PreFail: A Programmable Failure-Injection Framework

Pallavi Joshi
Haryadi S. Gunawi
Koushik Sen

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-30
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-30.html

April 22, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This material is based upon work supported by
Computing Innovation Fellowship and the National
Science Foundation under grant Nos. CCF-1018729
and CCF-0747390. We also thank Eli Collins and
Todd Lipcon from Cloudera Inc. for helping us
confirm the HDFS bugs that we found. Any
opinions, findings, and conclusions or
recommendations expressed in this material are
those of the authors and do not necessarily

reflect the views of NSF or other institutions.

PREFAIL : A Programmable Failure-Injection Framework

Pallavi Joshi Haryadi S. Gunawi Koushik Sen
University of California, Berkeley University of California, Berkeley University of California, Berkeley
pallavi@cs.berkeley.edu haryadi@cs.berkeley.edu ksen@cs.berkeley.edu
Abstract like crashes, but the system might face non fail-stop fagur

like data corruption. Even if the developers could antitgpa
all kinds of failures that the system could face, they still
might be incorrect in the way in which they program the
system to recover from those failures. There have been many
serious consequences.d@, data loss, unavailability) of the
presence of recovery bugs in real deployed systelds [
12, 13, 25]. As an implication, failure testing has become
a mainstream technique to test software failure recovery in
large distributed system42, 27, 29, 51].

There has been some work that has proposed novel

As hardware failures are no longer rare in the era of cloud
computing, cloud software systems must “prevail” against
multiple, diverse failures that are likely to occur. Tesgtin
software against multiple failures poses the problem of-com
binatorial explosion of multiple failures. To address thas
tester can write diverse policies that prune down the space
of multiple failures while meeting her testing objective. |
this paper, we preserPREFAIL, a programmable failure-
injection framework that enables testers to write a wide
range of pruning policies. Using the principle of separatio . A . _)
of mechanism and policy, we decouple a failure-injection f@iluré-injection frameworks which address single fagisir
framework into two components: failure-injection engine during program execution. However, large-scale distetiut
and driver. The policies written in the driver decide which SYSt€ms face frequent, multiple, and diverse failureshis t
failures should be injected by the engine. We define clear regard, there is a need to advance the state-of-the-ait-of fa

abstractions on which the two components interact. We inte- ure Festlng_ for Ia_\rge-scale distributed systems. Exergisi
gratePREFAIL to three cloud software systems, show a wide Multiple failures is unfortunately not straight-forwarthe
variety of pruning policies that we can write for them and challenge to deal with ihe combinatorial explosion of mul-

the speed-ups that we obtain with those policies. tiple failuresthat can be exercised. _
To address this challenge, from our personal experience

and our conversation with some developers of cloud soft-
1. Introduction ware systems, a tester can employ many different pruning

. . . . strategies to reduce the large combinations of multiple fai
With the arrival of the cloud computing era, large-scale dis . .
ures. For example, a tester might only want to fail a repre-

tributed systems are increasingly in use. These systems ar€ . iative subset of the components of a svstem. or iniect onl
built out of tens of thousands of commodity machines that P y ' e

. . . . a subset of all possible failure types, or reduce the number
are not fully reliable and can fail from time to time. In the - . . N
. S of places to inject the failures with some optimizations, or
last couple of years, many large-scale failure statistaseh

been made publicly availablé,[7, 18, 27, 42, 47], and they explore failure points that satisfy some code coveragecebje

all reach the same conclusion that large-scale systems Segves, or fail probabilistically. Furthermore, the testsight

frequent hardware failures. Thus, there is a shift in rédiab want to compose muI'upIQ strate_gles tqgethgr: .
) . , The goal of this paper is to build a failure-injection frame-
ity paradigm: today’s software should assume that hardware : . . :
S work that is capable of supporting many different pruning
does not have perfect reliability. Thus, the software thasr . A
- Strategies. Thus, we design, implement, and evaluate P
on large-scale distributed systems has a great respatysibil

. . FaiL, a programmable failure-injection framework. At the
to correctly recover from diverse hardware failures such as .) o .
. . : heart of RREFAIL is the the classic principle of separation
machine crashes, disk errors, and network failures.

Even if distributed systems are built with reliability and of mechanism and policy 3[5, 20, 38, 49, 50]. That s,

fault tolerance as primary goalsd, 18, 24), their recovery we decouple a failure-injection framework into two pieces:
N the failure-injection enginevhich is capable of interposing
protocols are often buggy. For example, the developers of

Hadoop File Systemd8] have dealt with 91 recovery issues dlfferent_ execution points of .the system under test af‘d IS
. responsible for performing failure injection at those pgsjn
over its four years of developmern2q. There are many

4 : . - and thefailure-injection driverwhere testers can write prun-
reasons for this. Sometimes developers fail to anticigee t . . e . o
. : . : ing policies that “drive” the enginei.e., make decisions
kind of failures that a system can face in a real setting. They about which failures to inject)
might have built the system to tolerate only fail-stop feglsl JeCh).

1 2011/4/22

One challenge in decoupling a failure-injection frame-
work is to define the level of abstraction at which testers
write the policies. We provide suitable abstractions of fai

ures and the executions in which failures are injected and a

library of functions for using the abstractions. With the li
brary and abstractions thaRBFAIL provides, we show how
we can easily write a wide range of pruning policies that re-
duce the number of multiple-failure combinations.

We have integratedfEFAIL to three popular cloud sys-
tems: Hadoop File System (HDFS3§], ZooKeeper B1],
and Cassandrad}]. We have written a variety of pruning

Node A
write(B, msg);

Node B

L1. L1. write(A, msg);

L2. read(B, header); L2. read(A, header);
L3. read(B, body); L3. read(A, body);
L4. write(B, msg); L4. write(A, msg);
L5. write(Disk, buf); L5. write(Disk, buf);

Figure 1. Example code.

that can be injected beforeread or awrite call. Let's
suppose that the tester would like to inject two crashes. One

policies for these systems, and have evaluated the Speml_upoossmle combination is to crash before the write at L4 in

that we achieve using the policies. We have also found a
number of bugs in these systems usimEgPAIL . Real-world
adoption of REFAIL is in progress.

Inthe rest of the paper, we present an extended motivation

(§2) for having a programmable failure-injection framework,
the design and implementation of such a framewore-P
FaiL (§3), examples of a wide range of policies that we can
write in PREFAIL to prune down large failure spacégl),
evaluation of REFAIL (§5), related work §6), and finally
conclusion §7).

2. Extended Motivation

node A and then to crash before the write at L5 in node B.
Overall, since there arg possible points to inject a crash
on every node, there at¢ x N(N — 1) possible ways to
inject two crashes, wher® is the number of participating
nodes (V = 2 in the above example). Again, considering
many other factors such as different failure types and more
failures that can be injected during recovery, the number of
all possible failure sequences can be too many to explore
with reasonable computing resources and time.

2.2 The Need For Programmable Failure-Injection

To address the aforementioned challenge, we believe that
there are many different ways in which a tester could re-

As we enter the cloud era, it is becoming common to see aduce the number of failures to inject. Below, we present

single software system running on thousands of commod-
ity machines. For example, Hadoop MapRedu2k gnd
Hadoop File System (HDFS%§] (open-source versions of
Google MapReducelB] and Google File Systen2p] re-
spectively) are run on 4000 nodes at Yahod). [At this
scale, hardware failures are no longer a rarity, and thus
the chances of cloud software systems experienciodji-

ple failures are increasing. Thus, it is not surprising when
large-scale developers ask to advance the state-of-ttoé-ar
testing, specifically by providing ways to exercise complex
combinations of multiple, diverse failuret].

2.1 The Combinatorial Explosion of Multiple Failures

Testing systems against multiple failures is unforturyatet
straight-forward — the challenge to deal with is t@mbi-
natorial explosion of multiple failuresThis explosion is at-
tributed to the complex characteristics of failures that ca
arise: different types of failure®(g, crashes, disk failures,
rack failures, network partitioning), different parts difet
hardware €.g, two among four nodes fail), and different
timings (.9, failures happen at different stages of the pro-
tocol). Exhaustively exploring all possible failure segoes
can take a lot of computing resources and time.

Let's consider the code segment in Figdrthat runs on
a distributed system with two nodes, A and B. This program
executes reads and writes (to the network and the disk) in

some examples based on our personal experience and our
conversation with some developers of cloud software sys-
tems. Our goal is to allow testers to express failure space
pruning strategies of different complexities so that thag ¢

use the right ones at the right times.

Failing a component subsetlet’s suppose a tester wants
to test a distributed write protocol that writes four rephc
to four machines (or nodes), and let's suppose that therteste
wants to inject two crashes in all possible ways in this exe-
cution to show that the protocol could survive and continue
writing to the two surviving machines. A brute-force tech-
nigue will inject failures on all possible combinations wit
nodes{.e., (‘2‘)). However, to do this quickly, the tester might
wish to specify a policy that just injects failuresamy two
nodes.

This type of policy can also be applied to other target sys-
tems €.g, RAID systems 41]). For example, let’s imagine
a tester of a N-disk RAID system who wants to test that
the RAID system can survive two disk failures.d, as in
RAID-6 or RAID-DP [1€]). Again, a brute-force technique
will exercise(g) combinations. However, with the policy
above, the tester can reduce the number of combinations.
One take-away point here is that a pruning policy could be
re-usable for different target systenesd, distributed sys-
tems and RAID systems).

each node. Given this program, hardware failures such asFailing a subset of failure types: Another way to prune

crashes, data corruptions, and network failures, can mappe
around the I/O operations. Let us consider crash-onlyrilu

down a large failure space is to focus on a subset of the
possible failure types. For example, let's imagine a t@stin

2011/4/22

process for a storage system, where at every disk 1/O, the
testing process can inject a machine crash or a disk 1/O
failure. Furthemore, let's say the tester knows that theesys

is designed as a crash-only softwadd][that is, all I/O
failures are supposed to translate to system crash (followe
by a reboot) in order to simplify the recovery mechanism. A
concrete example of this type of system is the HDFS master
node; a single I/O failure observed by the master will cause
shutdown and reboot. In this environment, the tester might
want to just inject 1/O failures but not crashes because it is
useless to inject additional crashes as 1/O failures waltlle

to crashes anyway.

