithmically resynchronizable.
The properties of such contracts could be checked automatically
(Sec. 7.2). If programmers provided loop invariants, in addition to
contracts, such checks could be done more efficiently.

Another point worth discussing is a generalization of the def-
inition of reachability (Problem 1). Even if a target configuration
were specified in terms of a tuple(~s,L ′(~s)), where~s is a composite
state andL ′(~s) is a synchronized relation, rather than in terms of a
concrete stack and queue configuration, reachability is still decid-
able. To see that, we have to look at both components of the proof
of Theorem 1. The first component is a semialgorithm that termi-
nates if the target configuration is reachable. As it makes progress
through the search space, that semialgorithm enumerates concrete
configurations, and checks for each one whether it belongs tothe
target configuration (membership can be efficiently checkedfor
synchronized relations). The second component is a semialgorithm
that terminates if the target configuration is not reachable. As it
keeps enumerating consistentL relations, it can check for each one
whether the intersection withL ′ is empty (intersection and empti-
ness checks can be done efficiently for synchronized relations).
Thus, it follows that the target configurations can be specified in
terms of synchronized relations. It is easy to see that the compos-
ite control state reachability problem is equivalent to reachability
of (~s,(Σ∗)n× (Γ∗)m), wheren (resp.m) is the number of queues
(resp. stacks).

8. Resynchronizable Relations
Out of the two properties sufficient for decidability of reachability,
one requiring that CVPTs are composable (Sec. 7.1.1) and theother
requiring that queue contents are representable by synchronized
VPL relations (Sec. 7.1.2), the latter is less intuitive to understand.
In particular, even during our research we found ourselves thinking
hard about what kinds of communication patterns our formal model
allows. The situation became even more complicated as we kept
discovering relations that can obviously be synchronized,some-
times with a bit of additional computation, but did not directly fit
into the definition of synchronized (tree) relations. In this section,
we summarize our findings on what kinds of relations we found
resynchronizable, i.e., reducible to synchronized relations. First, we
discuss in greater depth the work of Frougny and Sakarovitch[15]
on resynchronization of relations. Second, we introduce a new, to
our knowledge, type of multitape finite-state automata thatallow
us to define an even larger set of resynchronizable relations. The
purpose of introducing a new type of automata is purely to charac-
terize a broader family of resynchronizable relations, anda detailed
study of their properties is out of scope and focus of this paper.

8.1 Bounded Delay Multitape Automata

In their comprehensive study of synchronized relations, Frougny
and Sakarovitch [15] introducen-tape automata with an a-priori
bounded delay, meaning that the allowed distance between the
reading heads is always bounded. The relations accepted by such
automata, called resynchronizable relations, have a bounded length
difference property, i.e., for any tuple(w1, . . . ,wn) of words ac-

cepted by an automaton with a bounded delay, the length difference
of any two words,|w j | − |wk|, j 6= k, is bounded. Resynchroniz-
able relations can be reduced to a finite union of the component-
wise products of synchronized relations by finite sets. To illus-
trate that point, let us reconsider the example mentioned inSec. 2:
R= (bmaabk,cmdk). It is easy to see thatRcan be expanded into a
finite union of component-wise products of synchronized relations
by finite sets:(bm,cm) · (a2,ε2) for k= 0, (bm,cm) · (a2b,d ·ε2) for
k = 1, (bm,cm) · (a2bb,d2 · ε2) for k = 2, and(bmaabk−2,cmdk) ·
(bb,ε2) for k> 2. The concept of resynchronizability easily gener-
alizes to tree relations. Rational tree relations with a bounded height
difference property (the difference in height between any pair of
trees in the relation is bounded) can also be resynchronized[3].

