
Closed-Loop Decoder Adaptation Algorithms for

Kalman Filters in Brain-Machine Interface Systems

Siddharth Dangi

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-139

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-139.html

December 16, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The derivation of the main algorithms presented in this report -- the
Adaptive Kalman Filter and SmoothBatch and their variants -- was largely
my own contribution. However, it would not have been possible without
important and fruitful interactions with fellow graduate students, namely
Amy Orsborn and Suraj Gowda.

The testing of the algorithms was joint work led by Amy. Amy conducted
the analysis of the experimental data and created the �figures used in this
report. I am grateful to Amy and Helene Moorman for their tireless e�orts in
training the non-human primates, running the day-to-day BMI experiments,
and allowing the inclusion of the resulting experimental data in this report.

Finally, I would like to thank my advisor, Jose Carmena, for his sound
advice and helpful encouragement.

Closed-Loop Decoder Adaptation Algorithms for Kalman

Filters in Brain-Machine Interface Systems

Siddharth Dangi

16 December 2011

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cali-
fornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science,

Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Jose Carmena, Research Advisor

Date

Professor Michel Maharbiz, Second Reader

Date

1

Author Contribution and Acknowledgements

The conception and derivation of the main algorithms presented in this report � the Adaptive
Kalman Filter and SmoothBatch and their variants, including the alternate update rules and nor-
malized step-sizes, was largely my own contribution. However, it would not have been possible
without important and fruitful interactions with fellow graduate students in the Brain-Machine
Interface Systems Lab, namely Amy Orsborn and Suraj Gowda.

The testing of the algorithms was joint work led by Amy Orsborn. Amy Orsborn conducted the
analysis of the experimental data and created the �gures used in this report. I am grateful to Amy
Orsborn and Helene Moorman for their tireless e�orts in training the non-human primates, running
the day-to-day BMI experiments, and allowing the inclusion of the resulting experimental data in
this report. Finally, I would like to thank my advisor, Jose Carmena, for his sound advice, helpful
encouragement, and enormous passion for the BMI �eld, which is highly contagious and serves as
a constant reminder of why BMI research is so important.

2

Part I

INTRODUCTION

1 Brain-Machine Interfaces

Brain-Machine Interfaces (BMIs) aim to help severely disabled patients su�ering from neurological
injuries and diseases by decoding neural activity into control signals for assistive devices. Early work
has exhibited a compelling proof-of-concept for BMIs, with several groups showing demonstrations
of rodents [1], non-human primates [2�12], and humans [13,14] controlling arti�cial actuators using
neural activity. Signi�cant improvements in reliability (lifetime usability of the interface) and
performance (achieving control and dexterity comparable to natural movements) are still needed
to achieve clinical viability for humans [15,16]. The potential bene�ts, however, are enormous. For
instance, amputees could be out�tted with prosthetic arms � directly controlled by neural signals
� enabling them to e�ortlessly perform everyday reaching and grasping movements that would
otherwise be impossible.

At the heart of any Brain-Machine Interface (BMI) is a decoding algorithm, or �decoder�, whose
purpose is to translate recorded neural activity into control signals for a computer cursor, pros-
thetic device, or other external actuator. BMI decoders are often created o�ine by �rst recording
neural activity while a subject performs movements [2�4, 8, 9], or imagines moving [7, 12�14], and
then training a decoder to predict these movements from the neural activity. BMIs, however, are
inherently closed-loop systems, since the BMI user typically receives performance feedback by vi-
sually observing the actuator's movements. Therefore, it is not surprising that open-loop decoder
prediction power does not directly correlate with closed-loop performance [17, 18]. These results
suggest that improvements in BMI performance cannot be achieved solely by �nding an optimal
open-loop decoding algorithm, thus highlighting the importance of fundamentally treating BMIs as
closed-loop systems.

2 Closed-Loop Decoder Adaptation

Recent work in improving BMI performance has focused on the pivotal roles of both brain and
machine (i.e., decoder) adaptation during closed-loop operation. For instance, Ganguly and Car-
mena [10] demonstrated that when subjects practiced BMI control with a �xed decoder, they learned
a stable neural representation of the decoder over time, and the development of this representation
paralleled performance improvements. In other words, the brain could adapt itself in order to im-
prove performance. Other researchers have taken the opposite approach, by adapting the decoder
during closed-loop operation to improve performance [3,19�23]. Appropriately enough, we refer to
this process as closed-loop decoder-adaptation.

