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Abstract

Color constancy is the ability to infer stable material
colors despite changes in lighting, and it is typically ad-
dressed computationally using a single image as input. In
many recognition and retrieval applications, we have ac-
cess to image sets that contain multiple views of the same
object in different environments; we show in this technical
report and a related publication [8], that correspondences
between these images provide important constraints that
can improve color constancy. In this report, we present an-
other method to solve the multi-view color constancy prob-
lem, the Ratio Method. This method provides a means to
recover estimates of underlying surface reflectance based
on joint estimation of these surface properties and the illu-
minants present in multiple images. In contrast to the multi-
view Spatial Correlations method (MVSC), this method can
leverage any single image color constancy method as a
bootstrap for the multi-view solution. The method ex-
ploits image correspondences obtained by various align-
ment techniques, and we show examples based on match-
ing local region features. Our results show that the Ra-
tio Method performs similarly to the MVSC method, both
of which are improvements over a baseline single-view
method.

1. Introduction
In addition to its intrinsic reflectance properties, the ob-

served color of a material depends on the spectral and spa-
tial distributions of its surrounding illumination. Thus, in
order to use color as a reliable cue for recognition, we must
somehow compensate for these extrinsic factors and infer
a color descriptor that is stable despite changes in light-
ing. The ability to make this inference—termed color con-
stancy—is exhibited by the human visual system to a cer-
tain degree, and there are clear benefits to building it into
machines.

One important part of computational color constancy,
and the part we consider in this paper, is compensating for
the “color cast” that affects a scene as a whole. For this, one

ignores spatial variations in lighting spectra, and makes the
assumption that the spectrum of the illuminant is approxi-
mately uniform throughout the scene. The problem is then
one of inferring the map M : R3 → R3 from the space of
observed tristimulus vectors (RGB, human cone, etc.) to
the space of canonical colors—those that would have been
obtained for the same scene by a standard observer under a
standard spectral power distribution.

This color constancy problem has traditionally been ad-
dressed using single images as input. Accordingly, one be-
gins with a model for the distribution of canonical colors in
a typical scene and then chooses a map that takes the input
image colors to a distribution that matches this model. Ex-
amples of this approach include gamut mapping [5], gray
world [2], white-patch [3], and gray edge [10] algorithms in
addition to Bayesian formulations [1, 9, 6].

This basic approach ignores the fact that, increasingly,
we have simultaneous access to image sets that contain
multiple views of the same salient objects. For exam-
ple, Fig. 1 shows images of three different objects, each
acquired in a distinct environment with unknown illumi-
nation. Techniques for finding correspondences between
object instances in multiple images are well known, e.g.,
based on local invariant features (SIFT, etc.). Such corre-
spondences provide additional constraints that can improve
single-image color constancy methods: the per-image maps
M can only be correct if the toy’s resulting canonical colors
agree between the images.

Given a set of images with associated correspondences
our goal is to simultaneously infer the maps that compen-
sate for the color cast in each image. In a typical scenario,
these point correspondences are derived from patches on an
object (Fig. 1), and when this is the case, our approach au-
tomatically provides the object patch’s canonical color de-
scriptor as a by-product, with this descriptor being jointly
optimized with respect to the multiple input views.

2. Background
This section parallels the background description

in the related published work [8]. Let f(λ) =
(f1(λ), f2(λ), f3(λ)) be the three spectral filters of a lin-
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Figure 1. Each row depicts an object observed in three different
environments with distinct and unknown illumination, and with
different unknown cameras. For each row, what is the object’s
intrinsic color? Can knowledge of object-level correspondences
improve estimation of the illuminant in each image? The top row
shows images of a abacus, the middle row a baby’s toy, and the
bottom row a popular cartoon character. The latter is from the
series “One object 365 days”, a popular group on flickr.com

ear sensor, and denote by yp the color measurement vec-
tor produced by these filters at pixel location p. Assuming
perfectly diffuse (Lambertian) reflection, negligible inter-
reflections between surface points, and a constant illumi-
nant spectrum throughout the scene, we can write

yp = (y1
p, y2

p, y3
p) =

∫
f(λ)`(λ)x(λ, p)dλ, (1)

