
Minimizing Communication in Numerical Linear

Algebra

Grey Ballard
James Demmel
Olga Holtz
Oded Schwartz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-15

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-15.html

February 28, 2011



Copyright © 2011, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



MINIMIZING COMMUNICATION IN NUMERICAL LINEAR
ALGEBRA

GREY BALLARD ∗, JAMES DEMMEL † , OLGA HOLTZ ‡ , AND ODED SCHWARTZ §

Abstract. In 1981 Hong and Kung proved a lower bound on the amount of communication
(amount of data moved between a small, fast memory and large, slow memory) needed to perform
dense, n-by-n matrix-multiplication using the conventional O(n3) algorithm, where the input ma-
trices were too large to fit in the small, fast memory. In 2004 Irony, Toledo and Tiskin gave a new
proof of this result and extended it to the parallel case (where communication means the amount of
data moved between processors). In both cases the lower bound may be expressed as Ω(#arithmetic
operations /

√
M), where M is the size of the fast memory (or local memory in the parallel case).

Here we generalize these results to a much wider variety of algorithms, including LU factorization,
Cholesky factorization, LDLT factorization, QR factorization, Gram–Schmidt algorithm, algorithms
for eigenvalues and singular values, i.e., essentially all direct methods of linear algebra.

The proof works for dense or sparse matrices, and for sequential or parallel algorithms. In
addition to lower bounds on the amount of data moved (bandwidth-cost), we get lower bounds on
the number of messages required to move it (latency-cost).

We extend our lower bound technique to compositions of linear algebra operations (like computing
powers of a matrix), to decide whether it is enough to call a sequence of simpler optimal algorithms
(like matrix multiplication) to minimize communication, or if we can do better. We give examples
of both. We also show how to extend our lower bounds to certain graph theoretic problems.

We point out recently designed algorithms that attain many of these lower bounds.

Key words. Linear algebra algorithms, bandwidth, latency, communication avoiding, lower
bound.

1. Introduction. Algorithms have two kinds of costs: arithmetic and commu-
nication. By communication we mean either moving data between levels of a memory
hierarchy (in the sequential case) or over a network connecting processors (in the
parallel case). There are two costs associated with communication: bandwidth-cost
(proportional to the total number of words of data moved) and latency-cost (propor-
tional to the number of messages in which these words are packed and sent). For
example, we may model the cost of sending m words in a single message as α+ βm,
where α is the latency (measured in seconds) and β is the reciprocal bandwidth (mea-
sured in seconds per word). Depending on the technology, either latency or bandwidth
costs may be larger, often dominating the cost of arithmetic. So it is of interest to
have algorithms minimizing both bandwidth-cost and latency-cost.

In this paper we prove a general lower bound on the amount of data moved (i.e.,
bandwidth-cost) by a general class of algorithms, including most dense and sparse
linear algebra algorithms, as well as some graph theoretical algorithms. A similar
model was discussed by Hong and Kung [HK81]. They show that to multiply two

∗Computer Science Department, University of California, Berkeley, CA 94720. Research sup-
ported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227). (ballard@eecs.berkeley.edu).
†Mathematics Department and CS Division, University of California, Berkeley, CA 94720. This

material is based on work supported by U.S. Department of Energy grants under Grant Numbers
DE-SC0003959, DE-SC0004938, and DE-FC02-06-ER25786, as well as Lawrence Berkeley National
Laboratory Contract DE-AC02-05CH11231. (demmel@cs.berkeley.edu).
‡Departments of Mathematics, University of California, Berkeley and Technische Universität

Berlin. O. Holtz acknowledges support of the Sofja Kovalevskaja program of Alexander von Hum-
boldt Foundation. (holtz@math.berkeley.edu).
§ The Weizmann Institute of Science, Rehovot 76100, Israel. This work was done while at the De-

partments of Mathematics, Technische Universität Berlin, and while visiting University of California,
Berkeley. (oded.schwartz@weizmann.ac.il).

1



2 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

dense n-by-n matrices, using the conventional Θ(n3) algorithm, on a machine with a
large slow memory (in which the matrices initially reside) and a small fast memory
of size M (too small to store the matrices, but arithmetic may only be done on data
in fast memory), Ω(n3/

√
M) words of data must be moved between fast and slow

memory. This lower bound is attained by a variety of “blocked” algorithms. This
lower bound may also be expressed as Ω(#arithmetic operations /

√
M) 1.

This result was proven differently by Irony, Toledo and Tiskin [ITT04] and gen-
eralized to the parallel case, where P processors multiply two n-by-n matrices. In
the “memory-scalable” case, where each processor stores the minimal M = O(n2/P )
words of data, they obtain the lower bound:
Ω(#arithmetic operations per processor /

√
memory per processor) = Ω( n3/P√

n2/P
) =

Ω( n2
√

P
), which is attained by Cannon’s algorithm [Can69] [Dem96, Lecture 11]. The

paper [ITT04] also considers the so-called “3D” case, which does less communication
by replicating the matrices and using O(P 1/3) times as much memory as the minimal
possible.

Here we begin with the proof in [ITT04], which starts with the sum Cij =
∑

k Aik ·
Bkj , and uses a geometric argument on the lattice of indices (i, j, k) to bound the
number of updates Cij := Cij + Aik · Bkj that can be performed when a subset of
matrix entries are in fast memory. This proof generalizes in a number of ways: in
particular it does not depend on the matrices being dense, or the output being distinct
from the input. These observations let us state and prove a general Theorem 2.2 in
Section 2, that a lower bound on the number of words moved into or out of a fast or
local memory of size M is Ω(#arithmetic operations /

√
M ). This applies to both

the sequential case (where M is a fast memory) and the parallel case (where M is each
processor’s local memory); in the parallel case further assumptions about whether the
algorithm is memory or load balanced (to estimate the effective M and #arithmetic
operations) are needed to get a lower bound on the overall algorithm.

Corollary 2.3 of Theorem 2.2 provides a simple lower bound on latency-cost (just
the lower bound on bandwidth-cost divided by the largest possible message size,
namely the memory size M). Both bandwidth-cost and latency-cost lower bounds
apply straightforwardly to a nested memory hierarchy with more than two layers,
bounding from below the communication between any adjacent layers in the hierar-
chy [Sav95, BDHS10a].

In Section 3, we present simple corollaries applying Theorem 2.2 to conventional
(non-Strassen-like) implementations of matrix multiplication and other BLAS opera-
tions [BDD+02, BDD+01] (dense or sparse), LU factorization, Cholesky factorization
and LDLT factorization, where D is either real diagonal matrix, or block-diagonal
matrix, i.e., Bunch-Kaufman [BK77] type factorization. These factorizations may
also be dense or sparse, with any kind of pivoting, and be exact or “incomplete”, e.g.,
ILU [Saa96] (for dense matrices some of these results can be also obtained by suitable
reductions from [HK81] or [ITT04], and we point these out). We also introduce a tech-
nique to extend these lower bounds to cases like computing ‖A ·B‖F , so the output is
a single scalar, and where each A(i, j) and B(j, k) is given by an explicit formula, so
there are no inputs to read from memory (we will require that each explicit formula

1The sequential communication model used here is sometimes called the two-level I/O model
or disk access machine (DAM) model (see [AV88], [BBF+07], [CR06]). Our model follows that of
[HK81] and [ITT04] in that it assumes the block-transfer size is one word of data (B = 1 in the
common notation).



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 3

is evaluated at most once).
Section 4 considers lower bounds for algorithms that involve orthogonal factor-

izations. This class includes the QR factorization, the standard algorithms for eigen-
values and eigenvectors, and the singular value decomposition (SVD). After dealing
with the easier case of Gram-Schmidt in Section 4.1, Section 4.2 considers the harder
case of algorithms that apply sequences of orthogonal transformations. For reasons
explained there, the counting techniques of [HK81] and [ITT04] do not directly ap-
ply, so we need a different but related lower bound argument. Our proofs require
some technical assumptions that we conjecture could be removed. Finally, Section 4.3
extends the lower bounds to eigenvalue and singular value problems.

Section 5 shows how to extend our lower bounds to more general computations
where we compose a sequence of simpler linear algebra operations (like matrix multi-
plication, LU decomposition, etc.), so the outputs of one operation may be inputs to
later ones. If these intermediate results do not need to be saved in slow memory, or if
some inputs are given by formulas (like A(i, j) = 1/(i+ j)) and so do not need to be
fetched from memory, or if the final output is just a scalar (the norm or determinant
of a matrix), then it is natural to ask whether there is a better algorithm than just
using optimized versions of each operation in the sequence. We give examples where
this simple approach is optimal and when it is not. We also exploit the natural cor-
respondence between matrices and graphs to derive communication lower bounds for
certain graph algorithms, like All-Pairs-Shortest-Path.

Finally, Section 6 discusses attainability of these lower bounds, and open prob-
lems. Briefly, in the dense case all the lower bounds are attainable (in the parallel
case, this is modulo polylogP factors, and assuming the minimal O(n2/P ) storage per
processor); see Tables 6.1 and 6.2 (some of these algorithms are also pointed out in
sections 3 and 4.2). The optimal algorithms for square matrix multiplication are well
known, as mentioned above. Optimal algorithms for dense LU, Cholesky, QR, eigen-
value problems and the SVD are more recent and not part of standard libraries like
LAPACK [ABB+92] and ScaLAPACK [BCC+97]. Several of these references describe
prototypes of the new algorithms that attain large speedups over standard libraries.
Beyond the BLAS, only in the case of Cholesky do we know of a sequential algorithm
that does as few flops as the conventional algorithm (modulo lower order terms) as
well as achieving both minimal bandwidth-cost and latency-cost across arbitrary lev-
els of memory hierarchy. Beyond Cholesky [BDHS10a, DDGP10] and the BLAS, no
optimal algorithm is known for architectures mixing parallelism and multiple memory
hierarchies, i.e., most real architectures (but some lower bounds for specific architec-
ture/algorithm combinations do exist, see for example [Saa86]). “3D” algorithms, that
use multiple copies of the data in order to communicate less than “2D” algorithms
using minimal total memory, were obtained in [IT02, Ash91, Ash93, SD11], and are
discussed in Section 6. Communication optimal algorithms for sparse matrices are
known only for sparse Cholesky [DDGP10]. For highly rectangular dense matrices
(e.g., matrix-vector multiplication) or for sufficiently sparse matrices, our new lower
bound is sometimes lower than the trivial lower bound (#inputs + #outputs) and
therefore not always attainable.

2. First Lower Bound. We first define our model of computation formally, and
illustrate it on the simplest case of dense matrix multiplication.

We work with n × n matrices, so we define V = {1, 2, ...n} to be the index set
for the rows and columns. Let Sa ⊆ V × V be the subset of entries of the indices of
the input matrix A that are read by the algorithm (e.g., the indices of the non-zeros



4 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

entries of a sparse matrix). Let a : Sa 7→ M be a mapping from the matrix entries to
locations in memory (on a parallel machineM refers to a location in some processor’s
memory; the processor number is implicit). The map is one-to-one. Similarly define
Sb, Sc and b(·, ·), c(·, ·) for the matrices B and C. Note that the ranges of a, b and c
are not necessarily disjoint. The value of a memory location l is denoted by Mem(l).

Now let fij and gijk be “nontrivial” functions in a sense we make clear below.
The computation we want to perform is for all (i, j) ∈ Sc:

Mem(c(i, j)) = fij(gijk(Mem(a(i, k)),Mem(b(k, j))) for k ∈ Sij , any other arguments)
(2.1)

Here fij depends nontrivially on its arguments gijk(·, ·) which in turn depend non-
trivially on their arguments Mem(a(i, k)) and Mem(b(k, j)), in the following sense:
we need at least one word of space to compute fij (which may or may not be
Mem(c(i, j))) to act as “accumulator” of the value of fij , and we need the values
Mem(a(i, k)) and Mem(b(k, j)) in fast memory before evaluating gijk. Note also
that we may not know until after the computation what SC , fij , Sij , gijk or “any
other arguments” were, since they may be determined on the fly (e.g., pivot order).

Now we illustrate the model in Equation (2.1) by applying it to sequential dense
n-by-n matrix multiplication C = A ·B, where A, B and C are stored column-wise in
memory: We take Sc as all pairs (i, j) with 0 ≤ i, j < n with C(i, j) stored in location
c(i, j) = i+j ·n. A(i, k) is analogously stored at location a(i, k) = i+k ·n and B(k, j)
is stored at location b(k, j) = k + j · n. The set Sij = {0, 1, ..., n − 1} for all (i, j).
Operation gijk is scalar multiplication, and fij computes the sum of its n arguments.

The question is how many slow memory references are required to perform this
computation, when all we are allowed to do is compute the gijk in a different order,
and compute and store the fij is a different order. This appears to restrict possible
reorderings to those where fij is computed correctly, since we are not assuming it is
an associative or commutative function, or those reorderings that avoid races because
some c(i, j) may be used later as inputs. But there is no need for such restrictions: the
lower bound applies to all reorderings, correct or incorrect, yielding the same bound
in both cases.

Using only structural information, e.g., about the sparsity patterns of the ma-
trices, we can sometimes deduce that the computed result fij(·) is exactly zero, to
possibly avoid a memory reference to store the result at c(i, j). Section 3.2.1 discusses
this possibility more carefully, and shows how to carefully count operations to preserve
the validity of our lower bounds.

The argument, following [ITT04], is:
• Break the stream of instructions executed into segments, where each segment

contains exactly M load and store instructions (i.e., that cause communica-
tion), where M is the fast (or local) memory size.

• Bound from above the number of evaluations of functions gijk that can be
performed during any segment, calling this upper bound F .

• Bound from below the number of (complete) segments by the total number
of evaluations of gijk (call it G) divided by F , i.e., bG/F c.

• Bound from below the total number of loads and stores, by M (load/stores
per segment) times the minimum number of complete segments, bG/F c, so
it is at least M · bG/F c.

Now we compute the upper bound F using a geometric theorem of Loomis and Whit-



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 5

ney [LW49, BZ88]. We need only the simplest version of their result here2

Lemma 2.1. [LW49, BZ88]. Let V be a finite set of lattice points in R3, i.e.,
points (x, y, z) with integer coordinates. Let Vx be the projection of V in the x-
direction, i.e., all points (y, z) such that there exists an x so that (x, y, z) ∈ V . Define
Vy and Vz similarly. Let | · | denote the cardinality of a set. Then
|V | ≤

√
|Vx| × |Vy| × |Vz|.

To see the relationship of this geometric result to our model in Equation (2.1), see
Figure 2.1, shown for the special case of n-by-n matrix multiplication, for n = 3. We
model the computation as an n-by-n-by-n set of lattice points, drawn as a set of n3 1-
by-1-by-1 cubes for easier labeling: each 1-by-1-by-1 cube represents the lattice point
at its bottom front right corner. The cubes (or lattice points) are indexed from corner
(i, j, k) = (0, 0, 0) to (n− 1, n− 1, n− 1). Cube (i, j, k) represents the multiplication
A(i, k) ·B(k, j) and its accumulation into C(i, j). The 1-by-1 squares on the top face
of the cube, indexed by (i, j), represent C(i, j), and the 1-by-1 squares on the other
two faces represent A(i, k) and B(k, j), respectively. The set of all multiplications
performed during a segment are some subset (V in Lemma 2.1) of all the cubes. All
the C(i, j) needed to store the results are the projections of these cubes onto the
“C-face” of the cube (Vz in Lemma 2.1). Similarly, the A(i, k) needed as arguments
are the projections onto the “A-face” (Vy in Lemma 2.1), and the B(k, j) are the
projections onto the “B-face” (Vx in Lemma 2.1).