Closed-Loop Decoder Adaptation (CLDA) is an emerging paradigm for achieving rapid performance
improvements in online Brain-Machine Interface (BMI) operation. CLDA refers to the process
of adapting or updating the decoder's parameters during closed-loop operation � i.e., while the
subject is using the BMI. The main purpose of CLDA is to �improve� the decoder � to make it
more accurately represent the true underlying mapping between the user's neural activity and their
intended movements.

The design of a CLDA algorithm involves multiple crucial decisions, including the choices of:

• which decoder parameters to update (and which not to update),

• how to update them (the actual parameter update formulas),

3

• how often to update them (the �time-scale of adaptation�),

• what data to update them with (the �teacher signal�).

In this report, we derive CLDA algorithms for a Kalman �lter decoder that were designed as
improvements upon the standard Batch method [24], and present experimental results using these
algorithms in non-human primate experiments involving a center-out cursor control task.

4

Part II

METHODS

3 Electrophysiology

Two microwire arrays of 128 te�on-coated tungsten electrodes (35 µm diameter, 500 µm wire spac-
ing, 8x16 array con�guration; Innovative Neurophysiology, Durham, NC) were implanted (one in
each brain hemisphere) in an adult male rhesus macaque (macaca mulatta). Both arrays were
positioned to target the arm areas of primary motor cortex (M1), and due to their size, extended
rostrally into dorsal premotor cortex (PMd). Localization was performed using stereotactic coor-
dinates from rhesus brain anatomy [25].

All procedures were conducted in compliance with the National Institutes of Health Guide for
Care and Use of Laboratory Animals, and were approved by the University of California, Berkeley
Institutional Animal Care and Use Committee. Unit activity was recorded using a combination
of two 128-channel MAP and OmniPlex recording systems (Plexon Inc, Dallas, TX). Single and
multi-unit activity was sorted using an online sorting application (Plexon, Inc, Dallas, TX), and
only neural activity with well-identi�ed waveforms were used for BMI control.

4 Behavioral Task

The subject sat in a primate chair with its head restrained, and observed the task display via a
computer monitor projecting to a semi-transparent mirror parallel to the �oor. Figure 1 shows an
illustration of the task set-up and trial timeline. The subject was trained to perform a 2D center-out
reaching task to 8 targets (1.7cm radius) uniformly spaced around a 14cm diameter circle. Trials
were initiated by moving the cursor to the center target and holding for 400ms. (The task was
self-paced � the subject had an no time limit to initiate a trial.) Upon entering the center, the
reach target appeared. After the center-hold period ended, the subject was cued via target �ash,
and given a 3s time limit to move the cursor to the reach target. In order to receive a liquid reward,
the subject was required to hold the cursor within the target boundary for 400ms. If the subject
failed to hold at the center or target, or failed to reach the target within the time limit, the trial
was classi�ed as an error, and was aborted. Reach targets were presented in a block structure of 8
targets at a time, with pseudo-randomized order within each block.

The initial task-training was conducted with the subject making arm movements. The subject's
arm was placed in a 2D KINARM exoskeleton (BKIN Technologies, Ontario, Canada), which
constrained movements to the horizontal plane parallel to and just under the reach-target display.
A cursor co-localized with the center of the subject's hand was displayed on the screen to provide
visual feedback of hand location. During BMI operation, the subject performed the center-out task
by moving the cursor strictly under neural control, and the subject's arm was removed from the
KINARM and con�ned within the primate chair. The subject was pro�cient (over-trained) in the
center-out task with arm movements before BMI experiments commenced.

5

Figure 1: Center-out task schematic (A) and structure (B) [26].