Unfortunately, resynchronization (as proposed in [15]) does
not help us with more complicated cases, like(am−k,bk−l ,cm−l),
which can appear even in relatively simple systems of CVPTs.Fur-
thermore, reducing resynchronizable relations to a finite union of
synchronized relations is not intuitive — a much more straight-
forward approach would be just to insert special symbols, where
needed. For instance, the example discussed above could be syn-
chronized by inserting two special # symbols:(bmaabk,cm##dk).
Alternatively, those special symbols could be seen as a two-step
pause for the right tape of a 2-tape automaton. Next, we introduce
switching multitape automata that can switch reading headson and
off after reading special symbols.

8.2 Switching Multitape Automata

For humans, it is relatively easy to see that relations like(bmaabk,
cmdk) or (am−k,bk−l ,cm−l) can be resynchronized — we can easily
detect patterns in the language that should trigger a changein the
behavior of individual tape heads of the automaton accepting the
relation. For instance, the first lettera in the first example can be
used as a cue for switching off the other (right) tape head, and the
first letterb after theaapattern for switching it on again. Similarly,
in the second example, the third tape head is always on, the first one
is initially on, while the second is initially off and turns on after the
first head has reached the end of its tape. By replacing such pauses
by special padding symbols #, we can construct synchronizedrela-
tions:(bmaabk,cm##dk) and(am−k#k−l ,#m−kbk−l ,cm−l).

This section provides a characterization of such relationsthat
are resynchronizable by insertion of special symbols. First, we in-
troduce an automaton that can switch its tape heads on and offafter
reading special switching symbols. Such symbols cannot change
the automaton’s state, only which heads are enabled, and allen-
abled heads move synchronously in lock-step. Second, we show
that with some restrictions the languages accepted by such au-
tomata can be resynchronized.

8.2.1 Automata-Based Characterization

Before giving a formal definition, we describe the intuitionbehind
the introduced automaton. The automaton has a finite number of
tape heads, each of which can be on or off at any time. The enabled
heads all move together synchronously, as in the classical synchro-
nizedn-tape automata (see Sec. 2.3), one square (i.e., symbol) at a
time. If any head reads a special switching symbol, the head moves
over the special symbol (other heads reading non-switchingsym-
bols do not move), and then the automaton switches heads on and
off according to the meaning of the special symbol. The switching
is solely dependent on the special symbols, and not on the control
state in which the automaton is in. More formally:

DEFINITION 9 (Switching Multitape Automata).Let P = {0,1}
represent the possible movements of each tape head;0 (resp. 1)
means that the head stays on the same (resp. moves to the next)
symbol on the tape. Let W= {0,1} represent possible states of a

9 2011/10/3

tape head;0 (resp.1) means the head is off (resp. on). Aswitch-
ing multitape automatonis a tuple of finite sets(Σ,(Ω,≺) ,Wn×
S, I ,F,δ ,switch), whereΣ is the input alphabet of symbols read
from the tapes,(Ω,≺) a totally ordered (according to≺) set of
special switching symbols disjoint from the input alphabet, Wn×S
a set of states composed of a switch state of tape heads and control
state, I⊆ 1n×S is a set of initial states, F⊆ S a set of final control
states,δ : Wn×S× ∏

1≤i≤n
(Σ∪Ω∪{ε})×Wn×S×Pn is a transi-

tion relation, and switch: Ω→Wn is a total switching function that
for each symbol fromΩ determines which tape heads are switched
on (and off).

Let f : Wn× ∏
1≤i≤n

(Σ∪Ω∪{ε})→ Ω∪{⊥} be a function that

reads a symbol from all the tapes whose tape heads are turned on,
readsε from the remaining heads, and returns⊥ if none of the
heads read any symbols fromΩ, or the highest precedence symbol
fromΩ (according to≺) read by any head otherwise.

