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Abstract

Sparsity Pattern Recovery in Compressed Sensing

by

Galen Reeves

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael Gastpar, Chair

The problem of recovering sparse signals from a limited number of measurements is
now ubiquitous in signal processing, statistics, and machine learning. A natural question
of fundamental interest is that of what can and cannot be recovered in the presence of
noise. This thesis provides a sharp characterization for the task of sparsity pattern recovery
(also known as support recovery). Using tools from information theory, we find a sharp
separation into two problem regimes – one in which the problem is fundamentally noise-
limited, and a more interesting one in which the problem is limited by the behavior of the
sparse components themselves. This analysis allows us to identify settings where existing
computationally efficient algorithms, such as the LASSO or approximate message passing,
are optimal as well as other settings where these algorithms are highly suboptimal. We
compare our results to predictions of phase transitions made via the powerful but heuristic
replica method, and find that our rigorous bounds confirm some of these predictions.

The remainder of the thesis explores extensions of our bounds to various scenarios. We
consider specially structured sampling matrices and show how such additional structure
can make a key difference, analogous to the role of diversity in wireless communications.
Finally, we illustrate how the new bounding techniques introduced in this thesis can be used
to establish information-theoretic secrecy results for certain communication channel models
that involve eavesdroppers.
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Chapter 1

Introduction

Suppose that a vector x of length n is known to have a small number k of nonzero entries,
but the values and locations of the nonzero entries are unknown and must be estimated from
a set of m noisy linear projections (or samples) given by the vector

y = Ax + w (1.1)

where A is a known m × n measurement matrix and w is additive white Gaussian noise.
The problem of sparsity pattern recovery is to determine which entries in x are nonzero.
This problem, which is known variously throughout the literature as support recovery or
model selection, has applications in compressed sensing [8,11,20], sparse approximation [16],
signal denoising [12], subset selection in regression [47], and structure estimation in graphical
models [46].

A great deal of previous work [1,2,30,46,58,60,77–79,85], has focused on necessary and
sufficient conditions for exact recovery of the sparsity pattern. By contrast, the primary
focus of this thesis is on the tradeoff between the number of samples m and the number of
detection errors. We consider the high-dimensional setting where the sparsity rate (i.e. the
fraction of nonzero entries) and the per-sample signal-to-noise ratio (SNR) are finite con-
stants, independent of the vector length n.

This thesis is outlined as follows:

• Chapter 1: In the remainder of this chapter, we overview the main contributions
of this thesis, summarize previous work, and develop a framework for analyzing the
problem of sparsity pattern recovery in terms of the sampling rate-distortion region.

• Chapter 2: We derive bounds on the sampling rate ρ = m/n needed to attain a
desired detection error rate D for several different recovery algorithms. These bounds
are given explicitly in terms of the sparsity rate, the SNR, and various key properties
of the unknown vector.
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• Chapter 3: We derive information-theoretic necessary conditions on the sampling rate
ρ = m/n needed to attain a desired detection error rate D for the optimal recovery
algorithm. These bounds are complementary to the bounds in Chapter 2.

• Chapter 4: We show how the bounds derived in Chapters 2 and 3 depend on the
desired distortion D, the SNR, and various properties of the unknown vector. We then
characterize problem regimes in which the behavior of the algorithms is near-optimal
and other regimes in which the behavior is highly suboptimal. An illustration of the
bounds is given in Fig. 1.1 below.

• Chapter 5: We extend the results and analysis developed in Chapters 2-4 to settings
where one observes samples from multiple realizations of the nonzero values for the
same sparsity pattern. We refer to this as “diversity” and show that the optimal
amount of diversity significantly improves the behavior of the estimation problem for
both optimal and computationally efficient algorithms.

• Chapter 6: We apply the insights developed in the previous chapters to analyze
a vector wire-tap channel with multiplicative noise. This wire-tap channel has the
surprising property that the secrecy capacity is nearly equal to the channel capacity,
even if the eavesdropper observes as much as the intended receiver.
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Figure 1.1: Bounds on the achievable sampling rate ρ = m/n as a function of the SNR
for various recovery algorithms when the desired sparsity pattern detection error rate is
D = 0.05 (95% accuracy), the sparsity rate (i.e. fraction of nonzero entries in x) is 10−4, and
the measurement matrices have i.i.d. Gaussian entries. In the left panel, the nonzero entries
are i.i.d. zero-mean Gaussian. In the right panel, the nonzero entries are lower bounded in
squared magnitude by 20% of their average power but are otherwise arbitrary.
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1.1 Overview of Contributions

The main focus of this thesis is the high-dimensional setting where the measurement matrix
A is generated randomly and independently of the vector x and the measurements are
corrupted by additive white Gaussian noise. The main contributions of this thesis can be
summarized as follows:

• Fundamental Limits: In Chapters 2 and 3 we derive upper and lower bounds on
the sampling rate needed using optimal recovery algorithms. While previous work
has focused on exact recovery [30,46,77–79,85] or the scaling behavior for approximate
recovery [2], our work gives an explicit bound on the tradeoff between the sampling rate
and the fraction of detection errors. These bounds provides a sharp characterization
between what can and cannot be recovered.

• Computationally Efficient Algorithms: In addition to our analysis of the fun-
damental limits, we also derive matching upper and lower bounds on the sampling
rate corresponding to several computationally efficient algorithms. These include the
matched filter (MF) and the linear minimum mean-squared error (LMMSE) estimator,
and a class of iterative recovery algorithms known collectively as approximate message
passing (AMP) [7,21,22,48]. One special case of AMP corresponds to an approximation
of the minimum MSE estimator and another special case corresponds to "1 penalized
least squares regression (known also as Basis Pursuit or the LASSO). By comparison
with our fundamental bounds, we show that these estimators are near-optimal in some
parameter regimes, but highly suboptimal in others.

• Statistical Physics Heuristics: In Chapter 2, we derive a bound corresponding the
minimum MSE estimator (MMSE) using the powerful but heuristic replica method
from statistical physics [35, 36, 40, 50, 55, 67]. The close correspondence between our
rigorous bounds and the behavior predicted using the replica method provides im-
portant evidence in support of the (currently unproven) assumptions underlying the
validly of the replica analysis.

• Phase Transitions: In Chapter 4, we show that the low-distortion behavior depends
primarily on the relative size of the smallest nonzero entries whereas the high SNR
behavior depends primarily on the computational power of the recovery algorithm
and the complexity of the underlying signal class, and we precisely characterize this
dependence.

• Universality: It is shown that a fixed recovery algorithm can be universally near
optimal over a large class of practically motivated signal models.
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1.2 Previous Work

A great deal of previous work has focused on the approximation of sparse vectors with
respect to mean squared error (MSE) [8–12,17, 20, 23, 32, 38,44, 45,68, 69]. Two particularly
relevant results from this literature are [9] and [23] which show that the vector x can be
approximated with MSE inversely proportional to the SNR using m = O(k log(n/k)) samples
and a quadratic program known as Basis Pursuit [12]. With a few additional assumptions
on the magnitude of the smallest nonzero entries in x, these bounds on the MSE can be
translated into bounds on the detection error rate. However, the resulting bounds correspond
to adversarial noise and are thus loose in general.

Another line of previous work has focused directly on the problem of exact sparsity
pattern recovery [30, 46, 77–79, 85]. It is now well understood that m = Θ(k log n) samples
are both necessary and sufficient for exact recovery when the SNR is finite and there exists a
fixed lower bound on the magnitude of the smallest nonzero elements [30,77,79]. In contrast
to the scaling required for bounded MSE, this scaling says that the ratio m/k must grow
without bound as the vector length n becomes large. As a consequence, exact recovery is
impossible in the setting considered in this thesis, when the sparsity rate, sampling rate, and
SNR are finite constants, independent of the vector length n.

The fundamental limits of sparsity pattern recovery with a nonzero detection error rate
have also been investigated. For the special case where the values of the nonzero entries
are identical and known (throughout the system), Aeron et al. [1, Theorem V-2] showed
that m = C · k log(n/k) samples are necessary and sufficient for an ML decoder where the
constant C is bounded explicitly in terms of the SNR and the desired detection error rate. In
the general setting where the nonzero values are unknown, Akcakaya and Tarokh [2] showed
that m = C · k log(n/k) samples are necessary and sufficient for a joint typicality recovery
algorithm where the constant C is finite, but otherwise unspecified. (It can also be shown
that this same result is implied directly by the previous work of Candès et al. [9].) An
important difference between these previous results and the results in this thesis is that we
give an explicit and relatively tight characterization of the constant C for a broad class of
signal models.

Our analysis of linear estimation is related to work by Verdú and Shamai [76] and Tse
and Hanly [72] on linear multiuser detectors. Our analysis of AMP relies heavily on recent
results by Donoho et al. [21,22] and Bayati and Montanari [7] which characterize the limiting
distribution of the AMP estimate under the assumption of i.i.d. Gaussian matrices. For an
overview of related work and a generalization of the algorithm, see [57]. We note that similar
results for message passing algorithms have also been shown under the assumption of sparse
measurement matrices with locally tree-like properties [5, 35, 56].

The bounds in this thesis are compared to predictions made by the replica method from
statistical physics. This is a powerful but nonrigorous heuristic that has been used previously
in the context of multi-user detection [36,40,50,67], and more recently in compressed sensing
[35, 55].
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In conjunction with the results outlined above, another line of research has focused on
the fundamental limitations of sparse signal approximation that apply to any algorithm,
regardless of computational complexity. For the special case of exact recovery in the noiseless
setting, these limitations have been well understood: recovery of any k-sparse vector requires
exactly m = 2k samples for deterministic guarantees and only m = k + 1 samples for
almost sure guarantees [27,33,75], regardless of the vector length n. In both cases, recovery
corresponds to an NP-hard [51] exhaustive search through all possible sparsity patterns. In
Section 3.4, we address the extent to which an even smaller number of samples are needed
when there exists prior knowledge about the vector x, or when only partial recovery is
needed.

Although the noiseless setting provides insight into the limitations of sparse approxima-
tion that cannot be overcome simply by increasing the SNR, consideration of the noisy setting
is crucial for cases where noise is intrinsic to the problem or where real-valued numbers are
subject to rate constraints. From an information-theoretic perspective, a number of works
have studied the rate-distortion behavior of sparse sources [28,29,31,64,80,81]. Most closely
related to this thesis, however, is work that has addressed sparsity pattern recovery directly.
An initial necessary bound based on Fano’s inequality was provided by Gastpar [33] who
considered Gaussian signals and deterministic sampling vectors. Necessary and sufficient
scalings of (n, k, m) were given by Wainwright [77] who considered deterministic vectors,
characterized by the size of their smallest nonzero elements, and Gaussian sampling vectors.
Wainwright’s necessary bound was strengthened in our earlier work [58], for the special case
where k scales proportionally with n, and for general scalings by Fletcher et al. [30] and
Wang et al. [79].

A number of papers have also addressed extensions to approximate recovery: necessary
and sufficient conditions were provided by Aeron et al. [1] for the special case of discrete
vectors, and by Akcakaya and Tarokh [2] and our previous work [58] for general vectors.

1.3 Notation

When possible, we use the following conventions: a random variable X is denoted using
uppercase and its realization x is denoted using lowercase; a random vector V is denoted
using boldface uppercase and its realization v is denoted using boldface lowercase; and a
random matrix M is denoted using boldface uppercase and its realization M is denoted
using uppercase. We use [n] to denote the set {1, 2, · · · , n}. For a collection of vectors
v1,v2, · · · ,vL ∈ Rn, the empirical joint distribution of the entries in {vi}i∈[L] is the proba-
bility measure on RL that puts point mass 1/n at each of the n points (v1,i, v2,i, · · · , vL,i).
All logarithms are taken with respect to the natural base. Unspecified constants are denoted
by C and are assumed to be positive and finite.
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1.4 Problem Formulation

We now provide a precise problem formulation of approximate sparsity pattern recovery.
This problem formulation is central to the results in Chapters 2-4. Different but related
problems are considered in Chapters 5 and 6.

Let x ∈ Rn be a fixed but unknown vector and consider the noisy linear observation
model given by

Y = Ax +
1√
snr

W (1.2)

where A is a random m × n matrix, snr ∈ (0,∞) is a fixed scalar, and W ∼ N (0, Im×m)
is additive white Gaussian noise. Note that if E[‖Ax‖2] = m, then snr corresponds to the
per-sample signal-to-noise ratio of the problem.

The problem studied in this thesis is recovery of the sparsity pattern S∗ of x which is
given by

S∗ = {i ∈ [n] : xi '= 0}. (1.3)

We assume throughout that a recovery algorithm is given the vector Y, the matrix A, and
a parameter κ corresponding to the fraction of nonzero entries in x. The algorithm then
returns an estimate Ŝ of size (κn). In some cases, additional prior information about the
nonzero entries of x is also available. We use ALG to denote a generic recovery algorithm.

1.4.1 Distortion Measure

To assess the quality of an estimate Ŝ it is important to note that there are two types of
errors. A missed detection occurs when an element in S∗ is omitted from the estimate Ŝ.
The missed detection rate is given by

MDR(S∗, Ŝ) =
1

|S∗|

n
∑

i=1

1(i ∈ S∗, i /∈ Ŝ). (1.4)

Conversely, a false alarm occurs when an element not present in S∗ is included in Ŝ. The
false alarm rate is given by

FAR(S∗, Ŝ) =
1

|Ŝ|

n
∑

i=1

1(i /∈ S∗, i ∈ Ŝ). (1.5)

In general, various tradeoffs between the two errors types can be considered. In this
thesis, however, we focus exclusively the distortion measure d : S∗ × Ŝ *→ [0, 1] given by

d(S∗, Ŝ) = max
(

MDR(S∗, Ŝ), FAR(S∗, Ŝ)
)

. (1.6)
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This distortion measure is a metric on subsets of [n].
For any distortion D ∈ [0, 1] and recovery algorithm ALG we define the error probability

ε(ALG)
n (D) = Pr[d(S∗, Ŝ) > D] (1.7)

where the probability is taken with respect to the distribution on the matrix A, the noise
W and any additional randomness used by the recovery algorithm.

1.4.2 Signal and Measurement Models

We analyze a sequence of recovery problems {x(n),A(n),W(n)}n≥1 indexed by the vector
length n.

Signal Assumptions: We consider a subset of the following assumptions on the sequence
of vectors x(n) ∈ Rn.

S1 Linear Sparsity: The number of nonzero values k(n) in each vector x(n) obeys

lim
n→∞

k(n)

n
= κ (1.8)

for some sparsity rate κ ∈ (0, 1/2).

S2 Convergence in Distribution: The empirical distribution of the entries in x(n) converges
weakly to the distribution pX of a real-valued random variable X with E[X2] = 1 and
Pr[X '= 0] = κ, i.e.

lim
n→∞

1

n

n
∑

i=1

1(xi(n) ≤ x) = Pr[X ≤ x] (1.9)

for all x such that pX({x}) = 0.

S3 Average Power Constraint: The empirical second moments of the entries in x(n) con-
verge to one, i.e.

lim
n→∞

‖x(n)‖2

n
= 1. (1.10)

Assumption S1 says that all but a fraction κ of the entries are equal to zero, Assumption
S2 characterizes the limiting distribution of the nonzero entries, and Assumption S3 prohibits
the existence of a vanishing fraction of arbitrarily large nonzero values.

Measurement Assumptions: We consider a subset of the following assumptions on the
sequence of measurement matrices A(n) ∈ Rm(n)×n.
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M1 Non-Adaptive Measurements: The distribution on A(n) is independent of the vector
x(n) and the noise W(n).

M2 Finite Sampling Rate: The number of rows m(n) obeys

lim
n→∞

m(n)

n
= ρ (1.11)

for some sampling rate ρ ∈ (0,∞).

M3 Row Normalization: The distribution on A(n) is normalized such that each of the
m(n) rows has unit magnitude on average, i.e.

E

[

‖A(n)‖2F
]

= m(n) (1.12)

where ‖ · ‖F denotes the Frobenius norm.

M4 IID Entries: The entries of A(n) are i.i.d. with mean zero and variance 1/n.

M5 Gaussian Entries: The entries of A(n) are i.i.d. Gaussian N (0, 1/n).

Assumptions M1-M3 are used throughout the thesis. A sampling rate ρ < 1 corresponds
to the compressed sensing setting where the number of equations m is less than the number
of unknown signal values n. A sampling rate ρ = 1 corresponds to the number of linearly
independent measurements that are needed to recover an arbitrary vector x in the absence of
any measurement noise. Assumptions M4-M5 correspond to specific distributions on A(n)
that are used for many of the results of Chapter 2.

1.4.3 The Sampling Rate-Distortion Function

Under Assumptions S1-S3 and M1-M3, the asymptotic recovery problem is characterized by
the sampling rate ρ, limiting distribution pX , and snr.

Definition 1.1. A distortion D is achievable for a fixed tuple (ρ, pX , snr) and recovery
algorithm ALG, if there exists a sequence of measurement matrices satisfying Assumptions
M1-M3 such that

lim
n→∞

ε(ALG)
n (D) = 0 (1.13)

for any sequence of vectors satisfying Assumptions S1-S3.

More generally, we may also consider problems characterized by a class of limiting distri-
butions with the same sparsity rate κ. Let P(κ) denote the class of all probability measures
obeying the conditions of Assumption S2, i.e.

P(κ) =
{

pX : pX({0}) = 1−κ,
∫

x2pX(dx) = 1
}

, (1.14)

and let PX be a subset of P(κ).
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Definition 1.2. A distortion D is achievable for a fixed tuple (ρ,PX , snr) and recovery
algorithm ALG, if there exists a sequence of measurement matrices satisfying Assumptions
M1-M3 such that

lim
n→∞

ε(ALG)
n (D) = 0 (1.15)

for any sequence of vectors satisfying Assumptions S1-S3 for some distribution pX ∈ PX .

We emphasize that the recovery algorithm in Definition 1.2 is fixed and thus cannot be a
function of the limiting distribution realized by an individual sequence of problems. It may
however be optimized as a function of the class PX , thus attaining the minimax risk of the
recovery problem.

Definition 1.3. For a fixed tuple (D,PX , snr) and recovery algorithm ALG the sampling
rate-distortion function ρ(ALG)(D,PX , snr) is given by

ρ(ALG)(D,PX , snr) = inf{ρ ≥ 0 : D is achievable}. (1.16)

The sampling rate-distortion function corresponding to the optimal recovery algorithm is
denoted by ρ∗(D,PX , snr).

To lighten the notation, we will denote the sampling rate-distortion function using ρ(ALG)

where the dependence on the tuple (D,PX , snr) is implicit.

1.4.4 Approximately Sparse Signal Models

The problem formulation given in the previous sections assumes that a large fraction of the
entries in x are exactly equal to zero. More realistically though, it may be the case that
many of these entries are only approximately equal to zero. This may occur, for instance, if
a sparse vector is corrupted by a small amount of noise prior to being measured. In these
cases, the vector x is not, strictly speaking, sparse, but recovery of the locations of the
“significant” entries is still a meaningful task.

With these settings in mind, all of the bounds presented in Chapter 2 are first proved
with respect to a relaxed sparsity pattern recovery task in which the goal is to recover the
locations of the (κn) largest entries in x. To prove achievability for this task, we assume
that the weak converge of Assumption S2 holds (specifically the fact that all but a fraction
κ of the entries in x are tending to zero as n becomes large) but do not require the strict
sparsity constraint of Assumption S1.

The relaxed sparsity pattern recovery task is defined as follows. For any vector x and
sparsity rate κ, let S̃ be a drawn uniformly at random from all subsets of [n] of size k = (κn)
obeying

min
i∈S̃

|xi| ≥ max
i∈[n]\S̃

|xi|. (1.17)
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The set S̃ corresponds to the k largest entries in x and is uniquely defined whenever the k’th
largest entry of x is unique. For any distortion D and recovery algorithm ALG we define
the relaxed sparsity pattern recovery error probability

ε̃(ALG)
n (D) = Pr[d(S̃, Ŝ) > D] (1.18)

where the probability is taken with respect to the distribution on S̃, the matrix A, the noise
W, and any additional randomness in the recovery algorithm. The definition of achievability
with respect to the error probability ε̃n(D) is exactly the same as for the error probability
εn(D) except that the strict sparsity of Assumption S1 is not required.

The following result shows that under the additional constraint of Assumption S1, achiev-
ability of relaxed sparsity pattern recovery implies achievability of the sparsity pattern in
the strict sense.

Lemma 1.1. Under Assumption S1,

lim
n→∞

∣

∣

∣d(S̃, Ŝ)− d(S∗, Ŝ)
∣

∣

∣ = 0. (1.19)

Proof. Two applications of the triangle inequality gives

|d(S̃, Ŝ)− d(S∗, Ŝ)
∣

∣

∣ ≤ d(S̃, S∗).

By the definition of S̃, it follows straightforwardly that d(S̃, S∗) → 0 for any sequence of
vectors obeying Assumption S1.
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Chapter 2

Upper Bounds for Algorithms

This chapter gives bounds on the sampling rate-distortion function ρ(ALG) for several
different recovery algorithms. Each of the algorithms follows the same basic approach which
is illustrated in Fig. 2.1 and consists of the following two stages:

• Vector Estimation: The first stage of recovery produces a random estimate X̂ of the
unknown vector x based on the tuple (Y,A, κ).

• Componentwise Thresholding: The second stage of recovery generates an estimate Ŝ
of the unknown sparsity pattern S∗ by thresholding the estimate X̂ generated in the
first stage:

Ŝ =
{

i ∈ [n] : |X̂i| ≥ T
}

.

The threshold T in the second stage provides a tradeoff between the two kinds of recovery
errors: missed detections and false alarms. Throughout this chapter, we will assume that
that T is chosen as a function of (X̂, κ) such that the estimated sparsity pattern Ŝ has
exactly k = (κn) elements. In practice, this is achieved by thresholding with the magnitude
of the k’th largest entry in X̂, and using additional randomness to break ties whenever the
k’th largest magnitude is not unique.

Conceptually, it is useful to think of the estimate X̂ generated in the first stage as a
direct observation of the original signal that has been corrupted by additive noise, that is

(Y,A) Ŝ
vector

X̂estimator
componentwise

thresholding

sparsity rate κ

Figure 2.1: Illustration of the two-stage sparsity pattern recovery algorithm.
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Table 2.1: Overview of the Sampling Rate-Distortion Bounds in Chapter 2
Recovery Algorithm Bounds

Vector Estimator Parameters Comp.
Efficient

Result Matrix
Assump.

Unproven
Assump.

Tight

ML κ no Theorem 2.1 Gaussian none no
MF κ yes Theorem 2.2 i.i.d. none yes
LMMSE κ, snr yes Theorem 2.3 Gaussian none yes
AMP-MMSE κ, snr, pX yes Theorem 2.5 Gaussian none yes
AMP-ST κ, snr, α yes Theorem 2.6 Gaussian none yes
MMSE κ, snr, pX no Theorem 2.7 i.i.d. Replica Sym. yes

we can write
X̂ = x + W̃

where W̃ is a vector of errors. Along the same lines, the componentwise thresholding in the
second stage may be viewed as n independent hypothesis tests under the idealized assumption
that the entries of W̃ are i.i.d. and symmetric about the origin.

The main difference between the algorithms studied in this chapter is the vector estimator
used in the first stage of recovery. In the following subsections, we give bounds on the
sampling rate-distortion function corresponding to the maximum likelihood estimator, two
different linear estimators (the matched filter and the MMSE), a class of estimators based
on approximate message passing, and the MMSE estimator. Our results are summarized in
Table 2.1. Analysis and illustrations are given in Chapter 4.

2.1 Maximum Likelihood

We begin with the method of maximum likelihood (ML). Conditioned on the realization of
the matrix A = A, the measurements Y have a multivariate Gaussian distribution with
mean Ax and covariance snr−1Im×m. Therefore, the ML estimate of sparsity k = (κn) is
given by

x̂(ML) = arg min
x̃∈Rn : ‖x̃‖0=k

‖y − Ax̃‖ (2.1)

where ‖x̃‖0 denotes the number of nonzero entries in x̃. If the minimizer of (2.1) is not
unique, we will assume that the sparsity pattern estimate Ŝ in the second stage of the
recovery algorithm is drawn uniformly at random from the set

{

S : S is the sparsity pattern of a minimizer of (2.1)
}

.
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This estimator has been studied previously for the task of exact sparsity pattern recovery
by Wainwright [77] and Fletcher et al. [30].

Before we present our main result, two more definitions are needed. First, we define

H(D; κ) = κHb(D) + (1− κ)Hb

(

κD

1− κ

)

(2.2)

where Hb(p) = −p log p− (1− p) log(1− p) is the binary entropy function. In Lemma ??, it
is shown that the metric entropy rate for a sequence of sparsity patterns with sparsity rate
κ under the distortion metric (1.6) is given by Hb(κ)−H(D; κ) for any D ≤ 1− κ.

Also, we define

P (D; pX) =
∫ ∞

0

(

Pr[X2 > u]− (1−D)κ
)+

du (2.3)

where (·)+ = max(·, 0). This function corresponds to the average power of the smallest
fraction D of nonzero entries. It is a continuous and monotonically increasing function of
D, with P (0; pX) = 0 and P (1; pX) = 1 for any pX ∈ P(κ).

Our first result gives an upper bound on the sampling rate-distortion function corre-
sponding to the ML estimator. The proof is given in Section 2.5.

Theorem 2.1. Under Assumptions S1-S2 and M1-M5, a distortion D is achievable for the
tuple (ρ, pX , snr) using the ML estimator if ρ > ρ(ML-UB) where

ρ(ML-UB) = κ + max
D̃∈[D,1]

Λ(D̃; pX , snr), (2.4)

with Λ(D; pX, snr) given by

Λ(D; pX , snr) = min
{

Λ1(D; pX , snr),Λ2(D; pX , snr)
}

(2.5)

where

Λ1(D; pX , snr) =
2H(D; κ)

log(1 + P (D; pX) snr) + (1 + P (D; pX) snr)−1 − 1

Λ2(D; pX , snr) = min
θ,µ∈(0,1)

max

(

2H(D; κ)

log(1 + 1
4(1−θ)2P (D; pX) snr)

,
2H(D; κ)−Dκ log(1−µ2)

log(1 + µθP (D; pX) snr)

)

.

Moreover, for any ρ > ρ(ML-UB) the error probability ε(ML)
n (D) decays at least exponentially

rapidly with n, i.e. there exists a constant C such that

ε(ML)
n (D) ≤ exp(−C n). (2.6)

Remark 2.1. Theorem 2.1 does not require the convergence of the empirical second moments
given in Assumption S3.



CHAPTER 2. UPPER BOUNDS FOR ALGORITHMS 14

Theorem 2.1 is a significant improvement over previous results in several respects. First,
it applies generally to any distribution pX . Second, the bound is given explicitly in terms of
the problem parameters and is finite for any nonzero distortion D. Finally, as we will show
in Sections 4.8.1, the behavior of the bound, in a scaling sense with respect to the SNR and
distortion D, is optimal for a large class of distributions.

