
PreFail: A Programmable Failure-Injection Framework

Pallavi Joshi
Haryadi S. Gunawi
Koushik Sen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-30

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-30.html

April 22, 2011



Copyright © 2011, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This material is based upon work supported by
Computing Innovation Fellowship and the National
Science Foundation under grant Nos. CCF-1018729
and CCF-0747390.  We also thank Eli Collins and
Todd Lipcon from Cloudera Inc. for helping us
confirm the HDFS bugs that we found.  Any
opinions, findings, and conclusions or
recommendations expressed in this material are
those of the authors and do not necessarily
reflect the views of NSF or other institutions.



PREFAIL : A Programmable Failure-Injection Framework

Pallavi Joshi

University of California, Berkeley

pallavi@cs.berkeley.edu

Haryadi S. Gunawi

University of California, Berkeley

haryadi@cs.berkeley.edu

Koushik Sen

University of California, Berkeley

ksen@cs.berkeley.edu

Abstract
As hardware failures are no longer rare in the era of cloud
computing, cloud software systems must “prevail” against
multiple, diverse failures that are likely to occur. Testing
software against multiple failures poses the problem of com-
binatorial explosion of multiple failures. To address this, a
tester can write diverse policies that prune down the space
of multiple failures while meeting her testing objective. In
this paper, we presentPREFAIL , a programmable failure-
injection framework that enables testers to write a wide
range of pruning policies. Using the principle of separation
of mechanism and policy, we decouple a failure-injection
framework into two components: failure-injection engine
and driver. The policies written in the driver decide which
failures should be injected by the engine. We define clear
abstractions on which the two components interact. We inte-
gratePREFAIL to three cloud software systems, show a wide
variety of pruning policies that we can write for them and
the speed-ups that we obtain with those policies.

1. Introduction
With the arrival of the cloud computing era, large-scale dis-
tributed systems are increasingly in use. These systems are
built out of tens of thousands of commodity machines that
are not fully reliable and can fail from time to time. In the
last couple of years, many large-scale failure statistics have
been made publicly available [6, 7, 18, 27, 42, 47], and they
all reach the same conclusion that large-scale systems see
frequent hardware failures. Thus, there is a shift in reliabil-
ity paradigm: today’s software should assume that hardware
does not have perfect reliability. Thus, the software that runs
on large-scale distributed systems has a great responsibility
to correctly recover from diverse hardware failures such as
machine crashes, disk errors, and network failures.

Even if distributed systems are built with reliability and
fault tolerance as primary goals [15, 18, 24], their recovery
protocols are often buggy. For example, the developers of
Hadoop File System [48] have dealt with 91 recovery issues
over its four years of development [25]. There are many
reasons for this. Sometimes developers fail to anticipate the
kind of failures that a system can face in a real setting. They
might have built the system to tolerate only fail-stop failures

like crashes, but the system might face non fail-stop failures
like data corruption. Even if the developers could anticipate
all kinds of failures that the system could face, they still
might be incorrect in the way in which they program the
system to recover from those failures. There have been many
serious consequences (e.g., data loss, unavailability) of the
presence of recovery bugs in real deployed systems [10,
12, 13, 25]. As an implication, failure testing has become
a mainstream technique to test software failure recovery in
large distributed systems [12, 27, 29, 51].

There has been some work that has proposed novel
failure-injection frameworks which address single failures
during program execution. However, large-scale distributed
systems face frequent, multiple, and diverse failures. In this
regard, there is a need to advance the state-of-the-art of fail-
ure testing for large-scale distributed systems. Exercising
multiple failures is unfortunately not straight-forward.The
challenge to deal with isthe combinatorial explosion of mul-
tiple failuresthat can be exercised.

To address this challenge, from our personal experience
and our conversation with some developers of cloud soft-
ware systems, a tester can employ many different pruning
strategies to reduce the large combinations of multiple fail-
ures. For example, a tester might only want to fail a repre-
sentative subset of the components of a system, or inject only
a subset of all possible failure types, or reduce the number
of places to inject the failures with some optimizations, or
explore failure points that satisfy some code coverage objec-
tives, or fail probabilistically. Furthermore, the testermight
want to compose multiple strategies together.

The goal of this paper is to build a failure-injection frame-
work that is capable of supporting many different pruning
strategies. Thus, we design, implement, and evaluate PRE-
FAIL , a programmable failure-injection framework. At the
heart of PREFAIL is the the classic principle of separation
of mechanism and policy [3, 5, 20, 38, 49, 50]. That is,
we decouple a failure-injection framework into two pieces:
the failure-injection enginewhich is capable of interposing
different execution points of the system under test and is
responsible for performing failure injection at those points,
and thefailure-injection driverwhere testers can write prun-
ing policies that “drive” the engine (i.e., make decisions
about which failures to inject).

1 2011/4/22



One challenge in decoupling a failure-injection frame-
work is to define the level of abstraction at which testers
write the policies. We provide suitable abstractions of fail-
ures and the executions in which failures are injected and a
library of functions for using the abstractions. With the li-
brary and abstractions that PREFAIL provides, we show how
we can easily write a wide range of pruning policies that re-
duce the number of multiple-failure combinations.

We have integrated PREFAIL to three popular cloud sys-
tems: Hadoop File System (HDFS) [48], ZooKeeper [31],
and Cassandra [37]. We have written a variety of pruning
policies for these systems, and have evaluated the speed-ups
that we achieve using the policies. We have also found a
number of bugs in these systems using PREFAIL . Real-world
adoption of PREFAIL is in progress.

In the rest of the paper, we present an extended motivation
(§2) for having a programmable failure-injection framework,
the design and implementation of such a framework PRE-
FAIL (§3), examples of a wide range of policies that we can
write in PREFAIL to prune down large failure spaces (§4),
evaluation of PREFAIL (§5), related work (§6), and finally
conclusion (§7).

2. Extended Motivation
As we enter the cloud era, it is becoming common to see a
single software system running on thousands of commod-
ity machines. For example, Hadoop MapReduce [2] and
Hadoop File System (HDFS) [48] (open-source versions of
Google MapReduce [19] and Google File System [23] re-
spectively) are run on 4000 nodes at Yahoo! [4]. At this
scale, hardware failures are no longer a rarity, and thus
the chances of cloud software systems experiencingmulti-
ple failures are increasing. Thus, it is not surprising when
large-scale developers ask to advance the state-of-the-art of
testing, specifically by providing ways to exercise complex
combinations of multiple, diverse failures [12].

2.1 The Combinatorial Explosion of Multiple Failures

Testing systems against multiple failures is unfortunately not
straight-forward – the challenge to deal with is thecombi-
natorial explosion of multiple failures. This explosion is at-
tributed to the complex characteristics of failures that can
arise: different types of failures (e.g., crashes, disk failures,
rack failures, network partitioning), different parts of the
hardware (e.g., two among four nodes fail), and different
timings (e.g., failures happen at different stages of the pro-
tocol). Exhaustively exploring all possible failure sequences
can take a lot of computing resources and time.

Let’s consider the code segment in Figure1 that runs on
a distributed system with two nodes, A and B. This program
executes reads and writes (to the network and the disk) in
each node. Given this program, hardware failures such as
crashes, data corruptions, and network failures, can happen
around the I/O operations. Let us consider crash-only failure

Node A Node B

L1. write(B, msg); L1. write(A, msg);

L2. read(B, header); L2. read(A, header);

L3. read(B, body); L3. read(A, body);

L4. write(B, msg); L4. write(A, msg);

L5. write(Disk, buf); L5. write(Disk, buf);

Figure 1. Example code.

that can be injected before aread or a write call. Let’s
suppose that the tester would like to inject two crashes. One
possible combination is to crash before the write at L4 in
node A and then to crash before the write at L5 in node B.
Overall, since there are5 possible points to inject a crash
on every node, there are52 ∗ N(N − 1) possible ways to
inject two crashes, whereN is the number of participating
nodes (N = 2 in the above example). Again, considering
many other factors such as different failure types and more
failures that can be injected during recovery, the number of
all possible failure sequences can be too many to explore
with reasonable computing resources and time.

2.2 The Need For Programmable Failure-Injection

To address the aforementioned challenge, we believe that
there are many different ways in which a tester could re-
duce the number of failures to inject. Below, we present
some examples based on our personal experience and our
conversation with some developers of cloud software sys-
tems. Our goal is to allow testers to express failure space
pruning strategies of different complexities so that they can
use the right ones at the right times.

Failing a component subset:Let’s suppose a tester wants
to test a distributed write protocol that writes four replicas
to four machines (or nodes), and let’s suppose that the tester
wants to inject two crashes in all possible ways in this exe-
cution to show that the protocol could survive and continue
writing to the two surviving machines. A brute-force tech-
nique will inject failures on all possible combinations of two
nodes (i.e.,

(

4

2

)

). However, to do this quickly, the tester might
wish to specify a policy that just injects failures inany two
nodes.

This type of policy can also be applied to other target sys-
tems (e.g., RAID systems [41]). For example, let’s imagine
a tester of a N-disk RAID system who wants to test that
the RAID system can survive two disk failures (e.g., as in
RAID-6 or RAID-DP [16]). Again, a brute-force technique
will exercise

(

N

2

)

combinations. However, with the policy
above, the tester can reduce the number of combinations.
One take-away point here is that a pruning policy could be
re-usable for different target systems (e.g., distributed sys-
tems and RAID systems).

Failing a subset of failure types:Another way to prune
down a large failure space is to focus on a subset of the
possible failure types. For example, let’s imagine a testing

2 2011/4/22



process for a storage system, where at every disk I/O, the
testing process can inject a machine crash or a disk I/O
failure. Furthemore, let’s say the tester knows that the system
is designed as a crash-only software [11], that is, all I/O
failures are supposed to translate to system crash (followed
by a reboot) in order to simplify the recovery mechanism. A
concrete example of this type of system is the HDFS master
node; a single I/O failure observed by the master will cause
shutdown and reboot. In this environment, the tester might
want to just inject I/O failures but not crashes because it is
useless to inject additional crashes as I/O failures will lead
to crashes anyway.

