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Abstract

Structural and Algorithmic Properties of Static and Mobile Random Geometric Graphs

by

Alexandre de Oliveira Stauffer

Doctor of Philosophy in Computer Science

and the Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor Alistair Sinclair, Chair

We study fundamental problems for static and mobile networks. First, we consider the
random geometric graph model, which is a well-known model for static wireless networks.
In this model, n nodes are distributed independently and uniformly at random in the d-
dimensional torus of volume n and edges are added between pairs of nodes whose Euclidean
distance is at most some parameter r. We consider the case where r is a sufficiently large
constant so that a so-called giant component (a connected component with Θ(n) nodes)
exists with high probability. In this setting, we show that the graph distance between every
pair of nodes whose Euclidean distance is sufficiently large is only a constant factor larger
than their Euclidean distance. This result gives, as a corollary, that the diameter of the
giant component is Θ(n1/d/r). Then, we apply this result to analyze the performance of a
broadcast algorithm known as the push algorithm. In this algorithm, at each discrete time
step, each informed node chooses a neighbor independently and uniformly at random and
informs it. We show that the push algorithm informs all nodes of the giant component of a
random geometric graph within a number of steps that is only a constant factor larger then
the diameter of the giant component.

In the second part of the thesis, we consider a model of mobile graphs that we call mobile
geometric graphs, and which is an extension of the random geometric graph model to the
setting where nodes are not static but are moving in space in continuous time. In this model,
we start with a random geometric graph and let the nodes move as independent Brownian
motions. Then, at any given time, there exists an edge between every pair of nodes whose
Euclidean distance at that time is at most r. This model has been recently used as a model
for mobile wireless networks. We study four fundamental problems in this model: detection
(the time until a target point—fixed or moving—is within distance r of some node of the
graph); coverage (the time until all points inside a finite box are detected by the graph);
percolation (the time until a given node belongs to the giant component of the graph) and
broadcast (the time until all nodes of the graph receive a piece of information that was
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initially known by a single node). We obtain precise asymptotics for these quantities by
combining ideas from stochastic geometry, coupling and multi-scale analysis.

Finally, in the last part of the thesis, we revisit the push algorithm described above and
study its performance in general regular graphs. Our goal is to understand the relation
between the performance of the push algorithm and the vertex expansion of the graph. We
prove an upper bound for the runtime of this algorithm that depends on the vertex expansion
of the graph and is tight up to polylogarithmic factors. Then, we show that there exists a
substantial difference between the impact of vertex expansion and edge expansion on the
performance of the push algorithm. In particular, we prove the existence of regular graphs
(which are also vertex transitive) that have constant vertex expansion and for which the
runtime of the push algorithm is a factor of Ω(log n) slower than on any regular graph with
constant edge expansion.
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Chapter 1

Introduction

Wireless networks have been the source of much research within both the practical and
theoretical communities in computer science, as well as other areas of research such as applied
probability and electrical engineering. From a theoretical perspective, problems related to
wireless networks have not only proved to be interesting in their own right, but have fostered
the development of innovative proof techniques inspired by results on Random Graphs [71],
Stochastic Geometry [83], and Percolation Theory [48].

In this thesis, we will be mostly concerned with the study of random graph models
for static and mobile wireless networks. In 1959, Erdős and Rényi [37] and Gilbert [45]
introduced two models for random graphs, which are now regarded as the foundations of
random graph theory. In the model of Erdős and Rényi [37], for two fixed positive integers n
and m, we construct a graph with n nodes and m edges by choosing the m edges uniformly
at random from the set of all

(
n
2

)
possible pairs of nodes. In the model of Gilbert [45], given

a parameter p ∈ (0, 1) and a positive integer n, we construct a random graph with n nodes
by taking each of the

(
n
2

)
pairs of nodes and adding an edge between them with probability

p independently of all the other edges.
These models have been extensively studied and many of their properties are by now

widely understood; see for example the books by Bollobás [13] and Janson,  Luczak and
Ruciński [55]. However, as was pointed out by Gilbert as early as 1961 [46], these two
models do not seem to capture very well the properties of some real-world networks, such as
many types of wireless networks. For this reason, Gilbert [46] introduced a different model
of random graphs, using as a motivating scenario the case where the nodes of the graph are
stations with the capability of transmitting messages over short distances through the air.
In this type of network, signals transmitted through the air have their amplitude attenuated
as they move away from the transmitting node; thus, a pair of nodes can only exchange
messages if they are sufficiently close to each other.

We now briefly introduce the model defined by Gilbert [46], which we refer to as the
random geometric graph model, but which is also often called the boolean model. We let S be
the torus of volume n in d-dimensional Euclidean space, and take the nodes of the graph to
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be distributed as a Poisson point process with intensity λ over S; i.e., the number of nodes
in any bounded subregion S ⊆ S is a Poisson random variable with mean λ vol (S), where
vol (S) is the volume of S. Note that the parameter λ > 0 governs the density of nodes per
unit volume. Then, an edge is created between every pair of nodes for which their Euclidean
distance is smaller than a certain parameter r, referred to as the transmission range. It
follows by a standard scaling argument that the structure of the random geometric graph
depends only on the product λ vol (B(0, r)) (where B(x, r) is the ball of radius r centered
at x ∈ R

d) [14], so we may fix r and parameterize the model on λ only. Asymptotic properties
of random geometric graphs have been studied for n going to infinity while λ may or may
not depend on n. For extensive background on this topic, we refer the reader to the books
by Meester and Roy [65] and Penrose [71].

Instead of having a random number of nodes, we can consider the model where exactly
λn nodes are placed independently and uniformly at random in S. Not surprisingly, results
that hold with high probability for random geometric graphs can be translated to the model
with a fixed number of nodes using a technique called de-Poissonization [71]. We remark
that Gilbert, in his original paper [46], considered only the case S = R

d, which is the infinite-
volume limit as n→ ∞. Most of our analyses will consider the case S = R

d, which is usually
mathematically cleaner. However, since many existing results on random geometric graphs
depend on n and cannot be described in the case S = R

d, in this section we will consider
the more general setting where S is the torus of volume n, and will explicitly use the term
infinite random geometric graph to refer to the case S = R

d.
Clearly, increasing λ increases the average degree of the nodes. As is well known, there are

two critical values of λ at which the connectivity properties of the random geometric graph
undergo a significant change. First there is the percolation threshold λ = λc (a constant that
depends on the dimension d), so that if λ > λc the network w.h.p.1 has a unique “giant”
component containing a constant fraction of the nodes, while if λ < λc all components have
size O(logn) w.h.p. [71]. Second, at the connectivity threshold λ = logn

vol(B(0,r))
, the network

becomes connected w.h.p. [50]; note that connectivity requires that λ, and hence the average
degree, grows with n. The percolation threshold λ = λc occurs also in infinite random
geometric graphs, in which case the giant component is the unique infinite component (or
“infinite cluster”) with probability 1.