Corollary 2.1. The statement of Theorem 2.1 holds if the function Λ(D; pX , snr) is replaced
with any of the following upper bounds:

Λ̃1(D; pX , snr) =
4H(D; κ)

log
(

1 +
[

P (D; pX) snr/e
]2) (2.7)

Λ̃2(D; pX , snr) =
2H(D; κ) + 2 log(5/3)κD

log
(

1 + (4/25)P (D; pX) snr
) (2.8)

Λ̃3(D; pX , snr) = min
i∈{1,2}

Λ̃i(D; pX , snr). (2.9)

Proof. The bound Λ̃1(D; px, snr) follows from the first term in (2.5) and the simple fact that
log(1 + x)− x/(1 + x) ≥ (1/2) log(1 + x2/e2) for all x ≥ 0. The bound Λ̃2(D; px, snr) follows
from the second term in (2.5) evaluated with µ = 4/5 and θ = 1/5.

2.2 Linear Estimation

Next, we consider two different linear estimators. The matched filter (MF) estimate is given
by

x̂(MF) =
(

n
m

)

AT y (2.10)

and the linear minimum mean-squared error (LMMSE) estimate is given by

x̂(LMMSE) = (AT A + snr In×n)−1ATy. (2.11)

These estimators are appealing in practice due to their low computational complexity. Their
performance has been studied extensively in the context of multiuser detection with random
spreading (see e.g. [72, 76]). More recently, the use of the matched filter for the task of
sparsity pattern recovery was investigated by Fletcher et al. [30] and our previous work [61].

To characterize the behavior of the MF and LMMSE algorithms in the high-dimensional
setting, it is useful to introduce a scalar equivalent model of the vector observation model
given in (1.2).

Definition 2.1. The scalar equivalent model of (1.2) is given by

Z = X + σW (2.12)

where X ∼ pX and W ∼ N (0, 1) are independent and σ2 ∈ (0,∞) is a fixed parameter called
the noise power.
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In the context of the scalar model, the problem of support recovery is to determine
whether or not X is equal to zero. Let S = 1(X '= 0) be the indicator of this event and
let Ŝ be an estimate of the form Ŝ = 1(|Z| > t). Then, the detection error probability
corresponding to the distortion measure defined in Section 1.4.1 is given by

pD(t) = max
(

Pr[Ŝ = 0|S = 1], Pr[S = 0|Ŝ = 1]
)

. (2.13)

We define

Dawgn(σ
2; pX) = min

t
pD(t) (2.14)

to be a mapping between the noise power σ2 and the minimal detection error probability
pD(t) achieved by Ŝ. We also define

σ2
awgn(D; pX) = sup{σ2 ≥ 0 : Dawgn(σ

2; pX) ≤ D} (2.15)

to be the inverse mapping. Here, we use the subscript “awgn” to emphasize the fact that
this error probability corresponds to additive noise W that is Gaussian and independent of
X.

The following results give an explicit expression for the sampling rate-distortion function
of the MF and LMMSE recovery algorithms. Their proofs are given in Appendices 2.6.2 and
2.6.3 respectively.

Theorem 2.2. Under Assumptions S1-S3 and M1-M4, the sampling rate-distortion function
corresponding to the MF estimator is given by

ρ(MF) =
1

σ2 snr
+

1

σ2
(2.16)

where σ2 = σ2
awgn(D; pX).

Remark 2.2. Theorem 2.2 does not require the measurement matrix A(n) to be Gaussian.

Theorem 2.3. Under Assumptions S1-S3 and M1-M5, the sampling rate-distortion function
corresponding to the LMMSE estimator is given by

ρ(LMMSE) =
1

σ2 snr
+

1

1 + σ2
(2.17)

where σ2 = σ2
awgn(D; pX).

Recall that our definition of achievability says that the probability that the distortion
d(S∗, Ŝ) exceeds a threshold D must tend to zero as n becomes large. For the MF and
LMMSE estimators, convergence of the expected distortion E[d(S∗, Ŝ)] can be established
straightforwardly using results in [76] and [72]. Therefore, the key contribution of Theo-
rems 2.2 and 2.3 is to show that this convergence holds also in probability. For the MF
estimator, this is achieved using a general decoupling result which applies generally for any
i.i.d. distribution on the measurement matrix. For the LMMSE estimator, we use the fact
that the LMMSE can be computed using the AMP algorithm discussed in the next section.
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2.3 Approximate Message Passing

We now consider estimation using approximate message passing (AMP) [21]. The AMP
algorithm is characterized in terms of a scalar de-noising function η(z, σ2) which is assumed
to be Lipschitz continuous with respect to its first argument and continuous with respect
to its second argument. Starting with initial conditions x0 = 0n×1, u0 = ( n

m)y and σ̂2
0 =

(snr−1 + 1)/ρ, the algorithm proceeds for iterations t = 1, 2, · · · according to

xt = η
(

ATut−1 + xt−1, σ̂2
t−1

)

(2.18)

ut =
(

n
m

)

[

y − Axt + ut−1 1

n

n
∑

i=1

η′
(

(

ATut−1 + xt−1
)

i
, σ̂2

t−1

)]

(2.19)

σ̂2
t =

1

n
‖ut‖2, (2.20)

where η′(z, σ2) denotes the partial derivative of η(z, σ2) with respect to z, and, for any vector
z, η(z, σ2) denotes the vector obtained by applying the function η(z, σ2) componentwise.

The AMP algorithm is said to succeed if the tuple (xt,ut, σ̂2
t ) converges to a fixed point

(x∞,u∞, σ̂2
∞). Various stability assumptions guaranteeing convergence of the algorithm are

discussed in [21, 22]. In some cases, the rate of convergence is exponential in the number of
iterations.

Remark 2.3. Our update equations for the AMP algorithm differ slightly from those given
in [7, 21, 22]. This difference is due to the fact that this thesis considers row normalization
of the measurement matrix (Assumption M3) whereas the previous work considers column
normalization.

Conceptually, it is useful to think of the vector xt, generated in the t’th iteration of the
AMP algorithm, as a noisy version of the original vector x that has been passed through the
scalar de-noising function η(·, σ̂2

t−1). More specifically, we can write

xt = η(x + w̃t−1; σ̂2
t−1) (2.21)

where

w̃t−1 = ATut−1 + xt−1 − x (2.22)

is a vector of errors.
In [21, 22], it is shown, both heuristically and empirically, that, under Assumptions S1-

S3 and M1-M5, the error vector wt−1 defined in (2.22) behaves similarly to additive white
Gaussian noise with mean zero and variance σ̂2

t−1. A precise statement of this behavior,
corresponding to the empirical marginal distribution of the tuple (x,xt, w̃t), is proved in
ensuing work by Bayati and Montanari [7]. See Section 2.6 for more details.
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At this point, we are faced with the following question: based on the output (x∞,u∞, σ̂2
∞)

of the AMP algorithm, what should we choose as an estimate x̂ of the unknown vector x?
In previous work, where the primary objective is to minimize the MSE, the output x̂∞ is
used as an estimate of x (see e.g. [6]). The main reason for using this estimate is that the
function η(·, σ2) provides a scalar de-noising step that reduces the effect of the additive error
w̃.

In this thesis, however, our primary objective to is generate an estimate of x that leads
to an accurate estimate of the sparsity pattern in the second stage of estimation. As such,
the final scalar de-noising step is unnecessary, and potentially counterproductive. To see
why, note that the componentwise thresholding in the second stage of recovery depends
entirely on the relative magnitudes of the entries in x̂. If the denoiser does not preserve the
ranking of these magnitudes (e.g. if many nonzero values are mapped to zero), then relevant
information about the sparsity pattern is lost.

Accordingly, we use the vector estimate given by

x̂(AMP) = ATu∞ + x∞. (2.23)

Since the AMP output (x∞,u∞, σ̂2
∞) satisfies the fixed point equation

x∞ = η(ATu∞ + x∞, σ̂2
∞),

we see that our estimate corresponds directly to the signal-plus-noise estimate x+ w̃∞ prior
to the scalar de-noising.

To characterize the behavior of AMP in the high-dimensional setting, we return to the
scalar equivalent model given in Definition 2.1. We define the scalar mean-squared error
function

mse(σ2; pX , η) = E

[
∣

∣

∣X − η(X + σW, σ2)
∣

∣

∣

2]

(2.24)

where X ∼ pX and W ∼ N (0, 1) are independent, and let {σ2
t }t≥1 be a sequence of noise

powers defined by the recursion

σ2
t =

snr−1 + mse(σ2
t−1; pX , η)

ρ
(2.25)

where σ2
0 = (snr−1 + 1)/ρ. This recursion is referred to as state evolution [21].

The following result shows that the distortion corresponding to the AMP estimate is
characterized by the state evolution recursion. In Section 2.6.4, it is shown how this result
follows straightforwardly from recent work of Bayati and Montanari [7].

Theorem 2.4. Suppose that the noise powers defined by the state evolution recursion (2.25)
converge to a finite limit

σ2
∞ = lim

t→∞
σ2

t . (2.26)
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Then, under Assumptions S1-S3 and M1-M5, the distortion d(S∗, Ŝ) corresponding to the
AMP estimator converges in probability as n→∞ to the limit Dawgn(σ2

∞; pX).

Remark 2.4. We note that the limiting noise power σ2
∞ is a function of the tuple (ρ, pX , snr)

and the function η(z, σ2). In some cases, it is possible that σ2
∞ is an increasing function of

ρ, and thus increasing the sampling rate increases the distortion.

In the following subsections, two special cases of the AMP estimator are considered.

2.3.1 Optimized AMP

If the limiting distribution pX is known, then the limiting noise power σ2
∞ is minimized when

η(z, σ2) is given by the conditional expectation

η(MMSE)(z, σ2; pX) = E[X|X + σW = z] (2.27)

corresponding to the distribution pX . We will refer to this version of the AMP algorithm as
AMP-MMSE, and we define the corresponding mean-squared error function

mmse(σ2; pX) = E

[
∣

∣

∣X − E[X|X + σW ]
∣

∣

∣

2]

. (2.28)

Theorem 2.5. Under Assumptions S1-S3 and M1-M5, the sampling rate-distortion function
corresponding to the AMP-MMSE estimator is given by

ρ(AMP-MMSE) = sup
τ≥σ2

{

snr−1 + mmse(τ ; pX)

τ

}

(2.29)

where σ2 = σ2
awgn(D; pX).

Proof. By the definition of the MMSE, we have mmse(σ2; pX) < E[X2] = 1 for all σ2 <∞.
Therefore, any solution σ2 to the fixed point equation

σ2 =
snr−1 + mmse(σ2; pX)

ρ
(2.30)

is strictly less than the initial noise power σ2
0. Since mmse(σ2; pX) is a strictly decreasing

function of σ2, it thus follows that the limit σ2
∞ always exists and is given by the largest

solution to (2.30), i.e.

σ2
∞ = sup

{

τ ≥ 0 : ρ =
snr−1 + mmse(τ ; pX)

τ

}

. (2.31)

Since the right hand side of (2.31) is a strictly decreasing function of ρ, Theorem 2.5 follows
directly from Theorem 2.4 and the definition of the sampling rate-distortion function.

It is important to note that the AMP-MMSE estimate is a function of the distribution pX .
If this distribution is unknown and the estimate is made using a postulated distribution that
differs from the true one, then the performance of the algorithm could be highly suboptimal.
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2.3.2 Soft Thresholding

Another special case of the AMP algorithm is when η(z, σ2) is given by the soft thresholding
function

η(ST)(z, σ2;α) =















z + ασ, if z < −ασ
0, if |z| ≤ ασ

z − ασ, if z ≥ ασ

(2.32)

for some threshold α ≥ 0. We will refer to this algorithm as AMP-ST.

Remark 2.5. It is argued in [22] and shown rigorously in [6] that, for a fixed set (pX , snr),
the behavior of AMP-ST is equivalent to that of LASSO [68] under an appropriate calibration
between the threshold α and the regularization parameter of LASSO.

To characterize the behavior of AMP-ST, we follow the steps outlined by Donoho et
al. [22] and define the noise sensitivity

M(σ2,α; pX) =
mse(σ2; pX , η(ST))

σ2
. (2.33)

Theorem 2.6. Under Assumptions S1-S3 and M1-M5, the sampling rate-distortion function
corresponding to the AMP-ST estimator is given by

ρ(AMP-ST) =
1

σ2snr
+ M(σ2,α; pX) (2.34)

where σ2 = σ2
awgn(D; pX).

Proof. This result is an immediate consequence of Theorem 2.4 and [22, Lemma 4.1] which
shows that σ2

∞ exists and is given by the unique solution to the fixed point equation

ρ =
1

σ2
∞ snr

+ M(σ2
∞,α; pX). (2.35)

We note that Theorem 2.6 can be used to find the optimal value for the soft-thresholding
parameter α. If, for example, the goal is to minimize the sampling rate ρ as a function of the
tuple (D, pX , snr), then the optimal value of α is given by the minimizer of M(σ2,α; pX).
Conversely, if the goal is to minimize the distortion D as a function of the tuple (ρ, pX , snr),
then the optimal value of α is one that minimizes the value of σ2

∞ in the fixed point equation
(2.35).

We emphasize that the soft-thresholding function is, in general, suboptimal for a given
distribution pX (recall that the optimal version of AMP is given by AMP-MMSE). The
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main reason that we study soft-thresholding is to deal with settings where the distribution
pX is unknown. In Section 4.9, it is shown how the function M(σ2,α; pX) can be upper
bounded uniformly over the class of distributions Pκ, and how combining this upper bound
with Theorem 2.6 gives bounds on the sampling rate-distortion function that hold uniformly
over any class of distributions PX ⊂ P(κ).

2.4 MMSE via the Replica Method

Lastly, we consider the performance of the minimum mean-squared error (MMSE) estimator.
For a known distribution pX , this estimator is given by the conditional expectation

x(MMSE) = E[X|AX + snr−1/2W = y], (2.36)

where the entries of X are i.i.d. pX .
To analyze the behavior of the MMSE estimator, we develop a result based on the

powerful but heuristic replica method from statistical physics. This method was developed
originally in the context of spin glasses [25] and has been applied to the vector estimation
problem studied in this thesis by a series of recent papers [35, 36, 40, 50, 55, 67].

In the replica analysis, the unknown vector is modeled as a random vector X whose
entries are i.i.d. pX . Accordingly, each realization of the measurement matrix A = A,
induces a joint probability measure on the random input-output pair (X,Y), or equivalently
on the random input-estimate pair (X, X̂). At this point, the key argument exploited by
the replica method is that, due to a certain type of “replica symmetry” in the problem,
the joint probability measure on (X, X̂) behaves similarly for all typical realizations of the
measurement matrix A in the high-dimensional setting. Based on this assumption, it can
then be argued that the marginal joint distribution on the entries in (X, X̂) converges to a
nonrandom limit, characterized by the tuple (ρ, pX , snr).

A detailed explanation of the replica analysis is beyond the scope of this thesis. The
assumptions needed for our results are summarized below.

Replica Analysis Assumptions: The key assumptions underlying the replica analysis
are stated explicitly by Guo and Verdú in [36]. A concise summary can also be found
in [55, Appendix A]. Two assumptions that are used—and generally accepted throughout
the literature—are the validity the “replica trick” and the self averaging property of a certain
function defined on the random matrix A. A further assumption that is also required is that
of replica symmetry. This last assumption is problematic, however, since it is known that
there are cases where it does not hold, and there is currently no test to determine whether
or not it holds in the setting of this thesis.

The following result characterizes the sampling rate-distortion function corresponding to
the MMSE estimator under the condition that the replica assumptions are valid. The proof
is given in chapter 2.6.5.
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Theorem 2.7. Assume that the replica analysis assumptions hold. Under Assumptions S1-
S3 and M1-M4, the distortion d(S∗, Ŝ) corresponding to the MMSE estimator converges in
probability as n→∞ to the limit Dawgn(τ ∗; pX) where

τ ∗ = arg min
τ>0

{

ρ log τ +
1

τ snr
+ 2I(X; X +

√
τW )

}

(2.37)

with X ∼ pX and W ∼ N (0, 1) independent.

We emphasize that a key difference between Theorem 2.7 and the previous bounds in this
chapter is that the replica analysis assumptions on which it is based are currently unproven.
In the context of the recovery problem outlined in this paper, this means that Theorem 2.7
provides only a heuristic prediction for the true behavior of the MMSE estimator. The
validity of this prediction for the setting of the paper depends entirely on the validity of the
replica assumptions.

In the next section, we will see that there are many parameter regimes in which the
replica prediction for the MMSE estimator is tightly sandwiched between the rigorous upper
bounds given earlier in this paper and the information-theoretic lower bounds in Chapter
3. Thus, beyond the context of sparsity pattern recovery, a significant contribution of this
paper is that we provide strong evidence in support of the replica analysis assumptions.

Remark 2.6. One interesting implication of Theorem 2.7 is that the AMP-MMSE estimate
is equivalent to the MMSE estimate whenever the noise power τ ∗ defined in (2.37) is equal
to the limit σ2

∞ defined in (2.31). This suggests that the MMSE estimate can be computed
efficiently in some problem regimes.

Finally, it is important to note that the MMSE estimator is a function of the limiting
distribution pX . If this distribution is unknown and the estimate is made using a postulated
distribution that differs from the true one, then the performance could be highly suboptimal.
Using further results developed in [36] it is possible to characterize the sampling rate in terms
of an arbitrary postulated prior and true limiting distribution. Such analysis, however, is
beyond the scope of this paper.

2.5 Proof of ML Upper Bound

Following the discussion in Section 1.4.4, we first prove achievability with respect to relaxed
sparsity pattern recovery.

Theorem 2.8. Under Assumptions S2 and M1-M5, the statement of Theorem 2.1 holds with
respect to the relaxed sparsity pattern recovery error probability ε̃n(D) defined in (1.18).

Combining Theorem 2.8 with Lemma 1.1 and the fact that ρ(ML-UB) is a continuous and
monotonically decreasing function of D completes the proof of Theorem 2.1.
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The remainder of this section is dedicated to the proof of Theorem 2.8. We begin with
a general bound for the non-asymptotic setting in Section 2.5.1 and then extend this bound
to the asymptotic setting in Section 2.5.2.

Throughout the proof we use Sn
k to denote the set of all subsets of [n] of size k, and for

any set s ⊂ [n], we use sc to denote its complement [n]\s.

2.5.1 A Non-Asymptotic Bound

Consider the measurement model given in (1.2) where x ∈ Rn is an arbitrary vector whose
true sparsity is unknown. For a given parameter κ, let k = (κn), let S̃ be drawn uniformly
at random from all subsets of [n] of size k = (κn) obeying (1.17), and let Ŝ be the output
of the ML recovery algorithm.

Also, for each integer b ∈ {0, 1, · · · , k}, define

M(b) = min
s∈Sn

k
:|s\s̃|=b

1

n
‖xsc‖2 · snr. (2.38)

By the definition of S̃, it is straightforward to see that M(b) is defined uniquely by x and b
(i.e. it does not depend on the realization of s̃).

The following result gives an upper bound on ε̃n(D) that depends only on the distortion
D, the dimensions n, m, k, and the function M(b).

Lemma 2.1. If the entries of the measurement matrix A are i.i.d. N (0, 1/n), then the
following bounds hold for any distortion D ∈ [0, 1] and integer k < m,

ε̃(ML)
n (D) ≤

k
∑

b=*Dk+1+
min(Ψ1(b),Ψ2(b)) (2.39)

where

Ψ1(b) = min
λ∈[0,1]

[

(

2 log
[

√

√

√

√

1 + λM(b) + (1−λ)M(0)

1 + M(0)
− 1
])−m−k

4

+

(

k

b

)(

n− k

b

)

(

1 + M(b)

1 + λM(b) + (1−λ)M(0)

)−m−k
2

]

(2.40)

Ψ2(b) = min
θ,µ∈(0,1)

ε>0

(

k

b

)(

n− k

b

)[

(

1 +
1

4
(1−θ)2M(b)

)−m−k
2

+
(

exp(ε)

2M(0)

)−m−k
2

+
(

1 + µθM(b)

exp(εM(0))

)−m−k
2

(1− µ2)−
b
2

]

. (2.41)
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Proof. For each S ∈ Sn
k let Π(As) denote the m ×m orthonormal projection onto the null

space of the m× k matrix As. If AS is full rank (an event that occurs with probability one
over the assumed distribution on A) then this projection is given by

Π(As) = Im×m −As(A
T
s As)

−1AT
s . (2.42)

Since

min
us∈Rk

‖Asus −Y‖ = ‖Π(As)Y‖, (2.43)

it can be easily verified that the ML estimate of size k is an element of the set

arg min
s∈Sn

k

‖Π(As)Y‖. (2.44)

Now, for each integer b ∈ {0, 1, 2, · · · , k}, define the event

E(b) =
{

min
s∈Bb

‖Π(As)Y‖ > ‖Π(As̃)Y‖
}

(2.45)

where Bb = {s ∈ Sn
k : |s\s̃| = b}. In words, the event E(b) guarantees that the set of

minimizers in (2.44) will not contain any set S for which d(S, S̃) = b/k. Thus, a sufficient
condition for recovery is given by the event

⋂k
*Dk+1+ E(b), and by the union bound we have

ε̃(ML)
n (D) ≤

k
∑

b=*Dk+1+
Pr[E c(b)] (2.46)

where E c(b) denotes the complement E(b).
The bounds Pr[E c(b)] ≤ Ψ1(b) and Pr[E c(b)] ≤ Ψ2(b) are proved in Sections 2.5.3 and

2.5.4 respectively.

Remark 2.7. Lemma 2.1 is general in the sense that it makes no assumptions about the
sparsity of x or the size of S̃. Therefore, it can be used to address a variety of recovery tasks
such as recovering a subset or superset of the true support.

Remark 2.8. If M(0) < M(0Dk+11), then the upper bound decreases exponentially rapidly
with m, i.e. there exists a constant C such that ε̃(ML)

n (D) ≤ exp(−C m).

2.5.2 The Asymptotic Setting

We now prove Theorem 2.8 by applying Lemma 2.1 to a sequence of problems obeying
Assumptions S2 and M1-M5. For each problem of size n let kn = (κn). Beginning with
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(2.39), we have

ε̃n(D) ≤
kn
∑

b=,Dkn-
min(Ψ1(b),Ψ2(b)) (2.47)

≤ n max
,Dkn-≤b≤kn

min(Ψ1(b),Ψ2(b)) (2.48)

= n exp
(

− n min
β∈[D,1]

ψn(β)
)

(2.49)

where ψn(β) = − 1
n mini∈{1,2} logΨi((βkn)). To study the asymptotic behavior of this bound

we need the following lemma. The proof is given in Section 2.5.5.

Lemma 2.2. Under Assumption S2, the sequence of functions {ψn(β)}n≥1 is uniformly
asymptotically lower bounded in the following sense

lim sup
n→∞

max
β∈[0,1]

(

ψ(β)− ψn(β)
)

≤ 0 (2.50)

where ψ(β) = maxi∈{1,2} ψi(β) and

ψ1(β) = max
λ∈[0,1]

min

{

ρ− κ

4

(
√

1 + λP (β)snr− 1
)2

,

ρ−κ

2

[

log
(

1 + P (β)snr
1 + λP (β)snr

)

− (1−λ)P (β)snr
1 + P (β)snr

]

−H(β; κ)

}

(2.51)

ψ2(β) = max
θ,µ∈[0,1]

min

{

ρ− κ

2
log
(

1 + 1
4P (β)snr

)

,

ρ− κ

2
log
(

1 + θµP (β)snr
)

+
βκ

2
log
(

1− µ2
)

}

−H(β; κ). (2.52)

Remark 2.9. Under the additional constraint of Assumption S3, the bound (2.50) holds with
respect to the absolute difference |ψ(β) − ψn(β)|. For the proof of Theorem 2.8, however,
only the lower bound is needed.

Returning to (2.49), we can now write

lim inf
n→∞

− 1

n
log ε̃n(D) ≥ lim inf

n→∞
min

β∈[D,1]
ψn(β)

≥ min
β∈[D,1]

ψ(β) (2.53)

where the swapping of the limit and the minimum in (2.53) is justified by Lemma 2.2.
With a bit of algebra, it can be verified that

κ + Λ(β; pX, snr) = inf
{

ρ : ψ(β) > 0
}

, (2.54)
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and thus

ρ(ML-UB) = inf
{

ρ : min
β∈[D,1]

ψ(β) > 0
}

. (2.55)

Since ψ(β) is a continuous and monotonically increasing function of ρ, it follows that the
right hand side of (2.53) is strictly positive for any ρ > ρ(ML). This concludes the proof of
Theorem 2.8.

2.5.3 Proof of the bound Ψ1(b) in Lemma 2.1

We begin with a bounding technique used previously by Wainwright [77] for the study of
exact sparsity pattern recovery. For notational simplicity, we define the random variable

Zs = snr ‖Π(As)Y‖2 (2.56)

which corresponds to the distance between the samples Y and subspace spanned by As.
For any t ∈ R, we can write

Pr[E c(b)] = Pr[E c(b) ∩ {Zs̃ > t}] + Pr[E c(b) ∩ {Zs̃ < t}]
≤ Pr[Zs̃ > t] + Pr[E c(b) ∩ {Zs̃ < t}]. (2.57)

Furthermore,

Pr[E c(b) ∩ {Zs̃ ≤ t}] = Pr
[

{min
s∈Bb

Zz ≤ Zs̃} ∩ {Zs̃ ≤ t}
]

≤ Pr
[

min
s∈Bb

Zs ≤ t
]

≤
∑

s∈Bb

Pr[Zs ≤ t], (2.58)

where (2.58) follows from the union bound. Plugging (2.58) back into (2.57) gives

Pr[E c(b)] ≤ Pr[Zs̃ > t] +
∑

s∈Bb

Pr[Zs ≤ t]. (2.59)

Note that Pr[Zs ≤ t] depends only on the marginal distributions of the random variable
Zs. In Wainwright’s analysis [77], this probability is upper bounded in terms of a noncentral
chi-squared random variable whose noncentrality parameter is unknown but bounded. In
this proof however, we begin with the exact distribution on Zs.

Lemma 2.3. For each s ∈ Sn
k , the random variable

Zs

1 + 1
n‖xsc‖2snr

has a chi-squared distribution with m− k degrees of freedom.
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Proof. Since Asxs lies in the range space of As, we can write

Zs = ‖Π(As)(
√

snrAx + W)‖2

= ‖Π(As)(
√

snrAscxsc + W)‖2.

The vector
√

snrAsxs + W is independent of Π(As) and has i.i.d. Gaussian entries with
mean zero and variance 1 + 1

n‖xsc‖2 snr. Also, with probability one over the distribution A,
the matrix Π(As) has exactly n − k singular values equal to 1 and k singular values equal
to 0. Therefore, the stated result follows immediately from the rotational invariance of the
Gaussian distribution.

