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Abstract

We introduce an automata-based formal model suitable fec-sp
ifying, modeling, analyzing, and verifying asynchronowsk-
based and message-passing programs. Our model consisss of v
ibly pushdown automata communicating over unboundedhielia
point-to-point first-in-first-out queues. Such a combioatiuni-
fies two branches of research, one focused on task-basedsmnode
and the other on models of message-passing programs. Owl mod
generalizes previously proposed models that have deeidahth-
ability in several ways. Unlike task-based models of asymobus
programs, our model allows sending and receiving of message
even when stacks are not empty, without imposing restristian

the number of context-switches or communication topold@yr
model is strictly more general than the well-known commatiig
finite-state machines and allows: (1) individual composedntbe
visibly pushdown automata, which are more suitable for ringe
(possibly recursive) programs, (2) the set of words (iaagliages)

of messages on queues to form a visibly pushdown languagehwh
permits modeling of remote procedure calls and simple fooins
counting, and (3) the relations formed by tuples of suchulagegs

to be synchronized, which permits modeling of complex exter
tions among processes. In spite of these generalizationprove
that the composite configuration and control-state redlityahre

still decidable for our model.

1. Introduction

The asynchronous message-passing programming paradiggn is
coming a de facto standard for parallel and distributed aging
(e.g., cloud applications, web services, scientific conmgiit Pro-
gramming such asynchronous systems is, however, difficudtd-
dition to having to reason about concurrency, programmgrs t
cally do not have full control over all the services they uBeere-
fore, failures are rarely reproducible, rendering deboggill but
impossible. In response, programmers succumb to loggtegest-
ing events and gathering various statistics, hoping thsrifething
goes wrong the logs will reveal the source of failure. Andoutf-
nately, things occasionally do go wrong, often impactingjianis
of customers, or opening gaping security holes, which haee Ibe-
cently exploited to even “buy” goods on the Internet withpaying
for them [35].
On the positive side, this is a huge opportunity for the ddien
community to provide appropriate computationally trateafor-
mal models, as well as programming paradigms, languages, an
analysis tools based on such models. In this paper, we peopos
such a formal model for asynchronous message-passingapnsgr
The model generalizes several existing well-known modeisywe
prove that checking the system’s safety properties isdgtiidable.
More precisely, we propose an abstract automata-based mode
in which individual processes are modeled by visibly pusimo
automata (VPA) [2] that communicate via unbounded point-to
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point reliable first-in-first-out (FIFO) queues. VPA aregiastack
pushdown automata where all stack push and pop operatiosis mu
be visible (i.e., explicit) in the input language. Such awdta are
commonly used to represent abstractions (e.g., computeg us
predicate abstraction [5, 18]) of possibly recursive paogs.

Unfortunately, reachability is undecidable even for firstate
machines communicating over unbounded queues (a.k.a. §FSM
[10]. Researchers proposed a number of restrictions tarrega
cidability: bounding the size of queues to some fixed sizatric-
ing the communication topology, and restricting the exgikeness
of the languages representing the messages on queues[Fgchl
proved that if a CFSM has a recognizable channel propertyl— al
the queue languages are regular and all those languages feen
ognizable relatiort, then reachability is decidable.

Enforcing Pachl’s restrictions would be too restrictiveaar
model. First, it would make little sense to model individyab-
cesses as VPA, but not being able to remotely call their proce
dures. To model remote procedure calls, the queue languages
to be visibly pushdown, rather than just regular word lamgsa
Second, recognizable relations are a very inexpressigs cfre-
lations that can model inter-dependencies among queugsifonl
languages describing the contents of each queue are fipitén+
stance, if we have an invariant that there should be the samber
of messages, sayandb, on two queues in some composite control
state, the relation representing the configuration of gsieveuld
be (a",b"), which is not a recognizable relation. Even simple sys-
tems, like a client sending some number of requests and &mngec
the same number of responses, require queue relationslithat a
inter-dependencies (i.e., synchronization) among iddai queue
languages.

We relax Pachl’s restrictions by allowing queue (and stack)
configurations to form synchronized visibly pushdown irielad,
which significantly broadens the applicability of our madal-
though in our model the two extensions, from regular to Wsib
pushdown languages and from recognizable to synchron&ed r
tions, go hand-in-hand, it is worth noting that they are ogth
nal and each is valuable on its own. For instance, our rataxat
from recognizable to synchronized relations is applicablether
models as well — a straightforward consequence of our Ie&Ilt
that reachability of CFSMs with synchronized channel prtypis
decidable. In practice, our relaxations enable formalyaisland
verification of significantly more complex asynchronous sage-
passing systems than allowed by prior models.

In addition, there is an even larger class of relations thatle
algorithmically translated into synchronized relations,, resyn-
chronized. We introduce a new type of automaton, calledchivig
multitape automaton, that characterizes relations thabeaesyn-
chronized with prior preprocessing. We show that if a refatian
be algorithmically translated into a relation accepted ksyvich-

Linformally, a relation is recognizable if the concatenatif all the lan-
guages that are elements of the relation tuple is a reguiguége.

2011/10/3



ing multitape automaton, then it can also be resynchronisaur
proofs rely solely on the properties of synchronized retati we
postpone the treatment of resynchronizable relations afitéir we
state and prove the main results.

The main technical contribution of this paper is a proof that
model checking safety properties — global control stategiobal
configuration reachability — is decidable for the model we-pr
pose. The result is non-trivial as the introduced modemadlon-
bounded stacks and queues, arbitrary communication tgigsloas
well as complex inter-dependencies of queue and stack dayesu
We summarize the contributions of this paper as follows:

¢ A new formal model for asynchronous message-passing pro-
grams.

¢ A relaxation of known communication restrictions along two
dimensions: from regular to visibly pushdown languages, an
from recognizable to synchronized relations.

o A proof of decidability of global control state and globalnco
figuration reachability in our model.

¢ Anintroduction of switching multitape automata charaiziag
a family of relations that can be algorithmically resynctized.

2. Background and Related Work

The research on abstract models of asynchronous computatio
has progressed along two, mostly disjoint, paths. The fiash p
stemmed from the classical negative result of Ramalingadh [3
stating that the reachability of stack-based finite-datgrabtions

of concurrent programs with preemption is undecidabletteur
research focused on computationally more tractable mptikeds
context-bounded [28] and task-based non-preemptive reotbk
latter are more relevant to this paper. The second pathnatiggl

in the study of finite-state machines communicating ovealo&

ton, it is possible to send an abort message, which can chibage
course of execution.

La Torre et al. [23] studied a different set of trade-offanSi
ilarly to ours, their model allows unbounded reliable queue
stead of multisets, but either bounds the number of alloveedsxt-
switches or restricts the communication topology to assora-
putational tractability. Similarly to the multiset-baseunbdel, their
model can deque messages from queues only when the lodal stac
is empty. Each visibly pushdown automaton in our model cah bo
send and receive messages, independently of the state loctie
stack, as long as the languages of all the queues and statties in
system can be described by a synchronized relation. Funtver
we neither impose restrictions on the communication togpgloor
require the number of context-switches to be bounded.

2.2 Communicating Finite-State Machines

Another line of research on formal models of asynchronouaspes
tation focused on CFSMs [10]. A CFSM is a system of finiteestat
machines operating in parallel and sending messages to#ash

via unbounded FIFO queues. CFSMs can model preemption, but
finite-state machines are an overly coarse abstractionasis{ply
recursive) programs. As discussed earlier, reachabdityndecid-
able for CFSMs, in general. Pachl [25, 26] found that if the-la
guage of messages on each queue is regular and the tuplehof suc
languages for all queues is a recognizable relation, themech-
ability problem is decidable for CFSMs.

His work was followed by extensive research on, so callegh, re
ular model checking (e.g., [6, 8, 9, 34]), where queue cdstare
described using recognizable relations over words. Mobletk-
ing is then done by computing (sometimes approximationsaof)
transitive closure of the system’s transition relationd @hecking
whether the image of the transitive closure is containeteréela-

unbounded queues [10], known as CFSMs. Like the task-basedtion describing the queue contents. As the focus of this piapen

model, reachability is undecidable for general CFSMs. Harrt
research focused on restrictions of CFSMs, especially efigue-
lations, and development of model checking algorithmsatiph
such restrictions. In this paper, we unify the two pathsppsing

a model suitable for the same class of applications as tle tas
based non-preemptive models, while significantly geraraithe

proposing a new formal model for modeling asynchronousi-co
municating programs, and proving that the model has a deleida
reachability problem, rather than on algorithms, we omiesien-
sive account of the regular model checking work. Instead]ivezt
an interested reader to a survey [1]. We suspect that tecbsigjm-
ilar to the ones developed for regular model checking, dafheto

CFSM-based models. We proceed by surveying the related work those for regular tree model checking (e.qg., [7]), could peliad

along both paths, and then providing the necessary backdron
synchronized relations, which allow us to express comphésri
dependencies among queues and stacks.