Fig. 2.1. Geometric Model of Matrix Multiplication

Now we must bound the maximum number of possibly different Mem(c(i, j)) (or
corresponding “accumulators”), Mem(a(i, k)), and Mem(b(k, j)) that can reside in

2An intuition for the correctness of this special case of Loomis and Whitney bound is as follows:
think of a box of dimensions a× b× c. Then its (rectangular) projections on the three planes have
areas a · b, b · c and a · c, and we have that its volume a · b · c is equal to the square root of the product
of the three areas.



6 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

fast memory during a segment. Since we want to accommodate the most general case
where input and output arguments can overlap, we need to use a more complicated
model than in [ITT04], where no such overlap was possible. To this end, we consider
each input or output operand of (2.1) that appears in fast memory during a segment
of M slow memory operations. It may be that an operand appears in fast memory
for a while, disappears, and reappears, possibly several times (we assume there is at
most one copy at a time in the sequential model and at most one for each processor
in the parallel model; this assumption is consistent with obtaining a lower bound).
For each period of continuous existence of an operand in fast memory, we label its
Root (how it came to be in fast memory) and its Destination (what happens when
it disappears):

• Root R1: The operand was already in fast memory at the beginning of
the segment, and/or read from slow memory. There are at most 2M such
operands altogether, because the fast memory has size M , and because a
segment contains at most M reads from slow memory.

• Root R2: The operand is computed (created) during the segment. Without
more information, there is no bound on the number of such operands.

• Destination D1: An operand is left in fast memory at the end of the segment
(so that it is available at the beginning of the next one), and/or written to slow
memory. There are at most 2M such operands altogether, again because the
fast memory has size M , and because a segment contains at most M writes
to slow memory.

• Destination D2: An operand is neither left in fast memory nor written to
slow memory, but simply discarded. Again, without more information, there
is no bound on the number of such operands.

We may correspondingly label each period of continuous existence of any operand
in fast memory during one segment by one of four possible labels Ri/Dj, indicating
the Root and Destination of the operand at the beginning and end of the period.
Based on the above description, the total number of operands of all types except
R2/D2 is bounded by 4M (the maximum number of R1 operands plus the number
of D1 operands, an upper bound) 3. The R2/D2 operands, those created during
the segment and then discarded without causing any slow memory traffic, cannot be
bounded without further information. For our simplest model, adequate for matrix
multiplication, LU decomposition, etc., we have no R2/D2 arguments; they reappear
when we analyze the QR decomposition in Section 4.2.

Using the set of lattice points (i, j, k) to represent each function evaluation
gijk(Mem(a(i, k)),Mem(b(k, j))), and assuming there are no R2/D2 arguments, then
we can use Lemma 2.1 to bound F : We let V be the set of indices (i, j, k) of the gijk

operations, Vz be the set of indices (i, j) of their destinations c(i, j) with |Vz| ≤ 4M ,
Vy be the set of indices (i, k) of their arguments a(i, k) with |Vy| ≤ 4M , and Vx be
the set of indices (j, k) of their arguments b(j, k) with |Vx| ≤ 4M . Then Lemma 2.1
bounds F = |V | ≤

√
|Vx| × |Vy| × |Vz| ≤

√
(4M)3. Therefore the total number of

loads and stores is bounded by MbG
F c = Mb G√

(4M)3
c ≥ G

8
√

M
−M . This proves the

first lower bound:
Theorem 2.2. In the notation defined above, and in particular assuming there

are no R2/D2 arguments (created and discarded without causing memory traffic) the
number of loads and stores needed to evaluate (2.1) is at least G

8
√

M
−M .

3More careful but complicated accounting can reduce this upper bound to 3M .



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 7

We may also write this as Ω(#arithmetic operations /
√
M) understanding that

we only count arithmetic operations required to evaluate the gijk for (i, j) ∈ SC and
k ∈ Sij . We note that a more careful, problem-dependent analysis that depends on
how much the three arguments can overlap, may sometimes increase the lower bound
by a factor of as much as 8, but for simplicity we omit this.

This lower bound is not always attainable, even for dense matrix multiplication: If
the matrices are so small that they all fit in fast memory simultaneously, so 3n2 ≤M ,
then the number of loads and stores may be just 3n2, which can be much larger than
n3/
√
M . So a more refined lower bound is max(G/(8

√
M)−M,#inputs + #outputs).

We generally omit this detail from statements of later corollaries.
Theorem 2.2 is a lower bound on bandwidth-cost, the total number of words

communicated. But it immediately provides a lower bound on latency-cost as well,
the minimum number of messages that need to be sent, where each message may
contain many words.

Corollary 2.3. In the notation defined above, the number of messages needed
to evaluate (2.1) is at least G/(8M3/2)− 1 = #evaluations of gijk/(8M3/2)− 1.

The proof is simply that the largest possible message size is the fast (or local)
memory size M , so we divide the lower bound from Theorem 1 by M .

On a parallel computer it is possible for a processor to pack M words into a single
message to be sent to a different processor. But on a sequential computer the words to
be sent in a single message must generally be located in contiguous memory locations,
which depends on the data structures used. This model is appropriate to capture the
behavior of real hardware, e.g., cache lines, memory prefetching, disk accesses, etc.
This requirement means that to attain the latency-cost lower bound on a sequential
computer, rather different matrix data structures may be required than row-major or
column-major [BDHS10a, FLPR99, EGJK04, AGW01, AP00].

Finally, we note that real computers typically don’t have just one level of memory
hierarchy, but many, each with its own underlying bandwidth and latency costs. So
it is of interest to minimize all communication, between every pair of adjacent levels
of the memory hierarchy. As has been noted before [Sav95, BDHS10a], when the
memory hierarchy levels are nested (the L2 cache stores a subset of L3 cache, etc.)
we can apply lower bounds like ours at every level in the hierarchy.

3. Consequences for BLAS, LU , Cholesky, and LDLT . We now show how
Theorem 2.2 applies to a variety of conventional algorithms from numerical linear
algebra, by which we mean algorithms that would cost O(n3) arithmetic operations
when applied to dense n-by-n matrices, as opposed to Strassen-like algorithms.

It is natural to ask whether algorithms exist that attain these lower bounds. We
point out cases where we know such algorithms exist, which are therefore optimal in
the sense of minimizing communication. In the case of dense matrices, many optimal
algorithms are known, though not yet in all cases. In the case of sparse matrices,
little seems to be known.

3.1. Matrix Multiplication and the BLAS. We begin with matrix multipli-
cation, on which our model in Equation (2.1) is based:

Corollary 3.1. G/(8
√
M) −M is the bandwidth-cost lower bound for multi-

plying explicitly stored matrices C = A · B on a sequential machine, where G is the
number of multiplications performed in evaluating all the Cij =

∑
k Aik ·Bkj, and M

is the fast memory size. In the special case of multiplying a dense n-by-r matrix times
a dense r-by-m matrix, this lower bound is n · r ·m/

√
8M −M .



8 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

This nearly reproduces a result in [ITT04] for the case of two distinct, dense
matrices, whereas we need no such assumptions; their bound is

√
8 times larger than

ours, but as stated before our bound could be improved by specializing it to this
case. We note that this result could have been stated for sparse A and B in [HK81]:
Combine their Theorem 6.1 (their Ω(|V |) is the number of multiplications) with their
Lemma 6.1 (whose proof does not require A and B to be dense).

As noted in the previous section, an independent lower bound on the bandwidth-
cost is simply the total number of inputs that need to be read plus the number of
outputs that need to be written. But counting the number of inputs is not as simple as
counting the number of nonzero entries of A and B: if A and B are sparse, and column
i of A is filled with zeros only, then row i of B need not be loaded at all, since C does
not depend on it. An algorithm that nevertheless loads row i of B will still satisfy the
lower bound. And an algorithm that loads and multiplies by explicitly stored zero
entries of A or B will also satisfy the lower bound. Multiplications that involve such
zero entries is an optimization sometimes used in practice (e.g., [VDY05]).

When A and B are dense and distinct, there are well-known algorithms mentioned
in the Introduction that (nearly) attain the combined lower bound

Ω(max(n·r·m/
√
M,#inputs+#outputs)) = Ω(max(n·r·m/

√
M,n·r+r·m+n·m)) ,

see [ITT04] for a more complete discussion. Attaining the corresponding latency-
cost lower bound of Corollary 2.3 requires a different data structure than the usual
row-major or column-major orders, so that words to be sent in a single message are
contiguous in memory, and is variously referred to as recursive block storage or storage
using space filling curves, see [FLPR99, EGJK04, BDHS10a] for discussion. Some of
these algorithms also minimize bandwidth-cost and latency-cost for arbitrarily many
levels of memory hierarchy. Little seems to be known about the attainability of this
lower bound for general sparse matrices.

Now we consider the parallel case, with P processors. Let nnz(A) be the number
of nonzero entries of A; then NNZ = nnz(A) + nnz(B) + nnz(C) is a lower bound on
the total memory required to store the inputs and outputs. We need to make some
assumption about how this data is spread across processors (each of which has its
own memory), since if A, B and C were all stored in one processor, and all arithmetic
done there (i.e., no parallelism at all), then no communication would be needed. It
is enough to assume either that (1) the memory is balanced among the processors, or
that (2) the arithmetic is balanced. In the first case, each processor stores an equal
share NNZ/P of the data (and perhaps at most o(NNZ/P ) more words). Then at
least one processor must perform at least G/P multiplications, where G is the total
number of multiplications (they can’t all be below average); the theorem below will
apply to the communication done by this processor. In the second case, each processor
does G/P multiplications (give or take o(G/P )). Then at least one processor stores
at most NNZ/P words (they can’t all be above average); the theorem below will apply
to the communication done by this processor. Combining all this with Theorem 2.2
yields4

Corollary 3.2. Suppose we have a parallel algorithm on P processors for mul-
tiplying matrices C = A · B that is memory-balanced in the sense described above.

4We present the conclusions for the parallel model in asymptotic notation. One could instead

assume that each processor had memory of size M = µ · n2

P
for some constant µ, and obtain the

hidden constant of the lower bounds as a function of µ, as done in [ITT04].



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 9

Then at least one processor must communicate Ω
(
G/
√
P · NNZ −NNZ/P

)
words,

where G is the number of multiplications Aij · Bkj performed. In the special case of

dense n-by-n matrices, this lower bound is Ω
(
n2/
√
P
)

.
There are again well-known algorithms that attain the bandwidth-cost and latency-

cost lower bounds in the dense case, but not in the sparse case.
We next extend Theorem 2.2 beyond matrix multiplication. The simplest exten-

sion is to the so-called BLAS3 (Level-3 Basic Linear Algebra Subroutines [BDD+01,
BDD+02]), which include related operations like multiplication by (conjugate) trans-
posed matrices, by triangular matrices and by symmetric (or Hermitian) matrices.
The last two corollaries apply to these operations without change (in the case of
AT · A we use the fact that Theorem 2.2 makes no assumptions about the matrices
being multiplied not overlapping).

More interesting is the BLAS3 operation TRSM, computing C = A−1B where A
is triangular. The inner loop of the algorithm (when A is upper triangular) is

Cij = (Bij −
n∑

k=i+1

Aik · Ckj)/Aii (3.1)

which can be executed in any order with respect to j, but only in decreasing order
with respect to i. None of this matters for the lower bound, since equation (3.1)
still matches Equation (2.1), so the lower bounds apply. To see this, we make the
correspondences that Cij is stored at location c(i, j) = b(i, j), Aik is stored at location
a(i, k), gijk multiplies Aik ·Ckj , and fij performs the indicated sum, subtracts it from
Bij , and divides by Aii. The fact that output Cij coincides with the input (so it could
be of type R2/D1) does not matter. Sequential algorithms that attain these bounds
for dense matrices, for arbitrarily many levels of memory hierarchy, are discussed in
[BDHS10a].

We note that our lower bound also applies to the so-called Level 2 BLAS (like
matrix-vector multiplication) and Level 1 BLAS (like dot products), but the larger
lower bound #inputs + #outputs is attainable.

3.2. LU factorization. Independent of sparsity and pivot order, the formulas
describing LU factorization are as follows, with the understanding the summations
may be over some subset of the indices k in the sparse case, and pivoting has already
been incorporated in the interpretation of the indices i, j and k.

Lij = (Aij −
∑
k<j

Lik · Ukj)/Ujj for i > j (3.2)

Uij = Aij −
∑
k<i

Lik · Ukj for i ≤ j

We see that these formulas correspond to our model in Equation (2.1), with a(i, j) =
b(i, j) = c(i, j) (since L and U are both inputs and outputs, overwriting A), gijk

identified with multiplying Lik ·Ukj , and fij summing the operands, subtracting from
Aij , and possibly dividing by Ujj . The fact that the “outputs” Lij and Uij coincide
with the inputs (so they could be of type R2/D1) does not matter, as before.

We discuss the more subtle question of incomplete LU (ILU) in the next section.
A sequential dense LU algorithm that attains this bandwidth-cost lower bound

is given by [Tol97], although it does not always attain the latency-cost lower bound



10 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

[DGHL08a]. The conventional parallel dense LU algorithm implemented in ScaLA-
PACK [BCC+97] attains the bandwidth-cost lower bound (modulo an O(logP ) fac-
tor), but not the latency-cost lower bound. A parallel algorithm that attains both
lower bounds (again modulo a factor O(logP )) is given in [DGX08], where significant
speedups are reported. Interestingly, it does not seem possible to attain both lower
bounds and retain conventional partial pivoting; a different (but still stable) kind of
pivoting is required. We also know of no dense sequential LU algorithm that mini-
mizes bandwidth-cost and latency-cost across multiple levels of a memory hierarchy
(unlike Cholesky). There is an elementary reduction proof that dense LU factoriza-
tion is “as hard as dense matrix multiplication” [DGHL08a], but it does not address
sparse or incomplete LU, as does our approach.

3.2.1. How to count operations gijk carefully. Once an algorithm has com-
pleted running, the type Ri/Dj of each argument is well-defined based on the actual
sequence of operations performed, but it may be hard to tell by inspecting the source
code of the algorithm (or other high level description) which operations to count as
gijk in the total G used in the statement of Theorem 2.2.

A sufficient, but not necessary, condition for counting gijk, is as follows: If a(i, k)
and b(k, j) are originally stored in memory and never modified, then they can only be
R1 and not R2; they are always D2. If c(i, j) is only computed once and eventually
stored to memory, it can only be D1 and not D2; it could be either R1 or R2, depending
on the segment. In this situation, which covers the BLAS, LU and other “complete”
factorizations, there are clearly no R2/D2 arguments, and we count all multiplications.
(Arguments of type R2/D2 appear later in Section 4, and require different counting
techniques.)

In other situations, where it may be difficult to tell which gijk to count, it may
be easier to identify a subset of them that are recognized as satisfying a condition
as in the last paragraph, and just count this subset. This may undercount the total
number G of gijk, but still provides a valid lower bound.