Exploring a subset of possible failure types is also use-
ful when the tester wants to test specific protocols againstrence is greater than a predefined threshdl) 51]. This
specific failure types. One good example is the rack-awaretechnique is useful especially if the tester is interested i
data placement protocol common in many cloud systems tocorrelated failures. For example, two machines put within
ensure high availability]1, 48]. The protocol should ensure the same rack are likely to fail together compared to those
that file replicas should be placed on multiple racks such tha put across different rack2{]. In the case of sector-level
if one rack goes down, the file can be accessed from otherdisk failures, if a sector fails, its neighboring sectors allso
racks. In this scenario, if the tester wants to test the rack- likely to fail [46]. A tester can use real-world statistical data
awareness property of the protocol, only rack failures need to implement some failure probability distributions andter
to be injected€.g, vs. individual node or disk failures). failure-injection policies based on the distributions.

. o S In summary, there are many different ways in which a
Domain-specific optimization: In some cases, system- o .
. tester can reduce the number of injected failures. Thus, we
specific knowledge can be used to reduce the number of

. . . (Pelieve that there is a need for a programmable failure-
failures. For example, consider ten consecutive Java rea L ection framework that enables testers to express differ
I/Os that read from the same input file.§, £.readInt (), J P

.) ; . runing policies. In the following section, we describe our
f.readLong(), ...). In this scenario, disk failure can start P gp g

to happen at any of these ten calls. In a brute-force man_approach in detail.
ner, a tester would run ten experiments where disk failure _ o
begins at 10 different calls. However, with some operating 3. Programmable Failure Injection

system knowledge, the tester might inject disk failure only |n this section we presen®FAIL, a programmable failure-
on the first read. The reasoning behind this is that a file is jnjection framework that allows testers to express diffiére
typically already buffered by the operating system after th \ways to prune down a large failure space. At the heart of
first call. Thus, itis unlikely (although possible) to haw€ preFaiL is the classic principle of separation of mechanism
lier reads be successful and the subsequent reads failr In ougng policy B, 5, 20, 38, 49, 50]. As an informal definition,
experience, by reducing these individual failures, weyea one can view the policy as the scheme for deciding what
reduce the combinations of multiple failures. should be done and the mechanism as the tool for imple-

Coverage-based policiesA tester might want to speed up Menting a set of policies. o

the testing process with some coverage-based policies. For, With th'_s F’””C'p',e' we decouple_ a fallure-mjectlpn
example, let's imagine two different 1/0Os (A and B) that if frameV_/ork |r_1to t_WO pieces: the Fl engine a_m_d the FI driver
failed could initiate the same recovery path that performs &S depicted in Figur2 (FI stands for failure-injection). The
another two 1/0s (M and N). To ensure correct recovery, FI engine is the component_that_lnjects failures in the sys-
a tester should inject more failures in the recovery path. A tem under test, and the FI driver is the component that takes

brute-force method will exercise 4 experiments by injegtin tester-specified policies to decide where to inject fadure
two failures at AM, AN, BM, and BN (M and N cannot be One challenge in decoupling a failure-injection framework
exercised by themselves unless A or B have been failed).iSto define the level of abstraction at which testers willtevri

But a tester might wish to finish the testing process when the policies. This i_ncludes de_ciding clear roles of the Fl en
she has satisfied some code coverage policy, for example, by?ine and the FI drlve_r, the failure abstra_\ctlon_that shquﬂd b
stopping after all I/O failures in the recovery path (at M and exposed to the FI driver, the language in which to write the

N) have been exercised. With this policy, she only needs to policies, and the libraries that should be made available to
run 2 experiments with failures at AM ané AN the testers so that they can easily access the failure abstra

tion and re-use existing pruning strategies. In following-s
Failing probabilistically: Multiple failures can also be re- tions, we explain the Fl engine, the abstraction interftee,
duced by only injecting them if the likelihood of their oceur FI driver, and finally the overall testing workflow.

Target
System
(system

Fl Task +
Information

Failure-
Injection
Driver

Failure-

=

Figure 2. PREFAIL Architecture. The figure shows the sep-
aration of failure-injection engine (mechanism) and drigolicy).
The pruning policies written in the driver make failure dgons
that drive the engine.

3 2011/4/22

3.1 FIEngine

The FI engine is the component that interposes the differ-
ent execution points in the system under test and injects
failures at those points. The target failure points and the
range of failures that can be injected all depend on the ob-
jective of the tester. For example, interposition can beedon
at Java/C library calls2b, 39, TCP-level 1/0Os 7], disk-
level 1/0s 4], POSIX system calls36], OS-driver inter-
faces B2], and at many other points. Depending on the tar-
get failure points, the range of failures that can be ingcte
varies.

To prove the concept of programmable failure-injection
framework, we take a failure-injection framework that we
built in prior work [25] as an example of a FI engine. This
particular Fl engine interposes all 1/0 related to callsaeal
libraries and emulates hardware failures by supporting di-
verse failure types such as crashes, disk failures, andnletw
partitioning at node and rack levels.

The FI driver tells the FI engine to run a set of experi-
ments that satisfy the written policies. Axperimenis an
execution of the system under test with a particular failure
scenario (could be one or multiple failures). For example,
using the example in Figurk the FI driver could tell the FI
engine to run one experiment with one specific failuag(

a crash before the write at L4 in node A) or two concurrent
failures €.g, the same crash plus a crash before the write at
L5 in node B).

As mentioned above, one major challenge in supporting
programmable failure injection is to decide the informatio
abstraction that a FI engine should expose to the FI driver.
Below, we present how we address this.

3.2 Abstractions and Libraries

We believe that, no matter what the supported failure
types are and where the failures are injected, every failure
injection mechanism can describe an injected failure as a
task. Thus, we first define the abstracti@iure-injection
task(or fit in short). Testers then can write pruning policies
on top of thisfit abstraction. Only exposinfyit however

is not enough — to enable testers to write powerful policies
(i.e., a variety of pruning policies), the FI engine must ex-
pose to the FI driver more information regarding the execu-
tion of the system under test. We record this information in
per-experiment profile

e Failure-Injection Task (fit). A failure-injection task
(fit) is a list of key-value pairs, with a key being a string
representing a part of the context associated with ther&ilu
represented in the task.

The goal of using key-value pairs to represerttia is
two-fold. First, we want to provide the tester more flexiyili

Key Value

failure | crash

func write()

loc Write.java (line L1)
node | A

target | B

stack | (stack trace

Table 1. A Failure-Injection Task (fit). A failure-injection
task comprises a set of key-value pairs that represent the oy
injected failure and the contextual information of the dad. In
this example, the task is to inject a crash (defined byfelure
key). Thisfit also contains more contextual information about
when and where the failure would be exercised: The ey is
the function call where the failure is injectetlpc is the location
of the function call in the source codegde is the node where the
failure occurs, target is the target of the 1/0 (e.g., the node to
which a network message is sent by the function call), stk

is the stack in node A when the failure is injected.

ponent subset of a system in Sectidncan be used not
only for one specific system, but also for many other sys-
tems €.g, distributed systems and RAID systems). Thus,
the structure of the pruning algorithm stays the same, and
all the tester needs to change is the key that represents the
system component. We show an example of this scenario in
Sectior4.2

Failure-injection tasks can be built automatically within
the Fl engine. To do that, the tester first needs to decide what
failures and what contextual information about the faidure
that she wants to include in &it. We modified our old
failure-injection framework 25] to create afit for every
I/O call and a possible failure that it can inject at that I1/0O
call. Let's use as an example the code segment in Figyure
In this example, Tabld shows thefit that our FI engine
builds to represent a crash before the te call atline L1 in
node A. The Fl engine passes thist to the FI driver. Using
the detailed contextual information in tet, a tester can
decide whether to ask the FI engine to exercise the failure at
thefit or not. In general, the contextual information present
in fits allows testers to decide how to prune down the set
of all possible failure sequences that can be exercised. The
FI engine injects failures only at the failure sequencekén t
pruned-down set returned by the FI driver.

e Failure Sequence £itSeq): Since one of our primary
goals is to exercise multiple failures, to easily express a
combination of multiple failure-injection tasks, we define
a failure sequenceff{tSeq). A failure sequence is a data
structure used to describe a sequenceiak.

with adding as much contextual information as she desires. e Per-experiment profile. As mentioned above, to enable a
Usually, the more the information provided to the FI driver, variety of pruning policies, the FI driver needs more infor-
the more powerful the policies that one can write. Second, mation. One type of information that we find really useful
we envision that some pruning policiesd, failing a com- is the execution profile of every experiment. In every exper-

2011/4/22

iment, the Fl engine not only injects the failure(s), bubals
records all fallure-mje_zctlon tasks corresponding to thig f _ for fit in fitSeq:

ures that were exermsgd or thgt could _have. b.eer! exeruse(ﬁ if not contains (fit[‘stack’],
in the experiment. The intuition is that failure-injecti@msks ‘setupStage’) :
are built out of failure-injection point®(g, 1/0 calls, library 4 return False

calls, or system calls), and the set of these failure-igact 5 return True

points can be used to represent the execution of the target— -
system. Thus, the set of all failure-injection tasks obsgry ~ Figure 3. Setup-stage filter.Retun trueifallfitsin fitSeq
during an execution can be used to represent that execution are executed under theetupStage function.