There are many theoretical results on routing and other algorithmic questions on random
geometric graphs. Naturally most of these results are restricted to connected graphs, which
requires the unrealistic assumption that the average degree is unbounded. We postpone a
detailed discussion of these results to Section 1.2, and mention here only the seminal work
of Gupta and Kumar [51, 52] (with refinements by Franceschetti et al. [41]), who examined
the information-theoretic capacity (or throughput) of random geometric graphs above the
connectivity threshold. The capacity is defined as the number of bits per unit time that

1We shall take the phrase “w.h.p.” (“with high probability”) to mean “with probability tending to 1 as
n → ∞.”
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each node u can transmit to some (randomly chosen) destination node tu in steady state,
assuming constant size buffers in the network. Gupta and Kumar showed that the capacity
per unit node cannot be larger than O(n−1/2) even when nodes are strategically deployed.
Since the capacity tends to 0 as n → ∞, this suggests a fundamental limitation on the
scalability of such networks. Later, Franceschetti et al. [41] showed that this upper bound
on the capacity is tight for random geometric graphs.

A central feature of many ad hoc networks is that the nodes are moving in space. One
such case is vehicular networks, where wireless devices are installed in buses, taxis, private
cars, and other means of transportation and are used to collect information regarding traffic
accidents or vehicle breakdowns. This information is then routed among the vehicles in order
to reach all the nearby cars or to reach a first response unit such as a police station [70].
Another application of mobile networks arises in the context of disaster recovery. When a
major natural disaster, such as a hurricane or earthquake occurs, it may be unsafe to send
humans into the field to gather information. One alternative is to launch moving sensors
into the field from an aircraft to collect information and transmit it to a rescue unit. As
shown in [65], static (non-mobile) nodes can only efficiently cover a region if either they
are strategically deployed, which is not realistic when sensors are deployed from an aircraft,
or their density or transmission range is unbounded, which is economically infeasible or
unrealistic due to the power constraints of the sensors. In this situation, allowing the sensors
to move inside the region may substantially improve the efficiency of a rescue operation.

Such mobile networks are frequently modeled using random geometric graphs, augmented
by motion of the nodes. Once mobility is injected, the questions of interest naturally change
from those in the static case. For example, connectivity no longer plays such a central
role because mobility may allow nodes u, v to exchange messages even in the absence of
a path between them at any given time: namely, u can route its message to v along a
time-dependent path, opportunistically using other nodes to relay the message towards v.
Networks of this kind are often termed “delay tolerant networks” [38]. This allows us to
focus not on the rather artificial connectivity regime mentioned above (where the average
degree grows with n), but instead on the case where both λ and r (and hence the average
degree) are constants. This is obviously highly desirable as it makes the model much more
realistic and scalable.

There are rather few rigorous results on wireless networks with mobile nodes, and those
that do exist typically either make unrealistic assumptions about node mobility (such as
unbounded range of motion [49, 28, 22]), or work in the connectivity regime which, as we
have seen, requires unbounded density or transmission range [27, 44]. We discuss these and
other existing results for mobile graphs in more detail in Section 1.2, and mention here
only the result of Grossglauser and Tse [49] which contrasts with the result of Gupta and
Kumar [51, 52] for static graphs mentioned above.

Grossglauser and Tse [49] (see also [28]) consider a very simple model of mobility where,
at each discrete time step, each node chooses a position in S independently and uniformly
at random and moves there instantaneously. They analyze the following two-hop routing
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scheme: if a node u has a message to send to a node v, u first sends it to its current closest
neighbor, and then this node waits until v is its closest neighbor before transmitting u’s
message to v. Grossglauser and Tse proved that this type of mobility model and this routing
scheme achieve constant capacity, which dramatically improves upon the result mentioned
above [51, 41] that the capacity of static networks goes to zero as n → ∞. This result
is among the first rigorous demonstrations that mobile networks may achieve substantially
better performance than static networks; however, it requires the unrealistic assumption that
nodes move a distance comparable to the diameter of the entire region S at each unit of time.

We conclude this section by discussing the broadcast problem, which is one of the most
fundamental problems in networks. In this thesis, we not only analyze the broadcast problem
for static and mobile wireless networks, but also take a more theoretical approach to the wider
problem of broadcasting information on general graphs.

We consider a very simple algorithm for broadcasting called the push algorithm, which is
also sometimes referred to as randomized rumor spreading or the random phone call model.
We assume that initially there exists only one informed node, that is, there is a single node
with the information to be broadcast. The algorithm runs in discrete time and, at each
time step, each informed node chooses a neighbor independently and uniformly at random
and informs it (which is referred to as a push operation) until all nodes of the network are
informed.

The push algorithm has been applied successfully both in the context where a single piece
of information has to be distributed from one node to all the others [53], as well as in the
setting where information may be injected at various nodes at different times. The latter
problem occurs, for example, when maintaining data integrity in distributed databases, such
as name servers in large corporate networks [26, 57].

Despite looking näıvely simple, the push algorithm has been shown to be surprisingly
efficient for many types of networks. In addition, it has also been shown to be robust against
failures [56, 40]. From a more theoretical perspective, the runtime of the push algorithm
has been observed to be related to other fundamental processes in computer science, such
as the mixing time of Markov chains [15, 34, 77], the cover time of random walks [35] and
the expansion of graphs [69, 77, 20, 19].

1.1 Summary of Results

Static Networks

We start by presenting our results for static networks, which will be more thoroughly
discussed in Chapter 2. These results are based on a joint work with Milan Bradonjić,
Robert Elsässer, Tobias Friedrich and Thomas Sauerwald [16]. We restrict our analysis here
to finite random geometric graphs in two dimensions.
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Let G be a random geometric graph in two dimensions, where the nodes are given by a
Poisson point process with intensity λ over S, the torus of volume n. We let the transmission
range r be fixed, and add an edge between every pair of nodes whose Euclidean distance is
at most r. We consider the case λ > λc, so that a giant component with Θ(n) nodes exists
w.h.p., and denote by G′ the graph induced by the giant component of G. In our discussion
here, we assume that λ is a constant, but r may grow with n.