We give some examples to illustrate the counting process.
Example 1. Consider incomplete LU (ILU) factorization [Saa96], where some entries
of L and U are omitted in order to speedup the computation. In particular, consider
threshold based ILU, which computes a possible nonzero entry Lij or Uij and compares
it to a threshold, storing it only if it is larger than the threshold and discarding it
otherwise. Which multiplications Lik · Ukj do we count? We may underestimate
the total number G of multiplications by simply not counting any multiplications
that lead to a value of Lij or Uij that is discarded. Thus we see that analogues of
Corollaries 3.1 and 3.2 apply to ILU as well (and later to incomplete Cholesky, etc.).
Example 2. Using only structural information, e.g., about the sparsity patterns of
the underlying matrices, it is sometimes possible to deduce that the computed result
fij(·) is exactly zero, and so to possibly avoid a memory reference to location c(i, j)
to store the result. This may either be because the values gijk(·) being accumulated
to compute fij are all identically zero, or, more interestingly, because it is possible to
prove there is exact cancellation (independent of the values of the nonzero arguments
Mem(a(i, k)) and Mem(b(k, j))). Here is an example.

Consider a matrix A that is nonzero in its first r rows and columns, and possibly
in the trailing (n− 2r)-by-(n− 2r) submatrix; call this submatrix A′. First suppose
A′ = 0, so that A has rank at most 2r, and that pivots are chosen along the diagonal.
It is easy to see that the first 2r− 1 steps of Gaussian elimination will generically fill
in the entire matrix with nonzeros, but that step 2r will cause cancellation to zero



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 11

(in exact arithmetic) in all entries of A′. If A′ starts as a nonzero sparse matrix, then
this cancellation will not be to zero but to the sparse LU factorization of A′ alone.
So one can imagine an algorithm that may or may not recognize this opportunity to
avoid work in some or all of the entries of A′. To accommodate all these possibilities,
we could, as above, only count those multiplications gijk (3.2) that contribute to a
result Lij or Uij that is stored in memory, possibly underestimating G.

Analogous examples exist for factorizations discussed later, such as LDLT and
QR.

As a short-hand, in Section 4.2 we will sometimes refer to a matrix entry as being
treated as nonzero if the algorithm assumes that its value could be nonzero in deciding
whether to bother performing gijk. Thus an algorithm for dense matrices treats all
entries as nonzero, even if the input matrix is sparse, whereas a sparse factorization
algorithm would not.
Example 3. Consider n-by-n boolean matrix multiplication C = A · B, where the
first column of A and first row of B consist entirely of ones. Then one can deduce
that C consists entirely of ones without reading any other columns of A or rows of
B. Thus an algorithm could perform as few as n2 gijk evaluations (boolean and’s)
along with 2n + n2 loads and stores, or as many as n3 gijk evaluations along with
Ω(n3/

√
M) loads and stores, depending on the algorithm and input matrices. Either

way, the theorem applies.
Example 4. It is possible to have no R2/D2 arguments, even if a matrix entry,
say a(i, k), requires no memory accesses, as long as it is processed in a way like the
following: In segment 1, a(i, j) is computed by a formula, and left in fast memory,
so it is R2/D1 in segment 1. In segment 2, a(i, j) starts in fast memory at the start
of the segment, and is left there at the end, so it is R1/D1 in segment 2. Finally, in
segment 3, a(i, j) starts in fast memory at the start of the segment, and discarded
before the end, so it is R1/D2 in segment 3. To see that we could potentially have
many such arguments, consider the realistic problem of computing the determinant of
a matrix A from its LU decomposition, where each entry of A is given by a formula,
and we discard the LU decomposition after computing the product

∏
i U(i, i). We give

a more systematic way of counting gijk accurately for examples like this in Section 5.

3.3. Cholesky Factorization. Now we consider Cholesky factorization. In-
dependent of sparsity and (diagonal) pivot order, the formulas describing Cholesky
factorization are as follows, with the understanding the summations may be over some
subset of the indices k in the sparse case, and pivoting has already been incorporated
in the interpretation of the indices i, j and k.

Ljj = (Ajj −
∑
k<j

L2
jk)1/2 (3.3)

Lij = (Aij −
∑
k<j

Lik · Ljk)/Ljj for i > j

It is easy to see that these formulas correspond to our model in Equation (2.1), with
gijk identified with multiplying Lik ·Ljk. As before, the fact that the “outputs” Lij can
overwrite the inputs does not matter, and the subtraction from Aij , division by Lii,
and square root are all accommodated by Equation (2.1). As before, these formulas
are general enough to accommodate incomplete Cholesky (IC) factorization [Saa96].

Dense algorithms that attain these lower bounds are discussed in [BDHS10a],
both parallel and sequential, including analyzing one that minimizes bandwidth-cost



12 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

and latency-cost across all levels of a memory hierarchy [AP00]. We note that there
was a proof in [BDHS10a] showing that dense Cholesky was “as hard as dense matrix
multiplication” by a method analogous to that for LU.

The bound on Cholesky decomposition applies also to Bunch-Kaufman-type fac-
torizations [BK77]: the symmetric indefinite factorization A = LDLT , where D is
block diagonal with 1-by-1 and 2-by-2 blocks, and L is a lower triangular matrix with
1s on the diagonal. If A is positive definite, then all the blocks of D are 1-by-1, and
this is essentially the Cholesky decomposition algorithm, and the formulas correspond
to our model in Equation (2.1):

Djj = Ajj −
∑
k<j

L2
jkDkk (3.4)

Lij =
1
Djj

Aij −
∑
k<j

Lik · LjkDkk

 for i > j (3.5)

In the general case, where D has some 2-by-2 diagonal blocks and they are treated
as dense (as in standard implementations), the above model captures a subset of the
work done (at least half) and the model applies.5

3.3.1. Sparse Cholesky Factorization on Matrices whose Graphs are
Meshes. Hoffman, Martin, and Rose [HMR73] and George [Geo73] prove that a
lower bound on the number of multiplications required to compute the sparse Cholesky
factorization of an n2-by-n2 matrix representing a 5-point stencil on a 2D grid of n2

nodes is Ω(n3). This lower bound applies to any matrix containing the structure of
the 5-point stencil. This yields:

Corollary 3.3. In the case of the sparse Cholesky factorization of the matrix
representing a 5-point stencil on a two-dimensional grid of n2 nodes, the bandwidth-
cost lower bound is Ω

(
n3
√

M

)
.

George [Geo73] shows that this arithmetic lower bound is attainable with a nested
dissection algorithm in the case of the 5-point stencil. Gilbert and Tarjan [GT87]
show that the upper bound also applies to a larger class of structured matrices, in-
cluding matrices associated with planar graphs. Recently, David, Demmel, Grigori,
and Peyronnet [DDGP10] obtained new algorithms for sparse cases of Cholesky de-
composition, that are proven to be communication optimal using our lower bounds.

3.4. Imposing reads and writes. In this example we consider a single linear
algebra operation, where inputs are given by formulas and the output is a scalar (e.g.,
norm of the product of two matrices given by formulas, each used once; computing
the determinant of a matrix with entries given by formulas, where one does the LU
decomposition and takes the product of the diagonal elements of U , etc.)

Even though this seems to eliminate a large number of reads and writes, we
can prove (for this and similar examples) that the communication lower bound is still
Ω
(

#flops√
M

)
, by using a technique of imposing reads and writes: We take an algorithm to

which Theorem 2.2 does not apply, because it may potentially have R2/D2 operands,
and add (impose) memory traffic to eliminate such operands. Then we use Theorem
2.2 to bound below the communication of this modified algorithm, and subtract the
amount of imposed communication to get a lower bound for the original algorithm.

5One could imagine a nonstandard implementation that took advantage of zero diagonals in
2-by-2 blocks, so a slightly different proof would be needed for this set of inputs of measure zero.



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 13

Here is an example. Consider computing r = ‖A · B‖2F =
∑

ij(A · B)2
ij , where

Aik = 1/(i+ k) and Bkj = k1/j are given by formulas. Let C = A ·B. Whenever the
final value of some Cij is computed, squared, and added to r, we impose a write (if
it is missing) so that Cij is saved in slow memory, and so has destination D1 instead
of possibly D2 (it may still have root R2). Thus no entries of C can be R2/D2.
Whenever the value of some Aik or Bkj is computed by a formula, we impose a read
to get it from a location in slow memory, so it has root R1 instead of R2 (it may still
have destination D2). Now, no entries of A or B can be R2/D2. Thus this modified
algorithm has lower bound n3/(8

√
M)−M by Theorem 2.2.

To get a lower bound for the original algorithm, we need to bound how many reads
and writes we imposed. There are clearly at most n2 imposed writes. If the original
algorithm only evaluates each formula for Aik and Bkj once, and keeps their computed
values in memory if necessary for later use, then the number of imposed reads is 2n2,
and the communication lower bound for the original algorithm is n3/(8

√
M) −M −

3n2 = Ω(n3/
√
M), close to standard dense matrix multiplication.

On the other hand, if the original algorithm evaluates the formulas for Aik and
Bkj whenever it needs them, so n3 times, then the communication lower bound for the
original algorithm becomes n3/(8

√
M)−M − n2 − 2n3, which degenerates to zero.

4. Orthogonal Factorizations. In this section we consider algorithms that
compute matrix factorizations with at least one orthogonal factor. This includes
algorithms that apply sequences of orthogonal transformations to a matrix, which
includes the most widely used algorithms for least squares problems (the QR factor-
ization), eigenvalue problems, and the SVD. We need to treat algorithms that apply
orthogonal transformations separately because many of the operations to which we
would like to apply the model in Equation (2.1) involve R2/D2 arguments, so the
model does not directly apply.

We start with the easier case of algorithms that compute the QR factorization
without applying orthogonal transformations (e.g., Gram-Schmidt), for which we can
use Equation (2.1).

4.1. QR factorization without applying orthogonal transformations.
We first discuss algorithms for computing the QR decomposition whose computa-
tions correspond to our model in Equation (2.1). Although Cholesky-QR, classical
Gram-Schmidt, and modified Gram-Schmidt do not share the same stability char-
acteristics as when applying orthogonal transformations, they are advantageous in
various situations and are used in practice.

Cholesky-QR. Consider an m×n matrix A. The Cholesky-QR algorithm consists
of forming ATA and computing the Cholesky decomposition of that n × n matrix.
The R factor is the upper triangular Cholesky factor and Q is obtained by solving
the equation A = QR using TRSM. The communication lower bounds for TRSM
(see Section 3.1) thus apply to the Cholesky-QR algorithm (and reflect at least 6

13
of the total number of multiplications of the overall dense algorithm). Since the
steps of the algorithm (form ATA, Cholesky, TRSM) can all be done with minimal
communication, so can the overall algorithm.

Classical Gram-Schmidt. We recall the Gram-Schmidt algorithm for orthonor-
malizing a set of vectors in an inner product space: Let Proju(v) ≡ 〈v,u〉

〈u,u〉u. Let
{vi}i∈[n] be a set of n input vectors in Rm. Then the output of the Gram-Schmidt



14 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

algorithm is {ui}i∈[n] where

uk ≡ vk −
k∑

i=1

Projui
(vk) (4.1)

as well as the triangular R factor. Equation (4.1) does not match Equation (2.1).
In order to apply Theorem 2.2 here, we consider the inner product 〈vi, uj〉 (which is
computed for every i > j). The operation gijk corresponds to the multiplication of
the kth element of vi with the kth element of uj . Now we have an algorithm that
computes 〈vi, uj〉 for all i > j, and does some other extra computations. Ignoring all
the extra computation, the algorithm agrees with Equation (2.1), with A being the
input (R1) vectors {vi}i, B being the output (D1) vectors {uj}j , and C being the dot
products which become entries of the output (D1) matrix R.

We can now apply Theorem 2.2 to obtain a lower bound of Ω(mn2
√

M
) on the

bandwidth-cost (since Θ(mn2) flops are performed). This is not matched by existing
algorithms [DGHL08a].

Modified Gram-Schmidt. The argument for the modified Gram-Schmidt is similar
to the above. Recall that in this modified algorithm, each vi is replaced with new
vectors, u(k)

i , where k is different for each inner product. That is, instead of (4.1) we
have the modified algorithm:

u
(1)
k = vk − Proju1 (vk)

u
(2)
k = u

(1)
k − Proju2 (u(1)

k )
...

u
(k−2)
k = u

(k−3)
k − Projuk−2 (u(k−3)

k )

uk = u
(k−2)
k − Projuk−1 (u(k−2)

k )

To apply the model in Equation (2.1), we note that a standard implementation
will overwrite u(j−1)

k by u
(j)
k , so that a(i, k) points to the common location storing

the (D1) values u(j)
k (i) for all 1 ≤ j ≤ k. Again, the resulting communication lower

bounds Ω(mn2
√

M
) are not matched by existing algorithms [DGHL08a].

4.2. Applying Orthogonal Transformations. The case of applying orthog-
onal transformations is more subtle to analyze for several reasons: (1) There is more
than one way to represent the Q factor (e.g., Householder reflections and Givens
rotations). (2) The standard ways to reorganize or “block” QR to minimize commu-
nication involve using the distributive law, not just summing terms in a different order
[BVL87, SVL89, Pug92, Dem97, GVL96]. (3) There may be many intermediate terms
that are computed, used, and discarded without causing any slow memory traffic (i.e.,
are of type R2/D2).

This forces us to use a different argument than [ITT04], but still using Loomis-
Whitney, to bound the number of arithmetic operations in a segment. To be concrete,
we consider the widely used Householder reflections, in which an n-by-n elementary
real orthogonal matrix Qi is represented as Qi = I − τiuiu

T
i , where ui is a column

vector called a Householder vector and τi = 2/‖ui‖22. A single Householder reflection
Qi is chosen so that multiplying Qi ·A zeros out selected rows in a particular column
of A, and modifies one other row in the same column (for later use, we let ri be index
of this other row).



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 15

We furthermore model the way libraries like LAPACK [ABB+92] and ScaLA-
PACK [BCC+97] may “block” Householder vectors, writing Qk · · ·Q1 = I−UkTkU

T
k ,

where Uk = [u1, u2, . . . , uk] is n-by-k and Tk is k-by-k. Uk is nonzero only in the
rows being modified, and furthermore column i of Uk is zero in entries r1,...,ri−1

and nonzero in entry ri.6 Next, we will apply such block Householder transforma-
tions to a (sub)matrix by inserting parentheses as follows: (I − U · T · UT ) · A =
A−U · (T ·UT ·A) ≡ A−U ·Z, which is also the way Sca/LAPACK does it. Finally,
we overwrite the output onto A := A−U ·Z, which is how most fast implementations
do it, analogously to LU decomposition, to minimize memory requirements. We will
also assume that each entry of Z is computed only once.

But we do not need to assume any more commonality with the approach in
Sca/LAPACK, in which a vector ui is chosen to zero out all of column i of A below the
diagonal. For example, we can choose each Householder vector to zero out only part of
a column at a time, as is the case with the algorithms for dense matrices in [DGHL08a,
DGHL08b]. Nor do we even need to assume we are zeroing out any particular set of
entries, such as those below the main diagonal as the usual QR algorithm; later this
generality will let us apply our result to algorithms for eigenproblems and the SVD.

To get our lower bound, we consider just the multiplications in all the different
applications of block Householder transformations A := A−U ·Z. We argue in Section
4.2.3 that this constitutes a large fraction of all the multiplications in the algorithm
(it is a valid lower bound in any event).

