Design and Implementation of a Consolidated
Middlebox Architecture

Vyas Sekar
Norbert Egi
Sylvia Ratnasamy
Michael Reiter
Guangyu Shi

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-110
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-110.html

October 6, 2011




Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Design and Implementation of a Consolidated Middlebox Architecture

Vyas Sekar*, Norbert Egi'™", Sylvia Ratnasamy', Michael K. Reiter*, Guangyu Shi ''
* Intel Labs, T UC Berkeley, * UNC Chapel Hill, ™ Huawei

Abstract

Most network deployments respond to changing appli-
cation, workload, and policy requirements via the de-
ployment of specialized network appliances or “middle-
boxes”. Today, however, middlebox platforms are ex-
pensive and closed systems, with little/no hooks for ex-
tensibility. Furthermore, they are acquired from indepen-
dent vendors and deployed as standalone devices with
little cohesiveness in how the ensemble of middleboxes
is managed. As network requirements continue to grow
in both scale and variety, this bottom-up approach leads
middlebox deployments on a trajectory of growing de-
vice sprawl with corresponding escalation in capital and
management COsts.

To address this challenge, we present CoMb, a new
architecture for middlebox deployments that system-
atically applies the design principle of consolidation,
both at the level of building individual middleboxes and
managing a network of middleboxes. This paper ad-
dresses key resource management and implementation
challenges that arise in exploiting the benefits of con-
solidation in middlebox deployments. Using a prototype
implementation in Click, we show that CoMb can reduce
the network provisioning cost by up to 2.5x and reduce
the load imbalance in a network by up to 25x.

1 Introduction

Network appliances or “middleboxes” such as WAN op-
timizers, proxies, intrusion detection and prevention sys-
tems, network- and application-level firewalls, caches
and load-balancers have found widespread adoption in
modern networks. Several studies report on the rapid
growth of this market; the market for network security
appliances alone was estimated to be 6 billion dollars in
2010 and expected to rise to 10 billion in 2016 [10]. In
other words, middleboxes are a critical part of today’s
networks and it is reasonable to expect that they will re-
main so for the foreseeable future.

Somewhat surprisingly then, there has been relatively
little research on how middleboxes are built and de-
ployed. Today’s middlebox infrastructure has developed
in a largely uncoordinated manner — a new form of mid-
dlebox typically emerging as a one-off solution to a spe-
cific need, “patched” into the infrastructure through ad-
hoc and often manual techniques.

This bottom-up approach leads to two serious forms
of inefficiency. The first is inefficiency in the use of in-

frastructure hardware resources. Middlebox applications
are typically resource intensive and each middlebox is in-
dependently provisioned for peak load. Today, because
each middlebox is deployed as a separate device, these
resources cannot be amortized across applications even
though their workloads offer natural opportunities to do
so (we elaborate on this in Section 3). Second, a bottom-
up approach leads to inefficiencies in management; to-
day, each type of middlebox application has its own cus-
tom configuration interface, with no hooks or tools that
offer network administrators a unified view by which to
manage middleboxes across the network.

As middlebox deployments continue to grow in both
scale and variety, these inefficiencies are increasingly
problematic—middlebox infrastructure is on a trajectory
of growing device sprawl with corresponding escala-
tion in capital and management costs. In Section 2, we
present measured and anecdotal evidence that highlights
these concerns in a real-world enterprise environment.

This paper presents CoMb,' a top-down design for
middlebox infrastructure that aims to tackle the above
inefficiencies. The key observation in CoMb is that the
above inefficiencies arise because middleboxes today are
built and managed as standalone devices. To address
this, we turn to the age-old design principle of consol-
idation and systematically re-architect middlebox infras-
tructure to exploit opportunities for consolidation. Cor-
responding to the inefficiencies, CoMb targets consoli-
dation at two levels:

1. Individual middleboxes: In contrast to standalone,
specialized middleboxes, CoMb decouples hardware
and software, thus enabling software-based imple-
mentations of middlebox applications to run on a con-
solidated hardware platform.?

2. Managing an ensemble of middleboxes: CoMb con-

solidates the management of different middlebox ap-
plications/devices into a single (logically) centralized
controller that takes a unified, network-wide view—
generating configurations and accounting for policy
requirements across all traffic, all applications, and all
network locations. This architecture stands in contrast
to today’s approach where each middlebox application
and/or device is managed independently.

Consolidation is, of course, a well-known system de-
sign principle. Likewise, in a general context, the above

!'The name CoMb captures our goal of Consolidating Middleboxes.
2As we discuss in Section 4, this hardware platform can comprise
both general-purpose and specialized components.



strategies are not new — e.g., there’s a growing literature
on centralized network management (e.g., [14, 33, 24,
23]), and software consolidation is commonly used in
data centers. To our knowledge, however, there has been
no work on quantifying the benefits of consolidation for
middlebox infrastructure, nor any in-depth attempt to re-
architect middleboxes (at both the device- and network-
level) to exploit consolidation.

Consolidation effectively “de-specializes” middlebox
infrastructure since it forces greater modularity and ex-
tensibility. Typically, moving from a specialized archi-
tecture to one that is more general results in less, not
more, efficient resource utilization. We show however
(in Section 3) that consolidation creates new opportuni-
ties for efficient use of hardware resources. For example,
within an individual box, we can reduce resource require-
ments by leveraging (previously unexploitable) oppor-
tunities to multiplex hardware resources and reuse pro-
cessing modules across different applications. Similarly,
consolidating middlebox management into a network-
wide view exposes the option of spatially distributing
middlebox processing to use resources at different loca-
tions.

However, the benefits of consolidation come with
challenges. The primary challenge is that of resource
management since middlebox hardware resources are
now shared across multiple heterogeneous applications
and across the network. We thus need a resource man-
agement solution that matches demands (i.e., what sub-
set of traffic is to be processed by each application, what
resources are required by different applications) to re-
source availability (e.g., CPU cycles and memory at var-
ious network locations). In Section 4 and Section 5, we
develop a hierarchical strategy that operates at two levels
— network-wide and within an individual box — to ensure
the network’s traffic processing demands are met while
minimizing resource consumption.

We prototype a CoMb network controller leveraging
off-the-shelf optimization solvers. We build a prototype
CoMb middlebox platform using Click [31] running on
general-purpose server hardware. As test applications we
use: (i) existing software implementations of middlebox
applications (that we use with little/no modification) and
(ii) applications that we implement using a modular dat-
apath. (The latter developed to capture the benefits of
processing reuse). Using our prototype and trace-driven
evaluations, we show that:

e At a network-wide level, CoMb reduces aggregate re-
source consumption by a factor 1.8-2.5x or reduce
the maximum per-box load by a factor 2-25x, for a
range of real-world scenarios.

e Within an individual box, CoMb imposes little or min-
imal overhead for existing middlebox applications —
in the worst case, we record a 0.7% performance

Appliance type Number
Firewalls 166
NIDS 127
Conferencing/Media gateways 110
Load balancers 67
Proxy caches 66
VPN devices 45
WAN optimizers 44
Voice gateways 11
Middleboxes total 636

Routers ~ 900

Table 1: Devices in the enterprise network

drop relative to running the same applications inde-
pendently on dedicated hardware.

Roadmap: In the rest of the paper, we begin with a
motivating scenario in Section 2. Section 3 highlights
the new efficiency opportunities with CoMb, before Sec-
tion 4 describes the design of the network controller. We
describe the design of each CoMb box in Section 5 and
our prototype implementation in Section 6. We evaluate
the benefits and potential overheads with CoMb in Sec-
tion 7. We discuss outstanding issues in Section § and re-
lated work in Section 9, before concluding in Section 10.