We take two nodes u, v of G′ and study the graph distance between them; i.e., the length
of the shortest path from u to v in G′. Since the transmission range is r, the graph distance
between u and v, which we denote by dG(u, v), is at least ‖u − v‖2/r. Our first result (see
Theorem 2.1) says that, w.h.p.,

dG(u, v) = O(‖u− v‖2/r) for all u, v in G′ such that ‖u− v‖2 = Ω(log6 n/r4). (1.1)

A direct consequence of this result is that the diameter of the giant component of G is
Θ (

√
n/r), a result that was previously known only above the connectivity threshold [33].

The proof of (1.1) uses a renormalization argument and ideas from continuum percolation.
We also study the problem of broadcasting information on the giant component of random

geometric graphs with λ > λc, where initially there exists only one informed node in G′. We
study the runtime of the push algorithm over G′. Recall that, in the push algorithm, at each
time step, each informed node chooses a neighbor independently and uniformly at random
and informs it. The runtime of the push algorithm is clearly lower bounded by the diameter
of G′, which we denote by diam(G′). In our second main result, we establish a tight upper
bound for the runtime of the push algorithm in G′; more formally, we show in Theorem 2.3
that, w.h.p., the push algorithm informs all nodes of G′ within Θ(diam(G)) steps.

Mobile Networks

In our study of mobile networks, we employ the following model, which we refer to as
the mobile geometric graph model. We begin at time 0 with an infinite random geometric
graph G0 over S = R

d. Nodes move independently in continuous time according to standard
Brownian motion. It is not hard to verify that this produces a stationary sequence of graphs
(Gs)s∈R+; i.e., for any fixed s, the graph Gs is an instance of the random geometric graph
model. However, it is crucial to notice that, though Gs and G0 have the same distribution,
they are not independent; it is this feature that makes mobility challenging to analyze.

This model is essentially equivalent to the “dynamic boolean model” introduced by van
den Berg, Meester and White [12] in the context of dynamic continuum percolation. We
choose to work principally in the infinite volume limit, S = R

d, which is matehmatically
cleaner. However, where appropriate, results obtained in this setting can typically be
translated to finite volume by working in a torus S of volume n (see Corollary 3.7 for an
example).

The mobile geometric graph model inherits many properties from random geometric
graphs. For example, it was proved in [12] that if λ > λc, where λc is the same critical value
of λ discussed above for random geometric graphs, then Gs contains a giant component
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at all times s almost surely. Similarly, if λ < λc then Gs contains no giant component at
all times almost surely. Using standard terminology, this means that the mobile geometric
graph model has no exceptional times.

We address four fundamental problems in the mobile geometric graph model: detection,
coverage, percolation and broadcast. The following results are presented in Chapter 3 and
are based on joint work with Yuval Peres, Alistair Sinclair and Perla Sousi [80, 73].

Detection. Consider a target particle u that, at time 0, is located at the origin of Rd.
We say that u is detected by the graph at time s if there exists a node of Gs within distance
r of u. We define the detection time Tdet as the first time at which u is detected by the
graph. Kesidis, Konstantopoulos and Phoha [58] (see also [60]) studied the case where u is
non-mobile (only the nodes of the graph move) and, using ideas from stochastic geometry,
they show that

P (Tdet > t) = exp (−λE [vol (W0(t))] (1 + o(1))) , (1.2)

where W0(t) is the so-called “Wiener sausage” up to time t (essentially the trajectory of a
Brownian motion “fattened” by a disk of radius r). The expected volume of W0(t) is well
known [82, 11] and, in two dimensions, it scales as Θ(t/ log t). We extend this result for the
case where u also moves. We show in Theorem 3.1 that, in two dimensions, provided the
motion of u is continuous, the best strategy for u to avoid detection is to stay fixed and not
to move. The intuition behind this result is that, if u has remained at the origin and has
not been detected from time 0 to some time s, then this implies that the density of nodes
close to the origin is smaller than the typical density. Therefore, it is better for u to stay at
its current position than to explore other regions of the space.

Coverage. Complementing the study of detection, we define the coverage time of a cube
QR of side length R as the first time at which all points in QR are detected by the nodes of
the mobile geometric graph. Let Tcov(QR) be the coverage time of QR. A natural question
proposed by Konstantopoulos [60] is to derive the asymptotics of Tcov(QR) as R → ∞. We
establish that the expected coverage time of QR scales as

E [TcovQR] =





Θ(log2R), for d = 1
Θ(logR log logR), for d = 2

Θ(logR), for d ≥ 3.
(1.3)

We obtain the precise constants for the expressions above and also show that the expected
coverage time of QR is concentrated around its expectation as R → ∞. This result is given
in Theorem 3.4.

Percolation. As discussed above, when λ > λc the mobile geometric graph contains a
giant component at all times. However, the giant component changes over time and, from
the perspective of a given node u, it is important to known what is the first time at which
u belongs to the giant component. We call this the percolation time and denote it by Tperc.
First notice that the percolation time is at least as large as the dectection time. Therefore,
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it follows from (1.2) and results for the volume of the Wiener sausage [82, 11] that

P (Tperc > t) ≥
{

exp(−ct/ log t), for d = 2
exp(−ct), for d ≥ 3

for some dimension-dependent constant c. (Note that a giant component does not exist
when d = 1 for any value of λ.) We combine ideas from coupling and multi-scale analysis
to derive an upper bound for P (Tperc > t) which is tight up to log t factors in the exponent.
Our result for this problem, which is given in Theorem 3.6, establishes that

P (Tperc > t) ≤ exp

(
−c t

log3+6/d t

)
,

for some constant c. In proving this result, we develop a coupling argument that gives a
general framework for handling dependencies over time. This technique has already been
successfully employed in other contexts [9].

Broadcast. For the broadcast problem, we consider a finite mobile geometric graph over
the torus S of volume n. We assume that an arbitrary node has a piece of information at
time 0 and that a node gets informed whenever it is in the same connected component of an
informed node. In mobile wireless networks, the speed of transmission is usually much higher
than the speed of the motion of the nodes, so it is realistic to assume that messages can
propagate instantaneously throughout an entire connected component. Our result for the
percolation time can be used to show that this model of broadcast informs all the nodes of a
mobile geometric graph with λ > λc within O(logn(log log n)3+6/d) steps (see Corollary 3.7).
This result is optimal up to log logn factors.