where `(λ) is the spectral power distribution of the illumi-
nant, and x(λ, p) is the spectral reflectance of the surface at
the back-projection of pixel p. Our goal is to infer a canoni-
cal color representation of the same scene, or one that would
have been recorded if the illuminant spectrum were a known
standard `s(λ), such as the uniform spectrum (Illuminant
E). We express this canonical representation as

xp = (x1
p, x

2
p, x

3
p) =

∫
f(λ)`s(λ)x(λ, p)dλ, (2)

and we seek to obtain it by inferring the map yp 7→ xp.
We follow convention by parameterizing this map us-

ing a linear diagonal function, effectively relating input and
canonical colors by

yp = Mxp, (3)

with M = diag(m1,m2,m3). According to this model, the
input color at every pixel is mapped to its canonical coun-
terpart by gain factors that are applied to each channel in-
dependently. This process is termed von Kries adaptation,

and the conditions for its sufficiency are well understood. It
can always succeed when the filters (f1(λ), f2(λ), f3(λ))
do not overlap, and in this case it is common to refer to the
parameters m , (m1,m2,m3) as the “illuminant color”,
and the canonical values xp as being the “scene reflectance”
(e.g., [9]). For overlapping filters, including those of human
cones and a typical RGB camera, the mapping yp 7→ xp

need not even be bijective, but von Kries adaptation can suc-
ceed nonetheless provided that the “world” of spectral re-
flectances x(p, λ) and illuminants `(λ) satisfy a tensor rank
constraint [4]. Regardless, for the remainder of this docu-
ment, we will use the terms “illuminant” and “reflectance”
to reference m and xp, respectively.

3. Multiview Color Constancy Model

The ratio method combines ratio constraints derived
from multi-view correspondences with initial illuminant es-
timates from monocular algorithms.

The key idea in this model is the exploitation of multi-
view color correspondence constraints. Here the correspon-
dence is not geometric, but exists in color space. This corre-
spondence occurs whenever the measured color of a patch,
p1 in image 1 and another patch p2 in image 2 are equiv-
alent, when viewed under the same illuminant. So given
M1 = M2, we have: y1,p1 = y2,p2 , which is equivalent to
the statement, x1,p1 = x2,p2 . We denote this reflectance as
xp, since it is independent of the image.

Often, when training on specific instances of objects,
we have multiple instances of the same object in different
scenes and hence different illuminants, as in Figure 1. In
this case we have corresponding color patches, which gives
us a constraint on the illuminants. Since we have patches p
in common among images i, we have satisfied the above re-
quirement that we have a reflectance xp in common among
all images and hence, we obtain a constraint on the possi-
ble illuminants in different images at each shared patch. In
contrast to monocular models, when jointly modeling the
illuminants of an object in multiple views we must consider
a possible shading term per patch per image, αi,p.

αi1,pM
−1
i1

~yi1,p = ~xp = αi2,pM
−1
i2

~yi2,p (4)

3.1. Multi-view Shading Normalization

When considered in the raw space, the shading terms αi

add an unknown variable for each added constraint, yielding
an ill-posed problem. We could assume a smooth model of
shading variation and regularize the solution using a vari-
ational penalty term, but in real images shading can vary
quite abruptly.1 Instead, we cast observed pixels into a nor-

1We could also use a locally planar model, which would be true for our
experimental dataset, but not true in general. In our experiments we make
no assumption of local surface geometry.
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malized color space where the shading terms cancel:

~yi,p

‖~yi,p‖
=

Mi~xpαi

‖Mi~xpαi‖
=

Mi~xpαi

‖Mi~xp‖|αi|
=

Mi~xp

‖Mi~xp‖
(5)

Therefore ~y′i,p = (Mi~xp)′, using the following notation
for a normalized vector: v′ = v/|v|ρ. For ρ = 1 (the
L1 norm) this normalization is equivalent to using rg chro-
maticity space: for each pixel we project the rgb space to
the rg space, e.g. R′ = R

R+G+B . For the sake of conve-
nience in the following derivations we drop the normalized
notation, and simply use x and y to refer to their normalized
quantities, x = x′, y = y′, so that we can write our color
model as:

