
Scaling Laws for Cooperative Node Localization in

Non-Line-of-Sight Wireless Networks

Venkatesan N E
Kannan Ramchandran
Raja Sengupta

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-20

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-20.html

March 20, 2011



Copyright © 2011, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Scaling Laws for Cooperative Node Localization in
Non-Line-of-Sight Wireless Networks

Venkatesan. N. Ekambaram*, Kannan Ramchandran* and Raja Sengupta**
*Department of EECS, University of California, Berkeley
**Department of CEE, University of California, Berkeley

Email: {venkyne, kannanr}@eecs.berkeley.edu, sengupta@ce.berkeley.edu

Abstract—We study the problem of cooperative node lo-
calization in non-line-of-sight (NLOS) wireless networks and
address design questions such as, “How many anchors and what
fraction of line-of-sight (LOS) measurements are needed achieve
a specified target accuracy?”. We analytically characterize the
performance improvement in localization accuracy as a function
of the number of nodes in the network and the fraction of
LOS measurements. In particular, we show that the Cramer-
Rao Lower Bound (CRLB) can be expressed as a product
of two factors - a scalar function that depends only on the
parameters of the noise distribution and a matrix that depends
only on the geometry of node locations. This holds for arbitrary
distance and angle measurement modalities under an additive
noise model. Further, a simplified expression is obtained for
the CRLB, which provides an insightful understanding of the
bound and helps deduce the scaling behavior of the estimation
error as a function of the number of agents and anchors in the
network. The mean squared error in localization is shown to
have an inverse linear relationship with the number of anchors
or agents. The error is also shown to have an approximately
inverse linear relationship with the fraction of LOS readings
except at the extremes. The behavior at the extremes suggests
that even a small fraction of LOS measurements can provide
significant improvements. Conversely, a small fraction of NLOS
measurements can significantly degrade the performance.
Keywords- NLOS localization, Cramer-Rao Bound.

I. INTRODUCTION

Accurate localization of nodes is critical in applications
such as vehicle safety [2], autonomous robotic systems [6],
Unmanned Air Vehicle (UAV) systems, surveillance sensor
networks, etc. Standard GPS receivers can have errors of
over fifty meters which is unacceptable for many of these
applications. The principal problem is multipath1 interference
prevalent in “urban canyon” and indoor environments that
introduces large bias errors in the measurements. Cooperative
localization algorithms that employ a “peer-to-peer” architec-
ture, where nodes collaboratively discard the multipath cor-
rupted measurements and refine their position estimates, have
been proposed in [18], [5] and this continues to be an active
area of research. The fundamental insight in these algorithms
is that, some fraction of the measurements will be produced
by line-of-sight (LOS) dominated signals, and hence be fairly
accurate, while some fraction will be corrupted by dominated
non-line-of-sight (NLOS) reflected waves. Receivers do not
know a priori which measurements are LOS and which are

1Multiple delayed versions of the same transmitted signal are received at
the receiver due to reflections from different scatterers in the environment.
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Figure 1. Example of a static sensor network.

NLOS. Hence, the task of the users is to cooperatively discard
the NLOS signals, enabling them to compute high-precision
position estimates. Thus the system design largely depends on
the available fraction of LOS measurements. The question of
how the performance behavior scales with the fraction of LOS
measurements is of significant practical interest. However,
there is very little work on analytical results for the NLOS
case in the literature that address this question.

Further, most of the localization techniques exploit the
availability of special nodes in the network designated as
“anchors” with known locations and estimate the positions
of “agents” or nodes with unknown locations. Examples of
anchors include fixed base stations, GPS satellites, road side
infrastructure for vehicular networks etc. Examples of agents
include sensor nodes, robots, vehicles, UAV’s etc. To achieve
a target localization accuracy for different applications, the
design question of how many anchors to deploy and where to
deploy them still remains open. Most of the existing literature
focus on developing algorithms for LOS localization, and
present simulation results to analyze their performance as a
function of the number of anchors in the network. One of
earliest studies in this direction is that of Langendoen et
al. [7], who provide a quantitative comparison of existing
localization algorithms and their performance behavior as a
function of the number of anchors. There has been more recent
work on localization algorithms and their performance analysis
which we will not detail here given that our focus is more on
understanding fundamental limits.

To determine the fundamental limits of localization accu-
racy, the Cramer-Rao Lower Bound (CRLB), a lower bound



on the best possible mean square error achievable using an
unbiased estimator, has been analyzed under different assump-
tions in the literature2. Savvides et al. [12], Patwari et al. [9],
Botteron et al. [1] derive expressions for the CRLB for time
of arrival and angle of arrival measurements in a LOS setting
and provide simulation studies to understand its behavior as
a function of the number of anchors. Chang et al. [3], Weiss
et al. [15], analyze the performance improvement for LOS
localization when an additional anchor is introduced in the
network and derive constraints on the anchor placement to
obtain a performance improvement. However, the complex
nature of the expressions renders it difficult to gain insights
on its scaling behavior as a function of the number of nodes.
The behavior has been characterized in special cases such as
non-cooperative [14] and wideband localization [13].