2 Motivation

We begin with anecdotal evidence in support of our claim
that middlebox deployments constitute a vital component
in modern networks and the challenges that arise therein.
Our observations are based on a study of middlebox de-
ployment in a large enterprise network and discussions
with the enterprise’s administrators. The enterprise spans
tens of sites and serves more than 80K users [39].

Table 1 summarizes the types and numbers of differ-
ent middleboxes in the enterprise. We see that the total
number of middleboxes, is comparable to the number of
routers! Middleboxes are thus a vital portion of the en-
terprise’s network infrastructure. We further see a large
diversity in the type of middleboxes; studies suggest sim-
ilar diversity in ISPs and datacenters as well [37, 22].

The administrators indicated that middleboxes repre-
sent a significant fraction of their (network) capital ex-
penses and expressed the belief that processing com-
plexity contributes to high capital costs. They further
expressed concern over the anticipated mounting costs.
Two nuggets emerged from their concerns. First, they re-
vealed that each class of middleboxes is currently man-
aged by a dedicated team of administrators. This is in
part because the enterprise uses different vendors for
each application in Table 1; the understanding required
to manage and configure each class of middlebox leads
to inefficient use of administrator expertise and signifi-
cant operational expense. The lack of high-level config-



uration interfaces further exacerbates the problem. For
example, significant effort was required to manually tune
what subset of traffic should be directed to the WAN op-
timizers to balance the tradeoff between the bandwidth
savings and appliance load. The second nugget of in-
terest was their concern that market trends in the “con-
sumerization” of devices (e.g., smartphones, tablets) in-
creases the need for in-network capabilities [10]. The
lack of extensibility in middleboxes today inevitably
leads to further appliance sprawl, with associated in-
crease in capital and operating expenses.

Despite these concerns, administrators reiterated the
value they find in such appliances, particularly in sup-
porting new applications (e.g., teleconferencing), in-
creasing security (e.g., IDS), and improving performance
(e.g., WAN optimizers).

3 CoMb: Overview and Opportunities

The previous discussion shows that even though middle-
boxes form a critical part of the network infrastructure,
they remain expensive, closed platforms that are difficult
to extend, and difficult to manage. This motivates us
to rethink how middleboxes are designed and managed.
We envision an alternative architecture, called CoMb,
wherein software-centric implementations of middle-
box applications are consolidated to run on a shared
hardware platform, managed in a logically centralized
manner (see Figure 4).

The qualitative benefits of this proposed architecture
are easy to see. Software-based solutions reduce the cost
and development cycles to build and deploy new mid-
dlebox applications (as independently argued in paral-
lel work [18]). Consolidating multiple applications on
the same physical platform reduces device sprawl, and
we already see early commercial offerings leveraging
this [9, 4]. Finally, the use of centralization to simplify
network management is also well known [24, 23, 14].

While the qualitative appeal is evident, there are prac-
tical concerns with respect to efficiency. Typically, mov-
ing from a monolithic, specialized architecture to one
that is more general and extensible results in less efficient
resource utilization. However, as we show next, CoMb
introduces new efficiency opportunities that do not arise
with today’s middlebox deployments.

3.1 Application multiplexing

Consider a WAN optimizer and IDS running at an enter-
prise site. The former optimizes file transfers between
two enterprise sites and may see peak load at night when
system backups are run. In contrast, the IDS may see
peak load during the day because it monitors users’ web
traffic. Suppose the volumes of traffic processed by the
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Figure 1: Middlebox utilization peak at different times

WAN optimizer and IDS at two time instants #;,#, are
10,50 packets and 50,10 packets respectively. Today
each hardware device must be provisioned to handle a
peak load of max{10,50} = 50. A CoMb box, running
both a WAN optimizer and the IDS on the same hard-
ware platform, can flexibly allocate resources as the load
varies. Thus, it needs to be provisioned to handle the
peak total load of 60 packets or 40% fewer resources.
Figure 1 shows a time series of the utilization of four
middleboxes at an enterprise site, each normalized by
its maximum observed value. If NormUtil;pp is the nor-
malized utilization of the device app at time ¢, to quan-
tify the benefits of multiplexing, we compare the sum of
the peak Y., max, {NormUtil;,,,} =4, and the peak to-

tal max,{Y.,,, NormUtily,,} = 2.86. Thus, in Figure 1,

multiplexing requires 4_4& = 28% fewer resources.

3.2 Reusing software elements

Each middlebox typically needs low-level modules
for packet capture, parsing headers, reconstructing
flow/session state, parsing application-layer protocols
and so on. If the same traffic is processed by many
applications—e.g., HTTP traffic is processed by an IDS,
proxy, and an application firewall-each appliance has to
repeat these common actions for every packet. When
these applications run on a consolidated platform, we
could reuse these basic modules (Figure 2).

Consider an IDS and proxy. Both need to recon-
struct session- and application-layer state before running
higher-level actions. Suppose each device needs 1 unit
of processing per packet with these common tasks con-
tributing 50% of the processing. Both appliances pro-
cess HTTP traffic, but may also process traffic unique
to each context; e.g., IDS processes UDP traffic which
the proxy ignores. Suppose there are 10 UDP packets
and 45 HTTP packets. The total resource requirement
is (IDS = 10 + 45) 4+ (Proxy = 45) = 100 units. The
setup in Figure 2 avoids duplicating the common tasks
for HTTP traffic and needs 45 0.5 =22.5 units or 22.5%
fewer resources.

To measure the traffic overlap, we obtain (public) con-
figurations for Bro [34] and Snort [1] and the (private)
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Figure 3: Spatial distribution as traffic changes

configuration for a WAN optimizer. Then, using flow-
level traces (from Internet2), we find that the traffic over-
lap between applications is typically 64-99% [39]. We
are not aware of middlebox vendors with reusable mod-
ules and data on their software design is hard to obtain.
Our benchmarks from Section 7.1 show that the common
modules can contribute 26-88% across applications.

3.3 Spatial distribution

Consider the topology in Figure 3 with three nodes N1—
N3 and three end-to-end paths P1-P3. The traffic on
these paths peaks to 30 packets at different times as
shown. Suppose we want all traffic to be monitored by
IDSes. The default deployment is an IDS at each ingress
N1, N2, and N3 for monitoring traffic on P1, P2, and P3
respectively. Each such IDS needs to be provisioned to
handle the peak volume of 30 units with a total network-
wide cost of 90 units.

With a centralized network-wide view, however, we
can spatially distribute the IDS responsibilities. That is,
each IDS at N1-N3 processes a fraction of the traffic on
the paths traversing the node (e.g., [38]).> For example,

3Here, we assume that IDSes are “on-path” or their upstream
routers redirect packets to them [16].
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Figure 4: The network controller assigns processing re-
sponsibilities to each CoMb box.

at time T1, N1 uses 15 units for P1 and 5 for P3; N2 uses
15 units for P2 and 5 P3; and N3 devotes all 20 units to
P3. We can generate similar configurations for the other
times as shown in Figure 3. Thus, distribution reduces
the total provisioning cost 909_060 = 33% compared to an
ingress-only deployment. Note that this is orthogonal to
application multiplexing and software reuse.

Using time-varying traffic matrices from Internet and
the Enterprise network, we find that spatial distribution
can provide 33 — 55% savings in practice.

3.4 CoMb Overview

Building on these opportunities, we envision the archi-
tecture in Figure 4. Each middlebox in CoMb runs mul-
tiple software-based applications (e.g., IDS, proxy, Fire-
wall). These applications can be obtained from indepen-
dent vendors and could differ in their software architec-
tures (e.g., standalone vs. modular). CoMb’s network
controller assigns processing responsibilities across the
network. Each CoMb middlebox receives this configu-
ration and allocates hardware resources to the different
applications.

4 CoMb Network Controller Design

In this section, we describe the design of CoMb’s net-
work controller and the management problem it solves
to assign network-wide middlebox responsibilities.