Let g: Wn× ∏
1≤i≤n

(Σ∪Ω∪{ε})→ Pn be a function that com-

putes how each head moves if any special symbols are read. Theg
function reads a tuple(a1, . . . ,an) from all the tapes — such that ai
represents the next symbol on the tape if the head is on, andε if it
is off — and returns a tuple∏

1≤i≤n
pi such that pi = 1 if ai ∈Ω, and

pi = 0 otherwise.
Let ~w1,~w2 ∈Wn be two switch states of n tape heads,~p ∈

Pn a vector describing how each tape head moves, and~a ∈
∏

1≤i≤n
(Σ∪Ω∪{ε}) an input tuple. The transition relation is de-

fined as follows:

Move without switching (~w1,s1,~a,~w1,s2,~w1) ∈ δ if f (~a) = ⊥
and (~a|i = ε)⇔ (~w1|i = 0). Note that the state of the heads
(on or off) does not change and that only the enabled heads
move, all in lock-step by one square (i.e., symbol).

Switch (~w1,s1,~a,~w2,s1,~p) ∈ δ if f (~a) = ω, switch(ω) = ~w2,
g(~a) = ~p. Note that the control state of the automaton does
not change, only the tapes that read a special symbol (~p) move,
and the switch state of heads changes (to~w2), according to the
highest precedence switching symbol (ω) read.

A run of the automaton on a relation~a0, . . . ,~ak is a finite sequence
of states(~w0,s1), . . . ,(~wk,sk), such that for each0≤ i < k, there
exists a transition(~wi ,si ,~ai ,~wi+1,si+1,~wi+1) , if f (~ai) = ⊥, and
(~wi ,si ,~ai ,~wi+1,si+1,g(~ai)) otherwise. Acomplete runis a run in
which sk ∈ F.

As in the case of bounded delay multitape automata, the exten-
sion of switching multitape automata from words to trees is rela-
tively straightforward. In case of trees, switching symbols are spe-
cial unary symbols fromF1, but have essentially the same effect as
in the word case. Thus, we skip detailed discussion. In the follow-
ing section, we show that relations accepted by switching multitape
automata can be resynchronized.

8.2.2 Resynchronization

The point of introducing a new type of automata was to give a more
accurate and encompassing characterization of relations that can
be translated to synchronized relations. In this section, we prove
that such resynchronization is indeed possible if there is an a-priori
bounded number of switches on any complete run.

LEMMA 3. If switching can happen only an a-priori bounded num-
ber of times on any complete run of a switching multitape automa-
ton, then the relation it accepts can be translated (by padding with
special# symbols) into a synchronized relation.

PROOFLetA be a switching multitape automaton. If the relation
accepted byA is finite, the conclusion follows. If the accepted re-
lation is infinite, but the number of switches is bounded, it follows
that the switches cannot happen within loops in the state transi-
tion graph ofA. Let G = (V,E) be a state transition graph ofA,
such that verticesV = Wn×S represent states and are labeled by
switch and control state pairs, and edgesE⊆V×V represent tran-
sitions labeled by symbols fromΩ if it is a switching transition,
and(Σ∪{ε})n if it is a move without switching. In switching tran-
sitions ((~w1,s1),(~w2,s1)) ∈ E, the control state does not change,
and in non-switching transitions((~w1,s1),(~w1,s2)) ∈ E, the switch
state does not change.

Since switches cannot happen within loops, all the strongly
connected components in the graph can be temporarily replaced
by a special super-node (like in hierarchical state machines). Let
us call the graph having super-nodes instead of strongly connected
componentsG′. Such a graph is acyclic and finite, and therefore
can be expanded into a tree by duplicating parts of the graph and
taking the initial state as the root.6 Let us call the expanded treeG′′.

Each branch ofG′′ has an a-priori bounded number of edges
labeled by symbols fromΩ. Now, we shall traverse the tree in
preorder (root, left subtree, right subtree), performing the following
operation: Letω be the last switching symbol seen during the
traversal. During the traversal, we remove all the transitions on
input tuples~a if the positions of theε symbols in~a do not match
the positions of zeros inswitch(ω). For instance, if the edge label
is (ε,a,b,ε) andswitch(ω) = (0,0,1,1) (or (0,1,1,1)), we remove
the edge, while we leave the edge ifswitch(ω) = (0,1,1,0). We
perform the same operation for all the edges in the super-nodes as
well.