Exploring a subset of possible failure types is also use-
ful when the tester wants to test specific protocols against
specific failure types. One good example is the rack-aware
data placement protocol common in many cloud systems to
ensure high availability [21, 48]. The protocol should ensure
that file replicas should be placed on multiple racks such that
if one rack goes down, the file can be accessed from other
racks. In this scenario, if the tester wants to test the rack-
awareness property of the protocol, only rack failures need
to be injected (e.g., vs. individual node or disk failures).

Domain-specific optimization: In some cases, system-
specific knowledge can be used to reduce the number of
failures. For example, consider ten consecutive Java read
I/Os that read from the same input file (e.g., f.readInt(),
f.readLong(), ...). In this scenario, disk failure can start
to happen at any of these ten calls. In a brute-force man-
ner, a tester would run ten experiments where disk failure
begins at 10 different calls. However, with some operating
system knowledge, the tester might inject disk failure only
on the first read. The reasoning behind this is that a file is
typically already buffered by the operating system after the
first call. Thus, it is unlikely (although possible) to have ear-
lier reads be successful and the subsequent reads fail. In our
experience, by reducing these individual failures, we greatly
reduce the combinations of multiple failures.

Coverage-based policies:A tester might want to speed up
the testing process with some coverage-based policies. For
example, let’s imagine two different I/Os (A and B) that if
failed could initiate the same recovery path that performs
another two I/Os (M and N). To ensure correct recovery,
a tester should inject more failures in the recovery path. A
brute-force method will exercise 4 experiments by injecting
two failures at AM, AN, BM, and BN (M and N cannot be
exercised by themselves unless A or B have been failed).
But a tester might wish to finish the testing process when
she has satisfied some code coverage policy, for example, by
stopping after all I/O failures in the recovery path (at M and
N) have been exercised. With this policy, she only needs to
run 2 experiments with failures at AM and AN.

Failing probabilistically: Multiple failures can also be re-
duced by only injecting them if the likelihood of their occur-

Failure-
Injection
Driver

Target 
System
(system 
under test)

Failure-
Injection
Engine

Policy #1

Policy #2

Policy #3

...

FI Task +
Information
Abstractions

Figure 2. PREFAIL Architecture. The figure shows the sep-
aration of failure-injection engine (mechanism) and driver (policy).
The pruning policies written in the driver make failure decisions
that drive the engine.

rence is greater than a predefined threshold [45, 51]. This
technique is useful especially if the tester is interested in
correlated failures. For example, two machines put within
the same rack are likely to fail together compared to those
put across different racks [21]. In the case of sector-level
disk failures, if a sector fails, its neighboring sectors are also
likely to fail [46]. A tester can use real-world statistical data
to implement some failure probability distributions and write
failure-injection policies based on the distributions.

In summary, there are many different ways in which a
tester can reduce the number of injected failures. Thus, we
believe that there is a need for a programmable failure-
injection framework that enables testers to express different
pruning policies. In the following section, we describe our
approach in detail.

3. Programmable Failure Injection
In this section we present PREFAIL , a programmable failure-
injection framework that allows testers to express different
ways to prune down a large failure space. At the heart of
PREFAIL is the classic principle of separation of mechanism
and policy [3, 5, 20, 38, 49, 50]. As an informal definition,
one can view the policy as the scheme for deciding what
should be done and the mechanism as the tool for imple-
menting a set of policies.

With this principle, we decouple a failure-injection
framework into two pieces: the FI engine and the FI driver
as depicted in Figure2 (FI stands for failure-injection). The
FI engine is the component that injects failures in the sys-
tem under test, and the FI driver is the component that takes
tester-specified policies to decide where to inject failures.
One challenge in decoupling a failure-injection framework
is to define the level of abstraction at which testers will write
the policies. This includes deciding clear roles of the FI en-
gine and the FI driver, the failure abstraction that should be
exposed to the FI driver, the language in which to write the
policies, and the libraries that should be made available to
the testers so that they can easily access the failure abstrac-
tion and re-use existing pruning strategies. In following sec-
tions, we explain the FI engine, the abstraction interface,the
FI driver, and finally the overall testing workflow.

3 2011/4/22



3.1 FI Engine

The FI engine is the component that interposes the differ-
ent execution points in the system under test and injects
failures at those points. The target failure points and the
range of failures that can be injected all depend on the ob-
jective of the tester. For example, interposition can be done
at Java/C library calls [25, 39], TCP-level I/Os [17], disk-
level I/Os [44], POSIX system calls [36], OS-driver inter-
faces [32], and at many other points. Depending on the tar-
get failure points, the range of failures that can be injected
varies.

To prove the concept of programmable failure-injection
framework, we take a failure-injection framework that we
built in prior work [25] as an example of a FI engine. This
particular FI engine interposes all I/O related to calls to Java
libraries and emulates hardware failures by supporting di-
verse failure types such as crashes, disk failures, and network
partitioning at node and rack levels.

The FI driver tells the FI engine to run a set of experi-
ments that satisfy the written policies. Anexperimentis an
execution of the system under test with a particular failure
scenario (could be one or multiple failures). For example,
using the example in Figure1, the FI driver could tell the FI
engine to run one experiment with one specific failure (e.g.,
a crash before the write at L4 in node A) or two concurrent
failures (e.g., the same crash plus a crash before the write at
L5 in node B).

As mentioned above, one major challenge in supporting
programmable failure injection is to decide the information
abstraction that a FI engine should expose to the FI driver.
Below, we present how we address this.

3.2 Abstractions and Libraries

We believe that, no matter what the supported failure
types are and where the failures are injected, every failure-
injection mechanism can describe an injected failure as a
task. Thus, we first define the abstractionfailure-injection
task(orfit in short). Testers then can write pruning policies
on top of thisfit abstraction. Only exposingfit however
is not enough – to enable testers to write powerful policies
(i.e., a variety of pruning policies), the FI engine must ex-
pose to the FI driver more information regarding the execu-
tion of the system under test. We record this information in
per-experiment profile.

• Failure-Injection Task (fit). A failure-injection task
(fit) is a list of key-value pairs, with a key being a string
representing a part of the context associated with the failure
represented in the task.

The goal of using key-value pairs to represent afit is
two-fold. First, we want to provide the tester more flexibility
with adding as much contextual information as she desires.
Usually, the more the information provided to the FI driver,
the more powerful the policies that one can write. Second,
we envision that some pruning policies (e.g., failing a com-

Key Value
failure crash
func write()
loc Write.java (line L1)
node A
target B
stack 〈stack trace〉
... ...

Table 1. A Failure-Injection Task (fit). A failure-injection
task comprises a set of key-value pairs that represent the type of
injected failure and the contextual information of the failure. In
this example, the task is to inject a crash (defined by thefailure

key). Thisfit also contains more contextual information about
when and where the failure would be exercised: The keyfunc is
the function call where the failure is injected,loc is the location
of the function call in the source code,node is the node where the
failure occurs,target is the target of the I/O (e.g., the node to
which a network message is sent by the function call), andstack

is the stack in node A when the failure is injected.

ponent subset of a system in Section2) can be used not
only for one specific system, but also for many other sys-
tems (e.g., distributed systems and RAID systems). Thus,
the structure of the pruning algorithm stays the same, and
all the tester needs to change is the key that represents the
system component. We show an example of this scenario in
Section4.2.

Failure-injection tasks can be built automatically within
the FI engine. To do that, the tester first needs to decide what
failures and what contextual information about the failures
that she wants to include in afit. We modified our old
failure-injection framework [25] to create afit for every
I/O call and a possible failure that it can inject at that I/O
call. Let’s use as an example the code segment in Figure1.
In this example, Table1 shows thefit that our FI engine
builds to represent a crash before thewrite call at line L1 in
node A. The FI engine passes thisfit to the FI driver. Using
the detailed contextual information in thefit, a tester can
decide whether to ask the FI engine to exercise the failure at
thefit or not. In general, the contextual information present
in fits allows testers to decide how to prune down the set
of all possible failure sequences that can be exercised. The
FI engine injects failures only at the failure sequences in the
pruned-down set returned by the FI driver.

• Failure Sequence (fitSeq): Since one of our primary
goals is to exercise multiple failures, to easily express a
combination of multiple failure-injection tasks, we define
a failure sequence (fitSeq). A failure sequence is a data
structure used to describe a sequence offits.

• Per-experiment profile. As mentioned above, to enable a
variety of pruning policies, the FI driver needs more infor-
mation. One type of information that we find really useful
is the execution profile of every experiment. In every exper-

4 2011/4/22



iment, the FI engine not only injects the failure(s), but also
records all failure-injection tasks corresponding to the fail-
ures that were exercised or that could have been exercised
in the experiment. The intuition is that failure-injectiontasks
are built out of failure-injection points (e.g., I/O calls, library
calls, or system calls), and the set of these failure-injection
points can be used to represent the execution of the target
system. Thus, the set of all failure-injection tasks observed
during an execution can be used to represent that execution.

PREFAIL also provides a library of functions for easy
information extraction:

• Reduced fit: Sometimes testers might want to use a ‘re-
duced’fit that retains a subset of the key-value pairs in
the originalfit (for example, when they are interested in
only some specific context of failures). Thus, PREFAIL pro-
vides a functionreducedFit that takes afit, a list of
keys, and a boolean as arguments. If the boolean is true,
thenreducedFit returns a ‘reduced’fit that includes only
those key-value pairs infit that involve the keys in the ar-
gument list. If the boolean is false, then it returns a ‘reduced’
fit that excludes the key-value pairs fromfit that involve
the keys in the argument list, and retains the rest of the pairs.
There are variations of thereducedFit function that take
a set offits or a sequence offits as arguments instead
of a singlefit. The functionreducedFits takes a set of
fits, a list of keys, and a boolean as arguments, applies the
reducedFit function on eachfit, and returns a set of ‘re-
duced’fits. Similarly, the functionreducedFitSeq deals
with a sequence offits.