Randomized Broadcast on General Graphs

In Chapter 4 we return to the push algorithm of Chapter 2 in a more general class of graphs,
while Chapters 2 and 3 both focused on geometric graphs. Recall that, in this algorithm,
initially there exists one informed node and, at each discrete time step, each informed node
picks a neighbor independently and uniformly at random and informs it. It is easy to see
that, for any graph, the push algorithm takes at least Ω(diam(G) + log n) steps to inform
all nodes, since the set of informed nodes can at most double in size at each step. A natural
question to ask is for which classes of graphs is the push algorithm optimal up to constant
factors. This is known for some types of graphs such as complete graphs [42, 76] and Erdős-
Rényi random graphs [39, 40] (see the discussion in Section 1.2 for more results). Also,
note that our results above establish that the push algorithm is optimal for (static) random
geometric graphs.

We are mostly interested in studying how the notion of expansion on graphs affects the
performance of the push algorithm. For a graph G with n nodes and node set V , we define
the conductance of G by

Φ = Φ(G) = min
V ′⊂V : vol(V ′)≤vol(V )/2

E(V ′, V \ V ′)

vol (V ′)
, (1.4)
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where E(V ′, V \ V ′) is the number of edges with one endpoint in V ′ and another in V \ V ′

and vol (V ′) is the sum of the degrees of the nodes in V ′. A similar notion of expansion is
the vertex expansion, which is defined as

α = α(G) = min
V ′⊂V : |V ′|≤n/2

|∂V ′|
|V ′| , (1.5)

where ∂V ′ is the set of nodes of V \ V ′ that are neighbors of a node in V ′.
It was shown by Mosk-Aoyama and Shah [69] that the runtime of the push algorithm is

O(Φ−1 logn) on any regular graph. This implies that, when Φ = Θ(1), the push algorithm is
optimal up to constant factors. Chierichetti, Lattanzi and Panconesi [20] posed the problem
of whether the runtime of the push algorithm could be related to the vertex expansion of
the graph. Our main result in this section says that, for any regular graph with vertex
expansion α, the runtime of the push algorithm can be upper bounded by O(α−1 log5 n)
(see Theorem 4.3). Since our result is not proved to be tight, one could ask whether it is
possible to derive a result that is analogous to the result of Mosk-Aoyama and Shah [69]
for the conductance; that is, whether the runtime of the push algorithm can be written as
O(α−1 logn). We show in Theorem 4.5 that this is false by constructing a regular graph with
α = Θ(1), and which is also vertex transitive, for which the runtime of the push algorithm is
Ω(log2 n). Also, this graph has diameter Θ(log n), which shows that even for regular graphs
with constant vertex expansion the push algorithm may not be optimal. This establishes a
substantial difference between these two notions of expansion in the context of broadcast on
graphs. The results described above, which are discussed in Chapter 4, are based on a joint
work with Thomas Sauerwald [78].

1.2 Related Work

Static Networks

Random geometric graphs have long been used as a model for static wireless networks, and by
now their structural and algorithmic properties are rather well understood mathematically.
We mention just a few results here that are directly related to the problems studied in
this thesis, and refer the reader to the books by Meester and Roy [65] and Penrose [71] for
extensive background on the subject.

We remark that most of the theoretical results on random geometric graphs consider
networks above the connectivity threshold, which requires the unrealistic assumption that
the network has an unbounded average degree. Our results for static networks discussed
above consider the more realistic setting where λ and r are constants but λ > λc. Therefore,
the graph has constant average degree and contains a giant component with Θ(n) nodes
w.h.p. In this case, we can model the network by the giant component of the random
geometric graph. We regard this as the minimum possible assumption to impose on the
random geometric graph model so that a notion of network makes sense.
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Even very simple fundamental properties of random geometric graphs are only known
in the connected case. For example, Ellis, Martin and Yan [33] established in 2007 that
the diameter of a two-dimensional random geometric graph above the connectivity threshold
is Θ(

√
n/r). Our result in (1.1) about graph distances extends this result by giving as a

corollary that, in two dimensions, the diameter of the giant component of a random geometric
graph with λ > λc is Θ(

√
n/r).

A process related to broadcast that has been studied for random geometric graphs is the
cover time of random walks. It was shown by Avin and Ercal [5] that, for two-dimensional
connected random geometric graphs, the cover time is Θ(n log n) w.h.p., which is optimal
up to constant factors. More recently, Cooper and Frieze [23] gave a more precise estimate
of the cover time of random geometric graphs that extends also to higher dimensions.

In the context of wireless networks, the problem of determining the information-theoretic
capacity of the network has received much attention. For static networks, as mentioned
above, this problem was solved by Gupta and Kumar [51, 52] and Franceschetti et al. [41],
who showed that the capacity of random geometric graphs goes to 0 as n→ ∞. In a slightly
different context, Frieze et al. [43] studied the effect of physical obstacles that obstruct
transmissions.

The detection problem that we study for mobile graphs has also been studied in the static
case. It is well known that a target is detected w.h.p. only if λ grows with n. When λ is
constant, Balister et al. [8] determine the maximum diameter of the uncovered regions, while
Dousse, Tavoularis and Thiran [30] prove that, for any λ > 0, the detection time for a target
moving in a fixed direction has an exponential tail. (Note that this is not a mobility result
as the nodes are fixed.)

A different broadcast model known as radio broadcasting has also been studied on random
geometric graphs [25, 62]. In this model, every transmission by a node is sent to all its
neighbors simultaneously. However, if two (or more) transmissions are sent to the same
node in one round, then this node cannot receive any of the transmissions. In order to
derive an efficient algorithm for radio broadcasting on random geometric graphs, Lotker and
Navarra [62] studied this problem first on a grid. Then, they emulated the corresponding grid
protocol on random geometric graphs, and obtained an optimal algorithm (up to constant
factors) for broadcasting above the connectivity threshold. However, the result of [62] only
holds if each node is aware of its own position. Later, Czumaj and Wang [25] considered
various scenarios with respect to the local knowledge of each node in the graph, and showed
that, in many settings, radio broadcasting2 can be solved in time O(diam(G)).

Mobile Networks

The scope of mathematically rigorous work with mobile nodes is much more limited, and
there is as yet no widespread agreement on an appropriate model for node mobility. The
model we use in this paper was introduced by van den Berg, Meester and White [12] under

2In [25] the so-called gossiping problem was considered, where each node possesses a different message,
and all these messages have to be disseminated efficiently to every node in the graph.
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the name “dynamic boolean model.” They proved that almost surely an infinite component
exists at all times if λ > λc. We point out that in this model, in contrast to many others,
node mobility is fixed and does not depend on n (the volume of the region S in a finite
network).

Motivated by the fact mentioned above [51] that the capacity of static networks goes to
zero as n → ∞, Grossglauser and Tse [49] (see also [28]) showed how to exploit mobility to
achieve constant capacity using a two-hop routing scheme. However, these results require
the unrealistic assumption that nodes move a distance comparable to the diameter of the
entire region S at each step. El Gamal et al. [44] study the tradeoff between capacity and
delay in a realistic mobility model but above the connectivity threshold.