2.1 Task-Based Models

to model check the formal model we propose.

We generalize Pachl’s results along two dimensions. Rinst,
components of our formal model are visibly pushdown transdu
ers, which can closely model the control flow of recursive-pro
grams. Therefore, they are a better candidate for modebgg-a

The task-based model consists of a pushdown automaton and ghronously communicating programs (e.g., event-basegranos,

task buffer for storing asynchronous task invocationseAthe
currently executing task returns, a scheduler takes and#si
from the task buffer and executes it on the automaton. Tasaite
atomically and can change the global state (of the autorjaton
new tasks can start executing only when the stack is emetythe
model is non-preemptive. Tasks cannot send messages totbach
and communicate only by changing the global state. The model
is suitable for modeling event-based applications (eayaScript
programs) and worker-pool-based multithreaded apptinat{e.qg.,
servers).

web services, cloud applications, scientific computindiappons)
than the less powerful finite-state machines. Second, wefisig
cantly relax the restrictions on queue relations, allowimgye ex-
pressive communication patterns.

The first major relaxation allows queue relations in our nhode
to be visibly pushdown [2], rather than just regular. Thisxation
enables us to support remote procedure calls and limitedsfaf
unbounded message counting. The second major relaxatien is
lated to the queue relations. More precisely, we show thatnmalel
has a decidable reachability problem even when we move epe st

Sen and Viswanathan [32] proposed a task-based model wherelP in the hierarchy of families of relations from the familyed by

the task buffer is modeled as a multiset (i.e., a bag) and stiokat
the state exploration problem is EXPSPACE-hard. Ganty aad M
jumdar [16] did a comprehensive study of multiset task-tased-
els, proving EXPSPACE-completeness of safety verificataord
proposed a number of extensions. For instance, they shdwhtha
configuration reachability problem for the task-based rhodth
task cancellation is undecidable. Our model does not all@s-m
sage cancellation, but once the execution starts on soreenaut

Pachl. Such more expressive relations allow us to model Emp
inter-dependencies among queue and stack configurations.

2.3 Relations Over Words and Trees

In this section, we give an overview of the main results oatiehs
over regular sets (of words and trees) relevant to this pdajer
properties of those relations are the key to understandiegte-
sented contributions. A property that we are particulantgiiested
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in is the decidability of language inclusiog), which we use in
the proof of the decidability of reachability in our formaloghel.
We start with the most expressive family of relations.

Rabin and Scott [29] introduced a generalization of thedinit
automata operating on words (single tape) to tuples of womis-
tiple tapes). There are two basic variants of such autonmata:
deterministic and deterministfcThe relations accepted by the for-
mer are calledational relations(Rat), and by the latedetermin-
istic rational relations(DRaf). While the equivalence problem of
DRat is decidable [20], inclusion is unfortunately undecidatale
both classes. Therefore, our proof technique, which géinesa
Pachl’'s [25] technique, cannot be used to prove decidghbilit
reachability in systems of CFMS or visibly pushdown trarcsds
whose queue languages form (deterministic) rationalioglat

Synchronized relationSyng [13] restrict the tapes of amtape
automaton to move simultaneously at every step of any camput
tion. Thus, synchronized-tape automata ovexr* x --- x £* can
be seen as the classical 1-tape automata over the alphabét ¢h
cross-product of alphabets of all tapes, i(B.x - - - x X)*. Such au-
tomata move all their tape heads synchronously in lock;stejd it
is a single head reading a tuple of symbols. Synchronizedioek
are sufficiently expressive to describe languages su¢h™ae™M),
which is useful for describing simple forms of counting iryis
chronously communicating programs. For example, it isiptesso
describe a system that sends a number of requests asyngbiono

v v @ @
Rec ¢ Sync ¢ DRat C Rat
(33 (13 29 (29

Figure 1. Hierarchy of Relations Over Words and Trees. All the
inclusions are known to be strict. The checkmark @enotes the
families of relations for which inclusion is decidable. Aofthose
families, as well as relations reducible to those familieen be
used to describe the queue and stack languages in our mddlel, w
maintaining the decidability of reachability.

reliable queues. The client asynchronously sends a paligntin-
bounded number of data requests. The server receives ang-imm
diately acknowledges data requests, but postpones tluziegsing
until later. When the data becomes available, the serveores
with data. When ready to process the received data, thet cben
moves the data message from the queue and acknowledges the re
ceipt of data. Both the client and the server count messages:
client checks that all the data requests have been servddhan
server checks that all the requests have been respondedto. U
like our model, the previously proposed models of asynabusly
communicating processes are unsuitable for modeling atifitbee

tion of this example:

e CFSMs can count only a finite bounded number of messages.
The example requires unbounded message counting.

e This example features complex inter-dependencies among
queue and stack languages and previously proposed models

and expects to get the same number of responses. By addieg a sp
cial padding symbol (#), synchronized relations can alsodael to
describe languages such(a¥', bk), wherek > m. Synchronized re-

lations have essentially the same properties as the cdstape
automata (closure under union, intersection, etc.) ani itheu-
sion can be efficiently checked.

Frougny and Sakarovitch [15] defingdsynchronizable rela-
tions which describe languagesmtape automata whose tapes are
not synchronized, but the distance between tape headsrisra-p
bounded. They showed that such relations can be charadeaix
a finite union of the component-wise products of synchrahize
lations by finite sets, which in turn means they can be redtmed
synchronized relations. For instan¢eMaat¥, c™dX) is an exam-
ple of a resynchronizable relation: after readiibg,c™), the first
tape reads two more symbols (increasing the distance betiape
heads to two), and then both tapes can again move togethgrdn s
Relations like((a*b)™ c™) are not resynchronizable, as the dis-
tance between tape heads can become arbitrarily large. 0of p
technique is applicable to all families of relations redileito syn-
chronized relations.

Finally, recognizable relationgReq [33] have the weakest ex-
pressive power of all mentioned families of relations. E&ape

of an n-tape automaton operates independently of others and ha:
its own memory. The relations accepted by such automataean b

represented as finite unions of cross-products of regulaipoe
nent languages. Effectively, the component languages eaallb
concatenated together (with a special delimiter symbblafalpha-
bets are not disjoint) and recognized by a 1-tape automBthl’'s
work and, to our knowledge, all the work on regular model &ec
ing focuses on this family of relations, which are insuffitlg ex-
pressive to describe complex inter-dependencies amonggue

3. A Motivating Example

are too inexpressive to deal with such inter-dependencies.

e Bounded state-space exploration (e.g., bounding quews siz
or the number of allowed context-switches) cannot explbee t
whole unbounded state-space of the example.

e Both the server and the client send and receive messages with
non-empty stacks, which task-based models cannot model.

Fig. 2 illustrates the example. The communication betwaen t
client and the server is established using quemesy,, gz, and
ga. The call (resp. return) messages push (resp. pop) syntoaobs f
a stack, and are denoted by averline (resp.underling, while
messages triggering internal transitions have neithes.SEnver is
implemented using two automata communicating ayeand gg.
The client initiates asynchronous communication by sendig
messages to the server. The server immediately acknoveedgh
Teq, by sendingack but postpones processing the request until later.
By pushingys or y4 on its stack, the server counts the number of
pending requests. The server ugggo denote the bottom of its
stack and to detect when all the received requests have bpexus

SUpon receivingack the client pusheg, or y» on its stack to count

the number of the requests that the server has initiatedpsotg.
The client uses; to denote the bottom of its stack and to detect
when all data requests (acknowledged by the server) have bee
responded to. When ready, the server responds with the steglie
data @ata). Upon receivingdata, the client popsa or y» from
its stack, indicating that one of the pending data requesgdken
responded to, and acknowledges receiving data, by sewuidick
The server pops its stack upon receivghack indicating that one
of the pending requests has been served.

The server is fully asynchronous and can postpone serving

We illustrate the expressive power of our formal model with a data. To model such asynchrony, the server would need to non-

small, yet intricate, example. The example models a cliedta
server asynchronously communicating by sending messages o

2In the deterministic multitape automata, the current statermines which
tape to read from, and given the state and the input symieok ik only one
possible next state.

deterministically pop its stack on an empg) (ransition, once the
data is ready. However, visibly pushdown automata canrassac
the stack on empty transitions, but rather all stack acsdssee to
be visible at the level of the input language. To work arounid t
constraint, the server uses a small one-state repeatenaiaho on
the side. The repeater receives internal messdg@sand bounces
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SERVER:

@qsm/ arlack ys
—_—>

o3 7reg/dulack ya

gs?dcnt/gs!dsnd

£/ge!dent
<_

gs?dsnd/q!data

dsack ys/€

dadack ys/€

o qu?ack/e, v
du?ack/e, vi

O

gp?data y1/qs'dack
go?data y»/oaldack

CLIENT:

£/qs!Teq

Tuples and Relations. Tuples are finite lists of objects. For
instance, (obj;, 0bj,,0bj3) is a 3-tuple. We denote tuples by a
vector sign, e.g.f. If T = (obj;,0bjs,...,0bj,) is a tuple,n is

called thesizeof the tuple and denotef]. The cross-productof

setsAy,...,An, denoted [] A, is a set ofn-tuples defined as
1<i<n

{(a1,...,an) | & € Aj}. Thei-th element of a tupl€is denoted];.
We write S" for a set ofn-tuples in which all elements are fro8)
i.e., {f'such that]j € S 1 <i < n}. An n-ary relationis a subset of
a cross-product af sets.