4.1 Input Parameters

We begin by describing the three high-level inputs that

the network controller needs.

e AppSpec: For each application m (e.g., IDS, proxy,
firewall), this specifies: (1) 7™, the traffic that m needs
to run on (e.g., what ports and prefixes), and (2) pol-
icy constraints that the administrator wants to enforce
across different ms. These constraints specify rela-
tionships of the form m < m’ on the order in which
different applications need to run [21]. For example,
all web traffic should first go through a firewall, then



an IDS, and finally a web proxy. Most applications
today (e.g., firewalls, load balancers, IDSes, proxies,
WAN optimizers) operate at a session or connection-
level granularity and we assume each m operates at
this granularity.*

o NetworkSpec: This has two components: (1) a de-
scription of end-to-end routing paths and the location
of the middlebox nodes on each path and, (2) a spec-
ification of different types of traffic T partitioned into
classes T =|J.T.. Each class ¢ can be a high-level
description of the form “port-80 sessions initiated by
hosts at ingress A to servers in egress B” or described
by more precise traffic filters defined on the IP 5-tuple
(e.g., srcIP=10.1. % .x, dstIP=10.2. x .x, dstport=80, sr-
cport="*). For brevity, we assume each class 7, has
a single end-to-end path with the forward and reverse
flows within a session following the same path (in op-
posite directions).> Each application m subscribes to
one or more of these traffic classes; i.e., 7™ € 27,

e BoxSpec: This captures the hardware capabilities of
the middlebox hardware: Prov, , is the amount of re-
source r (e.g., CPU, memory) that node n is provi-
sioned, in units suitable for that resource. Each plat-
form may also (optionally) support specialized accel-
erators (e.g., GPU units or crypto co-processors).

Given the hardware configurations, we also need
the (expected) per-session resource footprint, on the
resource r, of running a application m. Each m may
have some affinity for hardware accelerators; e.g.,
some IDSes use hardware-based DPI. These require-
ments may be strict (i.e., the application only works
with hardware support) or opportunistic (i.e., offload
for better performance). Now, the middlebox hard-
ware at each node n may or may not have such accel-
erators. Thus, we use generalized resource footprints
F, . that depend on the specific middlebox node to
account for the presence/absence of hardware acceler-
ators. For example, the footprint will be higher on a
node without an optional hardware accelerator and the
application needs to emulate this feature in software.
In practice, these inputs are already available or easy

to obtain. The NetworkSpec for routing and traffic infor-
mation is already collected for other network manage-
ment applications such as traffic engineering or anomaly
detection [13]. The traffic classes and policy constraints
in AppSpec and the hardware capacities Prov, ,s are
known to administrators; we simply require that these be
made available to the network controller. The only com-
ponent that imposes new effort is the set of F,, ,,, values
in BoxSpec. These can be obtained by running offline
benchmarks similar to Section 7; even this effort is re-

It is easy to extend to applications that operate at per-packet or
per-flow granularity; we do not discuss this for brevity.
SWe discuss how to handle multiple/asymmetric paths in Section 8.

quired infrequently (e.g., only after hardware upgrades).

4.2 A strawman formulation

Given these inputs, the controller’s goal is to assign pro-
cessing responsibilities to middleboxes such that all pol-
icy requirements are satisfied. That is, each class of traf-
fic is processed by the required sequence of applications.
At the same time, we want to ensure that each node op-
erates within its provisioned capacity and the processing
load is balanced across the network.

We begin with a strawman formulation of the man-
agement problem involved here. Even though this straw-
man will not be practical, it is a useful exercise because
it highlights the key constraints and parameters involved
and it establishes a theoretically optimal baseline to eval-
uate practical approximations.

At a high-level, we need to decide if middlebox 7 runs
the application m on a session i. We can capture this
using a {0,1} decision variable for each n,i,m combina-
tion. Doing so, however, ignores the potential for reusing
common actions (e.g., session reassembly) across appli-
cations. To capture reuse, we decompose the applica-
tion m into its constituent actions, some of which are
application-specific (and hence non-reusable) and others
which are common/reusable (as in Figure 2). We intro-
duce {0,1} decision variables a; , that specify if node n
runs action a on the session i.

As Figure 2 shows, each action a may run on top of
other lower-layer actions. Thus, if a depends on a lower-
layer action a’, denoted by a C ' (e.g., IDS depends-on
session reconstruction), then a can occur on a node only
if this node has already run @’ for this session. Formally,

Vi,n,Va C d: Aip < a;,n (1

Next, we model the processing requirements for each
application m. Let n €, ¢ denote that node n is on the
routing path for the traffic in 7. For simplicity, we as-
sume that each m can be run anywhere along its path.
(Section 7.3 presents an extension when some applica-
tions have topological placement constraints.) Hence, we
need to ensure that each session of interest to m has been
processed by an instance of m somewhere along the path.
For convenience, we combine the non-reusable actions
for each m and express these constraints only for this ag-
gregate action; let ¢ denote this aggregate non-reusable
action for m. Thus,

VmNT. € T"VieT.: Y, df,=1 (2)

n€parh€
Now, we also need to model policy dependencies across
applications. Suppose we have a policy constraint be-
tween m < m’ (e.g., firewall before proxy). Let <. cap-
ture the on-path ordering between nodes on the route for



class ¢.° Then, we need to ensure that some upstream

node on the path has already run m before we can run 7'

Vm <m' NT. € T"NT" Vi€ T,

!
.o m
VN €pah C din < Z a;y 3)
n’epa,hc
n'<cn

Last, we need to model the resource consumption on
each middlebox. Because we decomposed each m into its
constituent actions, we need to correspondingly split the
resource footprints F,, ,,. Let F,,, be the per-session
resource footprint of action a on the resource r (e.g.,
CPU, memory) defined in units suitable for the resource.
As discussed earlier, we allow Fy ., to differ across the
nodes to account for differences in their (specialized)
hardware capabilities. To capture strict requirements,
where some a cannot run without a specific hardware ac-
celerator, we use a simple preprocessing step to set the
F values for ns without this accelerator to o (some large
constant). This ensures that this action never gets as-
signed on nodes without the accelerator.

With this in place, we can account for the rotal load
on resource r at node n and ensure that it never exceeds
the provisioned capacity Prov, .

Vn,r:loadn,:M <1 4
’ Prov, ,

Given these constraints, we can consider different
management objectives: (1) minimizing the cost to pro-
vision the network, min},, . Prov, ,, to handle a given set
of traffic patterns, or (2) having chosen a provisioning
regime, load balancing to minimize the maximum load
across the network, minmax, ,{load, ,}, under the cur-
rent workload.

Now, the above model is functionally complete. It
faithfully captures (a) the reuse of common actions
across applications, (b) policy dependencies across ap-
plications, and (c) the use of specialized hardware ca-
pabilities. However, this model is woefully impracti-
cal. Constructing a session-level formulation is tedious;
worse still, solving this involves a large discrete opti-
mization problem which is theoretically intractable.

4.3 A Practical Reformulation

Next, we reformulate the above management problem
under a slightly constrained operational model. While
this is not theoretically optimal, it is tractable and has
near-optimal performance in practice (Section 7.4).

The main idea in this alternative model is that all ap-
plications pertaining to a given session run on the same

SFor a bi-directional session, path ordering is based on the forward
or initiating direction.
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node. That is, if some session i needs to be processed
by applications m; and my (and nothing else), then we
force both m; and m, to analyze i on the same node. For
example, m; (say IDS) processes HTTP and UDP traffic;
my (say WAN-optimizer) processes HTTP and NFS traf-
fic. Now, consider a HTTP session i. In the strawman,
we could run m; on node n; and my on node n, for i.
The new model, however, will run both m; and m, for i
on nj. Note that we can still assign different sessions to
other nodes; for a different HTTP session i, m; and m;
could run on n,. The key difference here is that the straw-
man model has an extra degree of freedom where it can
choose to replicate common tasks, if it is optimal to do
so. Appendix A shows a corner case when the strawman
solution could be better than this hyperapp model.