For the NLOS setting, Qi et al. [10] and Shen et al.
[13] derive the CRLB for Time of Arrival measurements, by
treating the NLOS biases as unknown parameters. The results
of Qi et al. [10] suggest that the NLOS measurements be
detected and discarded. The derived bounds further require
that the user has prior knowledge of which measurements are
NLOS. In practice, one usually has prior knowledge of the
NLOS noise distribution and not the nature of a reading as
being LOS/NLOS. For example, exponential noise models for
NLOS have been proposed in the literature [11]. An analytical
characterization of the performance behavior as a function of
the NLOS noise distribution is missing in the literature, which
we address in this work.

We derive the CRLB for a generalized distance/angle mea-
surement model with additive noise. We show that the CRLB
can be expressed as the product of a scalar function of the
noise distribution and a matrix that depends only on the node
geometry and the measurement model. The scalar function
provides insights into the behavior of the bound as a function
of the parameters of the noise distribution and in particular,
the fraction of LOS readings. To remove the dependency
on the node geometry, we derive a considerably simplified
expression for the sum mean squared error as a function of
the newly added anchors for a distance measurement model.
The localization error is shown to have an inverse linear
relationship with the number of anchors, which analytically
justifies the simulations of Savvides et al. [12]. A similar
analysis is carried out for agents to emphasize on the benefits
of cooperation.

II. PROBLEM SETUP

Consider a static placement of N agents and M anchors
in a two-dimensional region of unit area (see Fig. 1). Each
node obtains distance/angle measurements with respect to
neighboring nodes within a communication radius R. Node
locations will be represented by complex numbers, where
the real part represents the x-coordinate and the imaginary
part represents the y-coordinate. Let ui denote the location

2The CRLB is not a good indicator of the estimator performance at low
signal-to-noise ratio [17] and for certain node geometries [4]. However, we
shall not consider this in our work for now.

of the ith agent and vi the location of the ith anchor node.
Let r̂(ui, uj) = r(ui, uj) + nij , be the sensor measurement
between nodes ui and uj . r(ui, uj) is some function of
the node locations that depends on the measurement modal-
ity. For example,, r(ui, uj) = ||ui − uj || in the case of
Time of Arrival/ Time Difference of Arrival based sensors,
r(ui, uj) ∝ 1

||ui−uj ||γ for the case of Received Signal Strength

measurements, r(ui, uj) = tan−1 Im(ui−uj)
Re(ui−uj) for Angle of

Arrival measurements etc.
The noise in the measurements nij has a probability density

function pNOISE(nij). For the case of LOS measurements,
pNOISE(.) is usually modeled as a gaussian distribution. In
the NLOS setup, pNOISE(.) is typically modeled as a mixture
distribution (αpLOS + (1− α)pNLOS), where pLOS is taken
to be zero-mean gaussian. The NLOS distribution pNLOS , is
usually modeled as ex-gaussian (sum of a gaussian and an
exponential random variable) or a gaussian with a positive
mean for distance measurements and uniform in the case
of angle measurements. The noise parameters are assumed
to be independent of the node locations in this model. The
assumption is reasonable for applications with a large node
density and small communication radius [2].

Let u be the vector of all node locations, r̂ the vector of
inter-node sensor measurements and û be an estimate of the
node locations. We are interested in analyzing the behavior of

the sum mean square error,
N∑
i=1

||ui−ûi||2, as a function of the

number of nodes and the fraction of LOS measurements. We
will analyze the behavior of the CRLB, which is a lower bound
on the estimation error for the class of unbiased estimators
(i.e. E(û) = u, where E is the expectation operator) . Let

η =

[
uR
uI

]
, where uR = Re{u},uI = Im{u}, be the

vector of parameters to be estimated. The Cramer-Rao theorem
states that,

E[(u− û)(u− û)∗] � F−1,

where a∗ represents conjugate transpose of a complex column
vector a and the matrix F , known as the Fisher Information
Matrix, is defined by,

Fij , E
{
∂ ln p(r̂|η)

∂ηi

∂ ln p(r̂|η)

∂ηj

}
.

The matrix inequality A � B is understood to mean that A−
B is positive semi-definite. The next section deals with the
derivation of the CRLB for the NLOS setting .

III. RESULTS

A. CRLB for NLOS localization

The following theorem provides a simplified expression for
the Fisher Information Matrix.

Theorem 1. The Fisher Information Matrix can be written as
F = g(pNOISE)FG, where the matrix FG depends only on



the node locations and the scalar function g(.) is given by,

g(pNOISE) = E

{(
∂

∂z
ln pNOISE(z)

)2
}
,

under the assumption that pNOISE is differentiable over its
support [LL,UL] and p(UL)− p(LL) = 0.