Strings (Words).  We shall often refer to finite sets of symbols as
alphabetsand denote them b§, possibly with indices. LeE be
an alphabet; the set of all finite sequences of elements will

be denoted by *; such sequences will be referred to stengs
(or wordg overZ. More formally,>* is the free monoid generated
by Z with concatenation(-) as the operation and the empty word
€ as the identity. We shall also refer to concatenatioprasluct

If w=aj-ay---a, is a word anda; € Z, n is called thelength

of w and denotedw|. Let U and V be tuples of words such that
|t] = |V|, the component-wise produds$ defined agi- v ={, such
thatf|; = dl; - v|;, for all 1 <i < |U]. The power of a word wis
defined recursivelyn® = &, wk*1 = wk.w. If A B are languages,

Figure 2. An Example of an Asynchronous Client-Server Service. then their concatenatiof- B is the languaggu-v |ue A,v € B}.

Initial states are marked with arrows with no origin. Fintdtes

If wis a word andA is a language, thew- A= {w-u|uec A}, A

are drawn as double circles. Stacks and queues are not shown. W= {u-w | u€ A}. (Left) language quotient @A is the language

received message is preceded with the question mark and¢he g

{u]a-ueA}. Letu,v e Z* be words ove&. The prefix order<

it was received from; a sent message with the exclamatiotk mar is defined asu < v for u,v € Z* iff there existsw € £* such that
and the queue it was sent to. A received overline message (i.e V= U-W. We say thata s&is prefix-closedf u<vAve S=ues

call message) pushes a symbol on a stack; a received umderlin

message (i.e., return message) pops from a stack. For exattmgl
transitiongzeq/q;'ack y5 receives messageq from queueqs,
sends messageekto queuer;, and pushegs to the server's stack.

5. The Formal Model

In this section, we describe our formal model. We begin by de-
scribing the basic component — a visibly pushdown transduce
continue with a definition of a system of such transducersrmeom

backdsnd Since queues are assumed reliable, all yet unserved re-nicating over reliable unbounded queues, and finish wittseui

quests are pending on eittayor gg. Effectively, those two queues
keep track of the data being fetched (or computed) asynoclsin
The repeater could as well represent a service fetchingfdata
distributed storage, or a service computing the resporisesérver
can (in state 2) either receive more requests or processfahe o

sion of relations describing queue and stack configurations

5.1 Visibly Pushdown Transducers

The individual processes receive and process words of imgst
sages, and generate words of output messages. Thus, thég can

messages received from the repeater and send data back to thg, 4eled as transducers — state machines translating opesige

client. Since languages on botlg and gg are regular, and since
neither the server nor the repeater perform any calls (orns}
on those messages, this workaround satisfies both thectests
imposed by visibly pushdown automata and the conditionsiéer
cidability of reachability that we present later.

An example of a safety property one would want to establish

for this protocol is absence of deadlocks (or livelocks). vem
verify such properties as follows. Since there is a finite bem
of composite control states and messages (resp. symbols} to

into another. We introduce such a machine with a finite-stare
trol, a single stack, and a finite set of unbounded FIFO queDes
each step it can read a symbol from one queue and write to@moth
if the symbol read is a call (resp. return), it can simultarsiyppush

to (resp. pop from) its stack.

DEeFINITION 1 (Communicating Visibly Pushdown Transducer).
A communicating visibly pushdown transdud@VPT) is a tuple
of finite sets T= (Zrev, Zsng, @, S 1, F, I, A), whereZ,cy is an input

removed (resp. popped) from queues (resp. stacks) in the nex alphabetXgnqis an output alphabet, Q is a set of unbounded FIFO

transition, we can enumerate all symbolic configuratiomslileg
to a deadlock (or livelock). For instance, if the client issiate O
(waiting for ack) and the server in state 3 (waiting fdack), the
service is livelocked ifj; and g4 are empty, irrespectively of the
contents of other queues. That composite configuratiors mmhto
be unreachable for the given example.

4. Notations and Terminology

Sets.  Given a sef, we write|S to denote its size, i.e., the number
of elements irS. We definedisjoint union AJB as the standard set
union AU B, but with an implicit side-constraint that the sétand

B are disjoint, i.,e. ANB = 0. Let| be a set. Ari-indexedsetA

is defined as a disjoint union of sets indexed by elementsid.,
A= Uil A

queues, S is a set of states; IS is a set of initial states, E S is

a set of final stated; is an alphabet of stack symbols, af\ds a
transition relation. The input alphabé&t., and the output alphabet
Zsnd are Q-indexed sets such thaty N Zgng = 0. Another way to
partition the input alphabet i&cy = ZcWUZ,UZ;. TheX: symbol

is an alphabet ofcall symbols while Z; is an alphabet ofreturn
symbols such that for each return iz, there exists a matching
call in Z¢, more formally:Z; = {c|te X} and || = |Z¢|. The

>; set denotes thiaternalalphabet. The set of queues Q contains a
special symboll € Q used in transitions that do not receive input
from (or send output to) a queue.

Given a wordv € X}, we say thatv has matched returns
(resp.calls) if it is a production of the grammawV ::=a | W -
W |V |U, V:=al|V-V|t-V-csuchthal ::=t(respU ::=¢),
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wherea € 3, T e X, c € 2;. Aword iswell-matchedf it has both
matched returns and calls.
A configuration C of a CVPTs a tuple(s,0,p) = (s,0,p1,. .-,
p‘Q‘) € SxI*x HQ(andq UZrey,)*, representing a control state, a
qe

word on the stack, and contents (represented as words) lofafac
CVPT's queues. For stacks, the leftmost symbol of the wothtéds
top of the stack. For queues, the leftmost symbol of the wepd r
resents the next message to be processed (i.e., the oltiespye-
cessed message), while the rightmost symbol representadke
recently received message. To simplify the notation, weirass
that p; represents the contents of queyes Q andp the contents
of queueq. We use th€|oldstate« newstateparallel substitution
notation to represent incremental modifications of conétians.
For exampleC[s; + $,0 + a- 0, p3 + p3-b] denotes a config-
urationC modified so that the control state is changed franto
S, message is pushed on the stack, and messhde appended
to queuegs; C[m- p < p] denotes a configuratio modified so
that message is removed from queug. We define the transition
relation of a CVPT as follows.

DerFINITION 2 (CVPT Transition Relation)Let C be a configura-
tion of a CVPT T. If n€ Zgpq,, for some g Q, let gm (resp. @m)
be an alias name for message m sent to (resp. received freenpqu
q.3 If m= ¢, then g= L. The transition relatiod\ = J:Wd W4, such
that & C Sx Z¢ x (ZgngU{€}) x T x S,& C Sx %y x I x (ZgpqgU
{€}) xS, andd C Sx (LjU{e}) x (ZsngU{€}) x S, is defined as
follows (7> is the infix notation fol):

ANy /! My,

Call I (51,012, G!My, y,5) € &, then C* Cls1
$,0 < Y- 0,My- P14 P1,02 ¢ P2-My);
Return If (s1,017my, Y, Q2!mp, ) € &, then qu”ml r/qzlmz
S,y 0 < O,My - P1 < P1,P2 < P2-My];
Internal If (s1,012m,02!Mp, ) € &, then C

Sp, My - P1 4= P1,P2  P2-My).

Clsy +

My /!
c 1/QZ mzC[Sl -

When we do not care about the exact type of a transition, we use

— to represent any of the—> transitions defined above. in of

a CVPT on a wordv = ag---an € X}, from a configuratiorC is
a finite sequence of configuratio@g,C;, ...,Cp, such thaCy =C
and for each G< i < n there exist a transitio€i_; — Cj. We

extend the infix notation defined above to wor@s— S C' if there
exists a run orw from C to C' yielding output wordp. When we
are interested only in the input word, sey we omit the output
word, e.9.Cy v, C,. The transitive closure of the— relation is
denoted—. Let [T] be the transduction induced By if there is

arun(s, €, €) R (s,0,p), wheresy € | andg is a tuple of empty
strings, thenp € [T](w). We generalize the transductidii] to
languages as usual, i.¢T] (L) = {[T] (w) |we L}.