• Failure-Injection Tasks: PREFAIL provides a function
allFitSeqs that returns the list of allfit sequences that
can be exercised by the FI engine. The FI driver uses poli-
cies to determine which of these sequences should the FI
engine actually exercise. PREFAIL also provides a function
explored that takes a list of key-value pairs and returns true
if a failure with those key-value pairs has already been ex-
plored in the past by the FI engine, else false.

• Profiling information: To let testers easily access the
profiling information and use it in their policies, there are
two functions that are provided by the PREFAIL : allFits
andpostInjectionFits. The functionallFits takes a
failure sequence as argument and returns the set of allfits
observed in the experiment in which its argument failure
sequence is injected. The functionpostInjectionFits
takes a failure sequence as argument and returns the set of all
fits observed after its argument failure sequence is injected.

3.3 FI Driver

The FI driver provides support for writing policies using
which testers can express how to prune the failure space. A
policy is a function that takes a set of failure sequences and
returns a subset of the sequences to explore. The FI engine

1 d e f f i l t e r (fitSeq):

2 f o r fit i n fitSeq:

3 i f no t contains (fit[‘stack’],

‘setupStage ’):

4 r e t u r n False

5 r e t u r n True

Figure 3. Setup-stage filter.Return true if allfit s infitSeq
are executed under thesetupStage function.

1 d e f f i l t e r (fitSeq):

2 last = fitSeq [ len(fitSeq) - 1 ]

3 r e t u r n not explored [(‘ loc’,

last [‘loc ’])]

Figure 4. New source location filter. Return true if the
source location of the lastfit has not been explored.

exercises only the sequences present in the output. Testers
can use the failure and profiling information abstractions
provided by the FI engine in their policies. There are two
different kinds of policies that can be written: filter and
cluster policies.

3.3.1 Filter Policy

A filter policy uses afilter function that takes a failure
sequence as an argument and implements a condition that
decides whether to exercise the sequence or not. Thus, the
policy takes a set of failure sequences, applies thefilter

function on each sequence, and retains the sequence in its
output set if thefilter function returns true for it. Figure3
shows afilter function written in Python that selects only
those failure sequences that involve failures that occur when
the target system is in the setup stage (e.g., the stack trace
contains the functionsetupStage). The main use of a filter
policy is to let a tester focus on a subset of all failure-
injection tasks at a time.

Figure4 shows another example of afilter function.
The policy that uses this function explores failures at previ-
ously unexplored source locations by filtering out a failure
sequence if its latestfit (last) has an unexplored source
location. This policy can be used to rapidly achieve a high
coverage of failures at distinct source locations (more in
§4.3).

3.3.2 Cluster Policy

A cluster policy lets a tester answer the following ques-
tion: If a failure sequence (e.g., AE) has been exercised,
then should another sequence (e.g., BE) be also exercised?
To help testers answer this question, a cluster policy uses
a cluster function that takes two failure sequences as ar-
guments, and returns true if the tester considers them to be
the same, and false otherwise. Thecluster function imple-
ments an equivalence relation between failure sequences that

5 2011/4/22



1 d e f cluster (fitSeq1 , fitSeq2):

2 isSetup1 = True

3 isSetup2 = True

4 f o r fit i n fitSeq1:

5 i f no t contains (fit[‘stack ’],

‘setupStage ’):

6 isSetup1 = False

7 f o r fit i n fitSeq2:

8 i f no t contains (fit[‘stack ’],

‘setupStage ’):

9 isSetup2 = False

10 r e t u r n (isSetup1 and isSetup2 )

Figure 5. Setup-stage cluster.Cluster two failure sequences
if both of them are within the setup stage context.

1 d e f cluster (fitSeq1 , fitSeq2):

2 last1 = fitSeq1 [ len(fitSeq1) - 1]

3 last2 = fitSeq2 [ len(fitSeq2) - 1]

4 r e t u r n (last1 == last2)

Figure 6. Last fits cluster. Return true if the lastfit s of
two failure sequences are the same.

is used by the cluster policy to partition its argument set of
failure sequences into disjoint subsets. The policy then ran-
domly selects one failure sequence from each equivalence
class. Thus, the tester implements her notion of equivalence
of failure sequences, and the policy uses the equivalence re-
lation to select failure sequences such that all equivalence
classes in its argument set of failure sequences are covered.

Figure5 shows acluster function that collapses all pos-
sible failures within the setup stage into one cluster. Thus,
even if there areN (N >> 1) possible single failures that
can be injected during the setup stage in a system, all of the
failures will be clustered into one group, and only one of
the failures will be exercised by the FI engine to cover the
cluster.

Figure 6 shows another example ofcluster function.
The cluster function clusters failure sequences that end
with the samefit. For example, there might be two failure
sequencesAE andBE that can be exercised in two experi-
ments, but a tester might wish to run just one experiment that
hasE as the second failure. This kind of cluster policy is use-
ful if the tester wants to rapidly explore new recovery paths;
it does not matter how those paths are reached. The policy
can also be relaxed easily. For example, a tester might wish
to cluster failure sequences whose lastfits have the same
source location even if thefits are different (Figure10); the
only difference from the previouscluster function is in the
last line.

3.4 Test Workflow

Figure7 shows an example scenario of the testing process
in PREFAIL . The tester specifies the maximum number of

A

Exps #1

#2

Policies

ADB C

A B

A

B

D E

E

AD

AD

1 failure/exp 2 failures/exp

AE BE

EAB

F

GEAB

...

...

fit 
seqs

Figure 7. PREFAIL Test Workflow.

failures to inject in an execution of the system under test
as2. The FI engine first runs the system with zero failure
during execution (i.e. without injecting any failure during
execution). During this execution, it obtains the set of all
fits: A, B, andC where failures can be injected. Using the
tester-specified policies, PREFAIL prunes down the set toA
andB, and then injects failure at eachfit in the pruned down
set.

After injecting the failure in an experiment, the FI engine
records allfits seen to build sequences of twofits that
can be exercised while injecting two failures per experiment.
For example, after injectingA in the first experiment, the FI
engine observes thefits D andE. From this information,
the FI engine creates the set of sequences of twofits AD
andAE. Similarly, it createsBE after observing thefit E in
the experiment that exercisesB. As mentioned before, the
number of all sequences offits that can be exercised tends
to be large. Thus, PREFAIL again uses the tester-specified
policies to reduce this number. For example, a tester might
want to run just one experiment that exercisesE as the second
failure. Thus, PREFAIL would automatically exercise just
one ofAE andBE to satisfy this policy instead of exercising
both of them.

Algorithm 1 outlines the overall testing process with
PREFAIL . PREFAIL takes a systemS to test, a list of tester-
written policiesP , and the maximum number of failuresN
to inject in an execution of the system. The testing process
runs inN + 1 steps. At stepi (0 ≤ i ≤ N ), the FI en-
gine of PREFAIL executes the systemS once for each fail-
ure sequence of lengthi that it wants to test, and injects the
failure sequence during the execution of the system.FSc is
the set of all failure sequences that should be tested in the
current step, andFSn is the set of failure sequences that
should be tested in the next step. InitiallyFSc is set to a
singleton set with the empty failure sequence as the only el-
ement. Thus, at step0, the FI engine executesS and injects
an empty sequence of failures, that is, it does not inject any
failure. The FI engine observes thefits that are seen during
execution, and adds singleton failure sequences with these
fits toFSn. Thus,FSn has failure sequences that the FI
engine can exercise in the next step, that is, in thei = 1 step.
Before PREFAIL proceeds to the next step, it prunes down

6 2011/4/22



Algorithm 1 PREFAIL Test Workflow
1: INPUT: System under test (S), List of policies

(P), Maximum number of failures per execution

(N)

2: FSc = {()}
3: FSn = {}
4: for 0 ≤ i ≤ N do
5: for each failure sequence fs in FSc do
6: Execute S and inject fs during execution

7: Profile execution using fits observed

during execution

8: for each fit f observed after injecting fs

do
9: Append (fs, f ) to FSn

10: end for
11: end for
12: FSn = Prune(P , FSn)
13: FSc = FSn

14: FSn = {}
15: end for

the setFSn using the policies written by testers using the
policy framework. The failure and profiling information ab-
stractions provided by the FI engine can be used by testers
to write rich and useful policies. In stepi = 1, FSc is set
to the pruned downFSn from the previous step. For each
failure sequencefs in FSc, the failure-injection framework
executesS and injectsfs during execution. For eachfit f

that it observes afterfs has been injected, it adds the failure
sequence (fs, f ) toFSn. AfterS has been executed once for
each failure sequence inFSc, PREFAIL prunes down the set
FSn with policies and moves to the next step. This process
is repeated till the last step.

4. Crafting Pruning Policies
As discussed earlier in Section2, when dealing with mul-
tiple failures, one needs to deal with the combinatorial ex-
plosion of failures. We believe that there is no single way
to prune down the failure space – it depends on the objec-
tives of the tester. In Section2, we have listed some prun-
ing strategies that we and real developers find valuable. For
example, the tester can fail only a subset of all the compo-
nents of the target system, inject a subset of possible fail-
ure types, reduce the number of failure-injection points with
some domain-specific optimization, inject failures that sat-
isfy some coverage-based policies, or fail probabilistically.

Overall, we make three major points in this section. First,
by clearly separating the failure-injection mechanism and
policies and by providing useful abstractions, we can write
many different pruning strategies clearly and concisely. Sec-
ond, we show that policies can be easily composed together
to achieve different testing objectives. Finally, we show that
some policies can be reused for different target systems. We
believe these advantages show the power of PREFAIL .