~yi,p = Mi~xp (6)

3.2. Ratio Method

We take the color model (6) and Von Kries adaptation
as assumptions. Under these assumptions, we can form a
constraint for each color channel, on the ratio of the illu-
minants mc

1/mc
2 between images 1 and 2, when the images

share a patch p with the same reflectance xp in common.
Component-wise, letting c ∈ [1, 2, 3] denote the color chan-
nel, i ∈ [1, . . . , n] the image number and p ∈ [1, . . . ,m] the
patch number, this constraint looks like:

∀i1 6= i2
yc

i1,p

mc
i1

=
yc

i2,p

mc
i2

(7)

Solving for mc
i ’s we have:

∀i1 6= i2
mc

i2

mc
i1

=
yc

i2,p

yc
i1,p

(8)

If our measurement of the transmittance of light inte-
grated over a period of time in the camera was exact, then
this would be a hard constraint on the illuminant in one im-
age, given that in another. Since this is not the case, we
model the noise in pixel values as εy . In addition, since (8)
only gives us a constraint on the ratio of the illuminants, we
must have an initial bootstrap estimate of the illuminant in
each image, to infer the other illuminant. So let m̂i denote
the bootsrap estimate of the illuminant in image i, which
has noise εm. Under our noisy model assumption,

ŷc
i,p = yc

i,p + εy (9)
m̂c

i1 = mc
i1 + εm (10)

where εβ ∼ N (0, γβ), and β ∈ {y, m}. We assume that the
standard deviation of the noise is independent of the mea-
surement value. Since we have multiple estimates, we are
interested in the expected value of the illuminant. From (8),
we have:

E[m̌c
i2 ] = E

[ ŷc
i2,p

ŷc
i1,p

m̂c
i1

]
= E

[yc
i2,p + εy

yc
i1,p + εy

(mc
i1 + εm)

]
(11)

Expanding the right-hand side into four terms and assuming
the noise terms are independent of one another, three terms
are 0 and we have:

E[m̌c
i2 ] = E

[yc
i1,pm

c
i1

yc
i1,p

1
1 + εy

yi1,p

]
≈ (12)

E
[yc

i1,pm
c
i1

yc
i1,p

(1− εy

yi1,p
)
]

= E
[yc

i1,pm
c
i1

yc
i1,p

]
(13)

Where we have used the power series expansion of (1 +
x)−1 for small x. Hence, for our approximation and as-
sumptions to be correct, we must discard patches which
have small values or saturate in any channel.

Given an existing color constancy method, we first form
the estimate of the illuminant conditioned on the non-object
portion of the input images, and then apply the ratio con-
straint and infer refined illuminant estimates using the av-
erage of the ratios or finding the median ratio values, as
described below. In practice, in order to have an unbiased
estimate of the mean or median illuminant, we first take the
log of the ratio and add 1 to insure all values are positive.
If we assume all of the illuminants have a uniform proba-
bility distribution, then we can simply perform inference by
averaging to find the mean illuminant estimate over color
channels.

Since each term in (7) is equal to patch reflectances, xc
p,

per color channel, which are equivalent across the images,
these ratios give us multiple samples of the same ratio un-
der different illuminants. Since we are considering a noisy
model, we can choose the average as the maximum like-
lihood estimator of the mean of these ratios. Alternatively,
we could take the median value among these estimates. An-
other possible approach, which we have not experimented
with, would be to estimate the distribution of illuminants
and then discard outliers before applying either estimate of
the center of the distribution. Below we present the aver-
aging method to estimate the most likely ratio that explains
the distribution of ratios we see in the images.

