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Abstract

Large Monitoring Systems:
Data Analysis, Design and Deployment

by

Ram Rajagopal

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

and the Designated Emphasis in Communication, Computation, and Statistics

University of California, Berkeley

Professor Pravin Varaiya, Chair

The emergence of pervasive sensing, high bandwidth communications and inexpensive data
storage and computation systems makes it possible to drastically change how we design,
monitor and regulate very large-scale physical and human networks. Even small perfor-
mance gains in the way we operate these networks translate into large savings. There are
many critical challenges to create functional monitoring systems, such as data reliability,
computational efficiency and proper system design, including choices of sensors, communi-
cation protocols, and analysis approaches.

In this dissertation introduces a framework to design a monitoring system, deploy it,
maintain it and process the incoming heterogeneous sources of information, resulting in new
applications. The framework is applied to urban traffic monitoring and road infrastructure
sensing. We develop various state of the art statistical inference algorithms, compute per-
formance guarantees and study some of the fundamental limits of the proposed ideas. We
illustrate the methodology using experimental deployments we have built and are currently
in use.
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Chapter 1

Introduction

“Scientists investigate that which already is;
Engineers create that which has never been. ”

Albert Einstein

One of the main challenges in modern systems engineering is to build adaptive signal and
information systems that monitor and regulate very large dynamic networks, such as urban
traffic, patient care and road infrastructure networks. The dynamics of these systems is
determined by the aggregate behavior of a large collection of individual agents that locally
sense the environment, while performance objectives are based on global requirements for
this behavior. Furthermore, local action can give rise to unexpected global behavior.

Creating a monitoring system for such systems comprises designing the sensing and con-
trol architecture, as well as the methods for operating on the sensed information to measure
and optimize the performance objective. Existing systems that accomplish these tasks in
specific application domains are based on ad-hoc choices resulting in a lack of robustness,
reliability and performance guarantees. In this dissertation we address these challenges
by building an adaptable and reusable information architecture accounting for data, sens-
ing and communication constraints. The architecture relies on novel sensing approaches;
efficient algorithms to design sensing systems; heterogeneous signal representation and in-
ference for information fusion and reliability; and novel theoretical frameworks to analyze
solutions.

The chapter starts by describing urban traffic and infrastructure monitoring, a chal-
lenging application domain that illustrates concepts and requirements for building large
monitoring systems. The dissertation is concerned with creating and deploying solutions
for this problem. The chapter continues by proposing a general framework to address other
large monitoring systems. It concludes by discussing the contributions of the dissertation
resulting from application of the framework. The contributions are to both, transportation
systems monitoring and to the more general problem of building large monitoring systems.
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Figure 1.1: Traffic management: a fast operations loop and a slow planning loop.

1.1 Intelligent transportation systems for urban traffic and
infrastructure

Urban traffic management [Sussman, 2000] is a challenging engineering and policy prob-
lem. Traffic networks are large systems composed of various subsystems whose behavior is
primarily governed by the decision making of individual agents, such as drivers, and coordi-
nation mechanisms such as traffic signals. Technologies and policies to optimize or increase
performance require monitoring the system to understand its behavior, measure the impact
of decisions and incorporate feedback as part of the decision making.

Figure 1.1 shows the relationship between monitoring and traffic management. There are
two main control loops in traffic management: a fast operations loop and a slow planning
loop. The operations loop comprises activities such as measuring the current state of the
system, evaluating productivity (e.g., total delay hours of congestion), detecting incidents in
traffic, performing flow control (e.g., traffic signal control), predicting travel times for user
routes and inferring whether sensors are functioning properly. The operations loop requires
reliable real-time measurements of the traffic system. The slow planning loop includes
actions such as evaluating incident management policies, creating road access policies (e.g.,
High Occupancy Vehicle special lanes) and deciding where to construct new roads and lanes.
The planning loop typically relies on simulations of various different scenarios to understand
how long term decisions affect system performance. Tuning the various simulators requires
reliable data from a monitoring system.

Recent studies shows poor traffic management costs the United States alone, 78 bil-
lion dollars, 4.2 billion lost hours and 2.9 billion gallons of wasted gas annually [Schrank
and Lomax, 2007]. If highways were operated at 100% efficiency, traffic congestion could
potentially be reduced by 40% [Chen et al., 2005]. The main obstacle to obtain such an
improvement is the need for reliable real-time data from monitoring the traffic network.
If such data were available, they could be incorporated in optimizing decisions for traffic
operations.

Urban traffic management also requires road infrastructures be well preserved and prop-
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Figure 1.2: Traffic monitoring application (PeMS) and its uses.

erly functional. Four million miles of highway roads and 600,000 bridges form the core
vehicular traffic infrastructure in the United States, need monitoring for safety and perfor-
mance. Current costs for deploying monitoring are extremely high. A single one-time study
of a bridge costs $40,000 and installing a single weigh-station to estimate road pavement
damage from trucks, costs more than $500,000. Accomplishing such tasks in a cost feasible
way requires creating new sensors and new statistical inference methods that can effectively
use the sensed data.

1.1.1 Main challenges

There are several important challenges to overcome in order to successfully deploy a
urban traffic and infrastructure monitoring system:

Sensing architecture. Due to the sheer size of the system, monitoring traffic requires inte-
grating a large amount of heterogeneous sensors. PeMS is a system created for monitoring
traffic in real-time in California highways [PeMS, 2009]. PeMS aggregates data from more
than 25,000 traffic sensors, and computes various performance metrics for the fast opera-
tional loop. Urban streets do not have the same level coverage due to limitations on types
of measurements readily possible with existing sensors. Furthermore, expected deployment
lifetimes and available communication channels limit the amount of data that can be trans-
ferred from a battery operated sensor, such as a wireless sensor or mobile phone. Usually,
most energy consumption is due to data transmission. The architecture should seek to
balance local computation with data transmission and accuracy. Options for road infras-
tructure monitoring are even more limited, the main obstacles being installation costs and
longevity.

Data reliability. The harsh operating conditions cause many of the sensors to fail or re-
port incorrect measurements, so it is important to infer the reliability of the reported data.
Moreover, due to the large and distributed nature of the sensing architecture, there are
several fault points, such as the various data communication links. Statistical approaches
to address data reliability and evaluate the quality of the various architecture components
is a fundamental requirement to deploy a working sensing system.
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State inference. Current classes of sensing are mainly designed for monitoring highways
that have continuous traffic flows, and do not work well for monitoring urban street traffic,
that has a stop and go nature due to signalized intersections. Addressing how to monitor
urban streets requires considering new sensor platforms and methods to infer the state of
traffic. Similarly, travel time information from urban links can be inferred from mobile
sensor measurements, but require energy aware methods. Finally, inference of the state of
infrastructure requires a combination of new sensing modalities and careful physical systems
models inferred from data.

System design and optimization. System design encompasses deployment and architectural
choices. An important problem is deciding where new sensors need to be deployed in the
network. Another problem is determining characteristics of the communication system to
obtain best measurement and inference performance.

Performance guarantees. It is important to measure how distant is a monitoring system’s
performance from its optimum with respective to objectives of interest. Such measure-
ments or guarantees lead to robustness and a principled way of identifying the performance
bottlenecks of the monitoring system.

1.2 Constructing large monitoring systems

In this section, we describe how to address challenges in the prior section using a prin-
cipled approach. We divide our approach to building large monitoring systems into two
parts: a high level design methodology, and the underlying technological, statistical and
theoretical techniques to achieve this design more concretely. In this section we detail both
parts that set the research questions which will be explored by the dissertation.

1.2.1 Design approach

Figure 1.3 depicts a high level view of our approach to create a large monitoring system,
which we follow closely to build an autonomous monitoring solution for urban traffic and
road infrastructure. The first step is to identify the key state variables that drive the
behavior of the system. If they cannot be measured directly, identify measurable surrogate
variables, from which the state variables can be inferred. For highways, for example, average
speed, flow and number of vehicles per mile of highway are key variables and loop detectors
are in-pavement sensors for measuring them. For urban traffic, wireless magnetic sensors
capable of local computation are an alternative, but do not directly measure traffic state.

Once we have identified the variables to be measured, we can proceed to the next step
in the procedure: creating the sensing platform. In most cases, this requires designing new
sensors and deploying them, as well as collecting data from existing sensors. The sensors
are heterogeneous, and can vary from standard transducers that report data over wireless
links,to text messages from users, images from cameras and intermittent sensing from mobile
units. The dissertation proposes new sensors for traffic and infrastructure monitoring, both
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Figure 1.3: Creating a large monitoring and control system for dynamic networks.

autonomous nodes capable of measurement, local computation and wireless communication,
but with battery limited lifetime.

Given a fixed budget, deployment plans to optimize where to place sensors and when to
sample them need to be created to obtain best performance. For example, selecting time
of the day and highway lanes to sample to obtain the maximum amount of information on
congestion and accidents, without expending excessive energy.

Since the system is distributed over a large physical area, it is important to design
the protocols for collecting and processing the data. Proper communication protocols and
computation protocols, that determine tradeoffs between local computation and data trans-
mission, need to be specified in order for the system to meet data performance requirements
such as data error rates and power consumption targets. The California traffic sensor sys-
tem has a hierarchical data infrastructure that uses wireless and wired links, and multiple
protocols. System sensing performance needs to be measured from diagnostics based on
received data and simple sanity checks.

The third step in the procedure is to cleanse and normalize the data acquired from the
sensors. Deployed sensors might report plausible incorrect values, due to damage and loss
of calibration, or values can be missing due to communication intermittency. Data cleansing
(or normalization) consists of identifying such sensors, discarding the incorrect information,
and inferring the incorrect or missing values to provide a proper stream of information. Any
system that uses the data without accounting for these issues might perform very poorly.

We separate data normalization from the control and optimization of our system to
increase robustness and reduce design complexity. From a statistical viewpoint performing
such data completion independently from the final application goals is not guaranteed to be
the most efficient. But it is unrealistic to require that every statistical model incorporates
data validity explicitly. For example, consider an optimization procedure using N samples



6

Figure 1.4: Typical monitoring architecture choices.

from a single sensor. There are P = N !/(R!(N − R)!) ways in which R samples can be
corrupted or missing. Thus, we may require P versions of the optimization procedure,
making it impractical to design a proper solution. Moreover, the modeler of the data
frequently is not the designer of the monitoring system, so he is unaware of the various
types of possible faults.

We can now build statistical models based on the cleansed data to infer the desired key
variables. Proper statistical modeling uses features from data and application related in-
sights. Improperly constructed models do not capture the underlying phenomenon correctly,
resulting in poorly estimated state variables, and in turn reduce the benefits of optimizing
decision making. This phenomenon has been observed in various large networked systems,
such as oil fields and urban traffic. Once key variables are inferred, they can be visualized,
and related analytics can be computed. Operations engineers are typically interested in
variables that capture a notion of productivity of the system. For example, detection of
congestion hotspots and lane utilization statistics for urban traffic. Visualization is a very
important aspect of the monitoring system, as it facilitates rapid communication of relevant
information allowing effective decision making. Many systems fail to address this aspect,
and the monitored data are not effectively used in the decision process.

The design process in Figure 1.3 is completed by closing the loop: using the monitored
variables to actuate traffic and optimize it. Optimization includes using the inferred vari-
ables to plan maintenance of the monitoring and actuation system, allocate resources and
optimize parameters affecting system behavior. Some examples are allocation of resources
for emergency vehicle response and maintenance plans for traffic detectors.

Actuation might use conventional mechanisms, such as sending signals to actuators, but
can also require less conventional mechanisms in the context of controls, such as information
systems and incentives to affect the behavior of individual agents. Predictive routing services
for vehicles, incident reports over mobile SMS and incentive mechanisms for changing user
behavior, are some examples. Many of these methods require further statistical modeling.

1.2.2 Technical approach

Development of solutions for each step proposed in the previous subsection requires
creating methodologies that can be implemented within the constraints of the existing ar-
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chitecture. Sensors are embedded, capable of local computation and communicate to a
processing center (Figure 1.4). Typically, energy consumption is limited by lifetime require-
ments. Most energy consumption is due to data communications from the embedded sensor
to a power unconstrained local or global fusion center. For example, for wireless traffic
sensors, a local fusion computer is connected to the traffic signal control system, which re-
ceives regular power. Memory at the sensing units is moderately limited, so measurements
for very long periods cannot be stored locally.

There are two typical processing configurations for the sensor network: distributed and
decentralized processing [Tsitsiklis, 1993]. In decentralized processing, sensors process data
locally, transmit information summaries, and the fusion center makes a global decision. The
main purpose of local processing is to avoid transmitting all sensed information, and also
to schedule the transduction system. Road infrastructure monitoring systems and PeMS
are examples of decentralized processing architectures. In distributed processing, sensors
communicate locally with other sensors or local fusion centers, and compute estimates and
decisions. The two main goals are to avoid communication delays in the response and
reduce the computational burden in a global fusion center. Distributed processing does
not necessarily has to happen at a sensor level. For example, a fusion center could collect
decentralized data from the system, but use a distributed method to compute individual
decisions about sensor state, in order to reduce computational burden. An important chal-
lenge is to design optimization and statistical methods that can operate effectively in these
architectures. We address this challenge by creating various distributed and decentralized
methods for the components of the monitoring system.

Large networks typically do not have fully observable dynamics. Moreover, the available
measurements have associated uncertainties, due to fundamental limitations. Therefore,
any method used in a monitoring system requires incorporation of uncertainty in a princi-
pled way. Statistical modeling forms the core of a well designed system. Particular classes
of statistical methods are well suited for this purpose:

Sequential. The real-time nature of monitoring problems and the limited memory in the
sensing devices, implies that any local computations should preferably be sequential. In
a sequential estimation or decision method, a partial decision is available after each new
information is received. Moreover, decisions are update according to rules that only depend
on short summaries of the data seen until that point. Sequentially performed estimation
or stochastic optimization forms the class of stochastic approximation methods [Benveniste
et al., 1990; Kushner and Yin, 1997]. An important concern is the speed at which estimates
converge to a true value, under communications and noise constraints when calculations are
performed sequentially. The dissertation uses a sequential approach for estimating real-time
statistics for urban traffic. Another class of problems is to be able to make decisions se-
quentially, such as detecting which sensors are faulty. Sequential analysis [Siegmund, 1985]
and change point methods [Shirayev, 1978] are two central fields of statistics that discuss
the right performance metrics for such decision making and the means to design optimal
strategies. The dissertation contributes to sequential change point detection, by proposing
a novel type of multiple change point problem and the related analysis.
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Spatial and temporal. Dynamics in networks are well characterized by spatial and temporal
processes. For example, the vibration of a road caused by truck loads can be modeled
using a spatial and temporal partial differential Euler beam equation. Similarly, spatial
statistical models [Cressie, 1991] capture more general forms of uncertainties. Modeling,
inference and prediction of spatial processes, in a decentralized or distributed computation
context, is necessary to create real-time monitoring systems, but not yet fully explored area
of research. We use spatial models in two areas, for prediction of traffic in optimization
problems, and for prediction of infrastructure response to loading.

Non-parametric. Parametric statistics is concerned with uncertainty models that can be
parameterized by a finite number of variables. In contrast, in non-parametric statistics [van
der Vaart, 1998], the number of variables typically grows with the number of observations,
as no a priori parameterization is used. For example, the empirical histogram is a non-
parametric estimator of the distribution of a random variable. The principal advantage of
non-parametric methodologies is that it can capture situations where uncertainties cannot
be completely modeled a priori. The dissertation develops nonparametric decentralized
optimal estimation of quantiles and creates non-parametric statistical measures for fault
characterization [Nikulin, 2004].

Approximations. Obtaining optimal solutions for estimation and decision problems, in a
decentralized or distributed scenario, is a computationally hard problem [Tsitsiklis, 1993].
In fact, even deciding whether a optimal approach exists can be intractable. Instead, if
approximation methods are used, we can obtain deployable algorithms. The dissertation
focuses on two types of approximation methods: approximation algorithms for combinato-
rial optimization and approximate statistical decision methods. Approximation algorithms
[Vazirani, 2001] compute approximate solutions to intractable optimization problems, but
are low complexity and provide guarantees on how far the approximation is from the true
optimum. Similarly, one can pursue the development of approximate statistical decision
methods. In this case, various important statistical methodologies are approximated so
they operate in decentralized, distributed or computation constrained architectures. Per-
formance guarantees are provided for the obtained solutions. The dissertation advances a
new approximate min-max type optimization algorithm, and a novel approximate statistical
decision methodology for change point detection.

Creating a solution that performs well in practice, but is also stable and easily main-
tained, requires that for each step we analyze the behavior of the proposed statistical models
and methods, and compute if possible performance bounds and optimality criteria.

1.3 Dissertation organization

The dissertation is organized in chapters that follow the general methodology outlined
in Section 1.2. There are three major parts to the dissertation: the first part identifies the
variables to be measured and the sensors that will be used (Chapter 2), the second part
is concerned with data quality, management and deployment of the sensing infrastructure
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(Chapters 3, 4 and 5) and the third part is concerned with applications and measurement
of relevant variables (Chapters 6, 7 and 8). The remainder of this section summarizes each
chapter.

1.3.1 Chapter 2: Sensing Traffic and Road Infrastructure

The first part of Chapter 2 reviews a system model for a traffic network. We identify
the important variables that drive the dynamic behavior of traffic, as well as, the reliability
of the traffic infrastructure. A model is then used to show the need for measuring different
types of variables for highway networks and urban city networks. For highways, periodic
aggregates of traffic variables (e.g., mean) characterize traffic, whereas individual vehicle
properties need to be measured for urban streets.

In the second part we review various sensing technologies and their characteristics. We
review a wireless magnetic sensor, that is capable of local processing, and is deployed as
a device embedded in the road. The sensor can be used to measure aggregate variables
for highways and we consider the possibility of using it to measure the state of traffic for
urban streets. In Chapter 7 we introduce the statistical method and algorithm to infer
the key traffic variables for urban streets from these mesurements. We also propose a new
embedded wireless accelerometer to measure road vibration generated by traffic movement.
In Chapter 8 we propose the statistical method to convert the vibration measurement into
truck loads, which are identified as the key factor that cause road damage. This work was
jointly developed with Ronnie Bajwa and Pravin Varaiya.

1.3.2 Chapter 3: Measuring Reliability of a Large Sensor Network

The California Department of Transportation (Caltrans) freeway sensor network has
two components: the sensor system of 25,000 inductive loop sensors grouped into 8,000
vehicle detector stations (VDS) and covering 30,500 freeway direction-miles; and the com-
munication network over which the sensor measurements are transported to Caltrans Traffic
Management Centers. This sensor network is virtually the only source of data for use in
traffic operations, performance measurement, planning and traveler information. However,
the value of these data are greatly reduced by the poor reliability of the sensor network:
On a typical day in 2005, only 60% of the statewide sensor network provided reliable mea-
surements.

This chapter is an empirical study of the reliability of the sensor network based on
data obtained from PeMS. We propose and calculate four non-parametric metrics of system
performance: productivity, stability and lifetime and fixing time. Based on these metrics we
compare the performance of the different districts and verify the limited effectiveness of the
DFP. We interpret these metrics to lead to conclusions on how to design a sensor network
solution for a large transportation system. This work was jointly developed with Pravin
Varaiya.

1.3.3 Chapter 4: Simultaneous Fault Detection for Multiple Sensors

Monitoring its health by detecting its failed sensors is essential to the reliable functioning
of any sensor network. We are interested in the detection of sensors that report plausible but
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incorrect values, as these occur rather frequently in the transportation detector network.
This chapter present a distributed, online, sequential algorithm for detecting multiple faults
in a sensor network. The algorithm works by detecting change points in the correlation
statistics of neighboring sensors, requiring only neighbors to exchange information.

Using sequential analysis, we compute performance guarantees on detection delay and
false alarm probability for the algorithm. This appears to be the first work to offer such
guarantees for a multiple sensor network. The theoretical framework and resulting algorithm
are also useful to explain the performance and improve various correlation tracking methods
proposed in the literature. Based on the performance guarantees, we compute a tradeoff
between sensor node density, detection delay and energy consumption. We also address
synchronization, finite storage and data quantization. We validate our approach using data
from the loop detector network. This work was jointly developed with Xuanlong Nguyen,
Sinem Ergen and Pravin Varaiya.

1.3.4 Chapter 5: Simultaneous Placement and Scheduling of Sensors

We consider the problem of monitoring spatial phenomena, such as road speeds on a
highway, using wireless sensors with limited battery life. A central question is to decide
where to locate these sensors to best predict the phenomenon at the unsensed locations.
However, given the power constraints, we also need to determine when to selectively activate
these sensors in order to maximize the performance while satisfying lifetime requirements.
Traditionally, these two problems of sensor placement and scheduling have been considered
separately: one first decides where to place the sensors, and then when to activate them.

In this chapter we present an efficient algorithm, eSPASS, that simultaneously opti-
mizes the placement and the schedule. We prove that eSPASS provides a constant-factor
approximation to the optimal solution of this NP-hard optimization problem. A salient
feature of our approach is that it obtains “balanced” schedules that perform uniformly well
over time, rather than only on average. We then extend the algorithm to allow for a smooth
power-accuracy tradeoff. Our algorithm applies to complex settings where the sensing qual-
ity of a set of sensors is measured, e.g., in the improvement of prediction accuracy (more
formally, to situations where the sensing quality function is submodular). Two important
applications are privacy-preserving sensing using mobile sensors, such as personal mobile
phones, and power limited magnetic sensor node deployment. We present extensive empiri-
cal studies on these tasks, and our results show that simultaneously placing and scheduling
greatly improves performance compared to separate placement and scheduling (e.g., a 33%
improvement in network lifetime on the traffic prediction task). This work was jointly
developed with Andreas Krause, Anupam Gupta and Carlos Guestrin.

1.3.5 Chapter 6: Estimating Traffic Statistics in a Data Communication-
Constrained Setting

Data for urban traffic links are characterized by the distribution of the measurements,
as opposed to a finite number of moments such as mean and variance. α-quantiles of a
distribution are values θ∗ so that the probability that the random variable is less than
θ∗ is α. When α = 0.5, we obtain the median. Empirical estimates of quantiles from
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observed data capture well properties of general distributions. In real settings, quantiles
are re-estimated for each link as more data become available, but such procedure usually
requires transmission and storage of all the observed values by the sensors. For example,
for a median computation, all observed values are required from each sensor. On the other
hand, averages can be computed from the sum of the observed values and the number of
observed values at each sensor. Due to power and privacy constraints, sensors are restricted
on the amount of information they can communicate, and maybe unable to send all the
actual measured values.

In Chapter 6 we formulate this problem for both mobile sensors, such as cellphones, and
fixed wireless sensors. We state the problem as one of decentralized statistical inference:
given i.i.d. samples from an unknown distribution, estimate an arbitrary quantile subject
to limits on the number of bits exchanged. We analyze a standard fusion-based architec-
ture, in which each of m sensors transmits a single bit to the fusion center, which in turn
is permitted to send some number k bits of feedback. Supposing that each of m sensors
receives n observations, the optimal centralized protocol yields mean-squared error decaying
as O(1/[nm]). We develop and analyze the performance of various decentralized protocols
in comparison to this centralized gold-standard. First, we describe a decentralized protocol
based on k = log(m) bits of feedback that is strongly consistent, and achieves the same
asymptotic MSE as the centralized optimum. Second, we describe and analyze a decentral-
ized protocol based on only a single bit (k = 1) of feedback. For step sizes independent of
m, it achieves an asymptotic MSE of order O[1/(n

√
m)], whereas for step sizes decaying

as 1/
√
m, it achieves the same O(1/[nm]) decay in MSE as the centralized optimum. Our

theoretical results are complemented by simulations, illustrating the tradeoffs between these
different protocols. This work was jointly developed with Martin Wainwright and Pravin
Varaiya.

1.3.6 Chapter 7: Measuring Vehicle Travel Times

Chapter 7 describes a system for measuring the vehicle count and travel time in the links
of a road network. The measurements require matching vehicle signatures recorded by the
wireless magnetic sensor network described in Chapter 2. The matching algorithm is based
on a statistical model of the signatures. The model itself is estimated from the data. The
approach is first discussed for a single lane road, and extended to multiple lane roads.The
algorithm yields a correct matching rate of 75% for a false matching rate of 5%, and reliably
estimates the number of vehicles on each link and its travel time distribution.The system
is tested on a 0.9 mile-long segment of San Pablo Avenue in Albany, CA. We also present
exact and heuristic error calculations for the method, identifying an important class of
stochastic shortest path problems. This work was jointly developed with Karric Kwong,
Robert Kavaler and Pravin Varaiya.

1.3.7 Chapter 8: Monitoring Load Impact in Roads

Chapter 8 introduces a dynamical model and the statistical method for inferring the
load of heavy vehicles on road pavement from measurements from an accelerometer sensor
network. Heavy vehicle load cause the most damage to pavements, and monitoring loads and
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damage improves maintenance planning, incurring in fewer future closures and accidents.
We derive an approximate solution method for a distributed parameter system repre-

senting the dynamics of the road pavement. Based on the approximation we propose a
method for measuring impulsive loading forces. We then analyze the method and conclude
its optimality. To conclude the chapter we present some computational experiments as well
as a comparison with data collected from a real deployment of a wireless accelerometer
sensor network. This work was jointly developed with Alexander Kurzhanski and Pravin
Varaiya.

1.4 Summary of contributions

There are three thrusts in the dissertation: a systems design thrust, focused on cre-
ating new sensors and deployments, an algorithmic thrust, creating various statistically
principled methods for various problems and a theoretical thrust, focused on analyzing the
performance of the proposed algorithms. Although some of the methods are presented in
the context of transportation applications, their applicability is more general. Some of the
theoretical frameworks and contributions are also more generally applicable. Some of the
main contributions of the dissertation are

• Embedded accelerometer sensor network for measuring infrastructure system response;

• Metrics for monitoring sensing quality for sensor network applications;

• Theory and algorithms for multiple change-point detection problems where multiple
changes are correlated;

• Theory and algorithms for sub-modular discrete min-max problems;

• Algorithm and analysis for distributed sequential quantile estimation;

• Algorithm and heuristic analysis for stochastic matching for travel time estimation;

• Theory and algorithms for estimating a finite parameter in a distributed parameter
system.
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Chapter 2

Sensing Traffic and Roads

2.1 Introduction

The dynamics of urban traffic is determined by the interaction between individual de-
cisions of drivers, road conditions, traffic control signals and road capacity. Characterizing
traffic involves identifying the key variables that affect the dynamics, and designing sensors
and systems for measuring these key variables. Monitoring road infrastructure also involves
a similar approach. We study in detail the key variables for characterizing the dynamics
of traffic, and the response of road infrastructures when subject to an external excitation
signal, in the first part of this chapter.

In the second part, we review how we can measure the required key variables using
existing sensing systems. In the case of urban traffic, we identify a promising technology
for monitoring: magnetic wireless sensor networks. In later chapters of the dissertation we
discuss how to use this technology together with sophisticated algorithms to measure traffic
very reliably.

For road infrastructure monitoring, we propose an wireless accelerometer sensor network
that can be embedded in the pavement. We briefly discuss the steps required for using this
technology on the field. We conclude this chapter by addressing the important issue of
designing a communication system to connect the sensor systems in the field to a central
processing unit.

2.2 What to measure?

2.2.1 Traffic

The typical traffic network model is shown in Figure 2.1. The road network is divided
into sections. Each section is represented by an edge. Nodes represent the junction of two
or more sections. The nodes may or may not correspond to intersections. Flow control
of the network is executed at the nodes. For example, a typical node in an arterial is an
intersection, and flow is controlled by a traffic signal. The state of traffic is the state of each
edge.

Traffic behaves differently in highways and in signalized roads. In highways, traffic



14

Figure 2.1: (left) Traffic network model and (right) Density, flow and speed relationship in a
typical model

behaves like a fluid. Its state can be characterized by point measurements at each road
section, such as average density ρ (cars/mile), average flow f (cars/hour) and average
speed v (mph). The average is taken over a small period of time, typically 30 seconds.
Several models have been proposed for highway traffic inspired by equivalent models in
fluid dynamics. One popular model is the Cell Transmission Model (CTM) [Daganzo,
1994]. It assumes that to a first order, there is a relationship between density, flow and
speed (Figure 2.1). When traffic is free flowing, f = ρ vfree, where vfree is the free flow
speed. For highways in California, for example, the free flow speed is approximately 60
mph. Congestion happens when ρ > ρcrit, where ρcrit is the critical density, at which point
we have the maximum flow fmax = ρcrit vfree. In the congested regime, flow decreases with
increasing density so that f = fmax − α (ρ − ρcrit). α (mph) is the speed of propagation
of the congestion wave. At a certain density, the flow becomes 0. This is the jam density
of the road. In the congested regime, we can compute the average speed of a section as
v = {fmax − α (ρ− ρcrit)}/ρ.

CTM builds upon this flow-density relationships to model the behavior over time of var-
ious connected highway sections. Observed density, flow and speeds need to be measured to
calibrate such a model. Measurements become even more important in the presence of inci-
dents, since then the relationship between these three variables may change in unexpected
ways. More complicated micro-simulation models have been proposed, but their calibration
also depends on accurately measuring these variables. We will call the triplet (ρ, f, v) the
state of a highway section. Notice that in the CTM model, density (ρ) is the only state,
but in general it is not known if CTM holds exactly. The state can be measured by looking
at averages in a single fixed point in the highway section (space). Other variables such as
vehicle type distribution and weather could potentially be added to a highway section state.
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A variety of sensors can measure the state of a highway. Some of these sensors are described
in Section 2.3.

Point measurements do not characterize traffic well for signalized roads. In such roads,
the nature of traffic is ‘stop and go’ and therefore it is not very meaningful to look at point
averages from measurements at a single fixed point. Local averages will be affected by
events such as slowdowns, turns and traffic signal changes. Signalized roads behave more
similar to a ‘store and forward’ communication packet networks. Each vehicle is a packet,
and it follows a route composed of consecutive links. Its flow is controlled by flow control
mechanisms such as traffic lights. By following this analogy, we can consider that the state
of a signalized road section is characterized by the number of vehicles (n) stored in the
link and the set of travel times for each vehicle to cross the link ({t1, ..., tn}). If every
individual travel time cannot be measured, we are interested in measuring various travel
time quantiles, such as the median, 25%, 75%, 90% quantiles. Sensors currently being used
perform poorly when measuring any of these variables.

A simple statistical model can explain the difficulty. Suppose we place a fixed speed
sensor in the middle of a road section of length L. We are interested in measuring the travel
time ti of the vehicle i. Let v̄i = L/ti be the average speed with which the vehicle crosses
the section. If we can measure v̄i directly, it is equivalent to measuring ti. Due to the nature
of traffic, the vehicle does not cross the section with constant speed. Therefore, the fixed
speed sensor measures the speed of vehicle i as vi = v̄i + ηi, where ηi is an independent,
identically distributed (i.i.d) random variable, with zero mean and variance σ2, but whose
distribution is unknown. In a highway, ηi has very small variance but this cannot be said
of a vehicle crossing a signalized road. If we were interested in the average speed of the
various vehicles we can compute v̂:

v̂ =
1
n

n∑
i=1

vi =
1
n

n∑
i=1

v̄i +
1
n

n∑
i=1

ηi,

= ṽn + η̄n.

Notice we are interested in measuring ṽn in this case, the true empirical mean of the
measurements. When ηi has bounded moments, the strong law of large numbers guar-
antees that η̄n is a random variable converging to 0 as n → ∞, and the weak law of large
number states that the variance of η̄n is of order O(σ2/n). For a moderately large n we
will have accurate estimates of ṽn. Instead suppose we would like to measure the median
speed of the set {v̄1, ..., v̄n} from the noisy measurements {v1, ..., vn}. Assume n odd and
the set to be in increasing order without loss of generality. Also let |ηi| < Bn, where
Bn = min{v̄m − v̄m−1, v̄m+1 − v̄m} and m = (n− 1)/2 + 1. This implies that the empirical
median is vm and the error is exactly ηm. The mean square error of the estimated median
is then σ2, regardless of n. In fact, if we construct a sequence {v̄1, ..., v̄n} such that Bn > α
for all n, then as n → ∞, we are able to estimate the average perfectly from the sequence
values, but the median estimate will always have error at least α. We have shown with this
construction the difficulty of estimating quantiles from point measurements.

We can generalize the above example to cases where Bn → 0. Assume that v̄i is i.i.d.
and has a cumulative distribution function F with density f and ηi is i.i.d. with distribution
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G and density g. For simplicity, assume f is continuously differentiable to all orders. Both
distributions forms are unknown. Let the empirical distribution of the set of samples v̄i,
i = 1, ..., n be denoted by Fn. When n → ∞, Fn ⇒ F . The empirical distribution of v
converges to a distribution H with cumulative distribution:

H(x) =
∫ +∞

−∞
g(τ)F (x− τ)dτ. (2.2.1)

If g(x) = δ(x), then we are in the noise free case, and H(x) = F (x) using the properties of
the Dirac function. Using Taylor expansion:

F (vmed + δ − τ) = F (vmed) +
∞∑
k=1

(δ − τ)k

k!
f (k)(vmed),

and we can then expand, noting that integrals on τ are equivalent to expectations on random
variable η and assuming that η has a small support, and δ is small:

H(vmed + δ) = F (vmed) +
∞∑
k=1

f (k)(vmed)
k!

E[(δ − η)k]

≈ 1
2

+ f(vmed) δ +
f ′(vmed)

2
σ2
η.

The median solves H(vmed+δ) = 1/2, so solving for δ yields δ = −(f ′(vmed)σ2
η)/(2 f(vmed)).

In essence, the median has a deviation of order O(σ2
η), although we were allowed to observe

infinitely many samples.
To continue the simple example, consider the alternative approach where we are allowed

to observe a fraction β of the average section speeds v̄i. The strategy corresponds to
capturing β n of the vehicles and obtaining a noise free observation. For example, if a
fraction of users reporting their travel times or real-time locations can be used for this
purpose. In this case, standard statistical analysis shows that the median can be estimated
with an MSE that scales as O( 1

f(vmed)n) where n is the number of observations. Clearly,
tracking a subset of individual vehicles travel times allows for better estimates than noisy
point observations of all vehicles.

In Section 2.3 we discuss how to measure the state of highways and roads using various
sensors.

2.2.2 Roads

A road is composed of several layers of material, such as asphalt, sand or cement, on
top of soil. It is usually modeled as a beam lying on several layers of elastic foundation.
The dynamics of this system is characterized by the displacement response of each point
along the beam, in response to an external excitation force. For example, in a common
one-dimensional model of pavement, the response of the beam is given by the displacement
y(x, t) at location x meters, at time t. The excitation force is described by a function
F (x, t).
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Road damage can have various causes, such as the dynamics of the pavement experienced
during normal usage, or weather pattern variations.Most frequently the damage is related to
the magnitudes of the displacement experienced by the pavement. Large sudden variations
on the displacement cause rupture in the layers of material.

Most damage to the road infrastructure is caused by truck traffic [Sousa et al., 1988].
As trucks move over stretches of pavement, small irregularities on the ground cause the
suspension system to react, and a dynamic force acts on the surface. The magnitude of
this dynamic force is directly related to damage to the pavement and to other supporting
infrastructure, such as embedded traffic sensors [Cebon, 1999].

In fact, when a truck is moving on top of a pavement beam there are two forces acting:
a static force and a dynamic force. The static force corresponds to the force due to gravity
generated by the weight of the truck. Typically, this force plays a minor component with
regards to road damage. The dynamic force is the force exerted by the truck when it moves
on the road. This force depends on the weight of the vehicle, but also depends on the
number of axles and other factors such as the air pressure of tires and suspension system
characteristics. The displacement in response to this is y(x, t) = y0 + yd(x, t), where y0

corresponds to a constant displacement to due to static effects from the excitation force,
and yd corresponds to the dynamic component. y0 has very small effect on road damage.
Furthermore, it is possible to infer the weight of the truck, as well as the dynamic force
from the measurement of yd alone.

Measuring displacement directly is difficult. Typically it is done using strain gauges.
Existing sensors have a very high installation cost and are not durable. Furthermore, their
accuracy is questionable [Cebon, 1999]. On the other hand, accelerometers are reliable and
accurate. Vibration is given by the acceleration experienced by the ground:

s(x, t) =
∂2y(x, t)
∂t2

. (2.2.2)

Notice that we can recover the dynamic component of the displacement from vibration,
but not the static component. In the next Section we show how to measure vibrations
accurately.

2.3 How to Measure?

In this Section we review various measurement technologies for traffic sensing and road
infrastructure monitoring. Sensors can be divided into two main groups: intrusive and
non-intrusive. Intrusive sensors are embedded in the pavement, and therefore have higher
installation costs. An example of an intrusive sensor is a standard inductive loop used for
traffic monitoring. Non-intrusive sensors require less disruptive installation, but usually
have less accuracy than intrusive ones. An example of a non-intrusive sensor is a digital
camera used in traffic monitoring applications.
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2.3.1 Traffic

We review the five common sensing technologies. In Section 2.2 we observed that the
variables that need to be measured are different for highways and for signalized roads.
In highways, we are interested in measuring point values of speed, flow and density at
a given location. Given the nature of traffic, one sample every 30 seconds is sufficient for
capturing the important phenomena. Signalized roads, on the other hand, require measuring
individual vehicle travel times and the number of vehicles for each road section. Since the
sensing requirements are different, the sensors themselves will have different characteristics.
The differences extend from the chosen transducer to the platform that is used to collect
measurements.

Loop Detectors

Loop detectors are the most common intrusive sensors in highways. They consist of an
inductive loop that is embedded in the pavement (Figure 2.2). One sensor is placed per
lane. A current is sent through the loop. While a vehicle crosses a loop, it causes a change
in the inductance of the loop, in turn changing the frequency of the excitation signal. If the
change is above a threshold the vehicle is detected. Speed can be measured using the delay
between the detection by two consecutive loops separated by a small known distance [Bickel
et al., 2007; Ki and Baik, 2006].

Figure 2.2: Inductive loop installed in the road and a typical camera setup.

Well-tuned inductive loops have high accuracy, but are not very reliable. Their failure
rate is high due to the environment they operate in. From temperature to truck traffic,
various elements can either break the loop or affect its normal operation. Data quality is a
very severe problem in loop detector based systems. In Chapters 3 and 4 we will develop
algorithms and statistical methods to evaluate loop failure rates and also detect failed loops.
Another important concern is that the installation of loop detectors is very disruptive and
expensive. This is a serious drawback to installation at new sites or replacing damaged
loops in existing roads.
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Systems Based on Imaging

Imaging systems are non-intrusive traffic sensors. The most typical imaging systems
are video camera based (Figure 2.2) or infrared (IR) camera based systems [Mimbela and
Klein, 2000]. They are installed overhead from the road and require processing the signals
appropriately for identifying vehicles.

IR systems detect electromagnetic radiation, that is invisible to the human eye, and
can be either active or passive. Active systems emit radiation using appropriate lighting,
and the reflected radiation is detected. Presence or absence of vehicles is inferred from
the travel times of the signal. Speed is obtained by emitting two signals and measuring
the phase difference of the reflected signal. Passive systems rely on measuring gray body
emission, the natural radiation emitted from objects. An infrared camera is able to measure
this emitted radiation, creating a two dimensional image of the area of interest and changes
in this image indicate the presence of a vehicle. Using more sophisticated algorithms, speed
can be measured.

A camera based system is composed of one or several cameras, and a system for pro-
cessing the images to extract traffic information. Variations in successive image frames can
be used to detect the presence of a vehicle and tracking the vehicle over successive frames
together with data association techniques, such as a Kalman filter, can be used to obtain
point estimates of speed [MacCarley et al., 1992; Mimbela and Klein, 2000]. Images can
also be used to classify vehicles into several types, such as trucks and cars. Using a multiple
camera system deployed along a road, a vehicle can be tracked and individual travel times
can be obtained [Klein, 2001]. Under ideal conditions and with a correctly calibrated sys-
tem, speed estimate accuracies are close to 95% [Michalopoulos et al., 1993]. Unfortunately,
system performance is affected by occlusion and environmental factors such as lighting and
snow. Furthermore, shadows and camera vibration caused by wind results in a large number
of false detections, and poor speed estimates. The installation and maintenance costs are
high for such systems, and it is only justified when several detection areas can be capture by
a single camera. Single camera systems are useful for measuring highway state parameters.
Multiple camera systems can be used in signalized roads, to measure the state parameters.

Radar and Ultrasonic Systems

Radar systems use radio waves to detect direction, distance and speed of target objects.
In traffic applications the most common type of radar is microwave radar [Weber, 1999].
There are two types of radar systems: continuous wave (CW) [Duzdar and Kompa, 2001],
based on transmitting a single frequency signal in the GHz range, and frequency modulated
continuous wave systems (FMCW), based on transmitting a signal with continuously varying
frequency. CW systems rely on the Doppler Effect to estimate speed from the frequency
shift using a single detector, and as they are unable to detect motionless objects. FMCW
can detect motionless objects, but require two detectors to measure speed. Microwave radar
systems are not sensitive to weather. The accuracy of speed estimates is 8% for CW systems
and 1% FMCW systems.

Ultrasonic systems are similar to microwave radar but use signals at a different fre-
quency spectrum. Multiple detectors are required for speed detection. They are sensitive
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to temperature and air pressure changes but have higher accuracy than radar systems.

Vehicle Based Probes

Vehicle based probes can provide extensive monitoring if enough vehicles provide infor-
mation. Typically, they have a smaller upfront cost to the transportation authority, since
costs are spread over the various users of the system. On the other hand, a large number
of vehicles are required for such a system to provide real-time information. Vehicle based
probes provide location information at periodic schedules. Road section travel times can
be estimated based on these sequences of locations. These probes do not provide fixed
point statistics such as average flow and density, which can be very important for some
applications.

There are three major classes of vehicle based probes: GPS based systems, mobile phone
systems and RFID based systems. GPS based systems periodically report the GPS location
of a vehicle. The time interval between samples depends on the available communication
system and in the device used. It can very from 30 seconds to 2 minutes. Measurements of
road section travel times can be obtained based on processing the GPS samples by assigning
them to a road map, and properly accounting the time intervals between samples to each
road section. There are three important and challenging requirements for a successful
monitoring system based on GPS samples: collecting the samples at a central location,
preserving the privacy of users of the system and having enough adopters to enable road
section travel time estimates. Various studies have shown [Zou et al., 2005] that around 8
to 10% of the vehicles need to report their locations continuously for a successful service.
Such penetration rates have not been achieved in any existing system yet.

Mobile phone based systems [Zhao, 2000] can rely either on the GPS samples or in
using various forms of triangulation to provide location. The challenges of a mobile phone
based system are similar to those of a GPS system, with an added concern: mobile phones
have limited battery lifetimes and thus cannot rely on GPS only monitoring or complex
computations for localization.

RFID based systems use roadside antennas to read RFID tags attached to vehicles. These
systems also known as automatic vehicle identification systems, and are used in electronic
toll tags collection. The main challenge for adoption of this technology is the need to deploy
readers at each location of interest.

Magnetic Wireless Sensor Networks

Magnetic Wireless Sensor Networks (MWSN) are a recent technology developed for traf-
fic applications [Haoui et al., 2008a]. The system consists of two components (Figure 2.3):
a pavement embedded intelligent sensor node and an access point (AP) that is associated
with a group of nodes.

The sensor node consists of a triaxial magnetometer transducer, a microprocessor and
a wireless communication radio. The microprocessor is able to read the analog signals
from the magnetometer, process them digitally, and send them over the radio to an AP.
The whole system is housed in a 3 inch cube enclosure, resistant to the severe conditions
of operation in the highway. It is powered by batteries, and is designed to last 10 years.
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Figure 2.3: Sensys Magnetic Wireless Sensor System. Sensor node, installed sensor node and
access point (AP).

Figure 2.4: Magnetic signature from a sensor node, and corresponding speed computation.

The main limitation on lifetime is the amount of data communication, and usage of radio
consumes about 90% of the energy [Ergen and Varaiya, 2006]. The sensor is designed to
report 3 to 6 samples every 30 seconds to the AP. The sensor is deployed embedded in the
pavement using an epoxy filling (Figure 2.3), and is installed in less than 10 minutes.

The device is designed to sense the change in the earth’s magnetic field due to the
presence of a vehicle. Whenever a vehicle crosses the sensor, it leaves a magnetic signature
for each axis of the magnetometer. The signature is sampled at 128Hz. The length of
the signature depends on the speed of the vehicle. Figure 2.4 shows a typical signature.
The signature can be thresholded to indicate the presence or absence of a vehicle, and
the detection delay between two consecutive sensor nodes can be used for point speed
measurements. Figure 2.4 also shows a speed calculation. Each sensor node also reports a
time stamp of when the events were recorded.

The AP is typically connected to a group of sensors that are in a fixed location, but
at different lanes, in the road (see Figure 2.5). In alternative setups, such as intersections,
sensors before and after the intersection can be connected to an AP. This is useful in that
data from different sensors can be processed and compared in the AP.

The currently existing sensor network solution is capable of making point measurements
of flow, density and speed (if a pair of sensors is used in each lane), therefore serving as a
solution for measuring the state of highways. In Chapter 6 we show how we can combine the
readings and time stamps of different sensors to create a solution that is capable of measuring
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Figure 2.5: Sensor nodes connected to an Access Point.

Figure 2.6: Typical weigh-in-motion station configuration and Quartz piezoelectric sensor (Lin-
eas) for measuring displacements in a roadway

individual vehicle travel times, with a high penetration rate. The solution provides the first
scalable option for measuring the state of roads in real-time in a privacy preserving way.

2.3.2 Road Infrastructure

Currently, the trucks are charged by weight, measured at weigh-in stations. Most weigh-
in stations measure the gross weight of the truck and the axle loads when it is at rest. In
some stations, a weigh-in-motion (WIM) system is used [Moses, 1979; Stergioulas et al.,
2000], and one can measure the weight of the vehicle as it moves over the sensors. Beyond
the total weight, it is very important to count the number of axles in the vehicle, as well
as obtain an estimate of individual axle loads. We discuss existing sensors and introduce a
novel accelerometer based sensor for this application.

Existing sensors

The most common sensors are piezoelectric, bending plate, load cell, capacitive mat and
fiber optic. Piezoelectric sensors are embedded in the pavement (Figure 2.6), and are capable
of measuring the speed of the pavement (first derivative of displacement) when subjected to
an external excitation signal. Due to their measurement characteristics, piezoelectric sensors
can only measure the dynamic component of the force caused by a truck. The installation
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of the sensor is quite complex, and they require extensive calibration. The response of a
piezoelectric sensor is sensitive to the suspension system of a truck, its speed and also to
external temperature. Not including these factors into measurements, as done in various
deployed systems, results in errors of up to 10% in the estimates of the dynamic component
of the force. Piezoelectric sensors also fail often due to weather and traffic conditions.

Bending plate sensors are based on strain gauges attached to a plate. The sensor pro-
duces an output proportional to the displacement of the pavement, and therefore can be
used to measure both the static load and the dynamic load of a truck. Durability of bending
plates is an important issue [Cebon, 1999].

Load cells are based on measuring pressure changes in a fluid contained inside the sensor.
Such systems are usually difficult to maintain and very expensive [Mimbela and Klein, 2000].
Capacitive mats are based on creating a capacitor from two metal plates. As vehicles move
on top of the capacitor, the distance between the plates changes, and the frequency of an
oscillator based on this capacitor changes its frequency. Measurement of this change gives
the weight of each axel of the truck. The main issues with these sensors are durability and
installation complexity. Fiber optic transducers for WIM station are based on measuring
the bending or change in the refractive index of the fiber when a vehicle drives on top of
it. These perturbations are measured by intrinsic or extrinsic sensing devices [Safaai-Jazi
et al., 1990; Martin et al., 2003].

Accelerometer Wireless Sensor Networks

We have developed an accelerometer wireless sensor network system for road infrastruc-
ture monitoring as an alternative to the existing sensors. We use an equivalent platform to
the Magnetic Wireless Sensor Network, with the magnetometer replaced by an accelerome-
ter. The sensor node is similar to the one shown in Figure 2.3. It consists of a Silicon Design
2125 MEMS accelerometer, a low pass antialiasing filter with arbitrary gain, an analog to
digital converter, a microprocessor and a wireless radio. The SD 2125 has a range of −5g
to 5g,where g = 9.8 m/s2 is the gravity constant, with an expected resolution of 50µg at
50 Hz bandwidth. The sensor node is battery operated and is housed in an enclosure that
is resistant to very heavy loads. The sensor is placed in the pavement inside a 4” diameter
hole, that is subsequently filled with epoxy (as in Figure 2.3). The dynamic force generated
by typical light trucks causes vibrations on the order of 1mg.

We measure noise as the square root of the mean squared (RMS) of the measurements
of the accelerometer when there is no signal present. Under lab conditions the sensor noise
level is 120 µg (RMS noise) and when deployed in the field, the noise level is 164µg. The
measured noise level when a truck has its engine revved up to very high RPM while idling
on top of the sensor is 231µg, and when the engine is running at regular RPM it is 165µg.
When truck horn is used, it is 167µg. Based on these observations we ascertain the noise
level of the sensor as 167 µg.

We also measured the frequency response of the node and compared it to a reference
accelerometer in laboratory conditions. Figure 2.7 shows the setup and the measured re-
sponse. The maximum deviation was 0.1 dB and the average deviation was 0.04 dB. The
sensitivity of the accelerometer can be measured using a calibration plate setup, as shown
in the diagram in Figure 2.8. A calibration plate consists of a plate of precisely known
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Figure 2.7: Measurement setup and Frequency response of the accelerometer sensor node and
of reference accelerometer, corrected for the anti-aliasing filter.

length L and gage blocks, with known and calibrated heights. By stacking a series of gage
blocks, we create a series of different heights hj . By following the geometry suggested by
the diagram, at each height j we measure the voltage output V of the accelerometer. We
repeat this operation I times. The statistical model can be written as

Vij = A
√

1− x2
j +B xj + C + εij ,

xj =
hj
L
,

α =
√
A2 +B2,

A = α g cos(θ),
B = α g sin(θ),
θ = θ3 − θ1,

where εij is an independent identically distribute gaussian random variable, with zero mean.
α is the desired sensitivity parameter. We performed six different experiments, and esti-
mated the average sensitivity, using linear regression, as α = 2.00347V/g with a standard
deviation of 0.0299V/g. When using the sensor in the field we to infer C, since it is a
voltage offset at the sensor, and it changes as we turn on and off the sensor system. The
offset can be measured as a 2 second average of the signal when there is no input. We
measure and subtract this offset. The field θ is assumed to be 0.

In Chapter 8 we use this sensor node to measure experimental responses of a roadway
to a truck, and show how the data can be used to estimate the truck weight in an ideal
scenario.

2.3.3 Data Aggregation and Processing

Urban traffic systems and road infrastructures are systems spread over a very large
area. When constructing a sensing solution it is essential to consider how the data will
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Figure 2.8: Measurement setup and estimated sensitivity model fit for various experiments.

be transmitted to a central location where analysis can be done. As an example, consider
highway monitoring for a large state such as California. Each highway sensor produces
one sample of speed, density and flow every 30 seconds, and there are 25,000 sensors. All
these samples, or at least some pre-processed values, have to arrive in real-time to a central
location. Since the sensors are spread out in an area as large as the state of California, it is
unrealistic to expect that every sensing station communicates their samples to the central
location using identical infrastructure choices.

In fact, data aggregation in large sensing systems happens through a heterogeneous com-
munication medium. The most common medium are long range wireless, such as cellular
networks, or a dedicated modem network. Typically, there can be several layers of aggrega-
tion forming a hierarchical model, where each level of the hierarchy aggregates data from
the lower levels and communicates to the higher level.

Another important issue is that the sensing system itself may or may not have local
memory and the ability to correct communication errors. It turns out that most sensors do
not perform such error correction. The most common type of error is a dropped data packet
corresponding to a single sampling interval for a single sensor. Any system for processing
the received data at the central location should be able to handle such errors. If such errors
can be handled by having a communication protocol that supports retransmissions and
error correction, the performance of the data collection system is substantially improved. In
Chapter 3 we present a study of the sensor network that monitors the highways in California.
The empirical study identifies key variables to understand the performance of the network,
both in terms of failures of the transducers, as well as communication failures. One of the
observations is that a network of sensors with retransmissions receives a fraction of more
than 90% of the samples generated, whereas in a sensor network without retransmissions
this fraction is near 70%.

In Chapter 6 we also show another important consequence of imperfect communication:
estimation algorithms are significantly slower to converge to the true estimates. Still with
proper processing, imperfect communications can be taken into account.
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Chapter 3

Measuring Reliability of a Large
Sensor Network

3.1 Introduction

In this chapter we develop a methodology for empirically evaluating the reliability of
a large sensor network. As a case study, we use the loop sensor network that monitors
traffic for the state of California. The freeway sensor network of the California Department
of Transportation (Caltrans) has two components: a sensor system and a communication
network. The statewide sensor network is divided into twelve parts, each built, operated
and maintained by one Caltrans District.

The statewide sensor system consists of 25,000 sensors located on the mainline and
ramps, and grouped into 8,000 vehicle detector stations (VDS). Over 90 percent of the
sensors use inductive loops, most of the remaining use radar detectors. The sensor system
produces 30-second averages of vehicle occupancy and volume measured by each sensor.

The communication network transports data packets from each VDS to its District
Traffic Management Center (TMC). Based on these data the District Advanced Traffic
Management System (ATMS) makes decisions about traffic operations. A copy of each
data packet is also sent to the freeway Performance Measurement System (PeMS), which
archives the data and processes them in different ways to generate a variety of freeway
system performance measures. The communication network is built out of communication
links that employ different technologies. For example, wireless GPRS links predominate in
District 4, whereas telephone land lines are widely used in Districts 7 and 11.

The sensor system in the largest district (District 7) covering Los Angeles and Ventura
counties has 8,700 loop sensors; the nine-county San Francisco Bay Area District 4 has
4,600 loop sensors; and District 11, covering San Diego and Imperial counties, has 3,100
loop sensors. We study the sensor networks in three Districts, at first using data from
PeMS.

PeMS expects to receive from each sensor one sample (packet) every 30 seconds. Based
on the number and quality of the samples that it actually receives from a sensor on a given
day, PeMS designates that sensor as ‘good’ or ‘failed’ for that day.

Figure 3.1 plots the percentage of failed sensors for each day from 10/10/2005 to 12/31/
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Figure 3.1: Daily fraction of failed sensors for the statewide system, and Districts 4, 7 and 11
from 10/10/2005 to 12/31/2005.

2005 for the whole state and for Districts 4, 7 and 11. The sensor network has very poor
reliability, with 35 percent of sensors statewide considered failed on any given day. The
reliability varies widely from district to district: District 4 had 40 percent, District 11 had
5 percent, and District 7 had 35 percent failed sensors.

The poor reliability of the sensor network, and the pressing need to use sensor data for
better freeway operations decisions, led Caltrans to launch the Detector Fitness Program
(DFP) beginning December 2005. The goal of the DFP was to significantly raise the reli-
ability of the statewide sensor network. Over the next 12 months, crews made 9310 visits
to sensors in the field in order to diagnose why they had failed and, if possible, to fix the
failures.

Most sensors behave like light bulbs: once they fail, they stop functioning for ever. The
freeway sensors are quite different: they repeatedly fail and then ‘spontaneously’ recover
from failure, as is evident from the oscillations in Figure 3.1. Thus, metrics designed to
measure the reliability of systems with light bulb-like failures cannot be used for the freeway
sensor system. The chapter proposes four different ways of measuring the reliability of the
freeway sensor system: productivity, stability, and lifetime and fixing time.

Productivity is the distribution of the fraction of days that sensors provide reliable mea-
surements. Stability is the distribution of the frequency with which sensors switch from
providing reliable measurements to becoming unreliable. Lifetime is the distribution of the
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number of successive days that sensors continue working before they fail, and fixing time
is the distribution of the number of successive days that sensors remain in a failed state
before being fixed. The chapter uses these metrics to compare the reliability of the sensor
networks in Districts 4, 7 and 11, as well as to evaluate the effectiveness of the Detector
Fitness Program.

The remainder of this chapter is organized as follows. Section 3.2 describes the sensor
network in a way that shows the kinds of hardware and software faults that can lead PeMS
to declare a sensor failure. Section 3.3 summarizes the two data sets that are used. Sec-
tion 3.4 considers sensors that are always in a failed state. Section 3.5 introduces the scope
chart, which gives a visual summary of the state of the sensor network. Section 3.6 defines
productivity and computes the productivity of the three Districts. Section 3.7 defines and
evaluates stability. Section 3.8 calculates the lifetime and fixing time distributions. Sec-
tion 3.9 analyzes the Detector Fitness Program and evaluates its effectiveness. Section 3.10
collects some conclusions.

3.2 Sensor fault description and PeMS failure states

Figure 3.2 is a schematic of the sensor network in District 7. At a particular VDS
location, there is a sensor in each lane of the freeway. In more than 90 percent of the
locations the sensor is an inductive loop, represented by the little circles in the figure.
Sensors from the different lanes are connected through a pull box to a controller cabinet on
the side of the road.

The cabinet includes a 170 controller and a modem. The controller detector cards process
each sensor’s measurements to produce 30-second averages of vehicle occupancy and volume,
and format these data into a packet, which includes fields indicating the VDS and sensor
IDs (identifiers). The cabinet receives power from a local power line.

The TMC receives the data packets from the controller over a digital communication
network. The network has two parts, one of which is Caltrans-operated and the other is
Telco-operated.