Part III

ALGORITHMS AND EXPERIMENTAL

RESULTS

5 Kalman Filter

5.1 Model and equations

The Kalman �lter is a linear, recursive algorithm for producing estimates of an unknown state
over time, and is a popular decoding algorithm choice for BMI applications [27]. The Kalman
�lter's estimates are based on both a prior distribution on how the state evolves, and periodic noisy
observations of the state. In the BMI context, let xt and yt be vectors representing the kinematic
state of the BMI actuator and the neural �ring rates, respectively, at time t. The Kalman �lter
assumes the following models for how the state xt evolves over time and how the observation yt
relates to the state:

xt+1 = Axt + wt

yt = Cxt + qt (1)

where wt ∼ N (0,W) and qt ∼ N (0, Q). The actual state estimation that is performed at each
time step t is conventionally thought of as having two stages (note that the �lter also tracks the
covariance matrix P of the estimates over time):

1. Predict stage: the previous state estimate x̂t−1 is used to generate the prior estimate x̂t|t−1
(an estimate before observing yt) of xt:

x̂t|t−1 = Ax̂t−1

Pt|t−1 = APt−1A
T

6

2. Update stage: the prior estimate is �updated� using the observation yt to form the posterior
estimate x̂t (an estimate after observing yt) of xt:

Kt = Pt|t−1C
T
(
CPt|t−1C

T +Q
)−1

x̂t = x̂t|t−1 +Kt

(
yt − Cx̂t|t−1

)
Pt = (I −KtC)Pt|t−1

The posterior estimate x̂t is the output of the Kalman �lter at time t.

We used a position-velocity Kalman �lter, as in [22,23] (operating in end-point coordinates):

xt =
[
px,t py,t vx,t vy,t 1

]T
where px,t, py,t, vx,t, vy,t, represent the x and y coordinates of cursor position and velocity at time t.
The constant 1 term accounts for non-zero mean observations yt (e.g., the neurons' baseline �ring-
rates). Online BMI control was implemented using PlexNet (Plexon Inc, Dallas TX) to stream
neural data on a local intranet from the Plexon recording system to a dedicated computer running
Matlab (The Mathworks, Natick, MA). Neural �ring rates were estimated with a 100ms bin width.
Neural ensembles of 16-36 neurons were used. Units were selected only based on waveform quality.

5.2 Filter parameters and CLDA

The Kalman �lter model is parametrized by four matrices: A, W , C, and Q. Note that since A and
W describe the state evolution model, they e�ectively de�ne a prior distribution on the time-series
of states. Since these matrices represent our prior knowledge of how the state evolves, we initially
set them using data collected from a manual control session, and then kept them �xed (i.e., they
were not updated by our CLDA algorithms). For this reason, from this point onwards our discussion
of CLDA algorithms for Kalman �lter decoders will assume that A and W are �xed, and we will
focus on update rules for only C and Q.

One important aspect of CLDA algorithms that was previously mentioned is the data, or �teacher
signal�, used to adapt the decoder. For instance, in a center-out task using a computer cursor BMI,
consider the user's neural activity and the corresponding sequence of cursor movements produced
by the decoder. If the decoder is not optimal (as is often the case), this sequence of movements may
not correspond to the user's intended cursor movements, and so a CLDA algorithm might require an
estimate of these intended cursor movements. Paired with the aforementioned neural activity, this
(estimated) sequence of intended movements acts as a �teacher signal� that can be used to improve
the decoder. As an example, cursorGoal is one method for estimating the user's intended cursor
movements � it assumes that the user always intends to move the cursor in a straight line towards
the current target [22, 23]. All of our experiments used cursorGoal as the teacher signal for
our CLDA algorithms. In the derivations below, we use xt to refer to the estimate of intended
movements (which could be chosen to be the cursorGoal estimate, or any other estimate).

6 Batch

6.1 Method [22,23]

Gilja et al.'s Batch approach of Kalman �lter parameter estimation entails collecting data and
processing the entire batch at once to update the decoder's parameters [24]. One standard batch
estimate of the KF parameters C and Q is the maximum likelihood estimate:

7

C = Y XT
(
XXT

)−1
Q =

1

N
(Y − CX) (Y − CX)

T

where the Y and X matrices are formed by tiling recorded neural activity and intended kinematics,
respectively.

The Batch CLDA algorithm typically involves having the subject use a decoder to perform closed-
loop control, while cursor kinematcs and neural data are collected. Once enough data is collected
(6-10min), the corresponding sequence of intended kinematics is estimated, and new decoder pa-
rameters are set using these estimated intended kinematics and the observed neural activity.