Proof: Appendix A.
Remarks:
• The effect of the number of nodes and the fraction

of LOS readings, on the mean squared error, can be
analyzed separately by studying the behavior of FG and
g(.) respectively. A simplified expression for the trace
of F−1

G is derived in the next section that details the
scaling behavior of the mean squared estimation error
as a function of the number of nodes.

• The scalar function g(.) depends only on the noise distri-
bution and hence can be analyzed offline. For example,
in the case of a mixture distribution we have,

g(pNOISE) =

∫ +∞

−∞

(αp′LOS(z) + (1− α)p′NLOS(z))
2

(αpLOS(z) + (1− α)pNLOS(z))
dz.

Setting α = 1 and pLOS(z) ∼ N (0, σ2), we get
g(pNOISE) = 1

σ2 , which matches with the LOS results
in literature [15]. The expression for g(.) looks like a
Fisher Information term, that quantifies the contribution
of the noise uncertainty to the mean squared estimation
error.

• The assumption on pNOISE holds for a wide class
of distributions such as ex-gaussian, gaussian mixtures,
uniform distribution etc, that are commonly used models
in the NLOS setup.

The behavior of the bound as a function of the fraction of
LOS measurements α, and the mean of the NLOS noise, is
discussed in the simulations section.

B. CRLB scaling as a function of the number of nodes

In this section, we analyze the behavior of the trace of
the inverse Fisher Information Matrix i.e. a lower bound on
the sum mean squared error, as a function of the number of
nodes in the network. We focus on the case when r(ui, uj) =
||ui − uj ||. We undertake an incremental analysis by starting
out with an existing network of N agents and M anchors
and quantifying the effect of adding additional anchors and
agents on the localization error. Traditionally, two classes of
networks [8] have been considered while deriving scaling laws
- dense networks and extended networks. Dense networks have
a fixed area of node deployment and communication radius
and the node density increases with the addition of new nodes.
Extended networks are classes of networks in which the area of
node deployment grows with the addition of new nodes and the
communication radius is appropriately modified to maintain
connectivity. The choice of the network model depends on
the application. We focus on dense networks motivated by
applications such as Intelligent Transportation Systems [2],
where there is significant interest in augmenting the existing

network of GPS satellites with terrestrial base stations in a
fixed area. We will assume that the node density is large
enough and ignore any boundary effects in our derivations.

CRLB as a function of the number of anchors

Let F be the Fisher Information Matrix of a network with N
agents and M anchors deployed in a unit area. Let M ′ anchors
be uniform randomly added to this system of nodes and
additional distance measurements are obtained by agents that
are within a communication radius R, of these new anchors.
Let F ′ be the new Fisher Information Matrix. For large M ′,
the following theorem establishes the behavior of the mean
squared error as a function of the newly added anchors.

Theorem 2. The lower bound on the sum mean squared
localization error is given by,

Trace(F ′−1) =
1

g(pNOISE)

2N∑
i=1

1

λi + ρM ′

2

,

where ρ = πR2 with ρM ′ being the average number of new
anchor measurements of every node and λi’s are the eigen
values of FG (assumed to be full rank).

Proof: Appendix B.
Remarks:
• The eigen values of the Fisher Information Matrix,
{λi}2Ni=1 can be interpreted as a measure of the “preci-
sion” in the agent location estimates. The factor ρM ′

2 is
the “additional precision” from the newly added anchors.

• The expression is dominated by terms containing eigen
values on the order of the minimum eigen value (λmin).
We have,

2N∑
i=1

1

λi + ρM ′

2

→ O

(
1

M ′

)
, for ρM ′ >> 2λmin.

CRLB as a function of the number of agents

Under the same setup as before, instead of adding new
anchors, let N ′ new agents be added to the existing system of
nodes. Let F ′ be the new Fisher Information Matrix restricted
to the first N agents. The behavior of the sum mean squared
error as a function of the agents is given by the following
theorem.

Theorem 3. The Fisher Information Matrix F ′ is given by,

F ′ = F +
1

g(pNOISE)

ρN ′

2

((
1− 1

ρ(N +M)

)
I2N

− 1

ρ(N +M)

[
1N1TN 0

0 1N1TN

])
.

Proof: Appendix C.

Corollary 1. For large N , assuming F to be full rank, the
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above bound reduces to,

Trace(F ′−1) =
1

g(pNOISE)

2N∑
i=1

1

λi + ρN ′

2

.

The result quantifies the benefits of co-operation between
agents. The agents can be interpreted as virtual anchors
in the network providing performance gains similar to that
of anchors. Given the diminishing returns in accuracy with
the number of anchors, it would be practically infeasible to
deploy sufficient number of anchors to enable applications
such as intelligent transportation systems that mandate very
high accuracy requirements. However, if the vehicles were
to cooperatively estimate their locations by obtaining relative
distance measurements with respect to each other and utilizing
measurements across time, the theorem says that one could
potentially derive huge benefits in localization accuracy.