To proceed, let V denote a chi-squared random variable with m − k degrees of freedom
and let t = (1 + M̄)(m− k) where M̄ = λM(b) + (1−λ)M(0) for some λ ∈ (0, 1). Then, by
Lemma 2.3,

Pr[Zs̃ > t] = Pr
[(

1

m− k

)

V >
1 + M̄

1 + M(0)

]

(2.60)

and

Pr[Zs ≤ t] = Pr
[(

1

m− k

)

V ≤ 1 + M̄

1 + 1
n‖xs‖2snr

]

(2.61)

≤ Pr
[(

1

m− k

)

V ≤ 1 + M̄

1 + M(b)

]

(2.62)

where (2.62) follows from the definition of M(b).
Both (2.60) and (2.62) can be upper bounded using the chi-squared large deviations

bounds given in Lemma 2.4 below. Combining these bounds with (2.59) and the simple fact
that

|Bb| =

(

k

b

)(

n− k

b

)

, (2.63)

shows that Pr[E c(b)] ≤ Ψ1(b), which completes the proof.

Lemma 2.4. Let V be a chi-squared random variable with d degrees of freedom. For any
x > 1,

Pr[V ≥ d x
]

≤ exp
(

− d 1
4(
√

2x− 1− 1)2
)

, (2.64)

Pr[V ≤ d/x] ≤ exp
(

− d1
2 [log x + 1/x− 1]

)

. (2.65)
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Proof. The upper bound (2.64) follows directly from Laurent and Massart [41, pp. 1325].
For the lower bound (2.65), observe that for any µ > 0,

Pr[V ≤ ( 1
x)d] = Pr[exp(−µV ) ≥ exp(−µ( 1

x)d)
]

≤ E[exp(−µX) exp(µ( 1
x)d)] (2.66)

= exp(−d[12 log(1 + 2µ)− µ( 1
x)]) (2.67)

where (2.66) follows from Markov’s inequality and (2.67) follows from the moment generating
function of a chi-squared distribution. Letting µ = (x− 1)/2 completes the proof.

2.5.4 Proof of the bound Ψ2(b) in Lemma 2.1

This proof uses a new decomposition of the error event to obtain a different upper bound
on Pr[E c(b)]. In some problem regimes, this bound improves significantly over the bound
derived in the previous section. As before, we use the definition of Zs given in (2.56).

To motivate our proof strategy, observe that one weakness of the bound (2.59) is that the
threshold t is a fixed constant whereas the event E(b) depends on the relative magnitudes of
the variables ZS.

In this proof, we begin with the union bound as follows

Pr[E c(b)] ≤
∑

s∈Ba

Pr[Zs ≤ Zs̃]. (2.68)

Unlike (2.59), each probability on the right hand side of (2.68) depends on the relative
magnitudes of ZS and ZS̃. In the remainder of this proof, our goal is to derive an upper
bound on Pr[Zs ≤ Zs̃] that exploits the dependence between Zs̃ and Zs. A key step is the
following lemma.

Lemma 2.5. For any s ∈ Sn
k , define the random variables

Ts =
√

snr ‖Π(As)Ascxsc‖

Us =
〈Π(As)Ascxsc ,W〉
‖Π(As)Ascxsc‖

Vs = ‖Π(As)W‖.

The following statements hold:

(a) Zs = T 2
s + 2TsUs + V 2

s

(b) T 2
s /( 1

n‖xsc‖2 snr) has a chi-squared distribution with m− k degrees of freedom.

(c) Us is independent of Ts and has a Gaussian distribution with mean zero and variance
one.
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(d) Vs is independent of Ts′ for any s, s′ ∈ Sn
k .

Proof. To prove part (a) observe that

Zs = ‖Π(As)(
√

snrAscxsc + W)‖2 (2.69)

= snr ‖Π(As)Ascxsc‖2 + ‖Π(As)W‖2

+ 2
√

snr 〈Π(As)Ascxsc ,Π(As)W〉

Part (b) follows from the proof of Lemma 2.3. Part (c) follows from the fact that the vector
Π(As)Ascxsc is independent of W and is nonzero with probability one. Part (d) follows from
the fact that Π(As), Ascxsc , and W are mutually independent and Π(As) has rank m − k
with probability one.

To proceed, fix any θ ∈ (0, 1) and ε > 0 and define the event A = ∩3
i=1Ai where

A1 =
{

T 2
s + 2Ts̃Us ≥ θT 2

s

}

(2.70)

A2 =
{

T 2
s̃ + 2Ts̃Us̃ ≤ ε(m− k)

}

(2.71)

A3 =
{

θT 2
s + V 2

s − V 2
s̃ > ε(m− k)}. (2.72)

Using part (a) of Lemma 2.5 it can be verified that {Zs ≤ Zs̃} ∩A = {∅}, and thus

Pr[Zs ≤ Zs̃] = Pr[{Zs ≤ Zs̃} ∩Ac]

≤
3
∑

i=1

Pr[Ac
i ] (2.73)

where (2.73) follows from the union bound. In the following three subsections, we prove
upper bounds on the probabilities Pr[Ac

j], j ∈ {1, 2, 3}. Plugging these bounds back into
(2.73) and using the fact that the cardinality of Bb is given by (2.63) completes the proof.

Upper Bound on Pr[Ac
1]

The first error event is relatively straightforward to bound. Observe that

Pr[Ac
1] = Pr[ (1−θ)

2

4 T 2
s + (1−θ)

2 TsUs < 0]

= Pr[exp(− (1−θ)2
4 T 2

s −
(1−θ)

2 TsUs) ≥ 1]

≤ E[exp(− (1−θ)2
4 T 2

s −
(1−θ)

2 TsUs)] (2.74)

= E[exp(− (1−θ)2
8 T 2

s )] (2.75)

=
(

1− (1−θ)2
4

1
n‖xsc‖2 snr

)−(m−k)/2
(2.76)

≤
(

1− (1−θ)2
4 M(b)

)−(m−k)/2
(2.77)
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where: (2.74) follows from Markov’s inequality; (2.75) follows from part (c) of Lemma 2.5
and the moment generating function of the Gaussian distribution; (2.76) follows from part
(b) of Lemma 2.5 and the moment generating function of the chi-squared distribution; and
(2.77) follows from the definition of M(b).

Upper Bound on Pr[Ac
2]

The second error event is similar to the first one, except that the inequality is in the other
direction and there is a constant term to deal with. If we let t = εM(0)(m − k) and
λ = 1/(2M(0)), then

Pr[Ac
2] = Pr[λ(−t + T 2

s̃ + 2Ts̃Us̃) > 0]

= Pr[exp(−λt + λT 2
s̃ + 2λTs̃Us̃) > 1]

≤ E[exp(−λt + λT 2
s̃ + 2λTs̃Us̃)] (2.78)

= E[exp(−λt + (λ− 2λ2)T 2
s̃ )] (2.79)

= exp(−λt)
(

1− 2(λ− 2λ2)M(0)
)−m−k

2 (2.80)

=
(

exp(ε)

2M(0)

)−m−k
2

(2.81)

where: (2.78) follows from Markov’s inequality; (2.79) follows from part (c) of Lemma 2.5
and the moment generating function of the Gaussian distribution; (2.80) follows from part
(b) of Lemma 2.5 and the moment generating function of the chi-squared distribution; and
(2.77) follows from plugging in the definitions of t and λ.

Upper Bound on Pr[Ac
3]

The third error event requires the most work. Part of the difficulty is that the random
variables V 2

s and V 2
s̃ are not independent. The following result uses the fact that they are

positively correlated to obtain a nontrivial upper bound on the moment generating function
of their difference; the proof is given in Section 2.5.6.

Lemma 2.6. For any µ ∈ (0, 1),

E[exp(µ
2 [V 2

s̃ − V 2
s ])] ≤ (1− µ2)−b/2. (2.82)

We remark that the exponent in (2.82) is proportional to the overlap b. If V 2
s and V 2

s̃

were independent, then the exponent would be proportional to k. This difference in the
exponents is the key reason why this bounding technique works well in settings where the
previous technique failed.
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With Lemma 2.6 in hand, we are now ready to upper bound the probability Pr[Ac
3]. Let

t = εPn(0)(m− k) and fix any µ ∈ (0, 1). Then,

Pr[Ac
3] = Pr[µ

2 (t− θT 2
s − V 2

s + V 2
s̃ ) ≥ 0]

= Pr[exp(µ
2 (t− θT 2

s − V 2
s + V 2

s̃ )) ≥ 1]

≤ E[exp(µ
2 (t− θT 2

s − V 2
s + V 2

s̃ ))] (2.83)

= E[exp(µ
2 [t− θT 2

s ])]E[exp(µ
2 [V 2

s̃ − V 2
s ])] (2.84)

= e
µ
2 t
(

1 + µθ‖xsc‖2 snr
)−m−k

2 (1− µ2)−
b
2 (2.85)

≤ e
µ
2 t
(

1 + µθM(b)
)−m−k

2 (1− µ2)−
b
2 (2.86)

=
(

1 + µθM(b)

exp(εPn(0))

)−m−k
2

(1− µ2)−
b
2 (2.87)

where: (2.83) follows from Markov’s inequality; (2.84) follows from part (d) of Lemma 2.5;
(2.85) follows from part (b) of Lemma 2.5, the moment generating function of the chi-squared
distribution, and Lemma 2.6; (2.86) follows from the definition of M(b); and (2.87) follows
from the definition of t.

2.5.5 Proof of Lemma 2.2

To simplify notation we will write k instead of kn where the dependence on n is implicit.
Since Ψ1(b) and Ψ2(b) are non-increasing functions of M(b), it is sufficient to show that

the following limits hold:

lim
n→∞

sup
β∈[0,1]

∣

∣

∣

∣

∣

H(β, κ)− 1

n
log

(

k

(βk)

)(

n−k

(βk)

)
∣

∣

∣

∣

∣

= 0 (2.88)

lim
n→∞

M(0) = 0 (2.89)

lim sup
n→∞

max
β∈[0,1]

(

P (β) snr−M((βk))
)

< 0. (2.90)

Then, it follows immediately that

x lim sup
n→∞

max
β∈[0,1]

(

ψi(β) +
1

n
log(Ψi((βkn))

)

< 0 (2.91)

for i ∈ {1, 2}, which proves the desired result.
To begin, note that (2.88) follows directly from a strong form of Stirling’s approximation

[14, Lemma 17.5.1].
Next, we consider the term M(0). For each problem of size n, let {ni}i∈[n] be a permu-

tation of [n] such that x2
n1
≤ x2

n2
≤ · · · ≤ x2

nn
. Starting with the definition of s̃, we can
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write

snr−1M(0) = min
s∈Sn

k

1

n
‖xsc‖2 (2.92)

=
1

n

n−k
∑

i=1

x2
ni

(2.93)

=
∫ ∞

0

(

n− k

n
− 1

n

n−k
∑

i=1

1(x2
ni
≤ u)

)

du (2.94)

=
∫ ∞

0
max

(

1−Gn(u)− k
n , 0
)

du, (2.95)

where Gn(u) denotes the empirical distribution function of {x2
i }i∈[n], Thus, for any ε > 0,

snr−1M(0) =
∫ ε

0
max

(

1−Gn(u)− k
n , 0
)

du

+
∫ ∞

ε
max

(

1−Gn(u)− k
n , 0
)

du

≤ ε + max
(

1−Gn(ε)− k
n , 0
)

. (2.96)

By the weak convergence of Assumption S2, it follows that the second term on the right
hand side of (2.96) converges to zero as n→∞. Since epsilon is arbitrary, we conclude that
limn→∞ M(0) = 0.

We now consider the final term M(b). Since

n snr−1M(b) = ‖x‖2 −max
s∈Bb

‖xs‖2

≥ ‖x‖2 −max
s∈Bb

(

‖xs‖2 + ‖xsc∩s̃c‖2
)

= ‖x‖2 −max
s∈Bb

‖xs∩s̃‖2 − ‖xs̃c‖2

= min
s∈Sn

k−b

‖xsc‖2 − n snr−1M(0)

it is sufficient to show that

lim sup
n→∞

max
β∈[0,1]

(

P (β)− Pn(β)
)

< 0 (2.97)

where Pn(β) = 1
n mins∈Sn

k−b
‖xsc‖2.

Following the same steps we used for M(0), we have

Pn(β) =
∫ ∞

0
max

(

1−Gn(u)− k−,βk-
n , 0

)

du.

Also, by definition

P (β) =
∫ ∞

0
max

(

1−G(u)− (1− β)κ, 0
)

du (2.98)
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where G(u) = Pr[X2 ≤ u]. Thus, for any ε > 0 we have

P (β)− Pn(β) =
∫ ε

0
max

(

1−G(u)− (1− β)κ, 0
)

du +
∫ ∞

0
ϕn(u)du

≤ ε +
∫ ∞

0
max(ϕn(u), 0)du (2.99)

where

ϕn(u) =
[

max
(

1−G(u + ε)− (1− β)κ, 0
)

−max
(

1−Gn(u)− k−,βk-
n , 0

)

]

.

To deal with the second term in (2.99), observe that

ϕn(u) ≤
∣

∣

∣(1− β)κ− k−,βk-
n

∣

∣

∣+ Gn(u)−G(u + ε). (2.100)

Thus, by the weak convergence of Assumption S2,

lim
n→∞

max
β∈[0,1]

max(ϕn(u), 0) = 0 (2.101)

for every u ∈ R. Since ϕn(u) is upper bounded by the integrable function 1− G(u + ε), it
follows from the bounded convergence theorem that the second term in (2.99) is equal to
zero. Since ε is arbitrary, this proves (2.97) and hence (2.90).

2.5.6 Proof of Lemma 2.6

The key to this proof is to consider the eigenvalues of the matrix M = Π(As̃) − Π(As).
Since M is symmetric, it can be expressed as M = QΛQT where Q is an m×m orthonormal
matrix and Λ is a real valued diagonal matrix whose diagonal entries obey λ1 ≥ λ2 ≥ ... ≥ λm.
Letting W̃ = QT W, we have

V 2
s̃ − V 2

s = WTMWT =
m
∑

i=1

λiW̃
2
i (2.102)

where W̃1, W̃2, · · · , W̃m are i.i.d. Gaussian N (0, 1), and thus

E[exp(µ
2 [V 2

s̃ − V 2
s ])] =

m
∏

i=1

E[exp(µ
2λiW̃ 2

i )] (2.103)

=
m
∏

i=1

(1− µλi)
−1/2. (2.104)

To characterize the eigenvalues, we now consider two cases. If m ≥ 2k, then

rank(M) = rank
(

[I −Π(As)]− [I − Π(As̃)]
)

≤ rank(I − Π(As)) + rank(I − Π(As̃))

≤ 2k,
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and so at least m − 2k eigenvalues are equal to zero. It can be shown (see [53, p. 8]),
that the remaining 2k singular values are given by λi = sin θi and λm−i+1 = − sin θi for
i = 1, 2, · · · , k where π/2 ≥ θ1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 are known as the principal angles
between the k-dimensional subspaces R(As) and R(As̃) spanned by the columns of As and
As̃ respectively. Since the number of principal angles that are equal to zero is given by the
dimension of the intersection of the two subspaces, it follows that

|{i : θi = 0}| = dim
(

R(As) ∩R(As̃)
)

≥ dim
(

R(As∩s̃)
)

= k − b

where the last equality holds with probability one over the distribution on A.
Returning to (2.104), we can now write

E[exp(µ
2 [V 2

s̃ − V 2
s ])] =

b
∏

i=1

(1− µ2 sin2 θi)
−1/2 (2.105)

≤ (1− µ2)−b/2 (2.106)

where (2.106) follows from the fact that 0 ≤ sin2 θi ≤ 1.
For the case m < 2k we use similar arguments. Since

rank(M) ≤ rank(Π(As)) + rank(Π(As̃))

≤ 2(m− k),

at least 2k − m eigenvalues of M are equal to zero. The remaining 2(m − k) eigenvalues
are given by λi = sin θi and λm−i+1 = − sin θi for i = 1, 2, · · · , m − k where the θi are the
principal angles between the m−k dimensional subspaces N (As) and N (As̃) corresponding
to the orthogonal complements of R(As) and R(As̃) respectively. Thus, we have

|{i : θi = 0}| = dim
(

N (As) ∩N (As̃)
)

= m− dim
(

R(As) + R(As̃)
)

≥ max
(

0, m− 2k + dim
(

R(As∩s̃)
))

= max
(

0, m− k − b)

where the last equality holds with probability one over the distribution on A. Therefore,
there are at most b nonzero principle angles. Following the same steps used in the previous
case, leads again to the upper bound (2.106). This concludes the proof of Lemma 2.6.
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2.6 Proofs of Remaining Upper Bounds

We now give the proofs of Theorems 2.2, 2.3, 2.4, and 2.7. Each of these proofs follows a
similar outline. First, we establish convergence of the empirical joint distribution on the
entries in x and the vector estimate X̂ generated in the first stage recovery (see Fig 2.1).
Then, we show that this convergence characterizes the limiting distortion with respect to
the relaxed sparsity pattern recovery task described in Section 1.4.4.

In these proofs, we use the superscripts
prob→ and

dist→ to denote convergence in probability
and distribution, respectively.

2.6.1 From Convergence in Distribution to Relaxed Recovery

For each problem of size n, let X̂ denote the estimate of the unknown vector x generated in
the first stage of sparsity pattern recovery and let Fn(x, x̂) denote the cumulative distribution
function (CDF) of the empirical joint distribution on the entries in (x, X̂), i.e.

Fn(x, x̂) =
1

n

n
∑

i=1

1
(

xi ≤ x, X̂i ≤ x̂
)

. (2.107)

Note that Fn(x, x̂) is a random function due to the randomness in X̂. Also, let F (x, z) denote
the CDF of the random pair (X, Z) given in Definition 2.1, i.e.

F (x, z) = Pr[X ≤ x, Z ≤ z]. (2.108)

According to standard terminology, Fn(x, x̂) converges weakly in probability to the limit
F (x, z) if

lim
n→∞

Pr
[
∣

∣

∣Fn(x, z)− F (x, z)
∣

∣

∣ > ε
]

= 0 (2.109)

for any fixed ε > 0 and (x, z) ∈ R2 such that (x, z) are continuity points of F (x, z). Since
Z is a continuous random variable, the last constraint simplifies to all (x, z) ∈ R2 such that
pX({x}) = 0.

Lemma 2.7. If Fn(x, x̂) convergence weakly in probability to a limit F (x, z) characterized
by a distribution pX and noise power σ2 > 0, then the distortion between the sparsity pattern
estimate Ŝ generated in the second stage of recovery and the set S̃ described in Section 1.4.4
obeys

lim
n→∞

d(S̃, Ŝ)
prob
= Dawgn(σ

2; pX) (2.110)

where Dawgn(σ2; pX) is given by (2.14).
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Proof. For each problem of size n, define

Ũ = {i ∈ [n] : |xi| > δ} and Û = {i ∈ [n] : |X̂i| > t},

where δ > 0 satisfies Pr[|X| = δ] = 0 and t is the unique solution to Pr[|Z| ≥ t] = κ. Note
that t corresponds to the minimizer of the right hand side of (2.14).

By the triangle inequality, we have
∣

∣

∣d(s̃, ŝ)− d(Ũ , Û)
∣

∣

∣ ≤ d(s̃, Ũ) + d(Û , ŝ). (2.111)

Furthermore, by the weak convergence of Fn(x, x̂) to F (x, z) and the definitions of S̃ and Ŝ,
it can be shown that,

lim
n→∞

d(s̃, Ũ) = Pr[|X| ≤ δ|X '= 0] (2.112)

lim
n→∞

d(Ũ , Û)
prob
= Pr[|X| ≤ δ | |Z| > t] (2.113)

lim
n→∞

d(Û , ŝ)
prob
= 0, (2.114)

where (2.113) and (2.114) follow from the definition of t.
By the assumptions on pX and the definition of Dawgn(σ2; pX), there exists, for any ε > 0,

a δ > 0 such that Pr[|X| = δ] = 0 and

Pr[|X| ≤ δ|X '= 0] ≤ ε (2.115)
∣

∣

∣Pr[|X| ≤ δ | |Z| > t]−Dawgn(σ
2; pX)

∣

∣

∣ ≤ ε. (2.116)

Hence, we have shown that

lim
n→∞

Pr
[
∣

∣

∣d(S̃, Ŝ)−Dawgn(σ
2; pX)

∣

∣

∣ > ε′
]

= 0 (2.117)

for any ε′ > 0 which completes the proof.

2.6.2 Proof of Theorem 2.2

In this section, we prove convergence of the empirical CDF Fn(x, x̂) corresponding to the
MF estimate. Theorem 2.2 then follows immediately from Lemmas 1.1 and 2.7.

The crucial step in this proof is the following result which characterizes the limiting joint
distribution of a randomly chosen subset of the entries in (x, X̂(MF)). Due to the simplicity
of the MF estimate, we are able to prove this convergence generally for any i.i.d. distribution
on the entries of the measurement matrix A.

Lemma 2.8. Let L be a fixed integer. For each problem of size n ≥ L, let L be distributed
uniformly over all subsets of [n] of size L. Then, under Assumptions S2-S3 and M1-M4,
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the joint distribution on {(x(, X̂
(MF)
( )}(∈L converges weakly to the joint distribution on L

independent copies of the random pair (X, Z) given in Definition 2.1 where σ2 is given by

σ2 =
snr−1 + 1

ρ
. (2.118)

Proof. To gain intuition, observe that the entries in the MF estimate indexed by L can be
decomposed as follows:

X̂
(MF)
L =

(

n
m

)

AT
LALxL +

(

n
m

)

AT
L

(

ALcxLc + 1√snrW
)

. (2.119)

By the law of large numbers, it is straightforward to show that the first term on the right hand
side of (2.119) converges in distribution to random vector X whose entries are i.i.d. copies
of X. Also, by the central limit theorem, it is straightforward to show that the second
term converges in distribution to a vector whose entries are i.i.d. N (0, σ2). However, since
the terms in (2.119) are not mutually independent, these arguments are, by themselves,
insufficient to prove Lemma 2.8.

To proceed, we will introduce an additional term that allows us to decompose X̂
(MF)
L into

independent components. Specifically, for each problem of size n, let Ã be an m×L random
matrix whose columns are independent copies of the columns of A and define the random
vectors

U =
[(

n
m

)

AT
L

(

AL − Ã
)

− IL×L

]

xL (2.120)

V =
(

n
m

)

AT
L

(

ÃxL + ALcxLc + snr−1/2W
)

. (2.121)

Then, we can write

X̂
(MF)
L = xL + U + V (2.122)

where the vectors xL and V are independent.
From here, the proof is straightforward. If the following limits hold,

lim
n→∞

xL
dist= X (2.123)

lim
n→∞

U
prob
= 0L×1 (2.124)

lim
n→∞

V
dist= N (0, σ2IL×L), (2.125)

then the desired convergence follows immediately from Slutsky’s theorem.
The limit (2.123) follows from Assumption S2, and the fact that L is finite. To prove

(2.124), observe that by Assumptions M1-M4 and the weak law of large numbers, AT
LAL →

(m/n)IL×L and AT
LÃL → 0L×L in probability as n→∞. Combining these facts with (2.123)

shows that U converges to 0L×1 in distribution, and thus also in probability.
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Finally, to prove (2.125), observe that V =
∑m

i=1 Vi where

Vi =
(

n
m

)

(AT
L)i

(

ÃxL + ALcxLc + snr−1/2W
)

i
(2.126)

and (AT
L)i denotes the i’th column of the L × m matrix AT

L. Since the entries in A, Ã,
and W are mutually independent, it can be verified that the vectors {Vi}i∈[m] are i.i.d. with
mean zero and covariance

E[ViV
T
i ] =

(

n

m2

)(

1

n
‖x‖2 + snr−1

)

IL×L. (2.127)

Therefore, the limit (2.125) follows from the multivariate central limit theorem and Assump-
tion S3.

With Lemma 2.8 in hand, we can now prove convergence of the empirical CDF Fn(x, x̂)
directly from Chebyshev’s inequality.

Lemma 2.9. Under Assumptions S2-S3 and M1-M4, the empirical CDF Fn(x, x̂) corre-
sponding to the MF estimate converges weakly in probability to a limit F (x, z) with noise
power σ2 given by (2.118).

Proof. Beginning with Chebyshev’s inequality, we have

Pr
[
∣

∣

∣Fn(x, x̂)− F (x, x̂)
∣

∣

∣ > ε
]

≤ ε−2
E

[
∣

∣

∣Fn(x, x̂)− F (x, x̂)
∣

∣

∣

2]

= ε−2
∣

∣

∣E

[

F 2
n(x, x̂)]− F 2(x, x̂)

∣

∣

∣− ε−22
∣

∣

∣E[Fn(x, x̂)]− F (x, x̂)
∣

∣

∣

(2.128)

for any ε > 0. By the linearity of expectation, we can write

E[Fn(x, x̂)] = Pr[x(1 ≤ x, X̂(1 ≤ x̂] (2.129)

E[F 2
n(x, x̂)] = n−1

n Pr[x(1 ≤ x, X̂(1 ≤ x̂, x(2 ≤ x, X̂(2 ≤ x̂]

+ 1
n Pr[x(1 ≤ x, X̂(1 ≤ x̂] (2.130)

where "1 and "2 are drawn uniformly at random without replacement from [n]. Hence, by
Lemma 2.8, it follows that

lim
n→∞

E[Fn(x, x̂)] = F (x, x̂)

lim
n→∞

E[F 2
n(x, x̂)] = F 2(x, x̂).

Therefore, both terms on the right hand side of (2.128) converge to zero as n → ∞, thus
completing the proof.
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2.6.3 Proof of Theorem 2.3

For this proof, we use the well known fact (see e.g. [34]) that matrix inversion can be
performed using iterative methods. Specifically, for a fixed tuple (y, A, snr), let γ be the
unique positive solution to quadratic equation

snr = γ
(

m

n
− 1

1 + γ

)

, (2.131)

and consider the AMP algorithm with η(z, σ2) = z/(1 + γ). If the sequences {xt}t≥1 and
{ut}t≥1 converge to a fixed point (x∞,u∞), then it can be verified by checking the update
equations (2.18) and (2.19) that x∞ = x(LMMSE), ATu∞ = γx(LMMSE), and thus

x(AMP) = (1 + γ)x(LMMSE). (2.132)

Therefore, the LMMSE estimate can be computed using the appropriate linear version of
AMP, provided that the AMP algorithm converges.

We now use the analysis of Bayati and Montanari to characterize the limiting behavior
of the AMP estimate. For each problem of size n let X̂(AMP) denote the output of the AMP
algorithm corresponding to the function η(z, σ2) = z/(1+γn) where γn is the unique positive
solution to (2.131). Then, under Assumptions S2-S3 and M1-M5, it follows from part (b)
of [7, Lemma 1] that the empirical CDF corresponding to X̂(AMP) converges weakly almost
surely to a limit F (x, z) with a noise power σ2

∞ that is the unique solution to the quadratic
equation

ρ =
1

σ2
∞ snr

+
1

1 + σ2
∞

. (2.133)

Since the LMMSE estimate is proportional to the AMP estimate, this result, along with
Lemmas 1.1 and 2.7, completes the proof of Theorem 2.3.