Under this operational model, for each class ¢ we iden-
tify the exact sequence of applications that run on ses-
sions in c. We call each such sequence a hyperapp. For-
mally, if A, is the hyperapp for the traffic class ¢, then
Vm:T. € T" < m € h.. (Different classes could have
the same hyperapp.) Each hyperapp also statically de-
fines the policy order across its constituent applications.
Figure 5 shows the three hyperapps for the previous ex-
ample: one for HTTP traffic (processed by both m; and
my), and one each of UDP/NFS traffic (processed by ei-
ther m; or my but not both).

This new model serves three practical purposes. First,
it provides an alternative way to capture savings from
reusing common actions. Specifically, it eliminates the
need to model discrete actions and their dependencies in
Eq(1). Similar to the per-session resource footprint F, , ,
of a discrete action a on resource r, we can define the per-
session hyperapp-footprint of the hyperapp 4 on resource
r as Fy, ;. ,. This implicitly accounts for the common ac-
tions across applications within 4. Note that the RHS of
Figure 5 does not show the common action; instead, we
include the costs of the common action when comput-
ing the F values for each hyperapp. As in the strawman,



we allow Fs to capture the availability of hardware ac-
celerators. This requires us to the hyperapps and their
F values as part of the inputs in AppSpec and BoxSpec.
We do so by explicitly enumerating all possible hyper-
app sequences requiring time exponential in the number
of applications. Fortunately, this is a one-time task and
there are only a handful of applications (< 10) as Table 1
shows.

Second, it obviates the need to explicitly model the or-
dering constraints across applications in Eq(3). Because
all the applications relevant to a session run on the same
physical node, enforcing policy ordering becomes a sim-
pler local scheduling decision. This can be delegated to
each CoMb box (Section 5).

Third, it simplifies our traffic model. Instead of speci-
fying each discrete session in Eqs(2) and (4), we can con-
sider the total volume of traffic in each class. This means
we can aggregate the discrete per-session variables for
each action a into continuous variables d., specifying
the fraction of traffic belonging to the class ¢ that each
node n has to process (i.e., run the hyperapp h.). Let |T¢|
to denote the volume of traffic in class c.

Minimize max{load, ,}, subject to (5)
rn

den|Tel i

Vn,r: load, , = Z M )
CNEpapC PrOVn,r
Ve Z dey=1 (7
neputhc

Ve,n: 0<d,., <1 8)

With the above reformulation, the optimization problem
can be expressed as a linear program in Eq(5)-Eq(8).
(For brevity, we only show the load balancing objective.)
The controller solves the optimization to find the opti-
mal values of the d, ,s. Then it maps these d values into
suitable device-level configurations for each middlebox
n. From a design viewpoint, we do not require a specific
implementation and discuss two alternatives in Section 6.

S CoMb Single-box Design

We now turn to the design of a single CoMb box. As de-
scribed in the earlier sections, the output of the network
controller is an assignment of processing responsibilities
to each CoMb box. This assignment specifies:

o a set of (traffic class, fraction) pairs {(Z, d.,)} that
describes what traffic (type and volume) is to be pro-
cessed by the CoMb box n in question

o the hyperapp &, associated with each traffic class T,
where each hyperapp is an ordered set of one or more
middlebox applications.

We start with our overall system architecture and
then describe how we parallelize this architecture over

a CoMb box’s hardware resources.
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Figure 6: Logical view of a CoMb box
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Figure 7: An example with two hyperapps: m; < my and
my < m3. hyperapp-per-core clones m;.

5.1 System Architecture

At a high level, packet processing within a CoMb box
comprises three logical stages as shown in Figure 6. An
incoming packet must first be classified, to identify what
traffic class 7, it belongs to. Next, the packet is handed
to a policy enforcement layer responsible for steering the
packet between the different applications corresponding
to the packet’s traffic class, in the appropriate order; fi-
nally, the packet is processed by the appropriate middle-
box application(s). Of these, classification and policy
enforcement are a consequence of our consolidated de-
sign and hence we aim to make these as lightweight as
possible.We elaborate on the role and design options for
each stage next.



Classification: The CoMb box receives a serial stream
of undifferentiated packets. Since different packets may
be processed by different applications, we must first
identify what traffic class a packet belongs to. There
are two broad design options here. The first is to do the
classification in hardware. Many commercial appliances
rely on custom NICs with ASICs for sophisticated high-
speed classification and even commodity server NICs to-
day support such capabilities [5]. A common feature
across these NICs is that they support a large number
of hardware queues (on the NIC itself) and can be con-
figured to triage incoming packets into these queues us-
ing certain functions (typically exact-, prefix- and range-
matches) defined on the packet headers. The second op-
tion is software-based classification — incoming packets
are classified entirely in software and placed into one of
multiple software queues.

The tradeoff between the two options is one of ef-
ficiency vs. flexibility. Software classification is fully
general and programmable but consumes significant pro-
cessing resources; e.g., Ma et al. report general software-
based classification at 15 Gbps (comparable to a com-
modity NIC) on a 8-core Intel Xeon X5550 server [40].

Our current implementation assumes hardware classi-
fication. From an architectural standpoint, however, one
can view the two options as equivalent in the abstrac-
tion they expose to the higher layers: multiple (hardware
or software) queues with packets from a traffic class 7,
mapped to a dedicated queue.

We assume that the classifier has at least as many
queues as there are hyperapps. This is reasonable since
existing commodity NICs already have 128/256 queues
per interface, specialized NICs even more, and software-
based classification can define as many as needed; with
6 applications, the worst-case number of hyperapps is
26 =64.

A final question is whether the middlebox receives
packets that it has not been assigned to process. We defer
this to Section 6.

Policy Enforcer: As mentioned, the job of the policy
enforcement layer is to ‘steer’ a packet p in the correct
order between the different applications associated with
the packet’s hyperapp. Why is this needed? The applica-
tions on CoMb box could come from independent ven-
dors and we want to run applications such that they are
oblivious to our consolidation. Hence, for a hyperapp
comprised of (say) IDS followed by Proxy, the IDS ap-
plication would not know to send the packet to the Proxy
for further processing. Since we do not want to mod-
ify applications, we introduce a lightweight policy shim
(pshim) layer.

We leverage the above classification architecture to de-
sign a very lightweight policy enforcement layer. We
simply associate a separate instance of a pshim with each

output queue of the classifier. Since each queue only
receives packets for a single hyperapp, the associated
pshim knows that all the packets it receives are to be
routed through the identical sequence of applications.

Thus beyond retaining the sequence of applications
for its associated hyperapp/traffic-class, the pshim does
not require any complex annotation of packets or state-
keeping. In fact, if the hyperapp consists of a single ap-
plication, the pshim is essentially a NOP.

Applications: Our design supports two application soft-
ware architectures: (1) standalone software processes
(that run with little/no modification) and (2) applications
built atop an ‘enhanced’ network stack with reusable
software modules for common tasks such as session re-
construction and protocol parsing as described in Sec-
tion 6. We currently assume that applications using cus-
tom accelerators access these using their own libraries.

5.2 Parallelizing a CoMb box

We assume a CoMb box offers a number of parallel
computation cores — such parallelism exists in general-
purpose servers (e.g., our server-based prototype uses
8 x86 ‘Westmere’ cores) and is even more prevalent in
specialized networking hardware (e.g., Cisco’s Quantum
Flow packet processor offers 40 Tensilica cores). We
now describe how we parallelize the functional layers de-
scribed earlier on this underlying hardware.