6.2 Performance [26]

The Batch method exhibited fast overall improvement (Figure 2), and stable task performance
(Figure 2A) and reach kinematics (Figure 2B). Approximating a linear slope of improvement (using
start and end performance rates calculated with a 100-trial moving average), performance improved
at a rate of 1.34±0.39 %/minute (n = 5). However, especially near the beginning of the session, the
Batch method requires the subject to persist with a poorly performing decoder during the entire
batch session (6-10 minutes), which can signi�cantly reduce the subject's level of task engagement.

6.3 Discussion

In previous work [22,23] using the Batch CLDA algorithm, when initial closed-loop performance was
already at moderate levels, only one Batch parameter update was required to signi�cantly improve
performance. However, our results indicate that, when starting with a low level of performance,
multiple batch updates are required. One possible explanation for this phenomenon is that poor
initial decoder performance can reduce subject engagement in the BMI task. Furthermore, in
response to initial low performance, it is plausible that subjects may alter their control strategies
more frequently, e�ectively adding undesired variance to the observed data and making it harder
to accurately update the decoder's parameters.

In sum, the Batch CLDA algorithm achieves fast overall improvement and yields stable performance
after adaptation is stopped, but its relatively low frequency of parameter updates can reduce the
subject's level of engagement when starting with a low level of performance. The Adaptive Kalman
Filter, which updates decoder parameters much more frequently, is designed to overcome this issue.

7 Adaptive Kalman Filter

7.1 Method [28]

The Adaptive Kalman Filter is a CLDA algorithm designed to update the decoder's parameters
much more often than the Batch method. Speci�cally, the Adaptive KF updates the decoder's
parameters at each Kalman �lter iteration (i.e., every 100ms). The Adaptive KF's update rules are
based on gradient descent, and we derive them below.

7.1.1 State Observation matrix C

To arrive at an update equation for C, we �rst write C as the solution to an optimization problem:

C = argmin
C

E
[
‖yt − Cxt‖2

]
︸ ︷︷ ︸

g(C)

8

Figure 2: Performance of the Batch CLDA algorithm for one representative session in which 4 pa-
rameter updates were performed. (A) Task performance rates, quanti�ed using a 100-trial moving
average. Only successfully initiated trials were considered for analysis. (B) Successful reach tra-
jectories (4 per target direction) at the beginning and end of decoder adaptation (left and center),
and immediately after adaptation was stopped and decoder's parameters were held �xed (right).
(C) Distribution of reach times for the �rst and last 100 trials during decoder adaptation, and
the �rst 100 trials after �xing the decoder's parameters. (D) Progression of decoder weights (C
matrix entries) for one representative neuron, for y-velocity (top) and baseline �ring-rate states
(bottom) [26].

9

where we have de�ned g(C) , E
[
‖yt − Cxt‖2

]
. Having done this, a natural way to update C is

using stochastic gradient descent. We can calculate the true gradient of g(C), and then obtain an
approximation at each time step by removing the expectation operators:

∇g(C) = 2
(
CE

[
xtx

T
t

]
− E

[
ytx

T
t

])
≈ 2

(
Cxtx

T
t − ytxTt

)
Standard gradient descent would involve updates to C of the form

C(i+1) = C(i) − µ∇g(C(i))

but using our stochastic gradient method, we update C as

C(i+1) = C(i) − µ
(
C(i)xt − yt

)
xTt

One drawback of this update equation is that it is sensitive to the scaling of the terms xt and yt,
which makes it di�cult to choose an appropriate step-size. One may recall that a similar issue
arises when implementing a Least Mean Squares (LMS) �lter. To motivate an analogous solution
for our problem, let us recall the solution for the LMS problem.

The standard LMS �lter assumes a linear relationship between the input xn and the output yn:

yn = θTxn + εn

where εn is an error term that is not endowed with a probability distribution. The basic LMS
update equation for θ is given by

θ(t+1) = θ(t) + µ(yn − θ(t)Txn)xn

In a speci�c implementation known as �Normalized LMS� (NLMS), the step-size is so as to normalize
by the powero fthe input:

µ =
1

‖xn‖2

One can verify that, in addition to possessing some favorable convergence properties, this choice
of the step-size updates θ such that if on the next iteration there is a �repeated presentation�
(xn+1, yn+1) = (xn, yn), then no update will occur because the �lter model will be exact.