We use the initial estimate of the illuminant for color
channel c from a monocular color constancy method (such
as gray world) on image j to estimate mc

j . We can then es-
timate illuminant colors in all images by averaging the ratio
constraint over patches, p, using only the initial estimate for
this image j:

m̄c
i (j) =

1
P

P∑
p=1

yi,p

yj,p
mc

j (14)

This, however, biases the estimate of all illuminants based
on the initial estimate of image j. So as not to favor any
single image illuminant estimate, we average over all possi-
ble initial single image illuminant estimates to get our final
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Figure 2. In the color checker database color patches on calibrated
color checker charts were used for the image patch correspon-
dences.

illuminant estimate:

m̄c
i =

1
N

N∑
j=1

m̄c
i (j) (15)

Using these illuminant estimates, we can form an estimate
of the patch colors xc

p by averaging over the images:

x̄c
p =

1
n

N∑
j=1

yc
j,p

m̄c
j

(16)

This algebraic method is very fast and extends symmetri-
cally to any number of patches, images and even extra color
channels2. Now consider M such single image color con-
stancy methods, which we index by m. Index mc

i (j) in
equation (14) by its single view method: mc

i (j)(m). We can
then average over these (by assumption, independent) sin-
gle image illuminant estimates to avoid any shortcomings
of any single method. Hence, the ratio method also works
with any, or multiple single image color contancy methods.

4. Establishing Color Correspondences Be-
tween Views

Our method relies on finding corresponding homoge-
nous color regions across several images. This is done using
standard alignment techniques given an object in common
among several views. A watershed method is used for find-
ing stable regions. We refer the reader to the related publi-
cation [8] for details on establishing these correspondences.
For the remainder of the document, we assume these corre-
spondences have been found reliably for both datasets.

5. Results
The ratio method is evaluated in two ways. To more ef-

fectively evaluate how varying number of patch correspon-
dences effect the methods, we use a large database with
color checker charts in each image. The corresponding
patches in this case are provided by the color checker chart.

2We will release a MATLAB version of our implementation for unre-
stricted research use.

The second evaluation metric is computed using images in
the wild. We use the same data set of 26 images, each with
a color checker chart, split into sets which share an object
in common as described in the related paper [8].

5.1. Color Checker Database

The first database contains 568 images acquired by
Gehler et al. [6]. This dataset has been split into indoor
scenes (246 images) and outdoor scenes (322 images), and
we report results on each of these sets separately, in addi-
tion to results on the 568 image-set as an undistinguished
whole. (We refer to these as indoor, outdoor, and
undistinguished, respectively.) Each scene contains
a color checker that provides the ground-truth illuminant
mo for that image, and the performance of the color con-
stancy algorithms is quantified by computing the root mean
squared error (RMSE) between the “chromaticity” of the
inferred illuminant, (m1,m2)/(m1 + m2,m3) and that of
the ground-truth illuminant. In figures 4 and 3 we re-
port the mean RMSE. In addition, to compare the Ratio
Method with the multi-view Spatial Correlations method,
as in figures 5 and 6, we report illuminant estimates us-
ing a similar consistent measure of error, the angular error,
θ = arccos <m1,m2>

||m1||||m2|| . There is a simple conversion be-
tween the two measures. Suffice it to say that doing better in
one metric implies doing better in the other. We follow the
evaluation protocol of [6] and mask out the color checker
charts before using the images as input to any inference al-
gorithm.

As described in the section 3.2, the ratio method ap-
proach can be paired with a variety of single-image al-
gorithms. We choose two different approaches for our
evaluation. The first is the grey-edge algorithm [7], with
parameter-sets optimized for either indoor scenes (σ = 1,
n = 0, p = 1) or outdoor scenes (σ = 1, n = 2, p = 5).
(See [6] for optimization details.) The second is the single-
image Bayesian color constancy approach [6]. For each of
these approaches, we compare the performance of the orig-
inal single-image algorithm to those obtained by augment-
ing them with multi-view information, using both the Ratio
Method and the multi-view Spatial Correlations method.