Initial Recovery Difference
Setup 1 4 5 2 4 5 2 - -
stage 14 5 1 5 6 - 5 6

1 4 5 1 4 6 - - 6
Data 1 4 5 - 4 5 - 4 5

transfer 14 5 1 - 5 1 - 5
stage 1 45 1 4 - 1 4 -

Table 2. HDFS Write Recovery. The table illustrates at
a high-level the different recovery behaviors of the two stages of
write. The first column shows the initial pipeline; the crashed node
is marked in bold. The second column shows the final pipeline
that contains the replicas after write recovery. The third column
summarizes the I/O differences thatPREFAIL observes between the
I/Os happening in the initial pipeline and in recovery. Setup-stage
recovery is basically a retry, therefore the I/O calls in recovery
are the same as in the initial case, except that we see new I/Os
in new nodes (e.g., 2 and 6). However, the last node in the pipeline
executes different code segment. That is why Node 5 appears in the
last column because it has become the middle node after recovery.
Data-transfer recovery on the other hand executes new I/O calls in
the surviving nodes (e.g., to synchronize block offsets). That is why
the surviving nodes appear in the difference.

To show all the policies that we have written and the
advantages, we integrate PREFAIL to Hadoop File System
(HDFS) [48], an underlying storage system for Hadoop
MapReduce [2]. HDFS has been widely deployed in hun-
dreds of organizations including Amazon, Yahoo!, Twitter,
and Facebook [1]. We begin with an introduction to HDFS
and then present the policies that we’ve written to prune fail-
ures in HDFS.

4.1 HDFS Primer

HDFS is a distributed file system. Here we describe the
HDFS write workload in detail. Figure8 shows the write
I/Os (both file system and network writes) occurring within
the HDFS write protocol. The protocol by default stores
three replicas in three nodes, which form a pipeline initiated
by the client (left-hand side of the first node, not shown).
If multiple racks are available, it makes sure that the nodes
come from a minimum of two racks such that a single rack
failure does not make the data block unavailable.

Our FI engine is able to emulate hardware failures on
every I/O (every box in Figure8). As depicted, there are
at least 33 failure points that the FI engine interposes in
this write protocol. At every I/O, the FI engine can inject a
crash, a disk failure (if it’s a disk I/O), a node-level network
partitioning (if it’s a network I/O), and a rack-level network
partitioing (if it’s a network I/O across two racks). The
figure also depicts many possible ways in which multiple
failures can occur. For example, two crashes can happen
simultaneously at I/O #13 and #17, or a crash at I/O #21
and rack partitioning at I/O #15, and many more.

7 2011/4/22



1

2

3

4

5

6

7

8

9

10

12

11

13

14

16

15

17

18

19

20

21

22

23

24

25

26

30

31

32

33

(A
) 
Se
tu
p
 S
ta
ge

(B
) 
D
at
a 
Tr
an
sf
er
 S
ta
ge

N1 N4 N5

FS Writes Net Writes

rack1 rack2 rack2
I/O # Notes
1, 2 After receiving setup message, create temporary block and meta files.
3 Forward setup message to downstream datanodes.
4 - 8 (4, 5) and (7, 8) are the same as (1, 2). (6) is the same as (3).
9 The last datanode in the pipeline sends an ack.
10, 11 Send acks to the middle node and client respectively.
12 Receive and stream bytes to downstream datanodes.
13, 14 Write bytes to the block and meta files.
15 Send a message that marks the end of the stream (EOS).
16 - 21 (16) is the same as (12); (17, 18) and (20, 21) as (13, 14); (19) as (15).
22, 23 After receiving EOS marker, the temporary block and meta files are

renamed to final filenames (e.g., renametmp/blk X to curr/blk X).
24 Send a commit ack to the middle node.
25 - 33 (25, 26) and (31, 32) are the same as (22, 23); (30) and (33) as (24).

Note that unlike the last node in the pipeline, the first two nodes
finalize the files only after receiving a commit ack.

Figure 8. HDFS Write Protocol. The figure shows the file system and network write I/O calls within the HDFS protocol. In this
configuration, nodes N1-N3 and nodes N4-N6 are separated in two racks. When the client asks the master for three nodes to put the replicas,
the master node gives to client N1, N4, and N5 (communicationbetween client and master is not shown).

The figure only shows the I/Os that occur in the normal
execution path, it does not show the I/Os in the recovery
path. Often, developers are interested in multiple failures
some of which occur in the normal path and the rest in
the recovery path. Later, we will show policies that quickly
exercise different recovery paths. Before that, we explainthe
HDFS write recovery protocol here.

The HDFS write protocol is divided mainly into two
stages: the setup stage and the data transfer stage. The recov-
ery for each stage is different. The first and second columns
of Table 2 illustrate at a high level the recovery for each
stage. In the setup stage, if a node crashes (e.g., N1), the
client asks for a new node from the master node, and be-
gins the whole write process again with the new pipeline
(e.g., N2-N4-N5). However, if a node crashes in the second
stage, the write continues on the surviving datanodes. The
third column specifies the nodes where new I/Os are seen
during recovery. Although at a high level it seems that there
are only two main recovery paths, we will see in a subse-
quent section how failures at different I/Os result in uniquely
different recovery behaviors. We can use recovery clustering
policies of different granularities to cluster these recovery
behaviors.

4.2 Pruning by Failing a Component Subset

In distributed systems like HDFS, it is common to have
multiple nodes participating in a distributed protocol. As
mentioned earlier, let’s say we haveN participating nodes,
and the developer wants to inject failures on two nodes, then
there are

(

N

2

)

combinations of failures that one could inject.
Worse, on every node (as depicted in Figure8), there could
be many possible points to exercise the failure.

1 d e f cluster (fitSeq1 , fitSeq2 ):

2 rs1 = reducedFitSeq (fitSeq1 , [‘node ’],

False)

3 rs2 = reducedFitSeq (fitSeq2 , [‘node ’],

False)

4 r e t u r n (rs1 == rs2)

Figure 9. Ignore nodes cluster. Return true if two failure
sequences have the same failures with the same contexts not con-
sidering the nodes in which they occur.

To reduce this, a developer might just wish to inject
failures at all possible failure points inany two nodes. She
can write a cluster policy that uses the function in Figure9
to cluster failure sequences that have the same sequence of
failures occurring in the same contexts. We do not consider
the nodes in which the failures occur as part of contexts of
the failures. Thus, a failure sequence with a crash at node 1
and a subsequent disk failure at node 2 would be considered
the same as a sequence with a crash at node 3 and a disk
failure at node 4 if the rest of the contexts of the crashes and
the disk failures are the same. The developer can then use
this cluster policy to direct the FI engine to exercise failure
sequences with two failures such that if the FI engine has
already explored failures on a pair of nodes then it should
not explore the same failures on a different pair of nodes.

Earlier, we mentioned that this type of pruning strategy
might work for other systems such as RAID systems. Let
us assume that there areN disks in a RAID system and the
tester wants to inject failures at any two of theseN disks.
To do this, we definitely need a FI engine that works for
RAID systems, but we can re-use much of the policy that
we wrote for distributed systems for RAID systems. The

8 2011/4/22



1 d e f cluster (fitSeq1 , fitSeq2):

2 last1 = fitSeq1 [ len(fitSeq1) - 1]

3 last2 = fitSeq2 [ len(fitSeq2) - 1]

4 r e t u r n (last1[‘loc ’] == last2[‘loc ’])

Figure 10. Source location cluster. Return true if the last
fit s have the same source location.

only difference would be in the keys in thefits (i.e., for
distributed systems we used the ‘node’ key in Figure9, for
RAID systems we use the ‘disk’ key).

4.3 Pruning via Code-Coverage Objectives

In the previous sections, we have shown the benefits of
filter and cluster policies. In reality, developers might want
to achieve some high-level testing objectives. One common
objective in the world of testing is to have some notion
of “high coverage”. In the case of failure testing, we can
express policies that achieve different types of coverage.For
example, a developer might want to achieve a high coverage
of source locations of I/O calls where failures can happen.

To achieve high code-coverage with as few experiments
as possible, the tester can simply compose the policies that
use thefilter function shown in Figure4 and thecluster
function shown in Figure10. As explained before, the filter
policy explores only those failure sequences that have unex-
plored source locations, and the cluster policy clusters into
one group the failure sequences that have the same unex-
plored source location.

4.4 Pruning via Recovery-Coverage Objectives

Since in failure testing, we are concerned with testing the
correctness ofrecoverybehaviors of a system, another useful
testing goal is to rapidly explore failures that lead to different
recovery paths. To do this, a tester can write a cluster policy
that clusters failure sequences that lead to the same recovery
behavior into a single class. PREFAIL can then use this pol-
icy to exercise a failure sequence from each cluster, and thus
exercise a different recovery behavior with each failure se-
quence. We explain this whole process in two steps: charac-
terizing recovery behavior, and clustering failure sequences
based on the recovery characterization.

4.4.1 Characterizing Recovery Behavior

To write a recovery clustering policy, a tester has to spec-
ify how she wants to characterize a recovery behavior. One
possible characterization would be to consider the “differ-
ence” of the execution that is seen when the failure sequence
is injected and the execution that is seen when no failure is
injected. The difference can be thought of as the “extra” ex-
ecution or the recovery behavior that is observed when the
failure sequence is injected.

PREFAIL gives the tester the power and flexibility to de-
cide how to use the profiling information provided by the FI
engine to characterize an execution, and also how to define

1 d e f getRecoveryPath (fitSeq):

2 a = allFits (fitSeq)

3 r = reducedFits (a, [‘loc ’], True )

4 a0 = allFits ([])

5 r0 = reducedFits (a0 , [‘loc’], True)

6 rPath = r - r0

7 r e t u r n rPath

Figure 11. Characterizing recovery behavior.Line 2 uses
the library functionallFits (§3.2) to get the set of allfit s,
a , seen during the execution in whichfitSeq is injected. Line
3 obtains the reducedfit s from this set that include only the
source locations of thefit s. Line 6 filters out the reducedfit s
that correspond to normal program execution where no failure has
been injected (lines 4 and 5). Line 7 returns the set of remaining
reducedfit s.

the difference of two executions to characterize a recovery
behavior. For example, a tester might want to consider two
executions to be the same if they execute the code at the same
source locations. Thus, she might characterize an execution
by the set of all source locations of thefits observed during
the execution. She can then define the difference of two ex-
ecutions to be the difference of the sets of source locations
of the fits observed during the two executions. Figure11
shows a function that uses only the source locations of ob-
servedfits to get the recovery behavior when a particular
failure sequence is injected.