After the traversal, let us prune away the nodes unreachable
from the root. Each branch in the obtained tree has a bounded num-
ber of segments, separated by switching symbols, and all transitions
in each segment have exactly the same heads active throughout the
entire segment. Thus, each branch (together with the super-nodes)
can be encoded as a concatenation of a finite number of synchro-
nized relations. The number of branches is finite. It followsthat re-
lations accepted by switching multitape automata with a bounded
number of switches on any complete run can be translated intoa
finite union of products of synchronized relations. �

Early on, in Sec. 2.3, we gave an example of a relation that
is not resynchronizable:R= ((a∗b)m,cm). Interestingly, relationR
can be annotated so that a switching multitape automaton allowed
to switch tape head states an unbounded number of times accepts
the annotated relation:((ω1a∗ω2b)m,cm), where ω1 (resp. ω2)
switches off (resp. on) the right tape head. While it seems that rela-
tions allowing an unbounded number of switches are strictlymore
expressive than synchronized relations, studying their properties is
out of scope of this paper.

The relations with an a-priori bounded number of switches
clearly generalize the resynchronizable relations introduced by
Frougny and Sakarovitch. On the other hand, it is easy to construct
relations, like(am−k,bk−l ,cm−l), that cannot be resynchronized
as a finite union of the component-wise products of synchronized
relations by finite sets, but can be resynchronized by introduction
of switching symbols:(am−kω1,ω2bk−l ,cm−l), whereω1 switches
the first head off and the second on, whileω2 switches the second
head off.

For some simple resynchronizable relations, like those of
Frougny and Sakarovitch, it is easy to construct an algorithm that
will take an arbitrary rational relation and synchronize itif it has an
a-priori bounded length difference property, because the length dif-

6 If there are multiple initial states, one can always create asingle super-root
node and theεn edges to the initial states.

10 2011/10/3

ference of a rational relation is efficiently computable [15, p. 54].
Thus, it is possible to design an algorithm that will automatically
insert all the switching symbols into Frougny and Sakarovitch’s
relations, although it is in general undecidable whether a ratio-
nal relation is also synchronized [11]. However, the more general
question of which relations can be algorithmically resynchronized
(through insertion of switching symbols) is open.

Now, we describe how to symbolically represent one reachable
composite configuration of our motivating example from Sec.3
using a resynchronizable relation. Remaining reachable states can
be represented similarly. A composite configuration of thissystem
of CVPTs is a tuple of client, server, and repeater’s configurations:

((s1,σ1,ρ1,ρ2) ,(s2,σ2,ρ3,ρ4,ρ5) ,(s3,σ3,ρ6)) ,

wheres1,s2,s3 represent control states,σ1,σ2,σ3 words on stacks,
andρ1, . . . ,ρ6 words on queues. An example of a reachable (sym-
bolic) composite configuration with complex inter-dependencies
among queue and stack languages is:

((

1,γ1γb−d−1
2 ,ack

a−b
,ε
)

,
(

2,γ3γa−d−1
4 , req∗,ε,dsndc−d

)

,
(

0,ε,dcnta−c
))

,

wherea is the number of requests received by the server,b is the
number of acknowledgments received by the client,c is the number
of dsndmessages sent back to the server, andd is the number of
sent and acknowledged data messages. The queue-stack relation
Lqs((1,2,0)) is then
(

ack
a−b

,ε, req∗,ε,dsndc−d,dcnta−c,γ1γb−d−1
2 ,γ3γa−d−1

4 ,ε
)

,

which is a resynchronizable relation
(

ack
a−bω2,ε ,req∗,ε ,ω3dsndc−d,dcnta−cω4,ω1γ1γb−d−1

2 ,γ3γa−d−1
4 ,ε

)

,

where symbolω1 switches the seventh head off,ω2 switches the
first head off and the seventh on,ω3 switches the fifth head off, and
ω4 switches the sixth head off and the fifth on. This relation accu-
rately models the dependencies among queue and stack languages,
which is the key property required to precisely compute reachable
states of the example.