Clementi, Pasquale and Silvestri [22] show how to exploit mobility to enable broadcast
in a random geometric graph sufficiently far above the percolation threshold. However, this
result again assumes that the range of motion of the nodes grows with n. In a similar
model, where the nodes are performing continuous-time random walks on Z

d, Kesten and
Sidoravicius [59] studied the case when λ is constant and showed that the rate at which a
message can be disseminated through the graph is Θ(t). This means that, after t steps, the
set of informed nodes contains, and is contained in, balls of radius Θ(t). Finally, Pettarin et
al. [75] show that the broadcast time is optimal up to logarithmic factors on finite graphs
with mobile nodes for the case where the intensity λ is also allowed to go to zero as n→ ∞.

The detection problem was addressed for mobile graphs by Liu et al. [61], assuming that
each node moves continuously in a fixed randomly chosen direction. They show that the
time it takes for the network to detect a target is exponentially distributed with expectation
depending on the intensity λ. Also, for the special case of a stationary target, as observed
by Kesidis, Konstantopoulos and Phoha in [58, 60], the detection time can be very precisely
deduced from classical results on continuum percolation and stochastic geometry [83]: namely,
it is shown in [58, 60] that Pr[Tdet > t] = exp(−λE [vol (W0(t))]), where W0(t) is the so-
called “Wiener sausage” up to time t. This volume in turn is known quite precisely [82, 11].
Drewitz et al. [32], following initial analysis by Moreau et al. [67], established that the best
strategy for a target to avoid detection is to stay put when particles move as continuous-time
random walks in Z

d. Very recently, Peres and Sousi [74] extended our results and showed
that, for a mobile geometric graph in any dimension, and for any fixed time t > 0, the best
strategy for the target to avoid detection up to time t is to stay put.

Recent work of Dı́az et al. [27] in a similar model determines, for networks exactly at the
connectivity threshold, the expected length of time for which the network stays connected
(or disconnected) as the nodes move. However, this question makes sense only for very large
values of λ (growing with n).

Randomized Broadcast on General Graphs

We review some of the existing results about the push algorithm. This algorithm was first
analyzed by Frieze and Grimmett [42], who proved that, w.h.p., the runtime is log2 n +
lnn + o(logn) on complete graphs. This result was later improved by Pittel [76]. Feige et
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al. [39] proved that, on any graph, the runtime is at most O(n logn) w.h.p., and that, for any
bounded-degree graph, O(diam(G)) rounds are sufficient. Furthermore, they established a
runtime of O(logn) on hypercubes and sufficiently dense Erdős-Rényi random graphs. This
result was extended by Elsässer and Sauerwald [34], who established an upper bound of
O(diam(G) + logn) on some classes of Cayley graphs.

To analyze the runtime of the push algorithm, it is very natural to look at the conductance
of the set of informed nodes (see (1.4) for a definition), since this reflects the proportion of
transmissions from the informed nodes that reach uninformed nodes. Many results bounding
the runtime of the push algorithm rely heavily on lower bounds on the conductance [10, 29,
40, 77] (some of these also require lower bounds on other parameters). For regular graphs,
it follows from a result of Mosk-Aoyama and Shah [69] and Sauerwald [77] that the push
algorithm informs all nodes within O(Φ−1 log n) steps w.h.p.

Very recently, Chierichetti, Lattanzi and Panconesi [20, 19] studied the so-called push-
pull algorithm, which is a variant of the push algorithm in which, at each step, each node
u (informed or uniformed) chooses a neighbor independently and uniformly at random and,
if u is informed, it informs the chosen neighbor, while if u is not informed but the chosen
neighbor is informed, then u becomes informed. This latter operation is referred to as a pull
operation. Chierichetti et al. analyzed the relation between the conductance of a (possibly
non-regular) graph and the performance of the push-pull algorithm. They show that this

algorithm informs all nodes within O
(

log2(Φ−1)
Φ

log n
)

steps. They also show in [18] that there

are (non-regular) graphs with constant conductance for which the push algorithm requires a
runtime of Ω(poly(n)) w.h.p.

We study in this thesis the relation between the vertex expansion (as defined in (1.5)) and
the runtime of the push algorithm. This measure of expansion has been studied in diverse
areas, such as random walks [6, 17], property testing [24], and graph theory [2]. In the context
of broadcasting, our results answer a question of Chierichetti, Lattanzi and Panconesi [20],
who stated that “an outstanding open problem in this area is whether [constant] vertex
expansion implies that rumor spreading is fast.”

Finally, we point out that the runtime of the push algorithm has also been related to other
processes in computer science. For example, Boyd et al. [15], Elsässer and Sauerwald [34]
and Sauerwald [77] studied the relation between the push algorithm and the mixing time of
random walks on graphs. Also, the push algorithm has been related to the cover time of
random walks by Elsässer and Sauerwald [35].
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Chapter 2

Static Networks

In this chapter we consider a two-dimensional random geometric graph over the torus S

of volume n. Recall that a random geometric graph G over S is obtained by taking the nodes
to be distributed as a Poisson point process with intensity λ over S, and creating an edge
between every pair of nodes whose Euclidean distance is at most r. It is well known that the
structure of G depends only on the product λr2. Therefore, we take λ to be a fixed constant
and let r be the only parameter of the model. We note that r may or may not depend on n.
In contrast with the convention adopted in Chapter 1, we choose to parameterize the model
on r here since this simplifies the discussion to follow. Using this convention, we have that
there exists a critical value rc such that, if r > rc, then G contains a giant component with
Θ(n) nodes w.h.p. (that is, with probability going to 1 as n → ∞). Otherwise, if r < rc,
then all components of G have size O(logn).

We focus on the regime r > rc where the random geometric graph is likely to contain a
giant component. We first show that, for any two nodes having sufficiently large Euclidean
distance, their graph distance is just a constant factor larger than the optimum. In particular,
this result shows that the diameter of the giant component is Θ(

√
n/r), which was only

previously known for the case when G is connected w.h.p. [33]. We then use this result
to show that, if a node of the giant component employs the push algorithm to broadcast
a piece of information, then w.h.p. all nodes of the giant component get informed within
O(

√
n/r + log n) rounds.