Let’s consider Figure7 as an example whereD andE are
two fits at I/Os that execute at the same source location
(e.g.,X.java, line 5) but in different nodes (e.g., N1 andN4).
If a developer decides to use only source locations to charac-
terize recovery behavior, thenfitsA andB will fall into the
same recovery class as their corresponding executions have
the same set of source locations offits in executed recov-
ery code. But, if the developer decides to use both the source
locations and node IDs offits to characterize recovery be-
havior, thenA andB will fall into different recovery classes.

We show how we obtain different recovery classes using
different recovery characterizations in the HDFS write pro-
tocol. Figure12 shows how crashes at different I/Os shown
in Figure8 result in different recovery classes (e.g.,2 vs.#).
The figure also shows the result of characterizing recovery
by using different elements (source location, node ID, stack
trace, target I/O, etc.) of the I/Os in the recovery path. For
example, figure12a shows four recovery classes that result
from the use of only source location to distinguish different
recovery behaviors. Simply by using source location, PRE-
FAIL automatically profiles the two main recovery classes in
the protocol (2 and#) (§4.1). Furthermore, PREFAIL also
finds two unique cases of failures that result in two more
recovery classes (■ and●). In the first one (■), a crash at
N1 which happens before I/O #12 leaves the surviving nodes
(N4 andN5) with zero-length blocks, and thus the recovery

9 2011/4/22



1

2

3

11

4

5

6

10

7

8

9

12

13

14

15

31

32

33

16

17

18

19

25

26

30

20

21

22

23

24

(a) Src. Loc.
4 recovery classes:

2, ■, ●, #.

1

2

3

11

4

5

6

10

7

8

9

12

13

14

15

31

32

33

16

17

18

19

25

26

30

20

21

22

23

24

(b) Src. Loc. + Node ID.
8 recovery classes:

2, △, 3,
■, ●, #, ▽, ▼

1

2

3

11

4

5

6

10

7

8

9

12

13

14

15

31

32

33

16

17

18

19

25

26

30

20

21

22

23

24

(c) Src. Loc. + Stack.
7 recovery classes:

2, △, 3, ▲,
■, ●, #,

1

2

3

11

4

5

6

10

7

8

9

12

13

14

15

31

32

33

16

17

18

19

25

26

30

20

21

22

23

24

(d) Src. Loc. + Node ID +
Stack

10 recovery classes:
2, △, 3, ▲, ◆
■, ●, #, ▽, ▼

Figure 12. Recovery Clusters of HDFS Write Protocol. The I/O numbers 1-33 represent crashes before the I/Os described in
Figure8. The three nodes in every figure represent the initial write pipeline (i.e.,N1-N4-N5). A shape (e.g.,2) surrounding I/O #X represents
the recovery from a crash that happens at that I/O. Differentshapes represent different recovery behaviors. The four figures show the different
results when recovery is characterized in different ways (e.g., (a) using source location only, (b) using source location and node ID, and so
on).

protocol executes different source locations for this partic-
ular scenario. In the second one (●), a crash happens be-
fore I/O #16 atN4 that leaves the surviving nodes (N1 and
N5) with different block sizes (the first node has received the
bytes, but not the last node), and thus the recovery behavior
includes execution ofsyncOffset operation that truncates
the surviving blocks to the lowest offset before streaming the
rest of the bytes.

Figure12b shows the 8 recovery classes that we get if the
developer uses the node where the I/O executes in addition
to the source location of the I/O. The first stage recovery is
distinguished into three recovery classes (2,△, and3). The
reason behind this classification is shown in the last column
of Table2. Crashes that happen in different nodes in the first
stage result in recovery code that is executed in different
sets of nodes. Similarly, the second stage recovery is broken
down into three classes (#,▽, and▼). The two unique cases
stay the same (■ and●).

Figure 12c and Figure12d show other different ways
to characterize recovery behaviors. In general, the more el-
ements of I/Os considered, the more unique recovery be-
haviors uncovered. Fewer elements lead to fewer recov-
ery classes and thus fewer failure-injection experiments,but
might miss some corner-case bugs. For example, we have
seen a bug that could only be produced if a transfer-stage
crash happens at the second or last node in the pipeline.
Clustering in Figure12a might not uncover this bug if
PREFAIL chooses a crash at the first node to represent the
transfer-stage recovery class (#).

1 d e f cluster (fsq1 , fsq2):

2 last1 = fsq1 [ len(fsq1 ) - 1 ]

3 last2 = fsq2 [ len(fsq2 ) - 1 ]

4 prefix1 = fsq1 [ 0 : len(fsq1 ) - 1 ]

5 prefix2 = fsq2 [ 0 : len(fsq2 ) - 1 ]

6 isEqv = eqv (prefix1 , prefix2 )

7 r e t u r n isEqv and (last1 == last2)

8 d e f eqv (seq1 , seq2 ):

9 rPath1 = getRecoveryPath (seq1 )

10 rPath2 = getRecoveryPath (seq2 )

11 r e t u r n rPath1 == rPath2

Figure 13. Equivalent-recovery clustering. Cluster two
failure sequences if their prefixes (that exclude the lastfit s) result
in the same recovery path and their lastfit s are the same. Lines
9 and 10 use the recovery path characterization in Figure11.

4.4.2 Clustering Failure-Injection Sequences

After specifying a characterization for a recovery path, the
tester can simply write a cluster policy that uses acluster

function such as the one in Figure13. Given this function,
if there are two failure sequences,(prefix1, last) and
(prefix2, last), whereprefix1 andprefix2 result in
the same recovery behavior, then PREFAIL will explore only
one of the two sequences.

To illustrate the result of this policy, let’s say there is a
fit L reachable from all crashes at I/Os #1-11 in Figure12a
(e.g., fits P1 to P11). Without the specified equivalent-

10 2011/4/22



1 d e f f i l t e r (fitSeq):

2 f o r f i n fitSeq:

3 isCrash = (f[‘failure ’] == ‘crash’)

4 isWrite = (f[‘ioType ’] == ‘write’)

5 isBefore = (f[‘place’] == ‘before ’)

6 i f isCrash and
( not (isWrite and isBefore )):

7 r e t u r n False

8 r e t u r n True

Figure 14. Generic crash optimization. Return true if all
crashes occur before write I/Os.

recovery clustering, PREFAIL will run 11 experiments (P1L
.. P11L). But with this policy, PREFAIL will run only one ex-
periment (P1/P2/../P11 + L) as all the prefixes have the same
recovery class (2). If the developer changes the clustering
function such that it uses source location and node ID to
characterize different recovery behaviors (Figure12b), then
PREFAIL will run three experiments as the prefixes now fall
into three different recovery classes (2, △, and3).

4.5 Pruning via Optimizations

Generally, failures can be injected before and/or after ev-
ery read and write I/O, system call or library call. For some
types of failures like crashes or network failures at I/O calls
in distributed systems, there are optimizations that can be
performed to eliminate unnecessary failure-injection experi-
ments. These optimizations can also be implemented as poli-
cies by testers. In the following sections, we give examples
of optimizations implemented as policies for crashes, disk
failures, network failures, and disk corruption in distributed
systems.

4.5.1 Crashes

In a distributed system, read I/Os performed by a node affect
only the local state of the node, while write I/Os potentially
affect the states and execution of other nodes. Therefore, we
do not need to explore crashing of nodes around read I/Os.
We can just explore crashing of nodes before write I/Os.
Figure14 shows afilter function that can be used by a
filter policy to implement this optimization. The function
accepts a failure sequence if all crash failures in the sequence
are injected before write I/Os. If a failure sequence has
a crash that is not injected before a write I/O, then that
sequence is rejected, and thus not exercised by the failure-
injection engine.

The second optimization that we can do for crashes is
that we do not crash a node before the node performs a
network write I/O that sends a message to an already crashed
node. This is because crashing a node before a network
write I/O can only affect the node to which the message
is being sent, but the receiver node is itself dead in this
case. Thefilter function in Figure15 implements this
optimization. It accepts a failure sequence if for each crash

1 d e f f i l t e r (fitSeq):

2 f o r i i n range(len(fitSeq)):

3 f = fitSeq[i]

4 isNet = (f[‘ioTarget ’] == ‘net ’)

5 isWrite = (f[‘ioType ’] == ‘write’)

6 isCrash = (f[‘failure ’] == ‘crash’)

7 rNode = f[‘receiver ’]

8 pfx = fitSeq [0:i]

9 if isNet and isWrite and isCrash and

10 nodeAlreadyCrashed (pfx , rNode):

11 return False

12 return True

Figure 15. Crash optimization for network writes. Re-
turn true if there is no crash before a network write IO that sends
message to an already crashed node.

at a network write to a receiver noderNode in the sequence,
there is no preceding crash in the sequence that occurs in
the noderNode. The functionnodeAlreadyCrashed (also
implemented by the tester but not shown) takes a failure
sequence and a node as arguments, and returns true if there is
a crash failure in the sequence that occurs in the given node.

4.5.2 Disk Failures

For disk failures (permanent and transient), we inject failures
before every write I/O call, butnot beforeeveryread I/O
call. Consider two adjacent Java read I/Os from the same
input file (e.g., f.readInt() and f.readLong()). It is
unlikely that the second call throws an I/O exception, but
not the first one. This is because the file is typically already
buffered by the OS. Thus, if there is a disk failure, it is
more likely the case that an exception is already thrown
by the first call. Thus, we can optimize and only inject
read disk failures on the first read of every file (i.e., we
assume that files are always buffered after the first read). The
subsequent reads to the file will naturally fail. The policy for
this optimization is similar to the one for network failure
optimization (Figure16) as explained in the next section.