We use Definition 1 for two purposes. First, we use it to define
individual components of a system of asynchronously contmun
cating processes. The set of final states could be empty &r su
components, if we are interested in the computation thosgoe
nents perform, rather than the language they accept. Sewende
Definition 1 to define visibly pushdown languages (VPLS), athi
in turn we use to define conditions under which reachabiitstill
decidable for our model. When defining VPLs, the set of firetest
will be non-empty, but the output alphal®g,q will be empty.

3 Note that formallym = g'm= g?m for anyq andm. The alias names are
just a notational convenience.

DeFINITION 3 (Visibly Pushdown Automaton and Languag#).
CVPT withZgng = 0 is a visibly pushdown automato(vVPA). A
language of finite words € %}, is avisibly pushdown language
(VPL) if there exists a VPA A ov&.y accepting the language, i.e.,
if 3A..Z(A) = L. Let ¥ be the set of all VPL languages.

We now informally sketch how to model a (possibly recursive)
Boolean progran® (i.e., a program with a finite number of vari-
ables over a finite domain) as a CVAT We choose a suitable
alphabet of call, return, and internal symbols for repréagrstate-
ments ofP. Then, every call statement &fis mapped into a call
transition of T, and every return statement into a return transition.
Statements that send or receive messages are mapped idtorsen
receive transitions, respectively. All other statememesraapped
into simple internal transitions. Furthermore, the modaild be
extended with pre-initialized queues, with only one reeeiand
no senders, initialized to the language describing therprago
be executed on the receiving automaton. However, suchsgten
significantly complicate the exposition, without conttilng to the
expressiveness of our model.

5.2 Systems of CVPTs
We compose CVPTSs into more complex systems as follows.

DEFINITION 4 (Asynchronous System of CVPTdn asynchro-
nous system of CVPTBI = (Ty,...,Tn), where T= (Srey, Zsnd
Qi,S,1i,F,Ti,4), is atuple of CVPTSs, such that each FIFO queue
has exactly one receiver and one sender. Any pair of CVPTs, sa
Tj and &, can share one or more queuesqJ;<j<,Q; such that

sender’szanq is equivalerﬂ to receiver’szrc\,kq.

Since each queue in the system has a single receiver, we intro
duce a convention to avoid redundancy in specifying costeft
the same queue: when we refer to a CVR&s a part of a system,
we consider thap in T’s configuration(s,o,p) represents only
the contents of;’s input queues, i.e., the queues are considered to
belong to the receiver.

A composite configuratiors atupleé = (Cq,...,Cn). LetC =
(s, 0i,0) represent the configuration of theh CVPT in the sys-
tem. We define theomposite control stats of a system as a tu-
ple of stategsy, ... ,sn), composite stack configuration as a tu-
ple of words(oy,...,0n), and composite queue configuratigh
as a tuple of Word(;p11 ..... s P1my > P21 -+ P2mys -+ Prls -+ ,anh)
wherem; = |G| andp;j = Gi|;. For a configuratiol€, we writeC.s,

C.o, andC.p for the composite control sta& composite stack
configurationd, and composite queue configuration

We define the transition relation of a system in terms of frans
tion relations of its individual components. L& = [ (s,&,%),

1<i<n
wheres € |;, be an initial composne conflguratlon rAn of a sys-
temis a finite sequenc@o —C — -+ — G, where—s is
defined as in Definition 2, with a minor difference that theport
gueues belong to another component, and not the one maléng th
transition.

Now, we have all the formal machinery needed to define the
configuration reachability problem for a system of CVPTsther
discussion will focus on the composite configuration rehdig
but we show later that our results can be somewhat geneatalize
(e.g., to the composite control state reachability problem

4Note that we index in three different waysZ; is the alphabet of;, Zgis
the alphabet of the messages on queuandz;, is Ti's alphabet projected
on the set of messages allowed on qugue
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PrRoOBLEM 1 (Reachability in an Async. System of CVPT§&pr

a given composite configurati@of an asynchronous system M of

CVPTs, does there exist a run of M endin@iﬁ

5.3 Relations Describing Configurations

For a given composite stafeand a particular queue (resp. stack),

we refer to the set of all words over messages (resp. stachagin
describing the possible queue (resp. stack) contergssma queue
(resp. stack) language. To define relations among thosedaes,
we introduce stack and queue relations:

DEFINITION 5 (Stack and Queue Relationdet M= (Ty,...,Tn)
be a system of CVPTs. L@&j be an initial composite configuration.
We define thgueue relatiohq C [] §x [] Zf,, as

1<i<n qeQ a

Lg(9) = {é.p o ééAé.szg},

and thequeue-stack relationgs C [1 S§x [] Zfey, x [1 T
1<i<n geQ a 1<i<n

Las(8) = {€.p,C.0 | Co—+CnCis=5}.

where Q= |J Q isthe set of all queues in M.
1<i<n

In the next section, we introduce a family of synchronizexbtr
relations, which we use to relax Pachl’s restrictions (Sz2).
Later, we prove that Problem 1 is decidable, despite ouxagians.

6. Tree Relations

In this section, we first develop a connection between VPIds an

regular tree languages, building on top of prior work by Adumd
Madhusudan [2]. We then define synchronized tree relatigisg
the appropriate encoding operator [12, p. 75].

6.1 Isomorphism Between VPLs and Stack-Tree Languages

VPLs can be characterized in terms of, so called, stackl&nee
guages. We use this characterization to define the relatierare
interest in. We start by defining trees and then develop thaeo
tion to VPLs.

DEFINITION 6 (Trees).LetN be the set of natural numbers tree
domainis a finite non-empty prefix-closed setiN* satisfying the
following property: if une D thenV1 < j<n.u-jeD. Aranked
alphabets a finite set# associated with a finiteanking relation
arity C .# x N. Define.%, as a set{f € .Z|(f,n) € arity}. The
setT (%) of termsover the ranked alphabef is the smallest set
defined by:

1. F CT(ZF);

2.ifn>1 fe I, tg,...,tne T(F) then f(ty,...,tn) € T(F).

Each term can be represented as a finite ordereét : D — %,

which is a mapping from a tree domain into the ranked alphabet

such thatvu € D:

1. ift(u) € #n, n>1then{j|u-jeD}={1,...,n};
2. ift(u) € Zpthen{j|u-je D} =0.

Theheight|| t || of atree t= f(ty,...,t) is the number of symbols
along the longest branch in the tree, i.e., ity ||, ..., ||tk ||) + 1.

g/g\ SN

h 11 12 13
/N | /N |
a b b 11 112 131

Figure 4. An Example of a Tred and its Tree DomainD =
{1,11,111,11212 13 131}, .# = {f,g,h,a,b}, || t || = 3,t(1) = f.

as follows:
n(e) =#
n(tw) =t(n(w),#), if there is no returrc matchingt in w;
n(cwav') =t(n(w),n(cw)), assumingy is well-matched;
n(aw) =a(n(w)), ifae LUZ,.

The ranked alphabe¥ = .%yu.%1U.%, used in the translation is
defined as follows.%y = {#}, where

# is a special symbol#; = Z; U, r

and %, = Z.. Regular sets of stack- |

trees form stack-tree languages, which
are isomorphic to VPLs [2].

We use this isomorphism to define,
indirectly, VPL relations. Such rela- az Iy
tions can, broadly, be classified into l J
those recognizable by various types of T3 as
finite automata and those that are not J\ !
recognizable. For instancé”,b?") is T
an example of a relation not recogniz-
able by any finite-state machine. The ’Z\
Recclass of recognizable relations, in- 8
troduced in Sec. 2.3, can be extended
to regular (stack-) tree languages, in
which case it correspond to relations
that are finite unions of cross-products
of regular (stack-) tree languages, de-
noted Recd”. The Red” class is rec-
ognizable by a tree automaton, but is
insufficiently expressive. In particular,
the languages that are elements of the cross-product agpend
dent and cannot express relations I{le8,b"). This means that if
we restricted the cross-product of queue languages to ¢eton
Rec”, we could not express protocols that senessages (sa)
asynchronously and than expect the same number of ackrpwled
ments (sayp). In other wordsRec” does not allow us to express
even simple forms of counting and synchronization.

Figure 3. An lllus-
tration of the n :
Ziov = T(F) Map-
ping for a Word:r; -
Co-ap-C3-ag-rz-rp-
a5-C4- 8.

6.2 Synchronized Tree Relations

To define a more expressive class of recognizable relatiomsise
the concept obverlap encodingl2, p. 75], inductively defined for
binary trees fronT (%) as

to(L) - -tn(1) ifarity (t (1)) =

t2(1)- ta(1) ([ta(12), - tn(12)]) if arity ((1)) <

t1(2) - -tn(2) ([t2(12),..,ta(12)], otherwise
t1(12),.,ta(12)])

wheret; (1K) is equal to # ifk > arity(tj(1)). An example of the

overlap encoding is shown in Fig. 5. Using the notion of thertap
encoding, we can define synchronized tree relations asfsilo

0
1
[tl7 --7tn] -

DEFINITION 7 (Synchronized Tree Relationsgynd” is a family
of relations RC T (. U {#})" such that{[ty, ... tn] | (t1,...,tn) €

R} is recognized by a finite tree automaton over the alphabet
(FZu{#)".