There are two challenges to straightforwardly applying our previous approach to
the matrix multiplications in all the updates A := A − U · Z. The first challenge
is that we need to collect all these multiplications into a single set, indexed in an
appropriate one-to-one fashion by (i, j, k). The second challenge is that entries of
Z may be R2/D2, i.e., they need not be read from or written to memory. Rather,
they may be computed on-the-fly from U and A, used and discarded. So we have to
account for Z’s memory traffic more carefully. Furthermore, each Householder vector
(column of U) is created on the fly by modifying certain (sub)columns of A, so it is
both an output and an input. Therefore we will have also have to account for U ’s
and A’s memory traffic more carefully.

Here is how we address the first challenge: Let index k indicate the number of
the Householder vector; in other words U(:, k) are all the entries of k-th Householder
vector. Thus, k is not the index of the column of A from which U(:, k) arises (there
may be many Householder vectors associated with a given column as in [DGHL08a])
but k does uniquely identify that column. Then the operation A − U · Z may be
rewritten as A(i, j) −

∑
k U(i, k) · Z(k, j), where the sum is over the Householder

vectors, indexed by k, making up U that both lie in column j and have entries in row
i. The use of this index k lets us combine all the operations A := A − U · Z for all
different Householder vectors into one collection

A(i, j) := A(i, j)−
∑

k

U(i, k) · Z(k, j) (4.2)

where all operands U(i, k) and Z(k, j) are uniquely labeled by the index pairs (i, k)
and (k, j), respectively.

6In conventional algorithms for dense matrices (e.g., the implementation available in
LAPACK[ABB+92]) this means ri = i, and Uk is lower trapezoidal with a nonzero diagonal, but
our proof does not assume this.



16 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

For the second challenge, we separately handle two cases. The first (easier) case
is when the number of R2/D2 Z’s is relatively small. We can then use the imposed-
writes technique from Section 3.4 and apply Loomis-Whitney to obtain the lower
bounds. In the second case, no such bound on the Z’s is guaranteed. We then use
a “forward-progress” assumption, combined with assuming T is 1 × 1 to obtain a
matching lower bound.

4.2.1. When the number of R2/D2 Z’s is not too large. Consider the
number of R2/D2 Z’s in the entire algorithm, where each R2/D2 Z value is computed
once (alternatively, if we allow re-computation, each such value that may be computed
several times, and is then counted with corresponding multiplicity). We can impose
writes (as in Section 3.4) on each R2/D2 Z element, i.e., writing it to memory when
it would have been discarded, making it D1. Thus all A, U and Z arguments are
non-R2/D2, allowing as to directly apply Loomis-Whitney by Theorem 2.2. If the
number of R2/D2 Z’s is bounded above by a constant times the number of inputs
plus the number of outputs, we obtain the desired lower bound.

Lemma 4.1. Consider dense or sparse QR, done with block Householder trans-
formations of any block size, but at most one Householder transformation per column.
Then the number of words moved is at least

Ω
(
max

(
#flops√

M
,#inputs+ #outputs

))
.

Proof. Consider the first block Householder transformation, of block size b1. From

Z(1 : b1, k) = T (1 : b1, 1 : b1) · (U(:, 1 : b1))T ·A(:, k)

and

A(:, k) = A(:, k) + U(:, 1 : b1) · Z(1 : b1, k)

and the fact that U(i, i) is nonzero we see that if Z(i, k) 6= 0 then A(i, k) = A(i, k) +
U(i, i) · Z(i, k) + ... is generically nonzero.7 So for the first block Householder trans-
formation, the number of entries in Z(1 : b1, k) is bounded by the number of entries
in A(1 : b1, k), which are all TAN. The next block Householder transformation, of
block size b2, is treated similarly, with the number of entries in Z(b1 + 1 : b1 + b2, k)
bounded by the number of entries in A(b1 + 1 : b1 + b2, k).

If we impose writes (as in Section 3.4) on R2/D2 Z entries, then we obtain a
lower bound from Theorem 2.2 which must be adjusted to account for the imposed
writes. However, since the number of imposed writes is bounded by the number of A
entries (which is the number of inputs and outputs), we obtain a lower bound on the
number of words moved of

Ω
(
max

(
#flops√

M
− (#inputs+ #outputs),#inputs+ #outputs

))
,

and the result follows.

7We say an element is treated as non-zero (TAN) if it is not ignored by the algorithm, even
though it may actually contain zero, or an arbitrarily small value. In other words, it was not zeroed
out by the algorithm, nor it is assumed to be an input element which is guaranteed to be zero.
Otherwise, we say the element is treated as zero (TAZ).



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 17

We can conclude a similar bound for reduction to Hessenberg or tridiagonal form:
instead of assuming we are doing QR (so that U(i, i) is nonzero, since A(i, i) “ac-
cumulates” nonzero entries below it), we could be accumulating into a different, but
unique row destination.

Note that the approach of imposing writes does not easily apply to communication-
avoiding QR [DGHL08a], since there are potentially Θ

(
#flops

block size

)
different Z ele-

ments.

4.2.2. When the number of R2/D2 Z’s is large. We next consider the
harder general case, where the number of R2/D2 Z’s cannot be bounded by a constant
factor times the number of inputs and outputs. We first introduce some notation:

• Let U(k) be the kth column of U (which is the kth Householder vector). We
will use U(k) and U(:, k) interchangeably when the context is clear.

• Let col src U(k) be the index of the column in which U(k) introduces zeros.
• Let rows U(k) be the set of indices of rows TAN in U(k). Let row dest U(k)

be the index of the row in column col src U(k) in which nonzero values in
that column are accumulated by U(k), and let zero rows U(k) be rows U(k)
with row dest U(k) omitted.

We will make two central assumptions in this case. First, we assume that the
algorithm does not block Householder updates (i.e., all T matrices are 1 × 1). Sec-
ond, we assume the algorithm makes “forward progress” which we define below. As
explained later, forward progress is a natural property of any efficient implementation
that precludes certain kinds of redundant work.

The first assumption means that we are computing
∏

k(I − τk · U(:, k) · U ′(:
, k)) · A, where τk is scalar. This seems like a significant restriction, since blocked
Householder transformations are widely used in practice. We do not believe this
assumption is necessary for the communication lower bound to be valid, but the reason
for the assumption is that there exists an artificial example, where by using an O(n4)
algorithm with O(n4) additional storage (to form and use a T matrix of dimension
O(n2)) on a certain matrix, we could arrange to have one segment in which O(M2)
multiplications were performed, thereby creating an obstacle to our proof technique,
which depends on bounding the number of multiplications per segment by O(M3/2).
This (impractical!) variant of QR is not a counterexample to our theorem overall,
just our proof technique. We describe this counterexample in detail in Appendix A.
Still, we believe this special case gives insight into why blocking techniques will not
do better: By using many small Householder transformations (including 2 × 2, i.e.,
analogous to Givens rotations) in place of any one larger Householder transformation,
and applying these in the right order, very similar memory access patterns as for block
Householder transformations can be achieved.

This assumption yields a partial order (PO) in which the Householder updates
must be applied to get the right answer. It is only a partial order because if, say,
U(:, k) and U(:, k+1) do not “overlap”, i.e., have no common rows that are TAN, then
(I − τk ·U(:, k) ·U ′(:, k)) and (I − τk+1 ·U(:, k+ 1) ·U ′(:, k+ 1)) commute, and either
one may be applied first (indeed, they may be applied independently in parallel).

Definition 4.2 (Partial Order on Householder vectors (PO)). Suppose k1 < k2

and rows U(k1) ∩ rows U(k2) 6= {∅}, then U(k1) < U(k2) in the partial order.8

8We note that this relation is transitive. That is, two Householder vectors U(k1) and U(k2)
are partially ordered if there exists U(k∗) such that U(k1) < U(k∗) < U(k2), even if rows U(k1) ∩
rows U(k2) = {∅}.



18 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

Our second assumption is that the algorithm makes forward progress:
Definition 4.3 (Forward Progress (FP)). We say an algorithm which applies

orthogonal transformations to zero out entries makes forward progress if the following
two conditions hold:

1. an element that was deliberately9 zeroed out by one transformation is never
again zeroed out or filled by another transformation,

2. if
(a) U(k1), . . . , U(kb) < U(k̂) in PO,
(b) col src U(k1) = · · · = col src U(kb) = c 6= ĉ = col src U(k̂),
(c) and no other U(ki) satisfies U(ki) < U(k̂) and col src U(ki) = c,

then

rows U(k̂) ⊂
b⋃

i=1

zero rows U(ki) ∪ {rows of column c that are TAZ} . (4.3)

The first condition holds for most efficient Householder algorithms.10 It is easy
to see that it is necessary to prove any nontrivial communication lower bound, since
without it an algorithm could “spin its wheels” by repeatedly filling in and zeroing
out entries, doing an arbitrary amount of arithmetic with no memory traffic at all.

The second condition holds for every correct algorithm for QR decomposition.
This condition means any later Householder transformation (U(k̂)) that depends on
earlier Householder transformations (U(k1), ..., U(kb)) creating zeroes in a common
column c may operate only “within” the rows zeroed out by the earlier Householder
transformations. We motivate this assumption in Appendix B by showing that if an
algorithm violates the second condition, it can “get stuck.” This means that it cannot
achieve triangular form without filling in a deliberately created zero.

We note that FP is not violated if an original TAZ entry of the matrix is filled in
(so that it is no longer TAZ); this is a common situation when doing sparse QR.

With these assumptions, we begin the argument to bound from below the number
of memory operations required to apply the set of Householder transformations. As
in the proof of Theorem 2.2, we will focus our attention on an arbitrary segment of
computation in which there are O(M) non-R2/D2 entries in fast memory. Our goal
will be to bound the number of multiplications in a segment involving R2/D2 entries,
since the number of remaining multiplications can be bounded using Loomis-Whitney
as before. From here on, let us denote by Z2(k, j) the element Z(k, j) if it is R2/D2,
and by Zn(k, j) if it is non-R2/D2. We will further focus our attention within the
segment on the update of an arbitrary column of the matrix, A(:, j).

Each Z(k, j) in memory is associated with one Householder vector U(:, k) which
will update A(:, j). We will denote the associated Householder vector by U2(:, k) if
Z(k, j) = Z2(k, j) is R2/D2 and Un(:, k) if Z(k, j) = Zn(k, j) is non-R2/D2. With
this notation, we have the following two lemmas which make it easier to reason about
what happens to A(:, j) during a segment.

Lemma 4.4. If Z2(k, j) is in memory during a segment, then U2(:, k) and the
entries A(rows U(k), j) are also in memory during the segment.

9By deliberately, we mean the algorithm converted a TAN entry into a TAZ entry with an
orthogonal transformation. The introduction of a zero due to accidental cancellation (such zero
entries are still TAN) is not deliberate.

10We note that the first condition of FP does not hold for the bulge-chasing process within
standard QR iteration or successive band reduction [BLS00b] over multiple bulge chases.



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 19

Proof. Since Z2(k, j) is discarded before the end of the segment and may not be
re-computed later, the entire A(:, j) = A(:, j) − U(:, k) · Z2(k, j) computation has to
end within the segment. Thus, all entries involved must be resident in memory.

However, even if a Zn(k, j) is in memory during a segment, the Un(:, k) ·Zn(k, j)
computation will possibly not be completed during the segment, and therefore the
Un(:, k) vector and corresponding entries of A(:, j) may not be completely represented
in memory.

Lemma 4.5. If Z2(k1, j) and Z2(k2, j) are in memory during a segment, and
U(k1) < U(k) < U(k2) in the PO, then Z(k, j) must also be in memory during the
segment.

Proof. This follows from our first assumption that all T matrices are 1 × 1 and
the partial order is imposed. Since U(k1) < U(k), Z(k, j) cannot be fully computed
before the segment. Since U(k) < U(k2), U(:, k) · Z(k, j) has to be performed in
the segment too, at least “enough”11 to carry the dependency, so Z(k, j) cannot be
fully computed after the segment. Thus, Z(k, j) is computed during the segment and
therefore must exist in memory.

Emulating the arithmetic operations in a segment. Roughly speaking, our goal
now is to bound the number of U2(r, k) · Z2(k, j) multiplications by the number of
multiplications in a different matrix multiplication Û · Ẑ where we can bound the
number of Û entries by the number of U entries in memory, and bound the number
of Ẑ entries by the number of A entries plus the number of Zn entries in memory,
which lets us use Loomis-Whitney.

Given a particular segment and column j, we construct Û by first partitioning the
U2(:, k) by their col src U(k) and then collapsing each partition into one column of
Û . Likewise, collapse Z(:, j) by partitioning its rows corresponding to the partitioned
columns of U and taking the union of TAN entries in each set of rows to be the TAN
entries of the corresponding row of Ẑ(:, j). More formally,

Definition 4.6 (Û and Ẑ). For a given segment of computation and column
j of A, we set Û(r, c) to be TAN if there exists a U2(:, k) in fast memory such that
c = col src U(k) and r ∈ rows U(k). We set Ẑ(c, j) to be TAN if there exists a
Z2(k, j) in fast memory such that c = col src U(k).

We will “emulate” the computation A(:, j) = A(:, j) −
∑
U2(:, k) · Z2(k, j) with

the related computation A(:, j) = A(:, j) −
∑
Û(:, c) · Ẑ(c, j) in the following sense:

we will show that the number of multiplications done by U2(:, k) ·Z2(k, j) is within a
factor of 2 of the number of multiplications done by Û(:, c) · Ẑ(c, j), which we will be
able to bound using Loomis-Whitney.

The following example illustrates this construction on a small matrix, where K2

contains three indices (i.e., there are three Householder vectors that were computed

11Note that, if U(:, k) is Un(:, k), not all rows U(k) rows of A(:, j) must be updated, but enough
for Z2(k2, j) to be computed and U2(:, k2) · Z2(k2, j) to be applied correctly. Also, a partial sum
(U(stuff, k))T ·A(stuff, j) may have been computed before the beginning of the segment and used in
the segment to compute Zn(k, j), but the final Zn(k, j) value cannot be computed until the segment.



20 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

to zero entries in the second column of A); just TAN patterns are shown.

U(:,K2) =



•

• •
• •

•
•
•


⇒ Û(:, 2) =



•

•
•

•
•
•


Note that we do not care what the TAN values of Û and Ẑ are; this computation

has no hope of getting a correct result because the rank of Û · Ẑ is generally less than
the rank of the subset of U · Z it replaces. We emulate in this way only to count the
memory traffic. We establish the following results with this construction.

Lemma 4.7. Û(:, c) has at least half as many TAN entries, and at most as many
TAN entries, as the columns of U from which it is formed.

Proof. The sets zero rows U(k) for k in a partition (i.e., with the same col src U(k))
must be disjoint by the forward progress assumption, and there are at least as many
of these rows as in all the corresponding row dest U(k), which could potentially all
coincide. By Lemma 4.4, we know that complete U2(:, k) are present (otherwise they
could, for example, all be Givens transformations with the same destination row, and
if zero rows were not present, they would all collapse into one row). And so since ev-
ery entry of zero rows U(k) contributes to a TAN entry of Û(:, c), and zero rows U(k)
constitutes at least half of the TAN entries of U(k), Û(:, c) has at least half as many
TAN entries as the corresponding columns of U .

If all the U2(:, k) being collapsed have TAN entries in disjoint sets of rows, then
Û(:, c) will have as many entries TAN as all the U(:, k).