4.5.3 Network Failures

For network failures, we can perform an optimization simi-
lar to disk failures. Since there is no notion of file in network
I/Os, we keep information about the latest network read that
a thread of a node performs. If a particular thread performs
a read call that has the same sender as the previous call, then
we assume that it is a subsequent read on the same network
message from the same sender to this thread (potentially
buffered by the OS), and thus we do not explicitly inject a
network failure on this subsequent read. In addition, we clear
the read history if the node performs a network write, so that
we can inject network failures when the node performs fu-
ture reads on different network messages. In addition, we do
not inject a network failure if one of the nodes participating
in the message is already dead.

11 2011/4/22



1 d e f f i l t e r (fitSeq):

2 f o r i i n range(len(fitSeq)):

3 f = fitSeq[i]

4 isNetFail = (fitSeq[‘failure ’] ==

‘netfail ’)

5 isRead = (f[‘ioType ’] == ‘read ’)

6 sender = f[‘sender ’]

7 node = f[‘node ’]

8 thread = f[‘thread ’]

9 time = f[‘time ’]

10 pfx = fitSeq [0:i]

11 fitSeqs = allFitSeqs ()

12 i f isNetFail and isRead and
13 ( not first(pfx , node , thread ,

time , sender , fitSeqs)):

14 r e t u r n False

15 r e t u r n True

Figure 16. Network failure optimization. Return true if all
network failures at read I/Os are at reads that are the first reads for
their respective senders.

Thefilter function in Figure16 can be used by a filter
policy to implement the optimization for network failures.
The function checks for each network failure at a read I/O
in a failure sequence to see if it is the first read of data in
its thread that is sent by its sender to its node. The function
first (also implemented by the tester, but not shown) de-
termines this condition for each network failure in the failure
sequence. The keytime in afit records the time when the
fit was observed during execution in the FI engine. This
key helps in determining the temporal position of a read in
the list of all failure sequencesfitSeqs passed on by the FI
engine.

4.5.4 Disk Corruption

In the case of disk corruption, after data gets corrupted, all
reads of the data give unexpected values for the data. It is
possible but very unlikely that the first read of the data gives
a non-corrupt value and the second read in the near future
gives a corrupt one. Thus, we can perform an optimization
similar to the disk-failure case.

4.6 Failing Probabilistically

Finally, a tester can inject multiple failures if they satisfy
some probabilistic criteria. We have not explored this strat-
egy in great extent because we need some real-world fail-
ure statistic to perform real evaluation. However, we believe
specifying this type of policy in PREFAIL will be straight-
forward. For example, the tester can write a policy as simple
as: return true ifprob(fitSeq) > 0.1. That is, inject a se-
quence of failuresfitSeq only if the probability of the fail-
ures happening together is larger than 0.1. The tester needs
to implement theprob function that ideally uses some real-
world failure statistic (e.g., a statistic that shows the proba-

bility distribution of two machine crashes happening at the
same time).

In summary, the programmable policy framework allows
testers to write various failure exploration policies in order
to achieve different testing and optimization objectives.In
addition, as different systems and workloads employ differ-
ent recovery strategies, we believe this programmability is
valuable in terms of systematically exploring failures that
are appropriate for each strategy.

5. Evaluation
In this section, we evaluate the different aspects of PREFAIL .
We first list our target systems and workloads, along with
the bugs that we found (§5.1 and§5.2). Then, we quantify
the effectiveness of pruning policies that we have written
(§5.3). Finally, we show the implementation complexity of
PREFAIL (§5.4).

5.1 Target Systems, Workloads, and Bugs

We have integrated PREFAIL on different releases of 3 pop-
ular “cloud” systems: HDFS [48] v0.20.0, v0.20.2+320, and
v0.20.2+737 (the last one is a release used by Cloudera cus-
tomers [14]), ZooKeeper [31] v3.2.2 and v3.3.1, and Cas-
sandra [37] v0.6.1 and v0.6.5. These many integrations show
how easy it is to port our framework to many systems and re-
leases. We evaluate PREFAIL on four HDFS workloads (log
recovery, read, write, and append), 2 Cassandra workloads
(key-value insert and log recovery), and 1 ZooKeeper work-
load (leader election). In this submission, we only present
extensive evaluation numbers for Cloudera’s HDFS, which
we have prioritized in the last couple of months. For other
releases we only present partial results.

5.2 Bugs Found

With PREFAIL , we were able to find the 16 new bugs in
HDFS v0.20.0 that we had reported in previous work [25].
We were told that many internal designs of HDFS have
changed since that version. After we integrated PREFAIL

to a much newer HDFS version (v0.20.2+737), we found 6
newerbugs (three have been confirmed, and three are still
under consideration). Importantly, the developers believe
that the bugs are crucial ones and are hard to find without
a multiple-failure testing framework. These bugs are basi-
cally availability bugs (e.g., the HDFS master node is unable
to reboot permanently) and reliability bugs (e.g., user data
is permanently lost). For brevity of space, we explain below
only one of the new recovery bugs. This bug is present in the
HDFS append protocol, and it happens because of multiple
failures.

The task of the append protocol is to atomically append
new bytes to three replicas of a file that are stored in three
nodes. With two node failures and three replicas, append
should be successful as there is still one working replica.
However, we found a recovery bug when two failures were

12 2011/4/22



injected; the append protocol returns error to the caller and
the surviving replica (that has the old bytes) is inaccessi-
ble. Here are the events that lead to the bug: The first node-
crash causes the append protocol to initiate a quite complex
distributed recovery protocol. Somewhere in the middle of
this recovery, a second node-crash happens, which leaves the
system in an unclean state. The protocol then initiates an-
other recovery again. However, since the previous recovery
did not finish and the system state was not properly cleaned,
this last initiation of recovery (which should be successful)
cannot proceed. Thus, an error is returned to the append
caller, and worse since the surviving replica is in an unclean
state, the file cannot be accessed.

5.3 Effectiveness of Policies

We now show the effectiveness of some of the pruning
policies that we have written. We first present the code-
coverage (Section4.3) and recovery-coverage (Section4.4)
based policies, and then the optimization-based policies
(Section4.5).

5.3.1 Coverage-Based Policies

We show the benefits of using different coverage-based fail-
ure exploration policies to prune down the failure space in
different ways. Figure17 shows the different number of ex-
periments that PREFAIL runs for different policies. An ex-
periment takes between 5 to 9 seconds to run. Here, we inject
crash-only failures so that the numbers are easy to compare.
The figure only shows numbers for multiple-failure experi-
ments because injecting multiple failures is where the major
bottleneck is.

With PREFAIL , a tester can choose different policies, and
hence different numbers of experiments and speed-ups, de-
pending on her time and resource constraints. For example,
the code-coverage policy (CC) gives two orders of magni-
tude improvement over the brute-force approach because it
simply explores possible crashes at source locations that it
has not exercised before (e.g., after exploring two crashes,
there is no new source location to cover in 3-crash cases).
Recovery clustering policies (R-L, R-LN, etc.) on the other
hand run more experiments, but still give an order of magni-
tude improvement over the brute-force approach. The more
relaxed the recovery characterization, the lesser the number
of experiments (e.g., R-L vs. R-All).

Pruning is not a benefit if it is not effective in finding
bugs. In our experience, the recovery clustering policies are
effective enough in rapidly finding important bugs in the
system. To capture recovery bugs in the system, we wrote
simple recovery specifications for every target workload.
For example, for HDFS write, we can write a specification
that says “if a crash happens during the data transfer stage,
there should be two surviving replicas at the end”. If a
specification is not met, the corresponding experiment is
marked as failed.

 1

 10

 100

 1000

 10000

 100000

Wrt App LogR Wrt* App* Wrt App LogR Wrt* App*

#E
xp

er
im

en
ts

 (
lo

g 
sc

al
e)

(2 failures/run)                         (3 failures/run)

Pruning speedup with diverse policies

BF
R-All
R-LN

R-L
CC

Figure 17. #Experiments run with different coverage-
based policies.The y-axis shows the number of failure-injection
(just crash-only failure) experiments for a given policy and a work-
load. The x-axis shows the workloads: the write (Wrt), append
(App), and log recovery (LogR) protocols from Cloudera’s ver-
sion of HDFS. We also run workloads from the old HDFS release
v0.20.0 (marked with *), which has a different design (and hence
different results). Two and three crashes were injected perexper-
iment for the bars on the left- and right-hand sides respectively.
CC and BF represent the code-coverage policy and brute-force ex-
ploration, respectively. R-L, R-LN, and R-All represent recovery-
coverage policies that use three different ways to characterize re-
covery (§4.3): using source location only (L), source location and
node (LN ), and all information infit (All). We stopped our ex-
periments when they reached 10,000 (Hence, the maximum number
of experiments is 10,000).

Table 3 shows the number of bugs that we found even
with the use of the most relaxed recovery clustering policy
(R-L, which only uses source location to characterize recov-
ery). But again, a more exhaustive policy could find bugs
that were not caught by a more relaxed one. For example,
we know an old bug that might not surface with R-L pol-
icy, but does surface with R-LN policy which uses source
location and node ID to characterize recovery.

5.3.2 Optimization-Based Policies

Table4 shows the effectiveness of the optimizations of four
different failure types that we described in Section4.5. Each
cell presents two numbers X/Y where Y and X are the
numbers of failure-injection experiments for single failures
without using and with using the optimization respectively.
Overall, depending on the workload, the optimizations bring
21 to 1 times (5 on average) of reduction in the number of
failure-injection experiments.

13 2011/4/22



#Failed
Workload #F Exps #Bugs
Write 2 0 0

3 46 1
Append 2 14 2

3 31 (*) 2
LogRecovery 2 6 3

3 3 (*) 3

Table 3. #Bugs found. The table shows the number of failed
experiments (#Failed Exps) for a given workload and the number
of crashes per run (#F), along with the actual number of bugs that
trigger the failed experiments (#Bugs). For this table, we use the
simplest recovery clustering policy (R-L in Figure17). (*) implies
that these are the same bugs (i.e., bugs in 2-failure cases often
appear again in 3-failure cases).