Synd” inherits all the properties from regular tree languages:
it is closed under Boolean operations and both the equatity a

Fig. 4 shows an example of a tree and its tree domain. Foltpwin
Alur and Madhusudan [2], we define an injective mapZ;., —
T(%), illustrated in Fig. 3, that translates VPL wordsstack-trees
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[r1 ’ Cs | = r1-Cs
| ) <
C Cs C2-Csg #-#
/N / N\ N
a ra az 's a-az ra-I'e
| | | | | !
C3 ag ag (o4 C3-ag a5 - C7
SN Y Y\ Y\
az I3 ©y a a0 7 azg-ag r3-# Cqp-a1p #:I7
/\ b P
3 aig a1z Q11 #-# H#H-ap

Figure 5. An Example of the Overlap Encoding. The left
(resp. middle) tree represents thetC,-ap-C3-a3-r3-f»>-a5-C4- 8
(resp.Cs-Cg-ay-ag-ag-rg-C7-a10-a11-I7-a12) VPL word.

containment are decidable. FurthermdBgnd is known to be a
strict superclass d?ecd” [12, p. 79] and allows us to express limited
forms of counting, e.g.(a",b") € Synd’. We use the introduced
family of reIations,SynC’/, to define sufficient conditions for the
decidability of reachability for a system of CVPTs in the tex
section.

7. Decidability of Reachability

In this section, we state and prove the main result of thiepap
We begin by introducing sufficient conditions for decidébilof
reachability of a system of asynchronously communicatingTs

and state the main theorem in Sec. 7.1.2, which we prove in the
section that follows it. We end the section with a discussiofow
programmers could help the model checking process by \gritin
suitable invariants, and how the presented results on csitepo
configuration reachability can be used to check compositéralo
state reachability.

7.1 Sufficient Conditions for the Decidability of Reachabiity

As discussed in Sec. 2.2, reachability is undecidable exeff-
SMs. However, if relations representing queue configunstiare
restricted to regular and recognizable, reachability dible. In
this section, we relax those restrictions, while maintaindecid-
ability. First, we allow the languages representing caistefieach
queue to be visibly pushdown, rather than just regular. Weaire
CVPTs not to generate context-free outputs, to assure MBRIT€
in a system are composable. Second, we allow relations tgrbe s
chronized, rather than just recognizable. These relaxsime or-
thogonal and each is valuable on its own, but the combinagicof
course, more powerful.

7.1.1 CVPT Composition

CVPTs are, in general, not closed under composition. As elefim
Definition 1, CVPTs accept exactly VPLs. However, even fot.VP
inputs, CVPTs can generate context-free outputs [31]. Asect-
free relations do not have the properties we require (eogtain-
ment is undecidable), we introduce the following requiratme

PROPERTY1 (Composition Property).etr : Z* — X* be a pro-
jection operator that erases all symbols from a word that ao¢
in set X. For instance, if X= {a,b} thenmk (a-d-d-b-d) =a-b.
Let M= (Ty,...,Th) be a system of CVPTs. A CVPT g said to
be composabléf a projection of its output language (i.e., a trans-
duction of some VPL L) onto the input alphabet of anis® VPL.
More formally:v1<i<n.Le ¥ = 15, ([Tj](L)) € V.

To understand the property better, suppGsis a graph repre-
senting a systeml, such that vertices represent component CVPTs

7a/'a,

D,12/'b

7a/'b,y

D,y/'a

Figure 6. Examples of CVPTs not Satisfying the Composition
Property. The left CVPT generates a context-free languzdg@,

a,b € %;, while the right CVPT reverses calls and returns, generat-
ing b"a", which is not a VPL. Each shown CVPT has one input and
one output queue, which are omitted in the transition labels

and edges represent communication between CVPTSs; thedi-is a
rected edge between two nodgsandTy if Tj sends messages to
Tk. The above property assures that a non-VPL will never be gen-
erated on any path iB. Further on, we shall consider all CVPTs to
have the composition property. Fig. 6 illustrates a few gxasof
CVPTs that do not have the composition property.

7.1.2 Synchronization

According to Property 1, the language representing theectsiof
each queue is a VPL. Thus, the contents of queues can belmsbcri
by a cross-product of VPLs in every composite control st&ie-
ilarly to word relations, such VPL relations can be recoghle,
synchronized, or rational (see Fig. 1). We use the concepymf
chronized tree relations, introduced in Sec. 6.2, to definelzo-
nized VPL relations. As we prove later, if queue and stacktiahs

in every reachable composite control state are synchronvs.
relations, then the reachability is decidable for our model

PROPERTY2 (Synchronized Configuration Property)\e say that
an asynchronous system of CVPTs hassthechronized configura-
tion propertyiff in every composite control stagreachable from
an initial configurationCo, the encodingn (L qs(3))] is a synchro-

nized tree relation, i.e.,

{[’7( )7---v’](Un)vn(Pl)v---vn(Pk)] | )
,PK) € Lgs(3)} € Synd”.

We now state the main result of this paper:

THEOREM1. Reachability is decidable for a system of composable
CVPTs with the synchronized configuration property.

7.2 Proof

The proof is structured similarly as Pachl’s proof of debitia
ity of reachability for CFSMs with a recognizable channebgr
erty? [25]. The structure of the proof is as follows. Before prov-
ing Theorem 1, we prove two helper lemmas. The first lemma
proves that given a synchronized relatlorit is decidable to check
whether it is a sound over-approximation of the set of rebleha
composite configurations, i.e., whether it is consistehe $econd
lemma proves that a composite configurats unreachable if
and only if there exists a consistent synchronized reldtipguch
that(C.0,C.p) ¢ L(C.s). Finally, the proof combines two semial-
gorithms, one of which is guaranteed to terminate. The festis
algorithm terminates i€ is reachable, and the second if it is un-
reachable. The second semialgorithm enumerates synzhcbre-
lations and checks consistency of each relation, whichdiidble

5Informally, a system has the recognizable channel propesn a cross-
product of queue languages in any composite state is a rizedgrelation
over words.
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according to the first lemma. @ is unreachable, the semialgorithm
is guaranteed to eventually find a relation that does notittet,
which exists according to the second lemma. We want to stinass
although the proof is constructive, we focus on proving teath-
ability is decidable for our model, and ignore the issuesah<¢
plexity. In other words, our proof is unlikely to serve as arthg
point for an efficient algorithm. We discuss the issues otfical-
ity and efficiency in Sec. 7.3, to which a reader not inteiBi¢he
technicalities of the proof can safely jump to.

DEFINITION 8 (Consistency)Let M= (Ty,...,T,) be a system of
CVPTs. We say that relatidn C [ § x n riis

1<i<n <i<n

consistentwith respect to M) ifC; — C, and (51.p,§1.0> €
L (Cy.s) imply ((fz.p, Cg.U) eL(Cy.9).

PRV
aeQ 1

Intuitively, a relation is consistent if it over-approxitea the
set of reachable composite configurations. For synchrdrv#el
relations, checking consistency effectively reduces tevadimple
operations (quotient and concatenation) and languagesiaci, all
efficiently computable.

LEMMA 1. Let M be a system of (restricted) CVPTs with the syn-
chronized configuration property. Checking consistenciyh(ve-
spect to M) oL is decidable.

PROOF Since each component has a finite number of control
states, the number of composite control states is also .fififte
number of possible transitions from those states is finitevels
Thus, by checking consistency with respect to every indizid
transition, we can chedk’s consistency.

Accordingly, theL relation is consistent iff for every two com-
posite control state§; and &, such thatC;.s = §, Co.s= %,

and G, —s Gy, it follows that (51.p751.0) € L(s) implies

<§z.p,§2.o) € L(%). There are three possible ways how a transi-

Thus, giverL (5;), we can compute how the relatibnchanges
after transitioning tcs,. Let us name the computed relatiéh
Hence, to checl«((fz.p,(fzﬂ) € L(3), it suffices to checkk C

L(3). Inclusion is decidable for synchronized tree relationd an
can be performed efficiently. a

The following lemma is the key component of the later proof of

Theorem 1. The lemma says that if a composite configuraien
unreachqable, there must exist a consistent reldtiomat does not
includeC.

LEMMA 2. Let M be a system of CVPTs. A configurat®iis un-
reachable from an initial configuration iff there exists anststent

synchronized relatioh and (C.pf).a) ZL(C.s).

PROOF (<= ) If C is reachable, then by the induction on the
path by which is reachabh{ﬁ.p,(f.a) eL(Cys).

(=) Conversely, ifC is unreachable, then tHegs relation
in Definition 5 satisfies the lemma condition, i.6Co.p,Co.0) €
qu<(fo.s) and (C.p,C.0) ¢ qu<(f.s>, where Gy is an initial
configuration.