IV. SIMULATION RESULTS

A. CRLB scaling with the NLOS parameters

We focus on distance measurements and consider a simple
mixture model for the noise distribution. We will assume
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Figure 4. Variation of 1
g(pNOISE)

as a function of the exponential mean
parameter µ for the ex-gaussian and Gaussian mixture distributions.

that pLOS ∼ N (0, σ2
LOS). Fig. 2, shows the behavior of

g(pNOISE) as a function of α for pNLOS being ex-gaussian
and positive mean gaussian having the same mean and vari-
ance. The scaling is compared against σ2

α which seems to be
a good approximation of the behavior at higher values of α.

Fig 3 shows a plot of g′(α) = ∂
∂αg(.). The interesting trend

to note here is that the increment in g(.) varies sharply at lower
values and higher values of α. This suggests that at lower
values of α, even a small fraction of LOS measurements can
provide a significant decrease in the mean square error. The
plot also suggests that at higher values of α, as we transit
from a LOS to NLOS regime, a small fraction of NLOS
measurements can contribute to a significant degradation in the
performance. The performance degradation can be attributed
to the lack of knowledge of whether a particular reading is
LOS or NLOS.

Fig. 4 shows the behavior of g(.) as a function of the
mean of the NLOS distribution. As the mean increases,
the performance improves since it is easier to identify the
NLOS measurements. However the performance does not vary
significantly as a function of the mean.

B. CRLB scaling with the number of nodes

Consider N agents and M anchors uniformly placed in a
circular region of area A. Nodes that are within a communica-
tion radius R, obtain pairwise distance measurements. In the
first set of simulations, M ′ additional anchors are uniformly
placed in the same region and the CRLB is evaluated as a
function of M ′. The scaling behavior is consistent with the
theory (see Fig. 5). The CRLB is normalized with respect to
the number of agents and the communication radius.

For the second set of simulations N ′ additional agents are
uniformly deployed in the same region and the CRLB is
evaluated as a function of N ′. The theoretical and simulated
bounds are shown to match well in terms of their scaling
behavior (Fig. 6). For the same initial deployment of agents
and anchors, simulations were carried out by adding more
anchors to the network as opposed to new agents. Fig. 6 also
shows the CRLB as a function of the number of anchors.
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These two bounds can be thought of as representing the
two extremal cases of adding nodes, one that corresponds to
adding nodes with exactly known locations (anchors) and the
other corresponding to adding nodes with unknown locations
(agents). For the case of adding nodes with partial location
knowledge, one can expect to obtain a performance that lies
in between these two extremal cases. The law of diminishing
returns in the performance is clearly visible in the simulations.
The gap in the bounds for all the simulations can be attributed
to approximations in using the law of large numbers and
boundary effects that were ignored in the derivations.

V. CONCLUSION

We focused on the problem of cooperative node localization
in a NLOS wireless network and studied the behavior of the
localization error as a function of the number of nodes in the
network and the fraction of LOS measurements. We showed
that the CRLB can be written as a product of a scalar function
that depends on the parameters of the noise distribution and
a matrix that depends only on the geometry of the node
placement. The mean squared error was shown to have an
inverse linear relationship with the number of nodes in the
network and the fraction of LOS measurements.

Our work focused on providing design guidelines for num-
ber of anchors to be deployed. However the question of
optimal anchor placement is still widely open. Further the
uniformity assumptions in the network deployment could be
restrictive in practice. The parameters of the noise distributions
could also be added as parameters that need to be estimated,
though the CRLB would be more complicated and harder to
derive insights from. The effect of mobility on the localization
performance is a future direction of research.
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APPENDIX A
EVALUATION OF THE CRLB

This section focuses on evaluating the different entries of the Fisher Information Matrix. For simplicity, let us focus on the
case where r(ui, uj) = d(ui, uj) = ||ui − uj ||. Let d̂ = r̂. The (i, j)th entry in the matrix is given by,

Fij , E

{
∂ ln p(d̂|η)

∂ηi

∂ ln p(d̂|η)

∂ηj

}
.

Let N (i) be the set of neighbors of node i. Lets focus on the case when ηi = uRi and ηj = uRj . We have,

∂ ln p(d̂|η)

∂ηi
=

∂ ln p(d̂|η)

∂uRi
,

=
∑
l∈N (i)

∂ ln p(d̂il|ui, ul)
∂uRi

,

=
∑
l∈N (i)

∂ ln p(z(ui, ul))

∂z(ui, ul)

∂z(ui, ul)

∂uRi
,

where z(ui, ul) = d̂il − ||ui − ul||. Further,

∂z(ui, ul)

∂uRi
=

(uRi − uRl)
||ui − ul||

,

= cos(φil),

where φil is the angle between the vector joining the nodes (i, l) and the horizontal axis. Similarly we get,

∂ ln p(d̂|η)

∂uRj
=

∑
m∈N (j)

∂ ln p(z(uj , um))

∂z(uj , um)
cos(φjm).