Workload Crash Disk Net Data
Failure Failure Corruption

H. Read 2/42 1/4 4/17 1/4
H. Write 57/454 27/27* 45/200 N.A.
H. Append 111/880 43/60 117/380 1/18
H. LogR 36/128 39/64 N.A. 3/28
C. Insert 33/102 25/25* 12/26 N.A.
C. LogR 84/196 89/98 N.A. 5/14
Z. Leader 39/132 21/21* 31/45 N.A.

Table 4. Benefits of Optimization-based Policies. The
table shows the benefits of the optimization-based policieson four
HDFS workloads (H), two Cassandra workloads (C), and one
ZooKeeper workload (Z). Each cell shows two numbers X/Y where
Y and X are the numbers of failure-injection experiments forsingle
failures without using and with using the optimization respectively.
N.A. represents a not applicable case; the failure type never occurs
for the workload. For write workloads, the replication factor is
3 (i.e., 3 nodes participating). (*) These write workloads do not
perform any disk read, and thus the optimization does not work
here.

5.4 Complexity

The FI engine is based on our previous work [25], which
is written in 6000 lines of Java code. We added around
160 lines of code in this old framework so that it passes
on appropriatefits and execution profiles to the FI driver.
The FI driver is implemented in 1266 lines of Python code.
It implements a library of functions that testers can use
to accessfits and execution profiles passed on by the FI
engine. It also uses the policies written by testers to prune
down the set of failure sequences that can be exercised by
FI engine. We have written a number of different pruning
policies in Python using the library provided by the FI driver.
On an average, we wrote a policy in 17 lines of code.

6. Related Work
In this section, we compare our work with other work that
relates to failure-injection. More specifically, we discuss
other related work that decouple failure-injection mecha-
nism and policy, provide some language support for speci-
fying failure-injection tasks, and present techniques to prune
down large failure spaces.

Several previous works have also suggested similar ideas
to separate the component that injects the failures (e.g., the
“fault-injector”) and the component that controls the failure-
injection tasks (e.g., the “controller”) [8, 30, 34, 43]. In
some cases, the controller can be seen as an interface for the
testers to specify the failures to be injected. However, they do
not present any appropriate abstractions of information that
should flow between the two components. Thus, it is unclear
how developers can write policies (e.g., pruning policies) on
top of the controller.

There has been some work in designing a clear language
support for expressing which failures to inject. FAIL (Fault
Injection Language) is a domain-specific language that de-
scribes failure scenarios for Grid middleware [28]. FIG also
uses a domain-specific language to inject failures at library
level [9]. Orchestra uses TCL scripts to inject failures at
TCP level [17]. Genesis2 uses a scripting language to specify
service-level failures [33]. LFI uses an XML-based language
to trigger failures at library level [39]. These works however
do not describe how a wide range of policies can be written
in their languages. Furthemore, the tester might need to write
from scratchthe failure-injection tasks in these languages. In
contrast, in our work, we abstract out a failure-injection task,
and let testers easily use the information in the abstraction to
write policies.

Our work is motivated by the need to exercise multi-
ple failures especially to test cloud software systems. As
mentioned before, one major challenge is the large num-
ber of combinations of failures to explore. One direct way
to explore the space is via randomness. For example, ran-
dom injection of failures is employed by the developers at
Google [12], Yahoo! [51], Microsoft [52], Amazon [27], and
other places [29]. Random failure-injection is relatively sim-
ple to implement, but the downside is that it can easily miss
corner-case bugs that manifest only when specific failure se-
quences are injected.

Another approach is to exhaustively explore all possible
failure scenarios by injecting sequences of failures in allpos-
sible ways during execution. However, we found that within
the execution of a protocol (e.g., distributed write protocol,
log recovery), there are potentially thousands of possible
combinations of failures that can be exercised, which can
take hundreds of hours of testing time [26]. Thus, exhaus-
tive testing is plausible only if the tester has enough time
budget and computing resources.

Other than random and exhaustive approaches, there has
been some work in devising smart techniques that systemat-

14 2011/4/22



ically prune down large failure spaces. Extensible LFI [40]
for example automatically analyzes the system to find code
that is potentially buggy in its handling of failures (e.g., sys-
tem calls that do not check some error-codes that could be
returned). AFEX [35] automatically figures out the set of
failure scenarios that when explored can meet a certain given
coverage criterion like a given level of code coverage. It uses
a variation of stochastic beam search to find the failure sce-
narios that would have the maximal effect on the coverage
criterion. Fuet al. [22] use compile-time analysis to find
which failure-injection points would lead to the execution
of which error recovery code. They use this information to
guide failure injection to obtain a high coverage of recov-
ery code. To the best of our knowledge, the authors of these
works do not address pruning of combinations of multiple
failures in distributed systems.

In our previous work [25], we begun the quest of find-
ing techniques to prune down multiple-failure sequences. In
this prior work, we only presented two rigid pruning tech-
niques which are hard-coded in the failure-injection engine
that we built. Based on more experience and conversation
with some developers of cloud software systems, we found
that there were many more pruning policies that a tester
would like to use. This led us to re-think and re-structure
our failure-injection framework so that it can let testers eas-
ily and rapidly write various kinds of policies.

The multiple-failure combinatorial explosion problem is
similar to the state explosion problem in model check-
ing. Existing system model-checkers [52, 53] use domain-
specific optimization techniques to address the state explo-
sion problem. However, when it comes to multiple failures,
we did not find any system model-checker that is able to
effectively prune down combinations of multiple failures.
We believe that some of the pruning strategies that we have
introduced in our work can be integrated within a system
model checker.

In summary, there is only a small amount of work that
addresses smart failure exploration. Thus, it is not surprising
that practitioners of cloud systems still consider the current
state of recovery testing to be behind the times [12]. Com-
pared to other work, our framework targets distributed sys-
tems and addresses multiple failures in detail. We hope that
our work attracts other researchers to present other alterna-
tives to prune down multiple failure combinations.

7. Conclusion
We have presented PREFAIL , a programmable failure-
injection framework. With PREFAIL , we have made three
main contributions: (1) We show PREFAIL as a strong case
of how the principle of seperation of policy and mechanism
can be applied to failure-injection frameworks. (2) We de-
sign, implement, and evaluate PREFAIL . In particular, we
present clear roles of the FI engine and driver, along with
the clear and rich information abstractions that flow between

the two components. (3) We present many policies to prune
down the large number of combinations of multiple failures.
Real-world adoption of PREFAIL is in progress.

Currently, we are also adding two other important fea-
tures to PREFAIL : support for triaging of failed experiments,
and parallelizing the whole architecture of PREFAIL . Since
debugging each failed experiment can take a significant
amount of time (many hours or even days), being able to au-
tomatically triage failed experiments according to the bugs
that caused them can be very useful. Policies in PREFAIL al-
ready prune down a failure space and result in a speed-up of
the entire failure testing process, but parallelizing PREFAIL

would lead to an even greater speed-up. The test workflow
of PREFAIL can in fact be very easily parallelized.

Overall, our goal in building PREFAIL is to help to-
day’s large-scale distributed systems “prevail” against pos-
sible hardware failures that can arise. Although so far we
use PREFAIL primarily to find reliability bugs, we envision
PREFAIL will empower many more program analyses “un-
der failures”. That is, we note that many program analy-
ses (related to data races, deadlocks, security, etc.) are of-
ten done when the target system faces no failure. However,
we did find data races and deadlocks under some failure sce-
narios. Therefore, for today’s pervasive cloud systems, we
believe that existing analysis tools should also run when the
target system faces failures. The challenge is that some pro-
gram analyses might already be time-consuming. Running
them with failures will prolong the testing time. We believe
the pruning policies that PREFAIL supports will be valuable
in reducing the testing time for these analyses. And again,
we hope that our work attracts other researchers to present
other pruning alternatives.

8. Acknowledgments
This material is based upon work supported by Comput-
ing Innovation Fellowship and the National Science Founda-
tion under grant Nos. CCF-1018729 and CCF-0747390. We
also thank Eli Collins and Todd Lipcon from Cloudera Inc.
for helping us confirm the HDFS bugs that we found. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of NSF or other institutions.

References
[1] Applications and organizations using Hadoop/HDFS.

http://wiki.apache.org/hadoop/PoweredBy.

[2] Hadoop MapReduce. http://hadoop.apache.org/

mapreduce.

[3] Jonathan Aldrich and Craig Chambers. Ownership Domains:
Separating Aliasing Policy from Mechanism. InProceedings
of the 18th European Conference on Object-Oriented Pro-
gramming (ECOOP ’04), Oslo, Norway, June 2004.

[4] Ajay Anand. Scaling Hadoop to 4000 nodes at Ya-
hoo! http://developer.yahoo.com/blogs/hadoop/

15 2011/4/22

http://wiki.apache.org/hadoop/PoweredBy
http://hadoop.apache.org/mapreduce
http://hadoop.apache.org/mapreduce
http://developer.yahoo.com/blogs/hadoop/posts/2008/09/scaling_hadoop_to_4000_nodes_a


posts/2008/09/scaling_hadoop_to_4000_nodes_a.

[5] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Nathan C. Burnett, Timothy E. Denehy, Thomas J. Engle,
Haryadi S. Gunawi, James Nugent, and Florentina I. Popovici.
Transforming Policies into Mechanisms with Infokernel. In
Proceedings of the 19th ACM Symposium on Operating Sys-
tems Principles (SOSP ’03), Bolton Landing, New York, Oc-
tober 2003.

[6] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar
Pasupathy, and Jiri Schindler. An Analysis of Latent Sec-
tor Errors in Disk Drives. InProceedings of the 2007 ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’07), San Diego, Califor-
nia, June 2007.

[7] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca
Schroeder, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. An Analysis of Data Corruption in the Storage
Stack. InProceedings of the 6th USENIX Symposium on File
and Storage Technologies (FAST ’08), San Jose, California,
February 2008.

[8] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek.
Fault Injection Experiments Using FIAT.IEEE Transactions
on Computers, 39(4):1105–1118, April 1990.