Finally, we have all the formal machinery to prove the main
result of this paper:

PROOF OFTHEOREM 1 We develop two semialgorithms, such
that one of them always terminates. The first semialgoritengits
to prove reachability o, while the second attempts to prove
unreachability ofS.

Given a composite configuratioB, the first semialgorithm
searches for a path from an initial composite configurafign-—
C in a breadth-first manner. It terminate<iis reachable.

To prove unreachability, we use Gold'’s [17] language identi
cation by enumeration method, which requires that the laggsi
from a particular family can be effectively enumerated. Syo-

tion can change the queue configuration: send — appends a meshized tree relations satisfy this requirement. One can leep
sage, receive — removes a message, send-receive — does botHnerating (albeit not efficiently). relations and check consistency
and two possible ways how a transition can change the stack co (Lemma 1) of every guessed relationClfs unreachable, there ex-
figuration: call — pushes a symbol on a stack, and return — pops ists a consistent relatidn and C,p7C,a> ¢ L(C.s) — according

a symbol. All these six combinations can be synthesized Iby-co
posing four basic operations: append to and remove from aejue

and push to and pop from a stack. Thus, we can check consgistenc

by composing these basic operations and checking consystén
their compositions:

* appendL (5),qk,m) =
{(6,P1) | (G.P) € L(3),Prlk=Plk-m,pa|j =plj for j #k}

wheregy denotes the queue to which a message appended,
o removeL (S), gk, M)

{(0,p1) | (0,P) €L(9),m-P1lk =Pl Pr|j = Plj for j #k},

* push(L (8), 0y, y)
{(61,P) | (8,P) €L(9), 01|k = y- Ok, 01|j = 0] for j #k}
whereogy denotesTy’s stack andy € 'y, and

* pop(L(8),0) =

{(61,8) | (6,P) € L(3),y- 1| = Glk, Gul; = G]; for j #k}.

The effect of any transition on the queues and stacks of tteisy
can be composed of the operations above. Computing the effec
these operations amounts to applying the quotient and temea
tion operations, which are both efficiently computable forchro-
nized tree relations.

to Lemma 2 — and the second semialgorithm will eventuallysgue
it, thereby proving unreachability &. a

Next, we discuss the efficiency of the consistency checlaexp
why it is important, and generalize our definition of reagligito
symbolically defined composite configurations.

7.3 Discussion

While finding the relation that describes queue and stackguon
rations is likely to be computationally expensive (we igbithe
complexity issues in the proof, and focused on the questia®o
cidability), once the relation is known, one can efficientlyeck
consistency and reachability. (CFSMs have a similar ptypgrst
noted by Pachl [25].) Thus, if programmers provided thetiaha
which can be seen as a system invariant, reachability caiffibe e
ciently checked, by computing quotient, concatenation, en-
tainment of VPL relations. Asking programmers to providehsu
invariants for all composite states would be unproductive Pachl
showed that if the invariants are provided for at least orgeed
each loop in the composite state reachability graph, theairem
ing invariants can be automatically constructed. While weemot
proven a generalization of Pachl’s result to our model, wgan
ture that the same principle applies. Therefore, if prognans pro-
vided only loop invariants (for the loops in the compositetran-
sition graph), and if our conjecture is correct, reachgbdould be
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checked efficiently. Such a loop-invariant-based techmipuld be cepted by an automaton with a bounded delay, the lengttreiifée

a viable path towards designing practical type-state,(E.4]) sys- of any two words,|wj| — |wg|, j # K, is bounded. Resynchroniz-
tems that would automatically check the communication rems. able relations can be reduced to a finite union of the comgenen
Similar contracts, albeit far less expressive than ourse leen wise products of synchronized relations by finite sets. Tuas-l
implemented in the Singularity [24] operating system. trate that point, let us reconsider the example mention&em 2:
An interesting research challenge is how to design a specifi- R= (bMaab’,c™dX). It is easy to see th& can be expanded into a
cation language for expressing such contracts (and theiamia finite union of component-wise products of synchronizedtiehs
that programmers would write). Such a language should naide by finite sets{b™,c™)- (a2, £2) for k=0, (b™,c™) - (a?b,d - £2) for
expressive; it is undecidable to check whether an arbitratip- k=1, (b™c™. (azbb7d2 . 52) for k = 2, and(bmaali‘*27cmdk)~
nal relation is synchronized [11]. Thus, the contract dpEstion  (pp, £2) for k > 2. The concept of resynchronizability easily gener-
language should be able to express only the systems for whichgjizes to tree relations. Rational tree relations with aroteal height
the queue and stack relations are algorithmically resymihable. difference property (the difference in height between aayy pf
The properties of such contracts could be checked autoaiigtic  trees in the relation is bounded) can also be resynchrofigled
(Sec. 7.2). If programmers provided loop invariants, ini&old to Unfortunately, resynchronization (as proposed in [15]psio
contracts, such checks could be done more efficiently. not help us with more complicated cases, me@—k’bk—l - ),
Another point worth discussing is a generalization of the de  \yhjch can appear even in relatively simple systems of CVPTs.
inition of reachability (Problem 1). Even if a target configtion thermore, reducing resynchronizable relations to a finfien of

were specified in terms of a tuplg L'(S)), whereSis a composite  gynchronized relations is not intuitive — a much more stiaig
state and.’(S) is a synchronized relation, rather than in terms of &  t5nward approach would be just to insert special symbolsereh
concrete stack and queue configuration, reachability lidsitid- needed. For instance, the example discussed above couighbe s
able. To see that, we have to look at both components of th& pro . ronized by inserting two special # symbo@bf”aa&,cm##dk).

of The.orem 1. The firs.t component is a semialgqrithm thatiterm Alternatively, those special symbols could be seen as astep-
nates if the target configuration is reachable. As it makegness pause for the right tape of a 2-tape automaton. Next, wedntre

through the search space, that semialgorithm enumeratesete  gitching multitape automata that can switch reading headsnd
configurations, and checks for each one whether it belongjseto ¢ oftar reading special symbols.

target configuration (membership can be efficiently chediced

synchronized relations). The second component is a seonitilm 8.2 Switching Multitape Automata
that terminates if the target configuration is not reachahkeit
keeps enumerating consisténtelations, it can check for each one
whether the intersection with’ is empty (intersection and empti-
ness checks can be done efficiently for synchronized reigtio i Lo .
Thus, it follows that the target configurations can be spettifh behavior of individual tape heads of the automaton acogitie
terms of synchronized relations. It is easy to see that thepos- relation. For instance, the first lettarin the first example can be
ite control state reachability problem is equivalent toctesbility used as a cue for switching off the other (right) tape head the

of )" x (F*)M) wheren (resp.m) is the number of queues first letterb after theaa pattern for switching it on again. Similarly,
(re(s?).(stglclé)(. ™) (resp.m) q in the second example, the third tape head is always on, thefie

is initially on, while the second is initially off and turns@fter the
first head has reached the end of its tape. By replacing sudepa
by special padding symbols #, we can construct synchromided

For humans, it is relatively easy to see that relations(lb@aald(,
c™dk) or (@™ K, bk c™1) can be resynchronized — we can easily
detect patterns in the language that should trigger a chianipe

8. Resynchronizable Relations

Out of the two properties sufficient for decidability of rbability, tions: (bmaatiﬂcm##dk) and(amfk#kfl HMkpk=t cm-l ).

one requiring that CVPTs are composable (Sec. 7.1.1) arutltiee This section provides a characterization of such relattbas
requiring that queue contents are representable by symicedd are resynchronizable by insertion of special symbolstfie in-
VPL relations (Sec. 7.1.2), the latter is less intuitive tolerstand. troduce an automaton that can switch its tape heads on aatteff

In particular, even during our research we found oursehieking reading special switching symbols. Such symbols cannatgsha
hard about what kinds of communication patterns our fornadah the automaton’s state, only which heads are enabled, arehall
allows. The situation became even more complicated as we kep abled heads move synchronously in lock-step. Second, we sho
discovering relations that can obviously be synchronizeae- that with some restrictions the languages accepted by such a
times with a bit of additional computation, but did not ditgdit tomata can be resynchronized.

into the definition of synchronized (tree) relations. Irsthection,

we summarize our findings on what kinds of relations we found 8.2.1 Automata-Based Characterization

resynchronizablgi.e., reducible to synchronized relations. First, we - getore giving a formal definition, we describe the intuitioehind
discuss in greater depth the work of Frougny and Sakaro{lish the introduced automaton. The automaton has a finite nunfber o

on resynchronization of relations. Second, we introducea, fo tape heads, each of which can be on or off at any time. The esabl
our knowledge, type of multitape finite-state automata tilaiv heads all move together synchronously, as in the classinahso-

us to define an even larger set of resynchronizable relatidins nizedn-tape automata (see Sec. 2.3), one square (i.e., symbol) at a
purpose of introducing a new type of automata is purely ta@ha  ime |f any head reads a special switching symbol, the heade

terize a broader family of resynchronizable relations, addtailed over the special symbol (other heads reading non-switciymg-
study of their properties is out of scope and focus of thisspap bols do not move), and then the automaton switches headscon an