A Caltrans-operated field line connects the controller cabinet and modem to the Telco
demarc box; optionally a field bridge connects multiple controllers to the Telco demarc box.
A Telco bridge connects multiple demarc boxes to a TMC Line inside the Telco network.
The TMC Line connects to the front-end processor (FEPT) of the District TMC. Up to 20
controllers may share the same Telco line, the different controllers being distinguished by a
Drop ID.

The FEPT receives data by polling the controller modems. The received packets are
forwarded to the District ATMS; a copy is also forwarded to PeMS.

Caltrans deploys several variations of the sensor network. A small fraction of the sensors
use radar to detect the presence of a vehicle. However, the radar-based systems also produce
data packets with the same format. There is a greater difference in the communication
network. Some controller cabinets in District 7 are connected to the TMC over Caltrans-
owned optical fiber links. More significant is the use of wireless links rather than land lines
as in the figure. For example, District 4 uses the GPRS data service.

Thus the overall sensor network combines several hardware and software subsystems.
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Figure 3.2: The configuration of the sensor network in District 7

Each subsystem is a potential source of failure. The main subsystems are the inductive
loop; the detector card for each sensor; the controller; the Caltrans-operated communication
sub-network; and the Telco-operated communication sub-network.

When PeMS receives a data packet, it consults a configuration table to interpret the
data packet. The table contains meta information that helps determine whether the VDS
and sensor IDs in the packet are valid and where the sensors are located (mainline, ramps).
If a packet contains an ID that is not recognized by the table, the packet is discarded.
Conversely, if there is no packet corresponding to an ID in the table, it is assumed that
there is a failure in the system corresponding to that sensor.

Every midnight, PeMS examines the sequence of (data) samples received from each
detector; subjects the sequence to a set of statistical tests; and classifies the detector ‘health’
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for that day into one of 10 diagnostic states displayed in the first column of Table 3.1. A
correctly functioning detector should daily provide 2,880 30-sec samples with reasonable
values. The statistical tests involve the number of received samples and their values. The
second column of the table indicates the nature of the tests, and a detailed description is
available in Chen et al. [2002a].

Diagnostic
State

Description Detector
Types

Line Down No detector on the same communication line as the selected
detector is reporting data. If information about communica-
tion lines is not available this state is omitted.

ML, Ramps

Controller
Down

No detector attached to the same controller as the selected
detector is reporting data. This may indicate no power at
this location or the communication link is broken.

ML, Ramps

No Data The individual detector is not reporting any data, but oth-
ers on the same controller are sending samples. This may
indicate a software configuration error or bad wiring.

ML, Ramps

Insufficient
Data

Insufficient number of samples are received to perform PeMS
diagnostic tests, while other detectors reported more samples.

ML, Ramps

Card Off Too many samples with an occupancy (for ML and HOV
detectors) or flow (for ramps) of zero. The detector card (in
the case of loop detectors) is probably off.

ML, Ramps

High Val Too many samples with either occupancy above 70% (for ML
and HOV detectors) or flow above 20 veh/30-sec (for ramps).
The detector is probably stuck on.

ML, Ramps

Intermittent Too many samples with zero flow and non-zero occupancy.
This could be caused by the detector hanging on.

ML

Constant Detector is stuck at some value. (PeMS counts the num-
ber successive occurrences of the same non-zero occupancy
value.)

ML

Feed Unsta-
ble

The data feed itself died and there were insufficiently many
samples during the day to run the tests. On days where this
occurs we mark the detectors that were previously good as
good and the ones that were previously bad as Feed Unstable.

ML, Ramps

Good Detector passed all tests ML, Ramps

Table 3.1: Diagnostic states

The first nine diagnostic states indicate failure; the tenth state, ‘good’, indicates a func-
tioning detector. The plots in Figure 3.1 refer to the daily fraction of failed sensors.

Comparing the configuration of the sensor network in Figure 3.2 with Table 3.1 we see
that knowledge of the sample sequence received by PeMS from a particular sensor is not
enough to uniquely relate a failure diagnostic state with an actual hardware or software
fault. For instance, if a sensor delivers insufficiently many samples or no samples at all, this
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may be due to the controller being down or to a failure of a communication link or an error
in the configuration table. Therefore we will aggregate the 10 diagnostic states provided
by PeMS into two or three ‘macro’ states: good, sensor system failure, and communication
network failure.

3.3 Data Used

We describe the data used in the chapter and then the pre-processing steps taken to
convert the data into a standard format used in the subsequent analysis. Two data sets are
used.

The first data set consists of the sequence or time series of daily sensor diagnostic states in
PeMS for each loop in Districts 4, 7 and 11 as described in Table 3.1.1 The loops considered
in the study are those that were listed in the PeMS configuration table on March 31, 2007.
For each loop the sequence of days spans 27 months from January 1, 2005 to March 31,
2007; for loops that were installed on a later date, the sequence begins later. There were
5782 sensors in District 4, 8707 sensors in District 7 and 3264 sensors in District 11.

The second data set comprises records from the Detector Fitness Program (DFP) for
Districts 4 and 7 [Rajagopal and Varaiya, 2007]. These records were created by crews
following a field visit to a loop. The records are textual and their format is not standardized;
hence they require some interpretation on our part, as explained next.

For District 4, the records summarize a total of 4,578 visits between December 12, 2005
and December 30th, 2006. 3244 individual detectors were visited. For District 7, the
visits occurred in clusters between December 12, 2005 and August 2, 2006. The records
corresponds to a total of 4,732 visits. 3192 individual detectors were visited, implying that
several detectors were visited more than once. For different clusters, the data are recorded
in different ways on a spreadsheet, possibly because there were different crews. Each row of
the spreadsheet corresponds to a visit to an individual loop. Typically, the records contain
the following fields:

• Location: comprising the Detector Station (VDS) to which the loop is connected, lane
number, highway name, highway direction, and postmile.

• Visit date: typically the date the loop was visited, but sometimes the date the record
was entered in the system. It is safe to say that the sensor was visited before this
date.

• Problem type: typically a textual description of either the diagnostic state reported
by PeMS or the type of problem encountered.

• Related cause: typically the failure cause as surmised by the crew, frequently the
name of a broken or missing hardware part.

• Solution: typically the steps taken towards the solution of the problem, and whether
the problem was successfully resolved.

• Status: the PeMS diagnostic state after visit.
1We use ‘sensor’, ‘loop’ and ‘detector’ interchangeably.
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3.3.1 PeMS data pre-processing

Let the time series si(n) denote the diagnostic state as determined by PeMS for sensor i
on day n; si(n) takes one of the 10 values listed in the first column of Table 3.1. We merge
several diagnostic states together to obtain a new time series s∗i :

s∗i (n) =


1 if si(n) ∈ {Good}
0 if si(n) /∈ {No Data,Controller Down, Good}
−1 if si(n) ∈ {No Data,Controller Down}

. (3.3.1)

In some cases (as will be made clear) we modify the conditions above to

s∗i (n) =


1 if si(n) ∈ {Good}
0 if si(n) /∈ {No Data, Insufficient Data, Controller Down, Good}
−1 if si(n) ∈ {No Data, Insufficient Data, Controller Down}

.

(3.3.2)
The aim of the coding scheme is this. s∗i (n) = 1 means that both the sensor system and

the communication network associated with loop i were functioning on day n. s∗i (n) = 0
means that the communication network associated with loop i on day n was functional,
since some packets were received (si(n) 6= No Data), but there was a failure in some part
of the sensor system. Lastly, s∗i (n) = −1 corresponds to a communication network failure
as no data were received. Sometimes, following (3.3.2), ‘Insufficient Data’ is treated as a
communication failure.

The aim of the analysis is to understand the persistence of the ‘good’ state and the occur-
rence of the two failure states. Note that by using (3.3.1) more failures are attributed to the
sensor system, whereas by using (3.3.2) more failures are attributed to the communication
network.

If there is a ‘communication network failure’ (s∗i (n) = −1), we cannot say whether
the sensor system has also failed, because a communication failure masks or censors the
corresponding sensor system observation. How can we estimate the sensor system state
when there is a communication failure?

A simple approach, in keeping with the non-parametric approach we have adopted here,
is to fill in the sensor system failure value with its last known value. Thus if s∗i (n) = −1,
we set s∗i (n) = s∗i (n − 1). If s∗i (n) = −1 on the first day of the series for loop i we ignore
the series until the very first day for which s∗i (n) 6= −1. We call the new resulting sequence
a filled sequence. A filled sequence is one in which {No Data, Controller Down} are filled.
A ND-filled sequence is one in which states {No Data, Controller Down, Insufficient Data}
have been filled. The difference lies in the interpretation of the communication failure
‘insufficiently many samples received’ which can be interpreted as either a sensor system
failure, or a communication network fault.

3.3.2 Detector Fitness Program data pre-processing

The DFP maintenance records do not follow a uniform format. The recording frequently
was not very careful. For example in District 4, 25% of the records report no underlying
cause of failure. In District 7, only 4% of the records suffer from this deficiency. Such
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recording procedures pose an additional challenge to the data analysis.
For each visit to a sensor an entry in the maintenance record is created and the observed

failure and actions taken are recorded. No systematic way of recording the observed failures
was followed. The cause for the observed failure and the actions taken are also encoded
in a single sentence, such as ‘open loops SB lane 3. disabled channels’. Therefore we
used a simple parsing scheme to encode the textual records. We created 9 non-mutually
exclusive classes: Upgrade Firmware, Under Construction, Open/Bad Loop, Connection
Issues, Modem/Card Issues, Reset Equipment, No Power, Other Issues and No reported
cause. For each class we seek specific keywords or combination of keywords in the text. If
the keywords are observed a ‘1’ is entered for that class for that record; otherwise a ‘0’ is
entered. We manually checked many of the assignments made in this way and they worked
reasonably well, because failure descriptions use a much smaller vocabulary than freeform
text.

Thus for each visit we end up with 13 variables: the sensor visited, the visit date, whether
the sensor was fixed or not, and an indicator of 9 possible non-exclusive failure causes.

3.4 Always-failed and Always-working Sensors

Examination of the PeMS diagnostic sequences reveals a significant fraction of sensors
that are always failed (i.e., never worked) or always working. We begin by analyzing the
statistics of such sensors. Sensor i is called always-0 if the sensor is assigned a failed state
for the entire period T , i.e., s∗i (n) = 0, n ∈ T . It is called always-1 if a failed state is never
observed for the entire period T , i.e., s∗i (n) = 1, n ∈ T . T is taken to be one quarter or one
year. (See (3.3.1) for definition of s∗i .)

We use filled sequences to count always-0 and always-1 sensors, unless explicitly indi-
cated otherwise. This means that communication failures are not considered to be faults
for this analysis. The type of filled sequence does not affect the always-0 status, but
it does affect always-1 status, because if ‘Insufficient Samples or Data’ is regarded as a
communication failure, some sequences that include 0 values can become always-1 .

Table 3.2 shows the number and percent of always-0 and always-1 sensors in the three
different Districts. There is a large number of always-0 sensors in District 4 and District
7 compared to District 11. This discrepancy by itself accounts for a considerable portion of
the performance difference between Districts.

Furthermore, District 4 and District 7, in contrast with District 11, have almost no
always-1 sensors. The increase of always-1 sensors from 2005 to 2006 in District 7 is
due in part to sensor misconfigurations that were corrected and in part to the DFP. The
increase in always-0 sensors in District 11 is mainly due to the inclusion of ramp sensors
in PeMS starting in 2006.

If we use an ND-filled sequence, which classifies ‘Insufficient Data’ as a communication
failure, then the number of always-1 sensors increases while the number of always-0
sensors remains the same, as expected (Table 3.2). The increase in the number of always-
1 sensors assumes that the sensor system reliability is unchanged during a communication
failure. This indicates that at least part of the performance difference among Districts can
be attributed to communication network failures.
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District (Year) Total always-1 always-0
District 4 (2005) 5140 9 (0%) 1171 (23%)
District 4 (2006) 5271 0 (0%) 1327 (25%)
District 7 (2005) 6478 21 (0%) 1090 (17%)
District 7 (2006) 8613 319 (4%) 1399 (16%)

District 11 (2005) 1750 604 (35%) 38 (2%)
District 11 (2006) 3223 1402 (44%) 116 (4%)

District 4 ND (2006) 5271 2106 (40%) 1327 (25%)
District 7 ND (2006) 8613 2590 (30%) 1399 (16%)

District 11 ND (2006) 3223 2544 (79%) 116 (4%)

Table 3.2: Failure summary for always failed and always working sensors filled and ND-filled
sequences (ND)

Rajagopal and Varaiya [2007] develops a further breakdown of always-0 and always-1
sensors according to type of sensor, highways, lanes and VDS controllers.

3.5 System View

In this section we introduce a view—the scope chart—of the sensor system state, based
on visualizing the fault sequence over time and across highways. This visualization technique
provides a global view of the system or of parts of the system.We first describe how such
plot is constructed.

For each sensor i, compute the state sequence s∗i (n), which assumes values 1 (sensor is
good on day n), -1 (communication network failure on day n) and 0 (sensor system failure
on day n) (see (3.3.1)). The plot is a two-dimensional ‘heat’ map (1 = red, -1 = blue, 0 =
green). The horizontal axis is time in days. (The sequences cover 27 months or 810 days.)
The vertical axis corresponds to some ordering of all sensors. In Figure 3.3 for District 4
all sensors on the same highway are grouped together and within each highway group they
are ordered by postmile and lanes.

In the chart we can clearly see horizontal red lines representing sensors that worked
for long periods. A blue streak in the horizontal direction indicates a sensor that did not
report data for a long period. Blue streaks in the vertical direction correspond to days when
many sensors sent no samples. This could be caused by a communication network failure in
which several TMC lines failed or the FEPT was unable to poll many modems (see Figure
3.2). Such streaks explain the oscillations observed in the total number of failed sensors in
Figure 3.1. The scope chart also allows us to compare the reliability of different highways.
The charts suggest that in general District 11 has a much more reliable sensor system. In
particular, there are fewer communication failure streaks in District 11 than in District 4
(the blue streaks at the leftmost side of the chart usually corresponds to dates before the
sensor was installed into the system). This reinforces the importance of the communication
network between the controller modems and the FEPT.
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Figure 3.3: Scope chart ordered by highway, postmile and lane for Districts 4 (left) and District
11 (right), 2005-2007. Red streaks corresponding to Good state, green to Bad and blue to
Communication network failure.

3.6 System Productivity

In this section we propose a measure of productivity of a District’s sensor network. The
measure is computed as follows. Consider a time interval T and a sensor set M of size M .
For each sensor m ∈ M we calculate the percent of days dm that the sensor is working as
wm = 100[dm/T ]. The productivity of M, PM(x), x ∈ [0, 100] is the cumulative frequency
distribution of wm:

PM(x) =
1
M

M∑
m=1

I (wm ≤ x) . (3.6.1)

PM(x) is the fraction of the sensors that worked for at most x% of days. Evidently, sensor
set Ma has strictly better productivity than Mb if PMa(x) < PMb

(x) for all x. A single
number to compare two sensor sets is the total productivity (TP) defined as the area above
the productivity function,

TPM = 1−
∫ 100

0
PM(x)dx, (3.6.2)

which of course is the empirical average of wm,

TPM =
1
M

M∑
m=1

wm. (3.6.3)

If we model the sensor state as a two-state (‘good’ and ‘failed’) stationary Markov chain,
TP is the steady-state probability of the chain being in the ‘good’ state.

We compute the productivity of the sensor networks in Districts 4, 7 and 11, using the
raw (non-filled) data sequence (3.3.1). We omit all sensors that are always-0 for the chosen
time horizon since these sensors have already been accounted for.

Figure 3.4 displays the results. For any point on the curve take the y-ordinate (say 20%),
determine the corresponding x-ordinate (say 40 days), and interpret the point to mean 20%
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of the sensors worked for less than 40% of the time. Alternatively, 80 % (100%-20%) of the
sensors worked for more than 40% of the time. The total productivity of the sensor network
is the area above the productivity curve.

Figure 3.4: Productivity of District 7 (top left) and District 11 (top right). Stability of Districts
7 (bottom left) and 11 (bottom right), 2005 and 2006

For District 7, productivity in 2006 is strictly better than in 2005, presumably a result
of the Detector Fitness Program (DFP). For District 11 productivity remained unchanged,
and is strictly better than the productivity of both Districts 7 and 4 (not shown). For
District 4, the median productivity for both years was unchanged. The effect of the DFP
for District 4 is mixed.

Productivity for the districts aggregated by highways and lanes does not show extreme
variability [Rajagopal and Varaiya, 2007].

3.7 System Stability

From Table 3.2 we know that the majority of sensors switch between good and failed
states one or more times. (These are the sensors that are not always-0 or always-1 .)
Sensors with the same productivity may switch different number of times. We propose a
simple system metric that captures this difference.
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For a sensor set M of size M and time interval T , we compute the normalized number
of state changes sm = (r10,m + r01,m)/T , where r10,m is the number of times sensor m
switches from the good state to a failed state during T and r01,m is the number of switches
from a failed to the good state. The stability of M, SM(x), x ∈ [0, 100] is the cumulative
distribution of sm:

SM(x) =
1
M

M∑
m=1

I
(
sm ≤

x

100

)
. (3.7.1)

SM(x) is the fraction of sensors that switched states on at most x% of the days. The total
stability TS is the area below SM(x):

TSM =
∫ 100

0
SM(x)dx. (3.7.2)

Sensor set Ma is strictly more stable than a set Mb if SMa(x) > SMb
(x) for all x. Ma

is on average more stable than Mb if TSMa > TSMb
. If we model the sensor state as a

stationary two-state Markov chain, its two transitional probabilities are determined by its
total productivity and total stability. Stability is a measure of how frequently individual
sensors switch between working and failed states.

Using the raw data, we estimate the stability of different Districts. We discard sensors
that are always-0 , as they were considered separately. The average stability of the system
is just the area below the stability distribution curve.

Figure 3.4 compares the stability of District 7 and District 11 for 2005 and 2006. For a
point on the plot, suppose its y-ordinate is 50% and the corresponding x-ordinate is 5. This
means that 50% of the sensors switched 5 or fewer times during a 100 day period. In the
figure, District 7 is more stable in 2006 than in 2005, as the stability curve in 2005 strictly
dominates 2006. The median number of switches decreased from 4 in 2005 to 3 in 2006. For
District 11 the median remains at 1 for both years, with a large number of sensors with 0
switches (always-1 sensors). District 4 has a median of 7 switches for 2006 and 5 for 2005.
Comparison across highways and lanes did not reveal any extreme differences for all three
districts [Rajagopal and Varaiya, 2007].

3.8 Lifetime Estimates

Estimation of lifetime or survival curves is the standard approach in statistics for char-
acterizing system failures [Nikulin, 2004; Klein and Moeschberger, 2003]. In this approach
a number of individuals are observed starting at varying initial times and their failure times
are recorded. Records of individuals that did not experience failures during the observation
period will be right-censored as we don’t know when they would have failed. The survival
curve is the complement of the cumulative distribution of time to failure. The standard
non-parametric estimators of the survival curve are the Nelson-Aalen and Kaplan-Meyer
estimators [Nikulin, 2004; Klein and Moeschberger, 2003]. These estimators are appropriate
only for individuals experiencing a permanent failure rather than recurring failures.

In the California sensor network, many failed sensors ‘spontaneously’ start working again,
which is different from the standard survival analysis setting. In the sensor network litera-
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ture as well recurring failures are usually ignored, but it is an important phenomenon that
should be understood [Koushanfar et al., 2003; Zhou and Guo, 1998]. Spontaneous failure
and recovery processes could indicate that the loss of performance is not a result of failures
in the underlying hardware (which are likely to be permanent), but is rooted in the design
choices for the communication network and sensor unit.

We use simple estimates of survival curves, which account for spontaneous recovery.
Choose a time period T . The data comprise filled or ND-filled sequences. For each sensor
i, compute the runs of 0’s and 1’s. A 0-run is the count of the number of successive days a
sensor is failed (si(n) = 0), i.e. time to fix ; a 1-run is the count of the number of successive
days si(n) = 1, i.e. a sensor remains in a working state (lifetime). Each sensor’s 0-runs and
1-runs alternate. Denote the set of 0-runs and 1-runs for sensor i by R0

i and R1
i respectively.

We normalize all run lengths by the total number of days the sensor is in the system during
T .

The first estimate is the lifetime distribution, which is the empirical cumulative distri-
bution function for R1 =

⋃
i∈AR1

i , while the mean lifetime of sensor i is

µ1(i) =

∑
ri∈R1

i
ri∣∣R1

i

∣∣ . (3.8.1)

The second estimate is the fixing time distribution, which is the empirical cumulative dis-
tribution function for R0 =

⋃
i∈AR0

i , while the mean fixing time of sensor i is

µ0(i) =

∑
ri∈R0

i
ri∣∣R0

i

∣∣ . (3.8.2)

µ1(i) is the average time sensor i is working before it fails and µ0(i) is the average time it
takes to become fixed after it has failed.

We can compute the empirical distributions of the mean lifetime µ1(i) and the mean
fixing time µ0(i). In these distributions, each sensor contributes a single number. The
difference between the 1-run distribution and the mean lifetime distribution, is that the
former represents a system property (for example, sensors that are always-1 contribute
less to the distribution, as they have a smaller number of runs), whereas the latter is a
distribution of the lifetime property of individual sensors.

3.8.1 Runs distributions

The 1-run distribution for District 11 is strictly better than that for District 4 (Figure
3.5), implying that sensors in District 11 keep working much longer before they fail. There
is no significant change year over year for all districts. The 0-run distributions in Figure 3.5
show there is a large number of 1 day long failures, 61% in District 11, 48% in District 4
and 49% in District 7 (not shown). The run distribution computed according to ND filled
sequences reveals that 42% of the 0-runs are one day long in 2006 in District 4, 50% for
District 7 and 33% District 11, thus the one day long spontaneous failures are not limited
to insufficient number of samples received. But, the 1-runs distribution also shows that
District 4 and 7 behaves much closer to that of District 11, when such faults are excluded
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(see Rajagopal and Varaiya [2007]).

Figure 3.5: 1-runs distribution of District 4 (top left) and 11 (top right); 0-runs distribution of
District 4 (bottom left) and 11 (bottom right) (2005-2006)

3.8.2 Lifetime and Fixing time

Figure 3.6 shows the mean lifetime distributions for sensors in Districts 4 and 11. District
4 shows some improvement in 2006, but District 11 is more productive due to the always-1
sensors. The fixing time curves for District 11 is slightly better than for District 4, although
both district have a large number of short failed bursts. This corroborates the results in
previous sections.

Rajagopal and Varaiya [2007] shows that when ND-filled sequences are considered, Dis-
tricts 4 and 11 perform similarly with 60% and 70% of the sensors, respectively, having
always-1 runs. This suggests that communication failures play a major part in the failure
states of sensors.

3.9 Detector Fitness Program

The Detector Fitness Program for Districts 4 and 7 is an attempt to improve the reliabil-
ity of their sensor networks. The Program sent crews to fix sensors that were suspected on
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Figure 3.6: Sensor lifetime (top) and fixing time (bottom) distribution of District 4 and 11
(2005-2006, filled)

the basis of their PeMS diagnostic state for a single day. We have seen above that the sensor
network in these Districts is very unstable. Hence it is a poor idea to determine the suspect
list on the basis of a single day, especially if the failed state is due to a communication
failure.

Only 1083 out of 3244 visited sensors (33%) in District 4 and 1651 out of 3192 (52%) in
District 7 were claimed fixed. The number for District 7 is higher because the crew could
replace the loop in some locations. Thus the DFP records claim a ‘success’ rate between 30
and 50%. We will see below that this claim is illusory.

An analysis reveals that for District 4 (District 7) 12.5% (21.6%) faults are ‘Bad/Open
Loops’, 15.1% (17.3%) are ‘Missing Parts’, 26.2% (40.1%) are ‘Modem/Card issues’, 5.6%
(7.9%) are locations under construction and 4.0% (8.0%) are ‘No Power’. These are not
mutually exclusive classes. Notice the significant number of non-operational loops which
may report samples depending on district wide software configuration decisions. Careful
maintainenance of the configuration should improve sensor network reliability.
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3.9.1 always-0

About 30% of the visited sensors for both districts were always-0 sensors, 867 sensors
in District 4 and 958 in District 7. The total corresponded to 65% and 68% of existing
always-0 sensors and thus the analysis might apply to the entire population of always-0
sensors. 22% of these sensors in District 4 and 26% in District 7 were sensors with bad/open
loops. 43% of the sensors in District 4 and 15% in District 7 were reported to have bad
equipment. Non existent lanes corresponded to 8.5% and 14.3% of the sensors. Only 9%
in District 4 and 9% in District 7 were claimed fixed by the DFP. After the fixing date,
40% of the claimed fixed sensors (29 of 73) sensors in District 4 returned to an always-0
state, and 24% (20 of 84) of those in District 7 returned to an always-0 state. The real
effectiveness of the program among always-0 sensors is only about 5%.

Figure 3.7: Productivity of visited but not fixed (top left) and visited and fixed (top right)
sensors. Stability (bottom left) and lifetime (bottom right) of visited and fixed sensors in
District 7 before and after visit (2005-2007)

3.9.2 Productivity and stability

Figure 3.7 compares the productivity of visited sensors claimed fixed and those visited
but not fixed in District 7. The productivity was calculated for the time period before the
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visit and after the visit. A clear improvement can be observed due to fixing. The non fixed
sensors experience a slight improvement that could be caused by misreporting, since in some
cases the fixed status was checked by looking at a single day of PeMS status information.
The Figure also shows the stability of the sensors claimed fixed, and the improvement is
insignificant. This confirms the conclusion that that communication network failure is an
“independent” failure, which the DFP does not effectively address.

3.9.3 Lifetime and Fixing Time

To conclude the section, we compute the sensor lifetime curve for visited and fixed sensors
in District 7 (Figure 3.7). Fixed sensors improved their average length of 1-runs. Still the
improvement is not as remarkable as the improvements observed in productivity, due to the
inherent instability of the communication network. In Rajagopal and Varaiya [2007], the
0-run length distribution is also computed, and it confirms that the 0-runs become shorter,
indicating that they are oscillations due to the communication network. Typically, long
0-runs correspond to actual failures, and short 0-runs to communication faults.

3.10 Discussion

In this Chapter we performed a systematic analysis of failures and the actions taken
against them in two districts in California. Our analysis did not rely in any specific para-
metric models, avoiding any particular assumptions about the sensor behavior. Instead we
devised simple metrics that can be easily computed for very large systems. We use a whole
day (or block) of samples to attribute a sensor state.

We observed that four independent properties characterize well a sensor system: pro-
ductivity, stability and lifetime/fixing time. Productivity is a measure of the performance
of the sensor system, whereas stability captures the performance of the communication sys-
tem. Lifetime and fixing time provide a peek at effective performance of the system. Simple
approaches for censored inference generated good results.

Some observations about the districts in this study are that permanently failed sensors
are the biggest influence in district wide performance. Furthermore, District 11 has a better
communication system performance than Districts 4 and 7.

The Detector Fitness Program addressed the productivity of the detector system, but
had limited success. Sensors for fixing should be chosen using the proposed metrics. The
program should focus on sporadically working sensors and those with modem issues.
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Chapter 4

Simultaneous Sequential Fault
Detection for Multiple Sensors

4.1 Introduction

A randomly time-varying environment is monitored by a group of sensors. Each sensor
has a fixed location where it periodically collects a noisy sample of the environment. A
sensor may fail at any time, after which it reports incorrect measurements. Based on the
sensor reports we wish to identify which sensors have failed and when the faults occurred.

If a failed sensor reports measurements with implausible values the fault can be correctly
and quickly identified; but if it continues to report plausible values, fault detection is more
difficult. We propose fault detection algorithms for this difficult case. The intuitive idea
underlying the algorithms is for each sensor to detect a change in the correlation of time
series of its own measurements with those of its neighbors’ measurements. We call this
change point detection.

In order for the idea to work, we make two assumptions. First, the measurements of
functioning neighboring sensors must be correlated, while the measurements of a faulty sen-
sor and a neighboring functioning sensor are not correlated. Second, since the environment
being monitored is time-varying and the measurements are noisy, we require the average
time between successive faults to be longer than the event time scale–the time between
significant changes in the environment. The first assumption helps identification of a faulty
sensor by comparing its measurements with its neighbors. Since the identification is made
through statistical correlations, the probability of an incorrect fault identification (proba-
bility of false alarm) will be positive. The second assumption implies that a change in the
environment can be distinguished from a change in the status of sensors, and also that there
is sufficient time to reduce the false alarm probability at the cost of a delay in identifying
when the fault occurred.

As a concrete example consider the California freeway performance measurement system
or PeMS, comprising a collection of 25,000 sensors, one per lane at 9,700 locations [PeMS,
2009]. Every 30 seconds, a sensor reports the number of vehicles that crossed the sensor
and the average occupancy or density (vehicles per meter) in the preceding five minutes. If
no sensor has failed, these reports are directly used to generate a real-time traffic map on
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the PeMS website. On any day, however, upwards of 30 percent of the sensors have failed.
PeMS uses statistical algorithms to identify the failed sensors and generate the traffic map
without their measurements [Chen et al., 2003]. These algorithms rely on correlating each
sensor’s measurements with those of its neighbors but, unlike the approach here, they do
not use temporal correlation. Also, PeMS algorithms are centralized, whereas ours are
distributed as measurements are only communicated among neighbors.

We summarize our contribution. Section 4.2 reviews work related to our contribution.
Section 4.3 proposes a change point distributed fault model for multiple faults, together
with performance metrics to evaluate any sensor fault detection method.

Section 4.4 presents a distributed, online algorithm for simultaneously detecting multiple
faults. The detection procedure relies on online message passing of detection results only
among neighboring sensors. Section 4.4 also gives performance guarantees of the proposed
algorithm in terms of the probability of false alarm (PFA) and the detection delay between
the instant a fault occurs and the time when the algorithm detects the failure.

Sections 4.5 and 4.6 consider the selection of event time scales and propose efficient
implementation schemes that minimize the amount of data transfer. Section 4.7 analyzes
node density and fault detection tradeoffs.

4.2 Related Work

4.2.1 Fault detection in sensor networks

There is a sizable literature on fault detection in the context of sensor networks [Chong
and Kumar, 2003]. Fault detection of multiple sensors has received some attention [Koushan-
far et al., 2004]. An algorithm to increase the reliability of a ‘virtual’ sensor by averaging
values of many physical sensors in a fault tolerant manner is presented in Marzullo [1990].
The analysis assumes that each sensor measures the same physical variable with a certain
uncertainty and fault specification. In Ould-Ahmed-Vall et al. [2007], the authors develop a
fault tolerant event detection procedure based on the assumption that time-varying failure
probabilities of each node are known and a threshold test is used for detection. They also
use geographical information to enhance spatial event detection. Decisions are made using
only the current time observations, without accounting for trends in the data. Luo et al.
[2006] proposes a similar model. Elnahrawy and Nath [2004] describes a method for out-
lier detection based on Bayesian learning. The procedure learns a distribution for interval
ranges of the measurements conditional on the neighbor’s interval ranges and last observed
range. Neighbor’s information and past information are assumed conditionally independent
when the current range is observed. The idea of detecting malfunctioning sensors based
on correlation-type reliability scores among the neighboring sensors is considered in Kwon
et al. [2003]. The model leads to a detection rule based on the posterior probability of
the sensor failure given the observed scores at a certain time instance without looking at
the time series of measurements. A model-based outlier detection method is developed in
Tulone and Madden [2006]. The method relies on estimating a regression model for each
individual sensor, and estimating deviations from the predictions of the model. Jefferey
et al. [2006] proposes a systematic database approach for data cleansing. A time window
primitive for outlier detection based on model estimation is proposed.
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4.2.2 Sequential detection

Sequential change point problems have been extensively analyzed for the case when
there is a single change point (e.g. see [Lai, 2001]). Some popular procedures are the
CUSUM procedure [Page, 1954] and the Shiryaev-Roberts-Pollak procedure [Roberts, 1966;
Shiryayev, 1963], which rely on likelihood ratios. The asymptotic performance of these
procedures when pre-change and post-change distributions are known have been analyzed
in a series of papers, starting with Lorden [1971], under different performance criteria, and
minimax and Bayesian settings [Pollak, 1987; Lai, 1998; Borovkov, 1999; Tartakovsky and
Veeravalli, 2005].

Tartakovsky and Veeravalli [2005] show the asymptotic delay optimality of the Shiryaev-
Polak-Roberts (SRP) rule under diminishing false alarm rates for the Bayesian setting.
Borovkov [1999] compute the asymptotic delay of the CUMSUM rule under diminishing
worst case false alarm probability, over all possible change times.

Single change point models have been proposed as fault detection procedures for a single
system [Benveniste et al., 1990]. Such a model has not been extended for application in the
sensor network type setting, where each element of a system can experience a change point,
but changes have specific correlation structures.

In this Chapter we introduce a multiple change point model for fault detection that
attempts to bring together some of the preferred empirical approaches, such as correlation
tracking [Papadimitriou et al., 2006], with guaranteed performance bounds possible through
change point analysis. The generalization of the a posteriori rule, a natural generalization
of the SRP procedure, is shown to be far from optimal. Near optimality is shown for a
specific algorithm, which is a specially constructed extension of the SRP rule for the fault
detection problem.

In sensor network applications, it is desirable to have procedures that only use infor-
mation of geographically close sensors to limit communication costs and improve lifetime
for the network. Such a constraint leads to a distributed processing constraint in a change
point problem. Various authors [Mei, 2008; Veeravalli, 2001; Veeravalli et al., 1993] analyze
distributed versions of single change point problems, and derive an optimal rule for some
cases, under the constraint that the rules belong to predetermined classes.

4.3 Problem statement

4.3.1 Set-up and underlying assumptions

There are m sensors, labeled u1 to um. Sensor u’s measurements form the time series
{Xt(u)}. We are interested in developing an online and distributed procedure for detecting
faulty sensors based on the data {Xt(ui) | i = 1, . . . ,m}. Our method relies on the following
assumptions, elaborated further below.

• Neighboring functioning sensors have correlated sensor measurements, but a failed
sensor’s measurements are not correlated with its functioning neighbors. The neigh-
borhood relationship is specified by the known fault graph G(V,E): V is the set of
sensors or nodes and E is the set of undirected edges (Figure 4.1). The graph normally
includes self loops. In practice, the neighborhood relationship is that of geographic



46

(a) (b)

Figure 4.1. (a) Neighborhood graph of a sensor network and (b) corresponding statistical
dependency graph.

proximity. In PeMS, for example, sensors at the same and adjacent locations on the
freeway are considered neighbors.

• Each sensor makes a periodic noisy p-dimensional measurement of its environment.
Xt(u) is the measurement at time t. The sensors need not be synchronized.

• Instead of making a decision at each sampling time t, we choose to make decisions
after a block of T samples has been observed. The time scale T is selected to be
longer than that of an event. For instance, in PeMS, T corresponds to the number of
samples for a day. We index blocks by k and n.

• Sensors fail independently and the time of failure λu has a prior distribution πu. The
time of failure is defined in the block time domain n.

• Each pair of sensors (u, u′) at each time instant n computes a score Sn(u, u′) which
reflects how correlated are the measurements at time n. The variables Sn(u, u′) are
independent conditional on the failure times λu and λu′ ,. Naturally, the scores are
symmetric: Sn(u, u′) = Sn(u′, u).

• The score Sn(u, u′) experiences a change when either sensor u or u′ fails:

Sn(u, u′) i.i.d∼ f0(·|u, u′), n < min(λu, λu′),
i.i.d.∼ f1(·|u, u′), n ≥ min(λu, λu′).

Once a change happens, the score cannot experience any further change.

• At time n, each sensor can use the information it observed until the current time.

The setup captures the notion that after a sensor has failed, any scores related to it
cannot be used anymore since its own measurements become uncorrelated with those of its



47

Figure 4.2: Transformation of the data of two sensors.
.

Figure 4.3. Graphical representation of the dependency structure between random variables
X,Y, Z, λ1, λ2.

neighbors, i.e. neighbors cannot use this particular shared score to infer their own state. In
this problem there are m change points that have to be detected. Each sensor u runs its
own sequential test represented by a stopping time νu. Based on the information available
at time n, the rule sets νu = n if it decides that u has failed at time n. The stopping time
can only depend on the the scores S(u, u′) for u′ in neighborhood of u in the fault graph.
We enforce this constraint to represent the limited computation and communication setting
available in typical distributed sensor networks.

In this Chapter, we propose a strategy to determine the stopping time νu for a general
matching graph. The interactions between the various stopping times are complex. To
obtain analytic performance insights we restrict to the case where m = 2. The reduced
problem captures most of the important features of the complete problem and is amenable
to theoretical analysis. The reduced setup is described next.

4.3.2 Reduced setup and notation

We consider the sequential detection problem shown in Figure 4.2. We have reduced the
full sensor network analysis to the analysis of two sensors, 1 and 2. The random variable
relating to the common link between sensors is denominated Z. The random variable
relating to the non common link of sensor 1 is denoted as X. Similarly the random variable
relating to the non common link of sensor 2 is denominated Y . The sequence of random
variables in X is denoted as Xk

n, and similarly for other random variables. The change
time (or failure time) variables for sensors 1 and 2 are denoted by λ1 and λ2. We assume
change times for different sensors are independent and identically distributed: The joint
prior distribution of the change times is denoted P(λ1 = k1, λ2 = k2) = π(k1)π(k2). The
independence assumption is realistic for the applications we consider. Define the cumulative
quantities Π1

n = P(λ1 > n) and Π2
n = P(λ2 > n).

Figure 4.3 shows the probability dependency structure. Conditional on the change times
λ1 and λ2, the random variables X, Y and Z are all independent. Furthermore, the density
function prior to change is given by f0(·). The density function after change is given by
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f1(·). In an effort to simplify notation, the density functions are different for each random
variable, but this is implied with the use of the argument. The product density of random
variables Xr, ...Xn with density f0(Xi) for i = r, ..., k−1, and density f1(Xi) for i = k, ..., n
will be denoted as Lk(Xr

n) We make similar definitions for random variables Z and Y .
The σ-field generated by a sequence such as X1

n is denoted by FnX . For the fields of
joint variables, we use notation such as FnX,Y . The probability measure in the joint space
of random variables when the change happens at λ1 = k1 and λ2 = k2 is defined as:

Pk1,k2 = Pk1(X)Pk1∧k2(Z)Pk2(Y )

∼
k1−1∏
i=1

f0(Xi)
∞∏
i=k1

f1(Xi)
k1∧k2−1∏
i=1

f0(Zi)
∞∏

i=k1∧k2

f1(Zi)
k2−1∏
i=1

f0(Yi)
∞∏
i=k2

f1(Yi)

= Lk1(X1
∞)Lk1∧k2(Z1

∞)Lk2(Y1
∞).

The measure has the property that the random variable Z changes as soon as a change
happens in either sensors. This models the expected behavior in a fault detection problem:
the correlation corresponding to the common link becomes zero as soon as either sensor 1
or 2 fails. This feature of the measure makes fault detection a challenging problem, since
it is a multiple change point, multiple hypothesis test. From the definitions it can also see
that in the special case λ2 = ∞ we have Pk1,∞ = Pk1(X)Pk1(Z)P∞(Y ). The appropriate
marginalized measures are also defined, such as:

Pλ1,λ2 =
∞∑
k1=1

∞∑
k2=1

π(k1)π(k2)Pk1,k2.

The restriction that sensor 1 can only use random variables X and Z for its decision,
whereas sensor 2 can only use random variables Y and Z for its decision localized, can be
given in terms of the preceding definitions.

Definition 4.3.1 (Localized stopping time). A localized stopping time for sensor 1 is a
stopping time ν1 ∈ FnX,Z . Similarly, a localized stopping time for sensor 2 is a stopping
time ν2 ∈ FnY,Z .

For expectations our notation is that Ek1,k2 refers to expectations with respect to the
measure Pk1,k2 . It will be useful to define the log-likelihood ratio of sample i for random
variable Xi and the accumulated log-likelihood:

ri(X) = log
(
f1(Xi)
f0(Xi)

)
; Rkn(X) =

n∑
i=k

ri(X). (4.3.1)

Similar definitions hold for all random variables. We make assumptions about the expecta-
tions of the log-likelihoods under pre-change and post-change distributions. In particular,
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assume they are all finite (∗ denotes don’t care):

E1,∗[ri(X)] =
∫
f1(x) log

f1(x)
f0(x)

µ(dx)

= D(f1(X)||f0(X))
= q1(X), (4.3.2)

where µ is the Lebesgue measure. Similarly,

E∞,∗[ri(X)] =
∫
f0(x) log

f0(x)
f1(x)

µ(dx)

= −D(f0(X)||f1(X))
= −q0(X). (4.3.3)

For Y a similar assumption holds, only noting that expectations will be with respect to E∗,0
and E∗,∞. For Z, again the definitions hold, but expectations should be with respect to
E0,0 and E∞,∞. The assumption is that q0(X), q1(X), q0(Z), q1(Z), q0(Y ) and q1(Y ) are all
positive and finite.

Further detailed technical assumptions are stated in Section 4.10.

4.3.3 Performance metrics

A fault detection rule for sensor u is denoted νu, and this is a stopping time [Durrett,
1995]. In the change point literature, such a stopping time is evaluated according to two
metrics: probability of false alarm and detection delay, see e.g., [Tartakovsky and Veeravalli,
2005].

Definition 4.3.2 (Probability of false alarm). Given a stopping time νu and the change
time λu the false alarm probability at λu = ku is defined as

PFA(k1,k2)(νu) = Pk1,k2(νu ≤ ku). (4.3.4)

The false alarm probability for procedure νu is given by

PFAπ1,π2(νu) = Pλ(νu ≤ λu)

=
∞∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)Pk1,k2(νu ≤ ku).

The marginal false alarm probabilities for procedures ν1 and ν2 are

MPFA(λ1,k2)(ν1) = Pλ1,k2(ν1 ≤ λ1),

MPFA(k1,λ2)(ν2) = Pk1,λ2(ν2 ≤ λ2). (4.3.5)

Definition 4.3.3 (Detection delay). The m-th moment of the delay of a sequential procedure
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νu for change time λu = ku is defined as

D(k1,k2)
m (νu) = Ek1,k2 [(νu − ku)m |νu ≥ ku ] . (4.3.6)

The m-th moment of the detection delay is

Dπ1,π2
m (νu) = Eλ1,λ2 [(νu − λu)m |νu ≥ λu ]

=
∞∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)D(k1,k2)
m (νu). (4.3.7)

A good procedure achieves small (even minimum) delay Dπ
m(νu), while maintaining

PFAπ(νu) ≤ α, for a pre-specified PFA α.
An optimal detection procedure for sensor u is a procedure νu for which the delay

Dπ1,π2
1 (νu) is minimized while keeping the false alarm below a chosen probability α so that

PFAπ1,π2(νu) < α. Such a rule is called an optimal sequential procedure. Notice that the
optimal sequential procedure does not necessarily satisfy MPFA(νu) < α, since only the
average false alarm is guaranteed to be below α.

4.3.4 Data Preprocessing and Fault Behavior Model

Denote by Xn(u) the nth observed sample block by sensor u, which has size T × p. Let
Hu,n denote data available up to block n− 1. Each sensor computes a vector score at time
n, determined by a transformation F :

Sn(u, u) = F (Xn(u),Hu,n),
Sn(u, u′) = F (Xn(u),Xn(u′),Hu,n,Hu′,n), u′ ∈ Nu. (4.3.8)

Nu is the set of neighbors u′ of u. We call Sn(u, u′) the link score of the link (u′, u) ∈ E. The
transformation is symmetric, so Sn(u, u′) = Sn(u′, u). The statistic F captures a notion
of distance between two block samples. We focus on correlation statistics, defined in the
next subsection. In time block units the random change time is λu, which when required
we assume to be a geometric random variable with parameter du T .

Intuitively, our fault detection model posits that the score Sn(u, u′) undergoes a change
in distribution whenever either u or u′ fails, i.e., at time min(λu, λ′u). This model captures
the notion that in a networked setting, failed sensor data cannot be used to detect faults in
other sensors. Thus our model departs from the traditional single change point detection
models [Lai, 2001], in that we are dealing with multiple dependent change points based on
measurements from a collection of sensors. The standard theory for a single change point
can no longer be applied in a straightforward manner.

We formally specify our change point model. Given a score function Sn(u, u′) for each
pair of neighbors (u, u′), it is assumed that Sn for different pairs of sensors are independent.
Also given are distributions f0(·|u, u′) and f1(·|u, u′).
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4.3.5 Correlation scores

Our choice of correlation score function is motivated by the observation that in many
applications when a sensor fails the the correlation experiences an abrupt change (e.g. [Kwon
et al., 2003]). The choice of correlation statistics is also attractive because it can be used
in non-stationary environments if the time scale is appropriately chosen. Without losing
generality assume p = 1 so that Xt(u) is a scalar and Xn(u) is a vector of size T .

The score is defined as

µn(u) =
1
T

∑
t∈Tn

Xt(u), (4.3.9)

sn(u, u′) =
1
T

∑
t∈Tn

(Xt(u)− µn(u))(Xt(u′)− µn(u′)),

Sn(u, u′) = φ

(
sn(u, u′)√

sn(u, u)sn(u′, u′)

)
,

Tn = [(n− 1)T + 1, nT ].

The actual score is a transformation of the empirical correlation estimate. The trivial
choice is φ(x) = x. To obtain desired statistical behavior, it is sometimes better to choose
a combined Fisher and Box-Cox type transformation,

φf (x, γ) =
1
2

log
(

1 + xγ

1− xγ

)
. (4.3.10)

We assume that the scores scaled by
√
T converge to a normal distribution, and are inde-

pendent conditional on the change times λu and λ′u . This assumption is not required and
more complex covariance structures inferred from the data could be used. But our choice
works well in practice, and simplifies exposition. Thus

Sn(u, u′) ∼ N(µ(u, u′), T−1 σ2
u,u′), n <

1
T

min(λu, λ′u),

∼ N(0, T−1 σ2), n ≥ 1
T

min(λu, λ′u). (4.3.11)

Before the change time, each computed score (in our case covariances) is approximately
normal. The mean and variance parameters depend on the pairs of sensors. The variance
scales as 1/T with respect to the window size T . Above we assumed mean and variance
are time invariant, but this is not necessary. The assumption can be justified with a simple
model. Suppose the blocks Xn(u) and Xn(u′) are jointly Gaussian random variables, and
the Fisher-Box transformation (Equation 4.3.10) with γ = 1 is used; it can then be shown
[Lehmann, 1999] that asymptotic normality holds and

σ2
u,u′ =

{
(1−µu,u′ )2

T , for φ(x) = x
1
T , for φ(x) = φf (x, 1)

. (4.3.12)
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The link information measure for (u, u′) is [Lehmann, 1999]:

q1(u, u′) = D(f1‖f0)

= T
µ(u, u′)2

2σ2
u,u′

+
1
2

[
σ2

σ2
u,u′

+ log

(
σ2
u,u′

σ2

)
− 1

]
. (4.3.13)

The link information measure is minimized when σ2
u,u′ = σ2.

4.4 Multiple Sensor Online Detection

In this section we investigate specific stopping time rules to solve the multiple sensor
online fault detection problem proposed in Section 4.3. We start the section discussing
the classical posterior rule for detecting single change points, and the relevant performance
bounds. Then, two new methods are proposed: a direct extension of the Bayes posterior
rule, which is a natural extension of rules for single change points and LFDIE, a procedure
that uses local information exchange. The methodologies are described and analyzed in
the context of the reduced problem setup. Furthermore, some fundamental performance
limits for the multiple sensor online fault detection problem are computed. To conclude
the section, we extend the procedure LFDIE for the general fault detection problem and
discuss its implementation and formulate a conjecture about its performance.

4.4.1 Background

Suppose a single sensor fails at a random time λ, with distribution P(λ = n) = π1(n).
The observations X are an identical independently distributed random variable, with dis-
tribution f0 before change and f1 after change. The fault detection formulation for this
single sensor is the standard single change point detection problem.

Shirayev [Shirayev, 1978] showed that an optimal sequential procedure is the procedure
that tests the hypothesis H1 : λ ≤ n against H0 : λ > n at each n, using the observations
X1, ..., Xn. The Shirayev-Robert-Polak (SRP) sequential procedure is a threshold test on
the posterior probability

pn = P(λ ≤ n |FnX ) (4.4.1)

The SRP procedure uses the test quantity:

Λn(X) =
pn

1− pn
=

n∑
k=0

π1(k)
k∏
r=1

f0(Xr)
n∏

r=k+1

f1(Xr)

∞∑
k=n+1

π(k)
n∏
r=1

f0(Xr)

,

= Λ0 + Π−1
n

n∑
k=1

π1(k)eR
k
n(X). (4.4.2)



53

Write
Bα =

1− α
α

, (4.4.3)

the Shirayev-Roberts-Polak (SRP) optimal stopping time is given by

νS(X) = inf {n : Λn(X) ≥ Bα} . (4.4.4)

Tartakovsky and Veeravalli [2005] showed the SRP procedure achieves the optimal asymp-
totic delay for the problem of minimizing the expected delay constrained to a false alarm
probability α (i.e. PFAπ(νS) < α). Furthermore, the asymptotic moments of the delay as
α→ 0 are bounded as

lim
α→0

D(k)
m (νS(X)) .=

(
| logα|

q1(X) + d

)m
for k ≥ 1,

lim
α→0

Dπ
m(νS(X)) .=

(
| logα|

q1(X) + d

)m
, (4.4.5)

which matches the lower bound for delays for any procedure with false alarm α.
The constant d > 0 depends only on the prior distribution and is defined as

lim
k→∞

Πk+1

k
= −d (4.4.6)

Distributions with exponential tail, such as the geometric distribution have d > 0 and finite,
thus helping to reduce the delay. Distributions with heavy tail have d = 0, and knowledge
of the prior does not reduce the delay in the asymptotic analysis.

The single change point problem is considerably simpler than the multiple change prob-
lem, since once a change is detected, it is attributed to a unique fault, and there is no chance
of confusion with other potentially failed sensors.

Remark 1. Whenever required, the generalization of the test for a SRP procedure using
random variables X and Z is

Λn(X,Z) = Λ0 + Π−1
n

n∑
k=1

π1(k)eR
k
n(X)+Rkn(Z). (4.4.7)

The corresponding stopping time is νs(X,Z) and uses the threshold in Equation (4.4.3).
Similarly we can define Λn(Y,Z) and Λn(Y ), using π2, Y and Z. The corresponding stop-
ping times are νs(Y, Z) and νs(Y ).

Remark 2. We assume without loss of generality that Λ0 = 0 for the SRP procedure.

4.4.2 Localized stopping time without information exchange

In this Section we study the first natural approach to solving the multiple sensor failure
sequential test problem. We focus on sensor 1. Heuristically, a threshold test in the posterior
probability seems a reasonable choice for stopping time. For the single change point case
this is an optimal choice. In the modified framework, such a choice may not be optimal,
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but it is certainly an attractive and simple test. Intuitively, this is the first test one would
consider. The posterior probability test can be written as:

ν1(X,Z) = inf {n : pn(X,Z) ≥ 1− α} ,
pn(X,Z) = Pλ1,λ2(λ1 ≤ n | FnX,Z). (4.4.8)

To put into standard form, notice that

pn(X,Z)
1− pn(X,Z)

≥ 1− α
α

, (4.4.9)

is an equivalent test to the original. Then the test statistic is

Λnoex
n (X,Z) =

Pλ1,λ2(λ1 ≤ n | FnX,Z)
Pλ1,λ2(λ1 > n | FnX,Z)

. (4.4.10)

From the problem definition, we can compute the probabilities involved in the statistics

Λnoex
n (X,Z) =

an
bn
,

an =
n∑

k1=1

∞∑
k2=1

π1(k1)π2(k2)Lk1(X1
n)Lk1∧k2(Z1

n),

bn = Π1,n Ln+1(X1
n)

Π2,n Ln+1(Z1
n) +

n∑
k2=1

π2(k2)Lk2(Z1
n)

 . (4.4.11)

Similarly,we can define a stopping time based on Λnoex
n (Y, Z) for sensor 2. The first

important observation is that computing the test quantity is hard in general. Moreover, no
delay reduction benefit is obtained from using the shard link.

Theorem 4.4.1. Assume q0(Z) ≥ q1(Z) or π2(k2) > 0 for k2 ≥ K2. For the posterior
threshold test ν1(X,Z) without information exchange given by Equation (4.4.8), the delay
satisfies

lim
α→0

Dk1,k2
1 (ν1(X,Z)) ≥ lim

α→0
Dk1,k2

1 (ν1(X)),

lim
α→0

Dπ1,π2
1 (ν1(X,Z)) ≥ lim

α→0
Dπ1,π2

1 (ν1(X)). (4.4.12)

For the threshold test ν2(Y,Z), the delay satisfies

lim
α→0

Dk1,k2
2 (ν2(Y, Z)) ≥ lim

α→0
Dk1,k2

2 (ν2(Y )),

lim
α→0

Dπ1,π2
2 (ν2(Y, Z)) ≥ lim

α→0
Dπ1,π2

2 (ν2(Y )). (4.4.13)

The result shows that the performance of the rule does not depend on the statistics of
the shared link Z. This is a negative result, since we expect an improvement in performance
of the order of the KL divergence for the pre and post-change distributions of Z.
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The intuition behind this result lies in the fact that without some information from the
private link of sensor 2, sensor 1 cannot be sure that the shared link failed because of a
fault in sensor 1 or in sensor 2. Therefore, in the hypothesis test, the null hypothesis as
well as the alternative hypothesis incorporate the information that a change in the shared
link could have happened because the other sensor failed.

Thus in this extension the common link information is not useful in determining which
sensor has failed. The reason is that the information in either link pair (X,Z) or (Y,Z) by
itself is not helpful in determining whether the change in Z is induced by a failure in sensor
1 or in sensor 2.

4.4.3 LFDIE: A localized stopping time with information exchange

In this section we propose LFDIE (Localized Fault Detection with Information Ex-
change), an interacting stopping time method that attempts to overcome the limitations
discussed in the previous section and benefit from common link information.

We now proceed to define the networked procedure we implement in the sensor network
in Figure 4.3. First, denote by ν1 the stopping time rule for sensor 1, given by using the
information from random variables X and Z (see Equation (4.4.7)):

ν1 = min {k : Λk(X,Z) ≥ Bα}
= νS(X,Z). (4.4.14)

Next, denote by ν̃1 the stopping time rule for sensor 1 obtained by using just the random
variable X:

ν̃1 = min {k : Λk(X) ≥ Bα} ,
= νS(X). (4.4.15)

Define stopping times for sensor 2 analogously: ν2 = νS(Y, Z) and ν̃2 = νS(Y ). We can now
define LFDIE in terms of the above stopping times. The stopping time choice for sensor 1
is

ν̄1 = ν1I(ν1 ≤ ν2) + max (ν̃1, ν2) I(ν1 > ν2). (4.4.16)

Similarly define for sensor 2:

ν̄2 = ν2I(ν2 ≤ ν1) + max (ν̃2, ν1) I(ν2 > ν1) (4.4.17)

In LFDIE there is an information exchange between sensors, but it is constrained to a
single bit that informs when a sensor’s statistic has crossed its threshold. Then the other
sensor stops using the common link (that is, it recomputes its own statistics without using
the information in the shared link). This is a new feature of the model investigated in
this chapter. Previous literature in distributed hypothesis testing focused in the case where
all sensors observed the same hypothesis. Here we have a problem where sensors observe
hypothesis that interact with each other. The maximum operator is required because when
the hypothesis test is recalculated not using the common information, one has already
waited at least ν2 for sensor 1 or ν1 for sensor 2.
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The procedure works in an intuitive manner: Each sensor computes posteriors as if the
other sensor is always working, until the time one of them declares itself as failed. Notice
that both sensors at this point are using the information in the shared link. When one
sensor is thought to have failed (e.g. ν1 > ν2) the other sensor stops using the shared
link information, and recomputes the change point test using only the information of its
own ‘private’ link. The max operator reflects the situation that information for one’s own
private link also dictates that its sensor hsa failed (e.g., ν̃1 < ν2), in which case one should
stop immediately at the present time (ν2).

Implementation of the procedure requires an extra single bit of information that is issued
to neighbors when a sensor declares itself as failed. If this bit is received the neighboring
sensors stop using the shared link with the failed sensor, and use a rule based on the
remaining links.

LFDIE requires very little memory for the two sensor case, as each sensor doesn’t need
to store the observed values of the random variables X,Y, Z. One can just compute two
recursions for each sensor using Equation (4.4.7). For the multiple sensor case, each sensor
has to keep track of all the link variables since when the shared link is dropped the sensor
has to recompute the score using only the remaining links, and there are multiple such
combinations. In Section 4.5 we propose efficient solutions for this problem.

4.4.4 Performance Analysis: False Alarm

In the remainder of the section we compute the false alarm probability and the detection
delay for LFDIE. The detection with information exchange algorithm is interesting if we
are able to show that for a given false alarm rate O(α), it achieves expected delays smaller
than if the common link information is not used. Detailed technical assumptions are stated
in Section 4.10.