Thus we have,

Fij = E

 ∑
l∈N (i)

∂ ln p(z(ui, ul))

∂z(ui, ul)
cos(φil)

∑
m∈N (j)

∂ ln p(z(uj , um))

∂z(uj , um)
cos(φjm)

 ,

= E

 ∑
l∈N (i)

p′(z(ui, ul))

p(z(ui, ul))
cos(φil)

∑
m∈N (j)

p′(z(uj , um))

p(z(uj , um))
cos(φjm)


Let us simplify this for the different cases of node pairs.

Case 1: i = j

Fii = E

 ∑
l∈N (i)

cos2(φil)

(
p′(z(ui, ul))

p(z(ui, ul))

)2

+
∑

(l 6=m)∈N (i)

cos(φil) cos(φim)
p′(z(ui, ul))

p(z(ui, ul))

p′(z(ui, um))

p(z(ui, um))

 ,

=
∑
l∈N (i)

cos2(φil)E

{(
p′(z(ui, ul))

p(z(ui, ul))

)2
}

+
∑

(l 6=m)∈N (i)

cos(φil) cos(φim)E
{
p′(z(ui, ul))

p(z(ui, ul))

}
E
{
p′(z(ui, um))

p(z(ui, um))

}
,

= g(pNOISE)
∑
l∈N (i)

cos2(φil),



where g(pNOISE) = E
{(

p′(z(ui,ul))
p(z(ui,ul))

)2
}

and E
{
p′(z(ui,ul))
p(z(ui,ul))

}
= 0. Assuming pNOISE(z) to be differentiable on its support

[LL,UL] and that p(UL) = p(LL), we have,

E
{
p′(z(ui, ul))

p(z(ui, ul))

}
=

∫ UL

LL

∂

∂z
p(z)dz

= p(UL)− p(LL)

= 0.

Case 2: j ∈ N (i)

Fij = E

 ∑
l∈N (i)

∑
m∈N (j)

cos(φil) cos(φjm)
p′(z(ui, ul))

p(z(ui, ul))

p′(z(uj , um))

p(z(uj , um))

 ,

= g(pNOISE) cos2(φij).

Case 2: j /∈ N (i)

Fij = E

 ∑
l∈N (i)

p′(z(ui, ul))

p(z(ui, ul))
cos(φil)

E

 ∑
m∈N (j)

p′(z(uj , um))

p(z(uj , um))
cos(φjm)

 ,

= 0.

Thus for ηi = uRi and ηj = uRj , we get

Fij = g(pNOISE)


∑
l∈N (i)

cos2(φil) if i = j

cos2(φij) if j ∈ N (i)
0 o.w.

.

Using similar arguments we can derive the rest of the entries of the Fisher matrix as follows.
For ηi = uIi and ηj = uIj we have,

Fij = g(pNOISE)


∑
l∈N (i)

sin2(φil) if i = j

sin2(φij) if j ∈ N (i)
0 o.w.

.

For ηi = uRi and ηj = uIj we have,

Fij = g(pNOISE)


∑
l∈N (i)

sin(φil) cos(φil) if i = j

sin(φij) cos(φij) if j ∈ N (i)
0 o.w.

.

Extracting the common scalar g(pNOISE) from each term in the matrix we can express the Fisher Information Matrix as,

F = g(pNOISE)FG,

where FG only depends on the node geometry, the function r(., .) that depends on the sensing modality and is independent of
the noise distribution. The CRLB is thus given by,

E[(u− û)(u− û)∗] � 1

g(pNOISE)
F−1
G .



APPENDIX B
DERIVATION OF THE CRLB FOR ANCHORS

A simplified expression for the CRLB as a function of the number of anchors is derived here. Recall that u and v are

the vectors of agent and anchor locations. Let x =

[
u
v

]
∈ CN+M be the vector of all the node locations. The location

difference, xi − xj , between any two nodes can be described by the N ×M vector eij , whose ith entry is 1 and jth entry is
-1 and all other entries are set to zero. Thus we get

eTijx = xi − xj .

Let L be the total number of distance measurements obtained in the network. We will assume that distance measurements are
obtained between nodes that are within a communication radius R of each other. Collecting all the location differences we get
the following relation,

Ex = y,

where the rows of E ∈ RL×(N+M), are the vectors eTij and y ∈ CL×1, is a complex vector of all the available location
differences of nodes that are within a radius R of each other. The absolute value of each entry in the vector y denotes the
distance between the corresponding two nodes obtained from the matrix E.

Let E = [E1E2], where E1 ∈ RL×N and E2 ∈ RL×M . We can then write,

E1u + E2v = y.

Let d denote the vector of all distances between nodes having observations i.e. d = |y|, where |y| is a notation used to denote
a vector whose components are the absolute values of the individual components of y. Let d̂ denote the vector of gaussian
pairwise distance measurements i.e.

d̂j = dj + nj ,

where nj ∼ N(0, σ2). Define the two real diagonal matrices,

DR , Re{diag{y1/|y1|.......yL/|yL|}}
DI , Im{diag{y1/|y1|.......yL/|yL|}}.