2.6.4 Proof of Theorem 2.4

To begin, consider a modified version of the AMP algorithm in which the sequence of noise
power estimates {σ̂2

t }t≥1 is replaced with the sequence of noise powers {σ2
t }t≥1 defined by

the state evolution recursion (2.25). (Note that this modified algorithm depends explicitly
on the distribution pX .) For each problem of size n, let

X̂t = ATUt + Xt (2.134)

denote the modified AMP estimate at iteration t. Then, under Assumptions S2-S3 and M1-
M5, it follows from part (b) of [7, Lemma 1] that the empirical CDF corresponding to X̂t

converges weakly almost surely to a limit F (x, z) with noise power σ2
t .
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Moreover, by part (c) of [7, Lemma 1] it can be shown that, under the same assumptions,
the residuals Ut corresponding to the modified AMP algorithm obey

lim
n→∞

1
n‖U

t(n)‖2 = σ2
t (2.135)

almost surely. Thus, by the continuity of η(z, σ2) with respect to σ2, it follows that the AMP
algorithm using the empirical estimates σ̂2

t has the same limiting behavior as the modified
AMP algorithm.

By the above arguments, the empirical CDF Fn(x, x̂) corresponding to the AMP estimate
(2.23) converges weakly almost surely, and hence also in probability, to a limit F (x, z) with
noise power σ2

∞ given in (2.26). Combining this result with Lemmas 1.1 and 2.7 completes
the proof of Theorem 2.4.

2.6.5 Proof of Theorem 2.7

This proof follows along the same lines as the proof of Theorem 2.2. The key step is the
following result which is analogous to Lemma 2.8 except that it also requires the replica
analysis assumptions. This result is stated as Claim 3 in [35], and its proof follows directly
from the analysis in [36, Section IV-B].

Lemma 2.10. Assume that the replica analysis assumptions hold. Let L be a fixed integer.
For each problem of size n ≥ L, let L be distributed uniformly over all subsets of [n] of size L.

Then, under Assumptions S2-S3 and M1-M4, the joint distribution on {(x(, X̂
(MMSE)
( )}(∈L

converges weakly to the joint distribution on L independent copies of the random pair (X, Z)
given in Definition 2.1 where σ2 is given by the noise power τ ∗ defined in (2.37).

From here, the rest of the proof follows immediately from Chebyshev’s inequality (see
Lemma 2.9).
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Chapter 3

Information-Theoretic Lower Bounds

This chapter gives lower bounds on the fundamental sampling rate distortion-function.
These bounds consist of necessary conditions which apply generally to any possible recovery
algorithm. We begin by describing a stochastic signal model in Section 3.1. In Section 3.2 we
derive general lower bounds which hold for any sequence of matrices obeying Assumptions
M1-M3. In Section 3.3 we strengthen these results for matrices whose entries are also i.i.d.
(Assumption M4). Additional results for the noiseless setting are considered in Section 3.4,
and proofs are given in Section 3.5.

3.1 Stochastic Signal Model

Throughout this chapter, the unknown vector is modeled as a random vector X. Accordingly,
the linear observation model described in Section 1.4 is expressed as

Y = AX +
1√
snr

W. (3.1)

To characterize a sequence of recovery problems {X(n),A(n),W(n)}n≥1 indexed by the
vector length n, we use the following stochastic signal assumptions.

Stochastic Signal Assumptions: We consider the following assumptions on a sequence
of random vectors X(n) ∈ Rn.

SS1 Linear Sparsity: The sparsity pattern S∗ is distributed uniformly over all subsets of
{1, 2, · · · , n} of size k(n) where

lim
n→∞

k(n)

n
= κ (3.2)

for some sparsity rate κ ∈ (0, 1/2).
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SS2 I.I.D. Entries: The nonzero entries {Xi : i ∈ S∗} are i.i.d. pU where pU is a probability
measure with zero mass at 0, i.e. Pr[U = 0] = 0. We use pX to denote the probability
measure given by

pX = (1− κ)δ0 + κ pU

where δ0 denotes a point-mass at x = 0.

SS3 Normalization: The distribution pX has second moment equal to one.

The stochastic signal assumptions are closely related to the deterministic signal assump-
tions given in Section 1.4.2. One difference is that under Assumptions SS1-SS2 we may
consider distributions pX without a second moment constraint. This extra degree of freedom
gives us greater flexibility in stating our lower bounds. In all cases, Assumption SS3 can be
enforced by rescaling the parameter snr appropriately.

The definition of achievability under the stochastic signal assumptions SS1-SS3 is the
same as the definition of achievability under the deterministic signal assumptions S1-S3
except that the error probability ε(ALG)

n given in (1.7) is taken with respect to the probability
measure on X. Also we assume that the number of nonzero entries k = |S∗| is known
throughout the system. Under these assumptions, the optimal recovery algorithm can be
stated explicitly as

Ŝ(OPT) = arg min
S:|S|=k

Pr[d(S∗, S) > D|AX + snr−1/2W = y]. (3.3)

The following result shows that a necessary condition for the stochastic setting implies a
necessary condition for the deterministic setting.

Lemma 3.1. If a distortion D is not achievable for the tuple (ρ, pX , snr) under Assumptions
SS1-SS3, then it is not achievable under Assumptions S1-S3.

Proof. This results follows immediately from the fact that a random sequence of vectors
{X(n)}n≥1 distributed according to Assumptions SS1-SS3 obeys Assumptions of S1-S3 with
probability one.

3.2 Bounds for Arbitrary Measurement Matrices

This section derives lower bounds on the fundamental sampling rate distortion function that
apply generally to any sequence of measurement matrices obeying Assumptions M1-M3.

Before we present our bounds, two more definitions are needed. First, we use the notation

VX = Var(X) (3.4)

to denote the variance of the distribution pX . Note that (1−κ) ≤ VX ≤ 1 for any distribution
pX obeying the constraints of Assumptions SS1-SS3.
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Also, we define

R(D; κ) =











H(κ)− κH(D)− (1− κ)H
(

κD

1− κ

)

, if D < 1−κ

0, if D ≥ 1−κ
(3.5)

where H(p) = −p log p− (1− p) log(1− p) is binary entropy. It is straightforward to show
that R(D; κ) corresponds to the information rate (given in nats per dimension) required to
encode a sparsity pattern to within distortion D.

Our first lower bound is general in the sense that it depends only on the variance of the
distribution pX . This result serves as a building block for our stronger bounds.

Theorem 3.1. Under Assumptions SS1-SS2 and M1-M3, a distortion D is not achievable
for the tuple (ρ, pX , snr) if

min(1, ρ) log
(

1 + max(1, ρ)VX snr
)

< 2R(D; κ). (3.6)

Proof. See Section 3.5.1.

The following Corollary is equivalent to Theorem 3.1 in the under-sampled setting ρ < 1.
This result has been derived previously in the special case of exact recovery [33, 64, 79], as
well as for approximate recovery in the special case of binary signals [1].

Corollary 3.1. Under Assumptions SS1-SS2 and M1-M3, a distortion D is not achievable
for the tuple (ρ, pX , snr) if

ρ <
2R(D; κ)

log(1 + VX snr)
. (3.7)

Proof. This result follows from the fact that log(1 + ργ) ≤ ρ log(1 + γ) for all ρ ≥ 1.

Theorem 3.1 is remarkable in that it holds for any possible recovery algorithm. Moreover,
it shows that a nonzero sampling rate ρ is necessary in the presence of noise.

One critical weakness of Theorem 3.1, however, is that it does not reflect the true difficulty
of sparsity recovery when the desired distortion D is small. For example, if D = 0, then
the lower bound on sampling rate is finite even though it has been shown that an infinite
sampling rate is needed in the presence of noise [58]. Among other things, this discrepancy
leaves open the possibility that the total number of recovery errors could grow sublinearly
with the length n such that the fraction of errors is asymptotically zero.

Our next result allows us to lower bound the distortion corresponding to a distribution
pX in terms of a different but related distribution pZ . This result is extremely powerful since
it allows us to isolate the key aspects of the recovery problem that make recovery difficult.
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Theorem 3.2. Let pX and pZ be probability measures with the following properties:

0 < κZ ≤ κX (3.8)

pZ(A)

1− κZ
≤ pZ(A)

1− κX
for all A ⊆ R\{0}. (3.9)

where κX = 1− pX({0}) and κZ = 1− pX({0}). For a given tuple (D, ρ, snr) define

D̃ =
(

1− κZ

1− κX

)(

κX

κZ

)

D (3.10)

ρ̃ =
(

1− κZ

1− κX

)

ρ (3.11)

˜snr =
(

1− κZ

1− κX

)

snr. (3.12)

Under Assumptions SS1-SS2 and M1-M3, the following statement holds: If the distortion
D̃ is not achievable for the tuple (ρ̃, pZ , ˜snr), then the distortion D is not achievable for the
tuple (ρ, pX , snr).

Proof. The proof is based on a genie argument and is given in Section 3.5.2.

The reason that Theorem 3.2 is useful is that it allows us to isolate the nonzero entries
in X whose locations are difficult to identify. Starting with an initial distribution pX , one
way to create an appropriate distribution pZ is via truncation and re-normalization. For
example, for any set {0} ⊂ T ⊆ R, the distribution

pZ(A) =
pX(A ∩ T )

pX(T )

satisfies the constraints of Theorem 3.2 with κZ = 1− (1− κX)/pX(T ).
Our next result combines Theorems 3.1 and 3.2 to give a bound that overcomes the

weakness of Theorem 3.1 and accurately characterizes the difficulty of recovery when the
distortion D is small.

Theorem 3.3. Under Assumptions SS1-SS2 and M1-M3, a distortion D is not achievable
for the tuple (ρ, pX , snr) if there exists a tuple (ρ̃, pZ , s̃nr) satisfying the assumptions of The-
orem 3.2 such that

min(1, ρ̃) log(1 + max(1, ρ̃)VZ ˜snr) < 2R(D̃; κZ). (3.13)

Proof. This result follows directly from Theorems 3.1 and 3.2.

By the constraints of Theorem 3.2, it can be verified that (3.13) gives a nonzero lower
bound only if the distortion D̃ defined in (3.10) obeys D ≤ D̃ ≤ 1. By characterizing
an explicit mapping between pX and a distribution pZ parameterized terms of the fraction
D′ = D/D̃, we obtain the following lower bound which is similar in style to the ML upper
bound given Theorem 2.1.
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Corollary 3.2. Under Assumptions SS1-SS3 and M1-M3, a distortion D is not achievable
for the tuple (ρ, pX , snr) if

ρ < max
D′∈[D,1]

2(1− κ + κD′)R
(

D
D′ ;

κD′

1−κ+κD′

)

log(1 + P (D′; pX) snr)
(3.14)

where P (D; pX) is given in (2.3).

Proof. Fix any D < D′ < 1. Starting with pX let pZ be the distribution that minimizes
E[Z2] subject to the constraints (3.8) and (3.9) with κZ = κXD′/(1 − κXD′). As a simple
exercise, it can then be verified that VZ ˜snr = P (D′; pX) snr. Parameterizing the bound in
terms of D′, using the approximation of Corollary 3.1, and maximizing over D′ leads to
(3.14).

The following result gives a further simplification of Theorem 3.3.

Corollary 3.3. Fix any α > 1. Under Assumptions S1-S3 and M1-M3, a distortion D ≤
1/α is not achievable for the tuple (ρ, pX , snr) if

ρ <
2R
(

1
α ; καD

1−κ+καD

)

log(1 + P (αD; pX) snr)
. (3.15)

Proof. This bound follows from evaluating the right hand side of (3.14) with D′ = αD.

As the distortion D becomes small, it can be shown that the right hand side of (3.15) tends
to infinity. Therefore, one important contribution of Theorem 3.3 is that it is not possible to
have a vanishing fraction of errors if both the sampling rate and SNR are finite. In Chapter
4, we will show, by comparison with the upper bounds of Chapter 2, that Theorem 3.3 is
relatively tight in the low distortion setting.

3.3 Bounds for IID Measurement Matrices

We now derive stronger lower bounds for measurement matrices whose entries are i.i.d. (As-
sumption M4). Unlike the bounds given in the previous section, these bounds capture the
fact that the nonzero entries of X are unknown.

We define the nonzero entropy power of a random variable X ∼ pX to be

NX =











κ exp (2h(X|X '= 0))

2πe
, if h(X|X '= 0) exists

0, otherwise
(3.16)

where h(X|X '= 0) denotes the differential entropy of the nonzero part of pX . The nonzero
entropy power allows us to assess the relative uncertainty about the nonzero entries.
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The following result gives an improved lower bound in terms of the variance VX and the
nonzero entropy power NX . The proof of this result relies heavily on the entropy power
inequality and the spectral convergence of i.i.d. random matrices.

Theorem 3.4. Under Assumptions SS1-SS3 and M1-M4, a distortion D is not achievable
for the tuple (ρ, pX , snr) if

V(ρ, VX snr)− κVLB(ρ/κ, NX snr) < 2R(D; κ) (3.17)

where

V(r, γ) = r log
(

1 + γ − F(r, γ)
)

+ log
(

1 + r γ − F(r, γ)
)

− F(r, γ)

γ
(3.18)

with

F(r, γ) =
1

4

(

√

γ (
√

r + 1)2 + 1−
√

γ (
√

r − 1)2 + 1
)2

(3.19)

and

VLB(r, γ) =







































r log
(

1 + γ
(

1

1− r

)1/r−1 1

e

)

, if r < 1

log
(

1 + γ
1

e

)

, if r = 1

log
(

1 + γ r
(

r

r − 1

)r−11

e

)

, if r > 1

. (3.20)

Proof. See section 3.5.3.

Remark 3.1. In the special case where the nonzero part of the distribution pX is Gaussian,
the function VLB(r, γ) in the second term on the left hand side of (3.17) can be replaced with
the function V(r, γ), thus providing a slightly stronger condition.

The next result gives a simplified, and necessarily weaker, version of Theorem 3.4.

Corollary 3.4. Under Assumptions SS1-SS3 and M1-M4, a distortion D is not achievable
for the tuple (ρ, pX , snr) if

ρ <
min(ρ, κ) log(1 + (NX/e) snr) + 2R(D, κ)

log(1 + VX snr)
. (3.21)

Proof. This result follows immediately from (3.17) and the bounds V(r, γ) ≤ r log(1 + γ)
and VLB(r, γ) ≥ min(r, 1) log(1 + γ/e).
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The key difference between Theorem 3.4 and the previous bounds occurs in the high SNR
setting. For example, if D is small relative to NX , then the lower bound on the fundamental
sampling rate distortion function ρ∗ given by (3.21) behaves like

ρ∗ ≥ κ +
C

log(1 + snr)

in the high SNR setting. The next result gives a lower bound on the sampling rate that is
bounded away from zero for all SNR.

Corollary 3.5. Under Assumptions SS1-SS3 and M1-M4, a distortion D is not achievable
for the tuple (ρ, pX , snr) if

ρ < min

(

κ,
2R(D; κ)

(1−κ
κ ) log( 1

1−κ) + log(VX/NX)

)

. (3.22)

Proof. Since the fundamental sampling rate-distortion function is a non-increasing function
of the SNR, the infinite SNR limit of (3.17) gives a necessary condition for any finite SNR.

One weakness of Theorem 3.4, however, is that it does not improve significantly upon
Theorem 3.1 when the nonzero entropy power NX is equal to zero. Another weakness is
that it does not accurately reflect the difficulty of recovery when D is small. To fix these
weaknesses, we combine Theorem 3.4 with Theorem 3.2 to obtain the following bound.

Theorem 3.5. Under Assumptions SS1-SS3 and M1-M4, a distortion D is not achievable
for the tuple (ρ, pX , snr) if there exists a tuple (D̃, ρ̃, pZ , s̃nr) satisfying the assumptions of
Theorem 3.2 such that

V(ρ, VZ s̃nr)− κZVLB(ρ/κZ , NZ ˜snr) < 2R(D̃; κZ). (3.23)

Proof. This result follows immediately from Theorems 3.2 and 3.4.

One significant advantage of Theorem 3.5 over Theorem 3.4 is that we can now give
a nontrivial high SNR bound for any distribution pX whose nonzero part is a discrete-
continuous mixture. As the following result shows, the high SNR behavior is dominated by
the weight of the continuous part of the distribution.

Corollary 3.6. Suppose that pX can be expressed as

pX = (1− κ) δ0 + ωc pXc + (κ− ωc) pXd
(3.24)

where Xc is continuous with finite differential entropy and Xd is discrete. Under Assumptions
SS1-SS2 and M1-M4, a distortion D is not achievable for the tuple (ρ, pX , snr) in the noiseless
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setting if ρ < ωc and (3.23) holds for the tuple (D̃, ρ̃, pZ , s̃nr) given by

D̃ =
κ

ωc
D (3.25)

ρ̃ =
(

1

1− κ + ωc

)

ρ (3.26)

pZ =
(

1− κ

1− κ + ωc

)

δ0 +
(

ωc

1− κ + ωc

)

pXc (3.27)

˜snr =
(

1

1− κ + ωc

)

snr. (3.28)

3.4 The Noiseless Setting

The previous sections provided lower bounds for the noisy setting. In this section, we address
lower bounds for the setting where there is no measurement noise. Accordingly, we consider
the linear observation model given by

Y = AX. (3.29)

The following result highlights the fact that recovery in the noiseless setting is very
different in nature than recovery in the presence of noise.

Proposition 3.1. Let x be an n × 1 vector whose entries are supported on a countable set
X ⊂ R and let A be a 1× n random vector whose entries are i.i.d. from a distribution that
is absolutely continuous with respect to Lebesgue measure. With probability one, x can be
recovered uniquely from the tuple (X ,A,Ax).

Proof. With probability one, the projection x *→ Ax maps each possible realization of x to
a unique real number.

Corollary 3.7. Suppose that pX is a discrete distribution. Under Assumptions SS1-SS2 and
M1-M3, the fundamental sampling rate distortion function for the noiseless setting is given
by

ρ∗ = 0 (3.30)

for all distortions 0 ≤ D ≤ 1.

The proof of the following result follows directly from Theorem 3.1 and the proof of
Thoerem 6.3 in Chapter 6. Alternatively, it can also be shown that this result corresponds
to the infinite SNR limit of Theorem 3.4.
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Theorem 3.6. Consider the noiseless measurement model given in (3.29). Under Assump-
tions SS1-SS2 and M1-M4, a distortion D is not achievable for the pair (ρ, pX) if ρ < κ
and

ρ log
(

VX

NX

)

+ (1− ρ) log
(

1

1− ρ

)

− (κ− ρ) log
(

κ

κ− ρ

)

< 2R(D; κ). (3.31)

Theorem 3.7. Suppose that pX can be expressed as

pX = (1− κ) δ0 + ωc pXc + (κ− ωc) pXd
(3.32)

where Xc is continuous with finite differential entropy and Xd is discrete. Under Assumptions
SS1-SS2 and M1-M4, a distortion D is not achievable for the pair (ρ, pX) in the noiseless
setting if ρ < ωc and (3.31) holds for the tuple (D̃, ρ̃, pZ) given by

D̃ =
κ

ωc
D (3.33)

ρ̃ =
(

1

1− κ + ωc

)

ρ (3.34)

pZ =
(

1− κ

1− κ + ωc

)

δ0 +
(

ωc

1− κ + ωc

)

pXc (3.35)

Proof. This result follows directly from Theorems 3.6 and 3.2.

Corollary 3.8. Under the assumptions of Corollary 3.7 the fundamental sampling rate dis-
tortion function for the noiseless setting is given by

ρ∗ = ωc (3.36)

for all distortions D such that
(

ωc

1−κ + ωc

)

log
(

VZ

NZ

)

+
(

1− κ

1−κ + ωc

)

log
(

1− κ + ωc

1− κ

)

< 2R
(

κ

ωc
D;

ωc

1−κ + ωc

)

(3.37)

where pZ is given by (3.35)

3.5 Proofs of Lower Bounds

This section gives the proofs of our information-theoretic lower bounds.

3.5.1 Proof of Theorem 3.1

The cornerstone of this proof is Fano’s inequality which gives a lower bound on the error
probability for any possible recovery algorithm in terms of the mutual information between
S∗ and the pair (Y,A). We assume that the tuple (D, pX , snr) is known throughout the
system.
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Lemma 3.2 (Fano’s Inequality). Let S∗ be distributed uniformly over all subsets of [n] of
size k < n/2. If S∗ → (Y,A)→ Ŝ forms a Markov chain then

Pr[d(S∗, Ŝ) > D] ≥ 1− I(S∗;Y,A) + log(2)

log
(

n
k

)

− log
(

∑,Dk-
(=0

(

k
(

)(

n−k
(

)

) (3.38)

for all 0 ≤ D ≤ 1.

Proof. We follow the proof of Fano’s inequality given in [14] with some modifications to
handle our error criterion. To begin, we define the random variable

E =







1, if d(S∗, Ŝ) > D

0, if d(S∗, Ŝ) ≤ D
,

and note that Pr[E = 1] = Pr[d(S∗, Ŝ) > D].
Using the chain rule for entropy, H(E, S∗|Y,A, Ŝ) can be written two ways as

H(E, S∗|Y,A, Ŝ) = H(S∗|Y,A, Ŝ) + H(E|S∗,Y,A, Ŝ) (3.39)

= H(E|Y,A, Ŝ) + H(S∗|E,Y,A, Ŝ). (3.40)

By the Markov property, H(S∗|Y,A, Ŝ) = H(S∗|Y,A). Since entropy is nonnegative,
H(E|S∗,Y,A, Ŝ) ≥ 0. Also, since conditioning cannot increase entropy, H(E|Y,A, Ŝ) ≤
H(E) ≤ log(2) and H(S∗|E,Y,A, Ŝ) ≤ H(S∗|E, Ŝ). Putting everything together we obtain

H(S∗|Y,A)− log 2 ≤ H(S∗|E, Ŝ) (3.41)

= Pr[E = 1]H(S∗|E = 1, Ŝ) + Pr[E = 0]H(S∗|E = 0, Ŝ) (3.42)

Since the uniform distribution maximizes the entropy of S∗,

H(S∗|E = 1, Ŝ) ≤ log

(

n

k

)

. (3.43)

Also, since the distortion measure d(·, ·) corresponds to the maximum of the two detection
error rates, we may assume without any loss of generality that Ŝ has cardinality k. Therefore,
a simple counting argument gives

H(S∗|E = 0, Ŝ) ≤ log

( *Dk+
∑

(=0

(

k

"

)(

n− k

"

))

. (3.44)

Plugging (3.43) and (3.44) back into (3.42), multiplying the expression by negative one, and

adding H(S∗) = log
(

n
k

)

to each side gives:

I(S∗|Y,A) + log 2 ≥
(

1− Pr[E = 1]
)

[

log

(

n

k

)

− log

( *Dk+
∑

(=0

(

k

"

)(

n− k

"

))]

. (3.45)

Solving for Pr[E = 1] completes the proof.
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The next step in the proof is to verify that the right hand side of (3.38) is bounded away
from zero for all sequences of problems obeying the assumptions of Theorem 3.1. For each
problem of size n, let k = (κn) where the dependence on n is implicit. Using Stirling’s
approximation [14, Lemma 17.5.1], it is straight forward to verify that

lim
n→∞

1

n

[

log

(

n

k

)

log

( ,Dk-
∑

(=0

(

k

"

)(

n− k

"

))]

= R(D; κ) (3.46)

where R(D; κ) is given in (3.5).
Combining (3.38) and (3.46) it follows that a distortion D is not achievable if

lim sup
n→∞

1

n
I(S∗;Y,A) < R(D; κ). (3.47)

The remainder of the proof is dedicated to upper bounding the left hand side of (3.47).
Starting with the chain rule for mutual information, we have

I(S∗;Y,A) = I(S∗;Y|A) + I(S∗;A) (3.48)

= I(S∗;Y|A) (3.49)

≤ I(X;Y|A) (3.50)

where (3.49) follows from the independence of Assumption M3 and (3.50) follows from the
data processing inequality and the fact that S∗ → X→ Y forms a Markov chain.

Next, we can write

I(X;Y|A = A) = I(X; AX + snr−1/2W) (3.51)

= I
(

X− E[X]; A(X− E[X]) + snr−1/2W
)

(3.52)

≤ max
Z

I(AZ; AZ + snr−1/2W) (3.53)

where the maximum is over all n-dimensional random vectors Z obeying the power constraint

E[ZZT ] = E

[

(X− E[X])(X− E[X])T
]

= VXIn×n. (3.54)

It is well known (see e.g. [14]) that the maximum of (3.53) is attained when the entries of Z

are i.i.d. N (0, VX), and thus we obtain

I(X;Y|A = A) ≤ 1

2
log det(Im×m + snr VXAAT ). (3.55)

By the concavity of the log determinant, Hadamard’s inequality, and Jensen’s inequality
we can bound the expectation of (3.55) with respect to a random matrix A obeying the
normalization of Assumption M3 as follows:

E

[

1

2
log det(Im×m + snr VXAAT )

]

≤ 1

2
log det

(

Im×m + snr VXE

[

AAT ]
)

(3.56)

=
m

2
log(1 + snr VX). (3.57)
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Alternatively, starting with Sylvester’s determinant theorem, we have

E

[

1

2
log det(Im×m + snr VXAAT )

]

= E

[

1

2
log det(In×n + snr VXATA)

]

(3.58)

≤ 1

2
log det

(

In×n + snr VXE

[

ATA]
)

(3.59)

=
n

2
log
(

1 +
m

n
snr VX

)

. (3.60)

Combining (3.55), (3.57), and (3.60) gives

I(X;Y|A) ≤
(

m

2
log(1 + snr VX),

n

2
log
(

1 +
m

n
snr VX

)

)

, (3.61)

and hence

lim sup
n→∞

1

n
I(S∗;Y,A) <

min(1, ρ)

2
log
(

1 + max(1, ρ)VX snr
)

, (3.62)

for any sequence of matrices obeying Assumptions M1-M3. Combining (3.47) and (3.62)
completes the proof of Theorem 3.1.

3.5.2 Proof of Theorem 3.2

This proof is based on a genie argument. Suppose that a genie provides the recovery al-
gorithm with the pair (G,XG) where G is a subset of the sparsity pattern S∗ and XG is a
|G|-dimensional vector corresponding to the entries of X indexed by G. Given this extra
information, the recovery algorithm must then determine which of the remaining unknown
entries {Xi : i /∈ G} are nonzero. Clearly, any lower bound on the achievable distortion D
in the genie-aided setting is also a lower bound on the achievable distortion in the original
setting.