Motivated by the NLMS algorithm's choice of step-size, we can �nd analogous an step-size for the
update equation for C:

µ =
1

‖xt‖2

Indeed, one can verify that with this choice of step-size, if (xt+1, xt, yt+1) is a repeated presentation
of (xt, xt−1, yt), then C will not be updated because that part of the Kalman �lter model will be
exact.

For our application, it is not necessary to update C to become exact for the data points at every
iteration. Rather, we simply want to take a small step to �exactness�, and thus we instead choose
a step-size

µC =
ρ

‖xt‖2 + ε

where ρ ∈ [0, 1] is an adjustable parameter that we typically choose to be closer to 0, and the ε
term is added to avoid divide-by-zero errors in implementation.

10

7.1.2 Noise covariance matrix Q

The noise covariance matrix Q cannot be similarly expressed as the solution of an optimization over
an expectation. However, in order to arrive at an update equation for Q in the same fashion, we
need to express Q as the solution of some optimization problem. One way to do this is to take the
following statistical approach of parameter estimation.

Assume that we have i.i.d. samples q1, ..., qN drawn from a distributionN (0, Q). The log probability
of the observed data D given the parameter Q (also known as the log likelihood) can be written as

l(Q;D) = log p(D|Q)

= log

N∏
t=1

1

(2π)m/2
√
detQ

exp

{
−1

2
qTt Q

−1qt

}

= −mN
2

log 2π − N

2
log detQ− 1

2

N∑
t=1

qTt Q
−1qt

One way to estimateQ is to �nd the Maximum Likelihood (ML) estimate by solving the optimization
problem

Q = argmax
Q

l(Q;D)

To �nd an update equation for Q based on gradient ascent, we calculate the derivative of l(Q;D)
with respect to Q. Using knowledge of matrix derivatives, we �nd that

d

dQ
l(Q;D) = −N

2
Q−1 +

1

2
Q−1

(
N∑
t=1

qtq
T
t

)
Q−1 (2)

Thus, one update equation for Q is (using only one data point wt):

Q(i+1) = Q(i) + µ

(
−
(
Q(i)

)−1
+
(
Q(i)

)−1
qtq

T
t

(
Q(i)

)−1)
(3)

We can also calculate the derivative of l(Q;D) with respect to Q−1, which turns out to be simpler:

d

dQ−1
l(Q;D) =

N

2
Q− 1

2

N∑
t=1

qtq
T
t (4)

This leads to another alternate update equation, in this case for Q−1 instead of Q (again, using
only one data point qt): (

Q−1
)(i+1)

=
(
Q−1

)(i)
+ µ

(
Q(i) − qtqTt

)
Writing this more directly as an update for Q, we have

Q(i+1) =

((
Q(i)

)−1
+ µ

(
Q(i) − qtqTt

))−1
(5)

Unfortunately, neither of the update equations ((3) or (5)) lend themselves to normalized step-sizes.
Furthermore, they can both lead to numerical instability because both equations require matrix
inversions. Therefore, in place of these equations, the Adaptive Kalman Filter uses a simpler method
of updating Q:

Q(i+1) = αQ(i) + (1− α)qtqTt
where α ∈ [0, 1] and is typically chosen to be closer to 1. This equation e�ectively implements an
exponentially-weighted moving average, and as a result, it is not necessary to store qt−1,qt−2, etc.
as it would be for a standard moving average. While this update equation is �suboptimal� � in
the sense that it does not represent gradient ascent on the log-likelihood � it is much simpler to
implement. Note that in all the update equations above, qt is simply shorthand for yt − C(i+1)xt.

11

7.2 Performance [26]

The Adaptive KF's performance is shown in Figure 2. Performance reached a maximum level
comparable to that of the Batch method, but unlike the Batch method, it showed non-trivial
decline after adaption was stopped and the decoder was �xed. While the performance rates show
a slight drop, movement quality is signi�cantly reduced in the form of more variable trajectories
and slower reaches (Figure 3B,C). The evolution of the decoder's parameters over time (Figure 3D)
give insight into one possible reason for this drop in performance. Entries of the Kalman �liter's
C matrix corresponding to the kinematic parts of the state (e.g. position and velocity) for neurons
show noisy but clear trends over time. However, entries corresponding to the baseline �ring rates
show very high frequency oscillations. Since these baseline rates would be expected to remain
relatively similar across a session, this suggests that the Adaptive KF may be over�tting to the
data on short temporal time-scales, thus reducing the decoder's performance once �xed.