Parallelizing the classifier: Since we assumed hard-
ware classification, our classifier runs on the NIC and
does not require parallelization across cores. We refer
the reader to [40] for a discussion of how a software-
based classifier might run on a multi-core system.

Parallelizing a single hyperapp: Recall that a hyperapp

is really a logical entity—a sequence of middlebox appli-

cations that all need to process a packet. The two options

we have in parallelizing a hyperapp are (Figure 7) :

1. App-per-core: each application belonging to the hy-
perapp is run on a separate core and the packet is
steered between cores.

2. hyperapp-per-core: all applications belonging to the

hyperapp are run on the same core; hence a given ap-
plication is cloned with as many instances as the num-
ber of hyperapps in which it appears.

The advantage of the second over the first approach
is that a packet is processed in its entirety on a single
core, avoiding the overhead of inter-core communication
and cache invalidations that may arise as shared state
is accessed by multiple cores. (This overhead occurs
more frequently for applications built to reuse process-
ing modules in a common stack.) The disadvantage of
the hyperapp-per-core relative to the app-per-core, is that



it could incur overhead due to context switches and po-
tential contention over shared resources (e.g., data and
instruction caches) on a single core. Which way the scale
tips depends on the overheads associated with inter-core
communication, context switches, efc. which vary across
hardware platforms. We ran a number of tests (differ-
ent applications and hyperapp scenarios) on our proto-
type server (Section 7) and found that the hyperapp-per-
core approach consistently offered superior or compara-
ble performance.

Table 2 shows a sample test result for two synthetic
hyperapps: (1) multi-IDS uses k instances of a Snort pro-
cess in sequence and (2) multi-loopback uses & instances
of a simple loopback process. We pick these as repre-
senting two extremes of resource intensiveness — Snort
is both CPU and memory intensive, while the loopback
consumes negligible CPU/memory. We choose to chain
instances of a single application for simplicity (results
using a diverse set of functions yielded similar results).

k, Throughput (Mpps)
#fn-per Multi-Snort Multi-Loopback
hyperapp | fn/core | hypapp/core | fn/core | hypapp/core
2 1.32 1.38 -1 -1
4 0.66 0.67 1.62 1.48
6 0.43 0.42 1.02 0.93

Table 2: Total throughput as a function of length of the
hyperapp chain on a 12-core XXX GHz foo platform.
The throughput is lower with longer chains as the per-
packet processing increases.

Table 2 shows throughput vs. k. We see that for
more realistic applications (multi-Snort), the hyperapp-
per-core strategy performs better or nearly identical to
the application-per-core strategy. The worst case for the
hyperapp-per-core approach is actually the trivial loop-
back application and even in that case throughput drops
by at most 8%. We note that these results are consis-
tent with independent results for parallelizing applica-
tion modules in software routers [30]. In light of our ex-
periments and these independent results, we choose the
hyperapp-per-core model because it simplifies the paral-
lelization of the pshim (see below) and ensures core-local
access to reusable data structures.

Parallelizing the pshim layer: This leaves us with
the question of how we parallelize the policy enforce-
ment layer. Recall that we had decided to have a sep-
arate instance of a pshim for each hyperapp. Given
the hyperapp-per-core approach, parallelizing it is triv-
ial. We simply assign a pshim instance to run co-located
at the same core as its associated hyperapp.

Parallelizing multiple hyperapps: We are left with one
outstanding question: given multiple hyperapps, how

Core 1 Core 2 Core 3
4]
Hyper | |Hyper Hyper Hyper | | Hyper
Appl | |App2 App3 App4 | |App3
f
Pshim | | pshim [Pshim | [Pshim | | pshim |

e

NIC hardware

ol o

Figure 8: CoMb box: Putting the pieces together

many cores, or fraction of a core, do we assign each?
The reason we might create multiple instances of a sin-
gle hyperapp is if the total workload for some hyperapp
exceeds the processing capacity of a single core. That is,
given the total traffic that node n needs to process for hy-
perapp i, Y. —nden|Te|, and the per-packet CPU foot-
prints F}, cpy », We need to instantiate this hyperapp 4 on
multiple cores if needed. At the same time, we also want
to avoid a skewed allocation across cores.

This hyperapp-to-core mapping problem can be ex-
pressed as a simple linear program that assigns a frac-
tion of the traffic relevant to 4 to each core. There are
two constraints: one to ensure that no core exceeds its
capacity and another to ensure that each hyperapp’s pro-
cessing work is completely assigned. Let gj; denote the
fraction (€ [0, 1]) of traffic relevant to / that should be as-
signed to the core j. Eq(10) ensures that each core does
not exceed its processing capacity Procj and Eq(11) en-
sures that each hyperapp’s processing work is assigned.
In practice, this calculation need not occur at the CoMb
box; the controller can run this optimization and push the
resulting configuration.

minmax{cpuload,} 9)
J

Yu&njlThn|Frcrun
Proc;

Vh:Y gnj=1 (11)
j

Vj : cpuload; = <1 (10)

Vhji0<g, <1 (12)

5.3 Recap and Discussion

Combining the previous design decisions brings us to the

design in Figure 8. We see that:

e Each core is assigned one or more hyperapps; all ap-
plications within a hyperapp run on the same core,
and hyperapps whose total workload exceeds a sin-
gle core’s capacity are instantiated on multiple cores
(e.g., HyperApp3 in Figure 8).



e Incoming packets are classified at the NIC and placed
into one of multiple NIC queues; each traffic class is
assigned to one or more queues and different traffic
classes are mapped to different queues.

e Each hyperapp instance has its corresponding pshim
instance; the pshim is pinned to the same core as its
associated hyperapp and reads packets from a dedi-
cated NIC queue; e.g., HyperApp3 in Figure 8 runs
on Core2 and Core3 and has two separate pshims.’

The resultant design has several desirable properties con-

ducive to achieving high performance:

e a packet is processed in its entirety on a single core
(avoiding inter-core synchronization overheads)

e we introduce no shared data structures across cores
(avoiding needless cache invalidations)

e there is no contention for access to NIC queues (avoid-
ing the overhead of locking)

e policy enforcement is lightweight (stateless and re-
quiring no marking or modification of packets)

6 Implementation

In this section, we describe prototype implementations
of the different components in the CoMb architecture.

6.1 CoMb Controller

We implement the controller’s algorithms using an off-
the-shelf solver (CPLEX). The controller periodically runs
an optimization that takes as inputs: the current per-
application-port traffic matrix per ingress-egress pair, the
traffic of interest to each application, policy ordering
and hardware-accelerator constraints for each applica-
tion, and the resource footprints (per-application for stan-
dalone and per-action for modular applications). The
controller runs a pre-processing step to generate the hy-
perapps and their effective resource footprints taking into
account the affinity of actions/applications for specific
accelerators.

After running the optimization, it maps the d., val-
ues to a device-level configuration in one of two ways.
If the CoMb box has TCAM-like classification [5], the
controller maps each d,, into a set of (non-overlapping)
traffic filters. As a simple example, suppose c¢ de-
notes all traffic from sources in 10.1.0.0/16 to desti-
nations in 10.2.0.0/16, and dep, = dey, = 0.5. Then
the filters for n; = (10.1.0.0/17,10.2.0.0/16) and ny =
(10.1.128.0/17,10.2.0.0/16). (One subtle issue is that
it also installs filters corresponding to traffic in the re-
verse direction.) Note that if each CoMb box is off-
path [16], these filters can be pushed to the upstream

"The traffic split between the two instances of HyperApp3 also oc-
curs in the NIC using filters as in Section 6
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Figure 9: Our modular middlebox implementation

router/switch. If the NIC doesn’t support such filters, or
has a limited number of filter entries, the controller uses
a hash-based configuration [38]. For the above example,
it sends n; = (10.1.0.0/16,10.2.0.0/16, hash € [0,0.5])
and np (10.1.0.0/16,10.2.0.0/16, hash € [0.5,1]).
Each device’s pshim does a fixed-length (/16) prefix
lookup, computes a direction-invariant hash of the IP 5-
tuple [29], and checks if it is in the assigned range.