In the following sections, we first describe how the genie selects the index set G. We then
show that the resulting recovery problem is equivalent to the original recovery problem with
altered parameters.

Genie Selection Strategy

The set G is constructed as follows: each index i = 1, 2, · · · , n is reported, independently
of the other indices, with probability q(Xi) where the function 0 ≤ q(x) ≤ 1 is chosen such
that

Pr[Xi ≤ t| i is not reported] = Pr[Z ≤ t]

where Z ∼ pZ . In words, the genie “prunes” the entries of X in a way such that the unre-
ported entries are marginally distributed according to the distribution pZ . By the constraints
(3.8) and (3.9) it can be verified that the function q(x) exists and that q(0) = 0.
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We now make several observations. First, since q(0) = 0, only nonzero entries are reported
and so G ⊆ S∗. Second, since the indices are selected independently, the remaining nonzero
entries {Xi : i ∈ S∗\G} are i.i.d. according to the nonzero part of pZ . Finally, conditioned
on the cardinality |G|, the set S∗\G is distributed uniformly over all subsets of [n]\G of size
|S∗|− |G|.

As a consequence of the above observations, the sequence of vectors corresponding to
X[n]\G satisfies Assumptions SS1-SS2 with distribution pZ . Moreover, if we let Ỹ denote the
measurements corresponding to the vector X[n]\G and measurement matrix A[n]\G, i.e.

Ỹ = A[n]\GX[n]\G +
1√
snr

W, (3.63)

then it is straightforward to show that an appropriately normalized version of the mea-
surement model given by (3.63) obeys Assumptions MM1-MM3 with sampling rate ρ̃ and
signal-to-noise ratio s̃nr.

Lower Bound on Genie-Aided Recovery

We now derive a necessary condition for recovery in the genie-aided setting. We begin with
the following key fact: if the set G is chosen according to the selection strategy outlined
above, the tuple (Ỹ,A, G) is a sufficient statistic for estimation of S∗. To see why, observe
that

I(S∗;Y,A, G,XG) = I(S∗;Y −AGXG,A, G,XG) (3.64)

= I(S∗; Ỹ,A, G,XG) (3.65)

= I(S∗; Ỹ,A, G) + I(S∗;XG|Ỹ,A, G) (3.66)

= I(S∗; Ỹ,A, G) (3.67)

where: (3.65) follow from the definition of Ỹ ; (3.66) follows from the chain rule for mutual
information; and (3.66) follows from the fact that S∗ and XG are conditionally independent
given the pair (Ỹ,A, G).

Let Ŝ denote the optimal estimate of the sparsity pattern in the genie-aided setting
(i.e. the sparsity pattern estimate that minimizes the error probability). By the arguments
above, we know that

S∗ → (Ỹ,A, G)→ Ŝ (3.68)

forms a Markov chain. Also, by the optimality of Ŝ and the fact that distortion measure
d(·, ·) corresponds to the maximum of the two detection error rates, it can also be shown
that Ŝ contains the set G and has the same cardinality as S∗. Therefore, the sparsity pattern
distortion can be expressed as

d(S∗, Ŝ) =
( |S∗|− |G|

|S∗|

)

d(S∗\G, Ŝ\G). (3.69)
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Note that

lim
n→∞

( |S∗|− |G|
|S∗|

)

=
(

1− κX

κX

)(

κZ

1− κZ

)

(3.70)

almost surely under Assumptions SS1-SS2.
We now arrive at the crux of the argument. Suppose that the distortion D̃ is not achiev-

able for the tuple (ρ̃, pZ , s̃nr). By (3.68) and the fact that the observation model given in
(3.63) corresponds to the tuple (ρ̃, pZ , s̃nr), it follows that the error probability

Pr[d(S∗\G, Ŝ\G) ≥ D̃]

corresponding to the genie-aided setting is bounded away from zero for all n. By (3.69) and
(3.70), it then follows that the distortion D is not achievable for the tuple (ρ, pX , snr). This
concludes the proof of Theorem 3.2.

3.5.3 Proof of Theorem 3.4

One weakness of the proof of Theorem 3.1 is that the data processing inequality used to
upper bound the mutual information I(S∗;Y|A) in (3.50) is not tight. In this proof, we
derive a stronger upper bound that takes into account the fact that values of the nonzero
elements are unknown. We assume throughout the proof that the nonzero entropy power
NX is strictly positive.

Using the chain rule for mutual information, I(A, S∗;Y|A) can be written two ways as

I(S∗,X;Y|A) = I(S∗;Y|A) + I(X;Y|S∗,A)

= I(X;Y,A) + I(S∗;Y|X,A).

Since S→ X→ (Y,A) forms a Markov chain, I(S∗;Y|X,A) is equal to zero and

I(S∗;Y|A) = I(X;Y|A)− I(X;Y|S∗,A). (3.71)

Conceptually, term I(X;Y|S∗,A) quantifies the amount of I(X;Y|A) that is “used up”
describing the values of the nonzero elements, and hence cannot contribute to estimation of
the sparsity pattern.

Following the proof of Theorem 3.1, the first term on the right hand side of (3.71) can
be upper bounded as

I(X;Y|A) ≤ 1

2
E

[

log det
(

Im×m + snr VXAAT
)

]

(3.72)

where the expectation is taken with respect to the random matrix A.



CHAPTER 3. INFORMATION-THEORETIC LOWER BOUNDS 54

To deal with the second term on the right hand side of (3.71) we first consider the case
m ≤ k. If we let

N(Z) =
1

2πe
exp
(

2

m
h(Z)

)

(3.73)

denote the entropy power of an m-dimensional random vector Z, then it follows straightfor-
wardly that

I(X;Y|S∗ = S,A = A) = I(XS;
√

snrASXS + W) (3.74)

= h(
√

snrASXS + W)− h(
√

snrASXS + W|XS) (3.75)

=
m

2
log
(

2πe N(
√

snrASXS + W)
)

− m

2
log(2πe) (3.76)

=
m

2
log
(

N(
√

snrASXS + W)
)

. (3.77)

Using two applications of the entropy power inequality (see e.g. [14]) we can write

N(
√

snrASXS + W) ≤ N(
√

snrASXS) + N(W) (3.78)

≤ snr
(

NX

κ

)

det(ASAT
S )1/m + 1, (3.79)

where NX = κN(Xi|i ∈ S∗) denotes the nonzero entropy power of pX . Note that the
assumption m ≤ k is critical here since the determinant ASAT

S is equal to zero for all m < k.
Plugging (3.79) back into (3.77) leads to

I(X;Y|S∗,A) ≥ m

2
E

[

log
(

1 + snr NX κ−1 det(AS∗AT
S∗)1/m

)

]

(3.80)

where the expectation is with respect to the random matrix AS∗ .
Next we consider the case m > k. If the matrix AS is full rank and we let A†

S denote its
Moore-Penrose pseudoinverse, we can write

I(X;Y|S∗ = S,A = A) = I(XS;
√

snr XS + A†
SW) (3.81)

= h(
√

snr XS + A†
SW)− h(

√
snrXS + A†

SW|XS) (3.82)

=
k

2
log
(

N(
√

snrXS + A†
SW)

)

+
1

2
log det(AT

SAS) (3.83)

=
k

2
log
(

1 + snr NX κ−1 det(AT
SAT

S )1/k
)

(3.84)

where (3.84) follows again from the entropy power inequality. Thus, we obtain

I(X;Y|S∗,A) ≥ k

2
E

[

log
(

1 + snr NX κ−1 det(AT
S∗AS∗)1/k

)

]

, (3.85)

where the expectation is with respect to the random matrix AS∗ .
To characterize the asymptotic behavior of the bounds in (3.72), (3.80), and (3.85), we

use the following results from random matrix theory.
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Lemma 3.3. [76] Let A denote an m×n random matrix whose entries are i.i.d. with mean
zero and variance 1/n. If m/n→ r as n→∞, then

lim
n→∞

1

n
log det

(

Im×m + γAAT
)

= V(r, γ) (3.86)

almost surely where V(r, γ) is given by (3.18).

Lemma 3.4. [63] Let A denote an m×n random matrix whose entries are i.i.d. with mean
zero and variance 1/n. If m/n→ r as n→∞, then

lim
n→∞

(

det(AAT )
)1/m

=
(

1

1− r

)1/r−11

e
, if r < 1 (3.87)

lim
n→∞

(

det(ATA)
)1/n

=
(

r

r − 1

)r−11

e
, if r > 1 (3.88)

almost surely.

Combining Lemma 3.3 with the upper bound (3.72) leads immediately to

lim sup
n→∞

1

n
I(X;Y|A) ≤ 1

2
V(ρ, VX snr). (3.89)

Similarly, combining Lemma 3.4 with the lower bounds (3.80) and (3.85) leads to

lim inf
n→∞

1

n
I(X;Y|A) ≥ 1

2
κVLB(ρ/κ, NX snr) (3.90)

where VLB(r, γ) is given by (3.20). Plugging these limits back into (3.71) and (3.47) completes
the proof of Theorem 3.4
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Chapter 4

Analysis of the Sampling

Rate-Distortion Function

In this chapter, we show how the bounds on the sampling rate-distortion functions given
Chapters 2 and 3 depend on the desired distortion D, the SNR, and various properties of
the distribution pX . We provide illustrations of the bounds and we characterize problem
regimes in which the behavior of the algorithms is near-optimal and other regimes in which
the behavior is highly suboptimal.

4.1 Preliminaries

4.1.1 Signal Classes

Following the problem formulation outlined in Section 1.4.2, a class of signals can be char-
acterized by a class of limiting distributions PX ⊂ P(κ) where P(κ) is the class of all
distributions with second moment equal to one and probability mass 1 − κ at zero. To
facilitate our analysis in the following sections, we introduce the following three classes:

• Bounded: We use PBounded(κ, B) to denote the class of all distributions pX ∈ P(κ)
such that

Pr[|X| < B|X '= 0] = 0

for some lower bound B > 0. Due to the second moment constraint, the lower bound
B cannot exceed 1/

√
κ.

• Polynomial Decay: We use PPoly.(κ, L, τ) to denote the class of all distributions pX ∈
P(κ) such that

lim
x→0

Pr[|X| ≤ x|X '= 0]

xL
= τ

for some polynomial decay rate L > 0 and limiting constant τ ∈ (0,∞).
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• Bernoulli-Gaussian: We say that a distribution pX is Bernoulli-Gaussian with sparsity
κ if the nonzero part of pX is zero-mean Gaussian, i.e. if

X ∼







0, with probability 1− κ

N (0, 1
κ), with probability κ

.

The bounded class corresponds to the setting where the nonzero entries in x have a
fixed lower bound B on their magnitudes, independent of the vector length n. By contrast,
the polynomial decay class corresponds to the setting where the magnitude of the (β k)’th
smallest nonzero entry is proportional to β1/L for small β. Note that in the case of polynomial
decay, a vanishing fraction of the nonzero entries are tending to zero as the vector length n
becomes large.

The Bernoulli-Gaussian distribution is an example of a distribution with polynomial

decay rate L = 1 and limiting constant τ =
√

2/(πκ).

4.1.2 Illustrations

In the following sections we provide illustrations of the bounds derived in Chapters 2 and 3
corresponding to either the Bernoulli-Gaussian distribution or the class of bounded distribu-

tions PBounded(κ, B) with lower bound B =
√

0.2/κ. Note that this choice of B means that
the nonzero entries in x are lower bounded in squared magnitude by 20% of their average
power.

The bounds corresponding to the Bernoulli-Gaussian distribution are optimized as a
function of the relevant parameters. For the AMP-MMSE and MMSE bounds, this means
that the true distribution pX is used to define the conditional expectations. For the AMP-
ST bound, this means that the threshold α is chosen to either minimize the distortion as a
function of the sampling rate or to minimize the sampling rate as a function of the distortion.

In order to derive uniform bounds for the class of bounded distributions PBounded(κ, B),
it is necessary to consider the worst-case distribution in the class. For the ML and linear
estimators, these bounds are obtained straightforwardly by lower bounding the functions
P (D; pX) and σ2

awgn(D; pX) (see Proposition 4.5 below). For the AMP-ST we obtain a
uniform bound by replacing the noise sensitivity M(σ2,α; pX) in Theorem 2.6 with the
upper bound M∗(σ2,α, κ) given in Section 4.9, and then optimizing the resulting expression
as a function of the threshold α. Uniform bounds corresponding to the AMP-MMSE and
MMSE cannot be derived using the results in this thesis, since these estimators depend on
the true underlying distribution pX .

In all illustrations, the lower bound is given by Theorem 3.5 from Chapter 3. We note that
this bound the performance of the optimal recovery algorithm under Assumptions M1-M4.

All illustrations correspond to a sampling rate of κ = 104. The qualitative behavior of the
bounds does not change significantly for sparsity rates within several orders of magnitude of
this value.
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4.2 Sampling Rate versus SNR

We begin our analysis of the bounds by studying the tradeoff between sampling rate and
SNR. For a given recovery algorithm ALG, we use ρ(ALG)

∞ to denote the infinite SNR limit
of the sampling rate-distortion function:

ρ(ALG)
∞ = limsnr→∞

ρ(ALG). (4.1)

This limit is a function of the pair (D, pX) and may be interpreted as the sampling rate
required in the absence of noise.

For the ML estimator, the infinite SNR limit of the upper bound in Theorem 2.1 is given
by the sparsity rate κ, regardless of the distribution pX and distortion D. Since it can be
shown that the ML estimate is equivalent to random guessing whenever ρ < κ, we thus
conclude that the infinite SNR limit of ρ(ML) is given explicitly by the piecewise constant
function

ρ(ML)
∞ =







κ, if D ≤ 1− κ

0, if D > 1− κ
. (4.2)

An upper bound on the rate at which ρ(ML) approaches its infinite SNR limit is given by
the following result. The proof follows directly from the analysis of Theorem 2.1 given in
Section 4.8.1.

Proposition 4.1. For any nonzero distortion D and distribution pX , there exists a constant
C such that

ρ(ML) ≤ κ +
C

log(1 + snr)
. (4.3)

The following result is a consequence of Corollary 3.6 and shows that, under some ad-
ditional assumptions on the pair (D, pX), Proposition 4.1 is tight, in a scaling sense, with
respect to the SNR.

Proposition 4.2. Suppose that pX can be expressed as

pX = (1− κ) δ0 + ωc pXc + (κ− ωc) pXd
(4.4)

where Xc is continuous with finite differential entropy h(Xc) and Xd is discrete. Let D < 1−κ
be any distortion that satisfies

2Hb(κc)− 2H
(

κ

ωc
D; κc

)

> κc log

(

E[X2
c ]− κc(E[Xc])2

N(Xc)

)

+ (1− κc) log
(

1

1− κc

)

(4.5)
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where κc = ωc/(1 − κ + ωc) and N(Xc) = (2πe)−1 exp(2h(Xc)). Then, under Assumptions
S1-S2 and M1-M4, there exists a constant C such that

ρ > ωc +
C

log(1 + snr)
(4.6)

is a necessary condition for any recovery algorithm.

Note that the constant ωc in Proposition 4.2 is equal to the sparsity rate κ whenever
the nonzero part of pX is absolutely continuous with respect to Lebesgue measure. When
this occurs, Propositions 4.1 and 4.2 characterize the fundamental behavior of the recovery
problem for any distortion D satisfying (4.5).

For the linear and AMP estimators, it is straightforward to show that the infinite SNR
limits can be expressed as

ρ(MF)
∞ =

1

σ2
(4.7)

ρ(LMMSE)
∞ =

1

1 + σ2
(4.8)

ρ(AMP-ST)
∞ = M(σ2,α, px) (4.9)

ρ(AMP-MMSE)
∞ = sup

τ>σ2

mmse(τ ; pX)

τ
(4.10)

where σ2 = σ2
awgn(D; pX). By comparison with the ML limit, we see that each of these

algorithms is strictly suboptimal at high SNR whenever its limit exceeds the sparsity rate κ.
For the MMSE estimator, the infinite SNR limit of the sampling rate predicted by the

replica method in Theorem 2.7 is characterized by the infinite SNR limit of the noise power
τ ∗ given in (2.37). It is easy to check that this limit is always less than or equal to κ, and
thus the predicted MMSE infinite SNR limit is upper bounded by the ML infinite SNR limit.

The rate at which the achievable sampling rates converge to their infinite SNR limits
is illustrated in Fig 4.1 for the Bernoulli-Gaussian distribution. The relative tightness of
the ML upper bound and the information-theoretic lower bound from Chapter 3 provides
rigorous verification of the MMSE behavior derived heuristically using the replica method.
Moreover, as the SNR becomes large, the bounds corresponding to the AMP and linear
estimate are significantly greater than the ML bounds, thus indicating that these methods
are highly suboptimal at high SNR.

In Fig. 4.2, the infinite SNR limits corresponding to the Bernoulli-Gaussian distribution
are shown as a function of the distortion. For this distribution, the MMSE limit is equal to
the minimum of the ML and AMP-MMSE limits. When the distortion is relatively small
(i.e. less than ≈ 0.9), the limits for ML, MMSE, and the information-theoretic lower bound
are equal to the sparsity rate κ. When the distortion is relatively large, all of the bounds
except for the ML bound converge to zero. If the goal is to minimize the distortion D as
a function of the sampling rate ρ, then this behavior shows that ML is strictly suboptimal
whenever the sampling rate ρ is strictly less than the sparsity rate κ.
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Figure 4.1: Bounds on the achievable sampling rate ρ as a function of the SNR when the
nonzero entries are i.i.d. zero-mean Gaussian and the sparsity rate is κ = 10−4.
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Figure 4.2: Bounds on the infinite SNR limit of the achievable sampling rate ρ as a function
of the distortion D when the nonzero entries are i.i.d. zero-mean Gaussian and the sparsity
rate is κ = 10−4. The right panel highlights the large distortion behavior.
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4.3 Stability Thresholds

For a given recovery algorithm ALG, we define the stability threshold as follows:

3(ALG) = lim
D→0

limsnr→∞
ρ(ALG). (4.11)

This threshold is a function of the distribution pX and may be interpreted as the sampling
rate required for exact recovery in the absence of noise. For future reference, its significance
is summarized in the following result.

Proposition 4.3. Consider a fixed recovery algorithm ALG and distribution pX with stability
threshold 3(ALG).

(a) If ρ > 3(ALG), then recovery is stable in the sense that the distortion D can be made
arbitrarily small by increasing the SNR.

(b) If ρ < 3(ALG), then there exists a fixed lower bound on the achievable distortion D,
regardless of the SNR.

Proof. This result follows immediately from the definition of the sampling rate-distortion
function and the definition of the stability threshold in (4.11).

Starting with the infinite SNR limits given in Section 4.2, it is straightforward to show
that the stability thresholds of the recovery algorithms studied in Chapter 2 are given by

3(ML) = κ (4.12)

3(MF) =∞ (4.13)

3(LMMSE) = 1 (4.14)

3(AMP-ST) = M0(α, κ) (4.15)

3(AMP-MMSE) = sup
τ>0

mmse(τ ; pX)

τ
(4.16)

where M0(α, κ) is given by Eq. (4.72) in Section 4.9.
The ML stability threshold corresponds to the well known fact that m = k + 1 random

linear projections are, with probability one, sufficient to recover an arbitrary k-sparse vector.
The LMMSE stability threshold corresponds to the fact that m = n linearly independent
projections are sufficient to recover an arbitrary vector of length n. The AMP-ST stability
threshold, which depends only on the sparsity rate of the distribution pX , has been studied
previously in [22] where it is shown that minα M0(α, κ) corresponds to the "1/"0 equivalence
threshold of Donoho and Tanner [19]. The AMP-MMSE threshold has, to the best of our
knowledge, not been studied previously.
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Starting with Proposition 4.2, it can also be shown that the stability threshold of the
optimal recovery algorithm is lower bounded by

3(Lower Bnd.) = ωc (4.17)

for any distribution pX for which the strict inequality in (4.5) holds with D = 0. In many
cases, this lower bound is equal to the sparsity rate κ.

Finally, using the analysis of the MMSE bound provided in Section 4.8.2, it can be shown
that the stability threshold of the MMSE estimator, as predicted by the replica method, is
given by

3(MMSE) = lim
τ→0

mmse(τ ; pX)

τ
(4.18)

when the limit exists. The right hand side of (4.18) is referred to as the MMSE dimension
of the distribution pX by the authors in [82], and it is equal to the weight on the continuous
part of pX whenever pX is a purely continuous-discrete mixture.

In Fig. 4.2, the stability thresholds corresponding to the Bernoulli-Gaussian distribution
correspond to the zero distortion limit (i.e. the intersection with the y-axis).

4.4 Distortion versus Sampling Rate

We now turn our attention to the tradeoff between the achievable distortion and the sampling
rate. We begin with a precise characterization of the low-distortion behavior.

Proposition 4.4. The low-distortion behavior corresponding to a fixed pair (snr, pX) is given
by

lim
D→0

(

P (D; pX)

H(D; κ)

)

ρ(ML-UB) =
(

2

3−
√

8

)

1

snr
(4.19)

lim
D→0

σ2
awgn(D, pX) ρ(MF) =

1

snr
+ 1 (4.20)

lim
D→0

σ2
awgn(D, pX) ρ(ALG) =

1

snr
(4.21)

where (4.21) holds for the LMMSE, AMP-MMSE, AMP-ST, and MMSE recovery algorithms.

Proof. The limits corresponding to the ML and MMSE estimators are proved in Appen-
dices 4.8.1 and 4.8.2 respectively. The limits corresponding to the linear estimators follow
immediately from the fact that σ2

awgn(D, pX)→ 0 as D → 0. For the AMP-ST estimator, we
use the additional fact that the noise sensitivity M(σ2,α, pX) is bounded (see Section 4.9)
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and hence σ2M(σ2,α, pX) → 0 as σ2 → 0. For the AMP-MMSE estimator, we use the
bound

∣

∣

∣

∣

σ2(D; pX)ρ(AMP-MMSE) − 1

snr

∣

∣

∣

∣

≤ σ2(D; pX) sup
τ>0

{

mmse(τ ; pX)

τ

}

(4.22)

and note that the right hand side of (4.22) becomes arbitrarily small as D → 0.
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Figure 4.3: Bounds on the achievable distortion D as a function of the sampling rate ρ when
the nonzero entries are lower bounded in squared magnitude by 20% of their average power,
but are otherwise arbitrary and the sparsity rate is κ = 10−4. The MF bound is comparable
to the LMMSE bound and is not shown.

In words, Proposition 4.4 says that as the desired distortion D becomes small, the ML
upper bound is inversely proportional to the ratio P (D; pX)/H(D; κ) whereas the low distor-
tion behavior of the remaining bounds is inversely proportional to the function σ2

awgn(D; pX).
The behavior of these terms is characterized for the bounded and polynomial decay signal
classes in the following results.

Proposition 4.5 (Bounded). If pX ∈ PBounded(κ, B), then

P (D; pX)

H(D; κ)
≥ B2

2[log
(

1/D) + 1 + log
(

1−κ
κ

)

]
(4.23)

and

σ2
awgn(D; pX) ≥ B2

8[log(1/D) + log(1−κ
κ )]

. (4.24)
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Figure 4.4: Bounds on the achievable distortion D as a function of the sampling rate ρ when
the nonzero entries are i.i.d. zero-mean Gaussian and the sparsity rate is κ = 10−4. The MF
bound is comparable to the LMMSE bound and is not shown.

Proposition 4.6 (Polynomial Decay). If pX ∈ PPoly.(κ, L, τ), then

lim
D→0

(

log(1/D)

D2/L

)

P (D; pX)

H(D; κ)
=

τ−2/L

2(1 + 2/L)
(4.25)

and

lim
D→0

(

log(1/D)

D2/L

)

σ2
awgn(D; pX) =

τ−2/L

2
. (4.26)

The proofs of Propositions 4.5 and 4.6 are given in Appendices 4.8.3 and 4.8.4 respectively.
One way to interpret these results is to think of the achievable distortion as a function

of the sampling rate ρ. For a given tuple (ρ, pX , snr) and recovery algorithm ALG, we use
D(ALG) to denote the smallest achievable distortion, i.e.

D(ALG) = inf{D ≥ 0 : D is achievable}. (4.27)

An upper bound on the rate at which D(ALG) decreases as the sampling rate becomes large
is given in the following result, which is an immediate consequence of Propositions 4.4, 4.5,
and 4.6.

Proposition 4.7. Consider a fixed pair (snr, pX), and let ALG denote one of the ML, MF,
LMMSE, AMP-MMSE, AMP-ST, MMSE recovery algorithms.

(a) If pX ∈ PBounded(κ, B) then there exists a constant C such that

D(ALG) ≤ exp(−C ρ) (4.28)

for all sampling rates ρ > 0.



CHAPTER 4. ANALYSIS OF THE SAMPLING RATE-DISTORTION FUNCTION 65

(b) If pX ∈ PPoly.(κ, L, τ) then there exists a constant C such that

(

1

D(ALG)

)2/L

log
(

1

D(ALG)

)

≤ C ρ (4.29)

for all sampling rates ρ > 0.

Proposition 4.7 shows that the low-distortion behavior depends critically on the behavior
of the distribution pX around the point x = 0. If the nonzero part of the distribution is
bounded away from zero, then the distortion decays exponentially rapidly with the sampling
rate. Conversely, if the nonzero part of pX has a polynomial decay rate L > 0, then the dis-
tortion decays polynomially rapidly with the sampling rate, with an exponent that converges
to L/2.

Using Corollary 3.3, it can be shown that the scaling behavior in Proposition 4.7 is optimal
in the sense that, up to constants, no recovery algorithm can do any better. Consequently,
each of the algorithms presented in this Chapter 2 is optimal in a scaling sense as the SNR
becomes large whenever the sampling rate is strictly greater than the stability threshold.

The behavior of the achievable distortion D as a function of the sampling rate ρ is

illustrated in Fig. 4.3 for the class of bounded distributions PBounded(κ, B) with B =
√

0.2/κ.
In accordance with part (a) of Proposition 4.7, the LMMSE bound decays exponentially
rapidly as a function the sampling rate. The same scaling behavior also occurs for the ML
and AMP-ST bounds as well as the lower bound from Chapter 3. However, due to the
relatively large SNR, this behavior occurs only for distortions much less than 10−6 and is
therefore not visible in the range of distortions plotted in Fig. 4.3.

For comparison, the same behavior is illustrated in Fig. 4.4 for a Bernoulli-Gaussian
distribution which has decay rate L = 1. In accordance with part (b) of Proposition 4.7, the
distortion decays polynomially with rate 1/2. Interestingly, the AMP-MMSE and AMP-ST
bounds converge to the MMSE bound, and are within a constant factor ≈ 1.18 of the lower
bound. This behavior shows that these algorithms are near-optimal when the sampling rate
is relatively large. We suspect that the gap between these algorithms and the ML upper
bound is due primarily to looseness in our bounding technique.