Before making comparisons between the single-image
and multiview cases, we first assess the performance of the
multiview approach as we increase the color diversity of the
correspondences between images. As depicted in Fig. 2,
we use manually-identified squares from the color checker
chart to simulate the matches that are provided by an object
detector as described in section 4. That is, each selected
square provides a reflectance x that is “shared” between the
multiple images. Figure 3 shows the mean RMSE as the
number of corresponding patches increases. For this test,
we use two images as input and we average the results over
the whole outdoors set uniformly at random. We pair the
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Figure 3. Performance with increasing number of patches on out-
door images in the color checker database. The blue line represents
the RMSE of the Ratio Method using the grayedge algorithm as
the single image color constancy method. The red line represents
the RMSE of the Ratio Method using Gehler’s Bayesian color con-
stancy method. The diamonds on the left axis represent the base-
line methods, grayedge (blue) and bayesian (red). Two images are
used as input, drawn randomly from the undistinguished set, and
we run our algorithm with a growing set of corresponding patches.
We select a single random order of these patches, indexed 15, 18,
9, 10, 11, 12, 7, 3, 19 and test this on many pairs of images. In
the related publication [8], we found that if we chose several or-
ders of patches and averaged, the corresponding curves decrease
more smoothly as we increase the number of patches and on aver-
age the performance for only a single patch in common was on par
with the single image method. As can be seen here, as the num-
ber of patches grows, the confidence in the value increases and the
RMSE decreases. The plot on the left is the gamut of the mac-
beth color checker chart in rg-chromaticity space. It appears that
the closer the patches selected are to the center of the gamut, the
fewer patches that are needed for an accuracy equivalent to using
the whole set. Patches with colors far from the center tend to skew
the estimate. For another interpretation of why certain patches
perform more poorly, see the discussion on “angular spread” in
section 5.1 of the related publication

images randomly several times to assess the confidence in
the RMSE. The basline error numbers reported (plotted at
the zero patches line) are obtained by running the single-
image version of each algorithm on the entire set. The ratio
method may perform slightly worse than the baseline when
only one patch is available in correspondence. In the real
world dataset experiments, we found that we always had
several patches in common, so this should not be a prob-
lem, in practice. A potential solution to this problem would
be to avoid using the Ratio Method in situations where 1 or
fewer patches are in common. The multi-view spatial cor-
relations method, on the other hand, deals with this issue by
forming an optimization problem which weights the multi-
view constraint and single image constraint appropriately
and when only one or fewer patches are in common, per-
forms no worse than the single view color constancy base-
line.

For a more thorough comparison between the single-
image and multiview scenarios, we run an additional set of
tests with 8 matched patches but with an increasing input set

RMSE × 104

8 patches

91± 9 75± 5 72± 4 69± 4 93± 7 79± 6 69± 7 66± 4
54± 5 50± 3 50± 2 46± 2 43± 3 32± 1 31± 1

76± 9 65± 5 63± 4 43± 3 69± 6 61± 5 50± 4 49± 4
73± 7 64± 4 62± 4 61± 5 69± 5 61± 7 58± 4 53± 2

Grey 
Edge

Multiple Images Ratio  Method 
(Gray Edge, Median)

Multiple Images Ratio  Method 
(Gray Edge, Median)

Multiple Images Ratio  Method 
(Gray Edge, Median)

Bayesian
Multiple Images Ratio  Method 

(Bayesian, Median)
Multiple Images Ratio  Method 

(Bayesian, Median)
Multiple Images Ratio  Method 

(Bayesian, Median)

Images 2 5 10 2 5 10

Indoors

Outdoors

Average

Undistinguished

61± 9

Thursday, June 3, 2010

Figure 4. Average RMSE of the illuminant estimates from the
ground truth illuminant as given by averaging the gray patches
on the color checker chart. From this, you can see that the Ratio
Method improves over two single view color constancy methods,
Gehler’s Bayesian Color Constancy Method [6] and the Gray Edge
Method [7].

Figure 5. Angular errors for the Ratio Method using the Median
and Average of the single view Spatial Correlations method, the
multi-view and single view Spatial Correlations methods and the
naive, uniform illuminant estimate on the COLOR CHECKER
dataset. These are calculated using four images and 6 randomly se-
lected patches (among the 12 used for testing the MVSC method)
in correspondence. The α parameter in the MVSC method is cho-
sen using cross validation on a different subset of patches.

size. The results are shown in Fig. 4. Both the gray edge and
Bayesian single-image approaches are trained twice—once
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Figure 6. Angular Errors for the same methods as in figure 5
on the real-world dataset of DVDSBOOKS. The α parameter
in the multi-view Spatial Correlations method was chosen using
the larger COLOR CHECKER data set. The spatial correlations
method performs poorly on this data set as there are a few back-
grounds repeated which had very little texture.