Intuitively, analyzing Equations (4.4.16) and (4.4.17) we notice that sensor 1 can raise
two kinds of false alarm at some time n: one caused without any change (λ1 > n and
λ2 > n), and another caused when the shared link experiences a change due to a fault in
sensor 2 (λ2 < n). Based on this observation we define the confusion probability:

Definition 4.4.1. The confusion probabilities of stopping times in a set of procedures
(ν̄1, ν̄2) are defined as

ξαλ1,λ2
(ν̄1) = Pλ1,λ2(ν̄1 ≤ ν̄2, λ2 ≤ ν̄1 ≤ λ1),

ξαλ1,λ2
(ν̄2) = Pλ1,λ2(ν̄2 ≤ ν̄1, λ1 ≤ ν̄2 ≤ λ2). (4.4.18)

A regular fault detection procedure is a set of procedures for which the following condi-
tions hold:

lim
α→0

ξαλ1,λ2
(ν̄1) = 0,

lim
α→0

ξαλ1,λ2
(ν̄2) = 0. (4.4.19)
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A strong fault detection procedure is a set of procedures that has

ξαλ1,λ2
(ν̄1) = O(α),

ξαλ1,λ2
(ν̄2) = O(α). (4.4.20)

The definition of false alarm for sensor 1 is

PFAπ1,π2(ν̄1) = Pλ1,λ2(ν̄1 < λ1). (4.4.21)

By the choice of the threshold for ν1 and ν̃1, the false alarm when there is no change observed
in sensor 2 (λ2 =∞) is bounded:

PFAπ1,∞(ν1) = Pλ1,∞(ν1 < λ1) < α,

PFAπ1,∞(ν̃1) = Pλ1,∞(ν̃1 < λ1) < α. (4.4.22)

Based on this observation, together with the definition of confusion probability we can
bound the false alarm probability of LFDIE as shown in Theorem 4.4.2. The proof for the
theorem is shown in Section 4.11.

Theorem 4.4.2 (False alarm of LFDIE).

(a) The probability of false alarm of sensors 1 and 2 for the joint procedure with informa-
tion exchange is bounded by:

PFAπ1,π2(ν̄1) < 2α+ ξαλ1,λ2
(ν̄1),

PFAπ1,π2(ν̄2) < 2α+ ξαλ1,λ2
(ν̄2) (4.4.23)

(b) The marginal probability of false alarm of sensors 1 and 2 for LFDIE is bounded by:

MPFAπ1,k2(ν̄1) < 2α+ ξαλ1,k2(ν̄1),

MPFAk1,π2(ν̄2) < 2α+ ξαk1,λ2
(ν̄2) (4.4.24)

To complete the understanding about the false alarm, the confusion probability needs to
be analyzed. The results up to now show that this probability is a key quantity to model the
interaction between stopping times in the fault detection problem. In general, we believe
that quantities of this type will emerge whenever a multiple change point problem is solved
in a distributed manner.

Theorem 4.4.3 (Confusion probability regularity). The theorem is stated for sensor 1.
For sensor 2 it suffices to exchange the role of X and Y .

(a) The procedure LFDIE is a regular fault detection procedure.

(b) Let assumptions 4.10.2 and 4.10.5 hold. Define b1 = q0(X)− q1(Z) + d1 and the rate

r∗a =
1
w∗

[min{q0(X), q1(Z)}+ q1(Y ) + d1 − d2]2

max{σ2
0(X), σ2

1(Z)}+ σ2
1(Y )

, (4.4.25)
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where

w∗ =

√
σ2

1(X,Z)
max{σ2

0(X), σ2
1(Z)}+ σ2

1(Y )
[min{q0(X), q1(Z)}+ q1(Y ) + d1 − d2]− b1.

Then

lim
α→0

log ξαλ1,λ2
(ν̄1)

logα
≤ r∗,

where

(a) If b1 ≤ 0 then r∗ = r∗a;

(b) If b1 > 0 then r∗ = max(r∗a, r
∗
b ), where

r∗b = 4
b1

σ2
1(X,Z)

.

Therefore, if r∗ > 1, LFDIE is a strong fault detection procedure.

Proof.

ξαλ1,λ2
(ν̄1) =

∑
k1,k2

π(k1)π(k2)Pk1,k2(ν̄1 ≤ ν̄2, k2 ≤ ν̄1 < k1)

=
∑
k1,k2

π(k1)π(k2)Pk1,k2(ν1 ≤ ν2, k2 ≤ ν1 < k1)

=
∑
k1,k2

π(k1)π(k2)P∞,k2(ν1 ≤ ν2, k2 ≤ ν1 ≤ k1)

≤
∑
k1,k2

π(k1)π(k2)P∞,k2(k2 ≤ ν1 ≤ ν2)

=
∑
k2

π(k2)P∞,k2(k2 ≤ ν1 ≤ ν2).

We continue the proof using

Lemma 4.4.1. Let Assumption 4.10.2. For any k2 > 0, the following bound holds:

lim
α→0

log P∞,k2(k2 ≤ ν1 ≤ ν2)
logα

≤ r∗,

Let Assumption 4.10.2 and 4.10.5. Then:

lim
α→0

log P∞,λ2(k2 ≤ ν1 ≤ ν2)
logα

≤ r∗,

Given this lemma, it is immediate by the dominated convergence theorem that as α→ 0:

ξαλ1,λ2
(ν̄1)→ 0.
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showing that the procedure is regular proving (a) without Assumption 4.10.5 . Including
Assumption 4.10.5, (b) follows since P∞,λ2(k2 ≤ ν1 ≤ ν2) =

∑
k2
π(k2)P∞,k2(k2 ≤ ν1 ≤ ν2).

A similar proof can be shown for sensor 2.

For sensor 1, the amount of information of link Y only comes into play if the information
available on its own private link is not strong enough compared to the shared link, meaning
q0(X) > q1(Z). Otherwise, for the procedure to be regular, it is required that q0(X) ≈ q1(Z)
and sensor 2 needs to have high information on its own private link q1(Y ), so the conditions
are satisfied.

4.4.5 Performance Analysis: Detection Delay

For the analysis of the delay asymptotics we follow the approach proposed in Tartakovsky
and Veeravalli [2005] with careful modifications to account for the differences in structure
in our problem. We also simplify the exposition somewhat.

Definition 4.4.2 (Detection Delays). Define the following detection delay constants:

Lα1 =
|logα|

q1(X) + q1(Z) + d1
, Lα2 =

|logα|
q1(Y ) + q1(Z) + d2

,

L̃α1 =
|logα|

q1(X) + d1
, L̃α2 =

|logα|
q1(Y ) + d2

,

where d1 is the rate for prior π1 and d2 is the rate for prior π2.

We start with a fundamental lemma, which is basically a change of measure argument.
For the lemma we need an assumption on the log likelihood ratio (LLR) partial sums
defined in Equation (4.3.1). The assumption 4.10.3 just implies a standard weak uniform
convergence. We also need a careful definition of a class of procedures.

Define the conditional false alarm,

MPFAπ1,π2(ν̄1|λ2 < λ1) =
∞∑
k1=1

π1(k1)
k1−1∑
k2=1

π2(k2)P∞,k2(ν̄1 < k1). (4.4.26)

Definition 4.4.3 (False alarm classes). For stopping times ν1(X,Z) dependent only on X
and Z define the classes:

(i) ∆1(α) such that PFAπ1,∞(ν1) ≤ α,

(ii) ∆̃1(α, k2) such that MPFAπ1,k2(ν1) ≤ α,

(iii) ∆̃1(α) such that MPFAπ1,π2(ν1|λ2 < λ1) ≤ α.

Also, define similar classes for stopping times ν2(Y,Z) dependent on Y and Z.

Notice that the procedures ν̄1 and ν̄2 does not belong to ∆1(α) or to ∆2(α), as they
have a false alarm rate that is greater than α and more importantly they depend on all
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three X,Z and Y by definition. But ν1 and ν̃1 do belong to ∆1(α) and ν2 and ν̃2 belong to
∆2(α).

We can now proceed to prove the fundamental Lemma. The arguments are basically a
change of measure, followed by using our concentration assumption for the log-likelyhood
ratio and exponential tail assumption for the prior.

Lemma 4.4.2. Define for all 0 < ε < 1:

γ(k1,k2)
ε,α (νi) = Pk1,k2(ki ≤ νi ≤ ki + (1− ε)Lαi ),
γε,α(νi) = Pλ1,λ2(λi ≤ νi ≤ λi + (1− ε)Lαi ),

γε,α(νi, λj < λi) = Pλ1,λ2(λi ≤ νi ≤ λi + (1− ε)Lαi , λj < λi),

γ̃(k1,k2)
ε,α (νi) = Pk1,k2(ki ≤ νi ≤ ki + (1− ε)L̃αi ),

γ̃ε,α(νi) = Pλ1,λ2(λi ≤ νi ≤ λi + (1− ε)L̃αi , λj < λi).

where d1 depends only on the prior π1 and j = 2 if i = 1 and j = 1 if i = 2. Then for all
k1, k2 ≥ 1 and 0 < ε < 1:

(i) limα→0 supν1∈∆1(α) γ
(k1,k2)
ε,α (ν1) = 0,

limα→0 supν1∈∆1(α) γε,α(ν1) = 0,
limα→0 supν1∈∆1(α) γε,α(ν1, λ1 < λ2) = 0,

(ii) limα→0 supν1∈∆̃1(α,k2) γ̃
(k1,k2)
ε,α (ν1) = 0 for k1 > k2,

limα→0 supν1∈∆̃1(α,k2) γ
(k1,k2)
ε,α (ν1) = 0 for k1 ≤ k2,

(iii) limα→0 supν1∈∆̃1(α) γ̃ε,α(ν1) = 0.

An equivalent result holds for ν2 belonging to classes ∆2(α), ∆̃2(α, k2) and ∆̃2(α).

Based on Lemma 4.4.2 we can prove a performance lower bound for the two sensor
case among certain classes of procedures. The lower bound essentially guarantees that no
procedure that belongs in the given class can have delay smaller than that stated in the
bound. It gives us a certificate against which to check the optimality of a given procedure.

Theorem 4.4.4 (Delay lower bound). Let Assumption 4.10.3 and denote cd = (1 + o(1)).
Then:

lim
α→0

inf
ν1∈∆̃1(α,k2)

Ek1,k2 [(ν1 − k1)m|ν1 ≥ k1] ≥
[
(Lα1 )mI(k1 ≤ k2) + (L̃α1 )mI(k1 > k2)

]
cd,

lim
α→0

inf
ν1∈∆1(α)∩∆̃1(α)

Eλ1,λ2 [(ν1 − λ1)m|ν1 ≥ λ1] ≥
[
(Lα1 )mP(λ1 ≤ λ2) + (L̃α1 )mP(λ1 > λ2)

]
cd,

lim
α→0

inf
ν2∈∆̃2(α,k1)

Ek1,k2 [(ν2 − k2)m|ν1 ≥ k2] ≥
[
(L̃α2 )mI(k1 ≤ k2) + (Lα2 )mI(k1 > k2)

]
cd,

lim
α→0

inf
ν2∈∆2(α)∩∆̃2(α)

Eλ1,λ2 [(ν2 − λ2)m|ν2 ≥ λ2] ≥
[
(L̃α2 )mP(λ1 ≤ λ2) + (Lα2 )mP(λ1 > λ2)

]
cd.

Proof. We prove the first two assertions. First notice that from the definitions in Lemma
4.4.3, ∆̃1(α, k2) ⊆ ∆1(α). Also notice that ∆̃1(α, k2) ⊆ ∆̃1(α), so that ∆̃1(α, k2) ⊆ ∆1(α)∩
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∆̃1(α). Let ν1 ∈ ∆̃1(α, k2), if k1 ≤ k2:

Ek1,k2 [(ν1 − k1)m|ν1 ≥ k1] =
Ek1,k2 [(ν1 − k1)m+ ]

Pk1,k2(ν1 ≥ k1)
,

≥ ((1− ε)L1
α)m

Pk1,k2(ν1 ≥ k1)
(Pk1,k2(ν1 ≥ k1)− γk1,k2(ν1)),

But Pk1,k2(ν1 ≥ k1) = 1−P∞,∞(ν1 < k1) ≥ 1−α/Π1
k1

for k1 ≤ k2 using Lemma 4.11.3, and
Lemma 4.4.2 shows that γk1,k2(ν1))→ 0 uniformly over ν1, so

inf
ν1∈∆̃1(α,k2)

Ek1,k2 [(ν1 − k1)m|ν1 ≥ k1] ≥ ((1− ε)L1
α)m(1 + o(1)) as α→ 0.

A similar bound works for k2 < k1, except Pk1,k2(ν1 ≥ k1) = P∞,k2(ν1 ≥ k1) ≥ 1 − α/Π1
n

for ν1 ∈ ∆̃1(α, k2).
For the second statement, we note that:

inf
ν1∈∆̃1(α)

Eλ1,λ2 [(ν1 − λ1)m+ ] ≥ inf
ν1∈∆̃1(α)

Eλ1,λ2 [(ν1 − λ1)m+ I(λ1 ≤ λ2)]+

+ inf
ν1∈∆̃1(α)

Eλ1,λ2 [(ν1 − λ1)m+ I(λ1 > λ2)]

We can use Lemma 4.4.2 (i) and (iii) to bound such quantities in the same manner as in the
first case. Lemma 4.11.3 (i) and (iii) can be used to bound the appropriate probabilities as
before.

We conclude the section computing the asymptotic delay of the procedure LFDIE. The
asymptotic performance differs from the lower bound only on the factor δα.

Theorem 4.4.5 (Performance of LFDIE). Let Assumption 4.10.4.The delay of LFDIE
represented as the set of stopping times (ν̄1, ν̄2) has:

(a) For α→ 0,

Dπ1,π2
1 (ν̄1) ≤ Dπ1,∞

1 (ν1)
1− δα + o(1)

1− o(1)
+Dπ1,∞

1 (ν̃1)
δα + o(1)
1− o(1)

,

Dπ1,π2
1 (ν̄2) ≤ Dπ1,∞

1 (ν2)
δα + o(1)
1− o(1)

+Dπ1,∞
1 (ν̃2)

1− δα + o(1)
1− o(1)

(4.4.27)

(b) For α→ 0,

Dπ1,π2
1 (ν̄1) ≥ Dπ1,∞

1 (ν1)
1− δα + o(1)

1− o(1)
+Dπ1,∞

1 (ν̃1)
δα + o(1)
1− o(1)

,

Dπ1,π2
1 (ν̄2) ≥ Dπ1,∞

1 (ν2)
δα + o(1)
1− o(1)

+Dπ1,∞
1 (ν̃2)

1− δα + o(1)
1− o(1)

. (4.4.28)
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Here:

Dπ1,∞
1 (ν1) =

| logα|
q1(X) + q1(Z) + d1

, Dπ1,∞
1 (ν2) =

| logα|
q1(Y ) + q1(Z) + d2

,

Dπ1,∞
1 (ν̃1) =

| logα|
q1(X) + d1

, Dπ1,∞
1 (ν̃2) =

| logα|
q1(Y ) + d1

,

δα = Pλ1,λ2(ν1 > ν2). (4.4.29)

The results are also valid for λ1 and λ2 replaced by k1 and k2.

4.4.6 General Networks

The shared information algorithm for the two-sensor network can be suitably modified
for a general network. Table 4.1 shows the proposed procedure, following the same principle
as the two-sensor case. In this algorithm, whenever a sensor declares itself failed, all its
neighbors recompute their test statistic excluding links with the failed sensor. Section
4.5 discusses implementation details, including finite storage, and transmission efficient
computation.

The analysis in Sections 4.4.4 and 4.4.5 applies to the general network if the probability of
sensors failing simultaneously is small, which will be the case if the fault rates are very small
compared to the number of neighboring sensors. The analysis even with this simplification
is quite involved, but a key quantity emerges—the confusion probability. If the confusion
probability is small, the probability of false alarm is small.

The asymptotic delays depend crucially on the parameter δα. In this subsection we
explore this further, for the case of independent identically distributed link distributions in
a fully connected network.

In the two-sensor case, if X and Y have the same probability density, it is clear from
symmetry that δα = 1/2. Focusing on sensor 1, we see that the delay in this case is

Dπ
m(ν̄1) .=

1
2
Dπ
m(ν1) +

1
2
Dπ
m(ν̃1).

Furthermore, it is known that if we have λ2 = ∞ fixed (sensor 2 never fails), then any
detection procedure ν has a delay that satisfies [Tartakovsky and Veeravalli, 2005]

Dπ
m(ν) ≥

[
| logα|

q1(X) + q1(Z) + d

]m
= Dπ

m(ν1).

In the case when λ2 = 0 fixed (sensor 2 is always failed), link Z gives no information about
the status of sensor 1, so any procedure for detecting a fault in sensor 1 satisfies

Dπ
m(ν) ≥

[
| logα|

q1(X) + d

]m
= Dπ

m(ν̃1).
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Networked Sensor Fault Detection: Each sensor u ∈ V initializes its current
neighbors set with all neighboring sensors in the fault graph (including self loops), so
NW (u) = N (u). Then each sensor updates its current estimate of its own change point
test statistic at time n:

(a) Data Dissemination: Each sensor broadcasts its current block of T samples Xn(u)
to sensors u′ that are active neighbors in the fault graph (i.e. u′ ∈ NW (u)). Trans-
mitted block might be transformed or compressed (see Section 4.5).

(b) Score Computation: After collecting all data blocks, the sensor computes the
current score for shared links according to some transformation F , for example the
correlation (Equation (4.3.9)):

Sn(u, u′) = F (Xn(u),Xn(u′)), u′ ∈ NW (u). (4.4.30)

(c) Update Test Statistic: Recursive update of test statistic using active links(Section
4.5):

On(u) =
∑

u′∈NW (u)

{
(Sn(u, u′))2

2σ2
+

−(Sn(u, u′)− µuu′)2

2σ2
uu′

+ log
(
σ2

σ2
uu′

)}
log(Λn(u)) = log

(
Λn−1(u)

1− ρ
+

ρ

1− ρ

)
+On(u), (4.4.31)

Λ0(u) = π0/(1− π0), ρ = 1− e−dT

(d) Fault check and inform: If

Λn(u) ≥ 1− α
α

, (4.4.32)

sensor u is declared faulty, and broadcasts failed bit δ(u) to all sensors u′ ∈ NW (u).

(e) Update Current Links: For each u′ ∈ NW (u), if bit δ(u′) is received:

NW (u) = NW (u)− u′, (4.4.33)
Recompute Λn(u) with new NW (u), using stored samples.

If NW (u) is empty (no self loops in fault graph), then stop sensor u.

Table 4.1. Description of the networked fault detection algorithm. In a centralized data
collection model, the data dissemination stage has no cost.
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For any procedure

Dπ
m(ν) = Dπ

m(ν|λ1 < λ2)P(λ1 < λ2)+
+Dπ

m(ν|λ1 ≥ λ2)P(λ1 ≥ λ2).

Since the priors are identical, P(λ1 ≥ λ2) = 1/2. The statistics of ν conditional on λ1 < λ2

are the same as when we set λ2 = ∞. This result can be understood intuitively since Z
indicates the failure of sensor 1 in this case. So Dπ

m(ν|λ1 < λ2) ≥ Dπ
m(ν1). Intuitively, when

λ1 ≥ λ2 link Z gives no information on the change point for sensor 1, so any procedure
should only use link X in the limit of small false alarm probability. Heuristically we reason
that Dπ

m(ν|λ1 ≥ λ2) ≥ Dπ
m(ν̃1). Putting it all together gives

Dπ
m(ν) ≥ 1

2
Dπ
m(ν1) +

1
2
Dπ
m(ν̃1).

Thus, in a sense the proposed procedure achieves optimality, if the confusion probability is
of O(α).

Consider now a fully connected network, with all links having i.i.d. link distributions
before and after change. Denote the performance metric by q1. Notice that everything is
symmetric in this case. Each sensor has an equal chance of being the (n−k)th sensor to fail.
If we take small false alarm probability (α→ 0) and all pairwise confusion probabilities go
to zero with the false alarm probability going to zero, it is clear that no false alarm occurs.
In the limit, the kth sensor uses either (k − 1) sensors to make its decision (if there are no
self loops in the graph) or k (if there are self loops). The delay is

Dπ
m(νk)

.=
[

| log(α)|
(k − 1 + δs)q1 + d

]m
, (4.4.34)

where δs = 1 if the fault graph has self loops. Since each sensor has an equal chance of
failing as the k-th sensor, the average delay for each sensor is

Dπ
m(ν) .=

1
|V |

|V |∑
k=1

[
| log(α)|

(k − 1 + δs)q1 + d

]m
. (4.4.35)

4.5 Algorithm Implementation

We investigate several practical considerations in the implementation of the proposed
detection algorithm.

4.5.1 Correlation Computation: Compression and Synchronization

Given blocks Xn(u) and Xn(u′) from sensors u and u′, direct correlation as in Equation
4.3.9 might not be the best choice, either because the clocks of the two sensors may be
delayed relative to each other, or more importantly, there could be a propagation delay in
the underlying physical environment that reduces the effective correlation score between
both sensors. A simple solution to improve performance and overcome these difficulties is
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to use cross correlation instead of correlation [Oppenheim et al., 1999b]. Denote by Xk
n(u)

the block of samples Xt(u) for t ∈ [(n− 1)T + k, nT + k], that is the samples delayed by k
units.

The maximum cross correlation can be used to ‘synchronize’ the samples:

[kopt, lopt] = arg max
k,l∈[0,M ],k≤l

1
P

∑
n∈[1,P ]

F (Xk
n(u), X l

n(u′)).

Here M is the maximum allowed shift between the sensor samples, P is the number of
blocks to evaluate the shift, and F is the correlation score definition in Equation (4.3.9).
The shift is adjusted so that the correlation between samples is maximized either once at
initialization or periodically depending on the clock skew between the nodes. Once the shift
is adjusted, correlations are computed with respect to the chosen shifts.

If the block size T is large enough, an alternative procedure, which saves energy by
reducing the amount of data transfer, is to use a Discrete Cosine Transform (DCT) to
evaluate the maximum cross correlation. The method relies on computing the DCT of
each block Xn(u) appropriately zero-padded and using these coefficients to compute the
maximal correlations with a simple scalar product. Additional savings can be obtained
by using only a few coefficients of the DCT. Details of such a strategy can be found in
[Oppenheim et al., 1999b]. If the underlying signal has a few dominant frequencies this
method is very efficient. Alternative transforms such as wavelets could be used. In fact,
this is the suggested approach even when synchronization is not required.

4.5.2 Quantization

Considerable savings can be obtained if the block vectors Xn(u) are quantized to some
finite precision before the correlation is performed. Since we are working in a stochastic
framework, dithered quantization is favored. A stylized version of quantizing a real number
x in dithered quantization is to output y = Qb(x+ ε), where ε is a uniform random variable
and Qb is a function that outputs a b-bit quantized version of the input.

Denote by Sbn(u, u′) the correlation score computed from the quantized samples of block
Xn(u). The following lemma gives the asymptotic behavior of the estimates, when the
expected value of the score without quantization is µu,u′ .

Lemma 4.5.1. Let us assume that the quantizer is B+ 1-bit with full scale Xmax such that
the quantization error is uniformly distributed in interval [−Xmax

2b
, Xmax

2b
] and statistically in-

dependent of the system input. (This assumption is valid for subtractive dither quantization
when the dither satisfies certain conditions, e.g. i.i.d uniform dither [Oppenheim et al.,
1999b]). As T →∞,

√
T (Sbn(u, u′)− µu,u′)

d→ N(0, T σ̄2
u,u′)

σ̄2
u,u′ =

1
T

(
σ2
u′,u + 2X2

max σ
2
b + σ4

b

)
; σ2

b =
1

12 · 22b
.

Proof. Once we replace xbi and ybi by xi + εbx,i and yi + εby,i respectively, where εbx,i and εby,i
are the quantization errors for xbi and ybi respectively, xi, εbx,i, yi and εby,i are all independent
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of each other, and the result follows.

Quantization increases the variance of a Gaussian distribution by additional terms that
are inversely proportional to 22b, so b = O(− log(σu′,u/Xmax)) gives a performance that is
about the same with or without quantization.

4.5.3 Windowed iteration

Computational efficiency is important in practical applications. The information sharing
procedure proposed in Section 4.4.3 relies on computing the Shiryaev statistic for each sensor
(Equation (4.4.7)). The statistic can be recursively computed as:

log(Λn) = log
(

Πn−1

Πn
Λn−1 +

πn
Πn

)
+ log

(
f1(Sn)
f0(Sn)

)
,

= log
(

Λn−1

1− ρ
+

ρ

1− ρ

)
+ log

(
f1(Xn)
f0(Xn)

)
, (4.5.1)

where ρ = 1
dT , and for correlation computation

log
(
f1(Xn)
f0(Xn)

)
= log

(
σ2

σ2
uu′

)
+

S2
n

2σ2
− (Sn − µuu′)2

2σ2
uu′

. (4.5.2)

The log function is used for convenience and to increase numerical precision.
The procedure in Section 4.4.3 requires each sensor to keep a history of all observed link

score samples, since whenever a sensor detects a failure, others sensors that share links with
the failed sensor have to recompute the test statistic without the shared link score. There
is a practical implementation of the algorithm that avoids this. Before a failure occurs,
the test statistic is ideally expected to be zero. After the failure, the proposed procedure
requires about Dπ

m(ν) samples to detect a fault, so a procedure that remembers a constant
multiple of this number of samples works well. Notice that as sensors fail sequentially we
have to increase the number of stored samples. Denoting by NW (u) the set of working
neighbors at time n, the sample storage size Mn(u) required at time n for u is

q̃1,n(u) = max
u′∈NW (u)

q1(u, u′),

Mn(u) = T
C log(α)∑

u′∈NW (u)

q1(u, u′)− q̃1(u) + d T
, (4.5.3)

in which C is a constant factor (a good choice is C = 1.5) and T is the window size. The
memory estimate subtracts the most informative link at each stage since we don’t know
which sensor might fail requiring recomputation, and we always assume the most useful
sensor (in terms of decreasing delay) might. Each time a sensor reports a failure, sensors
that share fault links all recompute the Shiryaev statistic using the stored samples.
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4.6 Time Scale Selection

We address the choice of time scale or block size T . We first show how performance for
different T values can be compared. We then discuss how to choose T . Lastly, we show a
practical problem using PeMS data.

4.6.1 Delay scaling

The fault model of Equation (4.3.11) might suggest that we could reduce detection
delay arbitrarily, since by increasing T we can make the variance arbitrarily small. But to
legitimately compare the mth moment of the delay for different T , we should consider the
total number of samples rather than the number of blocks,

Dπ,T
m (νu) = Tm ×Dπ

m(νu),

=
[
T

log(α)
q1 + d T

]m
=
[

log(α)
q1
T + d

]m
.

Here q1 is a sum or average of the individual link quality metric, which by Equation (4.3.13)
is given by

q1(u, u′)
T

=
µ(u, u′)2

2σ2
u,u′

+
1

2T

[
σ2

σ2
u,u′

+ log

(
σ2
u,u′

σ2

)
− 1

]
.

Thus merely by increasing T one cannot reduce the delay arbitrarily: If the variances are
equal before and after a fault, the delay (in number of samples) is independent of T ; and if
the variances are different, there could even be a performance loss as q1(u,u′)

T might decrease
with T .

4.6.2 Events and faults time scale comparison

The choice of the time scale parameter must compare the time scale of faults–duration
between successive faults–and the time scale of events–time between signification changes in
the environment. In most sensing environments, one expect events to have a much smaller
time scale than faults. That is, a change in sensor measurements caused by an event is
expected to propagate to neighboring sensors at a speed that depends on the physical
environment. On the other hand, sensor faults should not propagate to neighboring sensors
and these faults are likely to persist longer.

Sensor failures frequently are intermittent: a sensor fails and after some time it sponta-
neously recovers. (PeMS sensors suffer from intermittent failures.) In such situations, if a
large enough density of sensors is available, the detection delay can be made small enough
to detect intermittent failures. In fact, once a sensor is detected as failed, the sequential
procedure can continue with some modifications to detect when the measurements are re-
liable again. So the requirement for detection of intermittent failures is that the average
length of time a sensor remains failed is of the same order as the detection delay.

Consider a simple model in which once an event occurs at the location of sensor u, its
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(a) (b)

(c) (d)

(e) (f)
Figure 4.4. (a) Daily correlation values for different time scales, (b) Correlation distribution
for 1/16 of total daily samples, (c) Symmetrized version of (b), (d) Fisher transform with
γ = 1, (e) Information parameter q1 normalized by T and (f) Correlation distribution for
broken sensors from Kwon et al. [2003].
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measurements become uncorrelated with those of its neighbor u′. Suppose events on average
last τ samples. This could be either how long the event lasts, or the time to propagate the
change caused by an event to neighboring sensors. During the time window τ , u samples
an i.i.d. random variable with variance σ2

e . At other times, the sensors sample i.i.d. values
with a correlation of ρu,u′ and a variance of σ2

S . If τ >> T , we are unable to distinguish
the event at sensor u from the sensor’s failure. In fact, a simple computation reveals that
the expectation of the empirical correlation with a window of size T (assuming an event at
u occurs at the beginning of the time block) is

ρ̂u,u′(T, τ) =

{
(1− r)+√

(1− r)+ + r ψe,S

}
ρu,u′ ,

r =
τ

T
, ψe,S =

σ2
e

σ2
S

As expected, when T is large relative to τ , the effect of the event is reduced (implying a
correlation that is close to the case when the event is not present). Furthermore, if event
uncertainties are large with respect to usual behavior uncertainties, a larger time scale helps
even more. If event uncertainties are small, expected correlations are smaller, but the events
do not significantly affect the system.

4.6.3 Example

To show how to select the time scale in a real application, we use 5-minute average
density data from PeMS for Interstate 210-West in Los Angeles, which has 45 sensing
stations. Events such as accidents and demand-induced traffic congestion cause changes
in the measured density, and we wish to distinguish the changes due to these events from
changes due to sensor failures. We select two neighboring stations. Figure 4.4(a) shows
the correlation over time for different time scales. Notice that for small time scales, we can
observe large correlation drops, which correspond to events that have a low propagation
speed. The implicit averaging proposed by our algorithm is essential in such situations.

Notice from Figure 4.4(b) that the correlation with the identity transformation function
does not have a gaussian characteristic. The main reason for this is that our data set is
limited. We propose two different approaches for handling such situations. Both are simple
and fit within the methodology proposed here. The first approach uses a padded density
estimate by adding a sample 2−ri for each original sample ri in the set. Figure 4.4(c) shows
the padded histogram for our sample set, in which we can clearly see a bell curve. From
this curve we are able to estimate the parameters µ = 1 (by definition) and σ2 = 0.0928.
But we also know that correlation values never exceed 1 (which is also the mean of our
estimated distribution). Thus, we should use as a distribution for the score the distribution
conditional on the fact that the score is less than the mean, which can be directly computed
as

Sn(u, u′) ∼ 2N(1, T−1 σ2
u,u′), n <

1
T

min(λu, λ′u).
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Figure 4.5: Informativeness models with respect to connectivity radius R .

After failure we don’t see the cutoff effect [Kwon et al., 2003], so the distribution remains
as before (Equation 4.3.11). Notice that the algorithm is identical, except that the constant
factor (−|NW (u)| log 2) should be added to the definition of On(u) in Table 4.1. The second
approach is to use the Fisher type transformation in Equation (4.3.10). Figure 4.4(d) shows
the result for the parameter value γ = 1. The distribution is more gaussian shaped. Figure
4.4(e) computes the scaled information metric q̄1/T for several choices of the time scale
parameter T . Observe that if the time is less than half a day, performance is the same.
Some gains are observed as we increase the time scale.

4.7 Energy, delay and density tradeoff

We develop a tradeoff model to evaluate optimal choices of neighborhood size on an
energy constrained network. We use delay results from previous sections to evaluate choices
faced by a sensor under such constraints in a random placement setting.

4.7.1 Correlation decay

Many sensor networks monitor spatial and temporal changes in the environment. The
correlation between measurements at different locations usually decays with distance. For
example, in PeMS, the correlation of traffic measurements by adjacent sensors decays with
the distance between them, since there are more points (ramps) where vehicles enter and
exit. A simple way to capture this effect is an additive model

F (k + 1) = F (k) + Fin(k + 1)− Fout(k),

where k denotes the kth section of the highway, F (k) denotes the flow in the kth section,
Fin(k + 1) denotes the incoming flow to the kth section through an on-ramp, Fout(k) de-
notes the outgoing flow in the previous section. Assume that the incoming flows are i.i.d.
random variables with variance σ2. If the outgoing flows are proportional to the input flows
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(Fout(k) = −βF (k), for 0 < β < 1) we have

ρ(k, k̃) =
σ2

1− β2
β|k−k̃|.

The correlation decays with the distance between sensors, but the decay rates are different.
The performance of the proposed fault detection algorithms depends crucially on the ex-
pected correlations between the sensors, as well as on the variance of this estimate, through
the information parameter q1(ui, uj) of the link between sensors ui and uj . Under reason-
able conditions, the variance of the correlation estimate increases as the correlation itself
decreases. Under our normality assumptions, we showed that q1 = ρ2/σ2

ρ. If we assume a
power law decay with distance and σ2

ρ = O(1/ρ2p), we can state that

q1(ui, uj) ∝ T βγ·dist(ui,uj), (4.7.1)

in which the parameter γ ≥ 0 controls the decay rate of the link informativeness as the
distance between the sensors dist(ui, uj) increases.

4.7.2 Energy consumption

Some sensor networks have limited energy. If most energy is consumed in communication,
it is important to minimize the data to be transferred. Suppose the energy consumed in
transferring data between ui and uj is proportional to the square of the distance between
them, eC(ui, uj) ∝ dist(ui, uj)2. There might then be a maximum radius R of interest to
realize fault detection for a single sensor with a limited power budget.

4.7.3 Tradeoff analysis

We adopt the viewpoint of a single sensor u1, whose neighbors are randomly placed fol-
lowing a Poisson process on a disk with center u1 and mean (spatial) density ηF sensors per
m2 [Proakis, 2000]. Assume these neighbors never fail. We use a mean field approximation
to evaluate the tradeoffs between energy, detection delay and density.

The expected link informativeness in a disk with radius R, normalized by time scale, is

q̄1 = E[q1(u1, uj)/T ]

= C

∫ R

0
βγ dist(u1,uj)dµ(dist(u1, uj))

= C

∫ R

0
βγ x

2
R2

xdx

=

{
C γ = 0

2C
(log(β)γR)2

[
1 + βγR(log(β)γR− 1)

]
γ > 0 .

For density ηF , the disk has on average N = ηFπR
2 sensors. Using the mean field approx-
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imation (valid for large N), the expected sample delay of the detection procedure is

E[Dπ
m(ν1)] = E

[
logα∑

j q1(u1, uj) + d T

]
≈ E

[
logα

Nq̄1 T + d T

]
=

logα
ηF πR2q̄1 T + d T

.

The expected power consumption for each transmission round to each neighbor is

E[eC(u1, uj)] = K

∫ R

0
dist(u1, uj)2µ(dist(u1, uj)),

= K

∫ R

0
x2 2
R2

xdx =
1
2
KR2.

The average number of rounds of communication is λ̄ + Dπ
m(ν1), where λ̄ = ed T is the

average failure time. Putting these together, using the mean field approximation to the
delay in the first step, we obtain the total power consumed

P̄ = E[eC(u1, uj)(λ+Dπ
m(ν1))N ],

≈ 1
2
KR2 [λ̄+ E[Dπ

m(ν1)]] ηF πR2.

If q̄1 is small compared to d, the expected delay is dominated by 1/d, which is smaller than
λ̄. If q̄1 is large, the delay is small. Thus essentially the total average power consumed by
sensor u1 is O(ρR4). The expected sample delay is of order

E[Dπ,T
m (ν1)] = T E[Dπ

m(ν1)] = O

(
1

max {ηF R2 q̄1, d}

)
.

There are two ways to improve performance: (1) by increasing R for a fixed density,
which corresponds to communicating with neighbors further away, and (2) by increasing
the density as a function of R, requiring additional sensors. Which choice is better depends
on the parameter γ of the underlying environment. For the model in Equation (4.7.1), R2q̄1

increases with R2 when γ = 0, and is order constant when γ > 0. Thus increasing R for
a fixed density does not help reduce the delay arbitrarily when γ > 0. Figure 4.5 plots q̄1

as a function of R for the different models. In the order constant situations we need to
increase the density as a function of ηF (R) = Rp for some p > 0, which increases energy
consumption from O(R4) to O(R4+p). If performance is measured as total average power per
unit detection delay, P̄ /E[Dπ

m(ν1)] = O(R2/q̄1), increasing density improves performance.

4.8 Examples

We evaluate the performance of our algorithm in simulations, which allows us to precisely
specify the moment of failure. We simulate three different situations: the two-node network
and the fully connected network proposed in Section 4.4, and a toroidal grid network (see
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(a) (b)

(c) (d)

(e) (f)
Figure 4.6. Two Sensor Network: (a)Sample path for correlation with change point at
n = 50, (b) Confusion probability estimates for different variance ratios and (c) Confusion
probability exponent estimates. Covariance ratio in these figures refers to the quantity
σ2

Z/σ
2
S .
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[Dimakis et al., 2006] for a definition). This is basically a four connected network that
wraps around.

As a benchmark, we compute the expected delay of a naive fault detection strategy:
direct thresholding of the correlation, assuming that the distributions are known. For
a 5-node fully connected network, and a false alarm probability of 0.0001, approximate
computations reveal that the expected delay is on the order of 172 blocks. By comparison,
our approach yields a delay of 50 blocks for a false alarm probability of 10−20 (essentially
zero), which it is much more efficient. The main reason is that we perform appropriate
implicit averaging.

4.8.1 Two Sensor Network

We consider the example in Figure 4.2., assuming that f0(X) ∼ N (µ(X), σ2(X)) and
f1(X) ∼ N (0, σ2(X)). Similarly, we make definitions for Y and Z. In this case, the
information strength for each link are given by

q1(X) = q0(X) =
µ(X)2

σ2(X)
,

q1(Y ) = q0(Y ) =
µ(Y )2

σ2(Y )
,

q1(Z) = q0(Z) =
µ(Z)2

σ2(Z)
.

Using the results obtained in Section 4.4.4, we can conclude that LFDIE is a strong fault
detection procedure if

4
q0(X)− q1(Z)

2σ2(X,Z)
> 1,

4
q0(Y )− q1(Z)

2σ2(Y, Z)
> 1,

whenever q1(X) > q1(Z) and q1(Y ) > q1(Z). Let us assume µ(X) = µ(Y ) = µ(Z) = 1,
which is the standard type of assumption in correlation fault detection. σ2(X,Z) is the
variance of the log-likelihood under after change measure for Z and pre-change measure for
X, which can be computed as

σ2(X,Z) =
1

σ2(X)
+

1
σ2(Z)

,

obtaining the conditions

σ2(X) <
1
3
σ2(Z),

σ2(Y ) <
1
3
σ2(Z).
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The result can be interpreted intuitively if we consider that private links X and Y repre-
sent the aggregate connection of sensors 1 and 2 to always working sensors. Furthermore,
consider that a connection between pairs of sensors has strength 1/σ2 (i.e. all variances
involved are σ2). Then, we can write q1(Z) = 1/σ2, q1(X) = N1/σ

2 and q1(Y ) = N2/σ
2

where N1 is the number of always working sensors connected to sensor 1 and N2 those con-
nected to sensor 2. Then the conditions above state that at least 3 always working sensors
are required for LFDIE to be a strong fault detection procedure.

For the numerical simulation, the mean parameters are µX = µY = µZ = 1 before
change, and zero after change. Random variables X and Y are i.i.d. with variance σ2

S .
The common link Z has a fixed variance σ2

Z = 1. The prior failure rate is d = − log(0.01).
Figure 4.6(a) shows a typical correlation sample path when σ2

S = 0.2. Notice that without
time averaging it is very hard to say exactly when the change (failure) occurred.

In Section 4.4.4 we argued that the confusion probability should go to zero as the false
alarm rate α → 0 for the procedure to be consistent, and we see this in Figure 4.6(b).
Notice though that the rate depends on the uncertainty in the non-shared links σ2

S . From
Figure 4.6(c), if σ2

Z/σ
2
S < 1.8, the confusion probability is O(αp) with p < 1, so the total

false alarm rate of the procedure grows slower than α. But for higher ratios, our procedure
essentially has false alarm rate α, so it is indeed valuable to have additional sensors in a
neighborhood. The theoretical prediction guarantees that the procedure is strong for ratio
σ2
Z/σ

2
S > 3.

Figure 4.6(d) shows the theoretical and experimental average delays obtained when the
threshold is α = 10−7. There is disagreement between the curves, although the qualitative
behavior is as expected. The disagreement is because our results are for α → 0. This
discrepancy is well known in sequential analysis [Tartakovsky and Veeravalli, 2005]. In the
next section we show the high accuracy of the approximation for small values of α. Figure
4.6(e) compares the behavior of our procedure using the common link Z and one that does
not use it at all. There is a substantial reduction in delay using a shared link. Figure
4.6(f) is the corresponding theoretical prediction. There is a qualitative agreement between
theory and simulation experiment.

4.8.2 General Networks

Now consider a fully connected network of sensors. Figure 4.7(a) shows the average
detection delay for α = 0.12 and Figure 4.7(c) for α = 10−20. As α becomes very small, our
theoretical predictions agree better with experiment. Furthermore, the reduction in delay
diminishes as the number of sensors increases beyond 20. Figure 4.7(b) shows the actual
PFA observed for selected false alarm targets. As with the two-sensor case (in which the
uncertainty ratio played the role of the number of nodes), beyond 10 sensors the false alarm
probability is below the target level. Thus the confusion probability rate becomes large
at that point. Figure 4.7(d) shows that with 20 nodes, the observed false alarm is always
below the target level.

Lastly, we simulate a toroidal network, in which each sensor has four neighbors. The
previous results lead us to believe that the average delay should remain the same indepen-
dent of the number of sensors in the network, since the connectivity is fixed. Figure 4.7(e)
shows this (except for when we move from 4 nodes–which is fully connected). Compare the
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delay level to the uncertainty ratio of 5 or a fully connected network with 4 sensors. The
results are close. We can see also in Figure 4.7(f) that since the connectivity is still low,
the false alarm is slightly higher than the target.

4.9 Discussion

In the Chapter we developed and evaluated an algorithm for distributed online detection
of faulty sensors. We proposed a set of basic assumptions and a framework based on the no-
tion of a fault graph together with fundamental metrics to evaluate the performance of any
sequential fault detection procedure. Then we proceeded to analyze an efficient algorithm
that achieves a good performance under the proposed metrics, and even an optimal per-
formance under certain scenarios. As far as we know, this is the first derivation of bounds
on detection delay subject to false alarm constraints in a multiple fault or multiple change
point setting. We validated the assumptions behind our algorithms with real data collected
from a freeway monitoring application.

Our algorithm performs an implicit averaging which leverages the short term history
of the samples reducing the detection delay for a fixed false alarm. Most of the proposed
methods in the literature do not perform this averaging, and therefore are subject to much
longer delays. Our algorithm and framework are general enough that even model based
methods for computing scores, such as the one proposed in Tulone and Madden [2006] or
the primitive in Jefferey et al. [2006], can benefit from the proposed procedure. That score
method though might not be very efficient if the observed processes are non stationarity
such as in freeway monitoring. Compared to procedures such as in Elnahrawy and Nath
[2004] and in Ould-Ahmed-Vall et al. [2007], our method benefits from implicit averaging,
whereas those methods make sequential decisions based on only the current observation.

One important feature of the proposed procedure is that weak sources of evidence can
be combined to give a reliable detection of failure. As long as the average correlation when
a sensor is working is slightly larger then when it has failed detection can be performed reli-
ably. Notice that very large uncertainties are tolerated, although detection delays increase.
On the other hand, as more neighboring sensors are added, the shared information can be
used to reduce delays. This means that in situations where fault periods are short can
still be detected. Some straightforward adaptation of the algorithm also allows for detect-
ing when a malfunctioning sensor might return to give reasonable readings in intermittent
detection scenarios.

Although we focused on the case where the distribution of the correlations is approx-
imately Gaussian, in case other score metrics are used, the proposed algorithm can be
adapted for different statistical distributions. As avenues for future work we propose to
investigate the estimation of the fault graph, currently based on geographic proximity, and
generalizations of the methodology to applications such as event detection.

4.10 Technical Assumptions

Some technical assumptions are required in order to obtain performance estimates for the
procedures proposed in the Chapter. The first assumption is that priors have tail bounds.
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(a) (b)

(c) (d)

(e) (f)
Figure 4.7. Fully Connected Network: (a)Detection Delay as a function of the number of
sensors for α = 0.12 and (b)Empirical average false alarm. (c)Detection Delay as a function
of the number of sensors for α = 10−20 and (d) Selected false alarm rate and actual rate for
network with 20 nodes. Grid Network: (e)Average Detection Delay as a function of number
of sensors and (f) False alarm rate. Chosen false alarm rate α = 0.12.
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Assumption 4.10.1. The priors π1 and π2 of sensors 1 and 2 satisfy the tail limit:

lim
k1→∞

Π1
k1+1

k1
= −d1, (4.10.1)

lim
k2→∞

Π2
k+2+1

k2
= −d2. (4.10.2)

The next assumption is on the tails of the log-likelihood random variables.

Assumption 4.10.2. Assume either of the following:

(a) Log likelihood ratios are independent and have finite first and second moment. Denote
the variance of the likelihood ratio of X under f0 by σ2

0(X) and under f1 by σ2
1(X),

of Y by σ2
0(Y ) and σ2

1(Y ) and of Z by σ2
0(Z) and σ2

1(Z). For concreteness, consider
the likelihood ratio for X, Rnr (X). Then we assume the following tail bounds exist for
x > µrn(X),

Pk1,k2 (Rrn(X) > x) ≤ K(X) exp−(x− µrn(X))2

σrn(X)2
(4.10.3)

where

µrn(X) = (n− k1)q1(X)− (k1 − r)+q0(X), (4.10.4)

σrn(X)2 = γ(X){(n− k1)σ2
1(X) + (k1 − r)+σ

2
0(X)}. (4.10.5)

Similar bounds hold for Y and Z, with µ and σ appropriately defined. Also, we
assume the bounds for sums, such as Rrn(X) +Rrn(Z), by again using the appropriate
definitions, such as µrn(X,Z) = µrn(X)+µrn(Z) and σrn(X,Z)2 = σrn(X)+σrn(Z). The
constants for the bounds are defined as K(X,Y ) and γ(X,Z).

(b) All log likelihood ratios are bounded within interval [−M,M ]. Using Hoeffding’s
bound [Grimmett and Stirzaker, 1992], we can obtain a bound similar to Equation
(4.10.3) for each random variable, except that in this case γ(X) = 2 and

σrn(X)2 = 2{(n− k1)σ2
1(X) + (k1 − r)+σ

2
0(X) +M/3}. (4.10.6)

The tail bound assumption is not overly restrictive. In fact, it only imposes a light tail
constraint on the individual likelihood random variables, and then uses independence. Some
cases where this happens is when f0 and f1 are Gaussian densities, or both densities have
bounded domain. In the first case, the tail bounds can be obtained from large deviations,
and in the second case from Hoeffding’s inequality. The rationale behind these assumptions
is that it allows precise computation of the probability of deviations of the likelihood ratio
sequence maximum. We then assume different forms of expectation concentration of the
log-likelihood.

Assumption 4.10.3. For all ε > 0 and k1, k2 ≥ 1, as N →∞:
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Pk1,k2
(

1
N

max
1≤n≤N

Rk1k1+n(X) > (1 + ε)q1(X)
)
→ 0

Pk1,k2
(

1
N

max
1≤n≤N

Rk1∧k2k1∧k2+n(Z) > (1 + ε)q1(Z)
)
→ 0

Pk1,k2
(

1
N

max
1≤n≤N

Rk2k2+n(Y ) > (1 + ε)q1(Y )
)
→ 0 (4.10.7)

Assumption 4.10.4 (r-quick convergence of LLR). The log-likelihood ratios Rk1k1+n−1(X),
Rk1∧k2k1∧k2+n−1(Z) and Rk2k2+n−1(Y ) define the stopping times:

T (k1,k2)
ε (X) = sup

{
n ≥ 1 :

∣∣∣∣ 1nRk1k1+n−1(X)− q1(X)
∣∣∣∣ > ε

}
T (k1,k2)
ε (Y ) = sup

{
n ≥ 1 :

∣∣∣∣ 1nRk1k1+n−1(Y )− q1(Y )
∣∣∣∣ > ε

}
T (k1,k2)
ε (Z) = sup

{
n ≥ 1 :

∣∣∣∣ 1nRk1∧k2k1∧k2+n−1(Z)− q1(Z)
∣∣∣∣ > ε

}
(4.10.8)

For all ε > 0 and k1 ≥ 1 and k2 ≥ 1, for some r ≥ 1:

Ek1,k2
[
T (k1,k2)
ε (X)

]r
< ∞

Ek1,k2
[
T (k1,k2)
ε (Y )

]r
< ∞

Ek1,k2
[
T (k1,k2)
ε (Z)

]r
< ∞

∞∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)Ek1,k2
[
T (k1,k2)
ε (X)

]r
< ∞

∞∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)Ek1,k2
[
T (k1,k2)
ε (Y )

]r
< ∞

∞∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)Ek1,k2
[
T (k1,k2)
ε (Z)

]r
< ∞ (4.10.9)

Assumption 4.10.5. Let

Sk1n (X) : = log
π1(k1)
Π1(n)

+Rk1n (X) +Rk1n (Z)

Sk2n (Y ) : = log
π2(k2)
Π2(n)

+Rk2n (Y ) +Rk2n (Z) (4.10.10)
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Let η1 = min{n : Sk1n (X) ≥ logBα}, and define for arbitrary ε > 0,

T k1ε = sup{n : |(n− k1 + 1)−1Sk1n (X)− (q1(X) + q1(Z) + d1)| ≥ ε}. (4.10.11)

Assume that E∞,k1 expT k1ε <∞ for any ε > 0 and for any k1.
Similarly, let η2 = min{n : Sk2n (Y ) ≥ logBα}, and define for arbitrary ε > 0,

T k2ε = sup{n : |(n− k2 + 1)−1Sk2n (Y )− (q1(Y ) + q1(Z) + d2)| ≥ ε}. (4.10.12)

Assume that E∞,k2 expT k2ε <∞ for any ε > 0 and for any k2.

4.11 Proofs

4.11.1 Proof of Theorem 4.4.1

Proof. We prove the statement for ν1(X,Z). The proof for ν2(Y, Z) follows along the same
lines. We start the proof by defining an upper bound to the test statistic Λnoex

n (X,Z) that
defines the stopping time ν1(X,Z). Selecting k̄2 = k1∧k2, using the assumption π2(k̄2) > 0,
we can lower bound:

bn ≥ Π1,n Ln+1(X1
n)π2(k̄2)Lk̄2(Z1

n),

so that simple algebra shows

an
bn
≤ Π−1

1,nπ2(k̄2)−1
n∑

k1=1

∞∑
k2=1

π1(k1)π2(k2)Sk1n (X). (4.11.1)

Now we can proceed as

log
an
bn
≤ − log Π1,n − log π2(k̄2) + log

n∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)Sk1n (X),

≤ − log Π1,n + log
n∑

k1=1

π1(k1)Sk1n (X) := log Λn(X)

− log π2(k̄2) := rn,

where we notice that the test statistic can be upper bounded by the sum of the standard
Shyryaev test statistic for X with change point at λ1 and a quantity rn which depends only
on the shared link Z. Define the stopping time

η = inf
{
n : log Λn(X) + rn ≥ log

1− α
α

}
.
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It is clear that ν1(X,Z) ≥ η. So we have the following chain of inequalities using the
definition of the delays:

Ek1,k2 [(ν1(X,Z)− k1)m|ν1(X,Z) ≥ k1] =
Ek1,k2 [[(ν1(X,Z)− k1)+]m]

Pk1,k2 (ν1(X,Z) ≥ k1)
,

≥ Ek1,k2
[
[(ν1(X,Z)− k1)+]m

]
,

≥ Ek1,k2
[
[(η − k1)+]m

]
,

≥ (Lα,ε)
m Pk1,k2(η ≥ k1 + Lα,ε),

where Lα,ε = (1 − ε) − logα
q1(X)+d and in the last line we used the Markov inequality. Now we

want to show Pk1,k2(η ≥ k1 + Lα,ε) → 1 as α → 0, which implies that η is asymptotically
equivalent to the stopping time ν1(X). We can use a stopping time comparison principle:

Pk1,k2(η ≥ k1 + Lα,ε) =
k1+Lα,ε∑
j=1

Pk1,k2 (log Λj(X) + rj < logBα) ,

≥
k1+Lα,ε∑
j=1

[Pk1,k2 (log Λj(X) < (1− ε) logBα)

− Pk1,k2 (rj ≥ ε logBα)] ,

= Pk1,k2(ν1(X) ≥ k1 + Lα,ε)−
k1+Lα,ε∑
j=1

Pk1,k2 (rj ≥ ε logBα) ,

where we used the lower bound P(X + Y < a+ b) ≥ P(X < a)− P(Y > b) for any random
variables X and Y . Also, we identified the probability Pk1,k2(ν1(X) ≥ k1 + Lα,ε) from
the definition of the probability for a single change point problem. Since ν1(X) does not
depend on λ2 Using Lemma 4.4.2 it is clear that Pk1,k2(ν1(X) ≥ k1 + Lα,ε)→ 1 (notice we
are running a test with false alarm α1−ε) as

Pk1,k2(ν1(X) ≥ k1 + Lα,ε) = 1− Pk1,k2(ν1(X) < k1)− Pk1,k2(k1 ≤ ν1(X) ≤ k1 + Lα,ε).

Notice rj is a deterministic finite quantity, and thus Pk1,k2 (rj ≥ ε logBα) = 0, as soon as
α ≤ 1/(1 + exp(rj/ε)).

Lemma 4.4.2 also states Pπ1,π2(ν1(X) ≥ λ1 + Lα,ε) → 1. Also Pπ1,π2 (rj ≥ ε logBα) =
0 since for each pair (k1, k2) the equality holds for small finite enough α, and from the
definition 0 ≤ Pπ1,π2 (rj ≥ ε logBα) ≤ 1, so the dominated convergence theorem applies.

4.11.2 Proof of Theorem 4.4.2

Before the main proof, we state an auxiliary lemma.

Lemma 4.11.1. For any stopping time ν ∈ FnX,Y , with PFAπ1,∞(ν) < α, the following
bound holds:

Pλ1,λ2(ν < λ1, ν < λ2) < α. (4.11.2)
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Proof. First, notice that:

∞∑
k1=1

π1(k1)Pk1,∞(ν < k1) = Pλ1,∞(ν < λ1)

= PFAπ1,∞(ν)
< α

We can now proceed to prove the lemma:

Pλ1,λ2(ν < λ1, ν < λ2) =
∞∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)Pk1,k2(ν < k1, ν < k2),

=
∞∑
k1=1

∞∑
k2=k1+1

π1(k1)π2(k2)Pk1,∞(ν < k1) +
∞∑
k2=1

∞∑
k1=k2+1

π1(k1)π2(k2)P∞,k2(ν < k2),

=
∞∑
k1=1

∞∑
k2=k1+1

π1(k1)π2(k2)P∞,∞(ν < k1) +
∞∑
k2=1

∞∑
k1=k2+1

π1(k1)π2(k2)P∞,∞(ν < k2),

<

∞∑
k1=1

∞∑
k2=k1+1

π1(k1)π2(k2)P∞,∞(ν < k1) +
∞∑
k2=1

∞∑
k1=k2+1

π1(k1)π2(k2)P∞,∞(ν < k1),

=
∞∑
k2=1

π2(k2)
∞∑
k1=1

π1(k1)Pk1,∞(ν < k1) < α.

The false alarm for LFDIE can be bounded using Lemma 4.11.1:

Proof. (of Theorem). (a) First we show item (a) for sensor 1. The analysis is analogous for
sensor 2.

Pλ1,λ2(ν̄1 < λ1) = Pλ1,λ2(ν̄1 < λ1, ν̄1 > ν̄2) + Pλ1,λ2(ν̄1 < λ1, ν̄1 ≤ ν̄2) (4.11.3)
= Pλ1,λ2(max(ν̃1, ν2) < λ1, ν1 > ν2) + Pλ1,λ2(ν̄1 < λ1, ν̄1 ≤ ν̄2) (4.11.4)
< Pλ1,λ2(ν̃1 < λ1, ν1 > ν2) + Pλ1,λ2(ν̄1 < λ1, ν̄1 ≤ ν̄2) (4.11.5)
< α+ Pλ1,λ2(ν̄1 < λ1, ν̄1 ≤ ν̄2) (4.11.6)
= α+ Pλ1,λ2(ν1 < λ1, ν1 < λ2, ν1 ≤ ν2) + Pλ1,λ2(λ2 < ν̄1 < λ1, ν̄1 ≤ ν̄2)

(4.11.7)

≤ 2α+ ξαλ1,λ2
(ν̄1) (4.11.8)

In lines (4.11.4) and (4.11.7) we use the following observations from the definitions of ν̄1

and ν̄2:

{ν̄1 > ν̄2} ∩ {ν̄1 < x} = {ν1 > ν2} ∩ {max(ν̃1, ν2) < x}
{ν̄1 ≤ ν̄2} ∩ {ν̄1 < x} = {ν1 ≤ ν2} ∩ {ν1 < x}



83

In line (4.11.5) we used the fact that ν̃1 = νS(Y ) and so does not depend on the behavior
of λ2, so the following upper bound holds:

Pλ1,λ2(ν̃1 < λ1, ν1 > ν2) < Pλ1,λ2(ν̃1 < λ1)
= Pλ1,∞(ν̃1 < λ1)
< α

For line (4.11.8) we notice that Lemma 4.11.1 applies. Proceeding in a similar fashion we
can obtain the result for the false alarm of sensor 2. (b) Now we can show (b) for sensor 1.