9. Applications
In this section, we discuss the applications of the introduced model
in the context of two major asynchronous programming paradigms:
the task-based and the message-passing paradigm. At the endof
this section, we note some interesting limitations of our model.

9.1 Asynchronous Task-Based Paradigm

The task-based programming paradigm enables programmers to
break up lengthy, unpredictable, time-consuming operations into
a collection of shorter tasks. This adds reactivity to the system,
and typically improves responsiveness and performance of long-
running programs. Tasks can be either asynchronously posted for
execution by other tasks, or triggered by events. These two ap-
proaches (and their combination) have been successfully employed
in many domains: they form the basis of JavaScript and Silverlight
(client-side) web applications, and have been shown usefulfor
building fast servers [27], routers [22], and embedded sensor net-
works [21].

The formal system we propose can model this class of applica-
tions as follows. Each task (and there is a finite number of them) is
executed on a single VPA. During execution, each task can change
the state of its VPA and send messages to other VPAs, which is suf-
ficient for modeling the global shared state changes that thetask-
based models can model. The task buffer is modeled as a FIFO

queue: posting a task amounts to sending an invocation message to
the task buffer queue.

9.2 Message-Passing Paradigm

The message-passing paradigm, in which processes communicate
exclusively by sending messages to each other, has been imple-
mented in a number of different ways: as an integral part of a pro-
gramming language (e.g., Erlang, Scala), as a message-passing API
implemented as a library (e.g., MPI, SOAP, Java Message Service,
Microsoft Message Queuing), or as a software as a service model
(e.g., Amazon Simple Queue Service). Message-passing applica-
tions can then be viewed as a network of processes communicating
over FIFO queues. It is straightforward to model such networks as
a system of CVPTs: each (recursive) process can be abstracted into
a Boolean program that sends and receives messages, and in turn
the language of traces the Boolean program generates is accepted
by a visibly pushdown transducer. For example, Erlang’s message
send and receive operations (i.e.,! andreceive) closely match
send and receive operations in our model. It is also straightforward
to map basic MPI asynchronous blocking send and receive opera-
tions (i.e.,MPI Send andMPI Recv) to our model. Web services,
another class of message-passing applications, are Internet-based
applications that communicate and exchange data with otheravail-
able web services in order to implement required functionality. The
services typically communicate via asynchronous message-passing
(e.g., SOAP, Ajax), and therefore again fit into our model.

9.3 Limitations

While researching possible applications of our formal model, we
also found an interesting limitation. Namely, it seems likeour
model is incapable of modeling distributed continuations.A contin-
uation is an abstract representation of the control state (and stack)
of a program. Continuations are a powerful concept that enables,
for instance, a running task to be paused, its continuation stored,
and then resumed later, possibly on a different machine. Ourmodel
has a limitation intrinsic to visibly pushdown transducers— a
CVPT can push or pop symbols from its stack only when it re-
ceives a special call or return input symbol, respectively.Therefore,
a CVPT cannot spontaneously empty its stack, which is a prerequi-
site for modeling continuations.

10. Future Work
We suspect that there exists another family of relations, inbetween
SyncandDRat in Fig. 1, that still has decidable inclusion. If such
a family exists, the queue and stack languages in our model could
be even more expressive, allowing even more interesting commu-
nication inter-dependencies. We plan to study the switching multi-
tape automata with an unbounded number of switches, which could
possibly define the missing family. A related question is that of
designing algorithms for inserting switching symbols intoresyn-
chronizable subclasses of rational relations. An important research
question is to identify subclasses for which switching symbols can
be inserted efficiently, like that of Frougny and Sakarovitch, and
design algorithms for those subclasses.