Now we state our results more formally. For any pair of nodes v1, v2 ∈ G, we say that
v1 and v2 are connected if there exists a path in G from v1 to v2, and define dG(v1, v2) as
the distance between v1 and v2 in G. Also, we denote the Euclidean distance between the
locations of v1 and v2 by ‖v1 − v2‖2. Clearly, the smallest path between two nodes v1 and v2
in G must satisfy dG(v1, v2) ≥ ‖v1 − v2‖2/r. We then obtain the following theorem relating
graph distances to Euclidean distances. We give the proof of this theorem in Section 2.1.

Theorem 2.1. If r > rc, for any two connected nodes v1 and v2 in G such that ‖v1−v2‖2 =
Ω(log6 n/r4), we have dG(v1, v2) = Θ(‖v1 − v2‖2/r) w.h.p.
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The theorem above clearly yields the following bound on the diameter of the giant
component.

Corollary 2.2. If r > rc, the diameter of the giant component of G is Θ(
√
n/r) w.h.p.

For each node s of G, let Tpush(s,G) be the time it takes for the push algorithm to inform
all nodes in the same connected component as s given that s is the only node that is initially
informed. We show that, if r > rc, for all nodes s in the giant component of G, w.h.p.,
Tpush(s,G) is within a constant factor of the minimum possible value based on the diameter.
The theorem below is proved in Section 2.2.

Theorem 2.3. For a random geometric graph G with r > rc, Tpush(s,G) = O(
√
n/r+log n)

w.h.p. for all nodes s inside the giant component of G.

2.1 Diameter and graph distance

We devote this section to proving Theorem 2.1. We consider G to be a random geometric
graph with r > rc and assume that r = O(

√
log n). (When r = ω(

√
log n), G is connected

w.h.p. and Theorem 2.1 becomes a slightly different version of [33, Theorem 8].) We show
that for any two connected nodes v1 and v2 of G such that ‖v1 − v2‖2 = Ω(log6 n/r4), we
have dG(v1, v2) = Θ(‖v1 − v2‖2/r) with probability 1 − O(n−1).

We first take two fixed nodes v1 and v2 satisfying the conditions above and show that
dG(v1, v2) = O(‖v1 − v2‖2/r) with probability 1 − O(n−3). Then, we would like to take
the union bound over all pairs of nodes v1 and v2 to conclude the proof of Theorem 2.1;
however, the number of nodes in G is a random variable and hence the union bound cannot
be employed directly. We resort to the following lemma to extend the result to all pairs of
nodes v1 and v2.

Lemma 2.4. Let E(w1, w2) be an event associated with a pair of nodes w1, w2 ∈ G. Assume
that for all pairs of nodes, P (E(w1, w2)) ≥ 1 − p, with p ∈ (0, 1). Then,

P

(
⋂

w1,w2∈G
E(w1, w2)

)
≥ 1 − 9λ2n2p− e−Ω(n).

Proof. Let N be the number of nodes in G. We condition on N ≤ 3λn. Using a Chernoff
bound for Poisson random variables, it follows easily that P (N > 3λn) ≤ e−Ω(n). Let
Ec(w1, w2) denote the complement of E(w1, w2). Note that P (Ec(w1, w2) | N ≤ 3λn) ≤
P(Ec(w1,w2))
P(N≤3λn)

≤ p
1−e−Ω(n) , for all w1, w2 ∈ G. Therefore, using the definition of conditional
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v1 v2L

S2k-1
r

r/3

S2k

Rk

Figure 2.1: Illustration for the calculation of dG(v1, v2), with the large r × r/3 rectangle Rk

and the cells S2k−1 and S2k contained in Rk.

probabilities and the union bound, we obtain

P

(
⋃

w1,w2∈G
Ec(w1, w2)

)

≤ P

(
⋃

w1,w2∈G
Ec(w1, w2)

∣∣∣∣∣ N ≤ 3λn

)
P (N ≤ 3λn) + P (N > 3λn)

≤ 9λ2n2 max
w1,w2∈G

P (Ec(w1, w2) | N ≤ 3λn) + e−Ω(n)

≤ 9λ2n2p+ e−Ω(n).

We turn now to the main task of finding a short path between our two nodes v1 and v2
(see Figure 2.1). Take the line L that contains v1 and v2 and draw a sequence of adjacent
rectangles starting from v1 until we draw a rectangle that contains v2. Each rectangle has
two sides with length r/3 that are parallel to L and two other sides with length r that are
perpendicular to L such that their middle point is contained in L. Let κ be the number of
such rectangles and refer to them as R1, R2, . . . , Rκ. For each k ∈ [1, κ], L splits Rk into two
identical, smaller rectangles which we denote by S2k−1 and S2k and refer to as “cells.”

Note that for any k and two points x ∈ Sk and x′ ∈ Sk+2, we obtain ‖x − x′‖2 ≤√
(2r/3)2 + (r/2)2 ≤ r, that is, nodes in Sk and Sk+2 are neighbors in G. For this reason,

we say that the cell Sk is adjacent to the cells Sk−2 and Sk+2. Note that v1 belongs to both
S1 and S2. We would like to find a path from v1 to v2 that starts at either S1 or S2 and
moves along adjacent cells, but we have to handle the possibility that some Sk may contain
no nodes.

Our choice for the length of the largest sides of the rectangle Rk is intended to achieve
the following property. For any path in G that crosses the region

⋃κ
i=1Ri, in the sense that

there exists an edge of the path that intersects
⋃κ
i=1Ri, it must be the case that the path

contains a node inside
⋃κ
i=1Ri. This property is crucial in our analysis, since it guarantees

that a path crossing two rectangles Rj and Rk provides a path from a node in Rj to a node
in Rk in G and can be used to move around cells that contain no nodes.
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A(Sk,g)=A(Sk+1,g) Z1 Z2 Z3 Z4
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Qk(g)
Qk(1)

Figure 2.2: Illustration for the annulus A(Sk, γ). Part (a) shows the annulus (highlighted
region) and the cells Sk−2, Sk−1, Sk, and Sk+1 in the middle. Part (b) shows the
decomposition of A(Sk, γ) into horizontal and vertical rectangles. And part (c) illustrates
the event F (A(Sk, γ)) for the left-to-right and top-to-bottom crossings (depicted as curvy
lines) of A(Sk, γ).

We refer to a cell as empty if it contains no node. For any empty cell Sk with Sk−2

being nonempty, we follow the shortest path from a node in Sk−2 to some nonempty Sk′ for
k′ ≥ k + 1. Note that there is always such a k′ since Rκ = S2κ−1 ∪ S2κ contains v2. Our
aim is to give a bound for the length of the detour around empty cells. The path starts at
v1 ∈ R1. For 3 ≤ k ≤ 2κ, if Sk is empty and Sk−2 is not empty, let Dk be the length of the
shortest path from Sk−2 to some Sk′ for k′ ≥ k+ 1. If Sk is not empty, we set Dk = 0. Also,
if Sk and Sk−2 are both empty, then we also set Dk = 0, since the detour around Sk−2 will
either go around Sk as well or lead to Sk−1, from which we can obtain an edge to Sk+1 or a
detour that goes around Sk. With these definitions we can write dG(v1, v2) ≤ κ+

∑2κ
k=3Dk.