1 def filter (fitSeq):

PREFAIL also provides a library of functions for easy
information extraction: 1 def filter (fitSeq):
2 last = fitSeq [len(fitSeq) - 1 1]

e Reduced fit: Sometimes testers might want to use a ‘re- 5 .i,rn not explored [(‘loc’,

duced_’f_it that retains a subset of the key-v_alue pairs_in last[‘loc’])]

the originalfit (for example, when they are interested in

only some specific context of failures). ThuREFAIL pro- Figure 4. New source location filter. Return true if the
vides a functionreducedFit that takes afit, a list of source location of the lastit has not been explored.

keys, and a boolean as arguments. If the boolean is true,
thenreducedFit returns a ‘reduced’it that includes only
those key-value pairs ifit that involve the keys in the ar-
gument list. If the boolean is false, then it returns a ‘restlic

fit that excludes the key-value pairs frat that involve

the keys in the argument list, and retains the rest of thepair
There are variations of theeducedFit function that take

a set offits or a sequence dfits as arguments instead 3.3.1 Filter Policy

of a singlefit. The functionreducedFits takes a set of
glers recucedtits A filter policy uses afilter function that takes a failure

fits, alist of keys, and a boolean as arguments, applies these uence as an argument and implements a condition that
reducedFit function on eaclfit, and returns a set of ‘re- d 9 P

duced’fits. Similarly, the functiorreducedFitSeq deals degides whether to exgrcise the sequence or not. Thus, the
with a sequence ofits. pohcy takes a set of failure sequences, appliesfthiecer o
function on each sequence, and retains the sequence in its
e Failure-Injection Tasks: PREFAIL provides a function output setif thefilter function returns true for it. Figur@
allFitSeqgs that returns the list of alfit sequences that shows afilter function written in Python that selects only
can be exercised by the FI engine. The FI driver uses poli- those failure sequences that involve failures that occiarnwh
cies to determine which of these sequences should the Fithe target system is in the setup stagey(the stack trace
engine actually exercise RRFAIL also provides a function contains the functioretupStage). The main use of a filter
explored that takes a list of key-value pairs and returns true policy is to let a tester focus on a subset of all failure-
if a failure with those key-value pairs has already been ex- injection tasks at a time.
plored in the past by the FI engine, else false. Figure 4 shows another example offalter function.
The policy that uses this function explores failures at prev
ously unexplored source locations by filtering out a failure
sequence if its latestit (1ast) has an unexplored source
location. This policy can be used to rapidly achieve a high
coverage of failures at distinct source locations (more in

exercises only the sequences present in the output. Testers
can use the failure and profiling information abstractions
provided by the FI engine in their policies. There are two
different kinds of policies that can be written: filter and
cluster policies.

e Profiling information: To let testers easily access the
profiling information and use it in their policies, there are
two functions that are provided by theRBFAIL: allFits
andpostInjectionFits. The functionallFits takes a

failure sequence as argument and returns the set oi ad 4.
observed in the experiment in which its argument failure
sequence is injected. The functig@stInjectionFits 3.3.2 Cluster Policy

takes a failure sequence as argument and returns the skt of a!A

) : : LS cluster policy lets a tester answer the following ques-
fitsobserved after its argument failure sequence is injected

‘tion: If a failure sequencee(g, AE) has been exercised,
) then should another sequeneeg, BE) be also exercised?
3.3 FI Driver ; ; ;

To help testers answer this question, a cluster policy uses
The FI driver provides support for writing policies using a cluster function that takes two failure sequences as ar-
which testers can express how to prune the failure space. Aguments, and returns true if the tester considers them to be
policy is a function that takes a set of failure sequences andthe same, and false otherwise. Tlimster function imple-
returns a subset of the sequences to explore. The FI enginenents an equivalence relation between failure sequenags th

5 2011/4/22

| failure/fexp 2 failures/exp

1 def cluster (fitSeql, fitSeq2):

2 isSetupl = True

3 isSetup2 = True

4 for fit in fitSeql:

5 if not contains (fit[‘stack’],
‘setupStage’):

6 isSetupl = False

7 for fit in fitSeq2: Exps *! AJ(D)E) (FC...)

8 if not contains (fit[‘stack’], #|[B|(E) @Q
‘setupStage’):

9 isSetup2 = False Figure 7. PREFAIL Test Workflow.

10 return (isSetupl and isSetup2)

Figure 5. Setup-stage cluster.Cluster two failure sequences

if both of them are within the setup stage context. failures to inject in an execution of the system under test

as2. The FI engine first runs the system with zero failure
during execution (i.e. without injecting any failure dugin

1 def cluster (fitSeql, fitSeq2): execution). During this execution, it obtains the set of all
2 lastl = fitSeql [len(fitSeql) - 1] fits: A, B, andC where failures can be injected. Using the
3 last2 = fitSeq2 [len(fitSeq2) - 1] tester-specified policies,REFAIL prunes down the set t
4 return (lastl == 1last2) andB, and then injects failure at eaght in the pruned down

- . set.
Figure 6. Last fits cluster. Return true if the lasffit s of After injecting the failure in an experiment, the FI engine

two failure sequences are the same. records allfits seen to build sequences of teats that

can be exercised while injecting two failures per experimen
is used by the cluster policy to partition its argument set of For example, after injecting in the first experiment, the Fl
failure sequences into disjoint subsets. The policy then ra engine observes theits D andE. From this information,
domly selects one failure sequence from each equivalencethe FI engine creates the set of sequences offtines AD
class. Thus, the tester implements her notion of equivalenc andAE. Similarly, it create®E after observing th&€it E in
of failure sequences, and the policy uses the equivalence rethe experiment that exercis@s As mentioned before, the
lation to select failure sequences such that all equivalenc number of all sequences its that can be exercised tends
classes in its argument set of failure sequences are coveredto be large. Thus, ReEFAIL again uses the tester-specified
Figure5 shows acluster function that collapses all pos- policies to reduce this number. For example, a tester might
sible failures within the setup stage into one cluster. Thus wantto run just one experimentthat exercises the second
even if there aréV (IV >> 1) possible single failures that failure. Thus, REFAIL would automatically exercise just
can be injected during the setup stage in a system, all of theone of AE andBE to satisfy this policy instead of exercising
failures will be clustered into one group, and only one of both of them.
the failures will be exercised by the FI engine to cover the Algorithm 1 outlines the overall testing process with
cluster. PREFAIL. PREFAIL takes a systerd to test, a list of tester-
Figure 6 shows another example efiuster function. written policiesP, and the maximum number of failur@é
The cluster function clusters failure sequences that end to inject in an execution of the system. The testing process
with the samefit. For example, there might be two failure runs in N + 1 steps. At step (0 < i < N), the Fl en-
sequencedE andBE that can be exercised in two experi- gine of RREFAIL executes the systes once for each fail-
ments, but a tester might wish to run just one experiment thature sequence of lengihthat it wants to test, and injects the
hask as the second failure. This kind of cluster policy is use- failure sequence during the execution of the systEi$\. is
ful if the tester wants to rapidly explore new recovery paths the set of all failure sequences that should be tested in the
it does not matter how those paths are reached. The policycurrent step, and’S,, is the set of failure sequences that
can also be relaxed easily. For example, a tester might wishshould be tested in the next step. InitialyS. is set to a
to cluster failure sequences whose lasts have the same singleton set with the empty failure sequence as the only el-

source location even if thei ts are different (Figur&0); the ement. Thus, at step the FI engine executes and injects
only difference from the previousluster functionis in the an empty sequence of failures, that is, it does not inject any
last line. failure. The Fl engine observes thets that are seen during

execution, and adds singleton failure sequences with these
3.4 Test Workflow fits to F'S,. Thus,F'S, has failure sequences that the FI
Figure7 shows an example scenario of the testing processengine can exercise in the next step, that is, in thel step.
in PREFAIL. The tester specifies the maximum number of Before RREFAIL proceeds to the next step, it prunes down

6 2011/4/22

Algorithm 1 PREFAIL Test Workflow Initial Recovery Difference

1: INPUT: System under test (S), List of policies Setup 145 245 2--
(P), Maximum number of failures per execution stage 113 2 ;:|I_- 2 2 -566
(\N) -
2. FS.={0} Data 145 45 45
3 FS,={} transfer 145 1-5 1-5
4: for0 <i < Ndo stage 145 14- 14-
2: forEeaChtfaiSlured S.eq}lelfef fsd in F5.do > Table 2. HDFS Write Recovery. The table illustrates at
. Xecute and 1injec S auring execution . B . .
7: Profile execution using fits observed a high-level the different recovery behaviors of the tw@ssaof

write. The first column shows the initial pipeline; the cradmode

during execution .)) o
is marked in bold. The second column shows the final pipeline

8: for each fit f observed after injecting fs
do that contains the replicas after write recovery. The thimumn
9: Append (fs, f) to F'S,, summarizes the I/O differences tHEFAIL observes between the
10: end for 1/0Os happening in the initial pipeline and in recovery. $etiage
11: endfor recovery is basically a retry, therefore the 1/0 calls in ogery
12: F'Sp =Prune(P, F'Sy) are the same as in the initial case, except that we see new 1/Os
13: FS.=FSy in new nodes (e.g., 2 and 6). However, the last node in thdipipe
ig engj%; ={ executes different code segment. That is why Node 5 appethrs i

last column because it has become the middle node afteregcov
Data-transfer recovery on the other hand executes new i3 ite

the surviving nodes (e.g., to synchronize block offset&t iE why
the setF'S,, using the policies written by testers using the the surviving nodes appear in the difference.

policy framework. The failure and profiling information ab-
stractions provided by the FI engine can be used by testers
to write rich and useful policies. In step= 1, F'S. is set
to the pruned dowrF'S,, from the previous step. For each
failure sequencés in F'S., the failure-injection framework
executesS and injectsf s during execution. For eachit f
that it observes aftefs has been injected, it adds the failure

sequencefs, f) to IS, After 5 has been executedonce for - F4cahooka). We begin with an introduction to HDFS

each fa_llure sequence InS., PREFAIL prunes down_ the set and then present the policies that we've written to prurie fai
F'S,, with policies and moves to the next step. This process ures in HDES

is repeated till the last step.