Because each TAN entry of U(:, k) contributes one scalar multiplication to
A(:, j) = A(:, j)−

∑
U2(:, k) · Z2(k, j) and each TAN entry of Û(:, c) contributes one

scalar multiplication to A(:, j) = A(:, j) −
∑
Û(:, c) · Ẑ(c, j), we have the following

corollary.
Corollary 4.8. Û(:, c) · Ẑ(c, j) does at least half as many multiplications as all

the corresponding U2(:, k) · Z2(k, j).
In order to bound the number of Û · Ẑ multiplications in the segment, we must

also bound the number of Ẑ entries available.
Lemma 4.9. The number of TAN entries of Ẑ(:, j) is bounded by the number of

A(:, j) entries plus the number of Zn(:, j) entries resident in memory.
Proof. Our goal is to construct an injective mapping I from the set of of Ẑ(:, j)

entries to the union of the sets of A(:, j) and Zn(:, j) entries. Consider the set of Z(k, j)
entries (both R2/D2 and non-R2/D2) in memory as vertices in a graph G. Each vertex
has a unique label k (recall that j is fixed), and we also give each vertex two more
non-unique labels: 2 or n to denote whether the vertex is Z2(k, j) or Zn(k, j) and
col src U(k) to denote the column source of the corresponding Householder vector. A
directed edge (k1, k2) exists in the graph if U(:, k1) < U(:, k2) in the PO. Note that
all the vertices labeled both 2 and c are Z2(k, j) that lead to Ẑ(c, j) being TAN in
Definition 4.6.



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 21

For all values of c = col src U(k) appearing as labels in G, in order of which node
labeled c is earliest in PO (not necessarily unique), find a (not necessarily unique)
node k with label col src U(k) = c, that has no successors in G with the same label
c. If this node is also labeled n, then we let I map Ẑ(c, j) to Zn(k, j). If node k
is labeled 2, then we let I map Ẑ(c, j) to A(row dest U(k), j). By Lemma 4.4, this
entry of A must be in fast memory.

We now argue that this mapping I is injective. The mapping into the set of
Zn(k, j) entries is injective because each Ẑ(c, j) can be mapped only to an entry with
column source c. Suppose the mapping into the A(:, j) entries is not injective, and
let Ẑ(c, j) and Ẑ(ĉ, j) be the entries which are both mapped to some A(r, j). Then
there are entries Z2(k, j) and Z2(k̂, j) such that c = col src U(k), ĉ = col src U(k̂),
r = row dest U(k) = row dest U(k̂), and neither k nor k̂ have successors in G with
the same column source label.

Since rows U(k) and rows U(k̂) intersect, they must be ordered with respect
to the PO, so suppose U(k) < U(k̂). Consider the second condition of FP. In
this case, premises (2a) and (2b) hold, but the conclusion (4.3) does not. Thus,
premise (2c) must not hold, so there exists another Householder vector U(k∗) such
that c = col src U(k∗) and r ∈ zero rows U(k∗).

Again, because their nonzero row sets intersect, each of these Householder vec-
tors must be partially ordered. By the first condition of FP, since row dest U(k) ∈
zero rows U(k∗), we have U(k) < U(k∗). Also, since U(k∗) satisfies (2a), we have
U(k∗) < U(k̂). Thus, U(k) < U(k∗) < U(k̂), and by Lemma 4.5, Z(k∗, j) must also
be in fast memory and therefore in G. Since Z(k∗, j) is a successor of Z(k, j) in G,
we have a contradiction.

Theorem 4.10. An algorithm which applies orthogonal transformations to an-
nihilate matrix entries, does not compute T matrices of dimension 2 or greater for
blocked updates, maintains forward progress as in Definition 4.3, and performs G flops
of the form U · Z, has a bandwidth cost of at least

Ω
(

G√
M

)
−M words.

In the special case of a dense m-by-n matrix with m ≥ n, this lower bound is
Ω(mn2/

√
M).

Proof. We first argue that the number of A, U , and Zn entries available during a
segment are all O(M).

Every A(i, j) operand is destined either to be output (i.e., D1) or converted into
a Householder vector. Every A(i, j) operand is either read from memory (i.e., R1) or
created on the fly due to sparse fill-in. So the only possible R2/D2 operands from A
are entries which are filled in and then immediately become Householder vectors, and
hence become R2 operands of U . We bound the number of these as follows.

All U operands are eventually output, as they compose Q. So there are no D2
operands of U (recall that we may only compute each result U(i, k) once, so it cannot
be discarded). So all R2 operands U(i, k) are also D1, and so there are at most 2M
of them (since at most M can remain in fast memory, and at most M can be written
to slow memory, by the end of the segment). This also bounds the number of R2/D2
operands A(i, j), and so bounds the total number of A(i, j) operands by 6M (the
sum of 2M = maximum number of D1 operands plus 2M = maximum number of R1
operands plus 2M = maximum number of R2/D2 operands).



22 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

The number of Zn entries available in a segment is bounded by 2M because by
definition, all entries are non-R2/D2.

From Lemma 4.7, the number of Û entries available is O(M) because it is bounded
by the number of U2 entries which is in turn bounded by the number of U entries.
From Lemma 4.9, the number of Ẑ entries available is O(M) because it is bounded
by the sum of the number of entries of A and of Zn.

Thus, since the number of entries of each operand available in a segment are
O(M), by Lemma 2.1 (Loomis-Whitney), the number of Û · Ẑ scalar multiplications
is bounded by O

(
M3/2

)
. By Corollary 4.8, the number of U ·Z scalar multiplications

within a segment is also bounded by O
(
M3/2

)
.

Since there are O(M) Zn(k, j) operands in a segment, the Loomis-Whitney argu-
ment bounds the number of multiplies involving such operands by O(M3/2), so with
the above argument that bounds the number of multiplies involving R2/D2 Z(k, j)
operands, the total number of multiplies involving both R2/D2 and non-R2/D2 Z
entries is O

(
M3/2

)
.

The rest of the proof is similar to before: A lower bound on the number of
segments is then b#multiplies/O

(
M3/2

)
c ≥ #multiplies/O

(
M3/2

)
− 1, so a lower

bound on the number of slow memory accesses is M · b#multiplies/O
(
M3/2

)
c ≥

Ω
(
#multiplies/M1/2

)
−M . For dense m-by-n matrices with m ≥ n, the conventional

algorithm does Θ(mn2) multiplies.

4.2.3. Discussion of QR Model. It is natural to wonder whether the G oper-
ations in Theorem 4.10 capture the majority of the arithmetic operations performed
by the algorithm, which would allow us to deduce that the lower bound is as large as
possible. The G operations are just the multiplications in all the different applications
of block Householder transformations A := A−U ·Z, where Z = T ·UT ·A. We argue
that under a natural “genericity assumption” this constitutes a large fraction of all the
multiplications in the algorithm (although this is not necessary for our lower bound to
be valid). Suppose (UT ·A)(k, j) is nonzero; the amount of work to compute this is at
most proportional to the total number of entries stored (and so treated as nonzeros)
in column k of U . Since T is triangular and nonsingular, this means Z(k, j) will be
generically nonzero as well, and will be multiplied by column k of U and added to
column j of A, which costs at least as much as computing (UT ·A)(k, j). The cost of
the rest of the computation, forming and multiplying by T and computing the actual
Householder vectors, are lower order terms in practice; the dimension of T is generally
chosen small enough by the algorithm to try to assure this. Thus, for example, there
are both a total of Θ(mn2) multiplies done by dense QR factorization on an m-by-n
matrix (with m ≥ n), as well as Θ(mn2) multiplies counted in our lower bound.

4.3. Eigenvalue and Singular Value Problems. Standard algorithms for
computing eigenvalues and eigenvectors, or singular values and singular vectors (the
SVD), start by applying orthogonal transformations to both sides of A to reduce it to
a “condensed form” (Hessenberg, tridiagonal or bidiagonal) with the same eigenvalues
or singular values, and simply related eigenvectors or singular vectors [Dem97]. This
section presents communication lower bounds for these reductions, and then discusses
whether analogous lower bounds apply to algorithms that work on the condensed
forms.

Later, in section 6, we discuss eigenvalues algorithms that attain these lower
bounds for dense matrices. For the symmetric eigenproblem and SVD, there are such
algorithms that begin by reduction to a condensed form. But for the nonsymmetric



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 23

eigenproblem, the only known algorithm attaining the expected lower bound does not
initially reduce to condensed form, and is not based on QR iteration [DDH07, BDD11].

We extend our argument from the last section as follows. We can have some
arbitrary interleaving of (block) Householder transformations applied on the left:

A = (I − UL · TL · UT
L ) ·A = A− UL · (TL · UT

L ·A) ≡ A− UL · ZL

and the right:

A = A · (I − UR · TR · UT
R ) = A− (A · UR · TR) · UT

R ≡ A− ZR · UT
R .

Combining these, we can write

A(i, j) = A(i, j)−
∑
kL

UL(i, kL) · ZL(kL, j)−
∑
kR

ZR(i, kR) · UR(j, kR) (4.4)

Of course there are lots of possible dependencies ignored here, much as we wrote down
a similar formula for QR. At this point we can apply either of the two approaches
in the last section: we can either assume (1) the number of R2/D2 ZL’s and ZR’s is
bounded by the number of inputs and outputs O(I +O) (see Section 4.2.1), or (2) all
T matrices are 1x1 and we make “forward progress” (see Section 4.2.2). In case (1) it
is straightforward to see that the same lower bound on the number of words moved
applies as in Lemma 4.1: Ω(max(#flops/M1/2, I +O))

Case (2) requires a little more discussion to clarify the definitions of Partial Order
(Definition 4.2) and forward progress (Definition 4.3): There will be two partial orders,
one for UL and one for UR. In parts 1 and 2 of Definition 4.3, we insist that no
transformation (from left or right) fills in or re-zeros out an entry deliberately zeroed
out by another transformation (left or right). This implies that there is an ordering
between left and right transformations, but we do not need to use this order for our
counting argument. We also insist that part 3 of Definition 4.3 hold independently
for the left and for the right transformations.

With these minor changes, we see that the lower bound argument of Section 4.2.2
applies independently to UL ·ZL and ZR ·UT

R . In particular, insisting that left (right)
transformations cannot fill in or re-zeros out entries deliberately zeroed out by right
(left) transformations means that number of arithmetic operations performed by the
the left and right transformations can be bounded independently and added. This
leads to the same lower bound on the number of words moved as before (in a Big-Oh
sense).

This lower bound applies to the conventional algorithms in LAPACK [ABB+92]
and ScaLAPACK [BCC+97] for reduction to Hessenberg, tridiagonal and bidiagonal
forms. See Section 6 for a discussion of which lower bounds are attained.

The lower bound also applies to reduction of a pair (A,B) to upper Hessenberg
and upper triangular form: This is done by a QR decomposition of B (to which the
lower bound for QR factorization applies), multiplying QTA (to which we can again
apply the QR lower bound argument (as long as the Householder vectors comprising
Q satisfy the conditions of forward progress with respect to entries of B), and then
reducing A to upper Hessenberg form (to which the argument in this section applies)
while keeping B in upper triangular form. Since this involves filling in entries of B and
zeroing them out again, our argument does not directly apply, but this is a fraction
of the total work, and so would not change the lower bound in a Big-Oh sense.

Our lower bound also applies to the first phase of the successive-band-reduction
algorithm of Bischof, Lang, and Sun, [BLS00a, BLS00b], namely reduction to narrow



24 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

band form, because this satisfies our requirement of forward progress. However, the
second phase of successive band reduction does not satify our requirement of forward
progress, because it involves bulge chasing, i.e., repeatedly creating nonzero entries
outside the band and zeroing them out again. Thus only one “pass” of bulge-chasing
satifies forward-progress, not multiple passes. But since the first phase does asymp-
totically more arithmetic than the second phase, our lower bound based just on the
first phase cannot be much improved (see Section 6 for more discussion of these and
other algorithms).

Now we consider the rest of the eigenvalue or singular value problem. Once a
symmetric matrix has been reduced to tridiagonal form T , it of course requires much
less memory to store, just O(n). Assuming M is at least a few times larger than n,
there are a variety of classical algorithms to compute some or all of T ’s eigenvalues
also using just O(n) fast memory. So in the common case that n is at least a few
times smaller than the fast memory size M , this can be done with as many slow
memory references as there are inputs and outputs, which is a lower bound. A similar
discussion applies to the SVD of a bidiagonal matrix B. Once the eigenvectors of T or
singular vectors of B have been computed, they must be multiplied by the orthogonal
matrices used in the reduction to get the final eigenvectors or singular vectors of A.
Our previous analysis of applying Householder transformations applies here, as long
as the Householder vectors satisfy forward progress with respect to the matrix from
which they were computed. For example, in the two-phase successive band reduction
algorithm, the lower bound does not apply to updating the eigenvector matrix with
Householder vectors computed in the second phase (involving bulge-chasing), but it
does apply to updating the eigenvectors with Householder transformations from the
first phase (which satisfy forward progress).

Finally we consider the more challenging computation of the eigenvalues and
eigenvectors of a Hessenberg matrix H. Our analysis applies to one pass (of bulge
chasing) of standard QR iteration on a dense upper Hessenberg matrix to find its
eigenvalues, but this does O(n2) flops on O(n2) data, and so does not improve the
trivial lower bound of the input size. As discussed above, multiple bulge chasing passes
do not satisfy our forward progress definition. We conjecture that improvements
of Braman, Byers and Mathias [BBM02a, BBM02b] to combine m passes into one
increase the flop count to O(mn2), while maintaining forward progress, letting us get
a lower bound of Ω(mn2/M1/2). This starts to get interesting as soon as m > M1/2.
In practice, for numerical reasons, m is usually chosen to be 256 or lower, which limits
the applicability of this result.

5. Lower bounds for more general computations. We next demonstrate
how our lower bounds can be applied to more general computations where any or all
of the following apply:

1. We might do a sequence of basic operations (matrix multiplication, LU, etc.).
2. The outputs of one operation are the inputs to a later one but do not neces-

sarily need to be saved in slow memory,
3. The inputs may be computed by formulas (like A(i, j) = 1/(i+ j)) requiring

no memory traffic.
4. The ultimate output written to slow memory may just be a scalar, like the

norm or determinant of a matrix.
5. An algorithm might compute but discard some results rather than save them

to memory (e.g., ILU might discard entries of L or U whose magnitudes falls
below a threshold).



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 25

In particular we would like a lower bound where we are allowed to arbitrarily
interleave all the instructions from all basic operations in the computation together,
and so get a lower bound for a global optimization of the entire program. For example,
if two different matrix multiplications share a common input matrix, is it worth trying
to interleave instructions from these two different matrix multiplications?

A natural question is whether it is good enough to just use optimal implemen-
tations of the basic operations, like matrix multiplication, to attain the global lower
bound. This would clearly be the simplest way to implement the program. We know
from experience that this is not always the case. For example, LU itself can be de-
composed in many ways in terms of operations like matrix multiplication. Yet only
recently have optimal LU algorithms been constructed. Previous LU algorithms did
not attain optimal bandwidth-cost and latency-cost, even when each of their compos-
ing operations had optimal bandwidth-cost and latency-cost.

We give some examples, such as computing matrix powers, where it is indeed
good enough to use repeated calls to an optimal matrix multiplication, as opposed to
needing a new algorithm, and another example where the straightforward composition
does not suffice, and a more careful interleaving of the computation is needed in order
to attain the lower bound.