Our result could probably be somewhat strengthened. For exam-
ple, we conjecture that ifLq in Definition 5 is a consistent synchro-
nized tree relation, so isLqs. We base this conjecture on the fact that
the language of stack configurations of pushdown automata isreg-
ular [4], which can be proved by construction of a reachability set
automaton. We managed to do such a construction for our model,
proving that the product of stack languages is regular, but that re-
sult is too weak to prove the conjecture. Namely, we found no way
to allow for synchronization between queue and stack languages,
required to prove the conjecture.

11 2011/10/3

Proving complexity bounds and designing model checking al-
gorithms for our model is another important research step towards
usage of our model in practice. We expect that a similar classof
algorithms as those used in regular model checking, based ona
combination of grammatical inference and more standard model
checking techniques (e.g., [19]), could be used to model check our
model as well.

Once model checking algorithms are developed, we expect that
our model could serve as an underlying model for a type-state(e.g.,
[14]) system, in which programmers could describe contracts that
could be checked automatically. Such contracts have been demon-
strated in Singularity [24]. The model we introduce is significantly
more expressive than the one in Singularity, and would therefore
allow for much more complex communication protocols.

11. Conclusions
In this paper, we proposed a new formal model for asynchronously
communicating message-passing programs. The model is com-
posed of visibly pushdown transducers communicating over un-
bounded reliable point-to-point FIFO queues. The proposedmodel
is intended for specifying, modeling, analysis, and verifying of
asynchronous message-passing programs and makes it possible to
model (possibly recursive) programs and complex communication
patterns. Our results generalize the prior work on communicating
finite state machines along two directions — by allowing visibly
pushdown languages on queues, and by allowing complex inter-
dependencies (i.e., synchronization) among stack and queue lan-
guages. Our work also unifies two branches of research — one fo-
cused on task-based and the other on queue-based message-passing
models. The results are non-trivial, because there are two sources
of infiniteness: stacks and queues. Besides proving decidability of
reachability, which is the main technical result of the paper, we
also introduced switching multitape automata to characterize a set
of relations that can be resynchronized, and therefore are allowed
in our model. We believe this paper is opening a number of new,
interesting research directions (both theoretical and practical), and
could lead to novel languages and tools for design and analysis of
asynchronous programs.

Acknowledgments
We would like to thank Brad Bingham, Jesse Bingham, Steven
McCamant, Jan Pachl, Shaz Qadeer, and Serdar Tasiran for their
feedback on the early drafts of this document, George Neculafor
sharing his insights on development of distributed message-passing
systems in practice, and Jim Larus for pointing out the importance
of synchronization in distributed message-passing protocols.

References
[1] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey

of regular model checking. InIntl. Conf. on Concurrency Theory
(CONCUR), pages 35–48, 2004.

[2] R. Alur and P. Madhusudan. Visibly pushdown languages. InSymp. on
Theory of Computing (STOC), pages 202–211, 2004.

[3] Y. Andre and F. Bossut. Word-into-tree transducers withbounded
difference. InIntl. Joint Conf. on Theory and Practice of Software
Development (TAPSOFT), pages 177–188, 1997.

[4] J.-M. Autebert, J. Berstel, and L. Boasson. Context-free languages and
pushdown automata. InHandbook of Formal Languages, Vol. 1, pages
111–174. Springer-Verlag, 1997.

[5] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. InConf. on Programming Lan-
guage Design and Implementation (PLDI), pages 203–213, 2001.

[6] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. Thepower of
QDDs. InIntl. Symp. on Static Analysis (SAS), pages 172–186, 1997.

[7] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract
regular tree model checking.Electronic Notes in Theoretical Com-
puter Science, 149:37–48, 2006.

[8] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model
checking. InIntl. Conf. on Computer Aided Verification (CAV), pages
372–386, 2004.

[9] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model
checking. InIntl. Conf. on Computer Aided Verification (CAV), pages
403–418, 2000.

[10] D. Brand and P. Zafiropulo. On communicating finite-state machines.
Journal of ACM, 30:323–342, 1983.