To show all the policies that we have written and the
advantages, we integrat&REBFAIL to Hadoop File System
(HDFS) [48], an underlying storage system for Hadoop
MapReduce Z7]. HDFS has been widely deployed in hun-
dreds of organizations including Amazon, Yahoo!, Twitter,

4.1 HDFS Primer

4. Crafting Pruning Policies HDFS is a distributed file system. Here we describe the
As discussed earlier in Sectid) when dealing with mul- HDFS write workload in detail. Figur8 shows the write
tiple failures, one needs to deal with the combinatorial ex- 1/0Os (both file system and network writes) occurring within
plosion of failures. We believe that there is no single way the HDFS write protocol. The protocol by default stores
to prune down the failure space — it depends on the objec-three replicas in three nodes, which form a pipeline iretiat
tives of the tester. In Sectia® we have listed some prun- by the client (left-hand side of the first node, not shown).
ing strategies that we and real developers find valuable. Forlf multiple racks are available, it makes sure that the nodes
example, the tester can fail only a subset of all the compo- come from a minimum of two racks such that a single rack
nents of the target system, inject a subset of possible fail- failure does not make the data block unavailable.
ure types, reduce the number of failure-injection pointfhwi Our Fl engine is able to emulate hardware failures on
some domain-specific optimization, inject failures that sa every 1/0 (every box in Figurd). As depicted, there are
isfy some coverage-based policies, or fail probabilidiica at least 33 failure points that the FI engine interposes in
Overall, we make three major points in this section. First, this write protocol. At every 1/O, the Fl engine can inject a
by clearly separating the failure-injection mechanism and crash, a disk failure (if it's a disk 1/0), a node-level netko
policies and by providing useful abstractions, we can write partitioning (if it's a network 1/0), and a rack-level netrvko
many different pruning strategies clearly and concisedg-S partitioing (if it's a network I/O across two racks). The
ond, we show that policies can be easily composed togetherfigure also depicts many possible ways in which multiple
to achieve different testing objectives. Finally, we shbatt failures can occur. For example, two crashes can happen
some policies can be reused for different target systems. Wesimultaneously at I/O #13 and #17, or a crash at I/O #21
believe these advantages show the powerreERAIL . and rack partitioning at 1/0 #15, and many more.

7 2011/4122

rack | rack2 rack2

setup message, create temporary blodhreeta files.
message to downstream datanodes.

(4, 5) and (7, 8) are the same as (1, 2). (6) is the same.as (3)
The last datanode in the pipeline sends an ack.
Send acks to the middle node and client respectively.

/1O # Notes

ﬂ ﬁ NS ° 1,2 After receiving
-4 k3 3 Forward setup

2] a 4-8

3] 2 9

1] 2 10,11

- i - - 12 Receive and st

Lsl12] m % 13,14

Bl T 15

el hsl] & 16-21

5] 1ol _ § 22,23 After receiving

3] E\E g 24

2\&\2 a 25-33 (25, 26)and (3
T3 30 [24]

D FS Writes D—' Net Writes

ream bytes to downstream datanodes.

Write bytes to the block and meta files.
Send a message that marks the end of the stream (EOS).
(16) is the same as (12); (17, 18) and (20, 21) as (13(19M) as (15).

EOS marker, the temporary block antarfikes are

renamed to final filenames.@, renametmp/blk_X to curr/blk_X).
Send a commit ack to the middle node.

1, 32) are the same as (22, 23); (30) &)@&s324).

Note that unlike the last node in the pipeline, the first twdew
finalize the files only after receiving a commit ack.

Figure 8. HDFS Write Protocol. The figure shows the file system and network write 1/0 callkiwihe HDFS protocol. In this

configuration, nodes N1-N3 and nodes N4-N6 are separategddmacks
the master node gives to client N1, N4, and N5 (communicattween

The figure only shows the 1/Os that occur in the normal
execution path, it does not show the I/Os in the recovery
path. Often, developers are interested in multiple fagdure
some of which occur in the normal path and the rest in
the recovery path. Later, we will show policies that quickly
exercise different recovery paths. Before that, we exytlen

. When the client asks the master for three noded th@ueplicas,
client and master is not shown).

1 def cluster(fitSeql, fitSeq2):

HDFS write recovery protocol here.

The HDFS write protocol is divided mainly into two
stages: the setup stage and the data transfer stage. Thie reco
ery for each stage is different. The first and second columns
of Table 2 illustrate at a high level the recovery for each
stage. In the setup stage, if a node crasteeg, (V1), the
client asks for a new node from the master node, and be-
gins the whole write process again with the new pipeline
(e.g, N2-N4-N5). However, if a node crashes in the second
stage, the write continues on the surviving datanodes. The
third column specifies the nodes where new I/Os are seen
during recovery. Although at a high level it seems that there
are only two main recovery paths, we will see in a subse-
guent section how failures at different 1/Os result in urgityu
different recovery behaviors. We can use recovery cluggeri
policies of different granularities to cluster these resrgv
behaviors.

4.2 Pruning by Failing a Component Subset

In distributed systems like HDFS, it is common to have
multiple nodes participating in a distributed protocol. As
mentioned earlier, let's say we haye participating nodes,
and the developer wants to inject failures on two nodes, then
there are(g’) combinations of failures that one could inject.
Worse, on every node (as depicted in Fig8yethere could

be many possible points to exercise the failure.

rsl = reducedFitSeq (fitSeql, [‘node’],
False)
3 rs2 = reducedFitSeq (fitSeq2, [‘mnode’],
False)
4 return (rsl == rs2)
Figure 9. Ignore nodes cluster. Return true if two failure

sequences have the same failures with the same contextemot ¢
sidering the nodes in which they occur.

To reduce this, a developer might just wish to inject
failures at all possible failure points Bnytwo nodes. She
can write a cluster policy that uses the function in Figare
to cluster failure sequences that have the same sequence of
failures occurring in the same contexts. We do not consider
the nodes in which the failures occur as part of contexts of
the failures. Thus, a failure sequence with a crash at node 1
and a subsequent disk failure at node 2 would be considered
the same as a sequence with a crash at node 3 and a disk
failure at node 4 if the rest of the contexts of the crashes and
the disk failures are the same. The developer can then use
this cluster policy to direct the FI engine to exercise faglu
sequences with two failures such that if the FI engine has
already explored failures on a pair of nodes then it should
not explore the same failures on a different pair of nodes.

Earlier, we mentioned that this type of pruning strategy
might work for other systems such as RAID systems. Let
us assume that there akedisks in a RAID system and the
tester wants to inject failures at any two of theSedisks.

To do this, we definitely need a FI engine that works for
RAID systems, but we can re-use much of the policy that
we wrote for distributed systems for RAID systems. The

2011/4/22

def cluster(fitSeql, fitSeq2):
lastl = fitSeql [len(fitSeql) - 1] a = allFits(fitSeq)
last2 = fitSeq2 [len(fitSeq2) - 1] r = reducedFits(a, [‘loc’], True)

1 def getRecoveryPath (fitSeq):

2

3
return (last1[‘loc’] == last2[‘loc’]) 4 a0 = allFits ([1)

5

6

7

S wWw N

r0 = reducedFits (a0, [‘loc’], True)
rPath = r - r0
return rPath

Figure 10. Source location cluster. Return true if the last
fits have the same source location.

Figure 11. Characterizing recovery behavior. Line 2 uses
the library functionallFits (§3.2) to get the set of allfits,
a, seen during the execution in whigit tSeq is injected. Line
3 obtains the reducedgits from this set that include only the
4.3 Pruning via Code-Coverage Objectives source locations of thgits. Line 6 filters out the reducegtits

In the previous sections, we have shown the benefits 0fthat correspond to normal program execution where no failas

filter and cluster policies. In reality, developers mightniva ~ P€en injected (lines 4 and 5). Line 7 returns the set of remgin

to achieve some high-level testing objectives. One common "educedsits.

objective in the world of testing is to have some notion

of “high coverage”. In the case of failure testing, we can . . .

express po"cies that achieve different types of Coverﬁge_ the difference of two executions to characterize a recovery

example, a developer might want to achieve a high coveragebehavior. For example, a tester might want to consider two

of source locations of 1/O calls where failures can happen. €xecutionsto be the same if they execute the code at the same
To achieve high code-coverage with as few experiments source locations. Thus, she might characterize an executio

as possible, the tester can simply compose the policies thaby the set of all source locations of thets observed during
use thefilter function shown in Figurd and thecluster the execution. She can then define the difference of two ex-

function shown in Figurd 0. As explained before, the filter ~ ecutions to be the difference of the sets of source locations

policy explores only those failure sequences that have-unex Of the fits observed during the two executions. Figlife
plored source locations, and the cluster policy clustexs in Shows a function that uses only the source locations of ob-
one group the failure sequences that have the same unexservedtits to get the recovery behavior when a particular

only difference would be in the keys in the ts (.e. for
distributed systems we used the ‘node’ key in Figéyréor
RAID systems we use the ‘disk’ key).

plored source location. failure sequence is. injected.
o o Let’s consider Figur@ as an example wheeandE are
4.4 Pruning via Recovery-Coverage Objectives two £its at I/Os that execute at the same source location