From the definition of marginal probability of false alarm in Equation (4.4.26) and following
the proof steps in Eqns (4.11.4,4.11.5,4.11.7):

Pλ1,k2(ν̄1 < λ1) < Pλ1,k2(ν̃1 < λ1, ν1 > ν2) + Pλ1,k2(ν̄1 < λ1, ν̄1 ≤ ν̄2),
= Pλ1,∞(ν̃1 < λ1, ν1 > ν2) + Pλ1,k2(ν̄1 < λ1, ν̄1 ≤ ν̄2),

≤ α+ Pλ1,k2(ν̄1 < λ1, ν̄1 ≤ ν̄2),

The second quantity can be bound:

Pλ1,k2(ν̄1 < λ1, ν̄1 ≤ ν̄2) = Pλ1,k2(ν1 < ν2, ν1 < k1),
= Pλ1,k2(ν1 < λ1, ν1 < k2, ν1 ≤ ν2) + Pλ1,k2(k2 < ν̄1 < k1, ν̄1 ≤ ν̄2),
≤ Pλ1,k2(ν1 < λ1, ν1 < k2) + ξλ1,k2(ν̄1),
< Pλ1,∞(ν1 < λ1) + ξλ1,k2(ν̄1),
< α+ ξλ1,k2(ν̄1).

4.11.3 Proof of Lemma 4.4.1

Proof. The proof has five parts. In the first part we decompose the probability into three
tail events that determine the α-order of the confusion probability. The point at which we
switch between the first two events is a parameter (C̃α) that needs to be optimized. For
each event we compute upper bounds to the probabilities and the rate function for the speed
with which the confusion probability converges to zero as α→ 0. Using rate matching, we
optimize the free parameter C̃α. Finally, we determine the parameter (Cα), that is when one
switches from the second to the third event, based on the choice of optimized parameter.

Decomposing the confusion lemma into 3 events. First notice that (we consider
Cα =∞ a valid possibility):

P∞,k2(k2 ≤ ν1 ≤ ν2) ≤ P∞,k2(k2 ≤ ν1 ≤ ν2, ν2 ≤ k2 + Cα) + P∞,k2(ν2 > k2 + Cα).
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We decompose further the quantity:

P∞,k2(k2 ≤ ν1 ≤ ν2, ν2 ≤ k2 + Cα) ≤ P∞,k2

k2+Cα⋃
l=k2

{Λl(X,Z) ≥ Bα} ∩ {Λl(Y,Z) < Bα}

 ,

where the bound follows from the definition of ν1 and ν2. The advantage of this particular
bound is that for small l, the first event - sensor 1 mistakenly crossing the threshold -of the
intersection has small probability, and for large l the second does - sensor 2 not crossing
the threshold before sensor 1. From definition of the test quantities (Equation 4.4.7), we
obtain the bounds:

log Λn(X,Z) ≤ − log Π1(n) + max
r∈[1,n]

{Rrn(X) +Rrn(Z)} .

Now we can continue to bound:

P∞,k2(k2 ≤ ν1 ≤ ν2, ν2 ≤ k2 + Cα) ≤
k2+Cα∑
l=k2

P∞,k2 ({Λl(X,Z) ≥ Bα} ∩ {Λl(Y,Z) < Bα}) ,

≤
k2+Cα∑
l=k2

P∞,k2({− log Π1(l) + max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα}∩

{− log Π2(l) + log π2(r) +Rrl (Y ) +Rrl (Z) < logBα,∀r ≤ l}),

≤
k2+Cα∑
l=k2

P∞,k2({− log Π1(l) + max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα}∩

{− log Π1(l) + log Π2(l)− log π2(k2) + max
r∈[1,l]

{Rrl (X) +Rrl (Z)} −Rk2l (Y )−Rk2l (Z) > ε}),

≤
k2+Cα∑
l=k2

min
{

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα + log Π1(l)
)
,

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} −Rk2l (Y )−Rk2l (Z) > Vl

)}
,

≤
k2+C̃α∑
l=k2

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα + log Π1(l)
)

+

+
k2+Cα∑
l=k2+C̃α

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} −Rk2l (Y )−Rk2l (Z) > Vl

)
,

where Vl = ε+ log Π1(l)− log Π2(l) + log π2(k2).

Analyzing the probability of early crossing for sensor 1 (event E1). The following
lemma will be used to bound the first event:

Lemma 4.11.2. Consider the function f(x) = (a + b x)2/(c + d x), with a, c, d ≥ 0. The
following properties hold:



85

(a) If b > 0, the function is decreasing in the interval x ∈ [0, xmin] and increasing in
x ∈ (xmin,∞],where xmin = a/b − 2 c/d is the point of minimum and f(xmin) =
4 b2/d (a/b− c/d).

(b) If b ≤ 0, the function is decreasing in the interval x ∈ [0, xmin] and increasing in
x ∈ (xmin,∞], where xmin = −a/b is the point of minimum and f(xmin) = 0.

Proof. Follows from noticing that the derivative is f ′(x) = (a+ b x)(2 bc− ad+ bd x)/(c+
d x)2.

We analyze the first probability in the inequality. Define b0 = q0(Z) + q0(X) and
b1 = q0(X) − q1(Z) + d1. Apply Lemma 4.11.2, with a = a1 = logBα + log Π1(l) − l d1,
b = b1, c = c1 = (k2 − 1)σ2

0(X,Z) and d = d1 = σ2
1(X,Z):

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα + log Π1(l)
)

≤ l max
r∈[1,l]

P∞,k2 (Rrl (X) +Rrl (Z) ≥ logBα + log Π1(l))

≤ l max
s∈[0,k2−1]

max
r∈[k2,l]

exp

{
−(logBα + log Π1(l)− l d1 + (l − r + 1) b1 + s b0)2

(l − r + 1)σ2
1(X,Z) + s σ2

0(X,Z)

}

≤ l max
r∈[k2,l]

exp

{
−(logBα + log Π1(l)− l d1 + (l − r + 1) b1)2

(l − r + 1)σ2
1(X,Z) + (k2 − 1)σ2

0(X,Z)

}

≤ l exp

{
−(logBα + log Π1(l)− l d1 + (l∗ − k2 + 1) b1)2

(l∗ − k2 + 1)σ2
1(X,Z) + (k2 − 1)σ2

0(X,Z)

}
(4.11.9)

where (a) l∗ = min(l,−a1/b1 + k2) if b1 < 0; (b) l∗ = min(l, a1/b1 − 2 c1/d1 + k2) if b1 > 0
and a1/b1 − 2 c1/d1 > 0; l∗ = k2 if b1 > 0 and a1/b1 − 2 c1/d1 < 0; and (c) l∗ = l if b1 = 0.
Notice if l = Θ(logBα), only the first condition will apply as α→ 0 for option (b).

Let us assume that C̃α = logBα/w. We can then control the bound using Equation 4.11.9
and a simple observation:

k2+C̃α∑
l=k2

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} ≥ logBα + log Π1(l)
)
≤ (C̃α)2 exp−min Φα,

and Φα is given by

Φα =
(logBα +Ac(Kα) +Kα b1)2

Kα σ2
1(X,Z) + (k2 − 1)σ2

0(X,Z)
,

Ac(Kα) = log Π1(Kα + k2)− (Kα + k2) d1.

The constant Kα is chosen as to minimize Φα under the constraint that 0 < Kα < C̃α.
By assumption on tail of prior, there exists T , such that for all Kα > T , |Ac(Kα)| < ε.
We are in this regime. Consider the case b1 > 0. Our previous calculation shows minima
is achieved when Kα = (logBα − ε)/b1 − 2 (k2 − 1)σ2

0(X,Z)/σ2
1(X,Z). For vanishing α,
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Kα < C̃α if b1 > w, else we should set Kα = logBα/w to minimize Φα. Lemma 4.11.2 can
be used to compute the rate at the minimum when either b1 > w or b1 ≤ w:

Φα,min = 4
b21

σ2
1(X,Z)

(
logBα − ε

b1
− (k2 − 1)σ2

0(X,Z)
σ2

1(X,Z)

)
for b1 > w

=

(
logBα

[
1 + b1

w

]
− ε
)2

logBα
σ2
1(X,Z)
w + (k2 − 1)σ2

0(X,Z)
for b1 ≤ w

The rate that the probability goes to zero is then calculated as:

lim
α→0

− log[(C̃α)2 exp−Φα]
logBα

= 4
b1

σ2
1(X,Z)

for b1 > w,

=
w

σ2
1(X,Z)

[
1 +

b1
w

]2

for b1 ≤ w.

We can proceed similarly for the case b1 ≤ 0. Notice that to obtain a vanishing probability
now, we need Kα < logBα/− b1, so the only interesting case is when w > −b1 (else Φα = 0
is the minimum). Since for b1 < 0, the function first decreases to the minimum, we can
conclude that in this case:

lim
α→0

− log[(C̃α)2 exp−Φα]
logBα

=
w

σ2
1(X,Z)

[
1 +

b1
w

]2

.

Analyzing the probability of sensor 2 crossing after sensor 1 (event E2). Let
Ṽl = ε+ log Π1(l)− d1l− log Π2(l) + d2l+ log π2(k2), qy(l) = (l− k2 + 1)q1(Y ) and σ2

y(l) =
(l − k2 + 1)σ2

1(Y ). Similarly, for the second probability, we bound:

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} −Rk2l (Y )−Rk2l (Z) > Vl

)
≤ l max

r∈[1,l]
P∞,k2

(
Rrl (X) +Rrl (Z)−Rk2l (Y )−Rk2l (Z) ≥ Vl

)
≤ l max

r∈[1,l]
exp

{
−(Vl + (l − r + 1)q0(X) + qy(l) + [k2 − r]+q0(Z) + [r − k2]+q1(Z))2

(l − r + 1)σ2
0(X) + σ2

y(l) + [k2 − r]+σ2
0(Z) + [r − k2]+σ2

1(Z)

}

≤ l max
r∈[1,l]

exp

{
−(Vl + (l − r)q0(X) + (r − k2)q1(Z) + qy(l) + q0(X))2

(l − r)σ2
0(X) + rσ2

1(Z) + σ2
y(l) + k2σ2

0(Z) + σ2
0(X)

}

≤ l exp

{
−(Ae(l) + l[qi∗ + q1(Y ) + d1 − d2])2

Ce + l[σ2
i∗ + σ2

1(Y )]

}
,

where qi∗ = min(q0(X), q1(Z)), σ2
i∗ = max(σ2

0(X), σ2
1(Z)), Ae(l) = Ṽl − k2[q1(Y ) + q1(Z)] +

q0(X) + q1(Y ) and Ce = k2[σ2
0(Z)− σ2

1(Y )] + σ2
0(X) + σ2

1(Y ).
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To continue the analysis, we compute the rates for the second major event:

k2+Cα∑
l=k2+C̃α

P∞,k2
(

max
r∈[1,l]

{Rrl (X) +Rrl (Z)} −Rk2l (Y )−Rk2l (Z) > Vl

)
≤

(Cα − C̃α)2 exp−min Φ̃α,

Φ̃α =

(
Ae(K̃α) + K̃α[qi∗ + q1(Y ) + d1 − d2]

)2

Ce + K̃α[σ2
i∗ + σ2

1(Y )]
.

Lemma 4.11.2 implies the minimum in this case is at K̃α = Ae(l))/(qi∗ + q1(Y ) + d1 − d2).
But since this is a small quantity compared to C̃α+k2, assuming (qi∗+q1(Y )+d1−d2) > 0,
we have that the minimum happens at K̃α = k2 + C̃α, as the function is increasing after
the minima. Using similar arguments as for the first major event, it is straightforward to
show that the rate function satisfies:

lim
α→0

− log[(Cα − C̃α)2 exp−Φ̃α]
logBα

=
1
w

[qi∗ + q1(Y ) + d1 − d2]2

σ2
i∗ + σ2

1(Y )
.

Selecting the optimizing rate. Given the bounds we have computed, the problem
reduces to selecting the constant C̃α so that the best rate is obtained for P∞,k2(k2 ≤ ν1 ≤ ν2).
In rate matching, we have two rates r1(w) and r2(w), and would like to maximize the
minimum of both, i.e., max min(r1(w), r2(w)), which is obtained by setting w such that
r1(w) = r2(w),where For convenience define the rate function:

r1(w) =
w

σ2
1(X,Z)

[
1 +

b1
w

]2

r2(w) =
1
w

[qi∗ + q1(Y ) + d1 − d2]2

σ2
i∗ + σ2

1(Y )
in lemma, r(w),

There are three cases, since the first event has three behaviors for the rate r∗:

(1) Consider b1 > 0. Then for w < b1, we would like

r2(w) > 4
b1

σ2
1(X,Z)

,

so we select

w∗1 < min
(
b1,

σ2
1(X,Z)

σ2
i∗ + σ2

1(Y )
[qi∗ + q1(Y ) + d1 − d2]2

4b1

)
and get rate r∗ = 4 b1

σ2
1(X,Z)

.
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(2) Again let b1 > 0. Then for w ≥ b1, we would like

r2(w) =
w

σ2
1(X,Z)

[
1 +

b1
w

]2

,

so

w∗2 =

√
σ2

1(X,Z)
σ2
i∗ + σ2

1(Y )
[qi∗ + q1(Y ) + d1 − d2]− b1,

as long as it satisfies w∗2 ≥ b1. The obtained rate is r∗ = r2(w∗2). Else, set w∗2 = b1, and
obtain rate r2(b1).
(3) Let b1 ≤ 0. Then for w ≥ −b1, we would like

r2(w) =
w

σ2
1(X,Z)

[
1 +

b1
w

]2

,

so

w∗3 =

√
σ2

1(X,Z)
σ2
i∗ + σ2

1(Y )
[qi∗ + q1(Y ) + d1 − d2]− b1,

which satisfies w∗3 ≥ −b1. The obtained rate is r∗ = r2(w∗3).

Upper bounding detection of sensor 2 and selecting Cα (probability of event E3).
We bound P∞,k2(ν2 > k2 + Cα). Assume and assuming Cα = β logBα. From definition of
the test quantity (Equation 4.4.7):

log Λn(Y,Z) ≥ − log Π2(n) + log π2(r) +Rrn(Y ) +Rrn(Z).

Let η = min{n : Rk2n (Y ) +Rk2n (Z) ≥ logBα}, so ν2 ≤ η. For arbitrary ε > 0, let

T k2ε = sup{n : |(n− k2 + 1)−1[Rk2n (Y ) +Rk2n (Z)]− (q1(Y ) + q1(Z) + d2)| ≥ ε}.

It is simple to see that:

logBα > Rk2η−1(Y ) +Rk2η−1(Z) ≥ (η − k2)(q1(Y ) + q1(Z) + d2 − ε) on {η − 1 ≥ T k2ε }.

So,

ν2 ≤ η ≤
(
k2 +

logBα
q1(Y ) + q1(Z) + d− ε

)
I(η ≥ 1 + T k2ε ) + (1 + T k2ε )I(η ≥ 1 + T k2ε )

≤ k2 +
logBα

q1(Y ) + q1(Z) + d− ε
+ 1 + T k2ε .



89

Using this result:

P∞,k2(ν2 > k2 + Cα) ≤ P∞,k2(k2 + Cα ≤ k2 +
logBα

q1(Y ) + q1(Z) + d− ε
+ 1 + T k2ε )

≤ P∞,k2
[
T k2ε + 1 ≥ logBα

(
β − 1

q1(Y ) + q1(Z) + d− ε

)]
≤ E∞,k2 exp(T k2ε + 1)

(
α

1− α

)β− 1
q1(Y )+q1(Z)+d2−ε

≤ O
(
α
β− 1

q1(Y )+q1(Z)+d2−ε

)
(4.11.10)

where we used Markov’s inequality in the last line. Assumption 4.10.5 guarantees that
E∞,k2 exp(T k2ε + 1) < ∞. The constants in big-O are independent of k2, ε. To obtain the
best possible rate for the total confusion probability, we choose

β = (1 + ε) r∗ +
1

q1(Y ) + q1(Z) + d2 − ε

Concluding the proof. To put the elements of the proof together, we use the bound:

P∞,k2(k2 ≤ ν1 ≤ ν2) ≤ P∞,k2(E1) + P∞,k2(E2) + P∞,k2(E3),

so the rate function has

lim
α→0

− log P∞,k2(k2 ≤ ν1 ≤ ν2)
logBα

≥ lim
α→0

− log 3 maxi P∞,k2(Ei)
logBα

= min
i

lim
α→0

− log P∞,k2(Ei)
logBα

= r∗.

Taking the expectation with respect to λ2, we can conclude that the results hold for the
measure P∞,λ2 , since k2 only appears in either the denominator of the bound rates, or as
l − k2, but for l > k2.

4.11.4 Lemma 4.4.2

We state a Lemma that will be used repeatedly.

Lemma 4.11.3.

(i) Let ν1 ∈ ∆1(α), then for all n ≤ k1 ≤ k2 Pk1,k2(ν1 < n) ≤ α
Π1
n
.

(ii) Let ν1 ∈ ∆̃1(α, k2), then for all n ≤ k1: Pk1,k2(ν1 < n) ≤ α
Π1
n
.

(iii) Let ν1 ∈ ∆̃1(α), then for all n ≤ k1: Pk1,λ2(ν1 < n, λ2 < k1) ≤ α
Π1
n
.

(iv) Let ν2 ∈ ∆2(α), then for all n ≤ k2 ≤ k1 Pk1,k2(ν2 < n) ≤ α
Π2
n
.
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(v) Let ν2 ∈ ∆̃2(α, k1), then for all n ≤ k2: Pk1,k2(ν1 < n) ≤ α
Π2
n
.

(vi) Let ν2 ∈ ∆̃2(α), then for all n ≤ k2: Pλ1,k2(ν1 < n, λ1 < k2) ≤ α
Π2
n
.

Proof. All assertions follow the same proof guideline. First notice that:

PFAπ1,∞(ν1) ≥ Pλ1,∞({ν1 < n} ∩ {λ1 > n})
= Pλ1,∞(ν1 < n|λ1 > n)Pλ1,∞(λ1 > n)
= P∞,∞(ν1 < n)Π1

n

Next, as ν1(X,Z) ∈ ∆1(α), we have PFAπ1,∞(ν1) ≤ α. To conclude, for the choices of k1,k2

and n in the lemma Pk1,k2(ν1 < n) = P∞,∞(ν1 < n).

Proof. (of Lemma). (i) We follow closely the argument in Tartakovsky and Veeravalli [2005].
We can first build our bound by a change of measure argument:

P∞,∞ (k1 ≤ ν1 < k1 + (1− ε)Lα1 ) =

= Ek1,k2
{

I (k1 ≤ ν < k1 + (1− ε)Lα1 ) e−
“
R
k1
ν1

(X)+R
k1∧k2
ν1

(Z)
”}

≥ Ek1,k2
{

I“
k1≤ν<k1+(1−ε)Lα1 ,R

k1
ν1

(X)+R
k1∧k2
ν1

(Z)<C
”e−

“
R
k1
ν1

(X)+R
k1∧k2
ν1

(Z)
”}

≥ e−CPk1,k2
(
k1 ≤ ν < k1 + (1− ε)Lα1 , max

k1≤n<k1+(1−ε)Lα1
Rk1n (X) +Rk1∧k2n (Z) < C

)
≥ e−C [Pk1,k2 (k1 ≤ ν < k1 + (1− ε)Lα1 )−

−Pk1,k2
(

max
k1≤n<k1+(1−ε)Lα1

Rk1n (X) +Rk1∧k2n (Z) ≥ C
)]

Choosing C = (1− ε2)(q1(X) + q1(Z))Lα1 , and rearranging we obtain:

γ(k1,k2)
ε,α ≤ e(1−ε2)(q1(X)+q1(Z))Lα1 P∞,∞ (k1 ≤ ν1 < k1 + (1− ε)Lα1 ) + (4.11.11)

+ Pk1,k2
(

max
k1≤n<k1+(1−ε)Lα1

Rk1n (X) +Rk1∧k2n (Z) ≥ C
)

We now analyze each of the two parts in the above. We start with the second term:

βk1,k2(ε, α) = Pk1,k2
(

max
k1≤n<k1+(1−ε)Lα1

Rk1n (X) +Rk1∧k2n (Z) ≥ C
)

≤ Pk1,k2
(

max
k1≤n<k1+(1−ε)Lα1

Rk1n (X) +Rk1n (Z) ≥ C
)

+

+ Pk1,k2
(
C −RZ ≤ max

k1≤n<k1+(1−ε)Lα1
Rk1n (X) +Rk1n (Z) < C,RZ ≥ 0

)
≤ Pk1,k2

(
max

k1≤n<k1+(1−ε)Lα1
Rk1n (X) +Rk1n (Z) ≥ C

)
+
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+ Pk1,k2
(
C −RZ ≤ max

k1≤n<k1+(1−ε)Lα1
Rk1n (X) +Rk1n (Z) < C

)
= Pk1,k2

(
max

0≤n<(1−ε)Lα1
Rk1k1+n(X) +Rk1k1+n(Z) ≥ C

)
+

+ Pk1,k2
(
C −RZ ≤ max

0≤n<(1−ε)Lα1
Rk1k1+n(X) +Rk1n (Z) < C

)
= Pk1,k2

(
1
Nα

max
0≤n<Nα

Rk1k1+n(X) +Rk1k1+n(Z) ≥ qε
)

+

+ Pk1,k2
(
qε −

RZ
Nα
≤ max

0≤n<Nα
Rk1k1+n(X) +Rk1n (Z) < qε

)
Where RZ = Rk2k1−1(Z), qε = (1 + ε)(q1(X) + q1(Z)) and Nα = b(1− ε)Lα1 c. Now noticing

that as α → 0 we have Nα → ∞, we have using assumption 4.10.3 and properties of
measure:

Pk1,k2
(

1
Nα

max
0≤n<Nα

Rk1k1+n(X) +Rk1k1+n(Z) ≥ qε
)

=

= Pk1,∞
(

1
Nα

max
0≤n<Nα

Rk1k1+n(X) +Rk1k1+n(Z) ≥ qε
)
→ 0

Because RZ
Nα
→ 0 almost surely, we have the second probability going to zero. Thus

βk1,k2(ε, α) → 0 as α → 0. We now proceed to bound the first probability in Equation
(4.11.11), using the result from Lemma 4.11.3 and using the definition of Nα and q =
q1(X) + q1(Z):

pk1,k2(ε, α) = e(1−ε2)(q1(X)+q1(Z))Lα1 P∞,∞ (k1 ≤ ν1 < k1 + (1− ε)Lα1 )

≤ e(1−ε2)(q1(X)+q1(Z))Lα1 P∞,∞ (ν1 < k1 + (1− ε)Lα1 )

≤ α

Π1
k1+Nα

e(1−ε2)qLα1

Notice that α = e−(q+d1)Lα1 from the definitions. Thus:

log(pk1,k2(ε, α))
Nα

≤ (1− ε2)qLα1
Nα

− (q + d1)Lα1
Nα

−
log Π1

k1+Nα

Nα

=
(1− ε2)qLα1

Nα
− (q + d1)Lα1

Nα
−

log Π1
k1+Nα

k1 +Nα

k1 +Nα

Nα

≤ (1 + ε)q(Nα + 1)
Nα

−
(q+d1)

1−ε Nα

Nα
−

log Π1
k1+Nα

k1 +Nα

k1 +Nα

Nα

= −ε
2q + d1

1− ε
−

log Π1
k1+Nα

k1 +Nα

(
1 +

k1

Nα

)
+

(1 + ε)q
Nα
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Taking limits, and using the tail assumption:

lim
α→0

log(pk1,k2(ε, α))
Nα

≤ −ε
2q + d1

1− ε
+ d1 = −ε

2q + εd1

1− ε

It is now clear that pk1,k2(ε, α)→ 0. We have shown that for all ν1 ∈ ∆1(α):

γ(k1,k2)
ε,α (ν1) ≤ βk1,k2(ε, α) + pk1,k2(ε, α)→ 0

We can complete the result by studying the behavior of γε,α. Let Ñα = bεLα1 c. From
the definition we now have:

γε,α(ν1) =
∞∑
k1=1

∞∑
k2=1

π1(k1)π2(k2)γ(k1,k2)
ε,α (ν1)

≤ Π1
Ñα

+
Ñα∑
k1=1

Ñα∑
k2=1

π1(k1)π2(k2)(βk1,k2(ε, α) + pk1,k2(ε, α))

≤ Π1
Ñα

+ sup
k1≤Ñα

pk1,k2(ε, α) +
Ñα∑
k1=1

Ñα∑
k2=1

π1(k1)π2(k2)βk1,k2(ε, α)

Now as α→ 0, Π1
Ñα
→ 0 by definition, and the third term in the above sum goes to zero

by Dominated Convergence Theorem and the fact that βk1,k2(ε, α) → 0. For the second
term, we make a minor modification in the first proof of convergence of pk1,k2(ε, α), by
noticing that Π1

n is a non-increasing function of n:

sup
k1≤Ñα

pk1,k2(ε, α) ≤ α

Π1
Ñα+Nα

e(1−ε2)qLα1

Then continuing as before, replacing k1 by Ñα, we obtain:

lim
α→0

log(supk1≤Ñα pk1,k2(ε, α))

Nα
≤ −ε

2q + d1

1− ε
+ d1

(
1 +

ε

1− ε

)
= − ε2q

1− ε

Clearly this shows that supk1≤Ñα pk1,k2(ε, α) → 0, concluding the proof. The proof for
the third statement is the same the above, except the sum over the priors is only over the
cases λ1 < λ2.

(ii) The proof is as in (i), except we use the change of measure for k2 < k1:

P∞,k2 (k1 ≤ ν1 < k1 + (1− ε)Lα1 ) = Ek1,k2
{

I (k1 ≤ ν < k1 + (1− ε)Lα1 ) e−
“
R
k1
ν1

(X)
”}

For k1 ≤ k2 we use the same change of measure as in (i).
Also, we can use Lemma 4.11.3. For the other cases the proofs proceed similarly.
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4.11.5 Proof of Theorem 4.4.5

We divide the proof into computing an upper bound (item (a)) and the lower bound
(item (b)). First, we compute the upper bound. . We start with the definition in Equation
(4.4.14). Denote by ν1 = ν(X,Z). We would like to bound the expectation Eλ1,λ2 [(ν1 −
λ1)+]. In order to do this we need further assumptions 4.10.4. The assumptions 4.10.4 are
stronger than those in 4.10.3, and in fact the later follow from the former [Tartakovsky and
Veeravalli, 2005]. We are now ready to state the bounding lemma.

Lemma 4.11.4. Let the stopping time ν1 = ν(X,Z) be defined as in Equation (4.4.14).
If Assumption 4.10.4, then as α → 0, for all m ≤ r, and all events A not necessarily
independent of ν1:

Ek1,k2 [(ν1 − λ1)+]m ≤
[

| log(α)|
q1(X) + q1(Z) + d1

]m
(1 + o(1))

Eλ1,λ2 [(ν1 − λ1)+]m ≤
[

| log(α)|
q1(X) + q1(Z) + d1

]m
(1 + o(1))

Ek1,k2 [(ν1 − λ1)+I(ν1 ∈ A)]m ≤
[

| log(α)|
q1(X) + q1(Z) + d1

]m
Pk1,k2(ν1 ∈ A)(1 + o(1))

Eλ1,λ2 [(ν1 − λ1)+I(ν1 ∈ A)]m ≤
[

| log(α)|
q1(X) + q1(Z) + d1

]m
Pλ1,λ2(ν1 ∈ A)(1 + o(1))

Proof. By definition of ν1, since we are using the SRP statistic:

log(Λn(X,Z)) ≥ log
(
π1(k1)

Π1
n

)
+Rk1n (X) +Rk1n (Z)

= Sk1n

We can define a stopping time:

η(k1) = inf
{
n : Sk1n ≥ log(Bα)

}
Notice that ν1 − k1 ≤ η(k1) on ν1 ≥ k1, as η(k1) starts at k1 and the Shirayev statistics

only includes values in range (k1, n) after time k1. Define:

T̃ (k1)
ε = sup

{
n ≥ 1 :

∣∣∣∣ 1
n− k1 + 1

Sk1n (X)− q1(X) + q1(Z) + d1

∣∣∣∣ > ε

}
Due to Assumption 4.10.4, and because 1

n log
(
π1(k1)

Π1
n

)
→ d1 as n → ∞, we have

Ek1,k2 [T̃ (k1)
ε ] <∞.

Furthermore, from the definition of η and setting qd = q1(X) + q1(Z) + d1:

log(Bα) ≥ Sk1η(k1)−1 ≥ (η(k1)− k1)(qd − ε) on
{
η(k)− 1 > T̃ (k1)

ε

}
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We can bound for all 0 < ε < qd:

η(k1) ≤ k1 +
log(Bα)
qd − ε

In
η(k)−1>T̃

(k1)
ε

o + (T̃ (k1)
ε + 1)In

η(k)−1≤T̃ (k1)
ε

o
≤ T̃ (k1)

ε + 1 + k1 +
log(Bα)
qd − ε

So:

ν1 − k1

log(Bα)
≤ T̃

(k1)
ε

log(Bα)
+

1 + k1

log(Bα)
+

1
qd − ε

Letting ε → 0, noticing Ek1,k2 [T̃ (k1)
ε ] < ∞, and letting α → 0 (log(Bα) → ∞) we

obtain the first result in the Theorem for all m ≤ r. Averaging over the priors, noticing
Eλ1,λ2 [T̃ (k1)

ε ] < ∞ we obtain the second. For the third and fourth results, it suffices to
notice that:

(ν1 − k1)I(ν1 ∈ A)
log(Bα)

≤ T̃
(k1)
ε

log(Bα)
+

1 + k1

log(Bα)
+

I(ν1 ∈ A)
qd − ε

Also, using Lemma 4.4.2 applied to the stopping time η(k1), which belongs to the class
∆1(α), it can be shown that as α→ 0:

Pk1,k2(η(k1) ≥ (1− ε)Lα1 ) = Pk1,∞(η(k1) ≥ k1 + (1− ε)Lα1 )
= 1− γk1,∞(η(k1))
→ 1

Then Chebyshev’s inequality gives:

Ek1,k2 [η(k1)m] ≥
[

(1− ε)| logα|
qd

]m
Pk1,k2(η(k1) ≥ (1− ε)Lα1 )

→
[
| logα|
qd

]m
(1 + o(1))

Thus the lower and upper bound of η(k1) taken together show:

lim
α→0

Ek1,k2 [η(k1)m]
| logα|m

=
[

1
qd

]m

Proof. (of Theorem.) (a) Define:

qd1 = q1(X) + q1(Z) + d1, q̃
d
1 = q1(X) + d1,

δα(k1, k2) = Pk1,k2(ν1 > ν2), µα(k1, k2) = Pk1,k2(ν1 > ν̃1)

We start by analyzing the expectation of the stopping time, using the definition of ν̄1
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and ν̄2:

Ek1,k2
[
(ν̄1 − λ1)+

]
= Ek1,k2

[
(ν1 − λ1)+I(ν1 ≤ ν2)

]
+

+ Ek1,k2
[
(ν̃1 − λ1)+I(ν1 > ν2, ν̃1 ≥ ν2)

]
+

+ Ek1,k2
[
(ν2 − λ1)+I(ν1 > ν2 > ν̃1)

]
Each expectation can be bounded individually. The first expectation is bounded by

using Lemma 4.11.4, setting A = {ω ∈ Ω : ν1(ω) ≤ ν2(ω)}:

Ek1,k2 [(ν1 − λ1)+I(ν1 ∈ A)]m ≤
[

| log(α)|
q1(X) + q1(Z) + d1

]m
Pk1,k2(ν1 ≤ ν2)(1 + o(1))

=
[

| log(α)|
q1(X) + q1(Z) + d1

]m
(1− δα(k1, k2))(1 + o(1))

For the remainder of the section, let E denote Ek1,k2 and P denote Pk1,k2 . We return to
the usual notation wherever necessary. Also, we show the results for the case m = 1 and the
modifications for the case m ≤ r are straightforward. The second expectation is bounded
as:

E [(ν̄1 − λ1)+ I(ν1 > ν2, ν̃1 ≥ ν2)] ≤ E
[
(ν̃1 − λ1)+ I(ν1 > ν2

)
]

= E[(ν̃1 − λ1)+]− Ek1,k2 [(ν̃1 − λ1)+ I(ν1 ≤ ν2)]

≤ E[(ν̃1 − λ1)+]− logBα
q̃d1

P(ν̃1 > λ1 +
logBα
q̃d1

, ν1 ≤ ν2)

≤ E[(ν̃1 − λ1)+]− logBα
q̃d1

(P(ν̃1 > λ1 +
logBα
q̃d1

)− P(ν1 > ν2))

= E[(ν̃1 − λ1)+]− logBα
q̃d1

(Pk1,∞(ν̃1 > λ1 +
logBα
q̃d1

)− P(ν1 > ν2))

≤ E[(ν̃1 − λ1)+]− logBα
q̃d1

(1− ε̃α − δα(k1, k2))

= Ek1,∞[(ν̃1 − λ1)+]− logBα
q̃d1

(1− ε̃α − δα(k1, k2))

≤ logBα
q̃d1

(ε̃α + δα(k1, k2)).

Since (1) In third line we used P (A ∩ B) ≥ P (A) − P (Bc); (2) In fifth line, ν̃1 does
not depend on k2; (3) Pk1,∞(ν̃1 > λ1 + logBα

q̃d1
) > 1 − ε̃α, by proof of Lemma 4.4.2 and (4)
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standard delay computed in Theorem 3 in Tartakovsky and Veeravalli [2005]. Finally,

E [(ν̄1 − λ1)+ I(ν1 > ν2, ν̃1 < ν2)] ≤ E
[
(ν2 − λ1)+ I(ν1 > ν2 > ν̃1

)
]

≤ E[(ν1 − λ1)+ I(ν1 > ν̃1)]

≤ logBα
qd1

P(ν1 > ν̃1)(1 + o(1))

=
logBα
qd1

µα(k1, k2)(1 + o(1)).

Where we used (1) ν1 > ν2 in the second line and (2)in the third line, Lemma 4.11.4, setting
A = {ω ∈ Ω : ν1(ω) ≤ ν̃1(ω)}. In sum, we have:

E[(ν̄1 − λ1)+] ≤ logBα
qd1

(1− δα(k1, k2) + µα(k1, k2))(1 + o(1)) +
logBα
q̃d1

(ε̃α + δα(k1, k2))

=
logBα
qd1

(1− δα(k1, k2) + µα(k1, k2) + o(1)) +
logBα
q̃d1

(ε̃α + δα(k1, k2)).

To obtain the delay, divide

Eλ1,λ2 [(ν̄1 − λ1)+] ≤ logBα
qd1

(1− δα + µα + o(1)) +
logBα
q̃d1

(ε̃α + δα),

by (using Lemma 4.11.1),

Pλ1,λ2(ν̄1 ≥ λ1) ≥ 1− α
(

2 +
1
L−

)
− ξαλ1,λ2

(ν̄1)

→ 1− o(1)

and we obtain the result in the Theorem since (1) ε̃α and µα are o(1) (Lemmas 4.4.2 and
4.11.5) and (2) ξαλ1,λ2

(ν̄1) is o(1) as the procedure is regular.

We can now prove the matching lower bound for the delay.
(b) For the remainder of the proof, let E denote Ek1,k2 and P denote Pk1,k2 . First notice

that:

E
[
(ν̄1 − λ1)+

]
= E

[
(ν1 − λ1)+I(ν1 ≤ ν2)

]
+ E

[
(max(ν̃1, ν2)− λ1)+I(ν1 > ν2)

]
≥ E

[
(ν1 − λ1)+I(ν1 ≤ ν2)

]
+ E

[
(ν̃1 − λ1)+I(ν1 > ν2)

]
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We can now bound the first term.

E
[
(ν1 − λ1)+I(ν1 ≤ ν2)

]
≥ Lα1 P(ν1 − k1 > (1− ε)Lα1 , ν1 ≤ ν2)

= Lα1 [P(ν1 ≥ k1 ∧ k2, ν1 ≤ ν2)− P(k2 < ν1 ≤ k1, ν1 ≤ ν2)−
+ P(k1 < ν1 ≤ k1 + (1− ε)Lα1 , ν1 ≤ ν2)]

≥ Lα1 [P(ν1 ≥ k1 ∧ k2, ν1 ≤ ν2)− ξαk1,k2(ν1)− γ(k1,k2)
ε,α (ν1)]

≥ Lα1 [P(ν1 ≥ k1 ∧ k2)− P(ν1 > ν2)− ξαk1,k2(ν1)− γ(k1,k2)
ε,α (ν1)]

= Lα1 [1− P∞,∞(ν1 ≤ k1 ∧ k2)− δα(k1, k2)− ξαk1,k2(ν1)− γ(k1,k2)
ε,α (ν1)]

≥ Lα1

[
1− α

Π1
k1∧k2

− δα(k1, k2)− ξαk1,k2(ν1)− γ(k1,k2)
ε,α (ν1)

]

Where in the (1) fourth line we get a lower bound since the subtracted probabilities, and
we identify them with previous definitions; (2) fifth line we use P (A∩B) ≥ P (A)−P (Bc);
(3)sixth line we use a change of measure and (4) seventh line we use Lemma 4.11.3.

So if the procedure is (k1, k2) regular, E [(ν1 − λ1)+I(ν1 ≤ ν2)] ≥ Lα1 (1 − δα(k1, k2) +
o(1)). For the averaged case over the priors, the last line above should be, using Lemma
4.11.1:

≥ Lα1 [1− α
(

1 +
1
L−

)
− δα − ξαλ1,λ2

(ν1)− γε,α(ν1)]

The second expectation can be bound similarly:

E
[
(ν̃1 − λ1)+I(ν1 > ν2)

]
≥ L̃α1 P(ν̃1 − k1 ≥ L̃α1 , ν1 > ν2)

≥ L̃α1 [P(ν̃1 − k1 ≥ L̃α1 )− P(ν1 ≤ ν2)]
= L̃α1 [1− P(ν̃1 < k1)− γ(k1,k2)

ε,α (ν̃1)− 1 + δα(k1, k2)]

= L̃α1 [δα(k1, k2) + o(1)]

Finally, we use the trivial upper bound Pk1,k2(ν̄1 ≥ k1) ≤ 1 − o(1). Thus we get the
result in the theorem.

Lemma 4.11.5. µα(k1, k2) = o(1) and µα = o(1)

Proof. First, we note that

Pk1,k2(ν1 > ν̃1) ≤ Pk1,k2(ν1 > ν̃1, ν̃1 ≥ k1 + L̃α) + Pk1,k2(ν̃1 < k1)+

+ Pk1,k2(k1 ≤ ν̃1 ≤ k1 + L̃α),

and asymptotically, in α, the last two terms are o(1). Next, we follow along the lines
of the first part of Lemma 4.4.1, to derive the result. Let P denote Pk1,k2 , E(X) =
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{log Λl(X) ≥ logBα} and I(L̃α) = [k1 + L̃α,∞):

Pk1,k2(ν1 > ν̃1, ν̃1 ≥ k1 + L̃α) ≤
∞∑

l=k1+L̃α

P ({log Λl(X,Z) ≤ logBα} ∩ E(X), ν̃1 = l) ,

≤
∞∑

l=k1+L̃α

P
({

log Λl(X) + min
s∈[1,l]

Rsl (Z)− log Π1(l) ≤ logBα

}
∩ E(X), ν̃1 = l

)
,

≤
∞∑

l=k1+L̃α

P
(

max
s∈[1,l]

−Rsl (Z) ≥ − log Π1(l), ν̃1 = l

)
,

≤
∞∑

l=k1+L̃α

P(ν̃1 = l)P
(

max
s∈[1,l]

−Rsl (Z) ≥ − log Π1(l)
)
,

≤ max
l∈I(L̃α)

P
(

max
s∈[1,l]

−Rsl (Z) ≥ − log Π1(l)
)
,

≤ max
l∈I(L̃α)

l max
s∈[1,l]

P (−Rsl (Z) ≥ − log Π1(l)) ,

≤ max
l∈I(L̃α)

l max
r∈[1,l]

exp

{
−(Vl + l d1 −min(r, k1) q0(Z) + [l −max(r, k1) + 1]+q1(Z))2

l max(σ2
0(Z), σ2

1(Z))

}
,

where Vl = − log Π1(l) − l d1. Note that for l > L for some L, |Vl| < ε due to assump-
tion 4.10.1. Thus when r ≤ k1, the maximum happens at r = k1, with rate upper bounded
by

r(l) =

{
(ε+ l d1 − k1 q0(Z) + (l − k1 + 1)q1(Z))2

l max(σ2
0(Z), σ2

1(Z))

}
.

Else, the maximum happens at r = l, with rate upper bounded by

r(l) =

{
(ε+ l d1 + q1(Z))2

l max(σ2
0(Z), σ2

1(Z))

}
.

In both cases, for any l ∈ [k1 + L̃α,∞], r(l) → ∞ as α → 0. Thus we obtain Pk1,k2(ν1 >
ν̃1, ν̃1 ≥ k1 + L̃α) = o(1). Since k1 only appears multiplying an exponentially small prob-
ability, as both rates go to infinity uniformly over k1, we can apply expectation to both
sides, and obtain that Pλ1,λ2(ν1 > ν̃1) = o(1), as E[k1] = λ1 <∞.
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Chapter 5

Simultaneous Placement and
Scheduling of Sensors

5.1 Introduction

When monitoring spatial phenomena, such as speeds on a highway, deciding where to
place a small number of sensors to obtain best prediction accuracy is an important task.
The Sensys Networks wireless traffic sensor [Haoui et al., 2008a], discussed in Chapter 2,
provides 30 second aggregate speed, flow and vehicle density measurements. Currently the
system is being deployed by Caltrans at different sites in California, including highways
and arterial roads. When using such wireless sensor networks, power consumption is a
key constraint, since every measurement drains the battery. For applications such as road
speed monitoring, a minimum battery lifetime is required to ensure feasibility of the sensor
network deployment. One approach to meeting such lifetime requirements is to deploy few
nodes with large batteries. However, such an approach can be sensitive to node failures.
Additionally, packaging constraints can limit the size of the battery deployed with the nodes.
For these and other reasons, it can be more effective to deploy a larger number of nodes
with smaller batteries, that are activated only a fraction of the time. Hence, to improve
the lifetime of such a sensor network, the problem of scheduling is of crucial importance:
Given a fixed placement of sensors, when should we turn each sensor on for obtaining high
monitoring performance over all time steps? One approach that has been found effective
in the past is to partition the sensors into k groups [Abrams et al., 2004; Deshpande et al.,
2008; Koushanfar et al., 2006]. By activating a different group of sensors at each time step
and cyclicly shifting through these groups, the network lifetime can effectively be increased
by a factor of k. In the traffic network application, current studies indicate that an increase
by a factor of k = 4 would be required to make sensor deployment an economically feasible
option (see Section 5.7 for more details).

Traditionally, sensor placement and sensor scheduling have been considered separately
– one first decides where to place the sensors, and then when to activate them. In this
Chapter, we present an efficient algorithm, eSPASS (for efficient Simultaneous Placement
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and Scheduling of Sensors), that jointly optimizes the sensor placement and the sensor
schedule. We prove that our algorithm provides a constant factor approximation to the
optimal solution of this NP-hard optimization problem.

Most existing approaches to sensor placement and scheduling associate a fixed sensing
region with every sensor, and then attempt to maximize the number of regions covered in
every group of sensors (c.f., Abrams et al. [2004]; Deshpande et al. [2008]; Hochbaum and
Maas [1985]). In complex applications such as traffic or environmental monitoring however,
the goal of sensor placement is a prediction problem, where one intends to predict the sensed
phenomenon at the locations where no sensors are placed. Our algorithm applies to such
settings where the sensing quality of a set of sensors is measured, e.g., in the improvement
of prediction accuracy (more formally, our algorithm applies whenever the sensing quality
function satisfies submodularity, an intuitive diminishing returns property).

In contrast to most existing algorithms that optimize scheduling for average case per-
formance, our approach provides a schedule that performs uniformly well over time, hence
leading to a well-balanced performance of the sensor network. For security-critical applica-
tions such as outbreak detection, such balanced performance is a crucial requirement not
met by existing algorithms. In fact, our experimental results show that average-case opti-
mal solutions can lead to arbitrarily unbalanced performance, but optimizing for balanced
performance (using eSPASS) typically leads to good average-case performance.

Deploying a large number of scheduled sensors has the additional benefit that it allows
trading off power for accuracy. The deployed network might have several modes of operation:
a scheduled mode of operation, where only a small fraction of sensors is turned on, and a
“high density” mode where all (or a larger fraction of) sensors are activated. For example,
in traffic monitoring, once a traffic congestion is detected (during scheduled mode), the high
density mode could be used to accurately identify the boundary of the congestion. We show
how our algorithm can be extended to support such a power-accuracy tradeoff.

We present extensive empirical studies on several applications, illustrating the versatility
of our algorithm. The main application is traffic monitoring using both fixed and mobile
sensors. Our results show that simultaneous placing and scheduling results in drastically
improved performance compared to the setting where optimization over the placement and
the scheduling are performed separately.

In summary, our main contributions are:

• We study the problem of simultaneously placing and scheduling sensors as a novel
optimization problem.

• We develop eSPASS, an efficient approximation algorithm for this problem, that
applies to a variety of realistic sensing quality functions (such as area coverage, vari-
ance reduction, outbreak detection, etc.). Our algorithm is guaranteed to provide a
near-optimal solution, that obtains at least a constant fraction of the optimal sens-
ing quality. eSPASS furthermore allows a trade off between power consumption and
accuracy.

• We perform several extensive case studies on real sensing problems in traffic monitor-
ing, demonstrating the effectiveness of our approach.
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5.2 Related Work

In the context of wireless sensor networks, where sensor nodes have limited battery
life and can hence only enable a small number of measurements, optimally placing and
scheduling sensors is of key importance.

Sensor Placement Many approaches for optimizing sensor placements assume that sen-
sors have a fixed region [Hochbaum and Maas, 1985; Gonzalez-Banos and Latombe, 2001;
Bai et al., 2006]. These regions are usually convex or even circular. Furthermore, it is as-
sumed that everything within this region can be perfectly observed, and everything outside
cannot be measured by the sensors. For complex applications such as traffic monitoring
however, such assumptions are unrealistic, and the direct optimization of prediction accu-
racy is desired. The problem of selecting observations for monitoring spatial phenomena
has been investigated extensively in geostatistics (c.f., Cressie [1991] for an overview), and
more generally (Bayesian) experimental design (c.f., Chaloner and Verdinelli [1995]). Sub-
modularity has been used to analyze algorithms for placing a fixed set of sensors [Krause
et al., 2007]. These approaches however only consider the sensor placement problem, and
not the scheduling aspect.

Sensor Scheduling The problem of deciding when to selectively turn on sensors in order
to conserve power was first discussed by Slijepcevic and Potkonjak [2001] and Zhao et al.
[2002]. Typically, it is assumed that sensors are associated with a fixed sensing region, and
a spatial domain needs to be covered by the regions associated with the selected sensors.
Abrams et al. [2004] presents an efficient approximation algorithm with theoretical guar-
antees for this problem. Deshpande et al. [2008] presents an approach for this problem
based on semidefinite programming (SDP), handling more general constraints and provid-
ing tighter approximations. They also provide a randomized rounding based approach for
scheduling under the balanced objective (which they call min-coverage (time)). However, in
contrast to eSPASS (when specialized to scheduling) their algorithm requires to relax the
constraint that each sensor location can only be selected once. Also, their guarantee only
holds with high probability, whereas eSPASS is deterministic. The approaches described
above do not apply to the problem of optimizing sensor schedules for more complex sensing
quality functions such as, e.g., the increase in prediction accuracy and other sensing quality
functions considered in this Chapter. To address these shortcomings, Koushanfar et al.
[2006] developed an approach for sensor scheduling that guarantees a specified prediction
accuracy based on a regression model. However, their approach relies on the solution of a
Mixed Integer Program, which is intractable in general. Zhao et al. [2002] proposed heuris-
tics for selectively querying nodes in a sensor network in order to reduce the entropy of the
prediction. Unlike the algorithms presented in this Chapter, their approaches do not have
any performance guarantees.

Submodular optimization The problem of maximizing a submodular function subject
to a matroid constraint has been studied by Fisher et al. [1978], who proved that the greedy
algorithm gives a factor 2 approximation. Recently, Vondrak [2008] showed that a more
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complex algorithm achieves a (1-1/e) approximation to this problem. Note that this algo-
rithm could be applied to the Problem (5.3.1) instead of GAPS. Furthermore note that
using this algorithm as a subroutine, the analysis of eSPASS can be improved to give a
e−1
3e ≥

1
5 guarantee. A related version of optimization Problem (5.3.2), where for each time

step t a different function Ft is used has been studied in the context of combinatorial al-
location problems. Ponnuswami and Khot [2007] present an algorithm that guarantees a
1/(2k−1) approximation. For the special case where the objective functions Ft are additive
(modular), Asadpour and Saberi [2007] developed an algorithm that guarantees an improved
Ω
(

1√
k log3 k

)
approximation. Both algorithms however only apply for the scheduling setting

(i.e., they require that m = |V|). Furthermore, note that the approximation performance
of these algorithms very quickly decreases with k, in contrast to our eSPASS approach
that provides an approximation guarantee that is independent of the number of time steps.
Krause et al. [2008c] consider the problem of robust maximization of submodular functions:
Given a collection of submodular functions, F1, . . . , Fm, they want to find a set |A| ≤ k that
maximizes mini Fi(A). While this problem appears related to the SPASS problem, where
we want to maximize mini F (Ai), the solution techniques and results are very different.
Firstly, there is a strong conceptual difference: In robust submodular optimization, a single
set A is sought that maximizes multiple functions F1, . . . , Fm, whereas in SPASS, a collec-
tion of sets A1, . . . ,Ak is sought that each perform well with respect to a single function
F . Hence, the two problem formulations address very different optimization tasks. Second,
while both algorithms exploit the fact that truncation preserves submodularity, each con-
tains unique algorithmic elements. Lastly, the performance guarantees vary drastically: the
robust submodular optimization problem does not admit any approximation (and requires
the relaxation of the constraint that |A| ≤ k), whereas for the SPASS problem, eSPASS
obtains a constant-factor 6 approximation.

5.3 Problem Statement

We will first separately introduce the sensor placement and scheduling problems, and
then formalize the problem of simultaneously placing and scheduling sensors.

5.3.1 Sensor Placement

In sensor placement, we are given a finite set V of possible locations where sensors can
be placed. Our goal is to select a small subset A ⊆ V of locations to place sensors at, that
maximizes a sensing quality function F (A). There are several different notions of sensing
quality that we might want to optimize, each depending on the particular sensing task. For
example, we can associate sensing regions with every sensor, and F (A) can measure the
total area covered when placing sensors at locations A. In complex applications such as the
traffic monitoring problem, we are interested in optimizing the prediction accuracy when
obtaining measurements from locations A. In this setting, we can model the state of the
world (e.g., the traffic condition at different locations) using a collection of random variables
XV , one variable Xs for each location s ∈ V. We can then use a probabilistic model (such
as a Gaussian Process which is frequently used in geostatistics, c.f., Cressie [1991]) that
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(a) Optimized sensor placement (b) Optimized schedule for placement (a)

(c) Simultaneous placement and schedule (d) Multicriterion solution

Figure 5.1. In the stage-wise approach, sensors are first deployed (a), and the deployed
sensors are then scheduled (b, sensors assigned to the same time slot are drawn using the
same color and marker). In the simultaneous approach, we jointly optimize over placement
and schedule (c). (d) Multicriterion solution to Problem (5.6.1) (λ = .25) that performs well
both in scheduled and high-density mode.

models a joint probability distribution P (XV) over the possible locations. Upon acquiring
measurements XA = xA at a subset of locations A, we can then predict the phenomenon at
the unobserved locations using the conditional distribution P (XV\A | XA = xA). We can
then use the expected mean squared error,

Var(XV | XA = xA) =
1
|V|
∑
s∈V

E
[
(Xs − E[Xs | xA])2 | xA

]
to quantify the uncertainty in this prediction. Since we do not know the values xA before
placing the sensors, a natural choice of the sensing quality function F (A) is to measure the
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expected reduction in variance at the unobserved locations,

F (A) = Var(XV)−
∫
P (xA) Var(XV | XA = xA)dxA.

This sensing quality function has been found useful for sensor selection (c.f., Deshpande
et al. [2004]; Krause et al. [2008a]) and experimental design (c.f., Chaloner and Verdinelli
[1995]).

It can be shown that both the area covered and the variance reduction objective, as
well as many other notions of sensing quality, satisfy the following intuitive diminishing
returns property [Das and Kempe, 2008; Krause et al., 2007]1: Adding a sensor helps more
if we have placed few sensors so far, and less if we already have placed lots of sensors.
This intuition can be formalized using the combinatorial concept of submodularity : A set
function F is called submodular, if for all A ⊆ B ⊆ V and s ∈ V \ B

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B),

i.e., adding s to a small set A helps more than adding s to the superset B. In addition,
these sensing quality functions are monotonic: For all A ⊆ B it holds that F (A) ≤ F (B),
i.e., adding more sensors can only improve the sensing quality.

Based on this notion of a monotonic, submodular sensing quality function, the sensor
placement problem then is

max
A

F (A) such that |A| ≤ m,

i.e., we want to find a set A of at most m locations to place sensors maximizing the sensing
quality F .

5.3.2 Sensor Scheduling

In sensor scheduling, we are given a sensor placement (i.e., locations A), and our goal
is to assign each sensor s ∈ A one of k time slots. This assignment partitions the set A
into disjoint sets A1, . . . ,Ak, where At ⊆ A is the subset of sensors that have been assigned
slot t. A round-robin schedule can then be applied that cycles through the time slots, and
activates sensors At at time t. Since each sensor is active at only one out of k time slots,
this procedure effectively increases the lifetime of the network by a factor of k. How can
we quantify the value of a schedule A = (A1, . . . ,Ak)? For each group At, we can compute
the sensing quality F (At)2. One possibility would then be to optimize for the average
performance over time,

max
A1,...,Ak

1
k

k∑
t=1

F (At).

1Variance reduction has been shown to be submodular for Gaussian distributions under certain assump-
tions about the covariance by Das and Kempe [2008].

2Note that we assume the same sensing quality function F for each time step. This assumption has been
made in the past (c.f., Koushanfar et al. [2006]; Abrams et al. [2004]), and is reasonable for many monitoring
tasks.
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However, as we show in our experiments, if we optimize for the average case performance, it
can happen that a few of the time slots are very poorly covered, i.e., there is a time t such
that F (At) is very low. For security-critical applications, this can be problematic. Instead,
we can also optimize for a balanced schedule,

max
A1,...,Ak

min
t
F (At),

that performs uniformly well over time.
Note that the above formulation of the scheduling problem allows to handle settings

where each sensor can be active at r ≥ 1 timesteps. In this setting, we simply define a new
ground set A′ = A × {1, . . . , r} where the pair (s, i) ∈ A′ refers to the i-th activation of
sensor s. The sensing quality function is modified as F ′(A′j) = F ({s : ∃i(s, i) ∈ A′j}).

5.3.3 Simultaneous placement and scheduling

Both sensor placement and sensor scheduling have been studied separately from each
other in the past. One approach towards placement and scheduling would be to first use
an algorithm (such as the algorithm proposed by Krause et al. [2007]) to find a sensor
placement A, and then use a separate algorithm (such as the mixed integer approach of
Koushanfar et al. [2006]) to find a schedule A1, . . . ,Ak. We call this approach a stage-wise
approach, and illustrate it in Figures 5.1(a) and 5.1(b).

Instead of separating placement and scheduling, we can simultaneously optimize for the
placement and the schedule. Suppose we have resources to purchase m sensors, and we
would like to extend the network lifetime by a factor of k. Our goal would then be to find
k disjoint sets A1, . . . ,Ak ⊆ V, such that together these sets contain at most m locations,
i.e., |

⋃
tAt| ≤ m. We call this problem the SPASS problem, for simultaneous placement

and scheduling of sensors. Again, we can consider the average-case performance,

max
A1...Ak

1
k

k∑
t=1

F (At) s.t. Ai∩Aj =∅ if i 6=j and | ∪
t
At| ≤ m, (5.3.1)

and the balanced objective,

max
A1...Ak

min
t
F (At) s.t. Ai ∩ Aj = ∅ if i 6= j and | ∪

t
At| ≤ m. (5.3.2)

By performing this simultaneous optimization, we can obtain very different solutions, as
illustrated in Figure 5.1(c). In Section 5.7, we will show that this simultaneous approach
can lead to drastically improved performance as compared to the traditional, stage-wise
approach. In this Chapter, we present eSPASS, an efficient approximation algorithm with
strong theoretical guarantees for this problem.

The placement and schedule in Figure 5.1(c) has the property that the sensors selected
at each time step share very similar locations, and hence perform roughly equally well.
However, if activated all at the same time, the “high-density” performance F (A1∪· · ·∪Ak)
is much lower than that of the placement in Figure 5.1(a). We also develop an algorithm,
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mcSPASS, that leads to placements which perform well both in scheduled and in high-
density mode. Figure 5.1(d) presents the solution obtained for the mcSPASS algorithm.