In order to calculate Dk, we exploit the idea of “crossings” from continuum percolation.
For an odd number k ≥ 1, we consider the cells Sk−2, Sk−1, Sk, Sk+1. Let Qk(1) be the
rectangle containing all these cells, that is, Qk(1) = R(k−1)/2 ∪ R(k+1)/2. Let Qk(γ) be a
rectangle having the same center as Qk(1) and whose sides are parallel to those of Qk(1) and
have length given by γ times the side lengths of Qk(1) (in other words, Qk(γ) is a stretched
version of Qk(1)). Then, for any odd number k ≥ 1 and γ > 1, we define the annulus
A(Sk, γ) = A(Sk+1, γ) = Qk(γ) \Qk(1) (see Figure 2.2(a)).

An annulus A(Sk, γ) can be decomposed into two horizontal rectangles (Z1Z4Z5Z12 and
Z11Z6Z7Z10 in Figure 2.2(b)) and two vertical rectangles (Z1Z2Z9Z10 and Z3Z4Z7Z8 in
Figure 2.2(b)). For a horizontal rectangle, we define a horizontal crossing as a path in G
completely contained in the rectangle and that connects the left to the right side of the
rectangle, i.e., with the first node of the path being within distance r of the left side of
the rectangle and the last node of the path being within distance r of the right side of the
rectangle. Similarly, for a vertical rectangle, we define a vertical crossing as a path in G
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that is completely contained in the rectangle and that connects the top to the bottom side
of the rectangle. For an annulus A(Sk, γ), we define F (A(Sk, γ)) as the event that both
horizontal rectangles of A(Sk, γ) have a horizontal crossing and that both vertical rectangles
of A(Sk, γ) have a vertical crossing. This event is illustrated in Figure 2.2(c). Note that
when F (A(Sk, γ)) happens, the aforementioned crossings provide a cycle around Sk.

We now explain how to use the annuli to find detours around an empty cell Sk. Note
that S1 and S2 contain v1 and, consequently, are not empty. Now suppose that Sk−2 is not
empty and is connected to v1, i.e., there is a path from v1 to a node inside Sk−2. If Sk is
also not empty, then the node inside Sk is a neighbor of the node in Sk−2, and we obtain
a path from v1 to Sk. Now, assume that Sk is empty. We want to use the path from v1
to Sk−2 to construct a path from v1 to some Sk′ with k′ ≥ k + 1. Clearly, for any γ > 1,
the annulus A(Sk, γ) intersects neither Sk−2 nor Sk, but does intersect Sk+2. Take γ′ such
that F (A(Sk, γ

′)) happens and let H ⊂ Qk(γ
′) be the largest region delimited by the cycle

surrounding Sk that is induced by the crossings of A(Sk, γ
′). If v1 6∈ H , then the path from

v1 to Sk−2 provides a path from Sk−2 to the crossings of A(Sk, γ
′). If the crossings intersect

some nonempty Sk′, k
′ ≥ k + 1, then there is a path entirely contained in H from Sk−2 to

a node inside Sk′. If such a Sk′ does not exist, it must be the case that v2 ∈ H . Since v1
and v2 are connected, there is a path from v2 to the crossing of A(Sk, γ

′), and, consequently,
there is a path from Sk−2 to v2 completely contained in H . Now, if v1 ∈ H and Sk′ as above
exists, then the path from v1 to v2 intersects the crossings of A(Sk, γ

′) and can be used to
obtain a path completely contained in H from Sk−2 to Sk′. Finally, if v1 ∈ H and v2 ∈ H ,
then there is a path from v1 to v2 entirely contained in H .

This shows that whenever v1 and v2 are connected, we can use the annuli to move from
Sk to Sk′, k

′ ≥ k + 1, or to move directly to v2. Note that the constructions of Sk and
A(Sk, γ) apply to an arbitrary pair of nodes v1 and v2, independently of whether v1 and v2
are connected. This means that our calculations to follow are not conditioned on v1 and
v2 being connected. However, when v1 and v2 turn out to be connected, this construction
provides a path from v1 to v2.

Once we know that F (A(Sk, γ)) occurs for some γ, we can easily bound Dk by the
following straightforward geometric lemma.

Lemma 2.5. Let Q be a rectangle with side lengths s and αs. Let w1 and w2 be two nodes
of G contained in Q. If there exists a path between w1 and w2 entirely contained in Q, then
dG(w1, w2) ≤ 11αs2/r2.

Proof. The shortest path between w1 and w2 that is contained inside Q has the property
that for any two non-consecutive nodes u and u′ in the path, their distance is larger than
r. Otherwise, we can take the edge (u, u′) and make the path shorter. This means that if
we draw a ball of radius r/2 around every other node of the path, then the balls will not
overlap. Let m be the number of nodes in the path. There are m/2 non-overlapping balls of
radius r/2. For each ball, at least 1/4 of its area is contained inside Q. Therefore, it must
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be the case that

m ≤ 2
vol (Q)

π(r/2)2/4
=

32αs2

πr2
.

The lemma below gives an upper bound for the probability that A(Sk, γ) does not have
the required crossings.

Lemma 2.6. There exist constants c and γ0 > 1 such that, for all γ > γ0 and 1 ≤ k ≤ 2κ,
we have that

P (F (A(Sk, γ))) ≥ 1 − exp (−cγr) .
Proof. We build upon ideas from the proof of [71, Lemma 10.5]. Recall the decomposition
of A(Sk, γ) into rectangles (refer to Figure 2.2(b)) and take the top rectangle Z1Z4Z5Z12.
Its sides have lengths (γ − 1)r/2 and 2γr/3. Therefore, the aspect ratio of the rectangle
is 3(γ − 1)/(4γ) ≤ 3/4, which increases with γ. We want to calculate the probability that
such a rectangle has a horizontal crossing as γ increases. This is slightly different from the
calculation in [71, Lemma 10.5], since there the aspect ratio is fixed and the side of the
rectangle is allowed to vary. But clearly, for any rectangle with side lengths (γ − 1)r/2 and
2γr/3, we can stretch the largest sides (while keeping the smallest sides unchanged) to make
the aspect ratio be 3(γ0 − 1)/(4γ0), which we can then fix. Also, if there is a horizontal
crossing in the stretched rectangle, there must be a horizontal crossing in the original one.
Following along the lines of the proof of [71, Lemma 10.5], we can then conclude that there
are constants γ0 and c such that, for all γ ≥ γ0, a rectangle of side lengths (γ − 1)r/2 and
2γr/3 has a horizontal crossing with probability larger than 1−e−cγr/4. Applying the union
bound over the four rectangles composing A(Sk, γ) concludes the proof.