The authors in [16] obtain a compact representation for the Fisher Information Matrix for LOS Gaussian noise as shown below,

F =
1

σ2

[
ET1 D

2
RE1 ET1 DRDIE1

ET1 DRDIE1 ET1 D
2
IE1

]
,

F is assumed to be invertible. In our generalized case, this reduces to

F =
1

g(pNOISE)

[
ET1 D

2
RE1 ET1 DRDIE1

ET1 DRDIE1 ET1 D
2
IE1

]
,

We will ignore the scaling factor 1
g(pNOISE) and work with only the matrix.

Let us suppose that we add a single anchor to the set of existing nodes. Let l be the number of additional distance
measurements that are obtained. Without loss of generality assume that the first l nodes get measurements with respect to the
new anchor. The equation relating the agent locations to the location differences, Ex = y now gets updated to

[
E1 E2 0
Il|0 0 −1

] [
x

xN+M+1

]
=


y

yL+1

..
yL+l

 .
where Il is the identity matrix of dimension l, 0 and 1 are vectors/matrices consisting of all zeros and all ones respectively,
of appropriate dimensions. Let ∆1 , [Il|0]. Define

DR1 , Re{diag{yL+1/|yL+1|.......yL+l/|yL+l|}}
DI1 , Im{diag{yL+1/|yL+1|.......yL+l/|yL+l|}}



After simple block matrix multiplications the new Fisher matrix can be written as,

F̃ =

[
F +

[
∆T

1 D
2
R1

∆1 ∆T
1 DR1DI1∆1

∆T
1 DR1DI1∆1 ∆T

1 D
2
I1

∆1

]]
.

Thus, if we add M ′ anchors recursively in the network, the new Fisher matrix can be expressed as,

F̃ = F +

M ′∑
i=1

[
∆T
i D

2
Ri

∆i ∆T
i DRiDIi∆i

∆T
i DRiDIi∆i ∆T

i D
2
Ii

∆i

]
.

Here the matrices ∆i of size N×li where li nodes get measurements with the ith newly added anchor, have ones corresponding
to the columns of the nodes with which the ith newly introduced anchor gets measurements. DRi , DIi have definition similar
to DR1

and DI1 . For simplicity lets first consider the case where the newly introduced anchors have measurements with all
the agents. We then have ∆i = IN , ∀i giving us

F̃ = F +

M ′∑
i=1

[
D2
Ri

DRiDIi

DRiD̃Ii D2
Ii

]
.

By definition, DRi(j) = Re(yk)
|yk| where k = L + (i − 1)N + j. This can also be equivalently written as DRi(j) = cos(φij)

where φij is the angle made by the line joining ith anchor node and the jth node, with the horizontal axis. Let us assume
that each anchor that is newly introduced is randomly placed in the field independent of all other nodes. Thus for each node
j, {φij}M

′

i=1’s are i.i.d and distributed U(0, 2π). Similarly DIi(j) = sin(φij) and by the strong law of large numbers we get,

∑
i

D2
Ri(j) =

M ′∑
i=1

cos2(φij)→
M ′

2

∑
i

D2
Ii(j) =

M ′∑
i=1

sin2(φij)→
M ′

2

∑
i

DIi(j)DRi(j) =

M ′∑
i=1

sin(φij) cos(φij)→ 0

The Fisher matrix now simplifies to,

F̃ = F +
M ′

2
I2N

We know that the Fisher Information Matrix is a covariance matrix and hence is symmetric positive definite. We can write
F = UΛUH , where Λ is a diagonal matrix of the eigen values of F and UUH = UHU = I . We also know that Tr(ABC) =
Tr(CAB) = Tr(BCA). This gives us,

Trace(F̃−1) = Trace(UΛUH +
M ′

2
I2N )−1

= Trace(U(Λ +
M ′

2
I2N )UH)−1

=

2N∑
i=1

1

λi + M ′

2

.

It is now easy to extend the analysis to the case when each anchor node has measurements only with the nodes that are within
a radius R. Let A be the total area of the field where the nodes are placed. Let ρ = πR2

A and then ρM ′ would be the average
number of neighbors of each node. In this case we would have ∆T

i D
2
Ri

∆i → ρM ′

2 IN and so on. Thus the analysis would go
through and we get

Trace(F̃−1) =

2N∑
i=1

1

λi + ρM ′

2

.