4.5 Distortion versus SNR

The previous section showed that computationally efficient algorithms can be near-optimal
when the sampling rate is large. In the context of compressed sensing, a more interesting
question is whether or not these same algorithms can be near-optimal when the sampling rate
is fixed, and much less than one. In this section, we show that the answer to this question is
‘yes’, provided that the sampling rate is strictly greater than the stability threshold of the
algorithm.
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For a given tuple (D, ρ, pX) and recovery algorithm ALG, we let snr(ALG) denote the
infimum over all snr ≥ 0 such that D is achievable, i.e.

snr(ALG) = inf{snr ≥ 0 : D is achievable}.

The following result characterizes the low-distortion behavior with respect to the SNR.

Proposition 4.8. The low-distortion behavior corresponding to a fixed pair (ρ, pX) is given
by

lim
D→0

(

P (D; pX)

H(D; κ)

)

snr(ML-UB) =
(

2

3−
√

8

)

1

ρ− κ
(4.30)

if ρ > κ, and

lim
D→0

σ2
awgn(D, pX) snr(ALG) =

1

ρ− 3(ALG)
(4.31)

if ρ > 3(ALG) where (4.31) holds for the LMMSE, AMP-MMSE, AMP-ST, and MMSE
recovery algorithms.

Proof. The limits corresponding to the ML and MMSE recovery algorithms are proved in
Appendices 4.8.1 and 4.8.2 respectively. The limits corresponding to the LMMSE and AMP
recovery algorithms follow straightforwardly along the same lines as the proof of Proposi-
tion 4.4.

Proposition 4.8 is analogous to Proposition 4.4 except that it is valid only if the sampling
rate ρ exceeds the stability threshold. The reason that Proposition 4.8 does not provide a
bound for the MF estimator is that the stability threshold of the MF estimator is infinite,
and thus the corresponding limit in (4.31) is not defined.

Combining Proposition 4.8 with Propositions 4.5 and 4.6 leads to the following result,
which bounds the rate at which D(ALG) decreases as the SNR becomes large.

Proposition 4.9. Consider a fixed pair (ρ, pX), and let ALG denote one of the ML, LMMSE,
AMP-MMSE, AMP-ST, MMSE recovery algorithms.

(a) If pX ∈ PBounded(κ, B) and ρ > 3(ALG), then there exists a constant C such that

D(ALG) ≤ exp(−C snr) (4.32)

for all snr > 0.

(b) If pX ∈ PPoly.(κ, L, τ) and ρ > 3(ALG), then there exists a constant C such that

(

1

D(ALG)

)2/L

log
(

1

D(ALG)

)

≤ C snr (4.33)

for all snr > 0.
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ρ/κ = 13
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Figure 4.5: Bounds on the achievable distortion D as a function of the SNR for three different
sampling rates ρ when the nonzero entries are lower bounded in squared magnitude by 20%
of their average power, but are otherwise arbitrary and the sparsity rate is κ = 10−4. The
MF bound is comparable to the LMMSE bound and is not shown.
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Figure 4.6: Bounds on the achievable distortion D as a function of the SNR for three different
sampling rates ρ when the nonzero entries are i.i.d. zero-mean Gaussian and the sparsity rate
is κ = 10−4. The MF bound is comparable to the LMMSE bound and is not shown.
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Using Corollary 3.3 in Chapter 3, it can be shown that the scaling behavior in Propo-
sition 4.9 is optimal in the sense that, up to constants, no recovery algorithm can do any
better. Consequently, each of the algorithms presented in this Chapter 2 (except for the MF
estimator) is optimal in a scaling sense as the SNR becomes large whenever the sampling
rate is strictly greater than the stability threshold.

The behavior of the achievable distortion D(ALG) as a function of the SNR is illus-
trated in Fig. 4.5 for three different sampling rates ρ and the class of bounded distributions

PBounded(κ, B) with B =
√

0.2/κ. In the left panel, the sampling rate is greater than 3(ML)

but less than 3(AMP-ST) and 3(LMMSE). In accordance with part (a) of Proposition 4.9, the
ML distortion decays exponentially rapidly whereas the AMP-ST and LMMSE distortions
are bounded away from zero. In the second panel, the sampling rate is greater than 3(ML)

and 3(AMP-ST) but less than 3(LMMSE), and hence the AMP-ST distortion also decays expo-
nentially rapidly. In the third panel, ρ is relatively large but still less than 3(LMMSE). Thus,
even though the LMMSE distortion is less than it was before, it is still bounded away from
zero.

For comparison, the same behavior is illustrated in Fig. 4.6 for a Bernoulli-Gaussian dis-
tribution which has decay rate L = 1. In accordance with part (b) of Proposition 4.9, the
distortion of each algorithm decays polynomially with rate 1/2 whenever the sampling rate
is greater than the stability threshold of the algorithm. It is interesting to note that the
relatively small difference in sampling rates between the left and middle panels marks the
boundary between the setting where all of the computationally feasible algorithms studied
in this Chapter 2 are highly suboptimal and the setting where the distortion of the compu-
tationally feasible AMP-MMSE algorithm, is within a constant factor ≈ 1.75 of the lower
bound.

4.6 Rate-Sharing Matrices

All of the bounds presented in Chapter 2 assume that the measurement matrix A has i.i.d.
entires (Assumption M4). A natural question then, is whether relaxing this assumption
can lead to better performance. Interestingly, the answer to this question can be ‘yes’. In
this section, we show that certain rate-sharing matrices can achieve points in the sampling
rate-distortion region that are impossible using i.i.d. matrices.

The concept of rate-sharing is analogous to the idea of time-sharing in communications
and can be summarized as follows. By using an appropriately constructed block-diagonal
measurement matrix it is possible to separate the recovery problem into two subproblems,
each of which is statistically identical to the original problem. By assigning different sampling
rates to each of the subproblems and then combining the resulting sparsity pattern estimates,
it is possible to achieve an effective sampling rate-distortion pair (ρ, D) that is a linear
combination of the sampling rate-distortion pairs for each of the subproblems.
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Construction of a rate-sharing matrix: For a fixed pair (snr, pX) and recovery algo-
rithm ALG, let (ρ1, D1) and (ρ2, D2) be two achievable sampling rate-distortion pairs. Let
{A1(n)}n≥1 and {A2(n)}n≥1 be sequences of measurement matrices obeying Assumptions
M1-M3 that achieve these rates. Then, for any λ ∈ [0, 1], a sequence of rate-sharing matrices
is given by

A(n) =

[

A1((λn)) 0

0 A2(n− (λn))

]

P(n) (4.34)

where 0 denotes a matrix of zeros and P(n) is a random matrix distributed uniformly over
the set of n× n permutation matrices.

Recovery using a rate-sharing matrix: For a problem of size n, the measurements Y

made using the rate-sharing matrix A can be expressed as
[

Y1

Y2

]

=

[

A1 0

0 A2

] [

X̃1

X̃2

]

+

[

W1

W2

]

where X̃ = [X̃1, X̃2]T = Px corresponds to a random permutation of the entries in x. To
recover the sparsity pattern of x from these measurements, the recovery algorithm performs
the following two steps:

(1) Individually estimate the sparsity patterns of X̃1 and X̃2 assuming a sparsity rate of κ
for each vector.

(2) Use these estimates to produce an estimate Ŝ of the sparsity pattern of x.

Proposition 4.10 (Rate-Sharing). For a fixed pair (snr, pX) and algorithm ALG, let (ρ1, D1)
and (ρ2, D2) be two achievable sampling rate-distortion pairs. Then, for any parameter λ ∈
[0, 1], the sampling rate-distortion pair (ρ, D) given by

ρ = λρ1 + (1− λ)ρ2 (4.35)

D = λD1 + (1− λ)D2 (4.36)

is achievable using the rate-sharing strategy outlined above.

Proof. Based on the assumptions on A1(n) and A2(n) and the fact that

‖A(n)‖2F = ‖A1((λn))‖2F + ‖A2(n− (λn))‖2F ,

it is straightforward to verify that the sequence of rate-sharing matrices {A(n)}n≥1 defined
by (4.34) satisfies Assumptions M1-M3 with sampling rate ρ = λρ1 + (1− λ)ρ2.

The next step is to verify that the distortion D is achievable. Since each permutation
P(n) is independent of the vector x(n), the random sequences {X̃1(n)}n≥1 and {X̃2(n)}n≥1
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obey Assumptions S1-S3 with probability one. Since the pairs (ρ1, D1) and (ρ2, D2) are
achievable, it thus follows that the distortions D1 and D2 are achievable for the individual
sparsity pattern estimates made in step (1).

Now, for a given problem of size n, let S∗
1 , Ŝ1, S∗

2 , Ŝ2 denote the true and estimated
sparsity patterns corresponding to the vectors X̃1 and X̃2, and let S∗ and Ŝ denote the true
and estimated sparsity pattern of x. As a simple exercise, it can be verified that

d(S∗, Ŝ) ≤ λnd(S∗
1 , Ŝ1) + (1− λn)d(S∗

2 , Ŝ2)

where

λn =
max(|S∗

1 |, |Ŝ1|)
max(|S∗

1 |, |Ŝ1|) + max(|S∗
2 |, |Ŝ2|)

.

Using the arguments outlined above, it can then be verified that λn → λ almost surely as
n→∞, and thus we conclude that the distortion D = λD1 + (1− λ)D2 is achievable.

As an immediate consequence of Proposition 4.10, we have the following result.

Corollary 4.1. For a fixed pair (snr, pX) and algorithm ALG the sampling rate-distortion
function is a convex function of the distortion D.

By comparing the convexified versions of the achievable bounds in Chapter 2 with the
lower bounds developed in Chapter 3 for matrices obeying Assumptions M1-M4, it can be
verified that there are cases where rate-sharing (even with a potentially suboptimal recovery
algorithm) is strictly better than using an i.i.d. matrix and the optimal recovery algorithm.
This difference is most dramatic in the high SNR setting when the sampling rate is relatively
small compared to the sparsity rate.

4.7 Discussion of Bounds

In this section, we review the main contributions Chapters 1-3 and discuss various implica-
tions of our analysis.

4.7.1 Fundamental Behavior of Sparsity Pattern Recovery

The achievable bounds derived in Chapter 2, in conjunction with the information-theoretic
lower bounds in Chapter 3 characterize the fundamental limit of what cannot be recovered
in presence of noise. A major technical contribution of this Chapter 2 is the upper bound on
the sampling rate-distortion function for the maximum likelihood estimator (Theorem 2.1).
To our knowledge, this is the only achievable bound in the literature that converges to the
noiseless limit as the SNR becomes large and correctly characterizes the high SNR behavior.

Our bounds show that the tradeoffs between the sampling rate ρ, the distortion D, and
the SNR can be characterized in terms of several key properties of the limiting distribution
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pX . Roughly speaking, the high-SNR behavior is characterized by the differential entropy of
the nonzero part of pX whereas the low-distortion behavior is characterized by the behavior
of the distribution around the point x = 0. These dependencies can be summarized as
follows:

• High-SNR Behavior: If the nonzero part of pX has a relatively large differential entropy,
then the tradeoff between sampling rate and SNR is given by

ρ ≈ κ +
C

log(snr)
.

• Low-SNR Behavior: If the nonzero part of pX has a polynomial decay L, then the
tradeoff between sampling rate and distortion is given by

ρ ≈ C · ( 1
D )1/L log( 1

D ),

and the tradeoff between SNR and distortion is given by

snr ≈ C · ( 1
D )1/L log( 1

D ) if ρ > κ,

where the condition ρ > κ is necessary if the nonzero part of pX has a relatively large
differential entropy. Note that L = 0 if the nonzero part of pX is bounded away from
zero.

The high-SNR behavior of the bounds is illustrated in Figures 1.1, 4.1, and 4.2. The
low-distortion behavior is illustrated in Figures 4.3, 4.4, 4.5, and 4.6.

4.7.2 Near-Optimality of Efficient Algorithms

From a practical standpoint, a key question is whether or not a particular computationally
efficient algorithm is near-optimal. A positive answer to this question means that more
complicated algorithms are unnecessary. A negative answer, however, suggests that it is
worth investing resources in the design and implementation of better algorithms.

In the absence of measurement noise, the tradeoffs for existing algorithms have been
relatively well understood. For example, the number of measurements m needed for exact
recovery of a k-sparse vector of length n can be summarized as follows: linear recovery
(i.e. solving a system of full rank linear equations) requires m ≥ n; linear programming
requires m ≥ C ·k log(n/k) for some constant C; and an NP-hard exhaustive search requires
m ≥ k + 1.

One of the contributions of this thesis, has been to extend the understanding of these
tradeoffs to practically motivated settings where, due to measurement noise, only approx-
imate recovery is possible. Interestingly, our results show that there are problem regimes
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where existing computationally efficient algorithms—such as linear estimation or approxi-
mate message passing—are near-optimal and other regimes where they are highly subopti-
mal.

For example, the dependence of the sampling rate on the SNR illustrated in Fig. 1.1
shows that computationally simple algorithms are near-optimal at low SNR, but suggests
that increasing sophistication is required as the SNR increases.

Moreover, the bounds illustrated in Fig. 4.6 show that a small change in the sampling
rate can make the crucial difference between whether or not approximate message passing
achieves the optimal tradeoff between SNR and distortion.

4.7.3 Comparison with Replica Predictions

In this thesis, we provide a comparison of rigorous bounds with the nonrigourous analysis
of the replica method (Theorem 2.7). Since the predictions of the replica method are sharp,
they provide valuable insights about where our bounds are tight and where they can be
improved. For example, in Fig. 4.1 there exists a gap between the upper and lower bounds
for SNR in the range of 45 to 60 dB. In this region, the replica prediction suggests that the
information-theoretic lower bound from Chapter 3 is essentially correct and that the ML
upper bound is loose.

An additional contribution of this comparison, is that the relative tightness of our rigorous
bounds provides evidence in support of the unproven replica assumptions. For example, in
Fig. 4.1, the upper and lower bounds are extremely close and sandwich the replica prediction
for all SNR greater than 60 dB. Despite a vast amount of work on this topic, such evidence
has been notoriously difficult to come by.

4.7.4 Universality of Bounds

To characterize the limiting behavior of a sequence of vectors we assume convergence of the
empirical distributions (Assumption S2). If the limiting distribution is known, it is possible
to use optimized recovery algorithms based on the distribution (e.g. the AMP-MMSE and
MMSE recovery algorithms). In many cases, however, the limiting distribution is unknown.
To address these settings, we develop bounds for fixed estimators which hold uniformly over
a class of limiting distributions such as the class of all distributions bounded away from zero
or the class of all distributions with polynomial decay (see Section 4.1.1) .

Our results show that, in many cases, prior information about the limiting distribution
does not help significantly. For example, in the right panel of Fig. 1.1, the upper and lower
bounds on the sampling rate-distortion function are relatively tight, uniformly over the class
of distributions bounded away from zero. Another example is given by Propositions 4.4 and
4.8 which show that the low distortion behavior depends entirely on certain properties of
the underlying distributions (specifically, the behavior of the distribution around the point
x = 0).
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We remark that an important counterexample occurs if the limiting distribution is sup-
ported on a finite subset of the real line (see Corollary 3.7). Then, the high-SNR sampling
rate-distortion behavior can depend crucially on prior information about the distribution.

4.7.5 Role of Model Assumptions

This thesis focusses on the setting where a constant fraction of the entries are nonzero
(Assumption S1). In Section 1.4.4 it is shown that the results in this thesis still hold when
all but a fraction κ of the entries in x are tending to zero as n becomes large. In principle,
many of the tools developed in the thesis could also be used to address settings where the
number of nonzero entries grows sub-linearly with the vector length, and hence there is a
vanishing fraction of nonzero entries.

Our use of row normalization (Assumption M3) differs from many related works which
use column normalization. The reason for our scaling is that, from a sampling perspective,
one way to decrease the effect of noise is to take additional samples (all at a fixed per-
measurement SNR). If the column norms of the measurement matrix are constrained, then
this is not possible since the per-measurement SNR will necessarily decrease as the number
of measurements increases. Since it is assumed throughout that the sampling rate ρ is a fixed
constant, all results in this thesis can be compared to existing works under an appropriate
rescaling of the SNR.

The proofs of our upper bounds rely heavily on the assumption that the measurement ma-
trices have i.i.d. entries (Assumption M4). The proofs of Theorem 2.1 and 2.4 further assume
that these entries are Gaussian (Assumption M5). The extent to which these assumptions
can be relaxed is an important direction for future research.

In Section 4.6 it is shown that rate-sharing matrices (which are not i.i.d.) can convexify
the sampling rate-distortion region, thus leading to better performance. This result shows
that i.i.d. matrices are strictly suboptimal in some settings.

4.8 Scaling Behavior

This section provides additional analysis of the sampling rate-distortion bounds presented
in Chapter 2.

4.8.1 Behavior of the ML Upper Bound

This section studies the scaling behavior of the upper bound ρ(ML-UB) given in Theorem 2.1.
For notational simplicity, we will use the notation Λ(D), P (D) and H(D) where the depen-
dence on snr and pX is implicit. Recall that the upper bound is given by

ρ(ML-UB) = κ + max
D̃∈[D,1]

Λ(D).
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We first consider the behavior as D → 0. Note that the function Λ(D) is finite for all
D > 0 but grows without bound as D → 0, and hence

lim
D→0

P (D)

H(D)
max

D̃∈[D,1]
Λ(D̃) = lim

D→0

P (D)

H(D)
Λ(D). (4.37)

Starting with the definition of Λ(D) given in (2.5), it is straightforward to show that

lim
D→0

P (D)

H(D)
Λ(D) =

2

snr
lim
D→0

λ(D) (4.38)

where

λ(D) = min
θ,µ∈(0,1)

max
{

4

(1−θ)2
,

1

µθ
− Dκ log(1−µ2)

2µθH(D)

}

. (4.39)

Using the fact that D/H(D)→ 0 as D → 0 gives

lim
D→0

λ(D) = min
θ∈(0,1)

max
{

4

(1− θ)2
,
1

θ

}

=
1

3−
√

8
,

and putting everything together gives

lim
D→0

P (D)

H(D)

[

ρ(ML-UB) − κ
]

=

(

2

3−
√

8

)

1

snr
.

We next consider the behavior as a function of the SNR. For any D > 0 it is easy to
verify that Λ(D)→ 0 as snr→∞ and hence the infinite SNR limit is given by

limsnr→∞
ρ(ML-UB) = κ. (4.40)

To characterize the rate at which the upper bound approaches this limit, let D > 0 be fixed
and observe that

limsnr→∞
log(snr)

[

ρ(ML-UB) − κ
]

= limsnr→∞
log(snr) max

D̃∈[D,1]
Λ(D̃)

= max
D̃∈[D,1]

2H(D̃) (4.41)

= 2Hb(κ) (4.42)

where (4.41) follows from the fact that P (D; pX) is strictly positive for any D > 0.
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Alternatively, with a bit of work it can be shown that the low SNR behavior is given by

limsnr→0
snr
[

ρ(ML-UB) − κ
]

= limsnr→0
snr max

D̃∈[D,1]
Λ(D̃)

= max
D̃∈[D,1]

H(D̃)

P (D̃)
2λ(D̃), (4.43)

where λ(D) is given by (4.39). Note that this limit is strictly positive for any D > 0.
Combining (4.42) and (4.43) shows that there exists, for each fixed pair (D, pX), a con-

stant C such that

ρ(ML-UB) ≤ κ +
C

log(1 + snr)
(4.44)

for all snr.
Lastly, we consider the tradeoff between the distortion D and the SNR. For a given

tuple (ρ, snr, pX), let D(ML-UB) denote the infimum over all distortions D ≥ 0 such that
ρ(ML-UB) ≤ ρ. If ρ > κ, then the analysis given above shows that D(ML-UB) → 0 as snr→∞.
Since Λ(D) is finite for all D > 0 but grows without bound as D → 0, this means that the
following limit must be satisfied:

limsnr→∞
Λ(D(ML-UB)) = ρ− κ. (4.45)

Starting with the definition of Λ(D) given in (2.5), it is straightforward to show that (4.45)
is satisfied if and only if

limsnr→∞
snr

P (D(ML-UB))

H(D(ML-UB))
=

(

2

3−
√

8

)

1

ρ− κ
. (4.46)

4.8.2 Behavior of the MMSE Noise Power

This section studies the behavior of the effective noise power τ ∗ defined in Theorem 2.7.
Since there is a one-to-one correspondence between τ ∗ and the resulting distortion D, the
results in this section immediately extend to the behavior of the distortion.

Starting with the definition in (2.37), this noise power can be expressed as

τ ∗ = arg min
τ>0

Γ(τ)

where

Γ(τ) = ρ log(τ) +
1

τ snr
+ 2I(X; X +

√
τW ).
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For any fixed tuple (ρ, snr, pX), the function Γ(τ) grows without bound as either τ → 0 or
τ → ∞. Therefore, the minimizer τ ∗ must be a solution to Γ′(τ ∗, snr) = 0 where Γ′(·, ·)
denotes the derivative of Γ(·, ·) with respect to the first argument. Using the following result
of Guo et al. [37]:

d

dγ
2I(X; X +

√

1/γW ) = mmse(1/γ; pX), (4.47)

it is straightforward to show that the condition Γ′(τ ∗, snr) = 0 is equivalent to

ρ τ ∗ =
1

snr
+ mmse(τ ∗; pX). (4.48)

Note that (4.48) may have additional fixed point solutions (other than τ ∗) corresponding to
local minima or maxima of the function Γ(τ).

We first consider the behavior as ρ→∞. By the optimality of the MMSE estimate (with
respect to mean squared error) the noise power τ ∗ is a non-increasing function ρ, and thus
mmse(τ ∗, pX) is a non-increasing function of ρ. Combining this fact with (4.48) shows that
τ ∗ → 0 as ρ→∞. Since mmse(τ, pX)→ 0 as τ → 0, we obtain the limit

lim
ρ→∞

ρ τ ∗ =
1

snr
. (4.49)

We next consider the behavior as snr→∞. If τ is a fixed constant, independent of snr,
then Γ(τ) converges to a finite constant. However, if τ = τ(snr) scales with snr in such a
way that τ(snr)→ 0 then

limsnr→∞

1

log τ(snr)

[

Γ(τ(snr))− 1

τ(snr) snr

]

= limsnr→∞

1

log τ(snr)

[

ρ log τ(snr) + I
(

X; X +
√

1
snrW

)]

= ρ− lim
ε→0

2I(X; X +
√
εW )

log(1/ε)

= ρ− lim
ε→0

mmse(ε; pX)

ε
(4.50)

where (4.50) follows from L’Hopital’s rule and (4.47).
We consider two cases. If the right hand side of (4.50) is strictly positive, then there exists

a scaling τ(snr) such that Γ(τ(snr)) decreases without bound. Since Γ(τ) is finite for fixed
τ and grows without bound as τ →∞, this means that τ ∗ → 0 as snr→∞. Conversely, if
the right hand side of (4.50) is strictly negative, then Γ(τ(snr)) increases without bound for
any scaling where τ(snr)→ 0. This means that τ ∗ is bounded away from zero for all snr.
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Combining these cases, we can conclude that the stability threshold 3(MMSE) of the MMSE
estimator is given by

3(MMSE) = lim
ε→0

mmse(ε; pX)

ε
. (4.51)

To characterize the rate at which τ ∗ decreases as snr→∞, we rearrange (4.48) to obtain

snr τ ∗ =

[

ρ− mmse(τ ∗; pX)

τ ∗

]−1

. (4.52)

If ρ > 3(MMSE), then τ ∗ → 0 as snr→∞. Hence, by (4.52) and the definition of 3(MMSE), we
obtain the limit

limsnr→∞
snr τ ∗ =

1

ρ− 3(MMSE)
. (4.53)

4.8.3 Proof of Proposition 4.5

Using the bound Hb(p) ≤ p log(1/p) + p we obtain

H(D; κ) ≤ 2κD[log(1/D) + 1 + log(1−κ
κ )]. (4.54)

Using the definition of P (D; pX) and the fact that X is lower bounded, we obtain

P (D; pX) =
∫ ∞

0

(

Pr[X2 ≥ u]− (1−D)κ)
)

+
du

≥
∫ ∞

0

(

κ1(u < B2)− (1−D)κ)
)

+
du

= κDB2. (4.55)

Combining (4.54) and (4.55) completes the proof of (4.23).
The bound (4.24) follows immediately from the upper bound

Dawgn(σ
2; pX) = min

t≥0
max

(

Pr[|X + σW | ≤ t], 1−κ
κ Pr[|σW | > t]

)

≤ min
t≥0

max
(

Pr[|B + σW | ≤ t], 1−κ
κ Pr[|σW | > t]

)

≤ max
(

Pr[|B + σW | ≤ B
2 ], 1−κ

κ Pr[|σW | > B
2 ]
)

≤
(

1−κ
κ

)

Pr[|σW | > B
2 ] (4.56)

≤
(

1−κ
κ

)

exp
(

− B2

8σ2

)

(4.57)

where (4.56) follows from the triangle inequality and (4.57) follows from the well known
upper bound (see e.g. [71]) Pr[|W | > t] ≤ exp(−t2/2).
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4.8.4 Proof of Proposition 4.6

For this proof, it is convenient to define the quantile function

ξ(D) = inf{t ≥ 0 : Pr[|X|2 ≤ t|X '= 0] ≥ D},

and note that

lim
D→0

ξ(D)

D2/L
= τ−2/L. (4.58)

We first consider (4.25). Using the bounds p log(1/p) ≤ Hb(p) ≤ p log(1/p)+p, we obtain

lim
D→0

H(D; κ)

D log(1/D)
= 2κ. (4.59)

Next, starting from the definition of P (D; pX) and using a change of variables leads to the
expression

P (D; pX) = κD
∫ 1

0
ξ(βD)dβ.

Thus, we can write

lim
D→0

P (D; pX)

D1+2/L
= κ

∫ 1

0
lim
D→0

ξ(βD)

D2/L
dβ

= κ τ−2/L
∫ 1

0
β2/Ldβ

=
κ τ−2/L

1 + 2/L
(4.60)

where swapping the limit and the integral is justified by the fact that ξ(D) is continuous
and monotonically increasing. Combining (4.59) and (4.60) completes the proof of (4.25).

We next consider (4.26). Let wD be the unique solution to Pr[|W | > wD] = κD/(1− κ).
Using standard bounds on the cumulative distribution function of the Gaussian distribution
(see e.g. [71]) it can be verified that

lim
D→0

w2
D

log(1/D)
= 2. (4.61)

Therefore, by (4.58) and (4.61), the limit (4.26) follows immediately if we can show that

lim
D→0

(

ξ(D)

w2
D

)−1

σ2
awgn(D; pX) = 1. (4.62)
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To proceed, define the probabilities

p1(θ) = Pr
[
∣

∣

∣

X√
ξ(D)

+ W
wD

∣

∣

∣ ≤ θ|X '= 0
]

p2(θ) =
(

1−κ
κ

)

Pr[| W
wD

| > θ],

and note that

Dawgn

(

ξ(D)
w2

D
; pX

)

= inf
θ∈R

max
(

p1(θ), p2(θ)
)

. (4.63)

By a change of variables, we can write

p1(1) = D
∫ ∞

0
1(β ≤ 1

D ) Pr
[
∣

∣

∣

√

ξ(βD)
ξ(D) + W

wD

∣

∣

∣ ≤ 1
]

dβ.