8.1 Bounded Delay Multitape Automata off according to the meaning of the special symbol. The sviiig
. . . . is solely dependent on the special symbols, and not on theaton
In their comprehensive study of synchronized relationsugny state in which the automaton is in. More formally:

and Sakarovitch [15] introduce-tape automata with an a-priori

bounded delay, meaning that the allowed distance between th DEFINITION 9 (Switching Multitape Automata)Let P = {0,1}
reading heads is always bounded. The relations acceptedddy s represent the possible movements of each tape Hedetsp. 1)
automata, called resynchronizable relations, have a lezlileahgth means that the head stays on the same (resp. moves to the next)
difference property, i.e., for any tupl@vy,...,wn) of words ac- symbol on the tape. Let W {0, 1} represent possible states of a

9 2011/10/3



tape head0 (resp.1) means the head is off (resp. on).siitch-
ing multitape automatois a tuple of finite set¢Z, (Q, <), W" x
S 1,F,d,switch), whereX is the input alphabet of symbols read
from the tapes(Q, <) a totally ordered (according to<) set of
special switching symbols disjoint from the input alphalé? x S
a set of states composed of a switch state of tape heads atrdicon
state, IC 1" x S is a set of initial states, E S a set of final control
statesd :W"x Sx [1 (ZuQuU{e}) xW" x Sx P"is a transi-
1<i<n
tion relation, and switchQ — W" is a total switching function that
for each symbol fron@ determines which tape heads are switched
on (and off).

Let f:W"x [ (ZuQuU{e}) = QU{.L} be afunction that

<i<

1<i<n
reads a symbol from all the tapes whose tape heads are tunmed o
reads € from the remaining heads, and returds if none of the
heads read any symbols fra or the highest precedence symbol
from Q (according to<) read by any head otherwise.
Letg:W"x 1 (ZuQu{e}) — P" be a function that com-
1<i<n

putes how each head moves if any special symbols are ready The
function reads a tupléay, ..., an) from all the tapes — such that a
represents the next symbol on the tape if the head is ong ainid
is off —and returns a tuple[] pj such that p=1ifa € Q, and
1<i<n

pi = 0 otherwise. T

Let W1,W» € W™ be two switch states of n tape heagbsge
P" a vector describing how each tape head moves, and

M (ZuQu{e}) an input tuple. The transition relation is de-
1<i<n
fined as follows:

Move without switching (Wq,s1,8 Wq,S,W1) € & if (&) = L
and (dj = €) & (Wy|; = 0). Note that the state of the heads
(on or off) does not change and that only the enabled heads
move, all in lock-step by one square (i.e., symbol).

Switch (Wq,s1,8,Wo,51,0) € 0 if f(d) = w, switchw) = Wy,
g(d) = p. Note that the control state of the automaton does
not change, only the tapes that read a special symfpir(ove,
and the switch state of heads changesap, according to the
highest precedence switching symhw) (ead.

A run of the automaton on a relatios, . .., dy is a finite sequence
of states(Wp,s1),...,(Wk,S), such that for eacld <i <k, there
exists a transition(Wi, s, &, Wit1,S+1,Wi+1) , if f(&) =L, and
(Wi,s,8,Wi+1,5+1,9(&)) otherwise. Acomplete runis a run in
which g € F.

As in the case of bounded delay multitape automata, the exten
sion of switching multitape automata from words to treesela-r
tively straightforward. In case of trees, switching synshate spe-
cial unary symbols fron¥, but have essentially the same effect as
in the word case. Thus, we skip detailed discussion. In theve
ing section, we show that relations accepted by switchinigitape
automata can be resynchronized.

8.2.2 Resynchronization

The point of introducing a new type of automata was to give eemo
accurate and encompassing characterization of relatfatscan
be translated to synchronized relations. In this sectionpvwove
that such resynchronization is indeed possible if there &s-priori
bounded number of switches on any complete run.

LEMMA 3. If switching can happen only an a-priori bounded num-
ber of times on any complete run of a switching multitape @uato
ton, then the relation it accepts can be translated (by paglavith
special# symbols) into a synchronized relation.

10

PrROOFLetAbe a switching multitape automaton. If the relation
accepted by is finite, the conclusion follows. If the accepted re-
lation is infinite, but the number of switches is boundedoiiofvs
that the switches cannot happen within loops in the statesitra
tion graph ofA. Let G = (V,E) be a state transition graph &f
such that vertice¥ = W" x Srepresent states and are labeled by
switch and control state pairs, and ed§eS V x V represent tran-
sitions labeled by symbols from if it is a switching transition,
and(Zu{e})"ifit is a move without switching. In switching tran-
sitions ((Wy,s1), (W, 1)) € E, the control state does not change,
and in non-switching transitior(§Wy, 1), (W1, S2)) € E, the switch
state does not change.

Since switches cannot happen within loops, all the strongly
connected components in the graph can be temporarily meglac
by a special super-node (like in hierarchical state machirieet
us call the graph having super-nodes instead of stronglgexiad
components5’. Such a graph is acyclic and finite, and therefore
can be expanded into a tree by duplicating parts of the gragh a
taking the initial state as the robtet us call the expanded tr&¥.

Each branch of3” has an a-priori bounded number of edges
labeled by symbols fronf2. Now, we shall traverse the tree in
preorder (root, left subtree, right subtree), performimgfollowing
operation: Letw be the last switching symbol seen during the
traversal. During the traversal, we remove all the tramsgion
input tuplesd if the positions of thee symbols ind do not match
the positions of zeros iswitch(w). For instance, if the edge label
is (¢,a,b, €) andswitch(w) = (0,0,1,1) (or (0,1,1,1)), we remove
the edge, while we leave the edgesifitchHw) = (0,1,1,0). We
perform the same operation for all the edges in the supessad
well.

After the traversal, let us prune away the nodes unreachable
from the root. Each branch in the obtained tree has a bound®d n
ber of segments, separated by switching symbols, and adlitrans
in each segment have exactly the same heads active thrdupleou
entire segment. Thus, each branch (together with the suquies)
can be encoded as a concatenation of a finite number of synchro
nized relations. The number of branches is finite. It folldlst re-
lations accepted by switching multitape automata with anbed
number of switches on any complete run can be translatedainto
finite union of products of synchronized relations. a

Early on, in Sec. 2.3, we gave an example of a relation that
is not resynchronizabl® = ((a*b)™,c™). Interestingly, relatiorR
can be annotated so that a switching multitape automatowedi
to switch tape head states an unbounded number of timestaccep
the annotated relation(w;a*w;b)™,c™), where w; (resp. wp)
switches off (resp. on) the right tape head. While it seerasriia-
tions allowing an unbounded number of switches are striotye
expressive than synchronized relations, studying theipgrties is
out of scope of this paper.

The relations with an a-priori bounded number of switches
clearly generalize the resynchronizable relations intced by
Frougny and Sakarovitch. On the other hand, it is easy tataais
relations, like (@™, bk~!,¢c™!), that cannot be resynchronized
as a finite union of the component-wise products of synchezhi
relations by finite sets, but can be resynchronized by intrtdn
of switching symbols(a™ Kawy, wpb*~!, c™ ), wherew, switches
the first head off and the second on, whibe switches the second
head off.

For some simple resynchronizable relations, like those of
Frougny and Sakarovitch, it is easy to construct an algorithat
will take an arbitrary rational relation and synchronizi itthas an
a-priori bounded length difference property, becauseehgth dif-

61f there are multiple initial states, one can always creati@gle super-root
node and the" edges to the initial states.
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ference of a rational relation is efficiently computable,[p554].
Thus, it is possible to design an algorithm that will autaosdly
insert all the switching symbols into Frougny and Sakaobwit
relations, although it is in general undecidable whetheato+
nal relation is also synchronized [11]. However, the moneegel
question of which relations can be algorithmically resywodived
(through insertion of switching symbols) is open.

Now, we describe how to symbolically represent one reaehabl
composite configuration of our motivating example from Sgc.
using a resynchronizable relation. Remaining reachabtestan
be represented similarly. A composite configuration of flyistem
of CVPTs is a tuple of client, server, and repeater’s conéions:

((s1,01,p1,02) , (2,02, 03,P4,05) , (S3, 03, ) ,

wheresy, s, 53 represent control states;, g», 03 words on stacks,
andpy,...,ps words on queues. An example of a reachable (sym-
bolic) composite configuration with complex inter-depamtles
among queue and stack languages is:

((1, Vlvgfdﬂ?ﬂafb@), (2, %yf*d*177€q*7e,dsn&*d)7
(O7e7dcnla*°>>7

wherea is the number of requests received by the selvés,the
number of acknowledgments received by the clieig,the number

of dsndmessages sent back to the server, dnsl the number of
sent and acknowledged data messages. The queue-stadénrelat
Lgs((1,2,0)) is then

(ﬁaﬁb, g,req’,e,dsnd 9, denf ¢, yp 2071 yp)a-d-1) s) ,
which is a resynchronizable relation

(ﬁa*baue?@ﬁ& wsdsnd?, denfCau, wryryh 9L YR 4L 8)7

where symbolw; switches the seventh head off, switches the
first head off and the seventh an; switches the fifth head off, and
wy switches the sixth head off and the fifth on. This relationuacc
rately models the dependencies among queue and stack tesgyua
which is the key property required to precisely compute habate
states of the example.