APPENDIX C
DERIVATION OF THE CRLB FOR AGENTS

The setup is similar as in the previous case with N agents, M anchors and L distance measurements. We are interesting in
characterizing the behavior of the CRLB after adding N ′ agents to the existing network of anchors and agents. Consider the
simple case when N ′ = 1. We will assume for now that the newly introduced agent has measurements with all of the existing
N agents and M anchors. Let F̃ , Ẽ, Ẽ1, D̃R, D̃I , be the new set of matrices obtained after adding this node. We then have
the following

Ẽ =

 E1 0L E2

−IN 1N 0
0N 1M −IM

 ,
Ẽ1 =

 E1 0L
−IN 1N
0N 1M

 .
Let

DR11 , Re{diag{yL+1/|yL+1|.......yL+N/|yL+N |}}
DR12 , Re{diag{yL+N+1/|yL+N+1|.......yL+N+M/|yL+N+M |}}
DI11 , Im{diag{yL+1/|yL+1|.......yL+N/|yL+N |}}
DI12 , Im{diag{yL+N+1/|yL+N+1|.......yL+N+M/|yL+N+M |}}

Then

D̃R =

 DR 0 0
0 DR11

0
0 0 DR12

 ,
D̃I =

 DI 0 0
0 DI11 0
0 0 DI12

 .
The new Fisher Information Matrix is given by,

F̃ =

[
ẼT1 D̃

2
RẼ1 ẼT1 D̃RD̃IẼ1

ẼT1 D̃RD̃IẼ1 ẼT1 D̃
2
I Ẽ1

]
.

The individual terms of F̃ can be simplified as shown in (2)− (5) (lengthy equations are in the last page).

Lets now consider adding one more agent to the existing set of agents i.e. N ′ = 2. The second agent gets measurements
from the first N agents and M anchors. In this case we get the following updated matrices,

Ẽ1 =


E1 0L 0L
−IN 1N 0N
0N 1M 0M
−IN 0N 1N
0N 0M 1M



D̃R =


DR 0 0 0 0
0 DR11

0 0 0
0 0 DR12 0 0
0 0 0 DR21 0
0 0 0 0 DR22


The terms in the new Fisher Information Matrix can be simplified and have the structure shown in (6). The Fisher matrix
evolution as more and more nodes are added is apparent from the expression (6). Similar evolution holds for other block terms
in the Fisher matrix. To simplify the analysis it would be good if we could separate out the original Fisher Information Matrix
terms and express F̃ in terms of F . This requires rearranging some of the terms in F̃ . Recall the definition of F . We had
η = [uT

RuT
I ]T, where uR = Re{u},uI = Im{u}. Then F is given by,

Fij , E

{
∂f(d̂|η)

∂ηi

∂f(d̂|η)

∂ηj

}
.



Let z = zR + jzI ∈ CN ′×1, denote the location of the newly added nodes. The Fisher Information Matrix, F̃ that we have
calculated corresponds to the following ordering of the parameters

η̃ =

[[
uR
zR

]T [
uI
zI

]T]T
We will now rearrange the parameters so as to get

˜̃η =


uR
uI
zR
zI

 .
Retaining the same notation for F̃ , we have the following simplification,

F̃ =

[
F + ∆11 ∆12

∆21 ∆22

]
,

where

∆11 =

[ ∑N ′

j=1D
2
Rj1

∑N ′

j=1DRj1DIj1∑N ′

j=1DRj1DIj1

∑N ′

j=1D
2
Ij1

]
∆22 and ∆12 are given by the expressions (7) and (9) respectively.

We are now interested in the error improvement of the first N agents after the addition of N ′ agents. For this its sufficient
to look at the Schur Complement of the matrix ∆22, since the inverse of the Schur Complement corresponds to the CRLB
restricted to the first N nodes. The Schur Complement is given by,

F + ∆11 −∆12∆−1
22 ∆21.

Based on similar arguments as in the case of anchor nodes, assuming that each of the newly added nodes are thrown uniform
i.i.d into the network, we have for large N ′,

∆11 →
N ′

2
I2N .

Let us now assume that the initial set of nodes were also placed randomly and uniformly in the field. Consider the terms in
∆22. Each of the terms 1TND

2
Rj1

1N are the sum of the cosine of the angles made by the newly introduced jth node with all
the existing nodes in the network. Under the random placement assumption, these angles can also be taken to be distributed
i.i.d U(0, 2π). Thus we have for large N ,

∆22 →
N +M

2
I2N ′ .

Note the difference in this approach as compared to that for the anchor nodes. Here we are averaging over all initial node
placements also for this approximation to hold. For the anchor nodes, the result was true for any initial node placement.

With the above approximation in place, we have

∆12∆−1
22 ∆T

12 =
2

N +M
∆12∆T

12.

This can be expanded to obtain the expression (10). With the usual law of large numbers argument, each of the terms in the
matrix converge as N ′ grows large. The corresponding values to which the klth term in the matrix converges are shown in
(12)− (18). Thus we get,

∆12∆T
12 →

N ′

4

([
1N1TN 0

0 1N1TN

]
+ I2N

)
.

The Schur complement can now be simplified as shown in (19). The CRLB restricted to the first N nodes is given by the
inverse of this Schur Complement. Now consider the case when measurements are obtained only between nodes that are within
a radius R of each other. Let ρ = πR2

A , then similar arguments would simplify the new Fisher matrix F ′ to be,

F +
ρN ′

2

((
1− 1

ρ(N +M)

)
I2N −

1

ρ(N +M)

[
1N1TN 0

0 1N1TN

])
.