Note that instead of fixing the number of time slots, we could also specify a desired
accuracy constraint Q and then ask for the maximum lifetime solution, i.e., the largest
number k of time slots such that a solution with minimum (or average) sensing quality Q
is obtained. Clearly, an algorithm that solves Problem (5.3.2) (or Problem (5.3.1)) could
be used to solve this alternative problem, by simply binary searching over possible values
for k3.

Further note that it is possible to allow each sensor to be active at r ≥ 1 timesteps by
using the modification described in Section 5.3.2.

5.4 A naive greedy algorithm

We will first study the problem of optimizing the average performance over time, i.e.,
Problem (5.3.1), for a fixed monotonic submodular sensing quality function F . Considering
the fact that simultaneously placing and scheduling is a strict generalization of sensor place-
ment, which itself is NP-hard (c.f., Krause et al. [2007]), we cannot expect to efficiently find
the optimal solution to Problem (5.3.1) in general.

Instead, we will use the following intuitive greedy algorithm that we call GAPS for
Greedy Average-case Placement and Scheduling. At every round, GAPS picks a time slot t
and location s which increases the total sensing quality the most, until m location/time-slot
pairs have been picked. It is formalized as Algorithm 1.

Algorithm GAPS (F , V, k, m)
At ← ∅ for all t;
for i = 1 to m do

foreach s ∈ V \ (A1 ∪ · · · ∪ Ak), 1 ≤ t ≤ k do
δt,s ← F (At ∪ {s})− F (At);1

(t∗, s∗)← argmaxt,s δt,s;
At∗ ← At∗ ∪ {s∗};

Algorithm 1: The greedy average-case placement and scheduling (GAPS) algorithm.

5.4.1 Theoretical guarantee

Perhaps surprisingly, we can show that this simple algorithm provides near-optimal
solutions for Problem (5.3.1). In fact, it generalizes the distributed Set-k Cover algorithm
proposed by Abrams et al. [2004] to arbitrary submodular sensing quality functions F , and
to the setting where at most m sensors can be selected in total.

3However, in case an approximate algorithm is used such as the eSPASS algorithm developed in this
Chapter, its guarantees are not necessarily preserved.
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Theorem 5.4.1. For any monotonic and submodular function F , GAPS returns a solution
A1, . . . ,Ak s.t.

1
k

∑
t

F (At) ≥
1
2

max
A′

1
k

∑
t

F (A′t).

GAPS requires at most O (kmn) evaluations of F .

The proofs of Lemma 5.5.2 and all other results are given in the Appendix. The key
observation is that Problem (5.3.1) is an instance of maximizing a submodular function
subject to a matroid constraint (c.f., the Appendix for details). A fundamental result by
Fisher et al. [1978] then proves that the greedy algorithm returns a solution that obtains at
least one half of the optimal average-case score. Matroids for sensor scheduling have been
considered before by Williams et al. [2007].

5.4.2 Greedy can lead to unbalanced solutions

If a sensor placement and schedule is sought that performs well “on-average” over
time, GAPS performs well. However, even though the average performance over time,
1
k

∑
t F (At), is high, the performance at some individual timesteps t′ can be very poor, and

hence the schedule can be unfair. In security-critical applications, where high performance
is required at all times, this behavior can be problematic. In such settings, we might be
interested in optimizing the balanced performance over time, mint F (At). This optimization
task was raised as an open problem by [Abrams et al., 2004].

A first idea would be to try to modify the GAPS algorithm to directly optimize this
balanced performance, i.e., replace Line 1 in Algorithm 1 by

δt,s ← min
j
F (A+(t,s)

j )−min
j
F (Aj),

where A+(t,s) is the solution obtained by adding location s to time slot At in solution
A = A1 ∪ · · · ∪ Ak. We call this modified algorithm the GBPS algorithm (for Greedy
Balanced Placement and Scheduling). Unfortunately, both GAPS and GBPS can perform
arbitrarily badly. Consider a simple scenario with three locations, V = {a, b, c}, and the
monotonic submodular function F (A) = |A|. We want to partition V into three timesteps,
i.e., k = 3 and m = 3. Here, the optimal solution would be to pick A∗1 = {a}, A∗2 = {b}
and A∗3 = {c}. However, both GAPS and GBPS would (ties broken unfavorably) pick
A1 = {a, b, c} and A2 = A3 = ∅, obtaining a minimum score of 0.

Unfortunately, this poor performance is not just a theoretical example – in Section 5.7
we demonstrate it empirically on real sensing tasks.

5.5 The eSPASS algorithm

In the following, we will develop an efficient algorithm, eSPASS (for efficient Simul-
taneous Placement and Scheduling of Sensors), that, as we will show in Section 5.5.2, is
guaranteed to provide a near-optimal solution to the Problem (5.3.2). To the best of our
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Figure 5.2. Illustration of our eSPASS algorithm. The algorithm first “guesses” (binary
searches for) the optimal value c. (a) Then, big elements s where F ({s}) ≥ βc are allocated
to separate buckets. (b) Next, the remaining small elements are allocated to empty buckets
using the GAPS algorithm. (c,d) Finally, elements are reallocated until all buckets are
satisfied.

knowledge, our algorithm is the first with theoretical guarantees for this general problem,
hence partly resolving the open problem described by Abrams et al. [2004].

5.5.1 Algorithm overview

We start with an outline of our algorithm, and then proceed to discuss each step more
formally.

Our high-level goal will be to reduce the problem of optimizing the balanced objective
into a sequence of modified optimization problems involving an average-case objective, which
we can approximately solve using GAPS. This idea is based on the following intuition:
Consider a truncated objective function Fc(A) = min{F (A), c}. The key observation4 is

4Krause et al. [2008c] used this observation to develop an algorithm for robust optimization of submodular
functions.
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that, for any constant c, it holds that

min
t
F (At) ≥ c⇔

1
k

k∑
t=1

Fc(At) = c,

i.e., the minimum score is greater than or equal to c if and only if the average truncated
score is c.

Now suppose someone tells us the value c∗ attained by an optimal solution:

max
A

min
t
F (At) = c∗.

By the above observation this problem is equivalent to solving

max
A

1
k

k∑
t=1

Fc∗(At). (5.5.1)

It can be shown (c.f., Fujito [2000]) that for c ≥ 0, the truncated objective function Fc
remains monotonic and submodular. Hence, Problem (5.5.1) is an instance of the average-
case Problem (5.3.1). Now we face the challenge that we do not generally know the optimal
value c∗. We could use a simple binary search procedure to find this optimal value. Hence,
if we could optimally solve the monotonic submodular average-case Problem (5.3.1), we
would obtain an optimal solution to the balanced Problem (5.3.2).

Unfortunately, as shown in Section 5.4.1, solving the average-case problem is NP-hard,
and, using GAPS, we can only solve it approximately, obtaining a solution that achieves
at least half of the optimal value. In the following, we will show how we can turn this
approximate solution for the average-case problem into a near-optimal solution for the
balanced problem.

Our algorithm will maintain one “bucket” At ⊆ V for each time slot t. Since our
goal is to develop an approximation algorithm achieving at least a fraction β > 0 of the
optimal sensing quality, we need to allocate m elements s ∈ V to the k buckets such that
F (At) ≥ βc∗ for all buckets At. Here, β is a constant that we will specify later. We call
a bucket “satisfied” if F (At) ≥ βc∗, “unsatisfied” otherwise. Here is an outline of our
eSPASS algorithm, Figure 5.2 presents an illustration.

1. “Guess” the optimal value c.

2. Call an element s ∈ V “big” if Fc({s}) ≥ βc and “small” otherwise. Put each big
element into a separate bucket (c.f., Figure 5.2(a)). From now on, we ignore those
satisfied buckets, and focus on the unsatisfied buckets.

3. Run GAPS to optimize Fc and allocate the small elements to the unsatisfied buckets
(c.f., Figure 5.2(b)).

4. Pick a “satisfied” bucket At that contains sufficiently many elements, and reallocate
enough elements to an “unsatisfied” bucket to make it satisfied (c.f., Figures 5.2(c)
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and 5.2(d)). Repeat step 3 until no more buckets are unsatisfied or no more realloca-
tion is possible. We will show that this reallocation will always terminate.

5. If all buckets are satisfied, return to step 1 with a more optimistic (higher) “guess” for
c. If at least one bucket remains unsatisfied, return to step 1 with a more pessimistic
(lower) guess for c.

eSPASS terminates with a value for c such that all buckets t have been assigned elements
At such that F (At) ≥ βc. It guarantees that upon termination, c is an upper bound on the
value of the optimal solution, hence providing a β approximation guarantee. In Section 5.5.2
we will show that β = 1

6 suffices. In summary, we have the following guarantee about
eSPASS.

Theorem 5.5.1. For any monotonic, submodular function F and constant ε > 0, eSPASS,
using GAPS as subroutine, returns a solution A1, . . . ,Ak such that

min
t
F (At) ≥

1
6

max
A′

min
t
F (A′t)− ε.

eSPASS requires at most O ((1 + log2 F (V)/ε)kmn) evaluations of F .

Here, ε is an tolerance parameter that can be made arbitrarily small. The number of
iterations increases only logarithmically in 1/ε.

Algorithm eSPASS (F , V, k, m, ε)
cmin ← 0; cmax ← F (V); β ← 1/6;
while cmax − cmin ≥ ε do

c← (cmax + cmin)/2;
B ← {s ∈ V : Fc({s}) ≥ βc};1

k′ ← k;
foreach s ∈ B do2

Ak′ ← {s}; k′ ← k′ − 1;
if k′ = 0 then cmin ← c;
Abest ← (A1, . . . ,Ak);
continue with while loop;

V ′ ← V \ B; m′ ← m− |B|;
A1:k′ ← GAPS(Fc,V ′, k′,m′);3

if
∑

t F (At) < k′c/2 then cmax ← c; continue;4

else
while ∃i, j ≤ k′: Fc(Aj) ≤ βc, Fc(Ai) ≥ 3βc do5

foreach s ∈ Ai do
Aj ← Aj ∪ {s}; Ai ← Ai \ {s};
if Fc(Aj) ≥ βc then break;

cmin ← c; Abest ← (A1, . . . ,Ak);
Algorithm 2: The eSPASS algorithm for simultaneously placing and scheduling
sensors.



111

5.5.2 Algorithm details

We will now analyze each of the steps of eSPASS in detail. The pseudocode is given in
Algorithm 2.

Removing big elements The main challenge when applying the GAPS algorithm to the
truncated Problem (5.5.1) is exemplified by the following pathological example. Suppose
the optimal value is c. GAPS, when applied to the truncated function Fc, could pick k/2
elements s1, . . . , sk/2, with F ({si}) = c each. While this solution obtains an average-case
score of c/2 (one half of optimal as guaranteed by Theorem 5.4.1), there is no possibility
to reallocate these k/2 elements into k buckets, and hence some buckets will remain empty,
giving a balanced score of 0.

To avoid this pathological case, we would like to eliminate such elements s ∈ V with
high individual scores F ({s}), to make sure that we can rearrange the solution of GAPS
to obtain high balanced score. Hence, we distinguish two kinds of elements: Big elements
s with F ({s}) ≥ βc, and small elements s with F ({s}) < βc. If we intend to obtain a β
approximation to the optimal score c, we realize that big elements have high enough value
to each satisfy an individual bucket. Let B be the set of big elements (this set is determined
in Line 1). If |B| ≥ k, we already have a β-approximate solution: Just put one big element
in each bucket. If |B| < k, put each element in B in a separate bucket A1, . . . ,A|B| (c.f.,
Line 2). We can now set these satisfied buckets aside, and look at the reduced problem
instance with elements V ′ = V \ B, m′ = m− |B| and k′ = k − |B|. Our first lemma shows
that if the original problem instance (F,V, k,m) has optimal value c, the reduced problem
instance (F,V ′, k′,m′) still has optimal value c.

Lemma 5.5.2. The optimal value on the new problem instance (F,V ′, k′,m′) is still c.

Hence, without loss of generality, we can now assume that for all s ∈ V, F ({s}) ≤ βc.

Solving the average-case problem In the next step of the algorithm, we run an α-
approximate algorithm (such as GAPS where α = 1

2), using the truncated objective Fc, on
the reduced problem instance containing only small elements (c.f., Line 3). This application
results in an allocation A1, . . . ,Ak′ of elements into buckets. If

∑
t Fc(At) < αck′, then we

know that c is an upper bound to the optimal solution, and it is safe to set cmax to c
(c.f., Line 4) and continue with the binary search. Otherwise, we have a solution where∑

t Fc(At) ≥ αck′. However, as argued in Section 5.4.2, this α-approximate solution could
still have balanced score 0, if all the elements are allocated to only the first αk′ buckets.
Hence, we need to reallocate elements from satisfied into unsatisfied buckets to obtain a
balanced solution.

Reallocation We will transfer elements from satisfied buckets to unsatisfied buckets, until
all buckets are satisfied. Let us define a “reallocation move” as follows (c.f., Line 5). Pick
a bucket Ai = {a1, . . . , al} for which Fc(Ai) ≥ 3βc (we will guarantee that such a bucket
always exists), and a bucket Aj that is not satisfied, i.e., Fc(Aj) < βc. Choose ` such that
Fc({a1, . . . , a`−1}) < βc and Fc({a1, . . . , a`}) ≥ βc. Let ∆ = {a1, . . . , a`}. Note that ∆ is
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not empty since each ai is small (i.e., Fc({ai}) < βc). We reallocate the elements ∆ by
removing ∆ from Ai and adding ∆ to Aj .

Lemma 5.5.3. It holds that

Fc(Aj ∪∆) ≥ βc, and Fc(Ai \∆) ≥ Fc(Ai)− 2βc.

Hence, removing elements ∆ does not decrease the value of Ai by more than 2βc, and
thus Ai remains satisfied. On the other hand, the previously unsatisfied bucket Aj becomes
satisfied by adding the elements ∆. We want to make sure that we can always execute
our reallocation move, until all buckets are satisfied. The following result shows that if we
choose β = α

3 , this will always be the case:

Lemma 5.5.4. If we set β = α
3 , then, after at most k reallocation moves, all buckets will

be satisfied, i.e., Fc(Ai) ≥ βc for all i.

Binary search Since the optimal value c is generally not known, we have to search for it.
This is done using a simple binary search strategy, starting with the interval [0, F (V)] which
is guaranteed the optimal value due to monotonicity. At every step, we test the center c
of the current interval. If all buckets can be filled to βc, then the truncation threshold c
can be increased. If the algorithm for maximizing the average-case score (such as GAPS)
does not return a solution of value at least αc, then that implies that the optimal value has
to be less than c, and the truncation threshold is decreased (c.f., Line 4). If F takes only
integral values, then after at most dlog2 F (V)e+ 1 iterations, the binary search terminates.

5.5.3 Improving the bounds

The bound in Theorem 5.5.1 is “offline” – we can state it independently of the specified
problem instance. While guaranteeing that the obtained solutions cannot be arbitrarily
bad, the constant factor 6 bound for eSPASS is typically rather weak, and we can show
that our obtained solutions are typically much closer to the optimal value.

We can do this by computing the following data-dependent bounds on the optimal value.
Let A′ = (A′1, . . . ,A′k) be a candidate solution to Problem (5.3.2) (e.g., obtained using
the eSPASS algorithm or any other algorithm). For every 1 ≤ ` ≤ k and s ∈ V let
δ`,s = F (A′`∪{s})−F (A′`) be the increment in function value when adding sensor s to time
slot `.

Theorem 5.5.5. The optimal value c∗ = maxAmint F (At) is bounded by the solution c to
the following linear program:

max
λi,s,c

c s.t.

c ≤ F (Ai) +
∑
s

λi,sδi,s for all i∑
i

λi,s ≤ 1 for all s and
∑
i,s

λi,s ≤ m
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Theorem 5.5.5 states that for any given instance of the SPASS problem, and for a
candidate solution A obtained by using any algorithm (not necessarily using eSPASS),
we can solve a linear program to efficiently get an upper bound on the optimal solution.
In Section 5.7 we will show that these bounds prove that our solutions obtained using
eSPASS are often much closer to the optimal solution than guaranteed by the bound of
Theorem 5.5.1.

5.6 Trading off Power and Accuracy

As argued in Section 5.1, deploying a larger number of sensors and scheduling them has
the advantage over deploying a small number of sensors with large batteries that a high
density mode can be supported. In contrast to scheduled mode, where the sensors are ac-
tivated according to the schedule, in high-density mode all sensors are active, to provide
higher resolution sensor data (e.g., to localize the boundary of a traffic congestion in our
running example). For a fixed solution A1, . . . ,Ak to the SPASS problem, the (balanced)
scheduled-mode sensing quality is mini F (Ai), whereas the high-density sensing quality is
F (A1∪· · ·∪Ak). Note that optimizing for the scheduled sensing quality does not necessarily
lead to good high-density sensing quality. Hence, if both modes of operation should be sup-
ported, then we should simultaneously optimize for both performance measures. One such
approach to this multicriterion optimization problem is to define the scalarized objective

F̂λ(A1, . . . ,Ak) = λmin
i
F (Ai) + (1− λ)F (A1 ∪ · · · ∪ Ak),

and then solve the problem

max
A1...Ak

F̂λ(A1, . . . ,Ak) s.t. Ai ∩ Aj = ∅ if i 6= j, | ∪
t
At| ≤ m. (5.6.1)

Note that if λ = 1, we recover the SPASS problem. Furthermore, as λ → 0, the high-
density sensing quality F (A1 ∪ · · · ∪ Ak) dominates, and the chosen solution will converge
to the stage-wise approach, where first the set A of all sensors is optimized, and then this
placement is partitioned into A = A1 ∪ · · · ∪ Ak. Hence, by varying λ between 1 and 0, we
can interpolate between the simultaneous and the stage-wise placement and scheduling.

We modify eSPASS to approximately solve Problem (5.6.1), and call the modified algo-
rithm mcSPASS (for multicriterion Simultaneous Placement and Scheduling of Sensors).
The basic strategy is still a binary search procedure. However, instead of simply picking
all available big elements (as done by eSPASS), mcSPASS will also guess (search for) the
number ` of big elements used in the optimal solution. It will pick these big elements in
a greedy fashion, resulting in a set Abig ⊆ V. For a fixed guess of c and `, mcSPASS will
again use GAPS as a subroutine. However, the objective function used by GAPS will be
modified to account for the high-density performance:

G(A1, . . . ,Ak′) = λ
∑
i

Fc(Ai) + (1− λ)F (A ∪Abig),
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where A = A1 ∪ . . .Ak′ , and k′ = k − `. This modified objective function combines a com-
ponent (weighted by λ) that measures the scheduled performance, as well as a component
(weighted by 1−λ) that measures the improvement in high-density performance, taking into
account the set Abig of big elements that have already been selected. The reallocation pro-
cedure remains the same as in eSPASS. The remaining details of our mcSPASS approach
are presented in the proof to the following theorem, which can be found in Section 5.10.

Theorem 5.6.1. For any monotonic, submodular function F and constants ε > 0 and
0 ≤ λ ≤ 1, mcSPASS will efficiently find a solution A1, . . . ,Ak such that

F̂λ(A1, . . . ,Ak) ≥
1
8

max
A′

F̂λ(A′1, . . . ,A′k)− ε.

In Section 5.7 we will see that we can use this extension to obtain placements and
schedules that perform well both in scheduled and high-density mode.

5.7 Transportation Applications

In the application section we develop two transportation applications for the methodol-
ogy suggested in the chapter: placing and sampling a set of fixed traffic sensors and privacy
preserving sampling of mobile traffic sensors. In the first application, the optimization de-
cision is determining where the sensors are positioned, and how they should be grouped to
increase lifetime, without sacrificing coverage quality. Measuring placement and coverage
quality requires defining a placement benefit function.

In the second application, the sensors are not fixed, but are instead drivers who record
speeds as they move along the road network. In this case, the cost of an observation is the
privacy cost of revealing the location of a driver at a given time of day. The benefit obtained
by measurements is the coverage attained when using data. In a privacy preserving setting,
we can divide drivers into groups, and observe only a single driver group for a given interval
of time, preserving the privacy of other driver groups. This in turn, guarantees that a
driver will be observed for at most a fraction of total time. This application also requires a
function that measures the placement benefit, and a corresponding spatial statistical model
to justify this benefit.

5.7.1 Modeling transportation data

We use the highway network model explained in Chapter 2, where the network is di-
vided into a collection of sections S. Usually, we can take the boundary of sections to
be the minimum distance we would like to allow between consecutive placements. In our
sensor placement experiments, each section corresponds to a single lance, centered at a loop
detector. The boundaries of a section are midway to the upstream and downstream sensors.

Time is divided into 5-minute intervals. For each interval, the speed at all the sections is
jointly modeled as a spatial Gaussian Process (GP) [Cressie, 1991], with mean function µ(s)
and covariance function K(s, t), where s is the section index. Therefore, at each section
s ∈ S in a given time interval, the speed is a random variable X(s). For any set of locations
A = {s1, ..., sn}, the Gaussian Process induces a multivariate normal distribution, with
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mean vector µA = (µ(s1), ..., µ(sn)) and covariance matrix ΣAA = (K(si, sj))ij obtained by
evaluating the covariance function for every pair of points si and sj in A.

If the speed is observed at a set locations XA = xA, the speed at the remaining locations
Ac = S/A can be optimally estimated in the mean-squared sense through the conditional
expectation E[XAc |XA = xA]. The Gaussian Process allows us to compute the expectation
and corresponding mean squared error for each component (conditional covariance of Xy

for y ∈ Ac):

E[XAc |XA = xA] = µAc + ΣAcAΣ−1
AA(xA − µA),

Var[Xy|XA = xA] = E[(Xy − E[Xs|XA = xA])2|XA = xA],

= Σy,y − ΣyAΣ−1
AAΣAy.

We can now evaluate the expected variance reduction from observing a set A as:

F (A) =
∑
y∈Ac

(ΣyAΣ−1
AAΣAy). (5.7.1)

The expected variance reduction function can be shown to be submodular under certain
simple conditions [Das and Kempe, 2008]. Furthermore, one interesting property of the
variance reduction is that it does not depend on the observations xA.

In traffic applications, the model parameters for the Gaussian Process are learned from
either existing historical data, as available for many highways, or from a preliminary (small)
sensor deployment. The covariance function and mean function definitions can be extended
for whole highways using appropriate covariance interpolation methods [Cressie, 1991]. In
some cases, when no sensors are available, or a preliminary deployment is impossible, a
sequential placement methodology can be considered [Krause and Guestrin, 2007] for plac-
ing a initial set of sensors to learn the model. When existing data is used to learn the
parameters, the Gaussian Process model cost function reduces to the total mean squared
error resulting from regressing all data from each unobserved location against the observed
location information: Xy = αtyXA + βy, y ∈ Ac.

In the mobile observation model, we consider a similar benefit function to the one
in Equation 5.7.1. In this case when a mobile sensor (driver) is added to the observation
set, all his samples for each one of the road links are added to the observation set. The
principal addition in the model is that a demand weighting is used to average the variance
reduction, as described in [Krause et al., 2008a]. The idea is that more demanded links are
more heavily weighted in the computation of the total benefit. Let the demand for link s
be denoted by the random variable Ds, then the expected cost reduction is given by

F (A) =
∑
y∈Ac

E[Ds](ΣyAΣ−1
AAΣAy).

If we assume a simple Poisson model with rate λs, E[Ds] = λs. This parameter can be
estimated from preexisting traffic counts on each road link, or from information collected
from driver routing desires.
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5.7.2 Highway monitoring using fixed sensors

The California highways are currently monitored by over 25,000 traffic sensors based
on older technologies. As these loops fail, they are being replaced by novel wireless sen-
sor network technologies, and it has become important to identify economic deployment
strategies. PeMS [PeMS, 2009] is a website and project that integrates, cleanses and tracks
real time traffic information for the whole state, computing key performance indicators.
The sensors typically report speed, flow and vehicle counts every 30 seconds, and PeMS
further aggregates the data into 5 minute blocks. For this case study, we use data from
highway I-880 South, which extends for 35 miles in northern California (Figure 5.3) and
has between 3 and 5 lanes. This highway experiences heavy traffic, and accurate measure-
ments are essential for proper resource management. Measurement variation is mainly due
to congestion and events such as accidents and road closures. There are 88 measurement
sites along the highway, on average every 0.4 miles, which comprise 357 sensors covering
all lanes. We use speed information from lanes, for all days of the week in a single month,
excluding weekends and holidays for the period from 6AM to 11AM, which is the time when
the highway is congested. This is the most difficult time for making predictions, as when
there is no congestion, even a free flow speed prediction of 60 mph is accurate.

The number and locations of sensors are limited by costs and physical deployment con-
straints. Typically at each location, it is only possible to place one sensor at each lane.
Furthermore, lane closures for sensor installation are very costly. Given these constraints,
California requires that sensor technologies have a target lifetime of 10 years. This implies
that most wireless sensor solutions require intelligent scheduling in order to extend the life-
time by four times, since most sensor network solutions batteries are expected to last 2 to
3 years. Including more batteries in a single sensor is not viable, as sensors have physical
constraints to avoid disrupting the existing pavement structure and keep installation costs
at a minimum.

As wireless sensors displace existing loop technologies, it is desirable to place as few
sensors as possible, without trading off too much sensing quality. To achieve these goals
in a principled manner, historical loop data from the current deployment should be used.
eSPASS provides a solution which can balance these conflicting requirements, by combining
scheduling and placement: more sensors are placed initially, still keeping road closures at
a minimum, and scheduling is used to extend the lifetime of the network, keeping sensing
quality balanced. In this section we explore this solution and compare eSPASS to other
simultaneous placement and scheduling solutions.

Simultaneous vs. stage-wise optimization In our first experiment, we study the ben-
efit of simultaneously placing and scheduling sensors. For varying numbers m of sensors
and k of time slots, we use different strategies to find k disjoint sets A1, . . . ,Ak, where Ai
is the sensors active at time slot i. We compare the simultaneous placement and schedule
(optimized using eSPASS and GAPS) with solutions obtained by first placing sensors at a
fixed set of locations, and then scheduling them. We consider both optimized and random
sensor placements, followed by optimized and random scheduling, amounting to four stage-
wise strategies. For random placements and schedules, we report the mean and standard
error over 20 random trials.
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(a) [T] stage-wise (b) [T] Simultaneous

Figure 5.3. Placements and schedules for the traffic data. (a) Stage-wise approach, (b)
SPASS solution.

Figure 5.4(a) presents the performance of the five strategies when optimizing the average-
case performance, for a fixed number of m = 50 sensors and a number of time slots k varying
from 1 to 20. GAPS performs best, followed by the stage-wise optimized placement and
schedule (OP/OS). Of the two strategies where one component (either the placement or the
schedule) is randomized (OP/RS and RP/OS), for small numbers (≤ 3) of time slots OP/RS
performs slightly better, and for large numbers of time slots (≥ 10), RP/OS performs slightly
better. The completely randomized solution performs significantly worse.

Figure 5.4(b) presents the same results when optimizing the balanced criterion. eSPASS
outperforms the stage-wise strategies and the completely randomized strategy RP/RS per-
forms worst as expected. Interestingly, for the balanced criterion, OP/RS performs drasti-
cally worse than RP/OS for k ≥ 4 time slots. We hypothesize this to be due to the fact that
a poor random placement can more easily be compensated for by using a good schedule
than vice versa: When partitioning a sensor placement of 50 sensors randomly into a large
number of time slots, it is fairly likely that at least one of the timeslots exhibits poor per-
formance, hence leading to a poor balanced score. This insight also suggests that the larger
the intended improvement in network lifetime (number of time slots), the more important
it is to optimize for a balanced schedule.

To further investigate the phenomenon discussed above, we performed another experi-
ment, where we increased the number k of time slots from 1 to 10, but instead of keeping
the number m of sensors fixed, we allocate a fixed number of 5 sensors for each time slot,
i.e., keep the ratio k/m fixed at 5. Figure 5.5(a) presents the result of this experiment.
Again, eSPASS outperforms the other strategies by a fair margin. Note that the perfor-
mance of eSPASS decreases slowly with the number of time steps. This is because as
more and more timeslots are used, the algorithm has fewer and fewer choices of possible
locations to balance the schedule. Also note that the performance of the RP/OS strategy
actually increases with the number of time slots. Due to submodularity, as a larger number
of sensors is placed, the smaller the benefit of optimizing the sensor placement becomes.
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Figure 5.4. Results for traffic monitoring [T]. (a,b) compare simultaneous placement
and scheduling to stage-wise strategies on (a) average-case and (b) balanced performance
(m = 50, k varies). (c) compare average-case and balanced performance, when optimizing
for average-case (using GAPS) and balanced (using eSPASS) performance. (d) “Online”
(data-dependent) bounds show that the eSPASS solutions are closer to optimal than the
factor 6 “offline” bound from Theorem 5.5.1 suggests.

The experiment also confirms the observation of the degrading performance of OP/RS and
RP/RS as the number of time slots increases.

To summarize this analysis, we see that simultaneous placement and scheduling drasti-
cally outperforms the stage-wise strategies. For example, if we place 50 sensors at random,
and then use eSPASS to schedule them into 4 time slots, we achieve an estimated min-
imum reduction in Mean Squared error by 58%. If we first optimize the placement and
then use eSPASS for scheduling, we can achieve the same amount of variance reduction by
scheduling 6 time slots (hence obtaining a 50% increase in network lifetime). If instead of
stage-wise optimization we simultaneously optimize the placement and the schedule using
eSPASS, we can obtain the same variance reduction by scheduling 8 time slots, hence an
increase in network lifetime by 100%.
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Figure 5.5. (a) (b) Results for community sensing [C]. When querying each car only once
each week (using the eSPASS schedule), the sensing quality is only 23% lower than when
querying every day.

Average vs. balanced performance We have seen that simultaneously placing and
scheduling can drastically outperform stage-wise strategies, for both the average-case and
the balanced objective. But which of the objectives should we use? In order to gain insight
into this question, we performed the following experiment. For varying k and m, we obtain
solutions to the SPASS problem using both the eSPASS and the GAPS algorithm. We
then evaluate the respective solutions both using the average-case and the balanced criterion.
Figure 5.4(c) presents the results of this experiment for k varying from 1 to 10, and fixed
ratio of 5 sensors per time slot. As expected, eSPASS outperforms GAPS with respect
to the balanced criterion, and GAPS outperforms eSPASS according to the average-case
criterion. However, while eSPASS achieves average-case score very close to the solution
obtained by GAPS, the balanced score of the GAPS solutions are far worse than those
obtained by eSPASS. Hence, optimizing for the balanced criterion performs well for the
average case, but not vice versa.

Online bounds In order to see how close the solutions obtained by eSPASS are to the
optimal solution, we also compute the bounds from Theorem 5.5.5. Figure 5.4(d) presents
the bounds on the maximum variance reduction achievable when placing 50 sensors and
partitioning them into an increasing number of groups. We plot both the factor 6 bound
due to Theorem 5.5.1, as well as the data-dependent bound due to Theorem 5.5.5. We can
see that the data dependent bounds are much tighter. For example, if we partition the
sensors into 2 groups, our solution is at least 78% of optimum, for 5 groups it is at least
70% of optimum (rather than the 17% of Theorem 5.5.1).

5.7.3 Highway monitoring using privacy-preserving mobile sensors

While the static deployment of sensors has become an important means for monitoring
traffic on highways and arterial roads, due to high deployment and maintenance cost it
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is difficult to extend sensor coverage to urban side-streets. However, in order to optimize
road-network utilization, accurate estimate of side-street conditions is necessary.

Instead of (or in addition to) statically deploying sensors, a promising approach is to
utilize cars as traffic sensors: An increasing number of vehicles nowadays are equipped
with GPS and Personal Navigation Devices, which can accurately localize a car on a road
network. Furthermore, these devices are becoming connected to wireless networks, using,
e.g., GPRS or Edge connectivity, through which they could report their location and speed.
Hence, in principle, it is possible to access accurate sensor data through the network of cars.

Such a network of non-centrally owned sensors present significant challenges. While users
may generally consider sharing their sensor data, they have reasonable concerns about their
privacy. Krause et al. [2008a] provide methods for community sensing, describing strategies
for selectively querying a community sensor network while maintaining preferences about
privacy. They demonstrated how the selective querying of such a community sensor network
can be modeled as the problem of optimizing a monotonic submodular sensing quality
function that considers demand based on road usage. Preferences about privacy map to
constraints in the optimization problem.

One basic preference that needs to be supported is the preference that each user is
queried at most once in a specified time interval (e.g., queried at most once each week or
month). Let V be the set of users subscribing to the community sensing service. In order
to query each user at most once in k time steps, one strategy would be to partition the
users into k sets A1, . . . ,Ak, such that at time step t, users At are queried. In order to
obtain continuously high performance of the monitoring service, we want to make sure that
the performance F (At) is maximized simultaneously over all time steps. This is exactly an
instance of the SPASS problem.

In order to evaluate the performance of the eSPASS algorithm, we used the experimen-
tal setup of Krause et al. [2008a], using real traffic data from 534 detector loops deployed
underneath highways, GPS traces from 85 volunteer drivers and demand data based on
directions generated in response to requests to a traffic prediction and route planning pro-
totype named ClearFlow, developed at Microsoft Research5. Details about the data sets
are described by Krause et al. [2008a]. Based on this experimental setup, we compare the
performance of the eSPASS and GAPS algorithms. Using each algorithm, we partition
the users into 7 or 31 sets (i.e., querying each user at most once each week or month, both
of which are possible options for privacy preferences). We then evaluate the performance
based on the worst case prediction error over all test time steps. Figure 5.5(b) presents the
results of this experiment. We can see that the eSPASS solutions outperform the GAPS
solutions. When partitioning into 31 sets, the worst prediction performance of eSPASS is
more than twice as good than the worst prediction performance of GAPS. Most impor-
tantly, this experiment shows that, using eSPASS for scheduling, one can obtain a very
high balanced performance, even when querying each individual car only very infrequently.
For example, when querying each car only once each week, the balanced sensing quality
is only 23% lower than that obtained by the privacy-intrusive continuous (daily) querying.

5The ClearFlow research system, available only to users within Microsoft Corporation, was the proto-
type for the Clearflow context-sensitive routing service now available publicly for North American cities at
http://maps.live.com.
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(a) [W] Simultaneous (b) [W] Stage-wise

(c) [W] Multicrit. (λ = 0.25)

Figure 5.6: Example placements and schedules for water networks [W].

Even if querying only once each month (i.e., a factor 31 more infrequently), the balanced
performance is only reduced by approximately a factor of 2. These results indicate that,
using eSPASS, even stringent preferences about privacy can be met without losing much
prediction accuracy.

5.8 Other Applications

In order to compare our proposed algorithm with existing approaches in the literature,
we also considered alternative data sets and problem formulations, for which those algo-
rithms were designed. The corresponding subsections describe these problems and the
corresponding placement benefit function.
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Figure 5.7. (a,b) Contamination detection in water networks [W]. (a) compares simulta-
neous and stage-wise solutions. (b) power/accuracy tradeoff curve with strong knee. (c,d)
compares eSPASS with existing solutions by Abrams et al. [2004] and Deshpande et al.
[2008] on synthetic data [S].

5.8.1 Contamination detection

Consider a city water distribution network, delivering water to households via a system
of pipes, pumps and junctions. Accidental or malicious intrusions can cause contaminants
to spread over the network, and we want to select a few locations (pipe junctions) to install
sensors, in order to detect these contaminations as quickly as possible. In August 2006, the
Battle of Water Sensor Networks (BWSN) [et al., 2008] was organized as an international
challenge to find the best sensor placements for a real (but anonymized) metropolitan water
distribution network, consisting of 12,527 nodes. In this challenge, a set of intrusion scenar-
ios is specified, and for each scenario a realistic simulator provided by the EPA [Rossman,
1999] is used to simulate the spread of the contaminant for a 48 hour period. An intrusion
is considered detected when one selected node shows positive contaminant concentration.

The goal of BWSN was to minimize impact measures, such as the expected population
affected, which is calculated using a realistic disease model. Krause et al. [2008b] showed
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that the function F (A) which measures the expected population protected by placing sensors
at location A is a monotonic submodular function. Water quality sondes can operate for a
fairly long amount of time on battery power. For example, the YSI 6600 Sonde can sample
15 water quality parameters every 15 minutes for 75 days. However, for the long-term
feasibility it is desirable to considerably improve this battery lifetime by sensor scheduling.
On the other hand, high sampling rates are desirable to ensure rapid response to possible
contaminations. For a security-critical sensing task such as protecting drinking water from
contamination, it is important to obtain balanced, uniformly good detection performance
over time. In addition, deployment and maintenance cost restrict the number of sensors
that can be deployed. Hence, the problem of deploying battery powered sensors for drinking
water quality monitoring is another natural instance of the SPASS problem.

We reproduce the experimental setup detailed in [Krause et al., 2008b]. However, instead
of only optimizing for the sensor placement, we simultaneously optimize for placement and
schedule using the eSPASS algorithm. Figure 5.7(a) compares eSPASS with the stage-
wise approaches. For each algorithm, we report the population protected by placing sensors,
normalized by the maximum protection achievable when placing sensors at every node in
the network.

Simultaneous vs. stage-wise optimization eSPASS obtains drastically improved per-
formance when compared to the stage-wise approaches. For example, when scheduling 3
time slots, in order to obtain 85% protection, eSPASS requires 18 sensors. The fully opti-
mized stage-wise approach (OP/OS) requires twice the number of sensors. When placing 36
sensors, the stage-wise approach leaves 3 times more population unprotected as compared
to the simultaneous eSPASS solution with the same number of sensors. eSPASS solved
this large scale optimization task (n = 12, 527, k = 3, m = 30) in 26 minutes using our
MATLAB implementation.

Trading off power and accuracy We also applied our modified eSPASS algorithm
in order to trade off scheduled mode and high density mode performance. For a fixed
number of m = 30 sensors and k = 3 time slots, we solve Problem (5.6.1) for values of
λ varying from 0 to 1. For each value of λ, we obtain a different solution, and plot the
normalized expected population protected (higher is better) both in scheduled- and in high-
density mode in Figure 5.7(b). We can see that this trade-off curve exhibits a prominent
knee, where solutions are obtained that perform nearly optimally with respect to both
criteria. Figures 5.6(a), 5.6(b) and 5.6(c) show the placements and schedules obtained
for λ = 1 (i.e., ignoring the high-density sensing quality), λ = 0 (ignoring the schedule,
effectively performing a stage-wise approach) and a value λ = 0.25 (from the knee in the
trade-off curve) respectively. Note how the solution for λ = 1 clusters the sensors closely
together, obtaining three very similar placements A1,A2,A3 for each time slot (similar as
in Figure 5.1). The solution for λ = 0 spreads out the sensors more, having to leave, e.g.,
the Western part of the network uncovered in the time slot indicated by the green triangle.
The multicriterion solution (λ = 0.25) is a compromise between the former two solutions:
The sensors are still clustered together, but also spread out more – the Western part of the
network can be covered in this solution.
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Figure 5.8. Results on temperature data from Intel Research Berkeley [B]. (a,b) compares
eSPASS with existing solutions. (c) compares running time. (d) compares average-case and
balanced performance.

5.8.2 Comparison with existing techniques

We also compare eSPASS with several existing algorithms. Since the existing algorithms
apply to the scheduling problem only, we call eSPASS with m = |V| (i.e., allow it to select
all sensors).

Set covering Most existing algorithms for sensor scheduling assume that sensors are
associated with a fixed sensing region that can be perfectly observed by the sensor (c.f.,
Abrams et al. [2004]; Deshpande et al. [2008]). In this setting, we associate with each
location s ∈ A a set Rs ⊆ V of locations that can be monitored by the sensor, and define
the sensing quality F (A) = |

⋃
s∈ARs| to be the total area covered by all sensors. Since

set coverage is an example of a monotonic submodular function, we can use eSPASS to
optimize it.

We compare eSPASS to the greedy approach by Abrams et al. [2004], as well as the the
approach by Deshpande et al. [2008] that relies on solving a semidefinite program (SDP).
We use the synthetic experimental setup defined by Deshpande et al. [2008] to compare
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the approaches. A set of n sensors is used to cover M regions. Each sensor s is associated
with a set Rs of regions it covers. The objective is to divide the n sensors into k groups
(buckets), such that the minimum or the average number regions covered by each group is
maximized.

For the SDP by Deshpande et al. [2008], we solve the SDP using SeDuMi to get a
distribution over possible schedules, and then pick the best solution out of 100 random
samples drawn from this distribution. For the random assignment approach (Rand100) of
Abrams et al. [2004], we sample 100 random schedules and pick the best one. In addition, we
run the GAPS and the eSPASS algorithms. We apply those four algorithms to 50 random
set cover instances as defined by Deshpande et al. [2008]: for each sensor, a uniform random
integer r between 3 and 5 is chosen, and then the first r regions from a random permutation
of the set of M regions is assigned to that sensor. The sensor network size is n = 20, the
number of desired groups k = 5 and the number of regions is M = 50.

Figure 5.7(c) presents the average performance of the four approaches. In this setting,
the SDP performs best, closely followed by GAPS and eSPASS. Figure 5.7(d) presents
the balanced performance of the four approaches. Here, eSPASS significantly outperforms
both the SDP and the GAPS solution.

Building monitoring As argued in the introduction, for complex spatial monitoring
problems, the sensing region assumption is unrealistic, and we would rather like to optimize
prediction accuracy directly. The approach by Koushanfar et al. [2006] is designed to
schedule sensors under constraints on the prediction accuracy. Their approach, given a
required prediction accuracy, constructs a prediction graph that encodes which sensors can
predict which other sensors. They then solve a set partitioning problem, selecting a maximal
number of disjoint subsets that can predict all other sensors with the desired accuracy. In
order to determine the domatic partitioning, their algorithm relies on the solution of a Mixed
Integer Program (MIP). However, solving MIPs is NP-hard in general, and unfortunately,
we were not able to scale their approach to the traffic data application. Instead, we use
data from 46 temperature sensors deployed at Intel Research, Berkeley (c.f., Deshpande
et al. [2004]).

On this smaller data set, we first apply the MIP for domatic partitioning, with a specified
accuracy constraint. The MIP was very sensitive with respect to this accuracy constraint.
For just slightly too small values of ε, the MIP returned a trivial solution consisting of
only a single set. For slightly too large values, the MIP had to consider partitions into a
large number of possible time slots, increasing the size of the MIP such that the solver ran
out of memory. Requiring that sensors can predict each other with a Root Mean Squared
(RMS) error of 1.25 Kelvin leads to a selection of m = 19 sensors, partitioned into k = 3
time slots. Using this setting for m and k, we run the GAPS and eSPASS algorithms,
which happen to return the same solution for this example. In order to compare these
solutions with the SDP and random selection from the previous section, we apply them to
the prediction graph induced by the required prediction accuracy. We first randomly select
19 locations, and then partition them into 3 groups using the SDP and Rand100 approach,
respectively. As a baseline, we randomly select 3 groups totaling 19 sensors (Rand). For
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these randomized techniques, we report the distribution over 20 trials. All approaches are
evaluated based on the variance reduction objective function.

Figure 5.8(a) presents the result for optimizing the average variance reduction, and
Figure 5.8(b) for the minimum variance reduction. In both settings, GAPS and eSPASS
perform best, obtaining 23% less remaining maximum variance when compared to the MIP
solution of Koushanfar et al. [2006]. Furthermore, using YalMIP in Matlab, solving the MIP
requires 95 seconds, as compared to 4 seconds for the SDP and 3.8 seconds for eSPASS
(Figure 5.8(c)). Even though the MIP returns an optimum solution for the domatic partition
of the prediction graph, eSPASS performs better since it uses the fact that the combination
of multiple sensors can lead to better prediction accuracy than only using single sensors for
prediction. Even the best out of 20 random trials for the SDP performs worse than the MIP,
due to the approximate nature of the algorithm and the random selection of the initial 19
sensors. The Rand100 approach does performs only slightly (not significantly) worse than
the SDP based approach.

5.9 Discussion

When deploying sensor networks for monitoring tasks, both placing and scheduling the
sensors are of key importance, in order to ensure informative measurements and long deploy-
ment lifetime. Traditionally, the problems of sensor placement and scheduling have been
considered separately from each other. In this Chapter, we have presented an efficient algo-
rithm, eSPASS, that simultaneously optimizes the sensor placement and the schedule. We
considered both the setting where the average-case performance over time is optimized, as
well as the balanced setting, where uniformly good performance is required. Such balanced
performance is crucial for security-critical applications such as contamination detection.
Our results indicate that optimizing for balanced performance often yields good average-
case performance, but not necessarily vice versa. We proved that our eSPASS algorithm
provides a constant factor 6 approximation to the optimal balanced solution. To the best
of our knowledge, eSPASS is the first algorithm that provides strong guarantees for this
problem, partly resolving an open problem raised by Abrams et al. [2004]. Furthermore, our
algorithm applies to any setting where the sensing quality function is submodular, which
allows to address complex sensing tasks where one intends to optimize prediction accuracy
or optimize detection performance.

We also considered complex sensor placement scenarios, where the deployed sensor net-
work must be able to function well both in a scheduled, low power mode, but also in a high
accuracy mode, where all sensors are activated simultaneously. We developed an algorithm,
mcSPASS, that directly optimizes this power-accuracy tradeoff. Our results show that mc-
SPASS yields solutions which perform near-optimally with respect to both the scheduled
and the high-density performance.

We extensively evaluated our approach on several real-world sensing case studies, includ-
ing traffic and building monitoring as well as contamination detection in metropolitan area
drinking water networks. When applied to the simpler special case of sensor scheduling (i.e.,
ignoring the placement aspect), eSPASS outperforms existing sensor scheduling algorithms
on standard data sets. For the more complex, general case, our algorithm performs prov-
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ably near-optimal (as demonstrated by tight, data-dependent bounds). Our results show
that, for fixed deployment budget, drastic improvements in sensor network lifetime can be
achieved by simultaneously optimizing the placement and the schedule, as compared to the
traditional, stage-wise approach. For example, for traffic prediction, eSPASS achieves a
33% improvement in network lifetime compared to the setting where placement and sched-
uled are optimized separately, and a 100% improvement when compared to the traditional
setting where sensors are first randomly deployed and then optimally scheduled.

We believe that the results presented in this Chapter present an important step to-
wards understanding the deployment and maintenance of real world sensor networks, and
in particular, transportation sensing networks.

5.10 Proofs

5.10.1 Proof of Theorem 5.4.1

Proof. Define a new ground set V ′ = V × {1, . . . , k}, and a new function

F ′(A′) =
k∑
t=1

F ({s : (s, t) ∈ A′}).

F ′ is monotonic and submodular. Let

I = {A′ ⊆ V ′ : |A′| ≤ m ∧
(
@s, i 6= j : (s, i) ∈ A′ ∧ (s, j) ∈ A′

)
},

i.e., I is the collection of subsets A′ ⊆ V ′ that do not contain two pairs (s, i) and (s, j)
of elements for which i 6= j. It can be shown that I form independent sets of a matroid
(c.f., Fisher et al. [1978]). Note that there is a one-to-one correspondence between sets
A′ and feasible solutions A1, . . . ,Ak to the SPASS Problem (5.3.1), and furthermore, the
corresponding solutions have the same value. Hence, the SPASS problem is equivalent to
solving

A∗ = argmax
A′∈I

F ′(A′).

As Fisher et al. [1978] proved, the greedy algorithm GAPS is guaranteed to obtain a solution
that has at least 1/2 of the optimal value.

Proof of Lemma 5.5.2. Consider an optimal allocation T1, . . . , Tm. Let Bopt be the set
Bopt = {i : Ti contains a big element}. Throw away all buckets (and elements) Bopt. Now,
in order to achieve score c, the optimal solution has to fill m−|Bopt| buckets with small ele-
ments (even from a reduced set of small elements, those not thrown away) and still achieve
score c on each of those buckets. This solution is in fact an optimal solution achieving score
c on the new problem instance (since we will use at least as many big elements and throw
away at least as many buckets).
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5.10.2 Proof of Lemma 5.5.3

Proof. Suppose Ai is a bucket for which Fc(Ai) ≥ 3βc. Now, Ai = {a1, . . . , al}, and
Fc({ai}) ≤ βc. Choose ` such that Fc({a1, . . . , a`−1}) < βc and Fc({a1, . . . , a`}) ≥ βc. Let
∆ = {a1, . . . , a`}.

Due to monotonicity Fc(Aj ∪∆) ≥ Fc(∆) ≥ βc. It remains to show that Fc(Ai \∆) ≥
Fc(Ai)− 2βc. Suppose that Fc(Ai \∆) < Fc(Ai)− 2βc. Let B = Ai \∆. Then

Fc(B ∪∆)− Fc(B) > 2βc.

But
Fc(∆) ≤ Fc({a1, . . . , a`−1}) + Fc({a`}) < 2βc,

due to submodularity of Fc, and the fact that a` is a small element. Hence

Fc(B ∪∆)− Fc(B) > Fc(∆)− Fc(∅),

i.e., adding ∆ to B helps more than adding ∆ to the empty set, contradicting submodularity
of Fc.

Proof of Lemma 5.5.4. To simplify notation, w.l.o.g. let us assume that c = 1. Since the
optimal balanced performance for Fc = F1 is 1, the optimal average-case performance for F1

is 1 as well. The GAPS algorithm obtains an allocation A that is a fraction α of optimal.
Hence, it holds that

∑
i F1(Ai) ≥ αk. We call

∑
i F1(Ai) the “mass” of the allocation A.

How many unsatisfied buckets can there maximally be? Let γ denote the fraction of
unsatisfied buckets. We know that

kγβ + k(1− γ) ≥ αk,

since the maximal γ is achieved if all the satisfied buckets are completely full (containing
mass k(1 − γ)), and the unsatisfied buckets are as full as possible without being satisfied
(hence containing mass less than kγβ). Hence it follows that

γ ≤ 1− α
1− β

.

Now consider the mass R distributed over the satisfied buckets. We know that

R ≥ αk − γkβ ≥ kα(1− β)− β(1− α)
1− β

,

and the worst case is assumed under equality.
The first reallocation move is possible if

R

k(1− γ)
≥ 3β,

since, if the average remaining mass over all (1 − γ)k satisfied buckets is 3β, then there
must be at least one bucket to which the move can be applied. Since each reallocation move
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reduces the mass R by at most 2β (as proved by Lemma 5.5.3), and since we need γk moves
to fill all unsatisfied buckets, it suffices to require that

R− 2γkβ
k(1− γ)

≥ 3β

⇔R− 2γkβ ≥ 3βk − 3βγk
⇔R ≥ 3βk − βγk

Hence, a sufficient condition for β such that enough moves can be performed to fill all
unsatisfied buckets is

α(1− β)− β(1− α)
1− β

≥ 3β − β 1− α
1− β

⇐3β2 + (−3− α)β + α ≥ 0
⇐β ≤ α/3,

by solving the quadratic equation for β and ignoring the infeasible solutions β ≥ 1. Now,
since β is going to be our approximation factor, we want to maximize β subject to the above
constraint, and hence choose β = α/3.

5.10.3 Proof of Theorem 5.5.1

Proof. The proof immediately follows from the analysis in Section 5.5.2. For the running
time, notice that, in each binary search iteration, the greedy algorithm requires at most kmn
function evaluations, and the reallocation step requires at most k2m ≤ kmn evaluations.
The binary search terminates after O(1 + log2 F (V)) iterations, assuming integrality of
F .

5.10.4 Proof of Theorem 5.5.5

Proof. Let Ai be the candidate solution for time slot i, and Bi = {b1, . . . , bni} an optimal
solution for time slot i. Due to monotonicity and submodularity, it holds that

F (Ai) ≤ F (Ai ∪ Bi) ≤ F (Ai) +
ni∑
j=1

δi,bj .

Hence, the optimal value of Problem (5.3.2) is upper bounded by the optimal solution to
the following integer program:

max
λi,s,c

c s.t.

c ≤ F (Ai) +
∑
s

λi,sδi,s for all i∑
i

λi,s ≤ 1 for all s and
∑
i,s

λi,s ≤ m and λi,s ∈ {0, 1},
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since any integer solution λi,s corresponds to a possible feasible partition B′1, . . . ,B′k. The
linear program in Theorem 5.5.5 is the linear programming relaxation to the above integer
program.

5.10.5 Proof Sketch of Theorem 5.6.1

Algorithm mcGAPS (F , B, V, k, m, c, λ)
At ← ∅ for all t; A ← ∅;
for i = 1 to m do

foreach s ∈ V \ A, 1 ≤ t ≤ k do
δt,s ← λFc(At ∪ {s}) + (1− λ)F (A ∪ B ∪ {s});

(t∗, s∗)← argmaxt,s δt,s;
At∗ ← At∗ ∪ {s∗}; A ← A∪ {s∗};

Algorithm 3: The greedy average-case placement and scheduling (mcGAPS) algo-
rithm.

Proof. We will modify eSPASS in the following way. The modified algorithm, mcSPASS
(see the pseudo code in Algorithm 4), will “guess” (binary search for) the value c∗ attained
by the optimal solution A∗. It will then guess (search for) the number ` of large elements
used in the optimal solution, where we redefine “large” as F ({s}) ≥ c∗

8 . For such a guess,
mcSPASS will first greedily select the ` large elements (according to F ), giving a set AG.
It will then set these large elements aside, and continue on the small elements. Define the
function

G(A1, . . . ,Ak) = (1− λ)(F (AG ∪ A)− F (AG)) +
λ

m− `
∑
i

min{F (Ai), c}

where A = A1 ∪ · · · ∪ Ak. mcSPASS will greedily maximize G on the partition matroid
(similarly to using GAPS). Suppose c∗ is the optimal value c∗ = F̂λ(A∗). Then the greedy
procedure will find a solution A′ such that G(A′) + (1 − λ)F (AG) ≥ 1

2c
∗ (since greedy

selection of big elements followed by greedy selection of small elements amounts to the
“local” greedy optimization over a partition matroid as analyzed by Fisher et al. [1978]).

Now, at least one of (1− λ)F (AG ∪ A′) ≥ c∗/8, or λ
m−`

∑
i F (A′i) ≥ 3c∗

8 , since G(A′) +
(1 − λ)F (AG) = (1 − λ)F (AG ∪ A′) + λ 1

l−m
∑

i F (A′i). In former case we do not need to
reallocate and set AR = A′. In latter case, we use the reallocation procedure, and arrive at
a solution AR where all buckets are satisfied (since A′ contains only small elements), i.e.,
mini F (AR,i) ≥ 3c∗

3·8 = c∗/8.
Now, AR ∪ AG is a feasible solution to the multicriterion SPASS problem, with

F̂λ(AR ∪ AG) = (1− λ)F (AG) +G(AR)
= (1− λ)F (AG ∪ AR) + λmin

i
F (AR,i) ≥ c∗/8.
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Algorithm mcSPASS (F , V, k, m, ε, λ)
cmin ← 0; cmax ← F (V); β ← 1/8;
while cmax − cmin ≥ ε do

for ` = 0 to k do
c← (cmax + cmin)/2;
B ← {s ∈ V : Fc({s}) ≥ βc};1

if |B| < ` then break;
Abig ← ∅;
for i = 1 to ` do
Abig ← argmaxs∈B\Abig F (Abig ∪ {s});
Ak−i+1 ← {s};

k′ ← k − `;
if k′ = 0 then Abest,` ← (A1, . . . ,Ak);

continue;
V ′ ← V \ Abig; m′ ← m− `;
A1:k′ ←mcGAPS (F,Abig,V ′, k′,m′, c, λ);2

if
∑

t F (At) < k′c/2 then cmax ← c; continue;3

else
while ∃i, j ≤ k′: Fc(Aj) ≤ βc, Fc(Ai) ≥ 3βc do4

foreach s ∈ Ai do
Aj ← Aj ∪ {s}; Ai ← Ai \ {s};
if Fc(Aj) ≥ βc then break;

Abest,` ← (A1, . . . ,Ak);
`∗ ← argmax` F̂λ(Abest,`);
cmin ← c; Abest ← Abest,`∗ ;

Algorithm 4: The mcSPASS algorithm for simultaneously optimizing scheduled and
high-density performance.
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Chapter 6

Estimating Traffic Statistics in a
Data Communication-Constrained
Setting

6.1 Introduction

Chapter 2 discussed two forms of inferring traffic variables for urban streets: mobile and
fixed smart sensors. In both cases, constraints on power consumption impose communica-
tion constraints for the sensing devices. One way of decreasing communication requirements
is by using local processing to process the inference. For example, the estimate of the mean
value of repeated measurements from a group of sensors can be obtained by averaging the
local mean estimates of each sensor.

Independently of how a measurement is made, we argued that statistical quantiles are
more meaningful than average estimators for characterizing the statistical process of the
dynamic variables involved. We are interested in creating order estimators that can reduce
data gathering requirements by using local processing. Order estimators are nonlinear and
therefore appropriate protocols for combining local estimates need to be defined.

There are two principal usage scenarios for estimating quantiles: for travel times from
individual vehicle measurements (mobile sensing) and for road section variables from em-
bedded smart sensors (fixed smart sensing).