9. Applications

In this section, we discuss the applications of the intredumodel

in the context of two major asynchronous programming paradi

the task-based and the message-passing paradigm. At thef end
this section, we note some interesting limitations of oudeio

9.1 Asynchronous Task-Based Paradigm

queue: posting a task amounts to sending an invocation gessa
the task buffer queue.

9.2 Message-Passing Paradigm

The message-passing paradigm, in which processes conatminic
exclusively by sending messages to each other, has been-impl
mented in a number of different ways: as an integral part aba p
gramming language (e.g., Erlang, Scala), as a messagegasy
implemented as a library (e.g., MPI, SOAP, Java Messagdacgerv
Microsoft Message Queuing), or as a software as a servicelmod
(e.g., Amazon Simple Queue Service). Message-passingcappl
tions can then be viewed as a network of processes commimgjcat
over FIFO queues. It is straightforward to model such néta/as

a system of CVPTSs: each (recursive) process can be abstiatie

a Boolean program that sends and receives messages, amd in tu
the language of traces the Boolean program generates iptadce
by a visibly pushdown transducer. For example, Erlang’'ssaigs
send and receive operations (ile.andr ecei ve) closely match
send and receive operations in our model. It is also strimighard

to map basic MPI asynchronous blocking send and receiveaoper
tions (i.e.MPl _Send andMPI _Recv) to our model. Web services,
another class of message-passing applications, are étteased
applications that communicate and exchange data with atfek
able web services in order to implement required functionalhe
services typically communicate via asynchronous mespagsing
(e.g., SOAP, Ajax), and therefore again fit into our model.

9.3 Limitations

While researching possible applications of our formal nhode
also found an interesting limitation. Namely, it seems lier
model is incapable of modeling distributed continuatighsontin-
uation is an abstract representation of the control staug $tack)
of a program. Continuations are a powerful concept that lesab
for instance, a running task to be paused, its continuatiored,
and then resumed later, possibly on a different machine ntuaiel
has a limitation intrinsic to visibly pushdown transducers a
CVPT can push or pop symbols from its stack only when it re-
ceives a special call or return input symbol, respectiviiherefore,
a CVPT cannot spontaneously empty its stack, which is a guére
site for modeling continuations.

10. Future Work

We suspect that there exists another family of relationbeiween
SyncandDRatin Fig. 1, that still has decidable inclusion. If such
a family exists, the queue and stack languages in our modéd co
be even more expressive, allowing even more interestingraom
nication inter-dependencies. We plan to study the switchiulti-

The task-based programming paradigm enables programmers t tape automata with an unbounded number of switches, whig co

break up lengthy, unpredictable, time-consuming opematioto

a collection of shorter tasks. This adds reactivity to thstey,
and typically improves responsiveness and performanceny-|
running programs. Tasks can be either asynchronously géste
execution by other tasks, or triggered by events. These fwo a
proaches (and their combination) have been successfufioyed

in many domains: they form the basis of JavaScript and Sidyrer
(client-side) web applications, and have been shown udeful
building fast servers [27], routers [22], and embedded @renst-
works [21].

The formal system we propose can model this class of applica-

tions as follows. Each task (and there is a finite number ohjhe
executed on a single VPA. During execution, each task cangeha
the state of its VPA and send messages to other VPAs, whicif-is s
ficient for modeling the global shared state changes thatatsie

possibly define the missing family. A related question ig thia
designing algorithms for inserting switching symbols inésyn-
chronizable subclasses of rational relations. An imponesearch
question is to identify subclasses for which switching sptalzan
be inserted efficiently, like that of Frougny and Sakardvitand
design algorithms for those subclasses.

Our result could probably be somewhat strengthened. Fonexa
ple, we conjecture that If 4 in Definition 5 is a consistent synchro-
nized tree relation, so Isys. We base this conjecture on the fact that
the language of stack configurations of pushdown automaeayis
ular [4], which can be proved by construction of a reachgbslet
automaton. We managed to do such a construction for our model
proving that the product of stack languages is regular, Hoait re-
sult is too weak to prove the conjecture. Namely, we found ag w
to allow for synchronization between queue and stack lagesia

based models can model. The task buffer is modeled as a FIFOrequired to prove the conjecture.
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Proving complexity bounds and designing model checking al-

gorithms for our model is another important research steautds
usage of our model in practice. We expect that a similar adéiss

algorithms as those used in regular model checking, basea on
combination of grammatical inference and more standardeinod

checking techniques (e.g., [19]), could be used to modedichar
model as well.

[8] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract riegumodel
checking. Inintl. Conf. on Computer Aided Verification (CAages
372-386, 2004.

[9] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Régumodel
checking. Inintl. Conf. on Computer Aided Verification (CAYages
403-418, 2000.

[10] D. Brand and P. Zafiropulo. On communicating finite-statachines.
Journal of ACM 30:323-342, 1983.

Once model checking algorithms are developed, we expeict tha [11] O. Carton, C. Choffrut, and S. Grigorieff. Decision plems among

our model could serve as an underlying model for a type-étate,

[14]) system, in which programmers could describe congréuat

could be checked automatically. Such contracts have beeorie
strated in Singularity [24]. The model we introduce is sigintly

more expressive than the one in Singularity, and would theze
allow for much more complex communication protocols.

11. Conclusions
In this paper, we proposed a new formal model for asynchrslgou

communicating message-passing programs. The model is com-
posed of visibly pushdown transducers communicating over u

bounded reliable point-to-point FIFO queues. The proposedel
is intended for specifying, modeling, analysis, and véniy of

asynchronous message-passing programs and makes itipaesib

model (possibly recursive) programs and complex commtinita
patterns. Our results generalize the prior work on comnaiimg
finite state machines along two directions — by allowing hiigi

pushdown languages on queues, and by allowing complex inter

dependencies (i.e., synchronization) among stack andeqlaeu

the main subfamilies of rational relationmformatique Théorique et
Applications 40(2):255-275, 2006.

[12] H. Comon, M. Dauchet, R. Gilleron, C. Loding, F. Jaconzed,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techsiguel
applications, 2007. http://tata.gforge.inria.fr/.

[13] S. Eilenberg, C. C. Elgot, and J. C. Shepherdson. Setgyrézed by
n-tape automatalournal of Algebra13:447-464, 1969.

[14] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typesteeri-
fication: Abstraction techniques and complexity resulcience of
Computer Programming8:57—-82, 2005.

[15] C. Frougny and J. Sakarovitch. Synchronized ratioeddtions of
finite and infinite wordsTheoretical Comp. S¢i108:45-82, 1993.

[16] P. Ganty and R. Majumdar. Algorithmic verification ofyashronous
programs.CoRR abs/1011.0551, 2010.

[17] E. M. Gold. Language identification in the limitinformation and
Control, 10(5):447-474, 1967.

[18] S. Graf and H. Saidi. Construction of abstract statelhs with PVS.
In Intl. Conf. on Computer Aided Verification (CA\fages 72-83,
1997.

[19] P. Habermehl and T. Vojnar. Regular model checking gisiference
of regular languagesElectronic Notes in Theoretical Computer Sci-
ence 138:21-36, 2005.

guages. Our work also unifies two branches of research — ene fo [20] T. Harju and J. Karhumaki. The equivalence problem aititape

cused on task-based and the other on queue-based messaerpa

models. The results are non-trivial, because there are dwss
of infiniteness: stacks and queues. Besides proving delitglals
reachability, which is the main technical result of the papee
also introduced switching multitape automata to charatex set
of relations that can be resynchronized, and therefore |kbowed

finite automataTheoretical Comp. S¢i78:347-355, 1991.

[21] J. L. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Cullemd K. S. J.
Pister. System architecture directions for networked @ens In
Intl. Conf. on Architectural Support for Prog. Languagesda@per-
ating Systems (ASPLQ®Rges 93-104, 2000.

[22] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Keask. The
Click modular routerACM Trans. Comp. Sysl8(3):263-297, 2000.

in our model. We believe this paper is opening a number of new, [23] S. LaTorre, P. Madhusudan, and G. Parlato. Contexiitied analysis

interesting research directions (both theoretical andtjwal), and
could lead to novel languages and tools for design and araiys
asynchronous programs.
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