for the indoor and once for the outdoor sets—and we
report the error for each algorithm trained on the appropri-
ate test set. For the undistinguished set, we report the
better of the grayedge indoor tuned algorithm and grayedge
outdoor tuned algorithm. The Bayesian algorithm is run us-
ing a prior which was learned on the undistinguished
set. As before, the multiview results are obtained by in-
corporating the single-image algorithm into our framework,
and averaging the error over the whole set divided up into
the appropriate number of images, either 2, 5, or 10. No
image is used more than once in the trial. Image-sets are
selected from the respective datasets uniformly at random.
The confidence in the RMSE is calculated by testing on
the whole data set repeatedly each time with different, ran-
domly selected image-sets. For all of the single-image al-
gorithms that we tested, the multi-view framework provides

an improvement. The error decreases with the number of
images and patches used in the correspondence.

Another comparison3 is made between the Ratio Method
and Spatial Correlations method in figures 5 (on this
COLOR CHECKER data set) and 6 on the DVDSBOOKS
data set. Both the Ratio Method and the MVSC method im-
prove over the baseline single image color constancy meth-
ods. There appears to be negligible difference between the
MVSC method and the Ratio Method on this data set.

5.2. Real World Object Database

To evaluate our method on a real-world task, we make
use of the DVDSBOOKS “real world data set”, as described
in [8]. This data set is composed of 39 images with 5 dif-
ferent objects in different scenes, under natural illuminants,
both indoors and outdoors. Some illuminants are heavily
colored and thus present a significant challenge for most
single image color constancy methods. Each image addi-
tionally contains a color checker chart, used only to deter-
mine the ground truth illuminant, in the same way as for
the colorchecker dataset. The colorcheckers are all in full
view and are oriented towards the dominant source of light
in the scene. As described in section 4, we automatically
find patch correspondences between images with the same
object in common. This provides a more realistic setting
under which the multiview algorithm can be used for actual
objects, compared to the color checker chart patches as de-
scribed in 5.1. Several of objects have over 100 patches in
common between all images; most have on the order of 40
stable regions in common. In our experiments, we use the
matches corresponding to the top 10 largest MSER regions.
Decreasing the number of patches to 10 puts an upper bound
on the error we would reasonably expect from the method.

As in the colorchecker database evaluation, we mask out
the color checker and object in each scene to obtain the sin-
gle image illuminant estimate. The results are shown in
Figure 6. For some scenes, as described in [8], this data
proved quite difficult for the single-view method, which was
trained on the large color checker dataset for these exper-
iments. Indeed, the monocular SC performance is worse
than the uniform illuminant estimate. The Ratio Method
again solidly outperforms the single view color constancy
methods. The difference between the Ratio Method and

3 Plots are presented using MATLAB boxplot format. The line in the
middle of the box is the median error. The red x shows the mean error. The
edge of the box shows the edge of the first and third quartiles of errors. The
box whiskers extend to the highest and lowest errors not considered out-
liers. The edge of some whiskers were cropped to focus on the middle 50
percent of errors, contained inside the boxes. Outliers are plotted sepa-
retly. A Kolmogorov-Smirnov goodness-of-fit test shows the errors to be
normally distributed at a 95% confidence level. The notches around the
median denote two standard deviations above and below the median error.
While the box of the multiview method errors overlaps with that of the sin-
gle image method errors, the notches in the box do not overlap, suggesting
statistical significance.
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MVSC method is more pronounced in this test.

6. Conclusion
We have presented the Ratio Method, another multi-view

color constancy method, similar to the MVSC method, as
described in [8]. We presented experients on two databases,
a standard color constancy dataset and a real-world dataset
of objects. Our results show that multi-view constraints
can significantly improve estimates of both scene illumi-
nants and true object color (reflectance) when compared to
baseline methods. Our method performs well even when
monocular estimates are worse than a uniform baseline.
This method is more flexible than the MVSC method in
that it can use any baseline single image color constancy
method, and moreover, be used with several single image
baseline methods at once. In addition, the Ratio Method us-
ing the median of the ratios provides a certain measure of
robustness to ouliers.
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