6.2 CoMb box prototype

We prototype a CoMb box on a general-purpose server
(without accelerators) with two Intel Westmere CPUs
each with four cores at 3.47GHz (X5677) and 48GB
memory, configured with four Intel 82599 10 GigE NIC
ports [5] each capable of supporting up to 128 queues,
running Linux (kernel v.2.6.24.7).

Classification: We leverage the classification capabili-
ties on the NIC. The NIC classifies the packets and de-
multiplexes them into separate hardware queues based
on the filters (from the controller) for each hyperapp.
The 82599 NIC supports 32K classification entries over:
src/dst IP addresses, src/dst TCP/UDP ports, IP protocol,
VLAN header, and a flexible 2-byte tuple anywhere in
the first 64 bytes of the packet. We currently use only the
address and port fields to create filter entries.

Policy Enforcer: We implement the pshim in kernel-
mode SMP-Click [31] following the design in Section 5.
In addition to the policy enforcement, the pshim im-
plements two additional functions: (1) creating inter-
faces for the application processes to receive/send pack-
ets from/to (see below) and (2) the above (optional) hash-
based check to decide whether to process or ignore a spe-
cific packet.

6.3 CoMb applications

Our prototype supports two application architectures:
modular middlebox applications in Click and standalone
middlebox processes (e.g., Snort, Squid).

Modular middlebox applications: As a proof-of-
concept prototype, we implement a signature-based
intrusion detection, flow-level monitoring, a caching



proxy, and a load balancer as user-level modules in Click
(Figure 9). As such, our focus is to demonstrate the fea-
sibility of building modular middlebox applications and
establish the potential for reuse. (We leave it to future
work to explore the choice of an ideal software architec-
ture and an optimal set of reusable modules.)

To implement these applications, we port the ses-
sion reconstruction (fragment/TCP reassembly) logic
and protocol parsers (for HTTP and NFS) from Bro [34].
We implement a custom flow monitoring system. We
realize a signature-based IDS porting Bro’s signature
matching module. We also built a simple custom Click
module for TFTP traffic. The load balancer is a layer-7
application that assigns HTTP requests to different back-
end servers by rewriting packets. The cache mimics ac-
tions in a caching proxy (i.e., storing and looking up re-
quests in cache), but does not rewrite packets.

While Bro’s modular design made it a very useful
starting point, its intended use is a standalone IDS while
CoMb envisions reusing modules across multiple appli-
cations from different vendors. This led to one key dif-
ference. Modules in Bro are tightly integrated; lower lay-
ers are aware of the higher layers using them and “push”
data to them. We avoid this tight coupling between the
modules and instead implement a “pull” model where
lower layers expose well-defined interfaces using which
higher-layer functions obtain relevant data structures.

Supporting standalone applications: Last, we focus
on how a CoMb box supports standalone middlebox ap-
plications (e.g., Snort, Squid). We run the standalone ap-
plications as separate processes over our pshim (which
runs in kernel-mode Click). The pshim copies packets
into a shared memory region, readable by these applica-
tion processes. Application processes can access these
in one of two modes. If we have access to the appli-
cation source, we use minor source modifications; e.g.,
in Snort we replace 1ibpcap calls with a memory read
to this shared region. Otherwise, we emulate virtual net-
work interfaces to run binary-only applications where we
do not have access to the source.

7 Evaluation

Our evaluation addresses the following high-level ques-
tions w.r.t. the benefits and overhead in CoMb:

o Single-box benefits What reuse benefits does consol-
idating applications on the same box provide? (Sec-
tion 7.1)

o Single-box overhead Does consolidating applications
affect performance and extensibility? (Section 7.2)

o Network-wide benefits What are the benefits that net-
work administrators can realize using CoMb? (Sec-
tion 7.3)
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Application Dependency chain | Contribution (%)
Flowmon Session 73
Signature Session 26

Load Balancer HTTP,Session 88
Cache HTTP,Session 54
Cache NEFS,Session 50
Cache TFTP,Session 36

Table 3: Contribution of reusable modules

o Network-wide overhead How practical and efficient
is CoMb’s controller? (Section 7.4)

7.1 Potential for reuse

First, we measure the potential for processing reuse
by refactoring middlebox applications. As Section 3.2
showed, the savings from reuse depends both on the
processing footprints of reusable modules and the spe-
cific traffic patterns/overlap. Here, we focus only on the
former and defer the combined effect to the network-
wide evaluation (Section 7.3). We use real packet traces
(with full payloads) for these benchmarks.® Because we
are only interested in the relative contribution, we run
these benchmarks with a single userlevel thread in Click.
We use PAPI’ to measure the number of CPU cycles
per-packet each module uses. Note that an application
like Cache uses different processing chains (e.g., Cache-
HTTP-session vs. Cache-NFS-session); the relative con-
tribution depends on the sequence. Table 3 shows that the
reusable modules contribute a significant fraction, 26-
88%, of the overall processing across the different ap-
plications.

7.2 CoMb single-box performance

We tackle three concerns in this section: (1) What over-
head does CoMb add for running individual applica-
tions? (2) Does CoMb scale well as traffic rates in-
crease?, and (3) Does application performance suffer
when administrators want to add new functionality?

For the following experiments, we report throughput
measurements using the same full-payload packet traces
from Section 7.1 on our prototype CoMb server with two
Intel Westmere CPUs each with four cores at 3.47GHz
(X5677) and 48GB memory. (The results are consistent
with other synthetic traces as well.)

8From https://domex.nps.edu/corp/scenarios/2009-m57/net/;
are not aware of other traces with full payloads.
%http://icl.cs.utk.edu/papi/

we



Application architecture Overhead (%)
(instance) Shim-simple ‘ Shim-hash
Standalone (Snort) -61 -58
Modular (IPSec) 0 0.73
Modular (RE [12]) 0 0.62

Table 4: Performance overhead of the shim layer for dif-
ferent middlebox applications

7.2.1 Shim Overhead

Recall from Section 6 that CoMb supports two types of
middlebox software: (1) standalone applications (e.g.,
Snort), and (2) modular applications in Click. Table 4
shows the overhead of running a representative middle-
box application from each class in CoMb on a single core
in our platform. We show two scenarios, one where all
classification occurs in hardware (labeled shim-simple)
and when the pshim runs an additional hash-based check
as discussed in Section 6 (labeled shim-hash). For mid-
dlebox modules in Click, shim-simple imposes zero over-
head. Interestingly, the throughput for Snort is better
than its native performance. The reason is that Click’s
packet capture routines are more efficient than native
Snort (1ibpcap or daq). We also see that shim-hash
adds only a small overhead over shim-simple. This re-
sult shows that running applications in CoMb imposes
minimal overhead.

7.2.2 Performance under consolidation

Next, we study the effect of adding more cores and
adding more applications. For brevity, we only show re-
sults for shim-simple. For these experiments, we use a
standalone application process using the Snort IDS. To
emulate adding new functionality, we create duplicate in-
stances of Snort. We found similar results with hetero-
geneous applications too. At a high-level, we find that
consolidation in CoMb does not introduce contention
bottlenecks across applications. This may surprise some.
A detailed understanding of contention effects is an inde-
pendent topic of interest and a parallel submission takes
an in-depth look at the issue, explaining why contention
effects have minimal impact for networking applications
on x86 hardware [25].