However, because the Adaptive KF updates decoder parameters much more frequently than the
Batch method, the subject experienced improvements in performance more immediately, allowing
for increased task engagement and subject motivation. In the �rst 10 minutes, the subject attempted
to initiate almost twice as many trials in the Adaptive KF sessions than in the Batch sessions
(Adaptive KF: 96.5± 4.9, n = 2; Batch: 56± 21, n = 5).

7.3 Discussion

The Adaptive KF improves performance (albeit more slowly than the Batch method), and its high
frequency of decoder updates helps keep the subject continually engaged. However, it over�ts
decoder parameters on short temporal scales, leading to a decline of performance after CLDA is
stopped. Estimating decoder parameters with batches of data avoids temporal over�tting and can
reduce "noise" in decoder updates, but it is also desirable to update the decoder at a high frequency.
A hybrid algorithm, SmoothBatch, combines these observed bene�ts of the Batch and Adaptive
KF methods, yielding a more optimal approach to rapidly and reliably boost decoder performance.

8 SmoothBatch

8.1 Method [29]

While the Batch method executes parameter updates every 6-10min and the Adaptive KF executes
its updates every KF iteration, the SmoothBatch CLDA algorithm updates the decoder on an
intermediate (1-2 minute) time scale. The observed neural activity and intended kinematics are
collected for a short (1-2 minutes) interval. Each batch of data is used to construct a new estimate
of the C and Q matrices, Ĉ and Q̂:

Ĉ = Y XT
(
XXT

)−1
Q̂ =

1

N

(
Y − ĈX

)(
Y − ĈX

)T
The BMI decoder is then updated using a weighted average between this new estimate and the
previous parameter setting:

C(i) = αC(i−1) + (1− α) Ĉ(i−1)

Q(i) = βQ(i−1) + (1− β) Q̂(i−1)

where i indexes discrete decoder iterations and α, β ∈ [0, 1] determines the speed of adaptation.
Rather than set α and β directly, we re-parametrize them and instead set the half-life of the update

12

Figure 3: Performance of the Adaptive KF CLDA algorithm during one representative session.
Format as in Figure 2 [26].

13

process � the time it takes for the presence of a Ĉ estimate in the current parameter settings to be
reduced by a factor of one-half. The half-lives for C and Q � denoted by hc and hq � are related to
α and β as follows:

αhc/b =
1

2

βhq/b =
1

2

where b is the length of each batch of data in time (referred to as the �batch size�). To avoid
conducting a vast parameter search of both the batch size and half-life experimentally, SmoothBatch
was �rst implemented in a BMI simulator that utilizes an empirically veri�ed model of the user's
learning process during closed-loop BMI operation [30]. Preliminary results from the simulator
were used to narrow the search space, which was then explored experimentally. Rough optimization
showed that batch sizes of 60 - 100s and half-lives of 90 - 210s produced the most rapid performance
improvements. All presented data use parameters within this range, and the majority (n = 46) use
an 80s batch size and 120s half-life. The C and Q half-lives were set to be equal, so that these
matrices were always updated simultaneously.

8.2 Performance [29]

SmoothBatch CLDA rapidly improved closed-loop BMI performance regardless of the method in
which the decoder's parameters were seeded. Figure 4 shows the evolution of performance for a
representative session. As seen in Figure 4A, the subject was not readily able to perform the task
with the initial decoder seeding (very few trials were initiated). After a few minutes (representing
1-2 decoder updates), the subject was able to initiate trials, but still performed the task with limited
control, as evidenced by both a high rate of reach time-out events (Figure 4A) and irregular reach
trajectories (Figure 4C). However, performance improved gradually, and typically after about 10
minutes of SmoothBatch parameter adaptation, both success percentage and success rate showed
signi�cant improvement.