Since in failure testing, we are concerned with testing the (€.9,X. java, line 5) butin different nodes(g, N1 andN4).
correctness akcoverybehaviors of a system, another useful If a developer decides to use only source locations to charac
testing goal is to rapidly explore failures that lead toefiént terize recovery behavior, thefits A andB will fall into the
recovery paths. To do this, a tester can write a clusteryolic Same recovery class as their corresponding executions have
that clusters failure sequences that lead to the same ngcove the same set of source locationsfafts in executed recov-
behavior into a single classrRBFAIL can then use this pol- ery code. But, if the developer decides to use both the source
icy to exercise a failure sequence from each cluster, aral thu locations and node IDs dfits to characterize recovery be-
exercise a different recovery behavior with each failure se havior, themd andB will fall into different recovery classes.
quence. We explain this whole process in two steps: charac- We show how we obtain different recovery classes using
terizing recovery behavior, and clustering failure seqasn different recovery characterizations in the HDFS write-pro
based on the recovery characterization. tocol. Figurel2 shows how crashes at different I/Os shown
in Figure8resultin differentrecovery classesg, 0 vs.O).
The figure also shows the result of characterizing recovery
To write a recovery clustering policy, a tester has to spec- by using different elements (source location, node ID lstac
ify how she wants to characterize a recovery behavior. Onetrace, target 1/0, etc.) of the 1/Os in the recovery path. For
possible characterization would be to consider the “differ example, figurel2a shows four recovery classes that result
ence” of the execution that is seen when the failure sequencerom the use of only source location to distinguish différen
is injected and the execution that is seen when no failure isrecovery behaviors. Simply by using source locatiorRgP
injected. The difference can be thought of as the “extra” ex- FaIL automatically profiles the two main recovery classes in
ecution or the recovery behavior that is observed when thethe protocol g and©) (§4.1). Furthermore, REFAIL also
failure sequence is injected. finds two unique cases of failures that result in two more
PREFAIL gives the tester the power and flexibility to de- recovery classesm(ande). In the first one #), a crash at
cide how to use the profiling information provided by the FI N1 which happens before I/O #12 leaves the surviving nodes
engine to characterize an execution, and also how to defing(N4 andN5) with zero-length blocks, and thus the recovery

4.4.1 Characterizing Recovery Behavior

9 2011/4/22

[] A O A D LN @
FE Big Bag DA
5[5] GIA S GIA S

A A ¢

)
) @ @ Q) @ @
63 () 63 @%% 63 () 63 3%%
clola DOV Y clola

(d) Src. Loc. + Node ID +

(a) Src. Loc. (b) Src. Loc. + Node ID. (c) Src. Loc. + Stack. Stack
4 recovery classes: 8 recDovzry <<>:Iasses: 7 recogeré/ cIAasses: 10 recovery classes:
R " 07V Tauk 0., 0, 4,0
OV B m,e,0,v,V

Figure 12. Recovery Clusters of HDFS Write Protocol. The 1/0 numbers 1-33 represent crashes before the I/Os ithescin
Figure 8. The three nodes in every figure represent the initial wripeline (i.e. N1-N4-N5). A shape (e.gf) surrounding 1/O #X represents
the recovery from a crash that happens at that I/O. Diffesdr@tpes represent different recovery behaviors. The fourgfiggshow the different
results when recovery is characterized in different ways. (€éa) using source location only, (b) using source lomatand node ID, and so
on).

protocol executes different source locations for thisipart

. 1 def cluster (fsql, £fsq2):
ular scenario. In the second one)(a crash happens be- lasti = fsqi [len(fsql) - 1]
fore 1/0 #16 atN4 that leaves the surviving node$1(and 3 last2 = £sq2 [len(fsq2) - 1]

N5) with different block sizes (the first node has receivedthe 4 ;refix1 = fsq1 [0 : len(fsql) - 1]
bytes, but not the last node), and thus the recovery behaviors prefix2 = fsq2 [0 : len(fsq2) - 1]
includes execution ofyncO0ffset operation that truncates 6 isEqv = eqv (prefixl, prefix2)
the surviving blocks to the lowest offset before streamimgt 7 return isEqv and (lastl == last2)
rest of the bytes.

Figure12b shows the 8 recovery classes that we getifthe 8 def eqv (seql, seq2):
developer uses the node where the 1/O executes in addition? =~ rPathl = getRecoveryPath (seql)
to the source location of the 1/O. The first stage recovery is 10 TPath2 = getRecoveryPath (seq2)
distinguished into three recovery classes{\, and<). The 11 return rPathl == rPath2
reason behind this classification is shown in the last column gigyre 13, Equivalent-recovery clustering. Cluster two
of Table2. Crashes that happen in differentnodes in the first fjjyre sequences iftheir prefixes (that exclude the fasts) result
stage result in recovery code that is executed in different j, ihe same recovery path and their lasit s are the same. Lines
sets of nodes. Similarly, the second stage recovery is broke g ang 10 use the recovery path characterization in Figlte
down into three classes)(s/, and ¥). The two unique cases
stay the samem(ande).

Figure 12c and Figurel2d show other different ways 4.4.2 Clustering Failure-Injection Sequences

to characterize recovery behaviors. In geperal, the mere el After specifying a characterization for a recovery patfe, th
emgnts of I/Os considered, the more unique recovery be'tester can simply write a cluster policy that useslaster
haviors uncovered. Fewer e_Ieme_nt_s Igad to fe_/ver r€COV-function such as the one in Figut&. Given this function,
ery class_es and thus fewer failure-injection experimeénis, if there are two failure sequence@refix1, last) and
might miss some corner-case bugs. For gxample, we have(prefixz, last), whereprefixl andprefix2 resultin
seen a bug that could only be produced if a tranSfe.r'St"?‘gethe same recovery behavior, thergFAIL will explore only
crash happ_ens .at the secqnd or last node in _the p|pgl|ne.0ne of the two sequences.

Clustering in Figurel2a might not uncover this bug if To illustrate the result of this policy, let’s say there is a

PREFfAIL chooses a craslh at the first node to represent the... | oachable from all crashes at 1/0s #1-11 in Fiol@
transfer-stage recovery class)((e.g, fits Py to Py;1). Without the specified equivalent-

10 2011/4/22

1 def filter (fitSeq): 1 def filter (fitSeq):

2 for f in fitSeq: 2 for i in range(len(fitSeq)):

3 isCrash = (f[‘failure’] == f‘crash’) 3 f = fitSeq[i]

4 isWrite = (f[‘ioType’] == ‘write’) 4 isNet = (f[‘ioTarget’] == ‘met’)

5 isBefore = (f[‘place’] == ‘before’) 5 isWrite = (f[‘ioType’] == ‘write’)

6 if isCrash and 6 isCrash = (f[‘failure’] == f‘crash’)
(not (isWrite and isBefore)): 7 rNode = f[‘receiver’]

7 return False 8 pfx = fitSeq[0:1i]

8 return True 9 if isNet and isWrite and isCrash and

10 nodeAlreadyCrashed (pfx, rNode):
Figure 14. Generic crash optimization. Return true if all 11 return False
crashes occur before write 1/Os. 12 return True

Figure 15. Crash optimization for network writes. Re-
turn true if there is no crash before a network write 1O thahde
message to an already crashed node.

recovery clustering, ReFAIL will run 11 experimentsK; L

.. P11L). But with this policy, RREFAIL will run only one ex-
periment P1/Ps/../[P11 + L) as all the prefixes have the same
recovery classif). If the developer changes the clustering
function such that it uses source location and node ID to ata network write to a receiver nodode in the sequence,
characterize different recovery behaviors (Figligb), then ~ there is no preceding crash in the sequence that occurs in
PREFAIL will run three experiments as the prefixes now fall the noderNode. The functiomnodeAlreadyCrashed (also

into three different recovery classes, (\, and<). implemented by the tester but not shown) takes a failure
o o sequence and a node as arguments, and returns true if there is
4.5 Pruning via Optimizations a crash failure in the sequence that occurs in the given node.

Generally, failures can be injected before and/or after ev- _ .
ery read and write 1/0, system call or library call. For some 4-2-2 Disk Failures

types of failures like crashes or network failures at I/Ascal ~ For disk failures (permanent and transient), we injectifai

in distributed systems, there are optimizations that can bebefore every write I/O call, bubot beforeeveryread 1/O
performed to eliminate unnecessary failure-injectionegkp call. Consider two adjacent Java read 1/Os from the same
ments. These optimizations can also be implemented as poliHnput file (€.g, f.readInt() and f.readLong()). It is

cies by testers. In the following sections, we give examples unlikely that the second call throws an I/O exception, but
of optimizations implemented as policies for crashes, disk not the first one. This is because the file is typically already

failures, network failures, and disk corruption in distried buffered by the OS. Thus, if there is a disk failure, it is

systems. more likely the case that an exception is already thrown
by the first call. Thus, we can optimize and only inject

4.5.1 Crashes read disk failures on the first read of every fiiee(we

In a distributed system, read 1/Os performed by a node affectassume that files are always buffered after the first read). Th

only the local state of the node, while write 1/Os potenyiall subsequent reads to the file will naturally fail. The polioy f

affect the states and execution of other nodes. Therefare, w this optimization is similar to the one for network failure

do not need to explore crashing of nodes around read I/Os.optimization (Figurel6) as explained in the next section.

We can just explore crashing of nodes before write 1/Os. _

Figure 14 shows afilter function that can be used by a 453 Network Failures

filter policy to implement this optimization. The function For network failures, we can perform an optimization simi-

accepts afailure sequence if all crash failures in the sempie lar to disk failures. Since there is no notion of file in networ

are injected before write 1/0Os. If a failure sequence has 1/Os, we keep information about the latest network read that

a crash that is not injected before a write 1/0, then that a thread of a node performs. If a particular thread performs

sequence is rejected, and thus not exercised by the failure-a read call that has the same sender as the previous call, then

injection engine. we assume that it is a subsequent read on the same network
The second optimization that we can do for crashes is message from the same sender to this thread (potentially

that we do not crash a node before the node performs abuffered by the OS), and thus we do not explicitly inject a

network write I/O that sends a message to an already crashechetwork failure on this subsequent read. In addition, warcle

node. This is because crashing a node before a networkthe read history if the node performs a network write, so that

write I/O can only affect the node to which the message we can inject network failures when the node performs fu-

is being sent, but the receiver node is itself dead in this ture reads on different network messages. In addition, we do

case. Thefilter function in Figurel5 implements this not inject a network failure if one of the nodes participgtin

optimization. It accepts a failure sequence if for eachlteras in the message is already dead.

11 2011/4/22

bility distribution of two machine crashes happening at the

1 def filter (fitSeq): .

2 for i in range(len(fitSeq)): same time). .