Scaling: Figure 10 shows the effect of adding more
cores to the platform with a fixed hyperapp of length two
(i.e., two Snort processes in sequence).

As a point of comparison, we also evaluate a vir-
tual middlebox appliance architecture [15], where each
Snort instance runs in a separate VM on top of the Xen
VMM hypervisor. To provide high I/O throughput to the
VM setup, we utilize the SR-IOV capability in the hard-
ware [8]. We confirmed that I/O was not a bottleneck; we
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Figure 11: Throughput reduction as more applications
need to run on each packet

were able to achieve a throughput of around 7.8 Gbps on
a single VM with a single CPU core which is consistent
with state-of-art VM-based I/O numbers [41]. Further,
we use the vSwitching capability of the NIC to trans-
fer packets between multiple VM-based application in-
stances [5]. (Unlike CoMb where we interpose a Click-
based shim between applications.) As in Section 5.2, we
need to decide between the app-per-core vs. hyperapp-
per-core design for the VM setup. We saw that app-
per-core is significantly better (2x) for the VM case be-
cause context switches between VMs are expensive and
because switching between VMs is in-hardware in our
setup (i.e. vSwitching) the overhead of moving packets
across cores is negligible (not shown). Thus, we conser-
vatively use the app-per-core design for the VM setup.

We make three main observations. First CoMb’s
throughput with this real IDS/IPS (typically considered
very resource intensive) is >10 Gbps on our 8-core plat-
form; this is comparable to vendor datasheets [3]. Sec-
ond, CoMb exhibits a reasonable scaling property sim-
ilar to prior results on multi-core platforms [11]. This
suggests that adapting CoMb to higher traffic rates sim-
ply requires a hardware platform with more processing
cores, and does not need any significant re-engineering.
Finally, CoMb’s throughput is 5x better than the VM
case. While the performance of virtual network appli-
ances is under active research, these are consistent with
state-of-art numbers [2].

Adding more functionality: Figure 11 evaluates the



impact of running more applications per-packet; e.g., in
response to policy changes. Here, we normalize through-
put w.r.t. to a single application. The ideal throughput
degradation as we add more applications is the % curve;
given the same resources running k applications needs
k-times as much work. CoMb’s normalized throughput
is marginally better than this ideal curve because con-
solidation amortizes fixed costs w.r.t. packet capture and
copying packets to the applications. Even the VM case is
only marginally worse than ideal. (This further suggests
that our VM-based setup is close to ideal without any se-
rious bottlenecks.) This confirms that CoMb allows ad-
ministrators to easily add new middlebox functionality.

7.3 CoMb’s Network-wide benefits

Setup: Next, we evaluate the network-wide benefits that
CoMb offers via reuse, multiplexing, and spatial distri-
bution. For this evaluation, we use real topologies from
educational backbones and the Enterprise network, and
PoP-level AS topologies from Rocketfuel. To obtain re-
alistic time-varying traffic patterns, we use the following
approach. We use traffic matrices for Internet2'? to com-
pute empirical variability distributions for each element
in a traffic matrix; e.g., the probability that the volume is
between 0.6 and 0.8 the mean. Then, using these empir-
ical distributions, we generate time-varying traffic matri-
ces for the remaining AS-level topologies using a gravity
model to capture the mean volume [36]. For the Enter-
prise network, we replay real traffic matrices.

In the following results, we report the benefits that
CoMb provides relative to today’s standalone middle-
box deployments with the four applications from Table 3:
flow monitoring, load balancer, IDS, and cache. To em-
ulate current deployments, we use the same applications
but without reusing modules. For each application, we
use public configurations to identify the application ports
of traffic they process. To capture changes in per-port
volume over time, we replay the empirical variability
based on flow-level traces from Internet2. We begin with
a scenario where all four applications can be spatially
distributed before the case when two of these are topo-
logically constrained.

Provisioning: With the above setup, we consider a pro-
visioning exercise from Section 4 to minimize the re-
sources needed to handle the time-varying traffic patterns
(across 200 epochs). The metric of interest here is the
relative savings that CoMb provides vs. today’s deploy-
ments where all applications run as independent devices
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only at the ingress: Cost oty (Cost here repre-
sents Y, . Prov, , from Section 4.) We try two CoMb
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Figure 12: Reduction in provisioning cost with CoMb

Topology | Unconstrained | Two-step | Ingress-only
Internet2 1.81 1.62 1.41
Geant 2.20 1.71 1.42
Enterprise 2.58 1.76 1.45
AS1221 2.17 1.69 1.41
AS3257 1.85 1.63 1.42
AS1239 2.11 1.69 1.43

Table 5: Relative savings in provisioning when Cache
and Load balancer are spatially constrained

configurations: with and without reusable modules. In
the latter case, the middlebox applications share the same
hardware but not software. Figure 12 shows that across
the different topologies CoMb with reuse provides 1.8—
2.5x savings relative to today’s deployment strategies.
For the Enterprise setting, even CoMb without reuse pro-
vides close to 1.8 savings.
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Figure 13: Impact of spatial distribution on CoMb’s re-
duction in provisioning cost

Figure 13 studies the impact of spatial distribution by
comparing three strategies for distributing middlebox re-
sponsibilities: full path (labeled Parh), either ingress or
egress (labeled Edge), or only the Ingress. Interestingly,
Edge is very close to Path. To explore this further, we
also tried a strategy of picking a random second node
for each path. We found that this is again very close to
Path (not shown). In other words, for Edge the egress is
not special; the key is having one more node to distribute
the load. We conjecture that this is akin to the “power
of two random choices” observation [28] and plan to ex-
plore this in future work.

Load balancing: Equally of interest is the benefit that
CoMb provides in adapting to changing traffic workloads
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Figure 14: Relative reduction in the maximum load

under a fixed provisioning strategy. Here, our metric of
interest is the maximum load across the network, and we
measure the relative benefit as: Mwajﬁzzzgg;;”g"’”. We
consider two network-wide provisioning strategies: each
location is provisioned with the same resources (Uni-
form) or resources proportional to the average volume
it sees (labeled Volume). For the standalone case, we
assume resources are split between applications propor-
tional to their workload. Volume+workload proportional
provisioning likely reflects current practice. We consider
the Uniform case because it is unclear if this strategy is
always better; e.g., it could be better on average, but have
worse “tail” performance (see Figure 14).

As before, we generate time-varying traffic patterns
over 200 epochs. For each epoch, we measure the
above relative load metric. For each topology, Fig-
ure 14 summarizes the distribution of this metric (across
epochs) with a box-and-whiskers plot showing the
25%ile, median, and 75%ile (box), and the min/max val-
ues (whiskers). We see that CoMb reduces the maximum
load by > 2x and the reduction can be as high as 25X,
suggesting that CoMb can better handle traffic variability
compared to current middlebox deployments.

Topological constraints: Next, we consider a scenario
when some applications cannot be spatially distributed.
Specifically, we constrain Cache and the Load balancer
to only run at the ingress for each path. One option in this
case is to pin all middlebox applications to the ingress to
exploit reuse but ignore spatial distribution. While CoMb
provides non-trivial savings (1.4 ) even in this case, we
explore opportunities for further benefits. To this end,
we extend the formulation in Section 4.3 to perform a
two-step optimization. In the first step, we assign the
topologically constrained applications to their required
locations. In the second, we assign the remaining ap-
plications, which can be distributed, as in Section 4.3
with a slight twist — we reduce the hyperapp-footprints
on locations where they can reuse modules with the con-
strained applications. For example, if we have the hy-
perapp Cache-IDS, with Cache pinned to the ingress, we
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Topology | Path | Edge | Ingress
Internet2 | 0.87 | 0.87 0.54
Geant 149 | 1.25 0.55
Enterprise | 1.02 | 1.02 0.54
AS1221 1.33 | 1.33 0.54
AS3257 | 0.68 | 0.68 0.55
AS1239 1.26 | 1.26 0.55

Table 6: Relative size of the largest CoMb box. A higher
value here means that the standalone case needs a larger
box compare to CoMb

Topology | #PoPs Time (s)
Strawman-LP | hyperapp

Internet2 11 687.68 0.05
Geant 22 3455.28 0.24
Enterprise 23 2371.87 0.25
AS3257 41 1873.32 0.78
AS1221 44 3145.77 1.08
AS1239 52 9207.78 1.58

Table 7: Time to compute the optimal solution

reduce the IDS footprint on the ingress. Table 5 shows
that this two-step procedure is able to improve the sav-
ings 20-30% compared to an ingress-only solution.