To explain both scenarios we divide time into blocks of fixed size, and assume that the
statistical behavior of traffic is stationary for N consecutive blocks. In mobile sensing, we
assume a service provider is interested in offering real-time estimates of link travel time
quantiles. Groups of M vehicles cross a link during time n. In a real scenario, these are
the group observable vehicles due to privacy constraints. Each vehicle driver already has a
current estimate of the quantile of interest θn provided to him by the travel time service.
Driver m also independently experiences travel time Xn+1(m), but his device has limited
power therefore he is not willing to send Xn+1(m) to the provider as he gains no future
benefit from updates to θn. How can the service provider update θn to reflect new knowledge
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under this constraint? Notice that in this case the communication constraint is only in the
direction from the driver (i.e. sensor) to the service provider (i.e. fusion center).

In the fixed smart sensing scenario, M sensors are deployed in the link to measure
variables such as traffic flow. Each sensor makes an independent measurement Xn+1(m) at
time n, and both smart sensors and the fusion center objective is to achieve an estimate
of the quantile at time n. Sensors are battery operated and therefore communication is
constrained. Unlike in the mobile sensing scenario, the constraint is in both directions, as
usage of the radio to both send and receive information is costly. Is there a communication
efficient protocol for message exchange that allows sensors and fusion center to obtain
updated quantile estimates for each time n?

In this Chapter we investigate both these questions and provide efficient protocols to
achieve these goals. The protocols are, in a strictly defined sense, as efficient as in a situation
without any communication constraints showing that local computation can indeed provide
a mechanism to overcome data transfer constraints.

The remainder of the Chapter is organized as follows. We begin in Section 6.2 by
discussing existing literature on methods for decentralized inference. Section 6.3 describes
the required background on quantile estimation, and optimal rates in the centralized setting.
We then describe two algorithms for solving the corresponding decentralized version, and
provide an asymptotic characterization of their performance. These theoretical results are
complemented with empirical simulations. Section 6.6 contains the proofs of our main
results, and we conclude in Section 6.5 with a discussion.

6.2 Related Work

Whereas classical statistical inference is performed in a centralized manner, many mod-
ern scientific problems and engineering systems are inherently decentralized : data are dis-
tributed, and cannot be aggregated due to various forms of communication constraints. An
important example of such a decentralized system is a sensor network [Chong and Kumar,
2003]: a set of spatially-distributed sensors collect data about the environmental state (e.g.,
temperature, humidity or light). Typically, these networks are based on ad hoc deploy-
ments, in which the individual sensors are low-cost, and must operate under very severe
power constraints (e.g., limited battery life). In statistical terms, such communication con-
straints imply that the individual sensors cannot transmit the raw data; rather, they must
compress or quantize the data—for instance, by reducing a continuous-valued observation
to a single bit—and transmit only this compressed representation back to the fusion center.

By now, there is a rich literature in both information theory and statistical signal pro-
cessing on problems of decentralized statistical inference. A number of researchers, dating
back to the seminal paper of Tenney and Sandell [Tenney and Sandell, 1981], have studied
the problem of hypothesis testing under communication-constraints; see the survey pa-
pers [Tsitsiklis, 1993; Veeravalli et al., 1993; Blum et al., 1997; Viswanathan and Varshney,
1997; Chamberland and Veeravalli, 2004] and references therein for overviews of this line
of work. The hypothesis-testing problem has also been studied in the information the-
ory community, where the analysis is asymptotic and Shannon-theoretic in nature [Amari
and Han, 1989; Han and Kobayashi, 1989]. A parallel line of work deals with problem of
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decentralized estimation. Work in signal processing typically formulates it as a quantizer
design problem and considers finite sample behavior [Ayanoglu, 1990; Gubner, 1993]; in con-
trast, the information-theoretic approach is asymptotic in nature, based on rate-distortion
theory [Zhang and Berger, 1988; Han and Amari, 1998]. In much of the literature on de-
centralized statistical inference, it is assumed that the underlying distributions are known
with a specified parametric form (e.g., Gaussian). More recent work has addressed non-
parametric and data-driven formulations of these problems, in which the decision-maker is
simply provided samples from the unknown distribution [Nguyen et al., 2005; Luo, 2005;
Han et al., 1990]. For instance, Nguyen et al. [Nguyen et al., 2005] established statistical
consistency for non-parametric approaches to decentralized hypothesis testing based on re-
producing kernel Hilbert spaces. Luo [Luo, 2005] analyzed a non-parametric formulation
of decentralized mean estimation, in which a fixed but unknown parameter is corrupted
by noise with bounded support but otherwise arbitrary distribution, and shown that de-
centralized approaches can achieve error rates that are order-optimal with respect to the
centralized optimum.

This Chapter addresses a different problem in decentralized non-parametric inference—
namely, that of estimating an arbitrary quantile of an unknown distribution. Since there
exists no unbiased estimator based on a single sample, we consider the performance of a
network of m sensors, each of which collects total of n observations in a sequential manner.
Our analysis treats the standard fusion-based architecture, in which each of the m sensors
transmits information to the fusion center via a communication-constrained channel. More
concretely, at each of the n observation rounds, each sensor is allowed to transmit a single
bit to the fusion center, which in turn is permitted to send some number k bits of feedback.
For a decentralized protocol with k = log(m) bits of feedback, we prove that the algorithm
achieves the order-optimal rate of the best centralized method (i.e., one with access to
the full collection of raw data). We also consider a protocol that permits only a single
bit of feedback, and establish that it achieves the same rate. This single-bit protocol is
advantageous in that, with for a fixed target mean-squared error of the quantile estimate,
it yields longer sensor lifetimes than either the centralized or full feedback protocols.

6.3 Problem Set-up and Decentralized Algorithms

In this section, we begin with some background material on (centralized) quantile esti-
mation, before introducing our decentralized algorithms, and stating our main theoretical
results.

6.3.1 Centralized Quantile Estimation

We begin with the classical background on the problem of quantile estimation, and refer
the interested reader to Serfling [Serfling, 1980] for further details. Given a real-valued
random variable X, let F (x) : = P[X ≤ x] be its cumulative distribution function (CDF),
which is non-decreasing and right-continuous. For any 0 < α < 1, the αth-quantile of X is
defined as F−1(α) = θ(α) : = inf {x ∈ R | F (x) ≥ α}. Moreover, if F is continuous at α,
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then we have α = F (θ(α)). As a particular example, for α = 0.5, the associated quantile is
simply the median.

Now suppose that for a fixed level α∗ ∈ (0, 1), we wish to estimate the quantile θ∗ =
θ(α∗). Rather than impose a particular parameterized form on F , we work in a non-
parametric setting, in which we assume only that the distribution function F is differen-
tiable, so that X has the density function pX(x) = F ′(x) (w.r.t Lebesgue measure), and
moreover that pX(x) > 0 for all x ∈ R. In this setting, a standard estimator for θ∗ is
the sample quantile ξN (α∗) : = F−1

N (α∗) where FN denotes the empirical distribution func-
tion based on i.i.d. samples (X1, . . . , XN ). Under the conditions given above, it can be
shown [Serfling, 1980] that ξN (α∗) is strongly consistent for θ∗ (i.e., ξN

a.s.→ θ∗), and more-
over that asymptotic normality holds

√
N(ξN − θ∗)

d→ N
(

0,
α∗(1− α∗)
p2
X(θ∗)

)
, (6.3.1)

so that the asymptotic MSE decreases as O(1/N), where N is the total number of samples.
Although this 1/N rate is optimal, the precise form of the asymptotic variance (6.3.1) need
not be in general; see Zielinski [Zielinski, 2004] for in-depth discussion of the optimal asymp-
totic variances that can be obtained with variants of this basic estimator under different
conditions.

6.3.2 Distributed Quantile Estimation

We consider the standard network architecture illustrated in Figure 6.1. There are
m sensors, each of which has a dedicated two-way link to a fusion center. We assume
that each sensor i ∈ {1, . . . ,m} collects independent samples X(i) of the random variable
X ∈ R with distribution function F (θ) : = P[X ≤ θ]. We consider a sequential version of
the quantile estimation problem, in which sensor i receives measurements Xn(i) at time
steps n = 0, 1, 2, . . ., and the fusion center forms an estimate θn of the quantile. The key
condition—giving rise to the decentralized nature of the problem—is that communication
between each sensor and the central processor is constrained, so that the sensor cannot
simply relay its measurement X(i) to the central location, but rather must perform local
computation, and then transmit a summary statistic to the fusion center. More concretely,
we impose the following restrictions on the protocol. First, at each time step n = 0, 1, 2, . . .,
each sensor i = 1, . . . ,m can transmit a single bit Yn(i) to the fusion center. Second, the
fusion center can broadcast k bits back to the sensor nodes at each time step. We analyze
two distinct protocols, depending on whether k = log(m) or k = 1.

6.3.3 Protocol specification

For each protocol, all sensors are initialized with some fixed θ0. The algorithms are
specified in terms of a constant K > 0 and step sizes εn > 0 that satisfy the conditions

∞∑
n=0

εn =∞ and
∞∑
n=0

ε2n <∞. (6.3.2)
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Figure 6.1. Sensor network for quantile estimation with m sensors. Each sensor is permitted
to transmit a 1-bit message to the fusion center; in turn, the fusion center is permitted to
broadcast k bits of feedback.

The first condition ensures infinite travel (i.e., that the sequence θn can reach θ∗ from any
starting condition), whereas the second condition (which implies that εn → 0) is required
for variance reduction. A standard choice satisfying these conditions—and the one that
we assume herein—is εn = 1/n. With this set-up, the log(m)-bit scheme consists of the
steps given in Table 6.1. Although the most straightforward feedback protocol is to

Algorithm: Decentralized quantile estimation with log(m)-bit feedback
Given K > 0 and variable step sizes εn > 0:

(a) Local decision: each sensor computes the binary decision

Yn+1(i) ≡ Yn+1(i; θn) : = I(Xn+1(i) ≤ θn), (6.3.3)

and transmits it to the fusion center.

(b) Parameter update: the fusion center updates its current estimate θn+1 of the
quantile parameter as follows:

θn+1 = θn + εnK

(
α∗ −

∑m
i=1 Yn+1(i)

m

)
(6.3.4)

(c) Feedback: the fusion broadcasts the m received bits {Yn+1(1), . . . , Yn+1(m)} back
to the sensors. Each sensor can then compute the updated parameter θn+1.

Table 6.1: Description of the log(m)-bf algorithm.

broadcast back the m received bits {Yn+1(1), . . . , Yn+1(m)}, as described in step (c), in
fact it suffices to transmit only the log(m) bits required to perfectly describe the binomial
random variable

∑m
i=1 Yn+1(i) in order to update θn. In either case, after the feedback step,

each sensor knows the value of the sum
∑m

i=1 Yn+1(i), which (in conjunction with knowledge
of m, α∗ and εn) allow it to compute the updated parameter θn+1. Finally, knowledge of
θn+1 allows each sensor to then compute the local decision (6.3.3) in the following round.

The 1-bit feedback scheme detailed in Table 6.2 is similar, except that it requires broad-
casting only a single bit (Zn+1), and involves an extra step size parameter Km, which is
specified in the statement of Theorem 6.3.2. After the feedback step of the 1-bf algorithm,
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Algorithm: Decentralized quantile estimation with 1-bit feedback
Given Km > 0 (possibly depending on number of sensors m) and variable step sizes
εn > 0:

(a) Local decision: each sensor computes the binary decision

Yn+1(i) = I(Xn+1(i) ≤ θn) (6.3.5)

and transmits it to the fusion center.

(b) Aggregate decision and parameter update: The fusion center computes the aggre-
gate decision

Zn+1 = I
(∑m

i=1 Yn+1(i)
m

≤ α∗
)
, (6.3.6)

and uses it update the parameter according to

θn+1 = θn + εnKm (Zn+1 − β) (6.3.7)

where the constant β is chosen as

β =
bmα∗c∑
i=0

(
m

i

)
(α∗)i (1− α∗)m−i . (6.3.8)

(c) Feedback: The fusion center broadcasts the aggregate decision Zn+1 back to the
sensor nodes (one bit of feedback). Each sensor can then compute the updated
parameter θn+1.

Table 6.2: Description of the 1-bf algorithm.

each sensor has knowledge of the aggregate decision Zn+1, which (in conjunction with εn
and the constant β) allow it to compute the updated parameter θn+1. Knowledge of this
parameter suffices to compute the local decision (6.3.5).

6.3.4 Convergence results

We now state our main results on the convergence behavior of these two distributed
protocols. In all cases, we assume the step size choice εn = 1/n. Given fixed α∗ ∈ (0, 1),
we use θ∗ to denote the α∗-level quantile (i.e., such that P(X ≤ θ∗) = α∗); note that our
assumption of a strictly positive density guarantees that θ∗ is unique.

Theorem 6.3.1 (m-bit feedback). For any α∗ ∈ (0, 1), consider a random sequence {θn}
generated by the m-bit feedback protocol. Then
(a) For all initial conditions θ0, the sequence θn converges almost surely to the α∗-quantile
θ∗.
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(b) Moreover, if the constant K is chosen to satisfy pX(θ∗)K > 1
2 , then

√
n (θn − θ∗)

d→ N

(
0,
K2 α∗ (1− α∗)[
2KpX(θ∗)− 1

] 1
m

)
, (6.3.9)

so that the asymptotic MSE is O( 1
mn).

Remarks: After n steps of this decentralized protocol, a total of N = nm observations have
been made, so that our discussion in Section 6.3.1 dictates (see equation (6.3.1)) that the
optimal asymptotic MSE is O( 1

nm). Interestingly, then, the m-bit feedback decentralized
protocol is order-optimal with respect to the centralized gold standard.

Before stating the analogous result for the 1-bit feedback protocol, we begin by intro-
ducing some useful notation. First, we define for any fixed θ ∈ R the random variable

Ȳ (θ) : =
1
m

m∑
i=1

Y (i; θ) =
1
m

m∑
i=1

I(X(i) ≤ θ).

Note that for each fixed θ, the distribution of Ȳ (θ) is binomial with parameters m and F (θ).
It is convenient to define the function

Gm(r, y) : =
bmyc∑
i=0

(
m

i

)
ri (1− r)m−i, (6.3.10)

with domain (r, y) ∈ [0, 1]× [0, 1]. With this notation, we have

P(Ȳ (θ) ≤ y) = Gm(F (θ), y).

Again, we fix an arbitrary α∗ ∈ (0, 1) and let θ∗ be the associated α∗-quantile satisfying
P(X ≤ θ∗) = α∗.

Theorem 6.3.2 (1-bit feedback). Given a random sequence {θn} generated by the 1-bit
feedback protocol, we have

(a) For any initial condition, the sequence θn
a.s.−→ θ∗.

(b) Suppose that the step size Km is chosen such that Km >

√
2πα∗(1−α∗)

2pX(θ∗)
√
m

, or equivalently
such that

γm(θ∗) : = Km

∣∣∣∂Gm
∂r

(r;α∗)
∣∣
r=α∗

∣∣∣ pX(θ∗) >
1
2
, (6.3.11)

then
√
n (θn − θ∗)

d→ N

(
0,
K2
mGm(α∗, θ∗)

[
1−Gm(α∗, θ∗)

]
2γm(θ∗)− 1

)
(6.3.12)

(c) If we choose a constant step size Km = K, then as n→∞, the asymptotic variance
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behaves as [
K2
√

2πα∗(1− α∗)
8KpX(θ∗)

√
m− 4

√
2πα∗(1− α∗)

]
, (6.3.13)

so that the asymptotic MSE is O
(

1
n
√
m

)
.

(d) If we choose a decaying step size Km = K√
m

, then

1
m

[
K2
√

2πα∗(1− α∗)
8KpX(θ∗)− 4

√
2πα∗(1− α∗)

]
, (6.3.14)

so that the asymptotic MSE is O
(

1
nm

)
.

6.3.5 Comparative Analysis

It is interesting to compare the performance of each proposed decentralized algorithm to
the centralized performance. Considering first the m-bf scheme, suppose that we set K =
1/pX(θ∗). Using the formula (6.3.9) from Theorem 6.3.1, we obtain that the asymptotic
variance of the m-bf scheme with this choice of K is given by α∗ (1−α∗)

p2X(θ∗)
1
mn , thus matching

the asymptotics of the centralized quantile estimator (6.3.1). In fact, it can be shown that
the choice K = 1/pX(θ∗) is optimal in the sense of minimizing the asymptotic variance
for our scheme, when K is constrained by the stability criterion in Theorem 6.3.1. In
practice, however, the value pX(θ∗) is typically not known, so that it may not be possible to
implement exactly this scheme. An interesting question is whether an adaptive scheme could
be used to estimate pX(θ∗) (and hence the optimal K simultaneously), thereby achieving
this optimal asymptotic variance. We leave this question open as an interesting direction
for future work.

Turning now to the algorithm 1-bf, if we make the substitution K̄ = K/
√

2πα∗(1− α∗)
in equation (6.3.14), then we obtain the asymptotic variance

π

2
K̄2 α∗ (1− α∗)[
2K̄pX(θ∗)− 1

] 1
m
. (6.3.15)

Since the stability criterion is the same as that for m-bf, the optimal choice is K̄ = 1/pX(θ∗).
Consequently, while the (1/[mn]) rate is the same as both the centralized and decentralized
m-bf protocols, the pre-factor for the 1-bf algorithm is π

2 ≈ 1.57 times larger than the
optimized m-bf scheme. However, despite this loss in the pre-factor, the 1-bf protocol has
substantial advantages over the m-bf; in particular, the network lifetime scales as O(m)
compared to O(m/ log(m)) for the log(m)-bf scheme.

6.3.6 Simulation example

We now provide some simulation results in order to illustrate the two decentralized
protocols, and the agreement between theory and practice. In particular, we consider the
quantile estimation problem when the underlying distribution (which, of course, is unknown
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(a) (b) (c)
Figure 6.2. Convergence of θn to θ∗ with m = 11 nodes, and quantile level α∗ = 0.3.
(b) Log-log plots of the variance against m for both algorithms (log(m)-bf and 1-bf) with
constant step sizes, and theoretically-predicted rate. (b) Log-log plots of the variance against
m for log(m)-bf and 1-bf algorithms with constant step size. (c) Log-log plots of log(m)-bf
with constant step size versus 1-bf algorithm with decaying step size.

to the algorithm) is uniform on [0, 1] random. In this case, we have pX(x) = 1 uniformly
for all x ∈ [0, 1], so that taking the constant K = 1 ensures that the stability conditions in
both Theorem 6.3.1 and 6.3.2 are satisfied. We simulate the behavior of both algorithms
for α∗ = 0.3 over a range of choices for the network size m. Figure 6.2(a) illustrates several
sample paths of m-bit feedback protocol, showing the convergence to the correct θ∗.

For comparison to our theory, we measure the empirical variance by averaging the error
ên =

√
n(θn − θ∗) over L = 20 runs. The normalization by

√
n is used to isolate the effect

of increasing m, the number of nodes in the network. We estimate the variance by running
algorithm for n = 2000 steps, and computing the empirical variance of ên for time steps
n = 1800 through to n = 2000. Figure 6.2(b) shows these empirically computed variances,
and a comparison to the theoretical predictions of Theorems 6.3.1 and 6.3.2 for constant
step size; note the excellent agreement between theory and practice. Panel (c) shows the
comparison between the log(m)-bf algorithm, and the 1-bf algorithm with decaying 1/

√
m

step size. Here the asymptotic MSE of both algorithms decays like 1/m for logm up to
roughly 500; after this point, our fixed choice of n is insufficient to reveal the asymptotic
behavior.

6.4 Some Extensions

In this section we consider some extensions of the algorithms and analysis from the
preceding sections, including variations in the number of feedback bits, and the effects of
noise.

6.4.1 Different levels of feedback

We first consider the generalization of the preceding analysis to the case when the fusion
center communicates some number of bits between 1 and m. The basic idea is to apply
a quantizer with 2` levels, corresponding to log2(2`) bits, on the update of the stochastic
gradient algorithm. Note that the extremes ` = 1 and ` = 2m−1 correspond to the previously
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studied protocols. Given 2` levels, we partition the real line as

−∞ = s−` < s−`+1 < . . . < s`−1 < s` = +∞, (6.4.1)

where the remaining breakpoints {sk} are to be specified. With this partition fixed, we
define a quantization function Q`

Q`(X) : = rk if X ∈ (sk, sk+1] for k = −`, . . . , `− 1, (6.4.2)

where the 2` quantized values (r−`, . . . , r`−1) are to be chosen. In the setting of the algorithm
to be proposed, the quantizer is applied to binomial random variables X with parameters
(m, r). Recall the function Gm(r, x), as defined in equation (6.3.10), corresponding to the
probability P[X ≤ mx]. Let us define a new function Gm,`, corresponding to the expected
value of the quantizer when applied to such a binomial variate, as follows

Gm,`(r, x) : =
`−1∑
k=−`

rk {Gm(r, x− sk)−Gm(r, x− sk+1)} . (6.4.3)

With these definitions, the general log2(2`) feedback algorithm takes the form shown in
Table 6.3.

In order to understand the choice of the offset parameter β defined in equation (6.4.7),
we compute the expected value of the quantizer function, when θn = θ∗, as follows

E
[
Q`
[
α∗ −

∑m
i=1 Yn+1(i)

m

]
| θn = θ∗

]
=

`−1∑
k=−`

rkP
[
(α∗ − sk+1) <

Ȳ (θ∗)
m

≤ (α∗ − sk)
]

=
`−1∑
k=−`

rk [Gm(F (θ∗), α∗ − sk)−Gm(F (θ∗), α∗ − sk+1)]

= Gm,`(F (θ∗), α∗).

The following result, analogous to Theorem 6.3.2, characterizes the behavior of this general
protocol:

Theorem 6.4.1 (General feedback scheme). Given a random sequence {θn} generated by
the general log2(2`)-bit feedback protocol, there exist choices of partition {sk} and quantiza-
tion levels {rk} such that:

(a) For any initial condition, the sequence θn
a.s.−→ θ∗.

(b) There exists a choice of decaying step size (i.e., Km � 1√
m

) such that the asymptotic

variance of the protocol is given by κ(α∗,Q`)
mn , where the constant has the form

κ(α∗,Q`) : = 2π
∑`−1

k=−` r
2
k∆Gm(sk, sk+1)− β2∑`−1

k=−` rk∆m(sk, sk+1)
, (6.4.8)
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Algorithm: Decentralized quantile estimation with log2(2`)-bits feedback
Given Km > 0 (possibly depending on number of sensors m) and variable step sizes
εn > 0:

(a) Local decision: each sensor computes the binary decision

Yn+1(i) = I(Xn+1(i) ≤ θn) (6.4.4)

and transmits it to the fusion center.

(b) Aggregate decision and parameter update: The fusion center computes the quan-
tized aggregate decision variable

Zn+1 = Q`
[
α∗ −

∑m
i=1 Yn+1(i)

m

]
, (6.4.5)

and uses it update the parameter according to

θn+1 = θn + εnKm (Zn+1 − β) (6.4.6)

where the constant β is chosen as

β : = Gm,`(F (θ∗), α∗). (6.4.7)

(c) Feedback: The fusion center broadcasts the aggregate quantized decision Zn+1

back to the sensor nodes, using its log2(2`) bits of feedback. The sensor nodes can
then compute the updated parameter θn+1.

Table 6.3: Description of the general algorithm, with log2(2`) bits of feedback.

with

∆Gm(sk, sk+1) = Gm(F (θ∗), α∗ − sk)−Gm(F (θ∗), α∗ − sk+1), and

∆m(sk, sk+1) = exp
(
−

ms2
k

2α∗(1− α∗)

)
− exp

(
−

ms2
k+1

2α∗(1− α∗)

)
.

We provide a formal proof of Theorem 6.4.1 in Section 6.6. Figure 6.3(a) illustrates how
the constant factor κ, as defined in equation (6.4.8) decreases as of levels ` in an uniform
quantizer is increased. Note

In order to provide comparison with results from the previous section, let us see how the
two extreme cases (1 bit and m feedback) can be obtained as special case. For the 1-bit
case, the quantizer has ` = 1 levels with breakpoints s−1 = −∞, s0 = 0, s1 = +∞, and
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quantizer outputs r−1 = 0 and r1 = 1. By making the appropriate substitutions, we obtain:

κ(α∗,Q1) = 2π
∆Gm(s0, s1)− β2

∆m(s0, s1)
, β2 = Gm,`(F (θ∗), α∗)2,

∆Gm(s0, s1) = Gm,`(F (θ∗), α∗) and ∆m(s0, s1)) = 1.

By applying the central limit theorem, we conclude that

∆Gm(s0, s1)− β2 = Gm,`(F (θ∗), α∗)(1−Gm,`(F (θ∗), α∗))→ 1/4,

as established earlier. Thus κ(α∗,Q1) → π/2 as m → ∞, recovering the result of Theo-
rem 6.3.2. Similarly, the results for m-bf can be recovered by setting the parameters

rk−` = α∗ − k

m
, for k = 0, ...,M, and

si = ri. (6.4.10)

(a) (b)
Figure 6.3. (a) Plots of the asymptotic variance κ(α∗,Q`) defined in equation (6.4.8) versus
the number of levels ` in a uniform quantizer, corresponding to log2(2`) bits of feedback, for
a sensor network with m = 4000 nodes. The plots show the asymptotic variance rescaled by
the centralized gold standard, so that it starts at π/2 for ` = 2, and decreases towards 1 as
` is increased towards m/2. (b) Plots of the asymptotic variances Vm(ε) and V1(ε) defined
in equation (6.4.13) as the feedforward noise parameter ε is increased from 0 towards 1

2 .

6.4.2 Extensions to noisy links

We now briefly consider the effect of communication noise on our algorithms. There
are two types of noise to consider: (a) feedforward, meaning noise in the link from sensor
node to fusion center, and (b) feedback, meaning noise in the feedback link from fusion
center to the sensor nodes. Here we show that feedforward noise can be handled in a
relatively straightforward way in our algorithmic framework. On the other hand, feedback
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noise requires a different analysis, as the different sensors may loose synchronicity in their
updating procedure. Although a thorough analysis of such asynchronicity is an interesting
topic for future research, we note that assuming noiseless feedback is not unreasonable,
since the fusion center typically has greater transmission power.

Focusing then on the case of feedforward noise, let us assume that the link between each
sensor and the fusion center acts as a binary symmetric channel (BSC) with probability
ε ∈ [0, 1

2). More precisely, if a bit x ∈ {0, 1} is transmitted, then the received bit y has the
(conditional) distribution

P(y | x) =

{
1− ε if x = y

ε if x 6= y.
(6.4.11)

With this bit-flipping noise, the updates (both equation (6.3.4) and (6.3.7)) need to be
modified so as to correct for the bias introduced by the channel noise. If α∗ denotes the
desired quantile, then in the presence of BSC(ε) noise, both algorithms should be run with
the modified parameter

α̃(ε) : = (1− 2ε)α∗ + ε. (6.4.12)

Note that α̃(ε) ranges between α∗ (for the noiseless case ε = 0), to a quantity arbitrarily
close to 1

2 , as the channel approaches the extreme of pure noise (ε = 1
2). The following

lemma shows that for all ε < 1
2 , this adjustment (6.4.12) suffices to correct the algorithm.

Moreover, it specifies how the resulting asymptotic variance depends on the noise parameter:

Proposition 6.4.1. Suppose that each of the m feedforward links from sensor to fusion
center are modeled as i.i.d. BSC channels with probability ε ∈ [0, 1

2). Then the m-bf or 1-bf
algorithms, with the adjusted α̃(ε), are strongly consistent in computing the α∗-quantile.
Moreover, with appropriate step size choices, their asymptotic MSEs scale as 1/(mn) with
respective pre-factors given by

Vm(ε) : =
K2 α̃(ε) (1− α̃(ε))[

2K(1− 2ε)pX(θ∗)− 1
] (6.4.13a)

V1(ε) : =

[
K2
√

2πα̃(ε)(1− α̃(ε))
8K(1− 2ε)pX(θ∗)− 4

√
2πα̃(ε)(1− α̃(ε))

]
. (6.4.13b)

In both cases, the asymptotic MSE is minimal for ε = 0.

Proof: If sensor node i transmits a bit Yn+1(i) at round n + 1, then the fusion center
receives the random variable

Ỹn+1(i) = Yn+1(i)⊕Wn+1,

where Wn+1 is Bernoulli with parameter ε, and ⊕ denotes addition modulo two. Since
Wn+1 is independent of the transmitted bit (which is Bernoulli with parameter F (θn)), the
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received value Ỹn+1(i) is also Bernoulli, with parameter

ε ∗ F (θn) = ε (1− F (θn)) + (1− ε)F (θn) = ε+ (1− 2ε)F (θn). (6.4.14)

Consequently, if we set α̃(ε) according to equation (6.4.12), both algorithms will have their
unique fixed point when F (θ) = α∗, so will compute the α∗-quantile of X. The claimed
form of the asymptotic variances follows from by performing calculations analogous to the
proofs of Theorems 6.3.1 and 6.3.2. In particular, the partial derivative with respect to θ
now has a multiplicative factor (1− 2ε), arising from equation (6.4.14) and the chain rule.
To establish that the asymptotic variance is minimized at ε = 0, it suffices to note that the
derivative of the MSE with respect to ε is positive, so that it is an increasing function of ε.

�
Of course, both the algorithms will fail, as would be expected, if ε = 1/2 corresponding

to pure noise. However, as summarized in Proposition 6.4.1, as long as ε < 1
2 , feedforward

noise does not affect the asymptotic rate itself, but rather only the pre-factor in front of
the 1/(mn) rate. Figure 6.3(b) shows how the asymptotic variances Vm(ε) and V1(ε) as ε is
increased towards ε = 1

2 .

6.5 Discussion

In this Chapter, we have proposed and analyzed different approaches to the problem of
decentralized quantile estimation under communication constraints. Our analysis focused on
the fusion-centric architecture, in which a set of m sensor nodes each collect an observation
at each time step. After n rounds of this process, the centralized oracle would be able to
estimate an arbitrary quantile with mean-squared error of the order O(1/(mn)). In the
decentralized formulation considered here, each sensor node is allowed to transmit only a
single bit of information to the fusion center. We then considered a range of decentralized
algorithms, indexed by the number of feedback bits that the fusion center is allowed to
transmit back to the sensor nodes. In the simplest case, we showed that an logm-bit
feedback algorithm achieves the same asymptotic variance O(1/(mn)) as the centralized
estimator. More interestingly, we also showed that that a 1-bit feedback scheme, with
suitably designed step sizes, can also achieve the same asymptotic variance as the centralized
oracle. We also showed that using intermediate amounts of feedback (between 1 and m bits)
does not alter the scaling behavior, but improves the constant. Finally, we showed how our
algorithm can be adapted to the case of noise in the feedforward links from sensor nodes to
fusion center, and the resulting effect on the asymptotic variance.

Our analysis in this Chapter has focused only on the fusion center architecture illustrated
in Figure 6.1. A natural generalization is to consider a more general communication network,
specified by an undirected graph on the sensor nodes. One possible formulation is to allow
only pairs of sensor nodes connected by an edge in this communication graph to exchange a
bit of information at each round. In this framework, the problem considered in this Chapter
effectively corresponds to the complete graph, in which every node communicates with every
other node at each round. This more general formulation raises interesting questions as to
the effect of graph topology on the achievable rates and asymptotic variances.
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6.6 Proofs

In this section, we turn to the proofs of Theorem 6.3.1 and 6.3.2, which exploit results
from the stochastic approximation literature [Kushner and Yin, 1997; Benveniste et al.,
1990]. In particular, both types of parameter updates (6.3.4) and (6.3.7) can be written in
the general form

θn+1 = θn + εnH(θn, Yn+1), (6.6.1)

where Yn+1 = (Yn+1(1), . . . Yn+1(m)). Note that the step size choice εn = 1/n satisfies the
conditions in equation (6.3.2). Moreover, the sequence (θn, Yn+1) is Markov, since θn and
Yn+1 depend on the past only via θn−1 and Yn. We begin by stating some known results
from stochastic approximation, applicable to such Markov sequences, that will be used in
our analysis.

In addition to these assumptions, convergence requires an additional attractiveness con-
dition. For each fixed θ ∈ R, let µθ( · ) denote the distribution of Y conditioned on θ. A key
quantity in the analysis of stochastic approximation algorithms is the averaged function

h(θ) : =
∫
H(θ, y)µθ(dy) = E [H(θ, Y ) | θ] . (6.6.2)

We assume (as is true for our cases) that this expectation exists. Now the differential
equation method dictates that under suitable conditions, the asymptotic behavior of the
update (6.6.1) is determined essentially by the behavior of the ODE dθ

dt = h(θ(t)).
Almost sure convergence: Suppose that the following attractiveness condition

h(θ) [θ − θ∗] < 0 for all θ 6= θ∗ (6.6.3)

is satisfied. If, in addition, the variance R(θ) : = Var[H(θ;Y ) | θ] is bounded, then we are
are guaranteed that θn

a.s.→ θ∗ (see §5.1 in [Benveniste et al., 1990]).
Asymptotic normality: In our updates, the random variables Yn take the form Yn =
g(Xn, θn) where the Xn are i.i.d. random variables. Suppose that the following stability
condition is satisfied:

γ(θ∗) : = −dh
dθ

(θ∗) >
1
2
. (6.6.4)

Then we have

√
n (θn − θ∗)

d→ N
(

0,
R(θ∗)

2γ(θ∗)− 1)

)
(6.6.5)

See §3.1.2 in [Benveniste et al., 1990] for further details.

6.6.1 Proof of Theorem 6.3.1

(a) The m-bit feedback algorithm is a special case of the general update (6.6.1), with εn = 1
n

and H(θn, Yn+1) = K
[
α∗ − 1

m

∑m
i=1 Yn+1(i; θn)

]
. Computing the averaged function (6.6.2),
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we have

h(θ) = KE

[
α∗ − 1

m

m∑
i=1

Yn+1(i) | θn

]
= K (α∗ − F (θn)) ,

where F (θn) = P(X ≤ θn). We then observe that θ∗ satisfies the attractiveness condi-
tion (6.6.3), since

[θ − θ∗]h(θn) = K [θ − θ∗] [α∗ − F (θn)] < 0

for all θ 6= θ∗, by the monotonicity of the cumulative distribution function. Finally, we
compute the conditional variance of H as follows:

R(θn) = K2Var
[
α∗ −

∑m
i=1 Yn+1(i)

m
| θn
]

=
K2

m
F (θn) [1− F (θn)] ≤ K2

4m
, (6.6.6)

using the fact that H is a sum of m Bernoulli variables that are conditionally i.i.d. (given
θn). Thus, we can conclude that θn → θ∗ almost surely.
(b) Note that γ(θ∗) = −dh

dθ (θ∗) = KpX(θ∗) > 1
2 , so that the stability condition (6.6.4)

holds. Applying the asymptotic normality result (6.6.5) with the variance R(θ∗) = K2

m α∗(1−
α∗) (computed from equation (6.6.6)) yields the claim.

�

6.6.2 Proof of Theorem 6.3.2

This argument involves additional analysis, due to the aggregate decision (6.3.6) taken
by the fusion center. Since the decision Zn+1 is a Bernoulli random variable; we begin by
computing its parameter. Each transmitted bit Yn+1(i) is Ber(F (θn)), where we recall the
notation F (θ) : = P(X ≤ θ). Using the definition (6.3.10), we have the equivalences

P(Zn+1 = 1) = Gm(F (θn), α∗) (6.6.7a)
β = Gm(α∗, α∗) = Gm(F (θ∗), α∗). (6.6.7b)

We start with the following result.

Lemma 6.6.1. For fixed x ∈ [0, 1], the function f(r) : = Gm(r, x) is non-negative, differ-
entiable and monotonically decreasing.

Proof: Non-negativity and differentiability are immediate. To establish monotonicity, note
that f(r) = P(

∑m
i=1 Yi ≤ xm), where the Yi are i.i.d. Ber(r) variates. Consider a second

Ber(r′) sequence Y ′i with r′ > r. Then the sum
∑m

i=1 Y
′
i stochastically dominates

∑m
i=1 Yi,

so that f(r) < f(r′) as required.
�
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To establish almost sure convergence, we use a similar approach as in the previous
theorem. Using the equivalences (6.6.7), we compute the function h as follows

h(θ) = KmE [Zn+1 − β | θ]
= Km [Gm(F (θ), α∗)−Gm(F (θ∗), α∗)] .

Next we establish the attractiveness condition (6.6.3). In particular, for any θ such that
F (θ) 6= F (θ∗), we calculate that h(θ) [θ − θ∗] is given by

Km

{
Gm(F (θn), α∗)−Gm(F (θ∗), α∗)

}
[θn − θ∗] < 0,

where the inequality follows from the fact that Gm(r, x) is monotonically decreasing in r
for each fixed x ∈ [0, 1] (using Lemma 6.6.1), and that the function F is monotonically
increasing. Finally, computing the variance R(θ) : = Var [H(θ, Y ) | θ], we have

R(θ) = K2
mGm(F (θ), α∗) [1−Gm(F (θ), α∗)] ≤ K2

m

4
,

since (conditioned on θ), the decision Zn+1 is Bernoulli with parameter Gm(F (θ);α∗). Thus,
we can conclude that θn → θ∗ almost surely.
(b) To show asymptotic normality, we need to verify the stability condition. By chain rule,
we have h

dθ (θ∗) = Km
∂Gm
∂r (r, α∗)

∣∣∣
r=F (θ)

pX(θ). From Lemma 6.6.1, we have ∂Gm
∂r (F (θ), α∗) <

0, so that the stability condition holds as long as γm(θ∗) > 1
2 (where γm is defined in the

statement). Thus, asymptotic normality holds.
In order to compute the asymptotic variance, we need to investigate the behavior of

R(θ∗) and γ(θ∗) as m→ +∞. First examining R(θ∗), the central limit theorem guarantees
that Gm(F (θ∗), y)→ Φ

(√
m y−α∗
α∗(1−α∗)

)
. Consequently, we have

R(θ∗) = K2
mGm(F (θ∗), α∗) [1−Gm(F (θ∗), α∗)]→ K2

m

4
.

We now turn to the behavior of γ(θ∗). We first prove a lemma to characterize the
asymptotic behavior of Gm(r, α∗):

Lemma 6.6.2. (a) The partial derivative of Gm(r, x) with respect to r is given by:

∂Gm(r, x)
∂r

=
E[XI(X ≤ xm)]− E[X]E[I(X ≤ xm)]

r(1− r)
, (6.6.8)

where X is binomial with parameters (m,x), and mean E[X] = xm.
(b) Moreover, as m→ +∞, we have

∂Gm(r, α∗)
∂r

∣∣
r=F (θ∗)

→ −
√

m

2πα∗(1− α∗)
.
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Proof: (a) Computing the partial derivative, we have

∂Gm(r, x)
∂r

=
bmα∗c∑
i=0

(
m

i

)[
iri−1(1− r)m−i − (m− i)ri(1− r)m−i−1

]
=

1
r(1− r)

bmxc∑
i=0

(
m
i

)
(i−mr)ri(1− r)m−i

=
1

r(1− r)

bmxc∑
i=0

(
m
i

)
ri(1− r)m−i −mr

bmxc∑
i=0

(
m
i

)
ri(1− r)m−i


=

1
r(1− r)

(E[XI(X ≤ mx)]− E[X]E[I(X ≤ mx)]) ,

as claimed.
(b) We derive this limiting behavior by applying classical asymptotics to the form of
∂Gm(r,α∗)

∂r given in part (a). Defining Zm = X−α∗m√
m

, the central limit theorem yields that:

Zm
d→ Z ∼ N(0, a) (6.6.9)

a : = α∗ (1− α∗)

Moreover, in this binomial case, we actually have E[|Zm|]→ E[|Z|] =
√

2a
π .

First, since E[X] = α∗m and E[I(X ≤ α∗m)]→ 1
2 by the CLT, we have

E[X] E[I(X ≤ α∗m)] → α∗m

2
. (6.6.10)

Let us now re-write the first term in the representation (6.6.8) of ∂Gm(r,α∗)
∂r as

E[XI(X ≤ α∗m)] = α∗mE[I(X ≤ α∗m)] +
√
mE[Zm I(Zm ≤ 0)]

→ α∗m

2
−
√
m

√
a

2π
(6.6.11)

since E[I(X ≤ α∗m)]→ 1/2 and

E[Zm I(Zm ≤ 0)] → E[ZI(Z ≤ 0)] =
1
2

E[|Z|] =
√

a

2π
.

Putting together the limits (6.6.10) and (6.6.11), we conclude that ∂Gm(r,α∗)
∂r

∣∣
r=α∗

converges
to

1
α∗(1− α∗)

[{
α∗m

2
−
√
m

√
α∗ (1− α∗)

2π

}
− α∗m

2

]
= −

√
m

2πα∗(1− α∗)
,

as claimed. �
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Returning now to the proof of the theorem, we use Lemma 6.6.2 and put the pieces
together to obtain that R(θ∗)

2Km

˛̨̨
∂Gm(r,θ∗)

∂r

∣∣
r=α∗

˛̨̨
pX(θ∗)−1

converges to

K2
m/4

2Km
√
mpX(θ∗)√

2πα∗(1−α∗)
− 1

=
1
m

[
K2
√

2πα∗(1− α∗)
8KpX(θ∗)− 4

√
2πα∗(1− α∗)

]
,

with K >

√
2πα∗(1−α∗)
2pX(θ∗) for stability, thus completing the proof of the theorem.

�

6.6.3 Proof of Theorem 6.4.1

We proceed in an analogous manner to the proof of Theorem 6.3.1:

Lemma 6.6.3. For fixed x ∈ [0, 1], the function Gm,`(r, x) is non-negative, differentiable
and monotonically decreasing.

Proof: Some straightforward algebra using the results of Lemma 6.6.2 shows that the
partial derivative ∂Gm,`(r,x)

∂r is

1
r(1− r)

`−1∑
k=−`

rk

{
E
[
X I

(
x− sk+1 ≤

X

m
≤ x− sk

)]
− E[X] P

[
x− sk+1 ≤

X

m
≤ x− sk

]}
,

(6.6.12)
which can be seen to be non-positive. �

The finiteness of the variance of the quantization step is clear by construction; more
specifically, a crude upper bound is r2

` . Thus, analogous to the previous theorems, Lemma 6.6.3
is used to establish almost sure convergence.

To compute the asymptotic variance, we again exploit asymptotic normality (see equa-
tion (6.6.9)) as before:

E[XI(m(α∗ − sk+1) ≤ X ≤ m(α∗ − sk))] = E
[
XI
(
−
√
msk+1 ≤

X − α∗m√
m

≤ −
√
msk

)]
=
√
mE

[
(Z + α∗

√
m)I

(
−
√
msk+1 ≤ Z ≤ −

√
msk

)]
=
√
mE

[
ZI
(
−
√
msk+1 ≤ Z ≤ −

√
msk

)]
+ S

→ −
√
m

∫ √msk+1

√
msk

z
exp

(
−z2
2a

)
√

2πa
dz + S,

where
S : = E[X]P (m(x− sk+1) ≤ X ≤ m(x− sk)).

Solving the integral above:

∆m(sk, sk+1) =

(
exp

(
−

ms2
k

2α∗(1− α∗)

)
− exp

(
−

ms2
k+1

2α∗(1− α∗)

))
.
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Thus, plugging into Equation 6.6.12, noticing that S cancels:

∂Gm,`(r, α∗)
∂r

∣∣
r=F (θ∗)

→ −
√

m

2πα∗(1− α∗)

`−1∑
k=−`

rk∆m(sk, sk+1).

A side note is that if one chooses s0 = 0, we are guaranteed that at least one ∆m(sk, sk+1)
does not go to zero in a fixed quantizer (i.e. a quantizer where the levels sk do not depend on
m). But the correction factor expression, and as a matter of fact, the optimum quantization
of Gaussian, suggests that the levels sk scale as 1/

√
m. In this case, the factor is a constant,

independent of m.
We now need to compute R(θ∗) for the quantized updated. It is also straightforward to

see that this quantity is given by:

R(θ∗) = K2
m

`−1∑
k=−`

r2
k(Gm(F (θ∗), α∗ − sk)−Gm(F (θ∗), α∗ − sk+1))− β2.

Putting everything together we obtain the asymptotic variance estimate for the more
general quantizer converges to:

R(θ∗)

2Km

∣∣∣∂Gm,`(r,θ∗)∂r

∣∣
r=α∗

∣∣∣ pX(θ∗)− 1
→

K2
m

∑`−1
k=−` r

2
k(Gm(F (θ∗), α∗ − sk)−Gm(F (θ∗), α∗ − sk+1))− β2

2Km
√
m
P`−1
k=−` rk∆m(sk,sk+1)pX(θ∗)√

2πα∗(1−α∗)
− 1

.

Set a gain K =
Km
√
m
P`−1
k=−` rk∆m(sk,sk+1)√
2πα∗(1−α∗)

and we have the final expression for the vari-
ance:

2π
∑`−1

k=−` r
2
k∆Gm(sk, sk+1)− β2∑`−1

k=−` rk∆m(sk, sk+1)

[
K2α∗(1− α∗)
2KpX(θ∗)− 1

1
m

]
,

where ∆Gm(sk, sk+1) = Gm(α∗, α∗ − sk) − Gm(α∗, α∗ − sk+1). The constant κ(α∗,Q`)
defines the performance of the algorithm for different quantization choices:

κ(α∗,Q`) = 2π
∑`−1

k=−` r
2
k∆Gm(sk, sk+1)− β2∑`−1

k=−` rk∆m(sk, sk+1)
.

The rate with respect to m is the same, independent of quantization. It is clear from
previous analysis that if the best quantizers are chosen 1 ≤ κ(α∗,Q`) ≤ 2π

4 . Obviously
κ(α∗,Q`) over the class of optimal quantizers is a decreasing function of `.

�
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Chapter 7

Real-time measurement of link
vehicle count and travel time in a
road network

7.1 Introduction

In Chapter 2 we saw that a road network is an interconnection of links such as freeway
sections, on- and off-ramps, and urban road segments. At any time a link has a certain
spatial occupancy or vehicle count, the number of vehicles in the link. At the prevailing
speed the number of vehicles that will move from an upstream link depends on its vehicle
count, and the number of vehicles that a downstream link can accept is limited by the
downstream link vehicle count. Thus the state of the road network at any time consists of
the vehicle count and speed (or travel time) in every link.

At some link interconnection junctions, vehicle movement is controlled by programmable
field elements such as intersection signals, ramp-metering signals, and message signs an-
nouncing emergency conditions, speed limits, tolls, and travel time estimates.

The evolution of traffic in the road network is governed by its state and the signal set-
tings and messages selected by the algorithms being executed in the field elements. These
selections are based on an estimate of the current network state. The better the quality of
this estimate, the more effectively can algorithms improve road network performance. Be-
cause current detectors (loops, video, radar) measure vehicle volume, speed, and occupancy
at fixed locations, they cannot directly measure the state of a road network.

We describe a system that measures the link vehicle count and travel time of a road
network in real time. The system deploys magnetic wireless sensors at the ends of links.
As vehicles move over the sensors, their magnetic signatures are recorded and a matching
procedure is used to track their movement. A very efficient algorithm calculates optimum
matchings. The system is tested in an urban arterial road segment. This appears to be
the first reliable and cost effective means for measuring vehicle counts and travel times in
arterial roads and freeways.
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Related prior work is summarized in Section 7.2. The test site and the measurement
system are described in Section 7.3. The matching problem and the statistical model used
to evaluate matching algorithms occupy Section 7.4. Optimal matching algorithms are
presented in Section 7.5. A method to calibrate the statistical signature model is given in
Section 7.6. A real time extension of the matching algorithm is described in Section 7.7.
Empirical results and an evaluation of the algorithm’s performance are presented in Section
7.9. Conclusions and directions for future work can be found in Section 7.10.

7.2 Related Work

Schemes for estimating travel times based on matching inductive loop signatures at two
detector locations were demonstrated in Sun et al. [1999]; Oh and Ritchie [2002]; Ndoye
et al. [2008]. All require an independent speed measurement that is used to ‘normalize’
the signature waveform, assuming constant vehicle speed. If a vehicle is accelerating or
decelerating, this assumption is invalid and, as Ndoye et al. [2008] report, the rate of correct
matching then drops drastically. Lengths of vehicles in platoons at the two locations are
compared in Coifman [1999], also requiring an independent speed measurement. None of
these schemes would work satisfactorily in a link with traffic signals causing stop-and-go
movement. Platoon vehicle lengths used in Coifman [1999] and platoon vehicle colors used
in Sun et al. [2004] would not work well for the additional reason that intersections would
break platoons up. Vehicles can be re-identified by matching unique tags or license plates;
but besides raising privacy concerns, these schemes require mounting an overhead camera
or tag reader in each lane making it too expensive to deploy over an arterial network.

The method of Skabardonis and Geroliminis [2005] estimates the average travel time
across a signalized link based on a kinematic wave model, using 30-second flow and oc-
cupancy measurements from an upstream loop detector and the exact times of the red
and green phases. The similar method of Liu and Ma [2008] uses the exact time each ve-
hicle crosses the detector. The two approaches require precise signal phase times, which
must be synchronized with the detector times. For a link with multiple intersections, each
intersection must be instrumented, which is expensive.

The system presented here requires no information about signal timings and does not
require every intersection to be instrumented. Furthermore, it gives individual vehicle travel
times and, unlike all these methods, also measures link vehicle counts. The use of the system
to deduce signal phases and measure arterial performance is discussed in detail in Kwong
et al. [2008].

7.3 Measuring Link Vehicle Count and Travel Time

On the left in Figure 7.1 is a map of the 0.9 mile-long test segment of southbound San
Pablo Avenue in Albany, CA, starting at A (Fairmount) and ending at D (Buchanan).
The segment is divided into three links, A → B, B → C, C → D. Link A → B spans
four signalized intersections (the three circles plus the intersection at Washington), links
B → C and C → D each span one signalized intersection. Sensors at A,B,C, and D are
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Figure 7.1: Vehicle re-identification by signature matching.

located immediately downstream (12m) of the corresponding intersection. Thus each link
is delimited by one upstream and one downstream sensor.

As a vehicle crosses a sensor, it numbers the vehicle consecutively, registers the time, and
records its magnetic signature (described more fully in Section 7.4). Thus the upstream
sensor generates a triple (i, si, Xi) for each vehicle: (5, s5, X5), (6, s6, X6), · · · ; the down-
stream sensor generates triples (j, tj , Yj) : (18, t18, Y18), (19, t19, Y19), · · · . The measurement
triples are sent via radio to an Access Point (AP) on the side of the road.

The AP matches the signatures in real time. As suggested by the figure, upstream
vehicle 5 is the same as downstream vehicle 18, that is, their signatures X5 and Y18 match;
similarly, X6 and Y19 match. On the other hand, upstream vehicle i = 7 has turned away
from the lane before reaching the downstream sensor; similarly τ → Y20 indicates that
downstream vehicle j = 20 turned into the lane but did not cross the upstream sensor.

We now describe how the AP estimates link vehicle count and travel time. At any time t,
the AP finds the number K of the most recent upstream vehicle that was registered before
t (K = 140 in the figure) and the number I of the most recent upstream vehicle that was
matched with a downstream signature J (I = 6, J = 19). Then the number of vehicles in
the link at time t is estimated as K−I (140−6 = 134), and the link travel time of the most
recent departing vehicle is tJ − sI (t19 − s6). This ‘vehicle re-identification via signature
matching’ scheme gives in real time the link vehicle count and travel time.

We can bound the vehicle count measurement error assuming that every vehicle is de-
tected, which is justified [Haoui et al., 2008b], but some vehicle matches may be missed.
The index K of the most recent upstream vehicle is then correct. But the most recent
upstream vehicle Imax ≥ I that leaves before t may be missed by the matching algorithm.
Hence, if there are no turning movements, the true vehicle count N(t) is

N(t) = K − Imax ≤ K − I.

Equality will not hold if I < Imax, which happens when upstream vehicle Imax is not
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Figure 7.2: Raw z-axis magnetic signal recorded by a vehicle and peak values.

matched. If the matching probability is p, on average Imax − I = p−1 − 1, so if p > 0.5
(which it is in the test results), the estimate K−I differs from N(t) by at most 1 on average.

If there are turning movements, the bound changes to

N(t) ≤ K − I − nout + nin,

in which nout is the number of upstream vehicles with index between I and K (like i = 7
in the figure) that turned before reaching the downstream sensor, and nout is the number
of vehicle with index larger than J (like j = 20) that came into the link without crossing
the upstream vehicle.

7.4 Matching Problem

Suppose over an observation interval the upstream and downstream sensors generate the
arrays of triples {(i, si, Xi), 1 ≤ i ≤ N} and {(j, tj , Yj), 1 ≤ j ≤M}. The matching is done
in two steps. In the signal processing step each pair (Xi, Yj) of upstream and downstream
signatures is compared to produce a distance d(i, j) = δ(Xi, Yj) ≥ 0 between them. This
step thereby reduces the signature data to the N ×M matrix D = {d(i, j) | 1 ≤ i ≤ N, 1 ≤
j ≤M}.

We will shortly describe the signal processing step, followed by a statistical model of the
distance function d(i, j). The model is used to evaluate any matching or function µ,

µ : {1, · · · , N} → {1, · · · ,M, τ}, (7.4.1)

with this interpretation: µ(i) = j or τ accordingly as upstream signature Xi is matched to
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Figure 7.3. The empirical pdfs f and g and their Gaussian approximations for links A→ B,
B → C and C → D.

downstream signature Yj or is not matched to any downstream signature, as in Figure 7.1.
Let M be the set of all matchings.

The second step formulates the matching problem, which is to find the matching µ ∈M
that is ‘closest’ to the true matching, denoted µ̄.

7.4.1 Signal processing

A sensor comprises an array of five nodes, each with a three-axis magnetometer that
measures the x, y, z directions of the earth’s magnetic field sampled at 128Hz as a vehicle
goes over the node. Figure 7.2 shows the raw z-axis measured signal from one node. The
other axes measurements are similar.

The microprocessor in the node automatically extracts the sequence of peak values (local
maxima and minima) from each of these signals. In the figure, there are six peak values
(including the initial and terminal values of the signal), denoted by squares. The node
transmits the array of these peak values to the AP. The three axes yield three such arrays.
The three arrays form a slice of the vehicle’s two-dimensional magnetic ‘footprint’. A slice
is determined by the distribution of the ferrous material in the vehicle within 12” from the
node. For each vehicle, the AP receives one slice from each of the five nodes. The five slices
constitute the vehicle’s signature at the sensor. A vehicle’s signature is unique, making it
possible to distinguish vehicles with the same model and make. (See [Haoui et al., 2008b]
for a full description of a node and an AP.)

The signal processing algorithm takes two signatures, say X = (X1, · · · , X7) and Y =
(Y 1, · · · , Y 7) (Xi, Y j are the slices), and computes a distance (a measure of dissimilarity)
between each pair of slices. The distance δ(X,Y ) is the minimum of the distances between
all pairs of slices.
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7.4.2 Statistical model of distance

We assume that the distance matrix is characterized by two probability density functions
(pdf), f and g: f is the pdf of the distance δ(Xv, Yv) between the signatures at the upstream
and downstream sensors of the same randomly selected vehicle v,

f(d) = p(δ(Xv, Yv) = d);

and g is the pdf of the distance δ(Xv, Yw) between two different randomly selected vehicles
v and w:

g(d) = p(δ(Xv, Yw) = d).

Then, conditional on the true matching µ̄, the coefficients of the random observation matrix
D have the pdf

d(i, j) ≈
{
f, µ̄(i) = j
g, µ̄(i) 6= j or µ̄(i) = τ

We assume that conditional on the true matching µ̄ the d(i, j) are independent random
variables. Let Di = {d(i, j), 1 ≤ j ≤ M} be the array of distances between Xi and all the
Yj . Then

p(D | µ̄) =
∏
i

p(Di | µ̄(i)) (7.4.2)

p(Di | µ̄(i)) =
{
f(d(i, j))

∏
k 6=j g(d(i, k)), µ̄(i) = j∏

k g(d(i, k)), µ̄(i) = τ

=
{
L(d(i, j))γ(Di), µ̄(i) = j
γ(Di), µ̄(i) = τ

(7.4.3)

in which

L(d(i, j)) =
f(d(i, j))
g(d(i, j))

, γ(Di) =
M∏
k=1

g(d(i, k)). (7.4.4)

Relations (7.4.2)-(7.4.4) constitute the signature distance statistical model.
Figure 7.3 displays the empirical pdfs and the Gaussian approximations of f and g for

the three links. The annotation above the left plot for link A → B means that µf and σf
are the mean and standard deviation for f ; µg and σg are the mean and standard deviation
for g; nf = 91 and ng = 24, 622 are the number of samples used to estimate the statistics for
f and g, respectively. That is, there were 91 matched vehicle pairs and 24,622 unmatched
pairs. (There always are many more unmatched pairs.) Section 7.5 describes how the
distributions in Figure 7.3 are estimated.

7.4.3 Matching problem

An unconstrained matching in the general form (7.4.1) permits duplicate matches and
overtaking, i.e., two upstream vehicles i1, i2 with i2 > i1 may be matched with j1, j2 in the
reverse order j2 < j1. A constrained matching does not permit this. Thus, it is a pair of
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matched sequences like (Up,Down):

Up = X1 τ X2 X3 X4 X5 X6

↓ ↓ ↓ ↓ ↓ ↓ ↓
Down = τ Y1 Y2 τ Y3 Y4 Y5

(7.4.5)

The interpretation of (7.4.5) is clear. Formally, a constrained matching is a matching µ
without duplicates (except for τ) and without overtaking, i.e.,

i2 ≥ i1 ⇒ µ(i1) 6≥ µ(i2).