5.1. The Sequential Case.

5.1.1. Classical and Modified Gram-Schmidt. The classical and modified
Gram-Schmidt orthogonalization algorithms discussed in Section 4.1 are often used
just to generate an orthonormal basis of the subspace spanned by the input vectors.
In this case, the triangular matrix R may not be written to slow memory. In order
to apply Theorem 2.2, we impose writes (as described in Section 3.4) of the entries
of R. For n vectors of length m, these O(n2) imposed writes are a lower order term
compared to the communication lower bound Ω(mn2/

√
M).

5.1.2. A sequence of basic linear algebra operations. In the following ex-
ample, we compose a sequence of basic linear algebra operations where intermediate
outputs are used as inputs later, and never written to memory (e.g., computing con-
secutive powers of a matrix, or repeated squaring). Again, even though this seems to
eliminate a large number of reads and writes, we show that in some cases the lower
bound is still Ω

(
#flops√

M

)
, by imposing reads and writes and merging all the opera-

tions into a single set satisfying Equation (2.1). This means that in such cases we
can simply call a sequence of individually optimized linear algebra routines and do
asymptotically as well as we would do with any arbitrary interleaving.

Corollary 5.1 (Consecutive powers of a matrix). Let A be an n-by-n matrix,
and let Alg be a sequential algorithm that computes A2 = A · A, A3 = A2 · A, ... ,
At = At−1 ·A, but only needs to save At in slow memory. Let G be the total number
of multiplications performed (e.g., G = (t−1)n3 if A is dense), where we assume that
each entry of each Ai is computed at most once. Then no matter how the operations
of Alg are interleaved, its bandwidth-cost lower bound is Ω( G√

8M
−M − (t− 2)n2) (if

the Ai are sparse, we can subtract less than (t− 2)n2 and get a better lower bound).
Proof. We give two proofs, each of which may be applied to other examples.

For the first proof, we show how all the operations A2 = A · A , ... , At = At−1 ·
A, may be combined into one set to which Equation (2.1), and so Theorem 2.2,
applies. For Equation (2.1) to apply, we must show that all the inputs, outputs and
multiplications can be indexed by one index set (i, j, k) in the one-to-one manner



26 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

described in section 2; this is most easily seen by writing all the operations as
A2

A3

...
At

 =


A
A2

...
At−1

 ·A
Recall that Equation (2.1) permits inputs and output to overlap, and “a(i, k)” and
“b(k, j)” inputs to overlap, but the “a(i, k)” inputs alone must be indexed one-to-one,
and similarly the “b(k, j)” inputs alone must be indexed one-to-one; this is the case
above.

Next, we impose writes of all the intermediate results A2, ..., At−1, yielding a new
algorithm Alg′. This means that there are no R2/D2 arguments, so Theorem 2.2
applies to Alg′. Thus the bandwidth-cost lower bound of Alg′ is G√

8M
−M , and the

bandwidth-cost lower bound of Alg is lower by the number of imposed writes, at most
(t− 2)n2 (less if the matrices are sparse).

Now we present a second proof, which uses the Loomis-Whitney-based analysis
of a segment more directly. We let #Ai be the number of entries of Ai in fast
memory during a segment of Alg′. From the definition of a segment, we can bound∑t

i=1 #Ai ≤ 4M . Applying Loomis-Whitney to each multiplication Ai+1 = Ai·A that
one might do (some of) during a segment, we can bound the number of multiplications
during a segment by F =

∑t−1
i=1

√
#Ai+1 ·#Ai ·#A1. We can now bound F subject

to the constraint
∑t

i=1 #Ai ≤ 4M , yielding

F =
t−1∑
i=1

√
#Ai+1 ·#Ai ·#A1

=
√

#A1 ·
t−1∑
i=1

√
#Ai+1 ·#Ai

≤
√

#A1 ·

√√√√t−1∑
i=1

#Ai+1 ·

√√√√t−1∑
i=1

#Ai ... by the Cauchy − Schwarz inequality

≤
√

4M ·
√

4M ·
√

4M = 8
√
M3

This yields the ultimate bandwidth-cost lower bound of G/(8
√
M)−M .

Both proof techniques also apply to repeated squaring: Ai+1 = A2
i for i = 1, ..., t−

1, the first proof via the identity
A2

A4

. . .
A2t

 =


A

A2

. . .
A2t−1

 ·

A

A2

. . .
A2t−1


and the second proof by bounding the number of multiplications during a segment by
maximizing F =

∑t−1
i=1

√
#Ai ·#Ai ·#Ai+1 subject to

∑t
i=1 #Ai ≤ 4M (here #Ai

denotes the number of entries of A2i−1
available during a segment).

5.1.3. Interleaved vs. Phased Sequences of Operations. In some cases,
one can combine and interleave basic linear algebra operations, (e.g., a sequence of



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 27

matrix multiplications) so that the resulting algorithm no longer agrees with Equa-
tion (2.1), although the algorithms for performing each of the basic linear algebra
operations separately do agree with Equation (2.1). This may lead to an algorithm
whose minimum communication is not proportional to #flops, but asymptotically
better.

Before giving an example, we first observe that a “phased” algorithm, consisting
of a sequence of calls to individually optimized basic linear algebra operations (like
matrix multiplication), where each such basic linear algebra operation (phase) must
complete before the next can begin, can offer no such asymptotic improvements.
Indeed, if we perform Alg1, ... ,Algt in phases, where Algi has bandwidth-cost lower
bound Bi, then the sequence has bandwidth-cost lower bound B =

∑t
i=1Bi − 2(t −

1)M . If each Bi is proportional to the operation count of Algi, then B is proportional
to the total operation count. (The modest improvement 2(t−1)M arises since we can
possibly avoid a little communication by Algi+1 using the results left in fast memory
by Algi.)

Let us now look at an example, where the interleaved algorithm can do asymptot-
ically less communication than the phased algorithm: Consider computing the dense
matrix multiplications C(k) = A ·B(k) for k = 1, 2, ..., t where B(k)

i,j = k
√
Bi,j .

The idea is that having both Ai,k and Bk,j in fast memory lets us do up to t
evaluations of gijk. Moreover, the union of all these tn3 operations does not match
Equation (2.1), since the inputs Bk,j cannot be indexed in a one-to-one fashion.
However, we can still give a non-trivial lower bound as follows, analyzing the algorithm
segment by segment. Let us begin with the lower bound, then show an algorithm
attaining this lower bound.

No operands in a segment are R2/D2. By the same argument as in Section 2, a
maximum of 4M arguments of A, B and any C(i)’s are available during a segment.
We want to bound the number of gijk’s that we can do during such a segment. Let
#A,#B and #C(i) denote the number of each type of argument available during the
segment. Then by Loomis-Whitney (applied t times) the maximum number of gijk’s
is bounded by F =

∑t
i=1

√
#A ·#B ·#C(i). We want to maximize F subject to the

constraint #A+#B+
∑t

i=1 #C(i) ≤ 4M . Applying Cauchy-Schwarz as before yields

F =
√

#A ·
√

#B ·
t∑

i=1

√
#C(i) ≤

√
#A ·

√
#B ·

√√√√ t∑
i=1

#C(i) ·
√
t

≤
√

4M ·
√

4M ·
√

4M ·
√
t = 8

√
tM3

The number of segments is thus at least
⌊

tn3

8M3/2t1/2

⌋
and the number of memory

operations at least t1/2n3

8M1/2 −M . This is smaller than the “phased” lower bound for t
matrix multiplications in sequence, tn3

8
√

M
− tM , by an asymptotic factor of Θ(

√
t).

We next show that this bound is indeed attainable, using a different blocked
matrix multiplication algorithm whose block sizes b1 and b2 depend on M and t (see
Algorithm 1). The bandwidth-cost count for this algorithm is as follows. In the
innermost loop we read/write t blocks of C(1), ...., C(t), of M/3t words each. So we
have 2M/3 reads/writes for the innermost loop. Before this loop we read two blocks (of
A and B) of M/3 words each. This adds up to O(M) read/writes. This is performed
n3

b21b2
times. So the total bandwidth-cost count is O

(
M ·

(
n3

b21b2

))
= O

(√
tn3
√

M

)
.



28 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

Algorithm 1 Matrix-Matrices multiplication

1: b1 =
√
M/3t, b2 =

√
Mt/3, {so b1b2 = M/3 }

2: Break A into blocks of size b1 × b2.
3: Break B into blocks of size b2 × b1.
4: Break each C(i) into blocks of size b1 × b1.
5: Do block matrix multiplication, where the innermost loop reads in a block of A,

a block of B, and one block each of C(1), ...., C(t), and updates each C(i) :
6: for i = 1 to n/b1 do
7: for j = 1 to n/b1 do
8: for k = 1 to n/b2 do
9: Read block Ai,k and block Bk,j

10: for m = 1 to t do
11: Read block C(m)

i,j

12: C
(m)
i,j + = Ai,k · (B(m)

k,j ) ...{(B(m)
k,j ) is recomputed each time }

13: Write C(m)
i,j

14: end for
15: end for
16: end for
17: end for

5.2. The Parallel Case. The techniques in the above Section 5.1 for compos-
ing sequential linear algebra operations can be extended to the parallel case in two
different ways. When we impose reads and writes to get an algorithm to which our
previous lower bounds apply, we need to decide which processor’s memory will par-
ticipate in those reads and writes. The first option is to create a “twin processor”
for each processor, whose memory will hold this data. This doubles the number of
processors to which the previous lower bound applies, and also requires us to bound
the total memory per processor not by NNZ/P (again assuming memory is balanced
among processors) but by the maximum of NNZ/P and the largest number of reads
and writes imposed on any processor. The second option is to have all the imposed
reads and writes be in the local processor’s memory. This keeps the number of proces-
sors constant, but increases NNZ/P by adding the largest number of imposed reads
and writes on each processor. The details are algorithm-dependent. For example,
similar to the sequential case, we obtain a tight lower bound for repeated matrix
multiplication and for repeated matrix squaring.

5.3. Applications to Graph Algorithms. Matrix multiplication algorithms
are used to solve many graph related problems. Thus our lower bounds may hold, as
long as the matrix multiplication algorithm that is used agrees with Equation (2.1).
The bounds, however, do not apply when using Strassen-like algorithm (e.g., [YZ05]).

In some cases, one can directly match the flops performed by an algorithm to
Equation (2.1), and obtain a communication lower bound (e.g., computing All-Pairs-
Shortest-Path using repeated squaring gives an arithmetic count of Θ

(
n3 log n

)
and

bandwidth-cost of Θ
(

n3 log n√
M

)
).

We next consider, for example, matrix-multiplication-like recursive algorithms
for finding the shortest path between any pair of vertices in a graph (the All-Pairs
Shortest-Path problem). For tight upper and lower bounds for the bandwidth-cost of
Floyd-Warshall and other related algorithms, see [MPP02]. The algorithm works as



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 29

follows [CLRS01]. Let l(m)
ij be the minimum weight of any path from vertex i to vertex

j that contains at most m edges, where the weight of the edge (i, j) is wij = l
(1)
ij . Then

l
(m)
ij = min1≤k≤n

(
l
(m−1)
ik + wkj

)
, and the recursive naive algorithm for the All-Pairs

Shortest-Path problems performs exactly these Θ(n4) computations. If all values l(m)
ij

are written to slow memory, then, by Theorem 2.2, the bandwidth-cost lower bound
is Ω

(
n4
√

M

)
. Although this may not be the case —some of the intermediate values

may never reach the slow memory— there are fewer than n3 intermediate l(m)
ij values.

Thus, by imposing reads and writes, the bandwidth-cost lower bound is Ω
(

n4
√

M

)
(note

that here, similar to the repeated matrix multiplication arguments of Corollary 5.1,
after imposing writes, no two gijk operations use the same two inputs, so Equation
2.1 applies). Similarly, the Θ(n3 log n) recursive algorithm for APSP has O(n2 log n)
intermediate values, therefore, by Theorem 2.2 and imposing reads and writes, the
bandwidth-cost lower bound is Ω

(
n3 log n√

M

)
.

Note that these lower bounds are attainable. As noted before (see e.g., [CLRS01])
any matrix powering algorithm can be converted into a APSP algorithm, by us-
ing ‘+’ instead of ‘∗’ and ‘min’ instead of summation. Starting with any of the
communication-avoiding optimal matrix-multiplication algorithms (e.g., [FLPR99])
guarantees a bandwidth-cost upper bound of O

(
n4
√

M

)
and O

(
n3 log n√

M

)
respectively.

Using recursive-block data structure further guarantees optimal latency-cost for both
algorithms.

The above repeated-matrix-squaring-like algorithm may, in some cases, perform
better than the communication-avoiding implementation of Floyd-Warshall algorithm
[MPP02]. Consider the problem of finding the neighbors within distance t of every
vertex.

One can use the above repeated-matrix-squaring-like algorithm for log t phases,
obtaining a running time of Θ(n3 log t) and communication cost Θ

(
n3 log t√

M

)
for dense

graphs. For sparse input graphs this may be further reduced. For example, when G
is a union of cycles and paths, the running time and communication bandwidth-cost
are O(n22t) and O

(
n22t
√

M

)
(as the degree of a vertex of the ith phase is at most 22i

).

If, however, we use the Floyd-Warshall algorithm for this purpose, we have to
run it all the way through, regardless of the input graph, resulting in running time
of Θ(n3) and communication cost of Θ

(
n3
√

M

)
(assuming the above communication-

avoiding implementation). Thus, for t = o(log n) the repeated-matrix-squaring-like
algorithm performs better for constant-degree inputs, both from flops count and from
communication bandwidth-cost perspectives.

6. Attaining the lower bounds, and open problems. A major problem is
to find algorithms that attain the lower bounds described in this paper, for bandwidth
and latency costs, for the various linear algebra problems, for dense and sparse ma-
trices, and for sequential and parallel machines. And since real computers generally
have many levels of memory hierarchy, and possibly levels of parallelism as well (cores
on a chip, chips in a node, nodes in a rack, racks in a room...) we would ideally like to
minimize communication between all of them simultaneously (i.e., between L1 and L2
cache, between L2 cache and main memory, between memories of different processors,
and so on). It is easy to see that our lower bounds can be applied hierarchically to



30 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

this situation, for example, by treating L1 and L2 cache as “fast memory” and L3
cache and DRAM as “slow memory”, to bound below memory traffic between L3 and
L2 cache.

Tables 6.1 and 6.2 summarize the current state-of-the-art (to the best of our
knowledge) for the communication cost of algorithms for dense matrices. To sum-
marize, in the dense sequential case (Table 6.1), for most important problems, the
lower bounds are attained for 2 levels of memory hierarchy (excluding Gram–Schmidt
and modified Gram–Schmidt algorithms), but fewer are attained so far for multiple
levels, at least without constant factor increases in the amount of arithmetic. In
the dense parallel case (Table 6.2), for most important problems, the lower bounds
are also attained (again, excluding Gram–Schmidt and modified Gram–Schmidt al-
gorithms), assuming minimal memory O(n2/P ) per processor, and modulo polylogP
terms. Again, some of these algorithms do a constant factor times as much arithmetic
as their conventional counterparts.