8.3 Discussion and Future Work

By operating on an intermediate time-scale (1-2 min), SmoothBatch was able to combine the ad-
vantages of the Batch and Adaptive KF algorithms. SmoothBatch improves upon the Adaptive KF
because avoids over�tting decoder parameters on short temporal scales, which allows performance
to remain constant after adaption is stopped. However, it also improves upon the Batch method
because it updates decoder parameters more frequently, which helps keep the subject motivated to
perform the task.

Future work on closed-loop decoder adaptation will involve performing more detailed analysis of
the various CLDA algorithms presented in this report, in order to inform experimental decisions.
Speci�cally, future work on SmoothBatch and the other algorithms presented in this report will
investigate whether, under certain model assumptions, any guarantees can be made of convergence
of decoder parameters to their optimal values. Furthermore, it will be important and practical
to determine whether and how this convergence depends on the algorithms' parameter settings of
step-sizes, half-lives, and batch sizes.

14

Figure 4: Performance of the SmoothBatch CLDA algorithm [29].

References

[1] John K. Chapin, Karen A. Moxon, Ronald S. Markowitz, and Miguel A. L. Nicolelis. Real-
time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat
Neurosci, 2(7):664�670, July 1999.

[2] Mijail D Serruya, Nicholas G Hatsopoulos, Liam Paninski, Matthew R Fellows, and John P
Donoghue. Instant neural control of a movement signal. Nature, 416(6877):141�142, March
2002. PMID: 11894084.

[3] Dawn M. Taylor, Stephen I. Helms Tillery, and Andrew B. Schwartz. Direct cortical control
of 3D neuroprosthetic devices. Science, 296(5574):1829 �1832, June 2002.

[4] Jose M Carmena, Mikhail A Lebedev, Roy E Crist, Joseph E O'Doherty, David M Santucci,
Dragan F Dimitrov, Parag G Patil, Craig S Henriquez, and Miguel A. L Nicolelis. Learning to
control a Brain�Machine interface for reaching and grasping by primates. PLoS Biol, 1(2):e42,
October 2003.

15

[5] Beata Jarosiewicz, Steven M Chase, George W Fraser, Meel Velliste, Robert E Kass, and
Andrew B Schwartz. Functional network reorganization during learning in a brain-computer
interface paradigm. Proceedings of the National Academy of Sciences of the United States of
America, 105(49):19486�19491, December 2008. PMID: 19047633.

[6] Chet T. Moritz, Steve I. Perlmutter, and Eberhard E. Fetz. Direct control of paralysed muscles
by cortical neurons. Nature, 456(7222):639�642, December 2008.

[7] Meel Velliste, Sagi Perel, M. Chance Spalding, Andrew S. Whitford, and Andrew B. Schwartz.
Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198):1098�1101, June 2008.

[8] Gopal Santhanam, Stephen I. Ryu, Byron M. Yu, Afsheen Afshar, and Krishna V. Shenoy. A
high-performance brain�computer interface. Nature, 442(7099):195�198, July 2006.

[9] S. Musallam, B. D. Corneil, B. Greger, H. Scherberger, and R. A. Andersen. Cognitive control
signals for neural prosthetics. Science, 305(5681):258 �262, July 2004.

[10] Karunesh Ganguly and Jose M. Carmena. Emergence of a stable cortical map for neuropros-
thetic control. PLoS Biol, 7(7):e1000153, July 2009.

[11] Joseph E. O'Doherty, Mikhail A. Lebedev, Timothy L. Hanson, Nathan A. Fitzsimmons, and
Miguel A. L. Nicolelis. A Brain-Machine interface instructed by direct intracortical microstim-
ulation. Frontiers in Integrative Neuroscience, 3, September 2009. PMID: 19750199 PMCID:
2741294.

[12] Aaron J. Suminski, Dennis C. Tkach, Andrew H. Fagg, and Nicholas G. Hatsopoulos. Incor-
porating feedback from multiple sensory modalities enhances Brain�Machine interface control.
The Journal of Neuroscience, 30(50):16777 �16787, December 2010.

[13] Leigh R. Hochberg, Mijail D. Serruya, Gerhard M. Friehs, Jon A. Mukand, Maryam Saleh,
Abraham H. Caplan, Almut Branner, David Chen, Richard D. Penn, and John P. Donoghue.
Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature,
442(7099):164�171, July 2006.