3 £ = fitSeqli] In summary, the.progrqmmable polu;y framgwork allows

4 isNetFail = (fitSeq[‘failure’] == testers to write various failure exploration policies ier
‘netfail’) to achieve different testing and optimization objectivies.

5 isRead = (f[‘ioType’] == ‘read’) addition, as different systems and workloads employ differ

6 sender = f[‘sender’] ent recovery strategies, we believe this programmabdity i

7 node = f[‘node’] valuable in terms of systematically exploring failuresttha

8 thread = f[‘thread’] are appropriate for each strategy.

9 time = f[‘time’]

10 pfx = fitSeq[0:1]

11 fitSeqs = allFitSeqs () 5. Evaluation

12 if isNetFail and isRead and In this section, we evaluate the different aspectsreERAIL .

13 (not first(pfx, node, thread, We first list our target systems and workloads, along with
time, sender, fitSeqs)): the bugs that we found;%.1 and§5.2). Then, we quantify

14 return False the effectiveness of pruning policies that we have written

15 return True (§5.3. Finally, we show the implementation complexity of

PREFAIL (§5.4).

Figure 16. Network failure optimization. Return true if all
network failures at read 1/Os are at reads that are the firstde for

their respective senders. 5.1 Target Systems, Workloads, and Bugs

We have integrated®EFAIL on different releases of 3 pop-
ular “cloud” systems: HDFg] v0.20.0, v0.20.2+320, and
Thefilter function in Figurel6 can be used by a filter y0.20.2+737 (the last one is a release used by Cloudera cus-
policy to implement the optimization for network failures. tomers [L4]), ZooKeeper 1] v3.2.2 and v3.3.1, and Cas-
The function checks for each network failure at a read I/O sandra7]v0.6.1 and v0.6.5. These many integrations show
in a failure sequence to see if it is the first read of data in how easy itisto port our framework to many Systems and re-
its thread that is sent by its sender to its node. The function |eases. We evaluateRBFAIL on four HDFS workloads (log
first (also implemented by the tester, but not shown) de- recovery, read, write, and append), 2 Cassandra workloads
termines this condition for each network failure in thedad (key-vajue insert and |Og recovery), and 1 ZooKeeper work-
sequence. The keyime in afit records the time whenthe |oad (leader election). In this submission, we only present
fit was observed during execution in the FI engine. This extensive evaluation numbers for Cloudera’s HDFS, which
key helps in determining the temporal position of a read in e have prioritized in the last couple of months. For other
the list of all failure sequences tSeqs passed on by the FI releases we only present partial results.
engine.
. . 5.2 Bugs Found

454 Disk Corruption With PREFAIL, we were able to find the 16 new bugs in
In the case of disk corruption, after data gets corruptdd, al HDFS v0.20.0 that we had reported in previous wc [
reads of the data give unexpected values for the data. It iswe were told that many internal designs of HDFS have
possible but very unlikely that the first read of the datagive changed since that version. After we integratezEPalL
a non-corrupt value and the second read in the near futureto a much newer HDFS version (v0.20.2+737), we found 6
gives a corrupt one. Thus, we can perform an optimization newerbugs (three have been confirmed, and three are still

similar to the disk-failure case. under consideration). Importantly, the developers believ
N o that the bugs are crucial ones and are hard to find without
4.6 Failing Probabilistically a multiple-failure testing framework. These bugs are basi-

Finally, a tester can inject multiple failures if they shtis cally availability bugs€.g, the HDFS master node is unable
some probabilistic criteria. We have not explored thiststra to reboot permanently) and reliability bugs.q, user data
egy in great extent because we need some real-world fail-is permanently lost). For brevity of space, we explain below
ure statistic to perform real evaluation. However, we lvelie only one of the new recovery bugs. This bug is present in the
specifying this type of policy in REFAIL will be straight- HDFS append protocol, and it happens because of multiple
forward. For example, the tester can write a policy as simple failures.

as: return true iprob(fitSeq) > 0.1. That is, inject a se- The task of the append protocol is to atomically append
guence of failuregitSeq only if the probability of the fail- new bytes to three replicas of a file that are stored in three
ures happening together is larger than 0.1. The tester needsiodes. With two node failures and three replicas, append
to implement theprob function that ideally uses some real- should be successful as there is still one working replica.
world failure statistic €.g, a statistic that shows the proba- However, we found a recovery bug when two failures were

12 2011/4/22

injected; the append protocol returns error to the caller an

. Pruning speedup with diverse policies
the surviving replica (that has the old bytes) is inaccessi- 9 speectp P

100000

ble. Here are the events that lead to the bug: The first node- BF

crash causes the append protocol to initiate a quite complex S_’f,ﬂ

distributed recovery protocol. Somewhere in the middle of g 109007 R-L mm—m 70 00 0 °r

this recovery, a second node-crash happens, which leaves th 8 . 0

system in an unclean state. The protocol then initiates an- & 1000 - 1 3

other recovery again. However, since the previous recovery £ . :

did not finish and the system state was not properly cleaned, £ 100 4 % § § -
. e : 5 \ ‘B

this last initiation of recovery (which should be succeBsfu g § g g

cannot proceed. Thus, an error is returned to the append % 10 - § § § L

caller, and worse since the surviving replica is in an unclea \i § - §

state, the file cannot be accessed. PR A L

Wrt App LogR Wrt* App* Wrt App LogR Wrt* App*
5.3 Effectiveness of Policies (2 failures/run) (3 failures/run)

We now show the effectiveness of some of the pruning
policies that we have written. We first present the code-
coverage (Sectiod.3 and recovery-coverage (Sectidr)

based policies, and then the optimization-based po"Cies(just(:rash-only failure) experiments for a given policydanwork-
(Section4.5) load. The x-axis shows the workloads: the write (Wrt), ajppen

(App), and log recovery (LogR) protocols from Cloudera’s-ve
sion of HDFS. We also run workloads from the old HDFS release
v0.20.0 (marked with *), which has a different design (anddee
We show the benefits of using different coverage-based fail- giferent results). Two and three crashes were injectedepger-
ure exploration policies to prune down the failure space in jment for the bars on the left- and right-hand sides respetyi
different ways. Figurd.7 shows the different number of ex- cc and BF represent the code-coverage policy and brutesfers
periments that REFAIL runs for different policies. An ex- pioration, respectively. R-L, R-LN, and R-All represertoeery-
periment takes between 5 to 9 seconds to run. Here, we injecoverage policies that use three different ways to charasee-
crash-only failures so that the numbers are easy to compareeovery §4.3): using source location onlyZ(), source location and
The figure only shows numbers for multiple-failure experi- node), and all information infit (All). We stopped our ex-
ments because injecting multiple failures is where the majo periments when they reached 10,000 (Hence, the maximumenumb

bottleneck is. of experiments is 10,000).
With PREFAIL, a tester can choose different policies, and

hence different numbers of experiments and speed-ups, de-

pending on her time and resource constraints. For example,

the code-coverage policy (CC) gives two orders of magni-

tude improvement over the brute-force approach because it Table 3 shows the number of bugs that we found even
simply explores possible crashes at source locations tthat i with the use of the most relaxed recovery clustering policy
has not exercised before.(, after exploring two crashes, (R-L, which only uses source location to characterize recov
there is no new source location to cover in 3-crash cases).€ry). But again, a more exhaustive policy could find bugs
Recovery clustering policies (R-L, R-LN, etc.) on the other that were not caught by a more relaxed one. For example,
hand run more experiments, but still give an order of magni- We know an old bug that might not surface with R-L pol-
tude improvement over the brute-force approach. The moreicy, but does surface with R-LN policy which uses source
relaxed the recovery characterization, the lesser the eumb location and node ID to characterize recovery.

of experiments€.g, R-L vs. R-All).

Pruning is not a benefit if it is not effective in finding
bugs. In our experience, the recovery clustering policies a
effective enough in rapidly finding important bugs in the Table4 shows the effectiveness of the optimizations of four
system. To capture recovery bugs in the system, we wrotedifferent failure types that we described in Sectbs Each
simple recovery specifications for every target workload. cell presents two numbers X/Y where Y and X are the
For example, for HDFS write, we can write a specification numbers of failure-injection experiments for single fedsi
that says “if a crash happens during the data transfer stagewithout using and with using the optimization respectively
there should be two surviving replicas at the end”. If a Overall, depending on the workload, the optimizationsdprin
specification is not met, the corresponding experiment is 21 to 1 times (5 on average) of reduction in the number of
marked as failed. failure-injection experiments.

Figure 17. #Experiments run with different coverage-
based policies.The y-axis shows the number of failure-injection

5.3.1 Coverage-Based Policies

5.3.2 Optimization-Based Policies

13 2011/4/22

#Failed
Workload #F Exps #Bugs
Write 2 0 0
3 46 1
Append 2 14 2
3 31 ™2
LogRecovery 2 6 3
3 3 *3

Table 3. #Bugs found. The table shows the number of failed
experiments (#Failed Exps) for a given workload and the remb
of crashes per run (#F), along with the actual number of bings t
trigger the failed experiments (#Bugs). For this table, vge the
simplest recovery clustering policy (R-L in Figut&). (*) implies
that these are the same bugs (i.e., bugs in 2-failure cages of
appear again in 3-failure cases).

Workload Crash Disk Net Data
Failure Failure Corruption
H. Read 2/42 1/4 4/17 1/4
H. Write 57/454 27/27* 45/200 N.A.
H. Append 111/880 43/60 117/380 1/18
H. LogR 36/128 39/64 N.A. 3/28
C. Insert 33/102 25/25* 12/26 N.A.
C. LogR 84/196 89/98 N.A. 5/14
Z. Leader 39/132 21/21* 31/45 N.A.