However, only a few of these communication-optimal algorithms appear in stan-
dard libraries like LAPACK [ABB+92] and ScaLAPACK [BCC+97]; the complexity
of ScaLAPACK implementations in Table 6.2 is taken from [BCC+97, Table 5.8].
(Other libraries may well attain similar bounds [GGHvdG01, vdG].) Several of the
papers cited below report large speedups compared to these standard libraries.

When there is enough memory per processor for c > 1 copies of the data (M =
cn2/p instead of M = n2/p), the lower bound on the number of words decreases by a
factor of c1/2 and the lower bound on the number of messages decreases by a factor
c3/2. So far only a few algorithms are known that achieve these smaller lower bounds,
for dense matrix multiplication and (just for the number of words) LU decomposition
[SD11, MT99, DNS81, ABG+95]. (We note that c cannot be arbitrarily large; the
proof breaks down when the lower bound on the number of messages reaches 1, i.e.,
c reaches p1/3.)

We note that in practice, a collection of words must be stored in contiguous lo-
cations in order to be transferred as a single message at maximum bandwidth; this is
a consequence of common hardware design limitations. On a parallel computer, the
processor can in principle repack locally stored noncontiguous data into a separate
contiguous region before sending it to another processor. But on a sequential com-
puter, the data structure must have the property that desired data (a submatrix, say)
is already stored contiguously. But if a matrix is stored row-wise or column-wise, then
most submatrices (those not consisting of complete rows or columns) will not have
this property. This means that in order to achieve the lower bound on the number of
messages, sequential algorithms must not store matrices row-wise or column-wise, but
block-wise. And in order to to minimize the number of messages when there is more
than one level of memory hierarchy, these blocks must themselves be stored block-
wise, leading to data structures known by various names in the literature, such as
recursive block layout or storage using space-filling curves or Morton-ordered quadtree
matrices [EGJK04]. The algorithms referred to in Table 6.1 as minimizing the number
of messages assume such data-structures are used.

One may imagine that sequential algorithms that minimize communication for
any number of levels of memory hierarchy might be very complex, possibly depending
not just on the number of levels, but their sizes. It is worth distinguishing a class of
algorithms, called cache-oblivious [FLPR99], that can sometimes minimize communi-
cation between all levels (at least asymptotically) independent of the number of levels
and their sizes. These algorithms are recursive, for example multiplying two n-by-



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 31

Algorithm Two Levels of Memory Multiple Levels of Memory
Minimizes and Minimizes and

# words moved #messages # words moved # messages
BLAS3 usual blocked or usual (nested) blocked

recursive algorithms or recursive algorithms
[Gus97, FLPR99] [Gus97, FLPR99]

Cholesky LAPACK [Gus97] [Gus97] [Gus97]
(with b = M1/2) [AP00] [AP00] [AP00]

[Gus97] [BDHS10a] [BDHS10a] [BDHS10a]
[AP00]

[BDHS10a]
LU with LAPACK (rarely) [DGX08] [Tol97] ?
pivoting [Tol97] [DGX10]

[DGX08]
[DGX10]

QR LAPACK (rarely) [FW03] [FW03] [FW03]
[FW03] [DGHL08a] [EG98]
[EG98]

[DGHL08a]
Eig, SVD [BDD11] [BDD11]

Table 6.1
Sequential Θ(n3) algorithms attaining communication lower bounds. We separately list algo-

rithms that attain the lower bounds for 2 levels of memory hierarchy, and multiple levels. In each
of these cases, we separately list algorithms that only minimize the number of words moved, and
algorithms that also minimize the number of messages.

Algorithm Reference Factor exceeding Factor exceeding
lower bound for lower bound for
#words moved #messages

Matrix-multiply [Can69] 1 1
Cholesky ScaLAPACK logP logP
LU with [DGX08, DGX10] logP logP
pivoting ScaLAPACK logP (n/P 1/2) logP
QR [DGHL08a] logP log3 P

ScaLAPACK logP (n/P 1/2) logP
SymEig, SVD [BDD11] logP log3 P

ScaLAPACK logP n/P 1/2

NonymEig [BDD11] logP log3 P
ScaLAPACK P 1/2 logP n logP

Table 6.2
Parallel Θ

“
n3

P

”
flops algorithms with M = Θ

“
n2

P

”
memory per processor: In this case the

common lower bounds for all algorithms listed are #words moved = Ω(n2/P 1/2) and #messages
= Ω(P 1/2) (both refer the number of words and messages sent by at least one processor to some
other processors). The table shows the factors by which the listed algorithms exceed the respective
lower bound, i.e., the ratio upper bound / lower bound (so 1 is optimal). ScaLAPACK refers to
[BCC+97]. All entries are to be interpreted in a Big-O sense.

n matrices by recursively multiplying n
2 -by-n

2 submatrices and adding these partial
products. Provided a recursive block layout described above is used, these algorithms



32 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

may also minimize the number of messages independent of the number of levels of
memory hierarchy. All the algorithms cited in Table 6.1 that work for arbitrary levels
of memory hierarchy are cache-oblivious. (In practice one does not recur down to 1-
by-1 submatrices because of the high overhead. Also, some cache-oblivious algorithms
require a constant factor more arithmetic operations than non-oblivious alternatives
[FW03]. So “pure” cache-obliviousness is not a panacea.)

We now discuss these tables in more detail. There is a very large body of work on
many of these algorithms, and we do not pretend to have a complete list of citations.
Instead we refer just to papers where these algorithms first appeared (to the best of our
knowledge), with or without analysis of their communication costs (often without),
or to survey papers.

Best understood are dense matrix-multiplication, other BLAS routines, and
Cholesky, which have algorithms that attain (perhaps modulo polylogP factors) both
bandwidth and latency lower bounds on parallel machines, and on sequential ma-
chines with multiple levels of memory hierarchy. The optimal sequential Cholesky
algorithm cited in Table 6.1 was presented in [Gus97, AP00], but first analyzed later
in [BDHS10a]. The algorithm in [AP00, BDHS10a] is cache-oblivious, but whether
or not the recursive algorithm in [Gus97] minimizes communication for many levels
of memory hierarchy depends on the implementation of the underlying BLAS library
that it uses. The complexity of ScaLAPACK’s parallel Cholesky cited in Table 6.2
assumes that the largest possible block size is chosen (NB ≈ n/

√
P in line “PxPOSV”

in [BCC+97, Table 5.8]).
More recently, optimal dense LU and QR algorithms have been proposed that

attain both bandwidth and latency lower bounds in parallel or sequentially (with
just 2 levels of memory hierarchy). LAPACK is labeled “rarely” because only for
some matrix dimensions n and fast memory sizes M is it possible to choose a block
size b to attain the lower bound. Interestingly, conventional partial pivoting must
apparently be replaced by a different (but still stable) pivoting scheme in order to
minimize latency costs in LU [DGX08, DGX10]; we can retain partial pivoting if we
only want to minimize bandwidth [Tol97]. Similarly, we must apparently change the
standard representation of the Q matrix in QR in order to minimize both latency
and bandwidth costs [DGHL08a]; we can retain the usual representation if we only
want to minimize bandwidth costs in the sequential case [EG98]. Both [EG98] and
[FW03] are cache oblivious, but only [FW03] also minimizes latency costs; however
it triples the arithmetic operation count to do so. See the above references for large
speedups reported over algorithms that do not try to minimize communication. The
ideas behind communication-optimal dense QR first appear in [GPS88], and include
[BLKD07, GG05, EG98]; see [DGHL08a] for a more complete list of references.

ScaLAPACK’s parallel symmetric eigensolver and SVD routine also minimize
bandwidth cost (modulo a logP factor), but not the latency cost, sending O(n/P 1/2)
times as many messages. ScaLAPACK’s nonsymmetric eigensolver communicates
much more, indeed just the Hessenberg QR iteration has n-times higher latency cost.
LAPACK’s symmetric and nonsymmetric eigensolvers and SVD minimize neither
bandwidth nor latency costs, moving O(n3) words. Recently proposed randomized
algorithms in [BDD11, DDH07] for the symmetric and nonsymmetric eigenproblems,
generalized nonsymmetric eigenproblems and SVD do attain the desired communica-
tion cost (modulo polylogP factors) but at the cost of doing a possibly large constant
factor more arithmetic. (This is in contrast to the new dense LU and QR algorithms,
which do at most O(n2) more arithmetic operations than the O(n3) operations done



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 33

by their conventional counterparts.) In [BDD11] it is also pointed out that appropriate
variants of the “successive band reduction” approach in [BLS00a, BLS00b] can also
minimize communication, at least in the sequential case for the symmetric eigenprob-
lem and SVD, for a much smaller increase in the arithmetic operation count (nearly
no increase, if eigenvalues/singular values alone are desired).

The eigenvalue algorithms mentioned above use randomization to implement a
URV decomposition that reveals the rank with high probability; here U and V are
orthogonal and R is upper triangular, with the large singular values “in the upper
left corner” of R, and the small singular values “in the lower right corner.” In fact we
can perform an implicit randomized rank-revealing URV factorization on an arbitrary
product

∏
iA
±1
i without the need to multiply or invert any of the factors Ai, and so

retain numerical stability.
Devising algorithms that attain the communication lower bounds while perform-

ing QR with column pivoting, LU with complete pivoting, or LDLT factorization
with any pivoting remain work in progress. It also remains an open problem to design
parallel algorithms (besides matrix multiplication and LU decomposition) that can
take advantage of extra memory (a multiple of the minimal n2/p per processor) to
further reduce communication. Finally, finding optimal algorithms for heterogenous
computers (eg CPUs and GPUs), where each processor has a different fast memory
size, bandwidth, latency and floating point speed, remains open.

It is possible to extend our lower bound results to many Strassen-like algorithms
[BDHS10b] for matrix multiplication, which are attained by the natural recursive
sequential implementations, and are attainable in parallel as well. But the lower bound
proof is significantly different than the one used in this paper. By using recursive
algorithms in [DDH07], it is possible to compute LU, QR and other factorizations
while doing asymptotially as little arithmetic and commucation (at least sequentially)
as Strassen-like matrix multiplication. But it remain an open problem to extend the
lower bounds to any implementation of “Strassen-like LU”, “Strassen-like QR”, etc.

For the Cholesky factorization of sparse matrices, whose sparsity structure sat-
isfy certain graph-theoretic conditions (having “good separators”), the lower bounds
can also be attained [DDGP10]. For sparse matrix algorithms more generally, the
problems are open.

We note that for sufficiently rectangular dense matrices (e.g., matrix-vector mul-
tiplication) or for sufficiently sparse matrices (e.g., multiplying diagonal matrices),
our lower bound may be lower than the trivial lower bound (#inputs + #outputs)
and so not be attainable. In this case the natural question is whether the maximum
of the two lower bounds is attainable (as it is for dense matrix multiplication).

Acknowledgments.
The authors thank Cleve Ashcraft, Robert Luce, Nicholas Knight, Edgar Solomonik,

and Sivan Toledo for a number of helpful comments, questions and discussions, as well
as the anonymous reviewers for their valuable comments.



34 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

REFERENCES

[ABB+92] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LA-
PACK’s user’s guide. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 1992. Also available from http://www.netlib.org/lapack/.

[ABG+95] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-
dimensional approach to parallel matrix multiplication. IBM J. Res. Dev.,
39:575–582, September 1995.

[AGW01] B. S. Andersen, F. Gustavson, and J. Wasniewski. A recursive formulation of
Cholesky factorization of a matrix in packed storage format. ACM Transactions
on Mathematical Software, 27(2):214–244, jun 2001.

[AP00] N. Ahmed and K. Pingali. Automatic generation of block-recursive codes. In Euro-
Par ’00: Proceedings from the 6th International Euro-Par Conference on Par-
allel Processing, pages 368–378, London, UK, 2000. Springer-Verlag.

[Ash91] C. Ashcraft. A taxonomy of distributed dense LU factorization methods. Boeing
Computer Services Technical Report ECA-TR-161, March 1991.

[Ash93] C. Ashcraft. The fan-both family of column-based distributed Cholesky factorization
algorithms. In John R. Gilbert Alan George and Joseph W. H. Liu, editors,
Graph Theory and Sparse Matrix Computation, volume 56 of IMA Volumes in
Mathematics and its Applications, Springer-Verlag, pages 159–190, 1993.

[AV88] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31(9):1116–1127, 1988.

[BBF+07] M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and E. Vicari. Optimal
sparse matrix dense vector multiplication in the I/O-model. In SPAA ’07:
Proceedings of the nineteenth annual ACM symposium on parallel algorithms
and architectures, pages 61–70, New York, NY, USA, 2007. ACM.

[BBM02a] K. Braman, R. Byers, and R. Mathias. The Multi-Shift QR Algorithm, Part I:
Maintaining Well Focused Shifts and Level 3 Performance. SIAM J. Matrix
Anal. App., 23(4):929–947, 2002.

[BBM02b] K. Braman, R. Byers, and R. Mathias. The Multi-Shift QR Algorithm, Part II:
Aggressive Early Deflation. SIAM J. Matrix Anal. App., 23(4):948–973, 2002.

[BCC+97] L. S. Blackford, J. Choi, A. Cleary, E. DAzevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, USA, May 1997.
Also available from http://www.netlib.org/scalapack/.

[BDD+01] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Her-
oux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, R. C.
Whaley, Z. Maany, F. Krough, G. Corliss, C. Hu, B. Keafott, W. Walster, and
J. Wolff v. Gudenberg. Basic Linear Algebra Subprograms Techical (BLAST)
Forum Standard. Intern. J. High Performance Comput., 15(3-4), 2001.

[BDD+02] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Her-
oux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C.
Whaley. An updated set of Basic Linear Algebra Subroutines (BLAS). ACM
Trans. Math. Soft., 28(2), June 2002.

[BDD11] G. Ballard, J. Demmel, and I. Dumitriu. Communication-optimal parallel and
sequential eigenvalue and singular value algorithms. EECS Technical Report
EECS-2011-14, UC Berkeley, February 2011.

[BDHS10a] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Communication-optimal parallel
and sequential Cholesky decomposition. SIAM J. Sci. Comput., 32:3495–3523,
2010.

[BDHS10b] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph Expansion and Commu-
nication Costs of Algorithms, 2010. Submitted.

[BK77] J. Bunch and L. Kaufman. Some stable methods for calculating inertia and solv-
ing symmetric linear systems. Mathematics of Computation, 31(137):163–179,
January 1977.

[BLKD07] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. A class of parallel tiled linear
algebra algorithms for multicore architectures. Technical Report 191, LAPACK
Working Note, September 2007.

[BLS00a] C. H. Bischof, B. Lang, and X. Sun. Algorithm 807: The SBR Toolbox—software
for successive band reduction. ACM Transactions on Mathematical Software,
26(4):602–616, December 2000.



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 35

[BLS00b] C. H. Bischof, B. Lang, and X. Sun. A framework for symmetric band reduction.
ACM Transactions on Mathematical Software, 26(4):581–601, December 2000.

[BVL87] C. Bischof and C. Van Loan. The WY representation for products of Householder
matrices. SIAM J. Sci. Stat. Comp., 8(1), 1987.

[BZ88] Y. D. Burago and V. A. Zalgaller. Geometric Inequalities, volume 285 of
Grundlehren der Mathematische Wissenschaften. Springer, Berlin, 1988.

[Can69] L. Cannon. A cellular computer to implement the Kalman filter algorithm. PhD
thesis, Montana State University, Bozeman, MN, 1969.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

[CR06] R. A. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming.
In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium
on discrete algorithms, pages 591–600, New York, NY, USA, 2006. ACM.