[14] Sung-Phil Kim, John D Simeral, Leigh R Hochberg, John P Donoghue, and Michael J Black.
Neural control of computer cursor velocity by decoding motor cortical spiking activity in hu-
mans with tetraplegia. Journal of Neural Engineering, 5(4):455�476, December 2008.

[15] Vikash Gilja, Cindy A Chestek, Ilka Diester, Jaimie M Henderson, Karl Deisseroth, and Kr-
ishna V Shenoy. Challenges and opportunities for next-generation intracortically based neu-
ral prostheses. IEEE Transactions on Bio-Medical Engineering, 58(7):1891�1899, July 2011.
PMID: 21257365.

[16] Jose del R. Milan and Jose Carmena. Invasive or noninvasive: Understanding Brain-Machine
interface technology [Conversations in BME. IEEE Engineering in Medicine and Biology Mag-
azine, 29(1):16�22, January 2010.

[17] Karunesh Ganguly and Jose M Carmena. Neural correlates of skill acquisition with a cortical
brain-machine interface. Journal of Motor Behavior, 42(6):355�360, November 2010. PMID:
21184353.

[18] Shinsuke Koyama, Steven M Chase, Andrew S Whitford, Meel Velliste, Andrew B Schwartz,
and Robert E Kass. Comparison of brain-computer interface decoding algorithms in open-loop
and closed-loop control. Journal of Computational Neuroscience, 29(1-2):73�87, August 2010.
PMID: 19904595.

[19] Lavi Shpigelman, Hagai Lalazar, and Eilon Vaadia. Kernel-ARMA for hand tracking and
Brain-Machine interfacing during 3D motor control.

16

[20] Gregory J Gage, Kip A Ludwig, Kevin J Otto, Edward L Ionides, and Daryl R Kipke. Naïve
coadaptive cortical control. 2005.

[21] Babak Mahmoudi and Justin C. Sanchez. A symbiotic Brain-Machine interface through Value-
Based decision making. PLoS ONE, 6(3):e14760, March 2011.

[22] V Gilja, P Nuyujukian, C.A. Chestek, J.P. Cunningham, B.M. Yu, S.I. Ryu, and K.V. Shenoy.
High-performance continuous neural cursor control enabled by feedback control perspective.
Computational and Systems Neuroscience (COSYNE 2010).

[23] V Gilja et al. A high-performance continuous cortically-controlled prosthesis enabled by feed-
back control design. 2010 Neuroscience Meeting Planner. San Diego, CA, 2010.

[24] Vikash Gilja. Towards Clinically Viable Neural Prosthetic Systems. PhD thesis, Stanford
University, 2010.

[25] George Paxinos, Xu-Feng Huang, and Arthur W. Toga. The Rhesus Monkey Brain in Stereo-
taxic Coordinates. Academic Press, 1st edition, November 1999.

[26] A. L Orsborn, S. Dangi, H. G. Moorman, and J.M. Carmena. Exploring time-scales of closed-
loop decoder adaptation in brain-machine interfaces. In IEEE EMBS Conference, 2011.

[27] Wei Wu, Yun Gao, Elie Bienenstock, John P Donoghue, and Michael J Black. Bayesian
population decoding of motor cortical activity using a kalman �lter. Neural Computation,
18(1):80�118, January 2006. PMID: 16354382.

[28] S. Dangi, S. Gowda, R. Heliot, and J.M. Carmena. Adaptive kalman �ltering for closed-loop
brain-machine interface systems. In 5th International IEEE/EMBS Conference on Neural
Engineering (NER), pages 609�612, May 2011.

[29] A. L Orsborn, S. Dangi, H. G. Moorman, and J.M. Carmena. Closed-loop decoder adaptation
on intermediate time-scales facilitates rapid bmi performance improvements independent of
decoder initialization conditions. Submitted to Transactions on Neural Systems and Rehabili-
tation Engineering, 2011.

[30] Rodolphe Héliot, Karunesh Ganguly, Jessica Jimenez, and Jose M Carmena. Learning in closed-
loop brain-machine interfaces: modeling and experimental validation. IEEE Transactions on
Systems, Man, and Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems,
Man, and Cybernetics Society, 40(5):1387�1397, October 2010. PMID: 20007050.

17