Table 4. Benefits of Optimization-based Policies. The
table shows the benefits of the optimization-based polane®ur
HDFS workloads (H), two Cassandra workloads (C), and one
ZooKeeper workload (Z). Each cell shows two numbers X/Yeavher
Y and X are the numbers of failure-injection experimentsfiogle
failures without using and with using the optimization resgvely.
N.A. represents a not applicable case; the failure type neweurs

for the workload. For write workloads, the replication factis

3 (i.e., 3 nodes participating). (*) These write workloads ot
perform any disk read, and thus the optimization does notkwor
here.

5.4 Complexity
The FI engine is based on our previous wo|[which

is written in 6000 lines of Java code. We added around
160 lines of code in this old framework so that it passes

on appropriatefits and execution profiles to the FI driver.
The FI driver is implemented in 1266 lines of Python code.

It implements a library of functions that testers can use

to accesgits and execution profiles passed on by the FI

engine. It also uses the policies written by testers to prune
down the set of failure sequences that can be exercised b

FI engine. We have written a number of different pruning
policies in Python using the library provided by the FI drive
On an average, we wrote a policy in 17 lines of code.

14

%

6. Related Work

In this section, we compare our work with other work that
relates to failure-injection. More specifically, we dissus
other related work that decouple failure-injection mecha-
nism and policy, provide some language support for speci-
fying failure-injection tasks, and present techniquestmp
down large failure spaces.

Several previous works have also suggested similar ideas
to separate the component that injects the failuees, the
“fault-injector”) and the component that controls the diad-
injection tasks €.g, the “controller”) [8, 30, 34, 43. In
some cases, the controller can be seen as an interface for the
testers to specify the failures to be injected. Howevey; tiee
not present any appropriate abstractions of informatian th
should flow between the two components. Thus, it is unclear
how developers can write policies., pruning policies) on
top of the controller.

There has been some work in designing a clear language
support for expressing which failures to inject. FAIL (Raul
Injection Language) is a domain-specific language that de-
scribes failure scenarios for Grid middlewa®8]. FIG also
uses a domain-specific language to inject failures at §brar
level [9]. Orchestra uses TCL scripts to inject failures at
TCP level [L7]. Genesis2 uses a scripting language to specify
service-level failures33. LFl uses an XML-based language
to trigger failures at library leved9]. These works however
do not describe how a wide range of policies can be written
in their languages. Furthemore, the tester might need te wri
from scratchthe failure-injection tasks in these languages. In
contrast, in our work, we abstract out a failure-injectiask,
and let testers easily use the information in the abstrattio
write policies.

Our work is motivated by the need to exercise multi-
ple failures especially to test cloud software systems. As
mentioned before, one major challenge is the large num-
ber of combinations of failures to explore. One direct way
to explore the space is via randomness. For example, ran-
dom injection of failures is employed by the developers at
Google [L2], Yahoo! [5]], Microsoft [52], Amazon P7], and
other placesZ9]. Random failure-injection is relatively sim-
ple to implement, but the downside is that it can easily miss
corner-case bugs that manifest only when specific failure se
guences are injected.

Another approach is to exhaustively explore all possible
failure scenarios by injecting sequences of failures ipad-
sible ways during execution. However, we found that within
the execution of a protocok(g, distributed write protocol,
log recovery), there are potentially thousands of possible
combinations of failures that can be exercised, which can
take hundreds of hours of testing tim26]. Thus, exhaus-
tive testing is plausible only if the tester has enough time
udget and computing resources.

Other than random and exhaustive approaches, there has
been some work in devising smart techniques that systemat-

2011/4/22

ically prune down large failure spaces. Extensible L40][the two components. (3) We present many policies to prune
for example automatically analyzes the system to find code down the large number of combinations of multiple failures.
that is potentially buggy in its handling of failures.§, sys- Real-world adoption of REFAIL is in progress.

tem calls that do not check some error-codes that could be Currently, we are also adding two other important fea-
returned). AFEX B5] automatically figures out the set of turesto REFAIL : support for triaging of failed experiments,
failure scenarios that when explored can meet a certaimgive and parallelizing the whole architecture oREFAIL. Since
coverage criterion like a given level of code coverage.ésus debugging each failed experiment can take a significant
a variation of stochastic beam search to find the failure sce-amount of time (many hours or even days), being able to au-
narios that would have the maximal effect on the coverage tomatically triage failed experiments according to thesug
criterion. Fuet al. [22] use compile-time analysis to find that caused them can be very useful. PoliciesRefRAIL al-
which failure-injection points would lead to the execution ready prune down a failure space and result in a speed-up of
of which error recovery code. They use this information to the entire failure testing process, but parallelizirRgPAIL
guide failure injection to obtain a high coverage of recov- would lead to an even greater speed-up. The test workflow
ery code. To the best of our knowledge, the authors of theseof PREFAIL can in fact be very easily parallelized.

works do not address pruning of combinations of multiple ~ Overall, our goal in building REFAIL is to help to-
failures in distributed systems. day’s large-scale distributed systems “prevail” agairos-p

In our previous work 25], we begun the quest of find- sible hardware failures that can arise. Although so far we
ing techniques to prune down multiple-failure sequenaes. | use REFAIL primarily to find reliability bugs, we envision
this prior work, we only presented two rigid pruning tech- PREFAIL will empower many more program analyses “un-
nigues which are hard-coded in the failure-injection eagin der failures”. That is, we note that many program analy-
that we built. Based on more experience and conversationses (related to data races, deadlocks, security, etc.)fare o
with some developers of cloud software systems, we foundten done when the target system faces no failure. However,
that there were many more pruning policies that a tester we did find data races and deadlocks under some failure sce-
would like to use. This led us to re-think and re-structure narios. Therefore, for today’s pervasive cloud systems, we
our failure-injection framework so that it can let testeas€ believe that existing analysis tools should also run when th
ily and rapidly write various kinds of policies. target system faces failures. The challenge is that some pro

The multiple-failure combinatorial explosion problem is gram analyses might already be time-consuming. Running
similar to the state explosion problem in model check- them with failures will prolong the testing time. We believe
ing. Existing system model-checke&?[53] use domain- the pruning policies that®EFAIL supports will be valuable
specific optimization techniques to address the state explo in reducing the testing time for these analyses. And again,
sion problem. However, when it comes to multiple failures, we hope that our work attracts other researchers to present
we did not find any system model-checker that is able to other pruning alternatives.
effectively prune down combinations of multiple failures.

We believe that some of the pruning strategies that we have§8, Acknowledgments
introduced in our work can be integrated within a system
model checker.

In summary, there is only a small amount of work that
addresses smart failure exploration. Thus, it is not ssirggi
that practitioners of cloud systems still consider the eutrr
state of recovery testing to be behind the tim&g.[Com-
pared to other work, our framework targets distributed sys-
tems and addresses multiple failures in detail. We hope that
our work attracts other researchers to present other altern
tives to prune down multiple failure combinations.

This material is based upon work supported by Comput-
ing Innovation Fellowship and the National Science Founda-
tion under grant Nos. CCF-1018729 and CCF-0747390. We
also thank Eli Collins and Todd Lipcon from Cloudera Inc.
for helping us confirm the HDFS bugs that we found. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of NSF or other institutions.

References

[1] Applications and organizations using Hadoop/HDFS.

7. Conclusion http://wiki.apache.org/hadoop/PoweredBy.

We have presented RRFAIL, a programmable failure- [2] Hadoop MapReduce. http://hadoop.apache.org/
injection framework. With REFAIL, we have made three mapreduce.

main contributions: (1) We showREFAIL as a strong case [3] Jonathan Aldrich and Craig Chambers. Ownership Domains
of how the principle of seperation of policy and mechanism Separating Aliasing Policy from Mechanism. Proceedings
can be applied to failure-injection frameworks. (2) We de- of the 18th European Conference on Object-Oriented Pro-
sign, implement, and evaluateRBFAIL. In particular, we gramming (ECOOP '04)Oslo, Norway, June 2004.

present clear roles of the FI engine and driver, along with [4] Ajay Anand. Scaling Hadoop to 4000 nodes at Ya-
the clear and rich information abstractions that flow betwee hoo! http://developer.yahoo.com/blogs/hadoop/

15 2011/4/22

http://wiki.apache.org/hadoop/PoweredBy
http://hadoop.apache.org/mapreduce
http://hadoop.apache.org/mapreduce
http://developer.yahoo.com/blogs/hadoop/posts/2008/09/scaling_hadoop_to_4000_nodes_a

posts/2008/09/scaling_hadoop_to_4000_nodes_a. age Technologies (FAST '04an Francisco, California, April

[5] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, 2004.
Nathan C. Burnett, Timothy E. Denehy, Thomas J. Engle, [17] Scott Dawson, Farnam Jahanian, and Todd Mitton. Experi
Haryadi S. Gunawi, James Nugent, and Florentina |. Popovici ments on Six Commercial TCP Implementations Using a Soft-
Transforming Policies into Mechanisms with Infokernel. In ware Fault Injection Tool. Software—Practice and Experi-

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Proceedings of the 19th ACM Symposium on Operating Sys- ence 27:1385-1410, 1997.
tems Principles (SOSP '03Bolton Landing, New York, Oc-

[18] Jeffrey Dean. Underneath the covers at google: Cusyst
tober 2003.

tems and future directions. [Boogle 1/Q 2008.

Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar [19; jefirey Dean and Sanjay Ghemawat. Mapreduce: Simglifie
Pasupathy, and Jiri Schindler. An Analysis of Latent Sec- data processing on large clusters. Aroceedings of the 6th

tor Errors in Disk Drives. InProceedings of the 2007 ACFM Symposium on Operating Systems Design and Implementation
SIGMETRICS Conference on Measurement_ and Mod_elmg of (OSDI '04), San Francisco, California, December 2004.
Computer Systems (SIGMETRICS '0%an Diego, Califor- . .

nia, June 2007. [20] Joan Feigenbaum, Rahul Sami, and Scott Shenker. Mech-

])) anism Design for Policy Routing.Distributed Computing
Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca 18(4):293-305, 2006.