[11] O. Carton, C. Choffrut, and S. Grigorieff. Decision problems among
the main subfamilies of rational relations.Informatique Théorique et
Applications, 40(2):255–275, 2006.

[12] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques and
applications, 2007. http://tata.gforge.inria.fr/.

[13] S. Eilenberg, C. C. Elgot, and J. C. Shepherdson. Sets recognized by
n-tape automata.Journal of Algebra, 13:447–464, 1969.

[14] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate veri-
fication: Abstraction techniques and complexity results.Science of
Computer Programming, 58:57–82, 2005.

[15] C. Frougny and J. Sakarovitch. Synchronized rational relations of
finite and infinite words.Theoretical Comp. Sci., 108:45–82, 1993.

[16] P. Ganty and R. Majumdar. Algorithmic verification of asynchronous
programs.CoRR, abs/1011.0551, 2010.

[17] E. M. Gold. Language identification in the limit.Information and
Control, 10(5):447–474, 1967.

[18] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.
In Intl. Conf. on Computer Aided Verification (CAV), pages 72–83,
1997.

[19] P. Habermehl and T. Vojnar. Regular model checking using inference
of regular languages.Electronic Notes in Theoretical Computer Sci-
ence, 138:21–36, 2005.

[20] T. Harju and J. Karhumäki. The equivalence problem of multitape
finite automata.Theoretical Comp. Sci., 78:347–355, 1991.

[21] J. L. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister. System architecture directions for networked sensors. In
Intl. Conf. on Architectural Support for Prog. Languages and Oper-
ating Systems (ASPLOS), pages 93–104, 2000.

[22] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click modular router.ACM Trans. Comp. Sys., 18(3):263–297, 2000.

[23] S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis
of concurrent queue systems. InIntl. Conf. on Tools and Alg. for the
Construction and Analysis of Systems (TACAS), pages 299–314, 2008.

[24] J. Larus and G. Hunt. The Singularity system.Communications of the
ACM, 53:72–79, 2010.

[25] J. K. Pachl. Reachability problems for communicating finite state ma-
chines. Technical Report CS-82-12, Department of ComputerScience,
University of Waterloo, 1982.

[26] J. K. Pachl. Protocol description and analysis based ona state transi-
tion model with channel expressions. InIntl. Conf. on Protocol Spec-
ification, Testing and Verification (PSTV), pages 207–219, 1987.

[27] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and
portable Web server. InUSENIX Annual Technical Conf., pages 199–
212, 1999.

[28] S. Qadeer and J. Rehof. Context-bounded model checkingof concur-
rent software. InIntl. Conf. on Tools and Alg. for the Construction and
Analysis of Systems (TACAS), pages 93–107, 2005.

[29] M. O. Rabin and D. Scott. Finite automata and their decision prob-
lems. IBM J. Res. Dev., 3:114–125, 1959.

[30] G. Ramalingam. Context-sensitive synchronization-sensitive analysis
is undecidable.ACM Trans. on Prog. Lang. Sys., 22:416–430, 2000.

[31] J.-F. Raskin and F. Servais. Visibly pushdown transducers. InIntl. Col-
loquium on Automata, Languages and Programming (ICALP), Part II ,
pages 386–397, 2008.

[32] K. Sen and M. Viswanathan. Model checking multithreaded programs
with asynchronous atomic methods. InIntl. Conf. on Computer Aided
Verification (CAV), pages 300–314, 2006.

[33] W. Thomas. On logical definability of trace languages. In
Tech. Univ. of Munich Report TUM-I9002, pages 172–182, 1990.

[34] A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to
verify safety properties. InIntl. Conf. on Formal Engineering Methods
(ICFEM), pages 274–289, 2004.

[35] R. Wang, S. Chen, X. Wang, and S. Qadeer. How to shop for free
online – security analysis of cashier-as-a-service based web stores. In
Symp. on Security and Privacy, 2011.

12 2011/10/3