Does CoMb need bigger boxes? A final concern is
that consolidation may require “beefier” boxes (e.g., in
the network core). To alleviate this concern, Table 6
compares the processing capacity of the largest stan-
dalone box needed across the network to that of the
largest CoMb box: %’fgﬁ%’” We see that the largest
standalone box is actually larger than CoMb for many
topologies. Even without distribution, the largest CoMb

box is only 7%= = 1.8, which is quite manageable.

7.4 CoMb controller performance

Last, we focus on the performance of the network con-
troller and address two concerns: (1) Is the optimization
fast enough to respond to traffic dynamics (on the order
of minutes)? and (2) How close to the theoretical optimal
is the reformulation from Section 4.3?

Table 7 shows the time to run the optimization from
Section 4 using the CPLEX LP solver on a single core
Intel(R) Xeon(TM) 3.2GHz CPU. To put our reformula-
tion in context, we also show the time to solve an LP-
relaxation for the strawman. The reformulation is four
orders of magnitude faster than even this relaxed straw-
man, and takes 1.58s to recompute network-wide config-
urations for a 52-node topology. Given that we expect a
controller to recompute configurations on the order of a
few minutes [13], this is quite reasonable.

We also measured the optimality gap between the LP-
relaxation and the reformulation over a range of scenar-



ios. Because the LP-optimal is less than the true opti-
mal solution, this gap is actually an upper bound. Across
all topologies, this upper bound on the optimality gap is
< 0.19% for the load balancing and < 0.1% for the pro-
visioning (not shown). Thus, our reformulation provides
a tractable, yet near-optimal, alternative.

7.5 Summary of key results

To summarize, our evaluations show that CoMb:

e has significant opportunities for reuse across applica-
tions (Table 3);

e imposes minimal overhead for running middlebox ap-
plications (Table 4);

e has 5x better throughput vs. virtualized middleboxes
(Figure 10);

e reduces the provisioning cost 1.8-2.5x for a range of
real network settings (Figure 12);

e reduces the maximum load 2-25x (Figure 14);

e does not need much larger hardware (Table 6); and

e CoMb’s controller is practical and efficient (Sec-
tion 7.4).

8 Discussion

Asymmetric paths: For session-level processing, each
middlebox must see both directions of the session. Thus,
for traffic classes with asymmetric (or multiple) paths,
we constrain the distribution only to the nodes common
to both directions; e.g., just the edge or the ingress case.

Placement constraints: From Table 1, we speculate
that roughly half the applications can be distributed (ex-
cept WAN optimizers, VPN gateways, and possibly load
balancers). We sketched and evaluated a scenario in Sec-
tion 7.3 when half the applications are topologically con-
strained and showed that CoMb still provides substantial
savings. As future work, we plan to explore a detailed
configuration in collaboration with the enterprise opera-
tors.

Business concerns: At first glance, CoMb appears to
change business models for vendors. The reality, how-
ever, is that other factors (e.g., cloud computing) are al-
ready causing them to release “virtual appliances” [7].
Also note that CoMb’s general design allows vendors to
innovate both at the platform and application level.

9 Related Work

Integrating middleboxes: Previous work discusses to
better expose middleboxes to administrators (e.g., [6,
22]). CoMb focuses on the orthogonal problem of con-
solidating middlebox deployments.
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Middlebox measurements: Studies have measured the
end-to-end impact of middleboxes [17] and interactions
with transport protocols [27]. There are few studies on
how middleboxes are deployed and managed. Our mea-
surements in Section 2 and high-level opportunities in
Section 3 appear in an upcoming workshop paper [39].
This work goes beyond the motivation to demonstrate a
practical design and implementation and quantifies the
single-box and network-wide benefits of a consolidated
middlebox architecture.

General-purpose network elements: There are many
efforts in building commodity routers and switchers us-
ing x86 CPUs [26, 32, 15], GPUs [20], and merchant
switch silicon [19]. CoMb can exploit these advances
in hardware design as well. It is worth noting that the
resource management challenges we address in CoMb
also apply to these efforts, if the extensibility they enable
leads to diversity in traffic processing.

Rethinking middlebox design: CoMb shares the
motivation of rethinking middlebox design with Flow-
stream [15] and xOMB [18]; these efforts further con-
firm the significance of this problem space. Flow-
Stream presents a high-level architecture using Open-
Flow for policy routing and runs middlebox as a separate
VM [15]. Section 7.2 shows that VM-based middleboxes
have much lower throughput. Further, a VM approach
precludes opportunities for reuse. xOMB presents a
software model for extensible middleboxes [18]. The
key difference is that CoMb addresses network-wide
and platform-level resource management challenges that
arise with consolidation that neither FlowStream nor
XxOMB seek to address. CoMb also provides a more
general management framework to support both modu-
lar and standalone middlebox functions.

Network management: CoMb’s controller follows in
the spirit of efforts showing the benefits of centralization
in routing, access control, and monitoring (e.g., [14, 33,
24, 23]). The use of optimization arises in other man-
agement applications like traffic engineering and moni-
toring (e.g., [35]). However, reuse and policy dependen-
cies that arise in the context of consolidating middlebox
management create new challenges for management and
optimization unique to our context.

10 Conclusions

We presented a new middlebox architecture called
CoMb, which systematically applies the design princi-
ple of consolidation, both in building individual appli-
ances and in managing an ensemble of these across a
network. In addition to the qualitative benefits w.r.t. ex-
tensibility, ease of management, and reduction in device



sprawl, consolidation provides new opportunities for re-
source savings via application multiplexing, software
reuse, and spatial distribution. We addressed the key
resource management and implementation challenges in
order to leverage these benefits in practice. Using a pro-
totype implementation in Click, we show that CoMb re-
duces the network provisioning cost by up to 2.5 %, de-
creases the load skew by up to 25x, and imposes mini-
mal overhead for running middlebox applications.
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A Suboptimality of hyperapp model
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Figure 15: Example to illustrate why the hyperapp model
may be suboptimal. Each action has a unit footprint F.

Figure 15 shows an example where the hyperapp
model might be suboptimal. Here, N1/N2 have to pro-
cess some traffic that cannot be offloaded, but the traf-
fic on the path N1-N2 can be distributed. In the gen-
eral model from Section 4, N1 and N2 require 6 resource
units each. With this provisioning, they can handle the
traffic across the three epochs. At time 1, N1 uses all of
its 6 resource units for the local traffic; similarly at time
2, N2 uses its resources for local traffic. The traffic from
NI to N2 is assigned to N2 at T=1 and to N1 at T=2. At
T=3, the slight increase in the local traffic means that it
is better to run the A1/A2 on different nodes. In other
words, in this example, duplicating the common action
might be better. The maximal model also requires 6 units
each at N1 and N2 for handling the traffic at T=1 and
T=2. At T=3, there is a problem. Because it constrains
A1/A2 on the same node, it is forced to process the traf-
fic on N1-N2 entirely at N1 or N2. Thus, it requires 3e
additional resources.
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