Schroeder, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci- . . . -
Dusseau. An Analysis of Data Corruption in the Storage [21] Daniel Ford, Franis Labelle, Florentina 1. Popoviciuivay

Stack. InProceedings of the 6th USENIX Symposium on File Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, and

and Storage Technologies (FAST '0&an Jose, California, Sean Quinlna. Availability in Globally Distributed Stoeag

February 2008 Systems. IrProceedings of the 9th Symposium on Operating
’ o Systems Design and Implementation (OSDI, M@ncouver,

J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek Canada, October 2010.

Fault Injection Experiments Using FIATEEE Transactions .)

on Computers39(4):1105-1118, April 1990. [22] Chen Fu, Barbara G. Ryder, Ana Milanova, and David Won-

nacott. Testing of Java Web Services for RobustnesBrdn
Pete Broadwell, Naveen Sastry, and Jonathan Traupmén. F ceedings of the International Symposium on Software Eestin
A Prototype Tool for Online Verification of Recovery Mech- and Analysis (ISSTA '04Boston, Massachusetts, July 2004.
anisms. InWorkshop on Self-Healing, Adaptive and Self-

Managed Systems [23] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.

The Google File System. IRroceedings of the 19th ACM

Mike Burrows. The Chubby lock service for loosely-ctegh Symposium on Operating Systems Principles (SOSP, '03)
distributed systems. IRroceedings of the 7th Symposium on Bolton Landing, New York, October 2003.

Operating Systems Design and Implementation (OSDI, '06)

Seattle, Washington, November 2006 [24] Garth Gibson. Reliability/Resilience Panel. High-End

Computing File Systems and 1/0 Workshop (HEC FSIO,’10)
George Candea and Armando Fox. Crash-Only Software. Arlington, VA, August 2010.

In The Ninth Workshop on Hot Topics in Operating Systems [25] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Advar

(HotOS 1X) Lihue, Hawaii, May 2003. Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H.
Tushar Chandra, Robert Griesemer, and Joshua Redstone Arpaci-Dusseau, and Koushik Sen.ATE and DESTINI: A

Paxos Made Live - An Engineering Perspective Ploceed- Framework for Cloud Recovery Testing. Rroceedings of
ings of the 26th ACM Symposium on Principles of Distributed the 8th Symposium on Networked Systems Design and Imple-
Computing (PODC '07)Portland, Oregon, August 2007. mentation (NSDI '11)Boston, Massachusetts, March 2011.
Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson Gefidsi [26] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Joseph M.
Deborah A. Wallach, Michael Burrows, Tushar Chandra, An- Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
drew Fikes, and Robert Gruber. Bigtable: A Distributed Stor Dusseau, and Koushik Sen. Towards Automatically Check-
age System for Structured Data. MRroceedings of the 7th ing Thousands of Failures with Micro-specifications. Tine
Symposium on Operating Systems Design and Implementation 6th Workshop on Hot Topics in System Dependability (HotDep
(OSDI '06), Seattle, Washington, November 2006. ’10), Vancouver, Canada, October 2010.
Eli Collins and Todd Lipcon. Contact Persons at Cloudera [27] Alyssa Henry. Cloud Storage FUD: Failure and Uncettain
Inc., 2011. and Durability. InProceedings of the 7th USENIX Symposium
Brian Cooper, Adam Silberstein, Erwin Tam, Raghu Ramak on File and Storage Technologies (FAST '09@n Francisco,
ishnan, and Russell Sears. Benchmarking Cloud Serving Sys- California, February 2009.
tems with YCSB. InProceedings of the 2010 ACM Sympo- [28] William Hoarau, Sebastien Tixeuil, and Fabien Vautdwl
sium on Cloud Computing (SoCC '10hdianapolis, Indiana, FAIL-FCI: Versatile fault injection. Journal of Future Gam
June 2010. ation Computer Systems archive, Volume 23 Issue 7, August,
2007.

Peter Corbett, Bob English, Atul Goel, Tomislav Grecana

Steven Kleiman, James Leong, and Sunitha Sankar. Row-[29] Todd Hoff. Netflix: Continually Test by Failing Servewngth

Diagonal Parity for Double Disk Failure Correction. Bmo- Chaos Monkeyhttp://highscalability. com, December

ceedings of the 3rd USENIX Symposium on File and Stor- 2010.

16 2011/4/22

http://developer.yahoo.com/blogs/hadoop/posts/2008/09/scaling_hadoop_to_4000_nodes_a
http://highscalability.com

[30] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar Krlye
Fault Injection Techniques and ToollEEE ComputerApril
1997.

[31] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, aed-B
jamin Reed. ZooKeeper: Wait-free coordination for Intérne

[32]

[33]

scale systems. IRroceedings of the 2010 USENIX Annual
Technical Conference (ATC 'LBoston, Massachusetts, June
2010.

Andreas Johansson and Neeraj Suri. Error Propagatiufii-P
ing of Operating Systems . Proceedings of the International

Conference on Dependable Systems and Networks (DSN '05) [46]

Yokohama, Japan, June 2005.

Lukasz Juszczyk and Schahram Dustdar. Programmable Fa
Injection Testbeds for Complex SOA. Rroceedings of the
8th International Conference on Service Oriented Comutin
(ICSOC '10) San Francisco, California, December 2010.

[34] Wei-lun Kao, Ravishankar K. lyer, and Dong Tang. FINE: A

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

Fault Injection and Monitoring Environment for Tracing the
UNIX System Behavior Under Faults. IEEE Transactions
on Software Engineeringrages 1105-1118, 1993.

Lorenzo Keller, Paul Marinescu, and George Candea. &FE
An Automated Fault Explorer for Faster System Testing,
2008.

Philip Koopman and John DeVale. Comparing the Robisstne
of POSIX Operating Systems. Proceedings of the 29th In-

[45] C. J. Price and N. S. Taylor.

Conference on Dependable Systems and Networks (DSN '05)
Yokohama, Japan, June 2005.

[44] Vijayan Prabhakaran, Lakshmi N. BairavasundaramjnNit

Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. IRON File Systems.Proceed-
ings of the 20th ACM Symposium on Operating Systems Prin-
ciples (SOSP '05)Brighton, United Kingdom, October 2005.

Automated multiple failure
FMEA. Reliability Engineering and System Safetg(1):1—

10, April 2002.

Bianca Schroeder, Sotirios Damouras, and Phillipd Glh-
derstanding Latent Sector Errors and How to Protect Against
Them. InProceedings of the 8th USENIX Symposium on File
and Storage Technologies (FAST ’'1®an Jose, California,
February 2010.

Bianca Schroeder and Garth Gibson. Disk failures in the
real world: What does an MTTF of 1,000,000 hours mean to
you? InProceedings of the 5th USENIX Symposium on File
and Storage Technologies (FAST '0Ban Jose, California,
February 2007.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The Hadoop Distributed File System. In
Proceedings of the 26th IEEE Symposium on Massive Stor-
age Systems and Technologies (MSST, Iiyline Village,
Nevada, May 2010.

ternational Symposium on Fault-Tolerant Computing (FTCS- [49] Alex C. Snoeren and Barath Raghavan. Decoupling Policy

29), Madison, Wisconsin, June 1999.

Avinash Lakshman and Prashant Malik. Cassandra - andece
tralized structured storage system.Tine 3rd ACM SIGOPS
International Workshop on Large Scale Distributed Systems
and Middleware (LADIS '09)Florianopolis, Brazil, October
20009.

R. Levin, E. Cohen, W. Corwin, F. J. Pollack, and W. Wulf.
Policy/mechanism separation in Hydra.Rrmoceedings of the

5th ACM Symposium on Operating Systems Principles (SOSP
'75), Austin, TX, November 1975.

from Mechanism in Internet Routindd\CM SIGCOMM Com-
puter Communication Review4(1), January 2004.

[50] Evan Speight, Hazim Shafi, Lixin Zhang, and Ramakrishna

Rajamony. Adaptive mechanisms and policies for managing
cache hierarchies in chip multiprocessors. Froceedings

of the 32nd Annual International Symposium on Computer
Architecture (ISCA '05)Madison, Wisconsin, June 2005.

[51] Hadoop Team. Hadoop Fault Injection Framework and Deve

opment Guidehttp://hadoop.apache.org/hdfs/docs/
r0.21. O/faultinject_fra.mework .html.

Paul Marinescu and George Candea. LFI: A Practical and [52] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezen

General Library-Level Fault Injector. rroceedings of the In-
ternational Conference on Dependable Systems and Networks
(DSN '09) Lisbon, Portugal, June 2009.

Paul D. Marinescu, Radu Banabic, and George Candea. An
Extensible Technique for High-Precision Testing of Recpve
Code. InProceedings of the 2010 USENIX Annual Technical
Conference (ATC '10Boston, Massachusetts, June 2010.

David Patterson, Garth Gibson, and Randy Katz. A Case fo
Redundant Arrays of Inexpensive Disks (RAID).Rnoceed-
ings of the 1988 ACM SIGMOD Conference on the Manage-
ment of Data (SIGMOD '88)Chicago, lllinois, June 1988.

Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz AndBar-
roso. Failure Trends in a Large Disk Drive Population. In
Proceedings of the 5th USENIX Symposium on File and Stor-
age Technologies (FAST 'Q7%an Jose, California, February
2007.

Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Model-Based Failure Analysis of
Journaling File Systems. IRAroceedings of the International

17

Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and
Lidong Zhou. MODIST: Transparent Model Checking of Un-
modified Distributed Systems. Proceedings of the 6th Sym-
posium on Networked Systems Design and Implementation
(NSDI '09), Boston, Massachusetts, April 2009.

[53] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal

Musuvathi. Using Model Checking to Find Serious File Sys-
tem Errors. InProceedings of the 6th Symposium on Oper-
ating Systems Design and Implementation (OSDI,'&gn
Francisco, California, December 2004.

2011/4/22

http://hadoop.apache.org/hdfs/docs/r0.21.0/faultinject_framework.html
http://hadoop.apache.org/hdfs/docs/r0.21.0/faultinject_framework.html