Using (4.58) and the fact that ξ(D) is a strictly decreasing function when D is small, it can
be shown that the integrand of the above expression converges pointwise to 1(β ≤ 1) and
hence

lim
D→0

D−1p1(1) = 1. (4.64)

Since p1(θ) is a strictly increasing function of θ and p2(θ) is a strictly decreasing function of
θ with p2(1) = D, it thus follows that

lim
D→0

D−1Dawgn

(

ξ(D)
w2

D
; pX

)

= 1.

Since Dawgn(σ2; pX) is a strictly increasing function of σ2, this proves the limit (4.62), and
thus completes the proof of (4.26).

4.9 Properties of Soft Thresholding

This Section reviews several useful properties of the soft-thresholding noise sensitivity M(σ2,α, pX)
introduced in Section 2.3.

To begin, observe that the noise sensitivity defined in (2.33) can be expressed as

M(σ2,α, pX) =
E

[

|η(ST)(X + σW, σ2;α)−X|2
]

σ2
(4.65)

= E[µ(X/σ,α)] (4.66)

where µ(z,α) is given by

µ(z,α) = E

[

|η(ST)(z + W, 1;α)− z|2
]

. (4.67)



CHAPTER 4. ANALYSIS OF THE SAMPLING RATE-DISTORTION FUNCTION 80

With a bit of calculus, it can then be verified that

µ(z,α) = z2
[

1− Φ(−α + z)− Φ(−α − z)
]

+ (1 + α2)
[

Φ(−α + z) + Φ(−α − z)
]

− (α + z)φ(α− z)− (α− z)φ(α + z), (4.68)

where φ(x) = (2π)−1/2e−x2/2 and Φ(x) =
∫ x
−∞ φ(t)dt.

If we let X̃ be distributed according to the nonzero part of pX , then we obtain the general
expression

M(σ2,α, pX) = (1− κ)µ(0,α) + κE[µ( 1
σX̃,α)]. (4.69)

4.9.1 Infinite SNR Limit

The infinite SNR limit of the AMP-ST bound corresponds to the limit of M(σ2,α, pX) as
the noise power σ2 tends to zero. A simple exercise shows that

lim
σ2→0

E[µ( 1
σ X̃,α)] = (1 + α2) (4.70)

for any random variable X̃ with Pr[X̃ = 0] = 0. Therefore, for any distribution pX ∈ P(κ),
we obtain the general limit

lim
σ2→0

M(σ2,α, pX) = M0(α, κ) (4.71)

where

M0(α, κ) = κ(1 + α2) + (1− κ)2
[

(1 + α2)Φ(−α)− αφ(α)
]

. (4.72)

Minimizing M0(α, κ) as a function of α recovers the "1/"0 equivalence threshold of Donoho
and Tanner [19].

4.9.2 Universal Bounds

In [18], it is shown that, over the class of distributions P(κ), the noise sensitivity is maximized
at a “three-point” distribution that places all of its nonzero mass at ±1/

√
κ. Combining

this result with (4.69) leads to the uniform upper bound

sup
pX∈P(κ)

M(σ2,α, pX) = M∗(σ2,α, κ) (4.73)

where

M∗(σ2,α, κ) = (1− κ)µ(0,α) + κµ( 1
σ
√
κ ,α). (4.74)
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Using (4.73) it is now possible to extend the bound given in Theorem 2.6 to a given class
of distributions PX ⊂ P(κ). Specifically, we can conclude that a distortion D is achievable
for a tuple (ρ,PX , snr) if

ρ >
1

σ2 snr
+ M∗(σ2,α, κ) (4.75)

where

σ2 = min
pX∈PX

σ2
awgn(D; pX). (4.76)

We note that the bounds (4.75) and (4.76) can be used to find a value of the soft-
thresholding parameter α that works well uniformly over the class PX . However, since these
universal bounds are not tight, we cannot conclude that the resulting value of α is minimax
optimal.
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Chapter 5

The Role of Diversity

In the previous chapters we have seen that a major challenge in sparsity pattern recovery
is that small nonzero values are difficult to detect in the presence of noise. In this chapter, we
show how this problem can be alleviated if one can observe samples from multiple realizations
of the nonzero values for the same sparsity pattern.

5.1 Joint Sparsity Pattern Recovery

It well known that the presence of additional structure, beyond sparsity, can significantly
alter the problem of sparsity pattern recovery. Various examples include distributed or
model-based compressed sensing [3,4,74], estimation from multiple measurement vectors [13],
simultaneous sparse approximation [70], model selection [84], union support recovery [52],
multi-task learning [43], and estimation of block-sparse signals [26, 66].

In this chapter, we consider a joint sparsity pattern estimation framework motivated in
part by the following engineering problem. Suppose that one wishes to estimate the sparsity
patten of an unknown vector and is allowed to take either M noisy linear measurements of the
vector itself, or spread the same number measurements amongst multiple vectors with same
sparsity pattern as the original vector, but different nonzero values. This type of problem
arises, for example, in magnetic resonance imaging where the vectors correspond to images
of the same body part (common sparsity pattern) viewed with different contrasting agents
(different nonzero values).

On one hand, splitting measurements across different vectors increases the number of
unknown values, potentially making estimation more difficult. On the other hand, using all
measurements on a single vector has the risk that nonzero values with small magnitudes will
not be detected. To understand this tradeoff, this chapter bounds the accuracy of various
estimators for the estimation problem illustrated in Figure 5.1. We refer to the number of
vectors J as the “diversity”.

The results in this chapter show that the right amount of diversity is beneficial, but too
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Ŝ

Figure 5.1: Illustration of joint sparsity pattern estimation. The vectors Xj share a common
sparsity pattern S but have independent nonzero values. The sparsity pattern S is estimated
jointly using measurements vectors Yi corresponding to different measurement matrices Aj.

much or too little can be detrimental (when the total number of measurements is fixed).
Moreover, we show that diversity can significantly reduce the gap in performance between
computationally efficient estimators, such the matched filter or LASSO, and estimators with-
out any computational constraints.

5.1.1 Problem Formulation

Let X1,X2, · · · ,XJ ∈ Rn be a set of jointly random sparse vectors whose nonzero values are
indexed by a common sparsity pattern S

S = {i : Xj(i) '= 0}, for j = 1, 2, · · · , J. (5.1)

We assume that S is distributed uniformly over all subsets of {1, 2, · · · , n} of size k where k
is known. For simplicity, we focus exclusively on the setting where the nonzero entries are
i.i.d. Gaussian with zero mean.

We consider estimation of S from measurement vectors Y1,Y2, · · · ,YJ ∈ Rm of the form

Yj = AjXj +
1√
snr

Wj for j = 1, 2, · · · , J (5.2)

where each Aj ∈ Rm×n is a known matrix whose elements are i.i.d. N (0, 1) and Wj ∼
N (0, Im×m) is unknown noise. The estimation problem is depicted in Figure 5.1. The
accuracy of an estimate Ŝ is assessed using the distortion metric d(S∗, Ŝ) given in (1.6).

Our analysis considers the high dimensional setting where the diversity J is fixed but the
vector length n, sparsity k, and number of measurements per vector m tend to infinity. We
focus exclusively on the setting of linear sparsity where k/n→ κ for some fixed sparsity rate
κ ∈ (0, 1/2) and m/n→ r for some fixed per-vector sampling rate r > 0. The total number
of measurements is given by M = mJ , and we use ρ = Jr to denote the total sampling
rate. We say that a distortion D is achievable for an estimator Ŝ if Pr[d(S, Ŝ) > D]→ 0 as
n→ ∞. The case D = 0 corresponds to exact recovery and the case D > 0 corresponds to
a constant fraction of errors.
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We remark that we note that the joint estimation problem in this chapter is closely related
to the multiple measurement vector problem [13], except that each vector is measured using
a different matrix. Alternatively, our problem is a special case of block-sparsity [26,66] with
a block-sparse measurement matrix. Versions of our bounds for block-sparsity with dense
measurement matrices can also be derived.

5.1.2 Notations

For a matrix A and set of integers S we use A(S) to denote the matrix formed by concate-
nating the columns of A indexed by S. We use Hb(p) = −p log p−(1−p) log(1−p) to denote
binary entropy and all logarithms are natural.

5.2 Recovery Bounds

This section gives necessary and sufficient conditions for the joint sparsity pattern estimation
problem depicted in Figure 5.1.

One important property of the estimation problem is the relative size of the smallest
nonzero values, averaged across realizations. For a given fraction β ∈ [0, 1], we define
random variable

P (n)
J (D) = min

∆⊂S : |∆|=Dk

1

J

J
∑

j=1

k

n
‖Xj(∆)‖2. (5.3)

By the Glivenko-Cantelli theorem, P (n)
J (D) converges almost surely to a nonrandom limit

PJ(D). We will refer to this limit as the diversity power. If the nonzero values are Gaussian,
as is assumed in this chapter, it can be shown that

PJ(D) =
∫ α
0 ξJ(p)dp (5.4)

where

ξJ(p) =
{

t : Pr[ 1
Jχ

2
J ≤ t] = p

}

(5.5)

denotes the quantile function of a normalized chi-square random variable with J degrees of
freedom.

Another important property is the metric entropy rate (in nats per vector length) of S
with respect to our distortion function d(S, Ŝ). In Chapter 3, it is shown that this rate is
given by

R(D; κ) = H(κ)− κHb(D)− (1−κ)Hb(
κD
1−κ) (5.6)

for all D < 1− κ and is equal to zero otherwise.
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5.2.1 Joint ML Upper Bound

We first consider the ML recovery algorithm which is given by

ŜNS = arg min
S : |S|=k

J
∑

j=1

dist(Yj,Aj(S))2 (5.7)

where dist(Yj,Aj(S)) denotes the euclidean distance between Yj and the linear subspace
spanned by the columns of Aj(S). (For the case J = 1, this estimator corresponds to the
ML estimator studied in Chapter 2.)

Theorem 5.1. A distortion D is achievable for the tuple (κ, snr, ρ, J) using the ML recovery
algorithm if

ρ > κJ + max
D̃∈[D,1]

min
(

E1(D̃), E2(D̃)
)

(5.8)

where

E1(D) =
2Hb(κ)− 2R(D; κ) + 2DκJ log(5/3)

1
J log

(

1 + 4
25JPJ(D) snr

) (5.9)

E2(D) =
2Hb(κ)− 2R(D; κ)

log
(

1 + P1(D) snr
)

+ 1/
(

P1(D) snr
)

− 1
. (5.10)

For the case J = 1, the functions E1(D) and E2(D) correspond to the functions Λ1(D)
and Λ2(D) given in Theorem 2.1. To extend these bounds to the setting J > 1 requires a

large deviations bound on random variable P (n)
J (D). The full proof of this Theorem 5.1 is

given in [59].
Theorem 5.1 is a combination of two bounds. The part due to E1(D) determines the

scaling behavior at low distortions and low SNR and the part due to E2(D) determines the
scaling behavior at high SNR.

5.2.2 Information-Theoretic Lower Bound

We next consider an information-theoretic lower bound on the distortion for any estimator.
This bound depends on the entropy of the smallest nonzero values. For a given fraction
D ∈ [0, 1], we define the conditional entropy power

N (D) =
1

2πe
exp
{

− 2h
(

U |U2 ≤ ξ1(D)
)}

(5.11)

where h(·) is differential entropy and U ∼ N (0, 1).
The following result gives a necessary condition for any possible recovery algorithm. The

proof is outlined in Section 5.4.1.
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Theorem 5.2. A distortion D is not achievable for the tuple (κ, snr, ρ, J) if there exists a
distortion D̃ ∈ [D, 1] for which that at least one of the following inequalities is satisfied:

2R
(

D

D̃
;

D̃κ

1− κ + D̃κ

)

> J VUB

(

ρ

1− κ + D̃κ
, P 2

J (D)snr
)

(5.12)

2R
(

D

D̃
;

D̃κ

1− κ + D̃κ

)

> VUB

(

ρ

1− κ + D̃κ
, D̃1−1/JP1(D̃

1/J) snr
)

−
(

D̃κ

1− κ + D̃κ

)

VLB

(

ρ

D̃κ
, D̃N (D̃1/J) snr

)

(5.13)

where VLB(r, γ) is given by (3.20) and

VUB(r, γ) =















r

2
log(1 + γ), if r ≤ 1

1

2
log(1 + r γ), if r > 1

. (5.14)

As was the case for the ML upper bound, the bound in Theorem 5.2 is inversely propor-
tional to the effective power PJ(β) snr when the effective power is small.

5.2.3 Two-Stage Recovery Bounds

This section gives bounds for the two-stage estimation architecture depicted in Figure 5.2.
In the first stage, each vector Xj is estimated from its measurements Yj. In the second
stage, the sparsity pattern S is estimated by jointly thresholding estimates X̂1, X̂2, · · · , X̂J .
One advantage of this architecture is that the estimation in the first stage can be done in
parallel. We will see that this architecture can be near optimal in some settings but is highly
suboptimal in others.

Single-Vector Estimation

For the first stage of estimation, we may use the results derived in Chapter 2 for the MF,
LMMSE, AMP, and MMSE estimators. Throughout this chapter, we we use the fact that the
AMP-ST is equivalent to LASSO under a proper calibration of the regularization parameters.

Thresholding

For the second stage of recovery we consider the joint thresholding of the form

ŜTH =
{

i :
∑J

j=1 X̂2
j (i) ≥ t

}

(5.15)

where the threshold t ≥ 0 is chosen to minimize the expected distortion. Since each index
i ∈ {1, 2, · · · , n} is evaluated independently, and since the estimated vectors X1,X2, · · · ,Xj
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Figure 5.2: Illustration of single-vector estimation followed by joint thresholding.

are conditionally independent given the sparsity pattern S, the distribution on the distortion
d(S, ŜTH) can be characterized by joint distribution on (X1(1), X̂1(1)).

The following result describes the relationship between the distortion α, the diversity J ,
and the effective noise power σ2. The proof is given in Section 5.4.2.

Theorem 5.3. Suppose that for j = 1, 2, · · · , J , the empirical joint distributions on the
elements of (Xj, X̂j) converge weakly to the distribution on the pair (X, Z) in the scalar
equivalent model given in Definition 2.1 with noise power σ2. Then, a distortion D is a
achievable if σ2 < σ2

J(D) and not achievable if σ2 > σ2
J (D) where

σ2
J(D) =

ξJ(D)

ξJ(1− Dκ
1−κ)− ξJ(D)

(5.16)

with ξJ(D) given by (5.5).

Theorem 5.3 shows that the relationship between D and J is encapsulated by the term
σ2

J(D). With a bit of work it can be shown that the numerator and denominator in (5.16)
scale like D−1PJ(D) and D−1R(D; κ) respectively when D is small. Thus, plugging σ2

J(D)
into the equivalent noise expression of the matched filter given in (2.118) shows that bounds
attained using Theorem 5.3 have similar low distortion behavior to the bounds in Section 5.2.

One advantageous property of Theorem 5.3 is that the bounds are exact. As a conse-
quence, these bounds are sometimes lower than the upper bound in Theorem 5.1, which is
loose in general. One shortcoming however, is that the two-stage architecture does not take
full advantage of the joint structure during the first stage of estimation. As a consequence,
the performance of these estimators can be highly suboptimal, especially at high SNR.

5.3 Sampling Rate-Diversity Tradeoff

In this section, we analyze various behaviors of the bounds in Theorems 5.1, 5.2, and 5.3, with
an emphasis on the tradeoff provided by the diversity J . The following results characterize
the high SNR and low distortion behavior of optimal estimation. Their proofs are given
in [59].
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Proposition 5.1 (High SNR). Let (κ, J, D), be fixed and let ρ(snr) denote the infimum over
sampling rates ρ such that α is achievable for the optimal estimator. Fix any ε > 0.

(a) If D > 0, then

ρ(snr) ≤ Jκ +
2Hb(κ)(1 + ε)

log(snr)
(5.17)

for all snr large enough.

(b) If 2R(D; κ) > Jκ, then

ρ(snr) ≥ Jκ +
2R(κ,α)(1− ε)

log(snr)
(5.18)

for all snr large enough.

Proposition 5.2 (Low Distortion). Let (κ, J, snr) be fixed and let ρ(D) denote the infimum
over sampling rates ρ such that D is achievable for the optimal estimator. There exist
constants 0 < C− ≤ C+ <∞ such that

C−
(

1
D

)2/J
log( 1

D

)

≤ ρ(D) ≤ C+
(

1
D

)2/J
log( 1

D

)

(5.19)

for all D small enough.

Propositions 5.1 and 5.2 illustrate a tradeoff. At high SNR, the difficulty of estimation
is dominated by the uncertainty about the nonzero values. Accordingly, the number of
measurements is minimized by letting J = 1. As the desired distortion becomes small
however, the opposite behavior occurs. Since estimation is limited by the size of the smallest
nonzero values, it is optimal to choose J large to increase the diversity power. This behavior
can be seen, for example, in Figures 5.3-5.6.

A natural question then, is how does one best choose the diversity J? The following
result shows that the right amount of diversity can significantly improve performance. The
proof is given in [59].

Proposition 5.3. Let (κ, snr) be fixed and let ρ(D, J) denote the infimum over sampling
rates ρ such that D is achievable with diversity J . Then,

ρ(D, J) ≤ κJ + O
(

D
P (D,J)

)

. (5.20)

Moreover, if J = J∗(D) = Θ(log(1/D) then

ρ(D, J∗(D)) = Θ(log(1/D)). (5.21)
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Figure 5.3: Bounds on the total sampling rate ρ = Jr as a function of snr for various J when
D = 0.1 and κ = 10−4.
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Figure 5.4: Bounds on the distortion D as a function of the total sampling rate ρ = Jr for
various J when snr = 40 dB and κ = 10−4.
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Figure 5.5: The upper bound (Theorem 5.1) on the total sampling rate ρ = Jr of the nearest
subspace estimator as a function of the distortion α for various J when snr = 40 dB and
κ = 10−4.

An important implication of Proposition 5.3 is that the optimal choice of J allows the
distortion to decay exponentially rapidly with the sampling rate ρ. Note that the rate of decay
is only polynomial if J is fixed. Interestingly, it can also be shown that the same exponential
boost can be obtained using non-optimal estimators, albeit with smaller constants in the
exponent.

The effect of the diversity J is illustrated in Fig. 5.5 for the nearest subspace estimator and
in Fig. 5.6 for Lasso + thresholding. In both cases, the bounds show the same qualitative
behavior–each value of the diversity J traces out a different curve in the sampling rate
distortion region. It is important to note however, that due to the sub-optimality of the two
stage architecture and the LASSO estimator, these similar behaviors occur only at different
SNRs and with an order of magnitude difference in the sampling rate.

5.4 Proofs

5.4.1 Proof Outline of Theorem 5.2

The section outlines the proof of Theorem 5.2; the full proof is given in [59].
The proof of Theorem 5.2 uses many of the ideas developed in Chapter 3 for the single-

vector setting. To apply these bounds, we cast the multi-vector problem as a version of the
single-vector problem where the vector length is Jn and the number of nonzero elements is



CHAPTER 5. THE ROLE OF DIVERSITY 92

10−3 10−2

10−5

10−4

10−3

10−2

10−1

100

J=3

J=2

J=1

total sampling rate ρ

d
is

to
rt

io
n

α

Figure 5.6: The upper bound (Theorem 5.3) on the total sampling rate ρ = Jr of LASSO
+ Joint Thresholding as a function of the distortion α for various J when snr = 30 dB and
κ = 10−4.
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Taking the joint sparsity constraint into account shows that the metric entropy rate of S
with respect to the new problem is given by 1

J R(κ,α).
The remaining challenge in this proof is that the low distortion behavior relies on the

concept of a genie, who provides the estimator indices and values of the largest nonzero
elements. This genie trick, is used to isolate the effect of the smallest nonzero values.
The new difficultly in the multi-vector setting is the following: if the genie chooses which
indices i he reveals based on the average magnitude given by

∑J
j=1 X2

j (i), then the values
X1(i), X2(i), · · · , XJ(i) conditioned on the genies decision are no longer independent. As a
consequence, it is not possible to compute their joint entropy and the sum of their individual
entropy’s.

To resolve this issue, we develop two different bounds. For the first bound, the genie se-
lects indices according the average magnitude and we ignore the entropy of the remaining (de-
pendent) unknown values. This bound leads to the necessary condition (5.12). For the sec-
ond bound, the genie select indices according to the largest magnitude, i.e. max1≤j≤J X2(i).
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This selection strategies preserves the conditional independence and leads to the necessary
condition (5.13).

5.4.2 Proof of Theorem 5.3

For each index i, the random variables X̂1(i), X̂2(i), · · · , X̂J(i) are asymptotically i.i.d.N (0, σ2)
conditioned on i /∈ S and i.i.d. N (0, 1+σ2) conditioned on i ∈ S. Thus, the total magnitude
Z =

∑J
j=1 X2

j is a sufficient statistic for estimation of 1(i ∈ S), and it is straightforward to

show that the optimal estimator has the form Ĥ = 1(Z > t∗) where

t∗ = arg min
t

max(Pr[i ∈ S, Z < t], Pr[i /∈ S, Z ≥ t]). (5.22)

With a bit of work, it can be verified that this occurs when

(1− κ) Pr[σ2 χ2
J > t∗] = κPr[(1 + σ2)χ2

J ≤ t∗]. (5.23)

Using the fact that the limiting distortion is given by

D = 1
κ max (Pr[i ∈ S, Z < t∗], Pr[i /∈ S, Z ≥ t∗]) (5.24)

and solving for t∗ completes the proof.
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Chapter 6

A Compressed Sensing Wire-Tap

Channel

This chapter studies a multiplicative Gaussian wire-tap channel inspired by compressed
sensing. Lower and upper bounds on the secrecy capacity are derived, and shown to be
relatively tight in the large system limit for a large class of compressed sensing matrices.
Surprisingly, it is shown that the secrecy capacity of this channel is nearly equal to the
capacity without any secrecy constraint provided that the channel of the eavesdropper is
strictly worse than the channel of the intended receiver. In other words, the eavesdropper
can see almost everything and yet learn almost nothing. This behavior, which contrasts
sharply with that of many commonly studied wiretap channels, is made possible by the fact
that a small number of linear projections can make a crucial difference in the ability to
estimate sparse vectors.

6.1 Secrecy and Compressed Sensing

Following Shannon’s theory in 1949 of information-theoretic secrecy [65], Wyner introduced
the wiretap channel in 1975 [83]. In the wiretap setting, a sender Alice wishes to communicate
a message to a receiver Bob over a main channel but her transmissions are intercepted
by an eavesdropper Eve through a secondary wiretap channel. This chapter analyzes a
multiplicative Gaussian wiretap channel inspired by compressed sensing. The input to the
channel is a p-length binary vector. The channel output is a linear transform of the input
after it has first been corrupted by multiplicative white Gaussian noise. We analyze the
setting where Bob and Eve observe different linear transforms characterized by two different
channel matrices.

Secrecy via compressed sensing schemes has received little attention from an information-
theoretic viewpoint. In prior work, authors consider using a sensing matrix as a key (unknown
to the eavesdropper) for both encryption and compression [54]. Privacy via compressed
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Figure 6.1: (Multiplicative Gaussian Wiretap Channel) For each block length n, Alice
transmits a sequence of n binary valued support vectors X ∈ {0, 1}p over a main channel
characterized by a matrix transform so that Bob receives Y = AbWX. The eavesdropper
Eve receives Z = AeWX.

sensing and linear programming decoding was explored in [24]. By contrast, this chapter
assumes that the sensing matrices are known (non-secret); as a special case, Eve’s sensing
matrix might correspond to a subset of the rows of Bob’s channel matrix. Our analysis shows
that certain channel matrices, inspired by compressed sensing, allow for secrecy rates that
are nearly equal to the main channel capacity even if Eve’s capacity is large.

6.1.1 Channel Model

Outlined in Fig. 6.1, the multiplicative Gaussian wiretap channel with binary vector input
is characterized by

Y = AbWX, (6.1)

Z = AeWX, (6.2)

where X ∈ {0, 1}p is the transmitted signal, and Y ∈ Rmb , Z ∈ Rme are the received
real-valued signals at the legitimate user and eavesdropper, respectively. A related channel
model in [42] also involves a wire-tap setting with binary input and real-valued output. The
dimensions of the channel satisfy 0 ≤ me < mb < p/2. The linear mixing parameters,
matrices Ab ∈ Rmb×p and Ae ∈ Rme×p, are fixed and known to all parties. The randomness
of the channel is derived from W ∈ Rp×p, a diagonal matrix whose values are i.i.d. Gaussian
random variables with mean zero and variance one. The channel is assumed to be memoryless
between channel uses.

6.1.2 Secrecy Capacity

Alice selects a message Sn ∈ [1 : 2npR], where R represents a normalized rate, and wishes
to communicate reliably with Bob while keeping the message secret from Eve. A (2npR, n)
secrecy code for the multiplicative wiretap channel consists of the following: (1) A message
set [1 : 2npR]; (2) A randomized encoder that generates a codeword Xn(Sn), Sn ∈ [1 : 2npR],
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according to PXn|Sn; (3) A decoder that assigns a message Ŝn(Yn) to each received sequence
Yn ∈ Yn. The message Sn is a random variable with entropy satisfying

lim
n→∞

H(Sn)

np
= R. (6.3)

A secrecy code is reliable if

lim
n→∞

Pr[Ŝn(Yn) '= Sn] = 0. (6.4)

A secrecy code is secret if the information leakage rate tends to zero as block length n→∞,

lim
n→∞

I(Zn; Sn)

n
= 0. (6.5)

Note that this leakage rate is not normalized by p. A normalized rate R is achievable if there
exists a sequence of (2npR, n) secrecy codes satisfying both Eqn. (6.4) and Eqn. (6.5). The
secrecy capacity Cs is the supremum over all achievable rates.

6.1.3 Outline of Results

To analyze the secrecy capacity Cs, we first develop bounds as a function of the channel
matrices Ab and Ae. We then analyze these bounds for certain random matrices in the large
system limit where mb/p→ ρb and me/p→ ρe as p→∞ for fixed constants 0 ≤ ρe ≤ ρb ≤
1/2. Lower bounds on the secrecy capacity, corresponding to Wyner’s coding strategy for
discrete memoryless channels are developed in Section 6.2.1. Corresponding upper bounds
are derived in Section 6.2.2. Section 6.2.3 provides an improved upper bound under a certain
encoding constraint on Alice. Proofs are given in Section 6.3.