[9] Pete Broadwell, Naveen Sastry, and Jonathan Traupman. FIG:
A Prototype Tool for Online Verification of Recovery Mech-
anisms. InWorkshop on Self-Healing, Adaptive and Self-
Managed Systems.

[10] Mike Burrows. The Chubby lock service for loosely-coupled
distributed systems. InProceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI ’06),
Seattle, Washington, November 2006.

[11] George Candea and Armando Fox. Crash-Only Software.
In The Ninth Workshop on Hot Topics in Operating Systems
(HotOS IX), Lihue, Hawaii, May 2003.

[12] Tushar Chandra, Robert Griesemer, and Joshua Redstone.
Paxos Made Live - An Engineering Perspective. InProceed-
ings of the 26th ACM Symposium on Principles of Distributed
Computing (PODC ’07), Portland, Oregon, August 2007.

[13] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Michael Burrows, Tushar Chandra, An-
drew Fikes, and Robert Gruber. Bigtable: A Distributed Stor-
age System for Structured Data. InProceedings of the 7th
Symposium on Operating Systems Design and Implementation
(OSDI ’06), Seattle, Washington, November 2006.

[14] Eli Collins and Todd Lipcon.Contact Persons at Cloudera
Inc., 2011.

[15] Brian Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-
ishnan, and Russell Sears. Benchmarking Cloud Serving Sys-
tems with YCSB. InProceedings of the 2010 ACM Sympo-
sium on Cloud Computing (SoCC ’10), Indianapolis, Indiana,
June 2010.

[16] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac,
Steven Kleiman, James Leong, and Sunitha Sankar. Row-
Diagonal Parity for Double Disk Failure Correction. InPro-
ceedings of the 3rd USENIX Symposium on File and Stor-

age Technologies (FAST ’04), San Francisco, California, April
2004.

[17] Scott Dawson, Farnam Jahanian, and Todd Mitton. Experi-
ments on Six Commercial TCP Implementations Using a Soft-
ware Fault Injection Tool. Software—Practice and Experi-
ence, 27:1385–1410, 1997.

[18] Jeffrey Dean. Underneath the covers at google: Currentsys-
tems and future directions. InGoogle I/O, 2008.

[19] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified
data processing on large clusters. InProceedings of the 6th
Symposium on Operating Systems Design and Implementation
(OSDI ’04), San Francisco, California, December 2004.

[20] Joan Feigenbaum, Rahul Sami, and Scott Shenker. Mech-
anism Design for Policy Routing.Distributed Computing,
18(4):293–305, 2006.

[21] Daniel Ford, Franis Labelle, Florentina I. Popovici, Murray
Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, and
Sean Quinlna. Availability in Globally Distributed Storage
Systems. InProceedings of the 9th Symposium on Operating
Systems Design and Implementation (OSDI ’10), Vancouver,
Canada, October 2010.

[22] Chen Fu, Barbara G. Ryder, Ana Milanova, and David Won-
nacott. Testing of Java Web Services for Robustness. InPro-
ceedings of the International Symposium on Software Testing
and Analysis (ISSTA ’04), Boston, Massachusetts, July 2004.

[23] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google File System. InProceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03),
Bolton Landing, New York, October 2003.

[24] Garth Gibson. Reliability/Resilience Panel. InHigh-End
Computing File Systems and I/O Workshop (HEC FSIO ’10),
Arlington, VA, August 2010.

[25] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro,
Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Koushik Sen. FATE and DESTINI: A
Framework for Cloud Recovery Testing. InProceedings of
the 8th Symposium on Networked Systems Design and Imple-
mentation (NSDI ’11), Boston, Massachusetts, March 2011.

[26] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Joseph M.
Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Koushik Sen. Towards Automatically Check-
ing Thousands of Failures with Micro-specifications. InThe
6th Workshop on Hot Topics in System Dependability (HotDep
’10), Vancouver, Canada, October 2010.

[27] Alyssa Henry. Cloud Storage FUD: Failure and Uncertainty
and Durability. InProceedings of the 7th USENIX Symposium
on File and Storage Technologies (FAST ’09), San Francisco,
California, February 2009.

[28] William Hoarau, Sebastien Tixeuil, and Fabien Vauchelles.
FAIL-FCI: Versatile fault injection. Journal of Future Gener-
ation Computer Systems archive, Volume 23 Issue 7, August,
2007.

[29] Todd Hoff. Netflix: Continually Test by Failing Serverswith
Chaos Monkey.http://highscalability.com, December
2010.

16 2011/4/22

http://developer.yahoo.com/blogs/hadoop/posts/2008/09/scaling_hadoop_to_4000_nodes_a
http://highscalability.com


[30] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer.
Fault Injection Techniques and Tools.IEEE Computer, April
1997.

[31] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Ben-
jamin Reed. ZooKeeper: Wait-free coordination for Internet-
scale systems. InProceedings of the 2010 USENIX Annual
Technical Conference (ATC ’10), Boston, Massachusetts, June
2010.

[32] Andreas Johansson and Neeraj Suri. Error Propagation Profil-
ing of Operating Systems . InProceedings of the International
Conference on Dependable Systems and Networks (DSN ’05),
Yokohama, Japan, June 2005.

[33] Lukasz Juszczyk and Schahram Dustdar. Programmable Fault
Injection Testbeds for Complex SOA. InProceedings of the
8th International Conference on Service Oriented Computing
(ICSOC ’10), San Francisco, California, December 2010.

[34] Wei-lun Kao, Ravishankar K. Iyer, and Dong Tang. FINE: A
Fault Injection and Monitoring Environment for Tracing the
UNIX System Behavior Under Faults. InIEEE Transactions
on Software Engineering, pages 1105–1118, 1993.

[35] Lorenzo Keller, Paul Marinescu, and George Candea. AFEX:
An Automated Fault Explorer for Faster System Testing,
2008.

[36] Philip Koopman and John DeVale. Comparing the Robustness
of POSIX Operating Systems. InProceedings of the 29th In-
ternational Symposium on Fault-Tolerant Computing (FTCS-
29), Madison, Wisconsin, June 1999.

[37] Avinash Lakshman and Prashant Malik. Cassandra - a decen-
tralized structured storage system. InThe 3rd ACM SIGOPS
International Workshop on Large Scale Distributed Systems
and Middleware (LADIS ’09), Florianopolis, Brazil, October
2009.

[38] R. Levin, E. Cohen, W. Corwin, F. J. Pollack, and W. Wulf.
Policy/mechanism separation in Hydra. InProceedings of the
5th ACM Symposium on Operating Systems Principles (SOSP
’75), Austin, TX, November 1975.

[39] Paul Marinescu and George Candea. LFI: A Practical and
General Library-Level Fault Injector. InProceedings of the In-
ternational Conference on Dependable Systems and Networks
(DSN ’09), Lisbon, Portugal, June 2009.

[40] Paul D. Marinescu, Radu Banabic, and George Candea. An
Extensible Technique for High-Precision Testing of Recovery
Code. InProceedings of the 2010 USENIX Annual Technical
Conference (ATC ’10), Boston, Massachusetts, June 2010.

[41] David Patterson, Garth Gibson, and Randy Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). InProceed-
ings of the 1988 ACM SIGMOD Conference on the Manage-
ment of Data (SIGMOD ’88), Chicago, Illinois, June 1988.

[42] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz AndreBar-
roso. Failure Trends in a Large Disk Drive Population. In
Proceedings of the 5th USENIX Symposium on File and Stor-
age Technologies (FAST ’07), San Jose, California, February
2007.

[43] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Model-Based Failure Analysis of
Journaling File Systems. InProceedings of the International

Conference on Dependable Systems and Networks (DSN ’05),
Yokohama, Japan, June 2005.

[44] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin
Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. IRON File Systems. InProceed-
ings of the 20th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’05), Brighton, United Kingdom, October 2005.

[45] C. J. Price and N. S. Taylor. Automated multiple failure
FMEA. Reliability Engineering and System Safety, 76(1):1–
10, April 2002.

[46] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. Un-
derstanding Latent Sector Errors and How to Protect Against
Them. InProceedings of the 8th USENIX Symposium on File
and Storage Technologies (FAST ’10), San Jose, California,
February 2010.

[47] Bianca Schroeder and Garth Gibson. Disk failures in the
real world: What does an MTTF of 1,000,000 hours mean to
you? InProceedings of the 5th USENIX Symposium on File
and Storage Technologies (FAST ’07), San Jose, California,
February 2007.

[48] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The Hadoop Distributed File System. In
Proceedings of the 26th IEEE Symposium on Massive Stor-
age Systems and Technologies (MSST ’10), Incline Village,
Nevada, May 2010.

[49] Alex C. Snoeren and Barath Raghavan. Decoupling Policy
from Mechanism in Internet Routing.ACM SIGCOMM Com-
puter Communication Review, 34(1), January 2004.

[50] Evan Speight, Hazim Shafi, Lixin Zhang, and Ramakrishnan
Rajamony. Adaptive mechanisms and policies for managing
cache hierarchies in chip multiprocessors. InProceedings
of the 32nd Annual International Symposium on Computer
Architecture (ISCA ’05), Madison, Wisconsin, June 2005.

[51] Hadoop Team. Hadoop Fault Injection Framework and Devel-
opment Guide.http://hadoop.apache.org/hdfs/docs/
r0.21.0/faultinject_framework.html.

[52] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng
Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and
Lidong Zhou. MODIST: Transparent Model Checking of Un-
modified Distributed Systems. InProceedings of the 6th Sym-
posium on Networked Systems Design and Implementation
(NSDI ’09), Boston, Massachusetts, April 2009.

[53] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal
Musuvathi. Using Model Checking to Find Serious File Sys-
tem Errors. InProceedings of the 6th Symposium on Oper-
ating Systems Design and Implementation (OSDI ’04), San
Francisco, California, December 2004.

17 2011/4/22

http://hadoop.apache.org/hdfs/docs/r0.21.0/faultinject_framework.html
http://hadoop.apache.org/hdfs/docs/r0.21.0/faultinject_framework.html