We want to find µ∗c , the maximum a posteriori (MAP) matching for the constrained case.
µ∗c maximizes the posterior probability

p(µ̄ | D) =
p(D | µ̄)pc(µ̄)

p(D)
, (7.4.6)

in which pc(µ̄) denotes the prior probability that µ̄ is the true constrained matching. In
(7.4.6), p(D | µ̄) is given by the signature distance model (7.4.2)-(7.4.4), so we only need
to specify the prior pc(µ̄), which we take to be the unconstrained prior p(µ̄) given below in
(7.4.8), conditioned by the requirement that µ̄ is a constrained matching. That is,

pc(µ̄) =

{
p(µ̄)/

∑
µ̄∈Mc

p(µ̄) µ̄ ∈Mc

0 µ̄ 6∈ Mc

(7.4.7)

in which Mc denotes the set of constrained matchings.
The unconstrained prior p(µ̄) is the uniform distribution on µ̄ with turning probability

β:

p(µ̄) =
∏
i

p(µ̄(i)); p(µ̄(i) = j) = α, j = 1, · · · ,M ;

p(µ̄(i) = τ) = β, (7.4.8)

with Mα+ β = 1. Using (7.4.2)-(7.4.4) and (7.4.8) gives

p(D | µ̄)p(µ̄) =
∏
i

p(Di | µ̄(i))p(µ̄(i)), (7.4.9)

p(Di | µ̄(i))p(µ̄(i)) =
{
L(d(i, j))γ(Di)α, µ̄(i) = j
γ(Di)β, µ̄(i) = τ

(7.4.10)

Thus µ∗c is given by

µ∗c = arg max
µ̄∈Mc

p(D | µ̄)p(µ̄)
p(D)

= arg max
µ̄∈Mc

p(D | µ̄)p(µ̄). (7.4.11)

The last equality follows from p(D) =
∑

µ̄∈Mc
p(D|µ̄)p(µ̄) not depending on µ̄. To find µ∗c
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we must maximize the likelihood (7.4.9) over the setMc. The algorithm for µ∗c is developed
in section 7.5.

The MAP unconstrained matching µ∗u, is given by

µ∗u = arg max
µ̄∈M

p(D | µ̄)p(µ̄). (7.4.12)

The unconstrained MAP matching µ∗u(i) is determined independently for each upstream
vehicle i. But the constrained MAP matchings µ∗c(i) are all jointly determined.

7.4.4 Multiple lane matching

(i, 0) (k, 0)

(0, j)

(0, m)

sensor
vehicle

Figure 7.4: Multiple lane matching.

We consider matching vehicles that may switch from one lane to another lane down-
stream, as in the junction in Figure 7.4. Vehicles i and j, denoted by (i, 0) and (0, j) in the
figure, may continue straight ahead or turn at the junction. The no-overtaking condition
now means that if vehicles i and i′ with i < i′ are in the same lane upstream, and happen
to be matched to vehicles in the same lane downstream, the match respects µ(i) < µ(i′).

Suppose I vehicles from the first input sequence and J vehicles from the second input
sequence are to be matched to K vehicles in the first output sequence and M vehicles in
the second output sequence. An input or output vehicle maybe unmatched, denoted as
matching with τ .

We use the notation (i, 0), (0, j), (k, 0), (0,m) to index the four vehicle types, so we can
distinguish between (say) the third vehicle in the first input sequence (3, 0) and the third
vehicle in the second input sequence (0, 3). However, we reserve i, j, k, m to denote a
generic vehicle in these four sequences, sometimes writing i or m instead of (i, 0) or (0,m).

We are given the data array

D = {d(i, k), d(i,m), d(j, k), d(j,m)|i ≤ I,
j ≤ J, k ≤ K,m ≤M}

of distances between the signatures of each input vehicle and each output vehicle, together
with the times ti, tj , tm, tk when the signatures were recorded. A matching µ is now any
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function

µ : {(i, 0), 1 ≤ i ≤ I} ∪ {(0, j), 1 ≤ j ≤ J} →
{(k, 0), 1 ≤ k ≤ K} ∪ {(0,m), 1 ≤ m ≤M} ∪ {τ},

with the natural interpretation: for example, µ(i, 0) = (0,m) means vehicle i in the first
input sequence is matched with vehicle m in the second output sequence; m(0, j) = τ
means that vehicle j in the second input sequence is unmatched. Let M be the set of all
matchings. A constrained matching µ is a matching without duplicates (except for τ) and
without overtaking, i.e.,

(i, j) ≥ (i′, j′)⇒ µ(i′, j′) 6≥ µ(i, j).

Here (i, j) ≥ (i′, j′) means i ≥ j, i′ ≥ j′. Let Mc ⊂ M be the set of all constrained
matchings.

We now generalize the statistical model. Conditional on the true matching µ̄, the data
array D has the following distribution:

p(D|µ̄) =
∏
i

p(D(i,0)|µ̄(i, 0))
∏
j

p(D(0,j)|µ̄(0, j))

p(D(i,0)|µ̄(i, 0)) =

{
f(d(i,µ̄(i,0)))
g(d(i,µ̄(i,0)))

∏
k g(d(i, k))

∏
m g(d(i,m))∏

k g(d(i, k))
∏
m g(d(i,m))

=
{
L(d(i, µ̄(i, 0)))γ(i, 0), µ̄(i, 0) 6= τ
γ(i, 0)), µ̄(i, 0) = τ

p(D(0,j) | µ̄(0, j)) =
{
L(d(j, µ̄(0, j)))γ(0, j), µ̄(0, j)) 6= τ
γ(0, j), µ̄(0, j) = τ

Here
L(d(i, µ̄(i, 0))) = f(d(i,µ̄(i,0)))

g(d(i,µ̄(i,0))) , µ̄(i, 0) 6= τ

L(d(j, µ̄(0, j))) = f(d(j,µ̄(0,j)))
g(d(j,µ̄(0,j))) , µ̄(0, j) 6= τ

and

γ(i, 0)) =
∏
k

g(d(i, k))
∏
m

g(d(i,m))

γ(0, j) =
∏
k

g(d(j, k))
∏
m

g(d(j,m))

Similarly to the one-dimensional case, we assume that under the prior distribution on M
the µ(i, j) are all independent and uniformly distributed, subject to the condition that
p(µ(i, j) = τ) = β. That is,

p(µ(i, j) = (k,m) 6= τ) = α, p(µ(i, j) = τ) = β,
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with
(K +M)α+ β = 1.

For constrained matchings the prior distribution is

pc(µ) =

{
p(µ)P
Mc

p(µ) , µ ∈Mc

0, µ 6∈ Mc

,

and the optimal constrained matching µ∗c is

µ∗c = arg max
µ̄∈Mc

p(D | µ̄)p(µ̄)
p(D)

= arg max
µ̄∈Mc

p(D | µ̄)p(µ̄). (7.4.13)

7.4.5 Applications

The multiple lane formulation applies with obvious changes to the junction of Figure
7.5 with several input and output streams of vehicles, provided the non-overtaking or first-
in first-out (fifo) condition holds. (Each violation of the fifo condition will lead to one τ
matching. If there are not too many fifo violations, the technique is sound.)

Interchange

sensor

Figure 7.5: A generalized setup.

Intersections

Figure 7.5 could represent an intersection of two streets one going West to East, the
other going South to North as in Figure 7.4. The matching results yield an estimate of the
number of vehicles making a turn; the start and end times of the matched vehicle pairs give
the travel time to cross the intersection and to make a turn.

Roundabout

This is just an extension of the intersection with R input and output sequences if R
roads terminate on the roundabout.

Weaving

Estimating the number and nature of weaving movements in (say) a four-lane weaving
section on a freeway corresponds to the arrangement of Figure 7.5 with four input and
output sequences and sensors placed at the beginning and end of the weaving sections.
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Ramp queue and delay

A ramp with two lanes that merge at the signal corresponds to Figure 7.5 with two input
and one output sequence. The vehicle matchings give the number of vehicles in each ramp
lane and the delay each vehicle encounters on the ramp.

Work zone

A four-lane freeway that terminates into a two-lane freeway, because a work zone takes
two lanes out of service, corresponds to Figure 7.5 with four input sequences and two
output sequences. The sensors are placed upstream and downstream of the work zone. The
matchings will estimate the number of vehicles queued up upstream of the work zone and
the delay experienced by those vehicles. The information could be displayed on a message
sign.

7.5 Matching Algorithm

We now develop an efficient algorithm for the optimal constrained single lane matching
problem. The multiple lane extension follows as a direct generalization.

7.5.1 Single lane matching

Instead of maximizing the likelihood (7.4.9) it is more convenient to minimize the neg-
ative ‘log-likelihood’,

− ln p(D | µ̄)p(µ̄) = −
∑
i

ln p(Di | µ̄(i))− ln p(µ̄(i))

=
∑
i

∑
j

λ(i, j)1(µ̄(i) = j)

+
∑
i

λ(i, τ)1(µ̄(i) = τ), (7.5.1)

in which 1(·) denotes the indicator function and

λ(i, j) = − lnL(d(i, j))− ln γ(Di)− lnα, (7.5.2)
λ(i, τ) = − ln γ(Di)− lnβ. (7.5.3)

Thus to find µ∗u we must minimize the linear form (7.5.1) over the set µ̄ ∈ M, which leads
to

µ∗u(i) =
{
j, λ(i, j) ≤ λ(i, k), all k, τ
τ, λ(i, τ) ≤ λ(i, k), all k

To find µ∗c we must minimize the linear form (7.5.1) over the “combinatorial” constraint
µ̄ ∈Mc. The difficulty is to find a convenient representation of Mc.

We now describe a graph G(N,M) whose paths are in one-one correspondence with the
setMc of all constrained matchings. Its (N+1)×(M+1) nodes are arranged in the form of a
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grid like in Figure 7.6, which is the graph for example (7.4.5) with N = 6, M = 5. G(N,M)
is called the edit graph in the context of sequence comparison algorithms in molecular biology
[Myers, 1986].

(0,0)

(N,M)

Y1

Y2

Y3

Y4

Y5

X1 X2 X3 X4 X5 X6

Xi

Yj

(i-1, j-1)

(i, j)

τ

τ

(i-1, j)

(i, j-1)

Figure 7.6. The edit graph for example (7.4.5). A diagonal edge corresponds to a signature
match; a horizontal or vertical edge corresponds to a turn (match with τ).

G(N,M) is constructed as follows. Its nodes are labeled (i, j), 0 ≤ i ≤ N, 0 ≤ j ≤ M .
A node (i − 1, j − 1) has three directed edges connected to nodes (i − 1, j), (i, j − 1) and
(i, j) (unless i > N or j > M). The ‘diagonal’ edge (i − 1, j − 1) → (i, j) indicates the
match Xi → Yj ; the ‘horizontal’ edge (i− 1, j− 1)→ (i, j− 1) indicates the match Xi → τ ;
the ‘vertical’ edge (i− 1, j − 1)→ (i− 1, j) indicates the match Yj → τ .

An obvious but very important fact is that each path in G(N,M) from node (0, 0) to
(N,M) corresponds to a constrained matching and vice versa. The constrained matching
(7.4.5) corresponds to the path in Figure 7.6 indicated by the thick dashed lines.

Having identified constrained matchings with paths in the edit graph, we identify (7.5.1)
with the sum of the weights of the edges along the path, assigning edge weights according
to

w((i− 1, j − 1)→ (i, j)) = λ(i, j)
w((i− 1, j − 1)→ (i, j − 1)) = λ(i, τ)
w((i− 1, j − 1)→ (i− 1, j)) = 0

. (7.5.4)

The value (7.5.1) for a constrained matching µ̄ is equal to the weight of the corresponding
path (defined as the sum of the edge weights) in the edit graph. Thus µ∗c is obtained by
finding the minimum weight path, which is accomplished by the following algorithm.

Let N be the nodes of G(N,M). For each (i, j) ∈ N let Pr(i, j) be the predecessor nodes
of (i, j), i.e., the nodes from which there is an edge to (i, j). Evidently,

Pr(i, j) = {(i− 1, j), (i, j − 1), (i− 1, j − 1)}.

Let ≺ be a total ordering of N which respects the Pr relation, i.e., for n = (i, j)

n′ = (i′, j′) ∈ Pr(n)⇒ n′ ≺ n.

There are many such total orders, including lexicographic order.
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Algorithm
1. Set W (0, 0) = 0.
2. Suppose W (n′) has been evaluated for all n′ ≺ n. Calculate

W (n) = min{W (n′) + w(n′ → n) | n′ ∈ Pr(n)}, (7.5.5)

in which w(n′ → n) is the weight of the edge n′ → n given by (7.5.4), and let pr(n) be a
minimizing predecessor node in (7.5.5).
3. Return to step 2 with the node following n in the total order ≺.

Then W (i, j) is the minimum weight of paths connecting (0, 0) to (i, j). The minimum
weight path can be constructed by backtracking through pr(n).

The algorithm requires N ×M iterations. In each iteration (7.5.5) requires evaluation
of the three edge weights w(n′ → n) given by (7.5.4).

7.5.2 Multiple lane matching

To find µ∗c requires minimizing the negative of the likelihood (7.4.13) over µ ∈Mc, which
can be written as

− ln p(D | µ̄)p(µ̄) =
∑
i

[
∑
k

λ((i, 0), (k, 0))1(µ̄(i, 0) = (k, 0))

+
∑
m

λ((i, 0), (0,m))1(µ̄(i, 0) = (0,m))

+ λ((i, 0), τ)1(µ̄(i, 0) = τ)]

+
∑
j

[
∑
k

λ((0, j), (k, 0))1(µ̄(0, j) = (k, 0))

+
∑
m

λ((0, j), (0,m))1(µ̄(0, j) = (0,m))

+ λ((0, j), τ)1(µ̄(0, j) = τ)]. (7.5.6)

In (7.5.6) 1(·) is the indicator function and

λ((i, 0), (k, 0)) = − lnL(d(i, k))− ln γ(i, 0)− lnα
λ((i, 0), (0,m)) = − lnL(d(i,m))− ln γ(i, 0)− lnα

λ((i, 0), τ) = − ln γ(i, 0)− lnβ
λ((0, j), (k, 0)) = − lnL(d(j, k))− ln γ(0, j)− lnα
λ((0, j), (0,m)) = − lnL(d(j,m))− ln γ(0, j)− lnα

λ((0, j), τ) = − ln γ(0, j)− lnβ (7.5.7)

Like in the single lane case, (7.5.6) is a linear form, the combinatorial constraint is µ̄ ∈Mc,
and the weights are given in (7.5.7). The constraint can be represented using the graph
G(I, J,K,M), with (1 + I) × (1 + J) × (1 + K) × (1 + M) nodes corresponding to a four-
dimensional grid with nodes indexed (i, j, k,m).

From each node (i, j, k,m) there are four edges (labeled τ) connecting to ‘adjacent’
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nodes (i+ 1, j, k,m), (i, j + 1, k,m), (i, j, k + 1,m), (i, j, k,m+ 1) and four ‘diagonal’ edges
connecting to node (i+1, j, k+1,m), (i+1, j, k,m+1), (i, j+1, k+1,m), (i, j+1, k,m+1).
The first four edges are interpreted to mean that vehicles i+1, j+1, k+1,m+1 respectively
are unmatched. The last four edges are interpreted to mean that i+ 1 is matched to k+ 1,
i+ 1 is matched to m+ 1, and so on.
G(I, J,K,M) may be called the edit graph in analogy with the single input-single output

sequence case. It is an important result that constrained matchings are in 1-1 correspon-
dence to paths in G from (0, 0, 0, 0) to (I, J,K,M). We can then identify (7.5.1) with the
sum of the weights of the edges along the path, assigning edge weights according to

w((i− 1, j − 1, k − 1,m− 1) → (i, j − 1, k,m− 1)
= λ((i, 0), (k, 0))

w((i− 1, j − 1, k − 1,m− 1) → (i, j − 1, k − 1,m)
= λ((i, 0), (0,m))

w((i− 1, j − 1, k − 1,m− 1) → (i− 1, j, k,m− 1)
= λ((0, j), (k, 0))

w((i− 1, j − 1, k − 1,m− 1) → (i− 1, j, k − 1,m)
= λ((0, j), (0.m))

w((i− 1, j − 1, k − 1,m− 1) → (i, j − 1, k − 1,m− 1)
= λ((i, 0), τ)

w((i− 1, j − 1, k − 1,m− 1) → (i− 1, j, k − 1,m− 1)
= λ((0, j), τ)

w((i− 1, j − 1, k − 1,m− 1) → (i− 1, j − 1, k,m− 1)
= 0

w((i− 1, j − 1, k − 1,m− 1) → (i− 1, j − 1, k − 1,m)
= 0

(7.5.8)

In (7.5.8) w(n′ → n) is the weight assigned to the edge n′ → n. It is easy to check the next
result.

Theorem 7.5.1. For any path from (0, 0, 0, 0) to (I, J,K,M) the weight of the path, cal-
culated as the sum of the edge weights given by (7.5.8), is equal to the sum (7.5.1). Hence
µ∗c is given by the minimum weight path.

Let N be the nodes of G(I, J,K,M). For each (i, j, k,m) ∈ N let Pr(i, j, k,m) be the
eight predecessor nodes of (i, j, k,m) from which there is an edge to (i, j, k, l):

Pr(i, j, k,m) = {(i− 1, j, k − 1,m), (i− 1, j, k,m− 1),
(i, j − 1, k − 1,m), (i, j − 1, k,m− 1), (i− 1, j, k,m),
(i, j − 1, k,m), (i, j, k − 1,m), (i, j, k,m− 1)}.

Let ≺ be a total ordering of N which respects the Pr relation, i.e., for n = (i, j, k, l)

n′ = (i′, j′, k′, l′) ∈ Pr(n)⇒ n′ ≺ n.

The previous minimum weight path algorithm applies without change except that W is a
four-dimensional array, initialized with W (0, 0, 0, 0) = 0. W (I, J,K,M) is the minimum
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weight of paths connecting (0, 0, 0, 0) to (I, J,K,M). The minimum weight path can be
constructed by backtracking through pr(n). The algorithm requires I×J×K×M iterations.

7.6 Estimating the Model

The statistical model (7.4.2)-(7.4.4) parameterizes the probability density of the obser-
vation matrix D as p(D | µ̄, µf , σf , µg, σg), with parameter µ̄ for the true matching, and
(µf , σf , µg, σg) for the four parameters of the Gaussian distributions of f, g.

Ideally the optimum matching and the parameters of f, g should be jointly determined
as the maximum likelihood estimate

(ˆ̄µ, µ̂f , σ̂f , µ̂g, σ̂g) = arg max
µ̄,µf ,σf ,µg ,σg

p(D | µ̄, µf , σf , µg, σg).

While this is a well-defined optimization problem, it is computationally very expensive to
solve because of the combinatorial nature of the variable µ̄. Instead we resort to coordinate-
wise optimization:

1. Begin with an initial estimate µ̄0 (for which we use a matching algorithm based solely
on the distance).

2. At step i we have the estimate µ̄i. Find

(µif , σ
i
f , µ

i
g, σ

i
g) = arg max

µf ,σf ,µg ,σg
p(D | µ̄i, µf , σf , µg, σg)).

This is easy because µ̄i partitions elements of the observation matrix D into distances
of pairs of matched and unmatched vehicles, so (µif , σ

i
f ) are the empirical moments of

the matched pairs and (µig, σ
i
g) are corresponding values for the unmatched pairs.

3. Use the optimal matching algorithm to find

µ̄i+1 = arg max
µ̄

p(D | µ̄, µif , σif , µig, σig),

and return to 2) with i+ 1.

Since the likelihood p(D | µ̄i, µif , σif , µig, σig) increases with i, the iteration must converge
to a local maximum of the likelihood. (The iteration is reminiscent of the EM algorithm
[Dempster et al., 1977].) For the test results the iteration converged in three to four steps.

7.7 Real-Time Matching

The edit graph of Section 7.5 grows with the observation time interval, and with each
new upstream or downstream vehicle, one must calculate the distance of its signature from
all previous signatures. The effort to compute these distances for each new vehicle grows
linearly with the observation interval. For real-time implementation, we must restrict the
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growth of the edit graph. One way of doing this is as follows. For each new upstream
vehicle i (with signature Xi) that arrives at time si compute the distance d(i, k) as

d(i, k) =
{
δ(Xi, Yk) if 0 ≤ tk − si ≤ TM
∞ else

(7.7.1)

For each new downstream vehicle j (with signature Yj) that arrives at time tj compute the
distance d(m, j) as

d(m, j) =
{
δ(Xm, Yj) if 0 ≤ tj − sm ≤ TM
∞ else

(7.7.2)

If TM is an upper bound on the travel time, (7.7.1)-(7.7.2) must hold. The number of
distances δ(Xi, Yj) to be calculated is thus bounded, and the computational burden for
each new upstream or downstream vehicle is essentially constant.

A simple choice for TM would be to assume a minimum speed and take TM to be the
corresponding travel time, which requires knowledge of the link length, signal cycle times,
etc. A better idea is this. Let µ be the minimum weight path matching until the current
time. Pick an integer M . Let i1, · · · , iM be the most recently matched M downstream
vehicles, and set

TM = 2×max{tµ(im) − sim , 1 ≤ m ≤M}.

Thus TM is (say) two times the maximum travel time experienced by these M vehicles.
This choice will automatically adapt to changes in travel time.

7.8 Performance Analysis

In this section we evaluate the performance of two approaches for unconstrained match-
ing, and discuss a simple heuristic that shows the benefits of adding constraints. We consider
a single lane matching problem, but a similar line of reasoning can be extended for mul-
tiple input, multiple output matching. The first approach for unconstrained matching is
a direct minimum distance matching. The matching estimate µminD(D)(i) = j∗, if j∗ is
the minimizer of minj Di,j and minj Di,j ≥ d∗. If minj Di,j < d∗, then µminD(D)(i) = τ .
Next, we analyze unconstrained MAP matching, described in Section 7.4. To conclude the
section we compute a heuristic analysis of incorporating constraints into the MAP matching
formulation. The proofs for all theorems are presented in Section 7.11.

7.8.1 Minimum distance matching

Define the cumulative and complementary distribution functions

G(d) =
∫ d

0
g(x)dx; G̃(d) = 1−G(d).

Similarly define F (d) and F̃ (d).
Theorem 7.8.1 gives the performance of the minimum distance matching function, µminD.
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Theorem 7.8.1. The probability of a correct match, µminD(i) = µ̄(i), is

p(µminD(D)(i) = j | µ̄(i) = j) =
∫ d∗

0
f(x)[G̃(x)]M−1dx. (7.8.1)

The probability of an incorrect match, µminD(i) 6= µ̄(i), is

p(µminD(D)(i) 6= j | µ̄(i) = j) = (M − 1)
∫ d∗

0
[G̃(x)]M−2g(x)F̃ (x)dx. (7.8.2)

The probability that a vehicle is unmatched, µminD(i) = τ , is

p(µminD(D)(i) = τ | µ̄(i) = j) = F̃ (d∗)[G̃(d∗)]M−1. (7.8.3)

The three probabilities (7.8.1)-(7.8.3) add up to 1.

Theorem 7.8.1 allows us to predict how the performance depends on the threshold d∗

and the number M of potential vehicle matches. From (7.8.1)-(7.8.2), the probabilities of
both correct and incorrect match increase as d∗ increases. Thus, as in hypothesis testing
generally, the proper choice of the threshold value must compromise between correct and
incorrect re-identification.

Second, from (7.8.1)-(7.8.2), the probability of a correct match decreases and the prob-
ability of an incorrect match increases as M increases. This is intuitive: the larger is the
number M of potential matches, the worse is the performance of the minimum distance
matching function. So one way to improve the matching algorithm is to reduce M . A
common way of reducing M is to place an upper bound T on the link travel time and limit
the matching of an upstream vehicle i to those downstream vehicles j for which tj−si ≤ T ,
e.g., [Ndoye et al., 2008].

Third, the probability of a vehicle being unmatched decreases as d∗ or M increases.
This, too, is intuitive: a larger d∗ implies a less stringent condition on matching, while a
larger M increases the chance of finding a potential match.

Formulas (7.8.1)-(7.8.3) help determine the range of values of d∗ and M for which the
re-identification scheme gives satisfactory performance. Figure 7.7 plots the probabilities
of correct and incorrect matches using the Gaussian approximations for the distributions
f, g in Figure 7.3 in (7.8.1), (7.8.2) for link A → B. For a per lane flow of 500 vph,
M = 50 corresponds to a time interval of 6 minutes, which is the travel time window over
a three-mile long link at an average speed of 30 mph. For d∗ = 0.15, the minimum distance
matching function is predicted to give 45% correctly matched, 25% incorrectly matched,
and 30% unmatched vehicles.

7.8.2 Unconstrained MAP matching µuMAP

We shall evaluate the performance of any matching function µ by its (normalized) reward
ρ(µ):

ρ(µ) =
1
N

E
N∑
i=1

1(µ(D)(i) = µ̄(i)), (7.8.4)
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Figure 7.7. Probabilities of correct and incorrect matches of µminD for different values of
d∗,M .

in which 1(·) is the indicator function: 1(µ(D)(i) = µ̄(i)) = 1 if µ(D)(i) = µ̄(i), and = 0
otherwise. Thus ρ(µ) is the correct matching rate, the fraction of correctly matched vehicles
on average.

To evaluate the expectation operator E in (7.8.4) we need the joint probability distri-
bution on (D, µ̄). Since p(D | µ̄) is already specified by (7.4.2)-(7.4.4) we only need the
(prior) distribution of µ̄. We assume that the number of upstream vehicles N = (1 + β)M
of which M vehicles cross the downstream sensor and βM vehicles turn before reaching
the downstream sensor. Thus β is the turning probability. Subject to this assumption, we
impose a uniform distribution on µ̄:

p(µ̄(i) = j) = α, j = 1, · · · ,M ; p(µ̄(i) = τ) = β, (7.8.5)

with Mα+ β = 1.
Let µ∗ denote the optimal or reward-maximizing matching function.

Theorem 7.8.2. µ∗ is given by

µ∗(D)(i) =
{
j if L(d(i, j)) ≥ L(d(i, k)) ∀k; L(d(i, j)) ≥ β/α
τ if L(d(i, k)) < β/α ∀k . (7.8.6)

To implement (7.8.6) we need β or α, since the d(i, j) and M are known from the data.
In the present context, β is the turning probability, which may be determined from field
observations or experience. But another consideration may govern the choice of β. From
(7.8.6) one sees that the larger is β, the more stringent is the requirement of a match, and
lower is the probability of an incorrect match. So, depending on the application, one should
choose a larger value for β, if the ‘cost’ of an incorrect match is high.

Observe that µ∗(D) maximizes the posterior probability

p(µ̄ | D) =
p(D | µ̄)(p(µ̄)

p(D)
, (7.8.7)



170

with prior probability p(µ̄) given by (7.8.5). So µ∗ = µuMAP is also the (unconstrained)
maximum a posteriori (MAP) matching function.

The minimum distance matching µminD and unconstrained MAP matching µuMAP have
a similar structure. One calculates a statistic for each pair (i, j) of downstream and upstream
vehicles—d(i, j) in the µminD case and the likelihood ratio L(d(i, j)) in the µuMAP case—
and matches i to the best j in terms of this statistic, provided that it meets a threshold.
However, µminD does not take into account the uncertainty in the distance measurements,
whereas µuMAP does.

Intuitively, correct matching of a downstream vehicle i to one of the upstream vehicles
1, · · · ,M should be more difficult as M increases. The next result shows this is indeed the
case. Corollary 7.8.1 can be compared with (7.8.1).

Define

fL(l) = p(L(d(i, j)) = l | µ̄(i) = j) and GL(l) = p(L(d(i, k)) ≤ l | µ̄(i) 6= k), (7.8.8)

the pdf of L(d(i, j)) and the cumulative distribution function (cdf) of L(d(i, k)), conditional
on µ̄(i) = j 6= k. That is, fL(l) is the pdf of L(d) when d has pdf f , and GL(l) is the cdf of
L(d) when d has pdf g.

Corollary 7.8.1. The maximum reward is given by the explicit formula:

ρ(µuMAP ) = Mα

∫ ∞
β/α

fL(l)[GL(l)]M−1dl + β[GL(l)]M . (7.8.9)

Moreover, ρ(µuMAP ) decreases as M increases, keeping Mα and β constant (Mα+β = 1).

Remark 3. In the Gaussian case,

f(d) =
1√

2πσ2
f

exp−
(d− µf )2

2σ2
f

, g(d) =
1√

2πσ2
g

exp−(d− µg)2

2σ2
g

.

Here µf and σf denote the mean and standard deviation of the Gaussian pdf f while µg and
σg denote analogous quantities for g. To characterize µ∗ it is more convenient to maximize
the ‘log-likelihood’ l(d) instead of the ‘likelihood’ L(d):

l(d) = lnL(d) = ln
σg
σf
−

(d− µf )2

2σ2
f

+
(d− µg)2

2σ2
g

.

It is easy to check by differentiating this quadratic expression that l(d) is decreasing in d for
0 ≤ d ≤ µg for the estimated parameters of Figure 7.3. Thus in this range maximizing l(d)
is equivalent to minimizing d. Since [0, µg] is likely to include the range L(d(i, j)) ≥ β/α
(in (7.8.6)), this means that µ∗ coincides with µminD (with an appropriate threshold).

7.8.3 Constrained matching heuristic

Define the thresholded score W t
ij = L(d(i, j))I(L(d(i, j)) ≥ b). To compute a heuristic

approximation for the probability of error for constrained matching, assume that W t
ij are
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independent with variance σ2
1, and mean q1 if µ̄∗(i) = j and mean −q0, variance σ2

0 else,
with q1, q0 ≥ 0. Furthermore if µ̄∗(i) = τ , then the score is Wiτ = b. Finally, we assume
that a large deviation bound holds, where µ is the mean and σ2 the variance of the variable:

P
(
W t
ij > x

)
≤ exp

{
−(x− µ)2

2σ2

}
Define the setsMi

c =Mc ∩ {µ̄(i) = j} andM−ic =Mc/Mi
c. Moreover, letM−rc be the

set of matches with at most r correct matches, and Mr
c be the set with at least r correct

matches. Extend the set of M downstream vehicles to a set of M + N , where the last N
correspond to assignments to τ . Notice that once N elements out of the M+N are selected,
there is only one assignment possible (unlike the unconstrained case where N ! assignments
are available), so the number of possible constrained matchings is:

|Mc| =
(
M +N
N

)
≤
(
e(M +N)

N

)N
= elog((s+1)e)N ,

where s = M/N . Notice that the unconstrained matching space has size (M + 1)N , which
is higher than the above quantity, when N → ∞ and M = sN . The probability of N − r
incorrect matches for the matching is

pe(N − r) = P

(
max
µ∈M−rc

N∑
k=1

Wkµ(k) > max
µ̃∈Mr

c

N∑
k=1

Wkµ̃(k)

)

≤ P

(
max
µ∈M−rc

N∑
k=1

W t
kµ(k) >

N∑
k=1

W t
kµ̄(k)

)

≤ |Mc| max
µ∈M−rc

P

(
N∑
k=1

W t
kµ(k) >

N∑
k=1

W t
kµ̄(k)

)

≤
(
e(M +N)

N

)N
exp

{
− [(N − r) (q1 + q0)]2

2N (σ2
1 + σ2

0)

}
= exp

{
log((1 + s)e)− SNR2 (N − r)2

N2

}
N,

where SNR2 = (q1 + q0)2/2(σ2
1 + σ2

0). For this probability to become small for N large, the
maximum r is

log((1 + s)e)− SNR2 (N − r)2

N2
≤ 0⇒ r ≤ r∗,

r∗ = N

(
1−

√
log((1 + s)e)

SNR

)
,

suggesting that for large N , at least r∗ correct matches will be made by the algorithm, as
long as SNR >

√
log((1 + s)e). Contrast this to the similar quantity obtained for uncon-
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Figure 7.8. Error curve for unconstrained (UM) and constrained (CM) matching for various
choices of number of vehicles (M) and (a) no overtaking or turns and (b) 10% of vehicles
overtake and 25% turn.

strained matching:

r∗ = N

(
SNR2 − log(sN + 1)

)
log(N e/(N s+ 1))

,

and it suggests the advantages of the constraint, since in this case SNR needs to increase
with N for the fraction of errors to remain constant.

Notice these are not true error calculations but simple heuristic analysis. A tight and
useful error bound for this case requires exploring mean field analysis on a growing matching
graph.

7.9 Experimental Results

We evaluate system performance using both synthetic and field test data. Synthetic
‘data’ are obtained by randomly generating the observation distance matrix D from the
distributions in Figure 7.3(c), conditional on a randomly generated true matching µ̄. We
can thereby vary the number of observations, turns, and overtakings or fifo violations, and
compare the results of the optimal constrained and unconstrained matchings, µ∗c , µ

∗
u with

µ̄.

7.9.1 Synthetic Data

Performance is captured in the number CM of correct matches when the estimated match
is not a turn, and the number EM of erroneous or incorrect matches when the estimated
match is not a turn. CM + EM is the number of ‘diagonal’ edges and M − CM − EM is
the number of ‘horizontal’ edges in the minimum weight path, which we denote by µ∗c . If
T is the number of true turns, i.e., the number of horizontal edges in µ̄, the number of
erroneously estimated turns is ET = |(M −CM −EM )−T |. (Incorrectly assigning matches
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as turns reduces the number of samples available for travel time estimates, but does not
necessarily bias the travel time estimate.)

The minimum weight path µ∗c is a function of the ground truth µ̄, the distance matrix D,
and the turn probability β in (7.5.3) which determines the weight of the horizontal edges.
Hence CM , EM are functions of µ̄,D, β. The smaller β is, the larger is the weight of the
horizontal edges, and the smaller will be their number M − CM − EM in µ∗c (and in µ∗u).
Indeed M − CM − EM → 0 as β → 0. Conversely, as the turn probability β → 1, only
horizontal edges will be included, so CM , EM → 0.

We simulate two distinct scenarios: in Figure 7.8(a) there are no turns and no overtak-
ings or fifo violations; in Figure 7.8(b) there are 25% turns and 10% overtaking vehicles.
The figures give the performance of both optimum constrained (CM) and optimum uncon-
strained matchings (UM), using normalized proportions ĒM = EM/M and C̄M = CM/M
to compare across different numbers of vehicles M . Also, ĒT = |(1− C̄M − ĒM )− T/M |.

Figure 7.8(a) shows ROC curves for vehicle matching (correct match proportion vs. in-
correct match proportion). The curves are parameterized by β: C̄M + ĒM → 0 as β → 1,
and C̄M + ĒM → 1 as β → 0. When the fifo constraint is satisfied (a), the error in con-
strained matching is negligible (nearly 100% correct matches with 0.5% incorrect matches).
Unconstrained matching is much worse, with incorrect match percentage increasing with
M for a fixed correct match percentage, exactly as the analysis in Kwong et al. [2008] pre-
dicts. (The matchings in Sun et al. [1999]; Oh and Ritchie [2002]; Ndoye et al. [2008] are
all unconstrained.)

Figure 7.8(b) shows that even with turns and fifo violations, constrained matching out-
performs unconstrained matching, even though the latter permits overtaking. About 50%
of vehicles are correctly matched, with an incorrect matching rate under 10%, indepen-
dently of the number of vehicles. Including turns (25%), the maximum correct matching
percentage for this scenario is 75%.

7.9.2 Field Data

Data at the test site have been continuously collected since mid-May, 2008; results for
May 23 are presented here. Both lanes of the road have sensors. We split site A as 0 and 1;
B as 2 and 3; C as 4 and 5; and D as 6 and 7. Link A→ B comprises the fast or left lane
0→ 2, and the slow or right lane 1→ 3; the fast (even-numbered) and slow (odd-numbered)
lanes of the three other links are labeled similarly.

Single lane matching refers to matching only fast lane signatures. Figure 7.9 displays
the travel time distributions for single lane matching at links A→ B, B → C and C → D
for a 30 minute time interval. The legend ‘A to B 99/211’ means that 99 vehicles out of a
possible 211 were matched on A→ B, for a matching rate of 47%; the other rates are 59%
and 51%. Also shown is the travel time distribution for the entire 0.9 mile segment A→ D,
with a matching rate of 41% between vehicle signatures at A and D. (Note that there are
six signals between A and D, Figure 7.1.) These matching rates, together with the results
with simulated data, indicate turning rates near 25%.

The measurement system allows construction of the box plots of Figure 7.10. Each box
corresponds to a 30 minute time interval that starts at the time where the box is placed. In
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Figure 7.9: Travel time distributions for May 23, 2008, 1-1:30PM.
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Figure 7.10. Box plot of 30 min blocks of travel time samples (in sec) for May 23, 2008, 24
hours.

the early AM hours, travel times experience immense variability due to vehicles that briefly
stop. Congestion forms during 9:30-10AM and 4-6PM.

Figure 7.11 plots vehicle volume and travel time statistics (median, 20th and 70th per-
centiles) every 15 minutes, on the fast lane of link C → D. The lane carries 440 vehicles/hour
during the peak. The large variability in the 70th percentile between 9-10AM and 4-6PM
is due not to a large vehicle volume but to the large number of turns.

Consider now multiple lane matching for the link B → C. Figure 7.12 shows the result
of applying the single lane matching algorithm separately for lanes 2 → 4 (50% matching
rate), and 3→ 5 (38% matching rate). This matching misses vehicles that change lanes.
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Figure 7.11. Vehicle volumes and travel time statistics for 15 minute blocks for May 23,
2008
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Figure 7.12: Single lane matching for lanes 2 to 4 and 3 to 5 for May 23, 7:30-8:00AM

Figure 7.13 displays the results of multiple lane matching for the same data. The number
of vehicles matched for lane 2 → 4 is 46 and for lane 3 → 5 is 35; 21 vehicles are matched
for lane 2→ 5 and 17 vehicles are matched for lane 3→ 4.

Comparison of Figures 7.12 and 7.13 shows that the distribution of travel times for
2→ 4 and 3→ 5 remains very close for both single and multiple lane matching, confirming
that the estimation of travel time distributions is not affected by accounting for each lane
separately. However, in the multiple lane matching a total of 119 out of 200 vehicles are
matched as compared with 88 out of 200 from single lane matching.

Figure 7.14 shows the travel time distributions for the four (2× 2) matches between C
and D: 36 matches for 4→ 6, 15 matches for 4→ 7, 30 matches for 5→ 7 and 7 matches
for 5 → 6, for a total of 88 matches, compared with 75 matches (not shown) using two
separate single lane matchings.

Figures 7.13 and 7.14 indicate that vehicles that change from the ‘fast’ to the ‘slow’
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Figure 7.13: 2× 2 matchings for link B → C for May 23, 7:30-8:00AM

lane (2→ 5, 4→ 7) experience a longer travel time that those that remain in the fast lane
(2 → 4, 4 → 6). On the other hand, vehicles that change from the ‘slow’ to the ‘fast’ lane
(3→ 4, 5→ 6) travel faster than those that remain in the slow lane (3→ 5, 5→ 7).
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Figure 7.14: 2× 2 matchings for link C → D for May 23, 07:30-8:00 AM

Figure 7.15 shows the use of the test system for traveler information. The figure plots the
median travel time every half-hour over the 0.9 mile segment from midnight of 10/20/2008 to
midnight of 10/24/2008. (The median travel time is set to 0 if 10 or fewer vehicles traversed
the link during the half-hour.) On 10/22/2008 an accident caused the I-880 freeway to be
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shut down from 6:30AM until 7:25PM. Although the accident was several miles away from
San Pablo Avenue, one can observe its impact in the tripling of the travel time median
during the afternoon of 10/22 as southbound drivers diverted to San Pablo to avoid the
freeway.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

10/22 10/2310/2110/20

se
c

10/24

Figure 7.15. Median travel time every 30 min from 10/20/2008 to 10/24/2008. Travel time
is in sec, and time is in hours beginning midnight of 10/20/2008.

7.10 Discussion

We described a system for measuring the state of a road network in real time. This
appears to be the first cost-effective, scalable system that provides real-time measurements
of vehicle count and individual vehicle travel times in the links of a road network. The
system requires deployment of wireless magnetic sensors at locations that demarcate each
link. The deployment is flexible in the way links are defined. A link may span several
intersections and not all lanes in a link may be sensed. Deployment can be incremental.
The system is based on anonymous matching of vehicle magnetic signatures recorded by
sensors at the ends of a link.

The optimum matching algorithm relies crucially on the first in-first out (fifo) or non-
overtaking constraint. Violation of this constraint reduces the number of matches, but
does not bias the travel time or vehicle count estimates. The algorithm is very efficient
and permits real time computation. The matching algorithm works for single-lane as well
as multi-lane links. The multi-lane matching algorithm has several applications, including
intersections with turns, multi-lane ramps, work zones, and weaving sections.

There are two promising directions of future work. First, suitable modifications of the
matching algorithm appear to have use in several situations of mobile sensing. Second, the
real-time measurement of the state can improve the performance of several traffic control
algorithms. For example, real-time measurement of ramp queues can improve ramp me-
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tering control, and measurement of vehicle count in certain freeway sections can improve
variable speed limit control.

7.11 Proofs

7.11.1 Proof of Theorem 7.8.1

Applying the definition (7.4.1) and using (7.4.2), the probability of a correct match,
µminD(i) = µ̄(i), is

p(µminD(D)(i) = j | µ̄(i) = j) = p (d(i, j) ≤ d(i, k)∀k; d(i, j) ≤ d∗ | µ̄(i) = j)

=
∫ d∗

0
p(d(i, j) = x|µ̄(i) = j)

∏
k 6=j

P(d(i, k) ≥ x|µ̄(i) = j)dx

=
∫ d∗

0
f(x)[G̃(x)]M−1dx.

The probability of an incorrect match is

p(µminD(D) 6= j | µ̄(i) = j) = p(d(i, j) > min
k 6=j

d(i, k); min
k 6=j

d(i, k) ≤ d∗ | µ̄(i) = j)

=
∫ d∗

0
P(d(i, j) > x|µ̄(i) = j)p(min

k 6=j
d(i, k) = x|µ̄(i) = j)dx

= (M − 1)
∫ d∗

0
[G̃(x)]M−2g(x)F̃ (x)dx.

To arrive at the last equality, we use the facts that P(d(i, j) > x | µ̄(i) = j) = F̃ (x) and

P(min
k 6=j

d(i, k) ≤ x | µ̄(i) = j) = 1− P(d(i, k) ≤ x, k 6= j | µ̄(i) = j) = 1− [G̃(x)]M−1,

which, upon differentiating with respect to x, gives the density

p(min
k 6=j

d(i, k) = x | µ̄(i) = j) = (M − 1)[G̃(x)]M−2g(x).

Lastly, the probability that µminD(i) = τ is

p(µminD(D)(i) = τ | µ̄(i) = j) = p (d(i, j) ≥ d∗; d(i, k) ≥ d∗, k 6= j | µ̄(i) = j)
= F̃ (d∗)[G̃(d∗)]M−1.

This proves (7.8.1)-(7.8.3). 2
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7.11.2 Proof of Theorem 7.8.2

For any matching function µ, we can express ρ(µ) as

Nρ(µ) =
N∑
i=1

[ M∑
j=1

p(µ(D)(i) = j | µ̄(i) = j)p(µ̄(i) = j)

+ p(µ(D)(i) = τ | µ̄(i) = τ)p(µ̄(i) = τ)
]

(7.11.1)

=
N∑
i=1

[
α

M∑
j=1

∫
p(µ(D)(i) = j | D)p(D | µ̄(i) = j)dD

+ β

∫
p(µ(D)(i) = τ | D)p(D | µ̄(i) = τ)dD

]
. (7.11.2)

From (7.4.2)-(7.4.4) and (7.8.5)

p(D | µ̄(i) = j) = p(Di | µ̄(i) = j)p(D−i) = L(d(i, j))γ(Di)p(D−i),
p(D | µ̄(i) = τ) = γ(Di)p(D−i),

in which p(D−i) =
∏
l 6=i p(Dl). Substitution into (7.11.2) yields

Nρ(µ) =
N∑
i=1

[
α

M∑
j=1

∫
p(µ(D)(i) = j | D)L(d(i, j))γ(Di)p(D−i)dD

+β
∫
p(µ(D)(i) = τ | D)γ(Di)p(D−i)dD

]
, (7.11.3)

We see from (7.11.3) that µ∗(D)(i) is given by that j which maximizes the integrand. This
selection leads to (7.8.6). 2

7.11.3 Proof of Corollary 7.8.1

From (7.11.1)

Nρ(µ∗) =
N∑
i=1

[
α

M∑
j=1

p(µ∗(D)(i) = j | µ̄(i) = j) + βp(µ(D)(i) = τ | µ̄(i) = τ)
]
. (7.11.4)

From (7.8.6)

pα(M) = p(µ∗(D)(i) = j | µ̄(i) = j),
= p(L(d(i, j)) ≥ max{L(d(i, k)), k 6= j, β/α}| µ̄(i) = j), (7.11.5)

pβ(M) = p(µ(D)(i) = τ |µ̄(i) = τ) = p(β/α ≥ max{L(d(i, k))}|µ̄(i) = τ).(7.11.6)

In (7.11.5)-(7.11.6), the random variables d(i, j) and d(i, k) are independent; d(i, j) is dis-
tributed according to f and the d(i, k) are all distributed according to g. The random
variable on the right hand side of the inequalities in (7.11.5)-(7.11.6) increases with M ,
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because it is the maximum of more random variables, whereas the random variable on the
left hand side does not change with M . Thus both probabilities pα(M) and pβ(M) decrease
with M . So, from (7.11.4) ρ(µ∗) = Mαpα(M) + βpβ(M) decreases with M .

We can use (7.11.5), (7.11.6) to calculate ρ(µ∗). From (7.11.5),

pα(M) = p(L(d(i, j) ≥ max
k 6=j

L(d(i, k)), L(d(i, j) ≥ β/α | µ̄(i) = j),

=
∫ ∞
β/α

fL(l)[GL(l)]M−1dl,

pβ(M) = p(max
k

L(d(i, k) ≤ β/a | µ̄(i) = τ) = [GL(l)]M .

This gives (7.8.9). 2
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Chapter 8

Monitoring Load Impact in Roads

8.1 Introduction

Weighing stations along the highway are used to check truck weights. These stations
require separate areas along the highway where trucks stop be to weighed. Due to their
high cost and also operational issues, such as requiring trucks to reduce speed and queue
up for some time, there are few such stations. In Weigh-In-Motion stations (WIM) trucks
can be weighed as they slowly move along [Cebon, 1999]. This technology is deployed in
roadside weighing stations as a replacement to traditional weigh-in stations.

Traditional stations use bending plate, piezoelectric, or load cell sensors to measure the
vertical forces applied by axles to sensors [Cebon, 1999]. The stations require a controlled
environment and continuous calibration to reliably estimate static axle loads. Additional
calculations are then performed to transform the static axle load estimates into the dynamic
load that the pavement actually experiences. The latter calculations are based on models
of vehicle-pavement interactions. These interaction models are rarely if ever calibrated for
individual WIM stations [Gonzalez et al., 2003; Stergioulas et al., 2000].

This chapter explores a very different approach. The system comprises a network of
sensor nodes (SN) and an access point (AP). Each SN assembles a single- or double-axis
MeMS accelerometer, a microprocessor, flash memory, a radio, and an electronic PC board
that interconnects these components. A pair of AA batteries powers the assembly. The SN
is encased in a 3” cube embedded in the pavement. The processed data are sent by the SN
radio to the AP, situated on the side of the road. The AP may record the data locally or
forward them to a remote site.

The SNs directly measure the vibration (acceleration) of the pavement under them. It
may also be possible to process the SN data to estimate the truck axle weight and spacing,
classification, and speed. The installed cost of SN and AP are a fraction of the cost of
current WIM stations. Figure 8.1 shows a possible deployment.

Moses [1979] and Leming and Stalford [2003] deal with a similar problem. But the
application is restricted to bridges, and the model does not consider transient pavement
effects. The models are much simpler since they rely on modal estimation, and give no
accuracy guarantees. In bridges the responses have higher amplitudes as well as the decay
is slower, making it possible for a modal estimation procedure to work. But among the
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Figure 8.1. Deployment of proposed WIM system on a multi-lane freeway or bridge location.
The sensor nodes are only 3” in diameter; the access point is a 5” cube. Data from sensors
nodes are sent to the access point via radio. The sensor nodes and access points are drawn
at an exaggerated scale relative to lane width.

many constraints, only a single truck at a time can pass through the bridge, which makes
it an impractical solution.

We in turn, develop a different approach. We start our study with the analysis of a
literature validated PDE model of the pavement [Sousa et al., 1988; Hardy and Cebon,
1993; Cebon, 1999]. We compute a closed form solution of the pavement response under
truck motion. We then design optimal weight estimation algorithms using the closed form
solution. Along the way we discuss issues such as required precision for SN, energy con-
sumption for stand alone operation and communication requirements, as well as efficient
algorithmic implementations.

The chapter also holds independent interest due to the closed form solution derivation
presented. To our knowledge no similar derivations exist in the literature for the situa-
tion presented. One advantage of the closed solution in the present case is that for usual
parameters the system is stiff, and numerical integration poses serious difficulties. We at-
tempted using some popular PDE solvers for computing the solution and obtained poor
approximations.

Furthermore, our estimation problem aims at estimating a finite parameter, from infinite
measurements or point measurements of an distributed dimensional system, contributing to
the literature on estimation in systems described by partial differential equations [Gerdin
et al., 2007; Ewing et al., 1999; Baumeister et al., 1997; Ljung, 1999].

The chapter is organized as follows. Section 8.2 states the pavement model and the
estimation problem of interest. Section 8.3 develops an analysis of the model, including a
closed form approximation that is of independent interest. In Section 8.4 we present methods
for estimating the load under various setups. The presented method is optimal and can be
used to gauge other methods used in practice. Section 8.5 introduces some system design
considerations, regarding sensor placement and estimation methods. We discuss simulation
results using real world pavement parameters in Section 8.6. The proofs of all theorems of
the chapter are presented in Section 8.7. Concluding remarks are presented in Section 8.8.
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Figure 8.2: Euler beam model for a roadway and a quarter-car axle model.

8.2 Problem statement

We consider the model of a road as an Euler beam with elastic foundation with a moving
load. The vertical non-stationary force acting on the the road (beam) is due to transient
dynamic loads applied through tires of moving vehicles [Hardy and Cebon, 1994; Markow
et al., 1988; Sousa et al., 1988].

The conventional model of the equation of motion of a one-dimensional damped beam is
(see [Cebon, 1999; Fryba, 1972; Hardy and Cebon, 1993; Rao, 2007] and Figure 8.2)

EI
∂4y

∂x4
+ γ

∂2y

∂t2
+ κ

∂y

∂t
+ βy = F (x, t). (8.2.1)

Here x and y(x, t) are the horizontal position (along the road) and the vertical displace-
ment (of the pavement), and F (x, t) is the applied force at position x and time t. The
displacement y varies in the domain y ∈ R, and the position x varies within the interval
[0, L]. The standard road beam model makes the assumption β > κ, which results in the
road pavement having natural frequencies [Sun and Kennedy, 2002].

The basic force resulting from a truck moving at velocity V is modeled as the moving
excitation [Hardy and Cebon, 1994]

F (x, t) = F cos(ω0t)× δ(x− V t), (8.2.2)

where V is the velocity of the point of application of the force F cos(ω0t) with magnitude F
and frequency ω0. The magnitude and frequency are determined by the vehicle’s suspension
system. Typical values are F = 50000N and ω0 = 2π f0, where f0 is between 1 Hz and 3
Hz [Fu and Cebon, 2002; Chen et al., 2002b]. Real trucks have force excitations composed
of a linear combination of basic components

F (x, t) = P (t)× δ(x− V t),

P (t) = F (
W∑
r=0

Pr cos(ωrt)), (8.2.3)

where the number of components W and the frequencies ωi depend on the truck suspension



184

system type. For quarter car models, W = 2, ω0 = 0, ω1 is in the given range [Chen et al.,
2002b; Stergioulas et al., 2000]. For walking beam models, W = 3, with ω0 = 0 [Stergioulas
et al., 2000]. The values of Pr are usually assumed to be equal or have a fixed proportion.

We also consider a fixed excitation applied at a point x0 at time t0

F (x, t) = Fδ(t− t0)δ(x− x0). (8.2.4)

The point of application of the force at time t is xa = V t. It starts to move at time
t0 = 0, from position xa(0) = 0. This model is an approximation of the standard quarter
car model [Stergioulas et al., 2000; Hardy and Cebon, 1994; Chatti and Yun, 1996]. We
opt for the approximation since in real applications, the quarter car model has too many
parameters compared to the expected uncertainty [Cebon, 1999; Hardy and Cebon, 1994].

We consider two types of boundary and initial condition sets for solving the equation of
motion: Model I and Model II. In Model I we consider equation (8.2.1) for the elastic
beam taking it to be finite of length L with its ends freely hinged at x = 0 and at x = L.
In Model II we consider equation (8.2.1) for the elastic beam taking it to be semiinfinite,
with its end freely hinged at x = 0. In both cases the beam is initially at rest.

The observation is given by the measurement equation

(A) Pointwise displacement sensor measurement of y(x∗, t), t ∈ [0, τ ]

z(t) = y(x∗, t) + ξ(t). (8.2.5)

(B) Pointwise acceleration sensor measurement of ÿ(x∗, t), t ∈ [0, τ ]

z(t) =
∂2y(x∗, t)

∂t2
+ ξ(t) = ÿ(x∗, t) + ξ(t). (8.2.6)

Throughout the text y′ denotes the spatial derivative ∂y/∂x in x and ẏ – the time
derivative ∂y

∂t in t.
In (8.2.5) and (8.2.6), x∗ is the point of measurement and ξ(t) is the measurement noise,

with ξ(t) white noise with variance σ2
ξ (White Noise Model) [Grimmett and Stirzaker,

1992; Hayes, 1996] or ξ(t) = η(t) + u(t), |u(t)| ≤ µ, µ > 0, and η(t) white noise with
variance σ2

η (Bounded Noise Model). White noise arises in applications due to electrical
and transducer noise in typical sensors used for measurements [Ljung, 1999]. Bounded noise
arises due to drift observed in some sensor modalities. Typically, we also observe white noise
together with the bounded noise.

In general, continuous time measurements are not available. But we sample at a high
sampling rate, therefore the performance loss due to discretization is small. Also, we allow
measurements to be made at several points along the highway, at x1, ..., xN . The vector of
observed functions is denoted by z(t).

Based on this model we identify three problems.

Problem 1[Force estimation] Estimate the value F on the basis of the available
measurement z(t), t ∈ [0, τ ]. The parameters EI, γ, κ, β, in (8.2.1) are all taken as
known.
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Problem 2[Class detection] Suppose there are m nonintersecting intervals Fk ⊂ IR+:

{Fj ∩ Fk | j, k = 1, ...,m; k 6= j} = ∅.

On the basis of measurements z(t), t ∈ [0, τ ] identify to which interval Fk does F
belong.

Problem 3[Calibration] Given available measurements z(t) and an input with known
dynamic force (F, ω0), estimate the parameters of the road model.

Observe that these problems deal with the identification of a finite number (F ) through
measurement of an infinite–dimensional process [Ljung, 1999]. Also notice that the bounded
noise model is more naturally related to Problem 2 and the white noise model is better
related to Problem 1. In this chapter we focus on Problems 1 and 2. Problem 3 will
be addressed separately.

8.3 System analysis

In this section we explore the behavior of the system given in equation (8.2.1). First an
analytic solution of the response of the system is computed under the assumption the beam
is finite. Next an extension for the semi-infinite beam is presented, and the solution can
be reduced to a particular setting of the finite beam solution. We also consider an analytic
approximation to the complete solution.

Kenney [1954], Sun and Kennedy [2002] and Chan et al. [1999] propose approximations
of the beam response to moving loads. These approximations are different, in the sense that
no guarantees on the error size of the approximation are computed, as well as the applied
loads have different characteristics. Furthermore, the modulated moving characterization
of the system response is not as clearly identifiable in some of these approximations. In
some sense, the work in this section complements and extends previous approximation
methodologies.

Chatti and Yun [1996] also proposes a numerical approximation methodology to compute
pavement responses, based on a state-space model [Oppenheim et al., 1997]. The main
difficulty with this approach for our purposes is that calculating the numerical responses in
real-time is much more computationally intensive than the formulas derived in this section.

8.3.1 Finite beam

Let us now consider equation (8.2.1) for the elastic beam taking it to be of finite length
L, with both ends freely hinged at x = 0 and x = L [Rao, 2007]. Then we have

y(0, t) = y(L, 0) = 0, y′′(0, t) = y′′(L, 0) = 0, t ≥ 0. (8.3.1)

We assume the beam to be originally at rest, in its equilibrium position:

y(x, 0) = 0, ẏ(x, 0) = 0, x ≥ 0. (8.3.2)
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Therefore, the motion of the beam will arise only due to the external force F (x, t). For the
moving excitation, we have the next result.

Theorem 8.3.1. Consider the system in equation (8.2.1) with the boundary conditions (8.3.1)
and (8.3.2). The response of the system excited by F (x, t) = F cos(ω0t) × δ(x − V t) is as
follows.