Ẽ
T
1 D̃

2
RẼ1 =

[
ET1 −IN 0TN
0TL 1TN 1TM

] DR 0 0
0 DR11

0
0 0 DR12

 E1 0L
−IN 1N
0N 1M

 (1)

=

[
ET1 D

2
RE1 +D2

R11
−D2

R11
1N

−1TND
2
R11

1TND
2
R11

1N + 1TMD
2
R12

1M

]
(2)

Ẽ
T
1 D̃

2
I Ẽ1 =

[
ET1 D

2
IE1 +D2

I11
−D2

I11
1N

−1TND
2
I11

1TND
2
I11

1N + 1TMD
2
I12

1M

]
(3)

Ẽ
T
1 D̃RD̃I Ẽ1 =

[
ET1 DRDIE1 +DR11

DI11 −DR11
DI111N

−1TNDR11
DI11 1TNDR11

DI111N + 1TMDR11
DI111M

]
(4)

Ẽ
T
1 D̃

2
RẼ1 =

 ET1 −IN 0TN −IN 0TN
0TL 1TN 1TM 0TN 0TM
0TL 0TN 0TM 1TN 1TM



DR 0 0 0 0
0 DR11

0 0 0
0 0 DR12

0 0
0 0 0 DR21

0
0 0 0 0 DR22




E1 0L 0L
−IN 1N 0N
0N 1M 0M
−IN 0N 1N
0N 0M 1M

 (5)

=

 ET1 D
2
RE1 +D2

R11
+D2

R21
−D2

R11
1N −D2

R21
1N

−1TND
2
R11

1TND
2
R11

1N + 1TMD
2
R12

1M 0

−1TND
2
R21

0 1TND
2
R21

1N + 1TMD
2
R22

1M

 (6)

∆22 =



1TND
2
R11

1N 0 0 1TNDR11
DI111N 0 0

0 1TND
2
R21

1N 0 0 1TNDR21
DI211N 0

....... ....

0 0 1TND
2
R
N′1

1N 0 0 1TNDRN′1
DI

N′1
1N

1TNDR11
DI111N 0 0 1TND

2
I11

1N 0 0

0 1TNDR21
DI211N 0 0 1TND

2
I21

1N 0

....... ....

0 0 1TNDRN′1
DI

N′1
1N 0 0 1TND

2
I
N′1

1N


(7)

+



1TMD
2
R12

1M 0 0 1TMDR12
DI121M 0 0

0 1TMD
2
R22

1M 0 0 1TMDR22
DI221M 0

....... ....

0 0 1TMD
2
R
N′2

1M 0 0 1TMDRN′2
DI

N′2
1M

1TMDR12
DI121M 0 0 1TMD

2
I12

1M 0 0

0 1TMDR22
DI221M 0 0 1TMD

2
I22

1M 0

....... ....

0 0 1TMDRN′2
DI

N′2
1M 0 0 1TMD

2
I
N′2

1M


(8)

∆12 =
−1

[
D2
R11

1N D2
R21

1N ... D2
R
N′1

1N DR11
DI111N DR21

DI211N ... DR
N′1

DI
N′1

1N

DR11
DI111N DR21

DI211N ... DR
N′1

DI
N′1

1N D2
I11

1N D2
I21

1N ... D2
I
N′1

1N

]
(9)

∆12∆
T
12 =

 ∑N′
j=1D

2
Rj1

1N1TND
2
Rj1

+DRj1DIj11N1TNDRj1DIj1
∑N′
j=1D

2
Rj1

1N1TNDRj1DIj1 +DRj1DIj11N1TND
2
Ij1∑N′

j=1D
2
Rj1

1N1TNDRj1DIj1 +DRj1DIj11N1TND
2
Ij1

∑N′
j=1D

2
Ij1

1N1TND
2
Ij1

+DRj1DIj11N1TNDRj1DIj1

 (10)

N′∑
j=1

D
2
Rj1

1N1
T
ND

2
Rj1

 (kl) =
N′∑
j=1

cos(φj(k))
2

cos(φj(l))
2 (11)

→
{

3N′
8 if k = l
N′
4 o.w

(12)N′∑
j=1

D
2
Rj1

1N1
T
NDRj1DIj1 +DRj1DIj1N1

T
ND

2
Ij1

 (kl) =

N′∑
j=1

(cos(φj(k))
2

cos(φj(l)) sin(φj(l)) + cos(φj(k)) sin(φj(k)) sin(φj(l))
2
) (13)

→ 0 (14)N′∑
j=1

DRj1DIj11N1
T
NDRj1DIj1

 (kl) =
1

4

N′∑
j=1

sinφj(l)) sinφj(k)) (15)

→
{

N′
8 if j = k
0 o.w

(16)N′∑
j=1

DRj1DIj11N1
T
ND

2
Ij1

 (kl) → 0 (17)

F + ∆11 −∆12∆
−1
22 ∆21 → F +

N ′

2

((
1−

1

N +M

)
I2N −

1

N +M

[
1N1TN 0

0 1N1TN

])
(18)