6.1.4 Notations

For a matrix A ∈ Rm×p and vector x ∈ {0, 1}p, we use A(x) to denote the matrix formed
by concatenating the columns indexed by x, and we use A(i) to denote the ith column of
A. Also, we use X p

k to denote the set of all binary vectors x ∈ {0, 1}p with exactly k ones.
We use H2(x) = −x log x− (1− x) log(1− x) to denote binary the binary entropy function.
We use log to denote the logarithm with base two and ln to denote the logarithm with the
natural base.

6.2 Bounds on the Secrecy Capacity

Csiszar and Korner showed in [15] that the secrecy capacity of a discrete memoryless wiretap
channel is given by

Cs = max
(U,X)

[

1
pI(U ;Y)− 1

pI(U ;Z)] (6.6)
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where the auxiliary random variable U satisfies the Markov chain relationship: U → X →
(Y,Z). It can be verified that this is also the secrecy capacity when the channels have
discrete inputs and continuous outputs (see e.g. [42]).

In some special cases, the secrecy capacity can be computed easily from (6.6). For
example, if Ab and Ae correspond to the first mb and me rows of the p× p identity matrix
respectively, then it is straightforward to show that

Cs =







mb

p −
me

p , if me < mb

0 if me ≥ mb

. (6.7)

In this case, the secrecy capacity happens to be the difference of the individual channel
capacities; thus as me approaches mb the secrecy capacity tends to zero. In the following
sections we will develop bounds for a class of matrices inspired by compressed sensing.
Interestingly, we will see that the secrecy behavior of these matrices differs greatly from the
behavior shown in (6.7).

6.2.1 Lower Bounds

We say that a matrix A ∈ Rm×p is fully linearly independent (FLI) if the span of each
submatrix {A(x) ∈ Rm×m−1 : x ∈ X p

m−1} defines a unique linear subspace of Rm. Examples
of FLI matrices include the first m rows of the p×p discrete cosine transform matrix or, with
probability one, any matrix whose entries are drawn i.i.d. from a continuous distribution. A
counter example is given by the first m rows of the p× p identity matrix.

Our first result, which is proved in Section 6.3.1, gives a general lower bound on the
secrecy capacity for any FLI matrices.

Theorem 6.1. Suppose that Ab and Ae are fully linearly independent. If me < mb, then the
secrecy capacity is lower bounded by

Cs ≥ 1
p log

(

p
mb−1

)

− 1
2p log det(1

pAeAT
e )

+
∑

x∈X p
mb−1

1

( p
mb−1)2p

log det
(

1
mb−1Ae(x)Ae(x)T

)

. (6.8)

The lower bound in Theorem 6.1 is derived by evaluating the right hand side of (6.6)
when X is distributed uniformly over the set X p

mb−1. We note that the condition me < mb

is necessary to obtain a nontrivial lower bound since the secrecy capacity may be equal to
zero otherwise.

Unfortunately, the bound in Theorem 6.1 is difficult to compute if mb and p are large. One
way to address this issue is to analyze the behavior for a random matrix (random matrices
are denoted via boldface, uppercase letters). The following result is proved in Section 6.3.2.
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Figure 6.2: Illustration of the lower bound in Theorem 6.2 on the expected secrecy capacity
EAe [Cs] as a function of me for various values of p when Ab is fully linearly independent, Ae

is a random matrix whose elements are i.i.d. N (0, 1), and mb/p = 0.2.

Theorem 6.2. Suppose that Ab is fully linearly independent and Ae is a random matrix
whose elements are i.i.d. N (0, 1). If me < mb then the expectation of the secrecy capacity is
lower bounded by

EAe [Cs] ≥ 1
p log

(

p
mb−1

)

− me

2p log
(

mb−1
p

)

− log e
2p

me
∑

i=1

[

ψ
(

p−i+1
2

)

− ψ
(

mb−i
2

)]

(6.9)

where ψ(x) = Γ′(x)/Γ(x) is Euler’s digamma function.

One benefit of Theorem 6.2 is that the bound is independent of the realization of the
matrix Ae and can be analyzed directly. An illustration of the bound is shown in Figure 6.2
as a function of me/p for various values of p with mb/p held fixed. Remarkably, as p becomes
large, the lower bound in Theorem 6.2 remains bounded away from zero for all values of me

strictly less than mb. This behavior is in stark contrast to the secrecy capacity shown in
(6.7).

One shortcoming of Theorem 6.2, is that the bound holds only in expectation, and it is
possible that it is violated for a constant fraction of matrices Ae. The next result, which is
proved in Section 6.3.3, shows that, in the asymptotic setting, the limit of the bound (6.9)
holds for almost every realization of Ae. We use the notation {A(p) ∈ Rm(p)×p} to denote a
sequence of matrices indexed by the number of columns p.
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Theorem 6.3. Suppose that {A(p)
b ∈ Rm(p)

b
×p} is a sequence of linearly independent matrices

and {A(p)
e ∈ Rm(p)

e ×p} is a sequence of random matrices whose elements are i.i.d. N (0, 1). If

m(p)
e > m(p)

b and m(p)
b /p→ ρb and m(p)

e /p→ ρe as p→∞ where 0 ≤ ρe ≤ ρb ≤ 1/2, then the
asymptotic secrecy capacity is lower bounded by

lim inf
p→∞

Cs ≥ H2(ρb)− 1
2

[

(1− ρe) log
(

1
1−ρe

)

− (ρb − ρe) log
(

ρb

ρb−ρe

)

]

(6.10)

almost surely.

Theorem 6.3 provides a concise characterization of the lower bound in the asymptotic
setting. The bound is illustrated in Figure 6.2 in the case p =∞. Since the secrecy capacity
can be equal to zero if m(p)

e = m(p)
b , Theorem 6.3 shows that there is a discontinuity in the

asymptotic secrecy capacity as a function of ρe.

6.2.2 Upper Bounds via Channel Capacity

This section considers the capacity of Bob’s channel which is denoted Cb. We note that this
capacity gives us an upper bound on the secrecy capacity.

Upper bounding the capacity is more technically challenging than lower bounding the
secrecy capacity, since the optimal distribution on X may depend nontrivially on channel
matrix Ab. The following result, which is proved in Section 6.3.4, serves as a starting point.

Theorem 6.4. If Ab is fully linearly independent, then the channel capacity of Bob’s channel
is upper bounded by

Cb ≤ 1
p max

(

log
(

p
mb−1

)

, max
mb≤k≤p

c̃(k)
)

+ log p
p (6.11)

where

c̃(k) = max
1≤i≤p

mb

2 log
(

1
mb
‖Ab(i)‖2

)

− max
x∈X p

k

1
2 log det( 1

kAb(x)Ab(x)T ). (6.12)

Although it is tempting to consider the expectation of (6.11) with respect to a random
matrix (as we did for Theorem 6.2), this is difficult since the maximization in (6.12) occurs
inside the expectation.

Our next result, which is proved in Section 6.3.5, leverages the strong concentration
properties of the Gaussian distribution to characterize the asymptotic capacity for Gaussian
matrices.
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Theorem 6.5. Suppose that {A(p)
b ∈ Rm(p)

b
×p} is a sequence of random matrices whose

elements are i.i.d. N (0, 1). If m(p)
b /p→ ρb where 0 < ρb ≤ 1/2, then the asymptotic channel

capacity of Bob’s channel is given by

lim
p→∞

Cb = H2(ρb) (6.13)

almost surely.

Theorem 6.5 shows that the strategy used in our lower bounds, namely choosing X

uniformly over X p
mb−1 achieves the capacity of Bob’s channel in the asymptotic setting.

What is remarkable is that for this same input distribution, Eve learns very little about
what is being sent, even if her channel matrix is equal to the first me rows of Bob’s channel
matrix.

6.2.3 Improved Upper Bound for a Restricted Setting

We say that the distribution is symmetric if Pr[X = x] = Pr[X = x̃] for all x, x̃ such that
∑p

i=1 xi =
∑p

i=1 x̃i. The following result is proved in Section 6.3.6.

Theorem 6.6. Suppose that {A(p)
b ∈ Rm

(p)
b

×p} and {A(p)
e ∈ Rm

(p)
e ×p} are sequences of random

matrices whose elements are i.i.d. N (0, 1). If m(p)
b > m(p)

e and m(p)
b /p→ ρb, and m(p)

e /p→ ρe

where 0 ≤ ρe ≤ ρb ≤ 1/2, and if Alice is restricted to use coding strategies that induce a
symmetric distribution on X, then the asymptotic secrecy capacity is upper bounded by

lim sup
p→∞

Cs ≤ H(X|WX +
√

ρb/ρeV ) (6.14)

almost surely where X ∼ Bernoulli(ρb), W ∼ N (0, 1) and V ∼ N (0, 1) are independent
random variables.

The bound in Theorem 6.6 is strictly less than the channel capacity H2(ρb) for all ρe > 0,
and can be computed easily using numerical integration. We suspect that this result also
holds without the symmetry restriction on X.

6.2.4 Illustration of Bounds

The bounds on the asymptotic secrecy capacity given in Theorems 6.3, 6.5, and 6.6 are
illustrated in Fig. 6.3 as a function of the size parameter ρe of the eavesdropper channel.
The bounds correspond to the setting where the elements of the matrices are i.i.d. Gaussian.
Note that the lower bound on the secrecy capacity is nearly equal to that of the main channel
for all ρe < ρb.

For comparison, the secrecy capacity for the special case where Ab and Ae correspond to
the first rows of the p × p identity matrix are shown in Fig. 6.4. In this case, the secrecy
capacity is equal to the difference between the main channel capacity and the eavesdropper
capacity.
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Figure 6.3: Bounds on the asymptotic (normalized) secrecy capacity Cs of the multiplicative
Gaussian wiretap channel as a function of ρe when ρb = 0.2 and Ab and Ae are random
matrices whose elements are i.i.d. N (0, 1).
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Figure 6.4: The (normalized) secrecy capacity Cs of the multiplicative Gaussian wiretap
channel as a function of ρe when ρb = 0.2 and Ab and Ae correspond to the first rows of the
identity matrix.
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6.3 Proofs

6.3.1 Proof of Theorem 6.1

Let U = X where X is distributed uniformly over X p
mb−1. Since Ab is fully linearly indepen-

dent, the probability that Y is in the range space of Ab(x̃) for any x̃ ∈ X p
mb−1 not equal to

the true vector X is equal to zero. Thus, H(X|Y) = 0 and

I(U ;Y) = I(X;Y) = H(X) = log
(

p
mb−1

)

. (6.15)

Next, since Ae is fully linearly independent and the number of nonzero values in X is
strictly greater than the rank of Ae, it can be verified that both Z and Z|X have probability
densities. (Note that the condition mb > me is critical here, since Z does not have a density
otherwise.) Thus we can write

I(U ;Z) = I(X;Z) = h(Z)− h(Z|X) (6.16)

where h(·) denotes differential entropy (see e.g. [14]). The entropy h(Z) can be upper
bounded as

h(Z) ≤ max
Z̃ : E[Z̃Z̃]=E[ZZT ]

h(Z̃)

≤ 1
2 log

(

(2πe)me det(E[ZZT ])
)

(6.17)

= 1
2 log

(

(2πe (mb−1
p ))me det(AeAT

e )
)

(6.18)

where (6.17) follows from the fact that the Gaussian distribution maximizes the differential
entropy and (6.18) follows from the fact that

E[ZZT ] = mb−1
p AeAT

e . (6.19)

The conditional entropy h(Z|X) is given by

h(Z|X) = E

[

1
2 log

(

(2πe)me det(Ae(X)Ae(X)T )
)]

(6.20)

where we used the fact that, conditioned on any realization X = x, Z is a (non-degenerate)
Gaussian random vector with covariance matrix Ae(x)Ae(x)T . Combining (6.15), (6.16),
(6.18), and (6.20) with the expression of the secrecy capacity given in (6.6) completes the
proof of Theorem 6.1.

6.3.2 Proof of Theorem 6.2

It is straightforward to show that Ae is fully linearly independent with probability one. Since
the secrecy rate is bounded, it thus follows from Theorem 6.1 and the linearity of expectation
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that

E[Cs] ≥ 1
p log

(

p
mb−1

)

− me

2p log
(

mb−1
p

)

− 1

2p
E

[

log det(AeA
T
e )
]

+
∑

x∈X p
mb−1

1

( p
mb−1)2p

E

[

log det
(

Ae(x)Ae(x)T
) ]

. (6.21)

Using well known properties of random Gaussian matrices (see e.g. [49, pp. 99-103]) shows
that

E

[

log det(AeA
T
e )] = me + log e

me
∑

i=1

ψ(p−i+1
2 )

E

[

log det(Ae(x)Ae(x)T )] = me + log e
me
∑

i=1

ψ(mb−i
2 )

where the second equality holds for every x ∈ X p
mb−1. Plugging these expressions into (6.21)

completes the proof.

6.3.3 Proof of Theorem 6.3

Since Ae is fully linearly independent with probability one, it is sufficient to consider the
asymptotic behavior of the bound in Theorem 6.1. If X is a random vector distributed
uniformly over X p

mb−1 then AeA
T
e and Ae(X)Ae(X)T are me ×me Wishart matrices with p

and mb − 1 degrees of freedom respectively. Using Lemma 6.6 gives

lim
p→∞

1
p log det(1

pAeA
T
e ) = µ(ρe)

lim
p→∞

1
p log det( 1

mb−1Ae(X)AT
e (X)) = ρb µ(ρe/ρb)
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almost surely where µ(r) = (1− r) ln
(

1
1−r

)

− r log e. Thus,

lim
p→∞

[

me

p log
(

mb−1
p

)

1
p log det(AeA

T
e )

−
∑

x∈X p
mb−1

1

( p
mb−1)p

log det(Ae(x)Ae(x)T )

]

= lim
p→∞

[

me

p log
(

mb−1
p

)

1
p log det(AeA

T
e )

− 1
p log det(Ae(X)Ae(X)T )

]

(6.22)

= µ(ρb)− ρb µ(ρe/ρb)

= (1− ρe) log
(

1
1−ρe

)

− (ρb − ρe) log
(

ρb

ρb−ρe

)

(6.23)

almost surely where the substitution in (6.22) is justified by the fact that the expectation
of 1

mb
log det( 1

mb
A(X)Ae(X)T ) with respect to both A and X is bounded uniformly for all p

(see the proof of Theorem 6.2).
Combining (6.23) with the well known fact that

lim
p→∞

1
p log

(

p
mb−1

)

= H2(ρb) (6.24)

completes the proof of Theorem 6.3.

6.3.4 Proof of Theorem 6.4

Let K =
∑p

i=1 Xi denote the number of ones in X. Then,

I(X;Y) = I(X;Y|K) + I(Y; K) (6.25)

≤ I(X;Y|K) + log p (6.26)

≤ max
0≤k≤p

I(X;Y|K = k) + log p (6.27)

where (6.25) follows from the chain rule for mutual information, (6.26) follows from the fact
that I(Y; K) ≤ H(k) ≤ log p, and (6.27) follows from expanding the term I(X;Y|K). If we
define

c(k) = max
X∈X p

k

I(X;Y)

then we have

max
X

I(X;Y) ≤ max
0≤k≤p

c(k) + log p. (6.28)
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To complete the proof, we split the maximization over k into two cases. For 0 ≤ k < mb we
use the simple bound

max
0≤k<mb

c(k) ≤ max
X∈Xk : 0≤k<mb

H(X) = log
(

p
mb−1

)

.

For mb ≤ k ≤ p we use the following lemma.

Lemma 6.1. If mb ≤ k ≤ p, then c(k) ≤ c̃(k) where c̃(k) is given in (6.12).

Proof. Let X have any distribution on X p
k where mb ≤ k ≤ p. Since Ae is fully linearly

independent, both Y and Y|X have probability densities and we can write

I(X;Y) = h(Y)− h(Y|X) (6.29)

where h(·) denotes differential entropy (see e.g. [14]). The entropy h(Y) can be upper
bounded as

h(Y) ≤ max
Ỹ : E[‖Ỹ‖2]=E[‖Y‖2]

h(Ỹ)

= mb

2 log
(

2πe 1
mb

E[‖Y‖2]
)

(6.30)

≤ max
1≤i≤p

mb

2 log
(

2πe k
mb
‖Ab(i)‖2

)

(6.31)

where (6.30) follows from the fact that an isotropic Gaussian vector maximizes differential
entropy, and (6.31) follows from the fact that

E[‖Y‖2] = E

[

E[‖Y‖2|X]
]

≤ max
x

E[‖Y‖2|X = x]

= max
x

tr
(

Ab(x)Ab(x)T
)

≤ max
1≤i≤p

k‖Ab(i)‖2.

The conditional entropy h(Y|X) is lower bounded by

h(Y|X) = E

[

1
2 log

(

(2πe)mb det(Ab(X)Ab(X)T )
)]

≥ min
x∈X p

k

1
2 log

(

(2πe)mb det(Ab(x)Ab(x)T )
)

(6.32)

where we used the fact that, conditioned on any realization X = x, Y is a (non-degenerate)
Gaussian random vector with covariance matrix Ab(x)Ab(x)T . Combining (6.29), (6.31) and
(6.32) completes the proof of Theorem 6.4.
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6.3.5 Proof of Theorem 6.5

Since Ae is fully linearly independent with probability one, it is sufficient to consider the
asymptotic behavior of the bound in Theorem 6.4. The limit of the first term in the max-
imization is given by (6.24). To evaluate the second term, we use the following technical
lemmas whose proofs are given in the Appendices 6.3.7 and 6.3.8.

Lemma 6.2.

lim sup
p→∞

max
1≤i≤p

1

mb
‖Ab(i)‖2 ≤ 1 (6.33)

almost surely.

Lemma 6.3. If k ≥ mb and k/p→ κ where ρb ≤ κ ≤ 1, then

lim inf
p→∞

min
x∈X p

k

1
p log det( 1

kAb(x)Ab(x)T ) ≥ κµ(ρb/κ) (6.34)

almost surely where µ(r) = (1− r) log
(

1
1−r

)

− r log e.

The convergence show in Lemmas 6.2 and 6.3 leads immediately to the following asymp-
totic upper bound on the term c̃(k) defined in (6.12):

lim sup
p→∞

max
mb<k≤p

1
p c̃(k)

≤ max
ρb≤κ≤1

1
2

[

ρb log e− (κ− ρb) log
(

κ
κ−ρb

)]

= 1
2ρb log e

almost surely. Since H2(ρb) > 1
2ρb log e for all ρb ∈ (0, 1/2), we conclude that the asymptotic

capacity is upper bounded by H2(ρb). The achievable strategy outlined in the proof of
Theorem 6.1 shows that H2(ρb) is also achievable which concludes the proof of Theorem 6.5.

6.3.6 Proof of Theorem 6.6

Let K =
∑p

i=1 Xi. Then, for any pair (U,X) such that U → X→ (Y,Z), we have

I(U ;Y)− I(U ;Z)

= I(X;Y)− I(X;Z) + I(X;Z|U)− I(X;Y|U) (6.35)

≤ I(X;Y|K)− I(X;Z|K)

+ I(X;Z|U, K)− I(X;Y|U, K) + 2 log p (6.36)

≤ max
0≤k≤p

∆(k) + 2 log p (6.37)
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where

∆(k) = I(X;Y|K = k)− I(X;Z|K = k)

+ I(X;Z|U, K = k)− I(X;Y|U, K = k).

We now consider two cases. For the case mb ≤ k ≤ p, we use the upper bound

∆(k) ≤ I(X;Y|K = k) + I(X;Z|U, K = k)

≤ I(X;Y|K = k) + I(X;Z|K = k)

which follows from the non-negativity of mutual information and the data processing in-
equality. Following the steps outlined in the proofs of Theorems 6.4 and 6.5 shows that

lim sup
p→∞

max
X∈X p

k
: mb≤k≤p

1
p∆(k) ≤ 1

2(ρb + ρe) log e ≤ ρb log e (6.38)

almost surely. (Note that this step does not require the symmetry assumption.)
Alternatively, for the case 0 ≤ k < mb, we use the bound

∆(k) ≤ H(X|Z, K = k) + H(X|Y, K = k)

which follows from the non-negativity of entropy and the fact that conditioning cannot
increase entropy. Since Ab is fully linearly independent almost surely, it follows from the
proof of Theorem 6.1 that H(X|Y, K = k) is equal to zero almost surely. To characterize
the asymptotic behavior of the remaining term, H(X|Z, K = k), we use the following lemma
which is proved in Section 6.3.9.

Lemma 6.4. Suppose that X is symmetric. If 0 ≤ k < mb and k/p→ κ where 0 ≤ κ ≤ ρb,
then

lim sup
p→∞

1
pH(X|Z, K = k) ≤ g(κ, ρe) (6.39)

almost surely where

g(κ, ρe) = H(X|WX +
√

κ/ρeV ) (6.40)

and X ∼ Bernoulli(κ), W ∼ N (0, 1) and V ∼ N (0, 1) are independent random variables.

Noting that g(κ, ρe) is nondecreasing in κ, we obtain the asymptotic upper bound

lim sup
p→∞

Cs ≤ max
(

g(ρb, ρe), ρb

)

. (6.41)

It can be verified numerically that this maximum occurs at g(ρb, ρe) for all ρb ∈ (0, 1/2)
which completes the proof of Theorem 6.6.
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6.3.7 Proof of Lemma 6.2

Note that the column magnitudes ‖Ab(i)‖2, i = 1, 2, · · · , p are i.i.d. chi-square random vari-
ables with mb degrees of freedom. Thus for any ε ∈ (0, 1/2), the chi-square concentration
inequality in Lemma 6.5 gives

Pr[max
1≤i≤p

1
mb
‖Ab(i)‖2 ≥ 1 + ε] ≤ p exp(− 3

16(ρbp)ε2) (6.42)

which decays exponentially rapidly with p as p→∞.

6.3.8 Proof of Lemma 6.3

For each x ∈ X p
k , let

N(Ab,x) = 1
k log det

(

1
kA(x)A(x)T

)

. (6.43)

By the union bound, and the symmetry of Ab we have

Pr
[

min
x∈X p

k

N(Ab,x) ≤ t
]

≤
(

p

k

)

Pr[N(A,x) ≤ t], (6.44)

for any arbitrary x ∈ X p
k . Using the bound

(

p
k

)

≤ (pe/k)k and Lemma 6.6, shows that for
any ε > 0,

lim sup
p→∞

1
p ln p ln Pr[N(A,x) ≤ µ(ρb/κ)− ε] ≤ −ε

which suffices to prove almost sure convergence.

6.3.9 Proof of Lemma 6.4

Let X̂ = 1
me

AT
e Z. Then, we have

H(X|Z, K = k) ≤ H(X|X̂, K = k) (6.45)

≤
p
∑

i=1

H(Xi|X̂, K = k) (6.46)

≤
p
∑

i=1

H(Xi|X̂i, K = k) (6.47)

where (6.45) follows from the data processing inequality, (6.46) follows from the chain rule
and (6.47) follows from the fact that conditioning cannot increase entropy.
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Next, we observe that X̂i can be written as

X̂i =
1

me

p
∑

i=1

〈Ae(i),Ae(j)〉WjXj (6.48)

=
‖Ae(i)‖2

me
WiXi + σi(Ae,X)V (6.49)

where V ∼ N (0, 1) is independent of Wi, Xi and σ2
i (Ae,X) where

σ2
i (Ae,X) =

1

me

∑

j 2=i

〈Ae(i),Ae(j)〉2Xj . (6.50)

Using standard chi-square inequalities, it is straightforward to show that

lim
p→∞

max
1≤i≤p

|‖Ae(i)‖2

me
− 1| = 0 (6.51)

almost surely. With a bit more work, and the use of the fact that, by the symmetry constraint,
X is distributed uniformly over X p

k it can also be shown that

lim
p→∞

max
1≤i≤p

|σ2
j (Ae,X)− κ

ρe
| = 0 (6.52)

almost surely. Thus, we conclude that the empirical distribution of the pairs (Xi, X̂i) con-

verges weakly almost surely to the distribution on (X, WX +
√

κ/ρeV ), which concludes the
proof.

6.3.10 Technical Lemmas

Lemma 6.5 ( [39]). If X is a chi-square random variable with n degrees of freedom then for
all ε ∈ (0, 1/2),

Pr[X ≥ d(1 + ε)] ≤ exp
(

− 3
16dε

2
)

. (6.53)

Lemma 6.6. Let W be an m×m Wishart random matrix with n ≥ m degrees of freedom.
If m/n→ ρ ∈ (0, 1] as n→∞, then for any ε > 0,

lim sup
n→∞

1
n lnn ln Pr

[
∣

∣

∣

1
n log det( 1

nW)− µ(ρ)
∣

∣

∣ > ε
]

≤ − ε
log e

where

µ(ρ) =







(1− ρ) log
(

1
1−ρ

)

− ρ log e, if 0 < ρ < 1

− log e, if ρ = 1
. (6.54)
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Proof. We begin with a one-sided bound. For any r > 0 we have

Pr
[

1
n ln det

(

1
nW
)

≤ t
]

= Pr [ln det (W) ≤ nt + m log n]

= Pr
[

(

det(W)
)−r
≥ exp(−rnt + m log n)

]

≤ exp(rnt + rm log n) E

[

(

det(W)
)−r
]

(6.55)

where (6.55) follows from Markov’s inequality. If r < (n−m)/2, then it can be shown (see
e.g. [49, pp. 99-103]) that

E

[

(

det(W)
)−r
]

= exp(−M(r))

where

M(r) = rm ln(2) +
m−1
∑

i=0

[

lnΓ(n−i
2 )− lnΓ(n−i

2 − r)
]

.

If r is an integer then we use the relation

lnΓ(z)− lnΓ(z − r) =
r
∑

i=1

ln(z − i)

to obtain

M(r) = rm ln(2) +
m−1
∑

i=0

r
∑

j=1

ln
(

n−i
2 − j

)

= rm lnn +
m−1
∑

i=0

r
∑

j=1

ln
(

n−i−2j
n

)

.

Plugging this back into (6.55) gives

ln Pr
[

1
n ln det( 1

nW) ≤ t
]

< rnt−
m−1
∑

i=0

r
∑

j=1

ln
(

n−i−2j
n

)

.

We now consider what happens as n→∞. If r = lnn then it is straightforward to show
that

lim
n→∞

1

rn

m−1
∑

i=0

r
∑

j=1

ln
(

n−i−2j
n

)

=
µ(ρ)

log e
,
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and thus

lim sup
n→∞

1
n ln n ln Pr

[

1
n ln det

(

1
nW
)

≤ t
]

≤ t− µ(ρ)
log e .

To prove the other side of the bound, we use the same steps as before to obtain

ln Pr
[

1
n ln det( 1

nW) ≥ t
]

<
m−1
∑

i=0

r
∑

j=1

log
(

n−i+2j
n

)

− rnt.

Letting r = ln n leads to

lim sup
n→∞

1
n ln n ln Pr

[

1
n ln det

(

1
nW
)

≥ t
]

≤ µ(ρ)
log e ,−t.

Changing the base of the logarithms concludes the proof of Lemma 6.6.
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