(a) The exact solution is given by:

y(x, t) =
2
L

∞∑
m=0

Ym(t) sin
(πmx

L

)
, (8.3.3)

where Ym(t) is composed of two parts: Ytr,m(t), the transient natural beam response,
and Yss,m(t), the “steady-state” component, corresponding to the response of the beam
to the excitation,

Ym(t) = Ytr,m(t) + Yss,m(t), (8.3.4)

Yss,m(t) =
F0

2
{|Fa,m| sin(ωa,mt+ ∠|Fa,m|) + |Fb,m| sin(ωb,mt+ ∠|Fb,m|)} ,

Ytr,m(t) =
F0

2Ωm
e−kt (|Ca,m| sin(Ωmt+ ∠Ca,m) + |Cb,m| sin(Ωmt+ ∠Cb,m)) ,

F0 =
F

γ
, k =

κ

γ
, ω2

m = (α(πm/L)4 + β)/γ, Ω2
m = ω2

m − k2

ωa,m =
πm

L
V + ω0, ωb,m =

πm

L
V − ω0,

Ca,m =
1

k2 − 2kΩmi− Ω2
m + ω2

a,m

,

Cb,m =
1

k2 − 2kΩmi− Ω2
m + ω2

b,m

,

F (s,m) = s2 + 2ks+ ω2
m,

Fa,m = F (iωa,m,m)−1,

Fb,m = F (iωb,m,m)−1 = F ∗(iωa,m,−m)−1.

(b) We have

lim
L→∞

y(x, t) = F0Re[ψ∗(V t− x)ejω0t] +O
(
e−k t

)
,

where

ψ∗(t) =
1

2π i

∫ ∞
−∞

Ω(s)−1es tds,

Ω(s) = α/γs4 + V 2s2 + (2ω0V i+ 2kV )s+ (β/γ − ω2
0 + 2kω0i). (8.3.5)

(c) The response of system (8.2.1) to the fixed excitation F (x, t) = Fδ(t− t0)δ(x− x0) is
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given by

y(x, t) =
2
L

∞∑
m=0

Ỹm(t− t0) cos
(
πm(x− x0)

L

)
− 2
L

∞∑
m=0

Ỹm(t− t0) cos
(
πm(x+ x0)

L

)
,

Ỹm(t) = F0Ω−1
m e−kt sin(Ωmt)u(t),

where the Heaveside function u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0.

The solution in Theorem 8.3.1 does not solve for the truck forcing term (equation (8.2.2)),
but since the PDE is linear, the result is easily extended.

Corollary 8.3.1. Let

h(x, t|ω0, V ) =
1
γ
Re[ψ∗(V t− x)ejω0t], (8.3.6)

where ψ∗ is computed according to equation (8.3.5) with parameters ω0 and V . Then the
response of system (8.2.1) to the truck forcing term (equation (8.2.2)) is given by

lim
L→∞

y(x, t) = F (h(x, t|0, V ) + h(x, t|ω0, V )) +O
(
e−k t

)
. (8.3.7)

The qualitative behavior of the system can be explored using Theorem 8.3.1(c). The
closed form solution for the displacement y(x, t) can be obtained by computing the in-
verse Laplace transform [Oppenheim et al., 1997] of Ω(s)−1 as shown. Inverting Laplace
transforms requires the specification of the region of convergence (ROC) of the integral
[Oppenheim et al., 1997]. Since the system we are dealing is a physical system, the solution
obtained from the inversion computation should be a solution with bounded energy.

The standard inversion procedure starts by computing the roots of the rational transfer
function to be inverted. In the present case this corresponds to finding the values λi such
that Ω(λi) = 0, which amounts to solving for the roots of a fourth order polynomial. Then
we can use the partial fraction expansion, and assuming no repeated roots, obtain the
decomposition

Ω(s)−1 =
4∑
i=1

Ai
s− λi

,

where Ai are the partial fraction expansion coefficients. Using the bounded energy condition
as the region of convergence rule, the inverse Laplace transform states:

1
2π

∫ ∞
−∞

Ai
s− λi

es tds =
{

Aie
λit u(t) Re[λi] ≤ 0

−Aieλit u(−t) Re[λi] > 0
.

Since the coefficient of s3 in the polynomial Ω(s) is zero, we must have λ1 +λ2 +λ3 +λ4 = 0,
which implies that either Re[λi] = 0 for all the roots, or else, there are roots with Re[λi] > 0
and with Re[λi] < 0. The beam is damped, therefore not all roots can have Re[λi] = 0.
Without loss of generality, let us assume that Re[λ1] > 0, Re[λ2] > 0, Re[λ3] < 0 and
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Re[λ4] < 0. Then the function ψ∗(t) in Theorem 8.3.1(c) can be computed as

ψ∗(t) = −A1e
λ1 tu(−t)−A2e

λ2 tu(−t) +A3e
λ3 tu(t) +A4e

λ4 tu(t).

The beam deflection response is essentially a traveling wave shaped by ψ∗(t). The shape of
ψ∗ implies that there is a decaying behavior for large t > 0 and for small t < 0. Moreover,
the time t∗ at which the truck goes over the location x is t∗ = x/V . At this time, the value
of the wave shape is ψ∗(0). This also implies that at location x the beam experiences some
displacement even before the truck arrives at that location, since ψ∗(t) 6= 0 for t < 0. This
displacement is caused by the sum of the excitations just prior to the truck arriving at that
location. The whole response is modulated by the truck’s suspension system frequency.
This accurately captures the important phenomena observed in the more complex quarter
car model [Cebon, 1999; Hardy and Cebon, 1994].

A better comprehension of the behavior of the roots can be gained by looking at the
system response for large truck speeds. Consider the transform s′ = iω0 + V s. Then, the
polynomial can be written as:

Ω(s′) = s′2 + 2k s′ +
β

γ
+

α

γV 4
(s′ − i ω0)4,

≈ s′2 + 2ks′ +
β

γ
.

Thus the roots of the original Ω(s) at high speed are given by

λ1,2 =
−k ±

√
β/γ − k2i− ω0i

V
.

The displacement can be computed as

y(x, t) ≈ F

γ V
√
β/γ − k2

e−k (t− x
V ) sin

(√
β/γ − k2

(
t− x

V

))
cos
(ω0 x

V

)
. (8.3.8)

The exponential decay of the solution is at a rate −k (notice the normalization by V )
independent of speed, and the fundamental frequencies of the system is

√
β/γ − k2. At

high speeds, the suspension system modulation frequency ω0 only affects the amplitude of
the response spatially.

To conclude the discussion, the solution for a fixed excitation (Theorem 8.3.1 (d)) can be
related to the moving excitation solution. Let t0 = x/V and x0 = V t in the fixed excitation.
This is similar to having an unmodulated moving impulse without iterating through the
physical system. Then:

y(x, t) =
2
L

∞∑
m=0

Ỹm(V t− x) cos
(
πm(V t− x)

L

)
− 2
L

∞∑
m=0

Ỹm(V t− x) cos
(
πm(x+ V t)

L

)
,

which is the solution for the moving excitation when ω0 = 0.
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8.3.2 Semi-infinite beam

For completeness, we consider system (8.2.1) for the elastic beam taking it to be semi-
infinite, with its end freely hinged at x = 0 [Fryba, 1972; Rao, 2007]. The important
observation is that the obtained solution is equivalent to the solution obtained for a fi-
nite beam of length L by letting L → ∞, confirming the validity of our approximation.
The computation of the current solution, though, relies on a continuous Fourier transform
decomposition [Fryba, 1972; Rao, 2007].

Since the end is freely hinged, the boundary conditions are given by

y(0, t) = 0, y′′(0, t) = 0, t ≥ 0. (8.3.9)

We assume the beam to be originally at rest, in its equilibrium position:

y(x, 0) = 0, ẏ(x, 0) = 0, x ≥ 0. (8.3.10)

Furthermore, also assume that the derivatives y(k)(x, t), k = 1, . . . , 3, vanish at x = ∞,
which is equivalent to the limit of the condition we used at x = L for a finite beam.

Theorem 8.3.2. The exact solution for the moving excitation hinged semi-infinite beam
problem is given by

y(x, t) = (2/π)
1
2

∫ ∞
0

Yξ(t) sin(ξx)dξ, (8.3.11)

where

Yξ(t) = Y ξL
π

(t), (8.3.12)

and Ym is given in Equation (8.3.4).

8.4 Estimating the load

Problem 1 concerns the estimation of the weight under the White Noise Model, given
that the parameters of the highway are known [Chan et al., 1999]. The input to the highway
system is a truck, whose corresponding forcing model is given by

F (x, t) = F (1 + cos(ω0[t− t0] + φ))× δ(x− V [t− t0]), (8.4.1)

where we have included the phase term φ to account for the uncertainty in the initial
conditions of the suspension system for the truck and t0 to account for the unknown initial
starting time of the truck.

We assume two types of situations. In the coherent estimation problem, we assume that
the truck parameters t0, φ, ω0 and V are known, and we have to estimate the value of F .
In a certain sense, this is the best possible situation, since the whole parametrization of the
problem is known.



190

The conditions are progressively relaxed, assuming first that t0 is unknown, both φ and
t0 are unknown, and finally t0, ω0 and φ are unknown. We assume that the speed V can be
measured, but at the end of the section we study the sensitivity of our problem towards this
parameter. The problems with less information are categorized as non-coherent estimation
problems, and as we will see there are considerable noise tradeoffs in these cases. One
feature of non-coherent estimation is that the identifiability of the force F depends on the
information set. Denote the information set as I, such as in I = [V, ω0, φ].

The first important observation concerns the role of the measurement equation. For the
methods presented here, the fact that displacement is being measured (equation (8.2.5)) or
acceleration is being measured (equation (8.2.6)) does not change the methodology. The
error rates of the proposed methods though could be different since they depend on the
amount of energy measured by the transducer relative to the amount of noise. To normalize
our error computations, we define the signal-to-noise ration (SNR) of the measurement
system as [Hayes, 1996; Ljung, 1999]

SNR =
Ps − Pξ
Pξ

,

Pξ = E
[∫ τ

0
ξ(t)2 dt

]
, Ps = E

[∫ τ

0
z(t)2 dt

]
, (8.4.2)

which is a surrogate measure of the relative amount of information provided by the sen-
sor. We assume without loss of generality that the measurement is displacement. Also, for
the remainder of the section, denote by h(t, x|V, ω0, φ), the response to the forcing equa-
tion (8.4.1):

h(x, t|ω0, V, φ, t0) =
1
γ
Re[ψ∗1(V [t−t0]−x)ej(ω0(t−t0)+φ)]+

1
γ
Re[ψ∗0(V [t−t0]−x)ejφ], (8.4.3)

where ψ∗1 is computed according to equation (8.3.5) with parameters ω0 and V , and ψ∗0
computed with parameters ω0 = 0 and V . This result can be demonstrated with a minor
modification in the proof of Theorem 8.3.1.

Furthermore, we allow the observation to be a scalar function z(t), at a single point
in space x∗, or more generally, zi(t), at points in space x∗i for i = 1, ..., I, implying mea-
surements with I sensors. Procedures for different information sets are shown in Theorem
8.4.1. Notice that as more parameters become unknown, the complexity of the procedure
increases.

Theorem 8.4.1. Given the complete information set I0 = [V, ω0, φ, t0], the optimal mean
square estimate of the parameter F is

(a) For a single observation at x∗

F̂ =
∫ ∞

0

z(t)h(t, x∗|ω0, V, φ, t0)
||h(t, x∗|ω0, V, φ, t0)||2

dt, (8.4.4)
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and the Mean Square Error (MSE) is given by

E[(F̂ − F )2] =
σ2

||h(t, x∗|ω0, V, φ, t0)||2
, (8.4.5)

=
1

SNR(x∗)
(8.4.6)

(b) For multiple observations x∗i , i = 1, ..., I:

F̂ =
∑I

i=1

∫∞
0 zi(t)h(t, x∗i |ω0, V, φ, t0)dt∑I
i=1 ||h(t, x∗i |ω0, V, φ, t0)||2

, (8.4.7)

The MSE is

E[(F̂ − F )2] =
1∑I

i=1 SNR(x∗i )
, (8.4.8)

Given the information set I1 = [V, ω0, φ],the energy estimate of the parameter F is

(c) For a single observation at x∗

F̂ =
[ ∫ τ

0 z(t)2 dt

||h(t, x∗|ω0, V, φ, 0)||2τ

] 1
2

, (8.4.9)

(d) For multiple observations x∗i , i = 1, ..., I:

F̂ =
∑I

i=1

∫∞
0 zi(t)2 dt∑I

i=1 ||h(t, x∗i |ω0, V, φ, 0)||2τ
, (8.4.10)

Given the information set Ii, where I0 represents the complete information set, denote by
I = I0 − Ii the set of unknown parameters. Then

(e) For a single observation at x∗, the least-squares estimator is

Î = argmax
I

(∫∞
0 z(t)h(t, x∗|ω0, V, φ, t0)dt

)2
||h(t, x∗|ω0, V, φ, t0)||2

(8.4.11)

F̂ =

∣∣∣∫∞0 z(t)h(t, x∗|Ii ∪ Î) dt
∣∣∣

||h(t, x∗|Ii ∪ Î)||2
(8.4.12)
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(f) For multiple observations x∗i , i = 1, ..., I:

Î = argmax
I

(∑I
i=1

∫∞
0 z(t)h(t, x∗i |ω0, V, φ, t0)dt

)2

∑I
i=1 ||h(t, x∗i |ω0, V, φ, t0)||2

(8.4.13)

F̂ =

∣∣∣∑I
i=1

∫∞
0 z(t)h(t, x∗i |Ii ∪ Î) dt

∣∣∣∑I
i=1 ||h(t, x∗i |Ii ∪ Î)||2

(8.4.14)

The first insight that Theorem 8.4.1 gives is that in the full information case, the optimal
estimator guarantees that the mean squared error decreases as O(1/I), where I is the
number of sensors. So in theory increased precision in the force estimation can be obtained
by adding additional sensors to the system. In practice the limits are the uncertainties
about the speed over a longer stretch of pavement might limit this performance.

The second observation is that as the information set becomes smaller, the complexity
of the optimization needed to be carried out increases. For example, for the information set
I4 = {V }, an optimization over the three remaining parameters ω0, t0 and φ needs to be
carried out. The optimization itself is not convex, but the domain is bounded in ω0 and φ.
This fact can be used to devise a more efficient optimization methodology.

To conclude the section, we note that the result for the Bounded Noise Model is
identical to the White Noise Model.

8.5 System design

In this section we address some important considerations when building a practical
system for axle dynamic force computation. The first important consideration is the spatial
placement of the acceleration sensors, which can result in improved estimation of the force.
The next consideration is how to implement a computation system for the axle force, based
on the methodology suggested in section 8.4. Some considerations about the most efficient
approaches to compute the optimization should be made. Both issues are addressed in this
section.

8.5.1 Sensor placement and design

Natural constraints on the placement of the sensor arise from observing the system
response function to the moving load (Theorem 8.3.1(c)). The constraints are driven by
observability requirements of the output of the system. The first constraint arises from the
observation that taking samples of sensors at different locations xi, at times ti = xi/V + δ,
for some constant δ, we obtain the response function

y(ti, xi) = F0Re[ψ∗(δ)] cos(ω0/V xi + ω0δ) + F0Im[ψ∗(δ)] sin(ω0/V xi + ω0δ) +O
(
e−k(

xi
V

+δ)
)
.

The Nyquist condition [Oppenheim et al., 1999a] implies that the sampling rate has to be
less than twice the highest frequency of the signal, for uniformly sampled spatial signals. If
we assume that sensors are placed uniformly according to xi = i∆x, and the bandwidth of
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y(ti, xi) is ∆ω0, the condition becomes

2π
∆x
≥ 2∆ω0.

The truck suspension system parameter ω0 is in the range ω0 ∈ 2π[1, 3], therefore ∆ω0 =
2π(3 − 1)/V for the signal of interest, and we can conclude the following requirement on
the sensor placement:

∆x ≤ V

4
(meters).

Interestingly, the minimum speed of the truck in the system is the limitation on how closes
sensors must be. If we assume that the minimum speed is 30 mph, the sensors must be at
most 3.35 meters apart for observability of the measurement.

Similarly, the fundamental frequencies in the function ψ∗ play a role as well. For each
root λi of the system function Ω(s) in (Theorem 8.3.1(c)), the Nyquist criterion applies,
therefore

∆x ≤ 2π
2 maxi λi

(meters).

For high speeds V of the truck, Equation 8.3.8 shows that both conditions can be sim-
plified to the condition

∆x ≤ 2π V
2(∆ω0 +

√
β/γ − k2)

(meters).

8.5.2 Distributed data computation

The optimization in Equation (8.4.11) is complex when the information set is small. The
optimization is not convex, but is in a bounded domain, which facilitates a simple approach.
We consider here the smallest information set, I = {V }. The procedure can be adjusted
for other information sets in a straightforward manner.

The parameter t0 is a time shift parameter, and can be optimized separately. One choice
is to compute a cross correlation [Hayes, 1996; Ljung, 1999], which consists in calculating
the objective function for a series of values of t0 in some window of interest [T1, T2] where
the energy of the signal z(t)∗ is greater than the noise floor. Another choice is to compute
Fourier transforms of both z(t)∗ and the normalized signal

h̃(t, x∗i ) =
h(t, x∗i |ω0, V, φ, 0)√∑I
i=1 ||h(t, x∗i |ω0, V, φ, 0)||2

(8.5.1)
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and use Parseval’s relation to obtain:

Î = argmax
I−{t0}

(
I∑
i=1

∫ ∞
−∞

Z(ω)H̃(ω, x∗i |ω0, V, φ, 0)∗dω

)2

F̂ =

∣∣∣∣∣
I∑
i=1

∫ ∞
−∞

Z(ω)H̃(ω, x∗i |ω0, V, φ, 0)∗dω

∣∣∣∣∣
/√√√√ I∑

i=1

∫ ∞
−∞
|H(ω, x∗i |ω0, V, φ, 0)|2 dω .

If smart sensors are used, each scalar product and normalization constant can be com-
puted separately and transmitted to the fusion center. The fusion center then implements
the equation above.

8.5.3 Applications

The measurement of a pavement displacement when excited by an external impulse has
several interesting applications:

Weigh-in-Motion. The acceleration measurement can be converted into an estimate of the
(dynamic) weight of the truck, using techniques similar to the one presented in this chapter.

Axle Counting. The number of axles in a truck can be detected from the acceleration
measurements converted to displacement. This is an important application and currently
there are a very limited number sensors for this purpose.

Pavement Damage Meter. The measurement can be converted to an estimate of how
much the pavement is damaged as well. Some existing methods associate the average ob-
served weights to damage [Cebon, 1999], but direct response analysis could potentially be
used to evaluate damage.

FWD Replacement. Falling weight deflectometers are currently used to test pavement
response. These equipment drop a known weight on the pavement and measure the re-
sponse. The costs of transporting the equipment to the test location and calibration can be
quite high. Instead, permanently embedded sensors in the pavement could record pavement
response to trucks that regularly use those roads. The pavement response can be inferred
from this measurement.

Structure Monitoring. Embedding accelerometers in concrete beams such as the sup-
port or roadway of a bridge, allow for permanent monitoring of structural integrity. In such
cases, usually the response to impulsive loads is a fundamental quantity.

Impact Monitoring. Airport runways require permanent monitoring for early intervention
in the case of runway damage. Furthermore, impacts of airplanes at landing are measured
to determine optimal parameters for landing procedures and runway construction.
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8.6 Experimental Results

In this section we examine the behavior of the pavement-truck system and the quality
of the proposed weight estimation schemes. We consider two types of concrete pavements:
rough pavements and smooth pavements.

The rough pavement model is the general model considered in this chapter. Pavement
roughness excites the truck suspension system resulting in a modulation of the pavement
displacement measurements [Cebon, 1999]. Not accounting for this excitation while solving
for the weight of the truck can result in large errors.

Smooth pavements, as deployed in various highways, do not excite the truck suspension
system, resulting in a system with the behavior equivalent to setting ω0 = 0 in the proposed
model. Our experimental setup has been built in a smooth pavement so qualitative results
from the simulation and experimental measurements can be made under this assumption.

First we validate the approximation methodology proposed in Section 8.3. Next, we
analyze the response for the rough pavement model, and compare the behavior for a range
of truck speeds and suspension system frequencies. In the following section we investigate
smooth pavements and the variation of the response with respect to various system param-
eters. To conclude the section we contrast the experimental data obtained from a pavement
embedded accelerometer and evaluate the estimation quality of truck weight estimators
based on the observed behavior and show that the proposed method is quite robust to noise
in the acceleration measurements.

8.6.1 Pavement response analysis

We use the more general model to evaluate the quality of the approximation proposed
in Section 8.3. We undertake a more flexible concrete model, using the following parameter
values [Cebon, 1999]1:

EI = 1.38× 106Nm2;β = 170× 106N/m2; γ = 353× 103kg/m;κ = 106Ns/m2, (8.6.1)

where we have assumed M = 106; g = 10m/s2. We take the axle weight of the truck to
be 5000 Kg, therefore F0 = 50000N . Whenever unspecified, we take the suspension system
fundamental frequency to be ω0 = 1.23Hz.

The main difficulty in simulating the distributed system (Equation (8.2.1)) is its stiffness
with respect to parameters in Equation (8.6.1) [Chatti and Yun, 1996]. Stiffness means that
small variations on the forcing function F (x, t) cause large variations in the output y(x, t).
This is the case for any pavement model, given that the material structure itself is not very
flexible and therefore the system will exhibit a stiff response [Hardy and Cebon, 1994].

The pavement response to a moving load can be computed exactly using Theorem 8.3.1
(Equation (8.3.3)). The solution is a convergent infinite summation. The summation cannot
be computed exactly, but can be approximated by truncating at a predetermined number
of terms. Lemma 8.7.1 shows that the truncation has exponential decay so the ignored
part will only contribute a finite amount to the error. Unfortunately, such solution does
not give much insight on the behavior of the system. Furthermore, for the parameters

1In the book these parameters are: EI = 1.38MNm2;β = 170MN/m2; γ = 353Mg/m;κ = 1MNs/m2.
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Figure 8.3. Relative Mean Squared Error (%) between ground truth displacement and
asymptotic approximation at L/2 for V = 10 m/s (y(L/2, t)).

in Equation (8.6.1), the pavement exhibits a very stiff behavior, and the number of terms
required is quite large. For the reported parameters, we observed that at least 5,000 elements
were required before the norm of the additional terms being added is a small fraction of the
sum at that point.

An alternative approach is to compute a direct numerical solution to the original PDE
(Equation (8.2.1)). A Finite Element Method is indicated for this problem. The publicly
available state-of-the-art FlexPDE solver can be used. Due to the high degree of stiffness
of the PDE, the solver has difficulties finding acceptable numerical approximations to the
response since it has to handle very poorly conditioned matrix inversions. In our exper-
iments, the numerical approximation resulted in solutions qualitatively correct but with
severe kinks, which are not physically valid.

The closed form approximation in Theorem 8.3.1(b) is easy to compute. The solution is
exact as the length L→∞. It is important then to evaluate the quality of the approximation
for finite values of L. As the gold standard we choose the truncated solution based on
Theorem 8.3.1(b), with a large number of coefficients, N = 10, 000, where it is observed
computationally that the summation has converged to a degree. The relative mean squared
error is used for comparison purposes:

Err(r(t), y(t)) =

∫ τ
0 (r(t)− y(t))2dt∫ τ

0 r(t)
2dt

(8.6.2)

Figure 8.3 shows the relative mean squared difference between the ground truth solution
and the asymptotic approximation, in percentages. A fixed position x = L/2 was chosen.
Of course the solution is accurate away from the boundaries, and in our highway problem
we are only interested in the behavior away from the virtual boundaries as well. Notice
that very quickly the error becomes negligible. It is safe to say that for L > 50 m, we have
an accurate solution for the given parameters choice.
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8.6.2 Rough pavement model

To start our analysis, we compute the responses of the system to a variety of changes in
the parameters representing the truck such as its speed V and suspension frequency ω0.

Figure 8.4 shows the displacement y(x, t) at x = 500 m. The peak of the response
happens at t = 50 s, when the truck is above the sensor, as expected. Furthermore, even
before the truck arrives at x = 500 m, there is a response the signal being generated. This
is a typical characteristic of a distributed parameter wave system. We also computed the
signal frequencies before and after the arrival of the truck at x = 500 m. A single frequency
before and a single frequency after are responsible for most of the response. As we saw in
the theoretical section, the frequencies before the arrival of the truck at x = 500 m consist
of the imaginary parts of the anti-causal poles of the response transfer function and the
frequencies after correspond to the imaginary part of the causal poles.

(a) (b)

Figure 8.4. (a) Displacement at x = 500 m, for L = 1000 m, V = 10 m/s and ω0/2π = 1.23
Hz. Fundamental frequencies (amplitudes) for the signal before t = 50 s are 4.7 Hz (14.2)
and 9.8 Hz (2.8). After t = 50 s they are 3.7 Hz (13.8) and 3.5 Hz (3.1). (b) Displacement
at x = 500 m, for L = 1000 m, V = 50 m/s and ω0/2π = 1.23 Hz.

One interesting feature is that the signal after the truck arrival vibrates at a smaller
frequency than the signal before. In physical terms it can be understood as a doppler type
phenomenon, but the waves being propagated are vibrations and the propagation medium
is the pavement.

Figure 8.5 shows the wave behavior of the displacement response. The response is
approximately localized in space and time, i.e., at any given fixed measurement point, there
is a small time window of useful data. Furthermore the figure also shows more clearly the
effects of modulating the typical response. In summary, the displacement response at any
point in space is an appropriately shifted and modulated version of the response at any
other point, with fix modulation frequency but variable phase.

In Section 8.3 we computed the asymptotic pole locations as the velocity of the truck
become high. The fourth order polynomial reduced to a second order polynomial with
causal complex roots. That is, the response of the pavement before the truck arrives at the
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Figure 8.5. Contour plot of displacement y(x, t), for L = 1000 m, V = 10 m/s and
ω0/2π = 1.23 Hz.

(a) (b)

Figure 8.6. (a) Real and (b) imaginary parts of the poles of the system for L = 1000 m
and ω0/2π = 1.23 Hz.

measurement location is negligible compared to the response after. Figure 8.4 shows the
response with the truck at a higher speed, confirming this asymptotic viewpoint.

Figure 8.6 shows the variation of the magnitudes of the real and imaginary parts of
the poles of the response with respect to the speed. As the speed becomes higher, we see
that a pair of the imaginary frequencies tend to a small value. Furthermore, the remaining
pair increases linearly with speed and becomes approximately conjugate. This behavior
also means that the expansion coefficients for the small value imaginary frequency poles
become small, as they are directly proportional to the product of the magnitude of the
remaining poles. Thus, as speed increases, the 4 pole system collapses to a two pole system
approximately. This observation will be useful to calibrate the model PDE. The Figure also
shows the real part of the poles, and they confirm the notion that as the speed becomes
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higher we end up with a pair of causal complex conjugate poles and possibly a pair of
anti-causal complex conjugate poles.

(a) (b)

Figure 8.7. Displacement impulse response along the highway, for L = 1000 m, at (a)
t = 0.00001 s and (b) t = 0.1 s.

Finally, Figure 8.7 shows the impulse response for an impulse force (δ function) located
at x = 500 m. Notice that now the oscillation is symmetric.

8.6.3 Smooth pavement model

The smooth pavement is modeled by taking ω0 = 0. Furthermore, in agreement with
the observed values in real concrete pavement deployments, we consider a stiffer material,
with EI = 1.38 × 120 MNm2. We set the length of the road to L = 1000m. Figure 8.8(a)
shows the response at x = 500m for a truck moving at 10 m/s with F = 50, 000N. Notice
how the pavement stiffness reduces the ringing effect in the response.

The response to the truck can be characterized by the value at the maximum. Fig-
ure 8.8(b) shows the variation of the peak value with truck speed. For speeds up to high-
way speeds, a fourth order relationship holds. Notice that the maximum deviation increases
with speed, as the same energy is transferred to the road in a shorter amount of time. One
method for converting a displacement measurement to truck force is to use a peak measure-
ment of displacement and normalize it for speed effects using Figure 8.8(b), resulting in an
estimate.

Figure 8.9(a) shows the peak variation with EI, the beam stiffness. Notice that beyond a
certain level of stiffness, the qualitative behavior is the same. In fact, a careful inspection of
simulation results reveals that for every EI value, there is a speed after which the qualitative
behavior is the same as one for a lower EI and lower speed. Figure 8.9(b) shows the variation
of the average energy of the displacement signal with truck speed. The advantage of this
signal in an estimation procedure is the smaller variance of the uncertainty with respect to
noise, when compared to the peak alone.
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(a) (b)

Figure 8.8. (a) Displacement at x = 500 m, for L = 1000 m, V = 10 m/s. (b) Maximum
displacement for varying truck speeds.

(a) (b)

Figure 8.9. (a) Maximum displacement for varying stiffness constant magnitudes. (b)
Average energy (mean sum of squared values) of displacement in mm2.
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(a) (b)

Figure 8.10. (a) Score function for Rough Pavement parameters. (b) Contour of score
function.

(a) (b)

Figure 8.11. (a) Force estimate for a given ω0 estimate assuming phase estimated correctly.
True value is 50, 000N. (b) Force estimate for a given φ estimate, assuming ω0 estimated
correctly.

8.6.4 Truck parameter estimation

There are three parameters of importance for the estimation of the force F to be accurate:
knowing the shift t0 (or random phase φ), the speed V and suspension system frequency
ω0. In the case of smooth pavements ω0 = 0, reducing the complexity of estimation. We
assume that speed is measured by independent and accurate sensors.

Consider the experimental setup for the rough pavement model. Figure 8.10(a) and 8.10(b)
show how the error correlation varies with chosen ω0 and φ. Figure 8.11(a) and 8.11(b)
shows a projection onto each of these axis. The sensitivity is not very high, and the esti-
mation procedure can be quite robust.
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(a) (b)

Figure 8.12. (a) Experimental setup for testing the pavement response with an embedded
accelerometer (set at position 8/17). Weights are dropped at the numbered locations. (b)
Measured acceleration map for the Falling Weight Deflectometer experiment (see text).

8.6.5 Field Data

We performed a validation of the proposed approach, deploying an accelerometer sensor
in a concrete pavement road (Road 32A in Yolo County, CA). Figure 8.12(a) shows the
experimental deployment. The sensor is placed in the middle of a single lane. Two exper-
iments were performed: one using a Falling Weight Deflectometer (FWD) to measure the
pavement impulse response, and another using a real truck to measure the typical truck
response. The noise power of the sensor after deployment was measured as σw = 120µg.
The noise was not white due to a low pass filter used in the sensor.

In the first experiment, a known weight is dropped from a preset height at the numbered
locations. The response of the pavement is recorded by the sensor. The equipment used for
this experiment is a and the weight dropped simulates an impulse input to the concrete.
Notice that since response is only recorded at a single location x∗ = 0, we do not obtain
the full impulse h(x, t), which is the response observed by the whole concrete block to an
impulse at x = 0. Instead we repeat the experiment at x = xk, for k = 1, ...,K, (i.e.
drop the weight at that location and measure at x = 0), to obtain y(t|xk). Assuming the
pavement response is isotropic, we assign h(xk, t) = y(t|xk). Due to the isotropic nature of
the material, we also assume that h(−xk, t) = h(xk, t). A smoothed version of the empirical
measured acceleration map h(x, t) is shown in Figure 8.12(b). The map shown interpolates
the observed values.

The qualitative behavior of the displacement can be confirmed by plotting a numerical
double integration of the observed h(xk, t). We chose locations 0 and 2, and show the
corresponding output in Figure 8.13(b). Figure 8.13(a) shows the measured acceleration.
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(a) (b)

Figure 8.13. (a) Acceleration measurement for FWD experiment. Normalized to 50, 000N.
Drop positions are shown in the legend. (b) Displacement measurement for FWD experiment
from double integrating acceleration.

(a) (b)

Figure 8.14. (a) Acceleration measurement for truck experiment multiplied by -1 (to align
orientation). 6, 000N per axle truck moving at 35 MPH. (b) Displacement measurement for
same experiment.
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The behavior is close to that expected for a smooth pavement (e.g. Figure 8.7). Double
integration of the correlated measurement noise creates the non-zero settling signal towards
the end of the time window.

For the second experiment, we measure the response of the pavement to an excitation by
a truck traveling at different speeds. Figure 8.14(a) shows a typical measured acceleration.
Figure 8.14(b) shows an estimated displacement using the measurement. The estimation is
not a straightforward double integration due to measurement noise. The response is very
similar to those observed for smooth pavements. Multiple components are added together
since the truck has multiple axles.

8.7 Proofs

8.7.1 Theorem 8.3.1

(a) A Fourier expansion should be used to solve the equation [Rao, 2007]. The basis
choice is constrained by the boundary condition [Fryba, 1972; Rao, 2007]. There are four
available basis sin πmx

L , cos πmxL , sinh πmx
L and cosh πmx

L . The four boundary conditions are
used to determine the right expansion to use. Using a Fourier type expansion on the basis
{sin πmx

L }, integrating from 0 to L by parts and taking into account the boundary conditions
(8.3.1) at x = 0 and x = L, we obtain the relations∫ L

0
y′′′′(x, t) sin(πmx/L)dx = −(πm/L)2

∫ L

0
y′′(x, t) sin(πmx/L)dx (8.7.1)

= (πm/L)4

∫ L

0
y(x, t) sin(πmx/L)dx.

We now proceed as follows. We multiply both sides of equation (8.2.1) by sin(πmx/L) and
integrate them from 0 to L in x. Further on, denoting EI = α and dividing both sides by
γ, we come to equation

Ÿm + 2κγ−1 ˙Ym + (α(πm/L)4 + β)γ−1Ym = Fγ−1 cosω0t sin(πmV t/L) (8.7.2)

with initial condition Ym(0) = Ẏm(0) = 0. Here

Ym(t) =
∫ L

0
y(x, t) sin(πmx/L)dx

is the finite Fourier sine coefficient of function y(x, t). The right-hand side arrived through
formula ∫ L

0
F cosω0(t) sin(πmx/L)δ(x− V t)dx = F cosω0t sin(πmV t/L).

Using the definitions for k, F0, ω
2
m and Ω2

m we come to equation

Ÿm + 2k ˙Ym + ω2
mYm = F0 cosω0t sin(πmV t/L) (8.7.3)
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with zero initial conditions for eachm. We can now solve this equation by using the following
simplification,

Ÿm + 2k ˙Ym + ω2
mYm =

F0

2
sin((πmV/L+ ω0)t) +

F0

2
sin((πmV/L− ω0)t) (8.7.4)

Noticing that the roots of the differential equation are k ± Ωmi since β > κ (implying
ω2
m > k), we can write the full response to the above ODE as shown in Equation (8.3.4)

[Oppenheim et al., 1997].

(b) First we show that the transient part of the complete response to a moving excitation
is O(1) for the total transient response

Ytr(x, t) =
2
L

∞∑
m=0

Ytr,m(t) sin
(πmx

L

)
. (8.7.5)

Lemma 8.7.1. Ytr(x, t) = O
(
e−k t

)
, uniformly in x. Furthermore, limL→∞ Ytr(x, t) =

O
(
e−k t

)
, uniformly in x.

Proof. From the definitions:

|Ytr(x, t)| =

∣∣∣∣∣ 2L
∞∑
m=0

Ytr,m(t) sin
(πmx

L

)∣∣∣∣∣
≤ 2

L

∞∑
m=1

|Ytr,m|

≤ F0e
−k t 2

L

∞∑
m=1

1
Ω3
m

≤ F0e
−k t 2

L

∞∑
m=1

γ
3
2

α
3
2 π6(m/L)6

=
2F γ

1
2

α
3
2 π6

e−ktK(L), (8.7.6)

where

K(L) =
1
L

∞∑
m=1

1
(m/L)6

.

For each finite L it is clear that K(L) <∞. Moreover:

lim
L→∞

K(L) <
∫ ∞

1

1
s6
ds

= 1/7.
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We can now consider Yss,m(t). Isolating the modulation of the forcing term:

Yss,m(t) =
F0

2

{
|Fa,m| sin

(
πmV

L
t+ ∠|Fa,m|

)
+ |Fb,m| sin

(
πmV

L
t+ ∠|Fb,m|

)}
cos(ω0t)+

+
F0

2

{
|Fa,m| cos

(
πmV

L
t+ ∠|Fa,m|

)
− |Fb,m| cos

(
πmV

L
t+ ∠|Fb,m|

)}
sin(ω0t)

(8.7.7)

We can now incorporate the sine term in Equation (8.3.3), using sine and cosine identities
and moving constants around

f(r) =
1

2L

∞∑
m=0

|Fa,m| cos
(πm
L
r + ∠|Fa,m|

)
+ |Fb,m| cos

(πm
L
r + ∠|Fb,m|

)
(8.7.8)

g(r) =
1

2L

∞∑
m=0

|Fa,m| sin
(πm
L
r + ∠|Fa,m|

)
− |Fb,m| sin

(πm
L
r + ∠|Fb,m|

)
(8.7.9)

y(x, t) = F0{(f(V t− x)− f(V t+ x)) cos(ω0t) + (g(V t+ x)− g(V t− x)) sin(ω0t)}
(8.7.10)

Now we can compute the following quantity

f∗(r) = lim
L→∞

1
2L

∞∑
m=0

|Fa,m| cos
(πm
L
r + ∠|Fa,m|

)
+ |Fb,m| cos

(πm
L
r + ∠|Fb,m|

)
. (8.7.11)

Defining the constants

ωa,ξ = πξV + ω0, ωb,ξ = πξV − ω0,

ω2
ξ = (α(πξ)4 + β)/γ, ω̂a,ξ = ξV + ω0,

F (s, ξ) = s2 + 2ks+ ω2
ξ ,

Fa,ξ = F (iωa,ξ, ξ)−1,

Fb,ξ = F (iωb,ξ, ξ)−1 = F ∗(iωa,ξ,−ξ)−1,

we can obtain

f∗(r) =
1
2

∫ ∞
0
{|Fa,ξ| cos (πξr + ∠|Fa,ξ|) + |Fb,ξ| cos (πξr + ∠|Fb,ξ|)} dξ

=
1

2π

∫ ∞
−∞

∣∣F (iω̂a,ξ, ξ)−1
∣∣ cos

(
ξr + ∠F (iω̂a,ξ, ξ)−1

)
dξ (8.7.12)
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Now define:

ψ∗(r) =
1

2π

∫ ∞
−∞

Ω−1
ξ eiξrdξ,

Ωξ = −(ξV + ω0)2 + 2k(ξV + ω0)i+ (αξ4 + β)/γ. (8.7.13)

Using this definition we can see that

f∗(r) = Re[ψ∗(r)], (8.7.14)
g∗(r) = lim

L→∞
g(r) = Im[ψ∗(r)]. (8.7.15)

Notice that Equation (8.7.13) is just the definition of an inverse fourier transform of
Ω−1
ξ . We can study the zeros of this transfer function. For this purpose we can write the

poles/zeros of the Fourier transform as

Ωξ = −(ξV + ω0)2 + 2k(ξV + ω0)i+ (αξ4 + β)/γ (8.7.16)
= α/γξ4 − V 2ξ2 + (−2ω0V + 2kV i)ξ + (β/γ − ω2

0 + 2kω0i)
= α/γ(iξ)4 + V 2(iξ)2 + (2ω0V i+ 2kV )(iξ) + (β/γ − ω2

0 + 2kω0i)
= α/γs4 + V 2s2 + (2ω0V i+ 2kV )s+ (β/γ − ω2

0 + 2kω0i).

(c) For the fixed excitation case, we can start at equation (8.7.2) and compute the solution
to the fixed excitation F (x, t) = Fδ(t− t0)δ(x− x0) applied at the point x0 at time t0.

Ÿm + 2κγ−1 ˙Ym + (α(πm/L)4 + β)γ−1Ym = F0δ(t− t0) sin(πmx0/L). (8.7.17)

Using the same definitions and initial conditions as in the moving excitation case, we can
solve the above ODE:

y(x, t) =
2
L

∞∑
m=0

Ym(t) sin
(πmx

L

)
(8.7.18)

Ym(t) = F0Ω−1
m e−k(t−t0) sin(Ωm(t− t0)) sin(πmx0/L)u(t− t0) (8.7.19)

We can develop the previous result, obtaining equation (8.3.6).

8.7.2 Theorem 8.3.2

Integrating by parts and taking into account the boundary conditions (8.3.9) at x = 0
and those at x =∞, we get the relations∫ ∞

0
y′′′′(x, t) sin(ξx)dx = −ξ2

∫ ∞
0

y′′(x, t) sin(ξx)dx = ξ4

∫ ∞
0

y(x, t) sin(ξx)dx. (8.7.20)

These will be used as follows. We multiply both sides of equation (8.2.1) by (2/π)1/2 sin ξx
and integrate them from 0 to ∞ in x. Further, denoting EI = α and dividing both sides
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by γ, we come to equation

Ÿξ + 2κγ−1Ẏξ + (αξ4 + β)γ−1Yξ = Fγ−1 cosω0t sin ξV t, (8.7.21)

with initial condition Yξ(0) = Ẏξ(0) = 0. Here

Yξ(t) = (2/π)1/2

∫ ∞
0

y(x, t) sin(ξx)dx (8.7.22)

is the Fourier sine transformation of function y(x, t). The right-hand is side arrived through
formula ∫ ∞

0
F cosω0(t) sin(ξx)δ(x− V t)dx = F cosω0t sin ξV t. (8.7.23)

Denoting κ/γ = k, (αξ4 + β)/γ = ω2, Ω2 = ω2 − k2 we come to equation

Ÿξ + 2kẎξ + ω2Yξ = F0 cosω0t sin ξV t (8.7.24)

with zero initial conditions. Assuming ω2 − k2 > 0, the roots of its characteristic equation
are

λ = −kξ ± iΩξ. (8.7.25)

Now we can follow the steps of Theorem 8.3.1 and using the definition of inverse Sine
Transform in 8.3.11, we obtain Theorem 8.3.2.

8.7.3 Theorem 8.4.1

Denote h(t, x∗|ω0, V, φ, t0) by h(t, x∗). To prove (a), notice

z(t) = F h(t, x∗) + ξ(t).

Now consider the the projection operator that projects z(t) into two subspaces: the subspace
defined by h(t,x∗)

||h(t,x∗)|| and the subspace orthogonal to it. It is clear that the projection to the
orthogonal subspace will not contain any information about F , as the noise is white. Thus
our infinite dimensional estimation problem is reduced to:∫ ∞

0

z(t)h(t, x∗)
||h(t, x∗)||

dt = F ||h(t, x∗)||+
∫ ∞

0

ξ(t)h(t, x∗)
||h(t, x∗)||

dt.

In this one dimensional problem, with a single measurement, it is clear that the optimal
estimate of F is obtained by dividing both sides by ||h(t, x∗)||. The MSE can be com-
puted directly from the definition, using E

[ ∫∞
0

ξ(t)h(t,x∗)
||h(t,x∗)||2 dt

]
= 0 and E

[ ∫∞
0

ξ(t)h(t,x∗)
||h(t,x∗)||2 dt

]2 =
σ2/||h(t, x∗)||2 since ξ(t) is white noise with variance σ2.

For (b) the proof follows from (a), noticing that the multiple sensor problem can be
reduced to the single problem by considering a composite vector z = [z1z2...zI ]T .

The proof for (c) uses the Parseval’s relation [Oppenheim et al., 1997] for a function
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f(t). Let F (w) be the Fourier transform of f(t). Then, using the time shift property of the
Fourier Transform, f(t− t0)⇔ e−j w t0F (w), and Parseval’s relation, we have the identity∫ ∞

0
f(t− t0)2 dt =

1
2π

∫ ∞
0
|e−j w t0 F (w)|2 dw =

1
2π

∫ ∞
0
|F (w)|2 dw

=
∫ ∞

0
f(t)2 dt.

Using the identity, it is clear that for the given information set the proposed estimator
computes F exactly when the measurement is noise free.

For item (e), we start by writing the empirical mean squared error function,

E =
∫ ∞

0
(z(t)− F h(t, x∗|ω0, V, φ, t0))2 dt.

One of the optimality conditions for the estimator is that ∂E/∂F = 0, which implies

F =
∑I

i=1

∫∞
0 z(t)h(t, x∗||ω0, V, φ, t0) dt∑I

i=1 ||h(t, x∗||ω0, V, φ, t0)||2
.

Now use this equation in the definition of the error E, and ignoring the term that only
depends on z, we obtain

E′ = −
(∫∞

0 z(t)h(t, x∗|ω0, V, φ, t0)dt
)2

||h(t, x∗|ω0, V, φ, t0)||2
,

and so maximizing −E′ is equivalent to minimizing E. Item (f) follows by using the same
approach to the cost

E =
I∑
i=1

∫ ∞
0

(z(t)− F h(t, x∗i |ω0, V, φ, t0))2 dt.

8.8 Discussion

In this chapter we have developed a methodology for estimating the magnitude of a
dynamic forcing function applied to a concrete roadway, using distributed measurements
from acceleration sensors embedded in the pavement. We use an asymptotic approximation
to the pavement model that can be efficiently computed as the basis of our estimator. The
asymptotic model is accurate for concrete slabs starting at 20 meters.

We verified the behavior of the pavement response using some simulations and then
developed a time synchronized estimator for the forcing parameter. We also calculate an
error bound that shows the quality of our approximation, which is helpful to gauge the
quality of responses in field experiments.

One important issue that is addressed is also the need for a maximum distance between
the sensors, which we derive using principles from sampling theory. This distance is the
only constraint in sensor placement for our problem.
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An extension of the current model, left for future work, is to model the roadway as a
2-dimensional system. We also are in the process of validating our setup experimentally
with a multiple sensor array deployed at a concrete roadway.
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Chapter 9

Contributions and suggested
directions

In this Chapter we summarize the main contributions of the dissertation and present
some suggested future directions for research.

9.1 Contributions

In this dissertation we introduced a principled methodology for building adaptive signal
and information systems for monitoring a large transportation network. The methodol-
ogy consisted of four main components: the deployment and design of sensors to measure
the system, statistical methods for guaranteeing data reliability and managing the sensor
network, and three important applications for the designed and deployed system.

In Chapter 2 we identified the important dynamic variables that characterize a trans-
portation network. We reviewed various forms of sensing, and concluded that existing
sensing infrastructure is appropriate to measure specific variables that characterize high-
ways. We also identified two promising sensing technologies to measure properties of the
road infrastructure, proposing a wireless road embedded accelerometer, and urban street
system dynamics, using a magnetic wireless sensor network.

In Chapter 3 we investigated the reliability of the existing sensing infrastructure. The
main purpose of the study was to create statistical metrics that are useful for characterizing
the sensor network, as well as identifying the main challenges for maintaining a widely
deployed sensor network that has the minimum reliability to meet the requirements for
various applications. The main conclusion was that system reliability can be decomposed
into three components: the quality of the transduction technology, the reliability of the
communication network and the design of the communication and sensing protocols. A
network’s usefulness is directly related to these three metrics.

One conclusion of the empirical study of Chapter 3 was that there was a large fraction
of sensors that exhibited unstable behavior. For certain periods of time these sensors report
incorrect measurements, although the values alone seem plausible. In Chapter 4 we proposed
a new method for detecting such periods in a group of sensors measuring a spatial and
temporal phenomena. We created a framework for sequentially identifying failed sensors in
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a sensor network measuring a non-stationary environment. The method relies on comparing
the data generated by a sensor with the data from its neighboring sensors, and a fault is
declared if there is strong disagreement. The performance of the approach was analyzed
using change point theory from statistical sequential analysis. The method was shown
to be optimal under some weak conditions on the strength of information available for
each sensor. An important theoretical contribution was the identification of a technique to
analyze the performance of sequential networked decision making, when each decision maker
faces an independent hypothesis test, but whose observation is correlated to the outcomes
of hypothesis of his neighbors. The important conclusion is that in such cases, collective
strength of information plays a major role, so even if a decision maker has weak information
about his own hypothesis, his neighbors strength of information can help overcome this
weakness.

In Chapter 5 we study how to optimally deploy and schedule energy-limited sensors
in an existing network. We formulate the question as a statistical optimization problem,
where a spatial stochastic model is learnt from data available for existing sensors. The
problem is then shown to be combinatorially hard, and we propose a new algorithm to
solve it approximately. We prove an appropriate performance guarantee using tools from
algorithmic approximation theory. To the best of our knowledge this is the first guaranteed
algorithm to this problem. Using the proposed algorithm we are able to design networks
about 100 times bigger than with existing methods, and in various comparison examples
we show that the performance of the designed network outperforms designs using these
algorithms. We also show how the same approach can be used to create a privacy-preserving
mechanism for sampling from mobile monitoring devices in a traffic application context.

The state of an urban traffic network is characterized by the statistical distribution of
traffic variables in each network link, as opposed to a small number of moments from this
distribution. Distributions in turn, can be characterized by appropriately chosen quantiles.
It becomes important then to identify how to compute such quantiles in a network where
data communication is expensive in terms of power consumption. Chapter 6 proposes vari-
ous methods for computing such quantiles in a communication-efficient and sequential way,
without requiring any prior parameterization of the statistical distribution. The method is
based on sequential stochastic approximation theory, and is simple to implement in practice.
One side benefit is that accurate performance estimates can be computed. We propose the
method for both power constrained two way networks, such as for embedded magnetome-
ter sensors, and one way power constrained network, such as for a mobile user, who uses
existing quantile estimates for his own decision making.

In Chapter 7 we create a statistical method for estimating link travel times from mag-
netic signatures collected by a magnetometer sensor network deployed in a multiple lane
urban street. The travel time for an individual vehicle is obtained by matching signatures
measured by consecutive sensor arrays. Existing methods attempt to directly match signa-
tures without imposing any structure arising from the application domain. The observed
performance is insufficient to reliably determine the link travel time distributions for ap-
plications of interest. We instead propose a method that incorporates the combinatorial
constraint that in a single lane, only a small fraction of vehicles overtake each other and
return to the same lane. The method substantially outperforms existing methods, and is



213

able to capture more than enough vehicles to provide reliable estimates of link travel time
distributions. We compute some heuristic analysis to justify the performance of the method.

Chapter 8 concludes the dissertation’s contributions by developing the application of an
accelerometer sensor network for measuring heavy loads that impact road infrastructure.
Currently existing methods for measuring such impact are either very expensive to deploy,
or cannot be used in a permanent and real time manner. Instead, our proposed method
relies on accurate measurements of the vibration experienced by the road when impacted
by a load, and careful statistical models to estimate this load from the measurements.
We model the system as a spatial distributed parameter system, and develop a careful
approximation of the solution for the given formulation. We then apply optimal estimation
theory to identify the best algorithm for estimating the load and the design of the physical
deployment of the sensing network. We evaluate the performance of the methodology in
real and experimental data set, concluding with the observation that multiple sensors are
required for the application, but the technique is extremely promising.

9.2 Suggested directions

We have shown the necessity and benefits of using a statistically principled approach for
monitoring and design of large engineering systems. In such systems, behavior is determined
by the individual choices of a large number of autonomous agents, and therefore difficult
to characterize in a purely deterministic way. Uncertainty needs to be introduced in the
model to account for imperfect knowledge of the state of all agents and their decisions. The
increase of computational power and recent advances in statistical methods provide . We
have created various general methods as well as specific solutions illustrating the power of
the approach, resulting in state of the art performance. There are five cornerstones that
enable the approach: novel sensing and hierarchical processing structures, where decisions
from lower layers can be locally computed and passed to higher layers; design of sensing
and communication infrastructure aware of decision making and estimation method require-
ments; novel data representation methods for heterogeneous data sources; robust statistical
methods that are able to work under imperfect data situations; and model learning and
optimization methodologies that seek approximate optimality in place of exact optimality,
therefore reducing computation complexity. In the remainder of the section we address
specific application areas and opportunities.

9.2.1 Sensing and hierarchical processing

The capacity to sense a large network is central to any engineering systems approach
to monitor and optimize societal scale systems. Creating novel forms of sensing requires
benefiting from advances in transduction technologies and designing appropriate hierarchical
computing and communication abstractions. For example, in systems where dynamics
happen in different time scales, local processing can be beneficial and the reduction in
data transmission rates essential for proper operation.

Some important directions for further investigation are possible new sensors for mobile
sensing of traffic, such as radar sensors for parking detection and cellphone based monitoring
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for travel time estimation, and the development of a more extensive deployment of the
accelerometer sensor network for load impact measurement. Other systems, such as bridges
and buildings can benefit from the accelerometer sensor we proposed in this dissertation.
We have started pursuing some of these goals in upcoming research for mobile traffic sensing
and estimation.

9.2.2 Nonparametric sequential statistical methods

There are three statistical ideas central to monitoring and control of large scale systems:
spatial stochastic modeling, sequential decision making methods and computationally ef-
ficient stochastic optimization. Chapters 4 to 7 introduced different variations of these
methods to address monitoring and optimization in a transportation network, but the ideas
were more generally applicable. There are two central difficulties in such problems: the
decentralized nature of decision making in the system, requiring possible multiple layers of
abstraction and information aggregation, and the stochastic nature of the information, due
to imprecision in the sensing methods, reliability issues in the data collection system and
impossibility of measuring certain properties of the system.

Determining appropriate abstraction and aggregation layers, such as how to partition a
distributed estimation problem among a fusion center and the local sensing nodes, should be
done accounting for power and processing constraints and can be specified using an objective
function for system performance. Usually it is impossible to determine optimal solutions for
the partition that maximizes the objective function, and therefore approximate solutions
are available. In general, sequential theory, such as stochastic approximation and sequential
analysis, provide a framework to determine and analyze appropriate methodologies for
optimization. The main challenge though, is to ensure that such methodologies satisfy
processing and sensing constraints in real applications.

The stochastic nature of information requires that any estimation or detection problem
to monitor the system account for uncertainties in an appropriate manner. Traditionally, a
parametric form is assumed for uncertainty (Gaussian distribution) and accounted for in the
problem formulation, resulting in specific algorithms and strategies. Unfortunately in many
systems, such as urban traffic, parametric assumptions do not lead to satisfactory models
for the observed dynamics. The development of nonparametric methods for modeling large
engineering systems is one solution to this problem. Algorithms and methodologies from
nonparametric statistics can be developed to handle the modeling of dynamic systems with
a large state space.

One important direction for future research that combines both sequential theory and
nonparametric statistics is to expand the change point detection approach to event detec-
tion in a large sensor network. In traffic applications, event detection is useful for efficient
incident management in highways. Concretely, we are currently developing a methodology
for event detection based on using correlations between sensor data. If the correlation win-
dow has enough samples, then it can be approximately modeled as arriving from a normal
distribution, despite the fact that the data itself is from any distribution. Our methodology
generalizes various existing methods for event detection currently in the literature.
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9.2.3 Representing, identifying and analyzing interconnected systems

A large network of interconnected systems characterizes the infrastructure systems we
study. In such scenarios, it is important to develop approaches for representing the in-
terconnected behavior, identifying the appropriate model from data and analyzing system
response based on observed changes on the input.

We are currently pursuing two main areas of inquiry: how to model the spatial and
time behavior of a distributed parameter system, such as concrete pavement or a building,
using a sparse network model, and how to learn such models from imperfect data obtained
from sensor measurements. The impulse response of a linear distributed parameter system
can be modeled in a sense as a spatial stochastic process, and a better understanding of
the connection between spatial statistics, nonparametric methods and dynamic systems
will allow us to easily model more complex systems where a Partial Differential Equation
representation is not readily available.

The analysis of interconnected system behavior focuses on understanding the behavior
of the system when the patterns of interconnection change or information sharing between
interconnected subsystems is subject to errors. Some important questions that need to
be addressed is re-identification of a large interconnected system after a small change in
patterns. The usual approach is to completely re-identify the system, thus requiring a
large set of observations. It has been our observation from various practical problems, such
as those presented in Chapter 4 and 6, that re-identification should require a smaller data
sample. For systems that exchange information subject to errors, one fruitful area of inquiry
is the extension of the methods in Chapter 6 to a network without a fusion center.

One last problem we mention as an important theoretical line of inquiry in network
systems science is understanding how to compute properties of inference problems in random
graphs. Our first step in this direction is computing asymptotic error rates for the matching
problem discussed in Chapter 7.

9.2.4 Transportation systems: large scale monitoring and closing the loop

In Chapter 1 we presented a systematic view on how to think about building solutions
for transportation systems. The methodology went from monitoring to intervention, where
by intervention we imply the use of monitored data to optimize system behavior according
to a chosen metric. There are various important directions to be explored based on the
methodologies we suggest.

System performance can be optimized either by optimizing the behavior of system con-
trols, such as traffic lights, or by shifting the behavior of drivers, by providing them with
both incentives and mechanisms to do better decisions. The basis of methodologies for both
are the monitored information obtained by deploying the sensing mechanisms we designed
together with the integration of existing data sources. We are working in the first method
by considering how detailed information obtained from a magnetic sensor network can be
used to both perform optimization of traffic light sequencing and predictive routing for
users.

Road infrastructure maintenance planning can benefit by developing methodologies based
on the accelerometer sensor network proposed in this dissertation. The cost effectiveness of



216

the sensor and the advanced modeling methodologies it enables due to the detailed mea-
surements will enable various applications for optimizing the planning and construction of
roads. Furthermore, the sensor can serve other purposes as well. In one application we are
currently developing, the number of axels in a truck is counted using the deployed sensor.

We believe that the problems explored in this dissertation provide an avenue to a rich
set of questions, both in the context of transportation and infrastructure networks, as well
as for other applications.
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