[DDGP10] P.-Y. David, J. Demmel, L. Grigori, and S. Peyronnet. Brief announcement: Lower
bounds on communication for sparse Cholesky factorization of a model prob-
lem. In 22nd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2010.

[DDH07] J. Demmel, I. Dumitriu, and O. Holtz. Fast linear algebra is stable. Numerische
Mathematik, 108(1):59–91, 2007.

[Dem96] J. Demmel. CS 267 Course Notes: Applications of Parallel Pro-
cessing. Computer Science Division, University of California, 1996.
http://www.cs.berkeley.edu/∼demmel/cs267.

[Dem97] J. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
[DGHL08a] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-optimal par-

allel and sequential QR and LU factorizations. UC Berkeley Technical Report
EECS-2008-89, Aug 1, 2008; Submitted to SIAM. J. Sci. Comp., 2008.

[DGHL08b] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Implementing communication-
optimal parallel and sequential QR and LU factorizations. Submitted to SIAM.
J. Sci. Comp., 2008.

[DGX08] J. Demmel, L. Grigori, and H. Xiang. Communication-avoiding Gaussian elimina-
tion. Supercomputing 08, 2008.

[DGX10] J. Demmel, L. Grigori, and H. Xiang. CALU: A communication optimal LU factor-
ization algorithm. EECS Technical Report EECS-2010-29, UC Berkeley, March
2010. Submitted to SIAM J. Matrix Anal. Appl.

[DNS81] Eliezer Dekel, David Nassimi, and Sartaj Sahni. Parallel matrix and graph algo-
rithms. SIAM Journal on Computing, 10(4):657–675, 1981.

[EG98] E. Elmroth and F. Gustavson. New serial and parallel recursive QR factorization
algorithms for SMP systems. In B. K̊agström et al., editor, Applied Parallel
Computing. Large Scale Scientific and Industrial Problems., volume 1541 of
Lecture Notes in Computer Science, pages 120–128. Springer, 1998.

[EGJK04] E. Elmroth, F. Gustavson, I. Jonsson, and B. K̊agström. Recursive blocked algo-
rithms and hybrid data structures for dense matrix library software. SIAM
Review, 46(1):3–45, March 2004.

[FLPR99] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious al-
gorithms. In FOCS ’99: Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science, page 285, Washington, DC, USA, 1999. IEEE
Computer Society.

[FW03] J. D. Frens and D. S. Wise. QR factorization with Morton-ordered quadtree matrices
for memory re-use and parallelism. SIGPLAN Not., 38(10):144–154, 2003.

[Geo73] A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer.
Anal., 10:345–363, 1973.

[GG05] B. C. Gunter and R. A. Van De Geijn. Parallel out-of-core computation and updat-
ing of the QR factorization. ACM Trans. Math. Softw., 31(1):60–78, 2005.

[GGHvdG01] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME:
Formal Linear Algebra Methods Environment. ACM Transactions on Mathe-
matical Software, 27(4):422–455, December 2001.

[GPS88] G. H. Golub, R. J. Plemmons, and A. Sameh. Parallel block schemes for large-scale
least-squares computations. In High-speed computing: scientific applications
and algorithm design, pages 171–179, Champaign, IL, USA, 1988. University of
Illinois Press.

[GT87] J. R. Gilbert and R. E. Tarjan. The analysis of a nested dissection algorithm.
Numerische Mathematik, pages 377–404, 1987.



36 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

[Gus97] F. G. Gustavson. Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBM J. Res. Dev., 41(6):737–756, 1997.

[GVL96] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, 3rd edition, 1996.

[HK81] J. W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In
STOC ’81: Proceedings of the thirteenth annual ACM symposium on theory of
computing, pages 326–333, New York, NY, USA, 1981. ACM.

[HMR73] A. J. Hoffman, M. S. Martin, and D. J. Rose. Complexity bounds for regular finite
difference and finite element grids. SIAM J. Numer. Anal., 10:364–369, 1973.

[IT02] D. Irony and S. Toledo. Trading replication for communication in parallel
distributed-memory dense solvers. Parallel Processing Letters, 12(1):79–94,
2002.

[ITT04] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. J. Parallel Distrib. Comput., 64(9):1017–1026,
2004.

[LW49] L. H. Loomis and H. Whitney. An inequality related to the isoperimetric inequality.
Bulletin of the AMS, 55:961–962, 1949.

[MPP02] J. P. Michael, M. Penner, and V. K. Prasanna. Optimizing graph algorithms for im-
proved cache performance. In In Proc. Intl Parallel and Distributed Processing
Symp. (IPDPS 2002), Fort Lauderdale, FL, pages 769–782, 2002.

[MT99] W. F. McColl and A. Tiskin. Memory-efficient matrix multiplication in the BSP
model. Algorithmica, 24:287–297, 1999.

[Pug92] C. Puglisi. Modification of the Householder method based on compact WY repre-
sentation. SIAM J. Sci. Stat. Comput., 13(3):723–726, 1992.

[Saa86] Y. Saad. Communication complexity of the Gaussian elimination algorithm on
multiprocessors. Linear Algebra Appl., 77:315–340, 1986.

[Saa96] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Co., Boston,
1996.

[Sav95] J. E. Savage. Extending the Hong-Kung model to memory hierarchies. In COCOON,
pages 270–281, 1995.

[SD11] E. Solomonik and J. Demmel. Communication-optimal parallel 2.5D matrix mul-
tiplication and LU factorization algorithms. EECS Technical Report EECS-
2011-10, UC Berkeley, February 2011.

[SVL89] R. Schreiber and C. Van Loan. A storage efficient WY representation for products
of Householder transformations. SIAM J. Sci. Stat. Comput., 10:53–57, 1989.

[Tol97] S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM
J. Matrix Anal. Appl., 18(4):1065–1081, 1997.

[vdG] R. van de Geijn. PLAPACK: Parallel Linear Algebra Package.
www.cs.utexas.edu/users/plapack.

[VDY05] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically tuned sparse
matrix kernels. In Proc. of SciDAC 2005, J. of Physics: Conference Series.
Institute of Physics Publishing, June 2005.

[YZ05] R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Trans. Algorithms,
1(1):2–13, 2005.

Appendix A. Motivation for 1× 1 T matrices.
In the proof of Theorem 4.10, we make an assumption that all T matrices in-

volved in blocked Householder updates of the form A = (I−UTUT )A are 1×1. This
assumption seems like a significant restriction, since blocked Householder transfor-
mations are widely used in practice. We do not believe this assumption is necessary
for the communication lower bound to be valid, but the reason for the assumption
is that we discovered an artificial example, where by using an O(n4) algorithm with
O(n4) additional storage (to form and use a T matrix of dimension O(n2)) on a cer-
tain matrix, we could arrange to have one segment in which O(M2) multiplications
were performed, thereby creating an obstacle to our proof technique, which depends
on bounding the number of multiplications per segment by O(M3/2). This (imprac-
tical!) variant of QR is not a counterexample to our theorem overall, just our proof
technique. We present the example here.

Consider an n× 2n matrix A = [A1, A2] where A1 is square and dense and A2 is



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 37

square and nonzero only in its last row. Then A has the following sparsity structure:

0 5 10 15 20

0

2

4

6

8

10

nz = 110

A

Suppose we perform QR on A using Givens rotations, where we work column by
column, rotating the bottom row into the one above it, that row into the one above
it, and so on to the diagonal entry. There will be n(n−1)

2 Givens rotations, and if we
index them as described in Section 4, then the U matrix will have n(n−1)

2 columns
with the following sparsity structure:

0 5 10 15 20 25 30 35 40 45

0

5

10

nz = 90

U

Suppose the computation is organized so that the triangularization of A1 is com-
pleted before any updates are done to A2. By letting T be as large as possible and
following equation (4.2) the update of A2 can be written as

A2 = A2 −
∑

k

U(:, k) · Z(k, :)

where Z = TUTA2. Here, T is n(n−1)
2 × n(n−1)

2 and at least 25% nonzero, and the
sparsity structure of Z and its factors are given below.

0 20 40

0

10

20

30

40

nz = 825

T

0 5 10

0

10

20

30

40

nz = 90

UT

0 5 10

0

5

10

nz = 10

A2

0 5 10

0

10

20

30

40

nz = 450

Z

* * =

Thus, the computation A2 = A2 − UZ has the following structure:



38 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

0 5 10

0

5

10

nz = 10

A2

0 20 40

0
5

10

nz = 90

U

0 5 10

0

10

20

30

40

nz = 450

Z

*- 

The full computation will completely fill in A2, but suppose in one segment we
only update the last two rows of A2 by choosing the subset S of the columns of U and
corresponding rows of Z which effect only the last two rows. Note that |S| = n − 1.
In this case, the subcomputation is of the form

A2(n− 1 : n, j) = A2(n− 1 : n, j)−
∑
k∈S

U(n− 1 : n, k) · Z(k, j)

which has the following sparsity structure:

0 5 10

0

5

10

nz = 10

A2

0 5 10

0

5

10

nz = 18

U(:,S)

0 5 10

0

5

10

nz = 90

Z(S,:)

*- 

Further, all the entries of Z can be R2/D2. Each Z(k, j) is the dot product of a
row of (TUT ) with a column of A2. Due to the sparsity structure of A2, this is just
one scalar multiplication. If we pre-compute (TUT ) and store it in slow memory, then
in one segment we could do the following:

1: read A2(n, :), (TUT )(S, n), and U(n− 1 : n, S) from slow memory
2: for j = 1 to n do
3: for k ∈ S do
4: Z(k, j) = (TUT )(k, n) ·A2(n, j)
5: A2(n− 1 : n, j) = A2(n− 1 : n, j)− U(n− 1 : n, k) · Z(k, j)
6: discard Z(k, j)
7: end for
8: end for

In this way, if n = M/5, then the last two rows of A2, the entries of the last
column of (TUT ) in rows k ∈ S, and the last two rows of U in columns k ∈ S can all
fit into fast memory simultaneously, and the O(M2) corresponding Z entries can be
computed, used to update A2, and discarded as shown above.

Thus, modeling the computation with the form A = A − U · Z and allowing
unbounded T matrices, this example shows that it is possible to execute O(M2) flops
within a single segment (allowing only O(M) memory operations). This motivates
our restriction that the T matrices are all 1 × 1. However, we do not believe this is
a counterexample to the lower bound result because it involves the computation and
storage of O(n4) entries of T .



MINIMIZING COMMUNICATION IN LINEAR ALGEBRA 39

Appendix B. Motivating Forward Progress.
We argue in this appendix that the second condition of FP (Definition 4.3) is a

reasonable assumption. Under some mild assumptions, if an algorithm violates this
condition, it will “get stuck” (i.e., be unable to complete the QR algorithm without
violating the first condition of FP).

Let

X =
b⋃

i=1

zero rows U(ki) ∪ {rows of column c that are TAZ}

as in (4.3), and define

Y =
b⋃

i=1

rows U(ki) ∪ { rows of column c that are TAZ}.

Note that X is a strict subset of Y , and that Y must include a row with a nonzero
entry of column c of A, by the second condition of FP, after applying Householder
transformations k1, ..., kb.

Suppose that the second condition is violated. There are two ways this could
happen:

1. rows U(k̂) are disjoint from Y .
2. rows U(k̂) and Y intersect.

First suppose that (1) holds. Then since U(:, k̂) effects a disjoint set of rows as
U(:, k1), ..., U(:, kb), the only reason k̂ could be later in the PO than k1, ..., kb (as
opposed to being unordered as with respect to these Householder transformations) is
that k̂ depends on some other k′ such that k1, ...kb < k′ < k̂, in which case we replace
k̂ by k′. We may continue this process until we find a k̂ satisfying (2). So now assume
k̂ satisfies (2). Since the second condition does not hold, rows U(k̂) intersects Y −X,
i.e., both contain a row of column c of A that was not zeroed out by Householder
transformations k1, ..., kb (or TAZ).

So rows U(k̂) must lie in rows in column c not zeroed out by k1, .., kb, including at
least one that “accumulated” nonzeros from other entries in column c. This implies
that three rows of columns c and ĉ must look as follows after transformation k̂:

Atmp =

x x
x 0
0 x

 where x denotes a TAN entry and either

1. The first row is in Y −X,
Atmp(1, 1) is the entry of column c into which nonzeros were accumulated,
Atmp(2, 1) is not touched by Householder transformations k1, ..., kb,
Atmp(3, 1) is zeroed out by Householder transformations k1, ..., kb,
Atmp(1, 2) is the entry of column ĉ into which Atmp(2, 2) was accumulated

2. The second row is in Y −X,
Atmp(2, 1) is the entry of column c into which nonzeros were accumulated,
Atmp(1, 1) is not touched by Householder transformations k1, ..., kb,
Atmp(3, 1) is zeroed out by Householder transformations k1, ..., kb,
Atmp(1, 2) is the entry of column ĉ into which Atmp(2, 2) was accumulated,
In both cases entries Atmp(3, 1) and Atmp(2, 2) have been deliberately zeroed
out.



40 BALLARD, DEMMEL, HOLTZ, AND SCHWARTZ

Note that in order to conclude that each x is nonzero, we are assuming that having a
row dest U(k) be TAZ is forbidden. An algorithm may permute rows for free (i.e., we
do not enumerate those in the set of Householder vectors). Instead of accumulating
into a TAZ entry, the algorithm must accumulate into a TAN entry and then permute
(this does less arithmetic and causes less fill, so is preferable anyway).

Now we are “stuck”, i.e., it is impossible to reduce this submatrix to upper trian-
gular form without violating the first two conditions of FP. To see why, consider the
entire rows corresponding to the pattern given by Atmp. Note that given any subset
of rows of an upper triangular nonsingular matrix, the leftmost nonzero must be the
only nonzero in that column. Find the leftmost nonzero within the rows associated
with Atmp. If the leftmost nonzero is in column c, then it is impossible to zero out
either Atmp(1, 1) or Atmp(1, 2) without filling in Atmp(3, 1) or Atmp(2, 2). If the left-
most nonzero is not in column c, then no matter in which row it lies, the Householder
transformations k1, . . . , kb and k̂ will have filled in at least one other nonzero in the
column. Again, any further transformation to reduce that column to one nonzero
will involve either row 2 or row 3 and cause fill-in on a deliberately-zeroed-out entry,
violating the first condition of FP.

For this to hold, we assume either that later Householder transformations are
either restricted to this subset of rows, or that other rows used are nonzero in both
columns c and ĉ. It is possible, using another row with special sparsity, to create the
pattern above and then obtain triangular form without filling in any zeroes which
were previously deliberately created. Consider the following example, where we have
a 4× 2 matrix with the following sparsity structure:

x x
x x
x x
x z


where xmeans nonzero (TAN) and z means zero (TAZ). Suppose we create the pattern
of Atmp above with two Givens rotations to obtain

x x
0 x
x 0
x z


where 0 denotes a TAZ entry that was deliberately created. Then we can rotate (3,1)
into (4,1), which causes no fill since (3,2) and (4,2) are both TAZ:

x x
0 x
0 0
x z


Then we rotate (4,1) into (1,1). This fills in (4,2), but since it was originally zero,
we haven’t violated forward progress. Then we remove the fill by rotating (4,2) into
(2,2) and we obtain triangular form.

This completes the motivation for insisting on the second condition of FP.