Now we use this lemma to bound the length of a detour. For any k, let Γk be the smallest
value of γ > γ0 for which F (A(Sk, γ)) occurs. Suppose that Sk is empty and Sk−2 is not
empty. We want to obtain an upper bound for Γk. Note that once we know the value of Γk,
we can apply Lemma 2.5 to conclude that Dk ≤ (22/3)Γ2

k. Since for each v1 and v2 there
are at most 2κ = O(

√
n) cells, Lemma 2.6 implies that, for all k, Dk ≤ c1 log2 n/r2 with

probability 1−O(n−4) for some constant c1. Let E(v1, v2) be the event that Dk ≤ c1 log2 n/r2

for a fixed pair of nodes v1 and v2, and all k. Thus, P (E(v1, v2)) ≥ 1 − O(n−4).
We want to apply Azuma’s inequality to

∑2κ
k=3Dk under the condition that E(v1, v2)

happens. Noting that E [Dk | E(v1, v2)] ≤ E [Dk] /P (E(v1, v2)), we proceed to derive an
upper bound for E [Dk]. The probability that Sk−2 is not empty and Sk is empty is e−r

2/6(1−
e−r

2/6). Recall that Dk ≤ (22/3)Γ2
k. Therefore,

P (Dk ≥ `) ≤ 1 −P
(
F (A(Sk,

√
(3/22)`))

)
≤ exp(−c

√
(3/22)`r).

We can then write

E [Dk] = e−r
2/6(1 − e−r

2/6)

∞∑

`=1

P (Dk ≥ `) ≤ e−r
2/6

∫ ∞

0

P (Dk ≥ `) d`,
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where the last inequality follows from P (Dk ≥ `) being a non-increasing function of `. Since
we have an exponential upper bound for P (Dk ≥ `) with ` ≥ (22/3)γ20, we obtain

E [Dk] ≤ e−r
2/6(22/3)γ20 + e−r

2/6

∫ ∞

`=(22/3)γ20

e−c
√

(3/22)`rd` = O(1).

Using the linearity property of expectations and P (E(v1, v2)) ≥ 1 −O(n−4), we obtain

E [dG(v1, v2) | E(v1, v2)] ≤
E [dG(v1, v2)]

P (E(v1, v2))
= O(κ) = O(‖v1 − v2‖2/r).

If the event E(v1, v2) holds, we have E [Dk | E(v1, v2)] = O(1) and Γk ≤ c′1 log n/r for all
k and some constant c′1, which yields Dk ≤ c1 log2 n/r2. Letting λ = 4c′1 log n/r, this implies
that for two cells Sk and Sk′ such that |k − k′| ≥ λ, the annuli A(Sk, λ/4) and A(Sk′, λ/4)
do not intersect, and consequently, the random variables Dk and Dk′ are independent. Now
we split the random variables D1, D2, . . . , D2κ into groups of independent random variables.
Define the index set Ij = {k : 3 ≤ k ≤ 2κ, k ≡ j (mod λ)}. We can write

dG(v1, v2) = κ +
λ−1∑

j=0

∑

k∈Ij

Dk,

where the second sum contains independent random variables. Note that

P



∑

k∈Ij

Dk −
∑

k∈Ij

E [Dk] ≥ c2|Ij|




≤ 1 −P (E(v1, v2)) + P



∑

k∈Ij

Dk −
∑

k∈Ij

E [Dk] ≥ c2|Ij| | E(v1, v2)


 .

In order to apply Azuma’s inequality to the last term, we need to write
∑

k∈Ij E [Dk] in

terms of
∑

k∈Ij E [Dk | E(v1, v2)]. Since

E [Dk] ≥ E [Dk | E(v1, v2)]P (E(v1, v2)) = E [Dk | E(v1, v2)] − O(n−4),

we derive that, for each j,

P



∑

k∈Ij

Dk −
∑

k∈Ij

E [Dk] ≥ c2|Ij|


 ≤ 1 −P (E(v1, v2)) + 2 exp

(
−(c2 +O(n−4))2|Ij |2r4

2c21|Ij| log4 n

)
.
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Since |Ij| ≥ κ/λ = Ω(‖v1 − v2‖2/ logn), the probability above is smaller than O(n−4) +

exp
(
− c3‖v1−v2‖2r4

log5 n

)
, for some constant c3 > 0. We solve the first sum by the union bound,

obtaining

P

(
2κ∑

k=1

Dk −
2κ∑

k=1

E [Dk] ≥ 2c2κ

)
≤ O(λn−4) + λ exp

(
−c3‖v1 − v2‖2r4

log5 n

)
= O(n−3),

for any v1 and v2 such that ‖v1−v2‖2 ≥ c4 log6 n/r4, for some constant c4. Hence, by setting
the constant c2 properly, for a fixed pair of nodes v1, v2 such that ‖v1 − v2‖2 = Ω(log6 n/r4),
dG(v1, v2) = O(‖v1 − v2‖2/r) with probability 1 − O(n−3). Applying Lemma 2.4 concludes
the proof of Theorem 2.1.

2.2 Broadcast time

In this section we prove Theorem 2.3. Given two nodes v1 and v2, let Tpush(v1, v2) be the
time it takes for the push algorithm started at v1 to inform v2 for the first time. We assume
in the sequel that v1 and v2 belong to the giant connected component of G and show that,
provided ‖v1 − v2‖2 = Ω(log6 n/r4), Tpush(v1, v2) = O(‖v1 − v2‖2/r). Initially, we assume
that r = O(

√
logn). The case r = ω(

√
log n) is simpler1, but since it uses different proof

techniques, we deal with it at the end of this section.
We start our treatment for the case r = O(

√
logn) with an easy lemma that shows that

the time until a node informs a given neighbor is O(log2 n) with high probability.

Lemma 2.7. Let r = O(
√

log n). There exists a constant c such that for all pairs of nodes
w1 and w2 satisfying ‖w1 − w2‖2 ≤ r, the following holds with probability 1 −O(n−1):

Tpush(w1, w2) ≤ c log2 n.

Proof. Note that if the degree of w1 in G is k, then the number of rounds until w1 sends
the information to w2 is given by a geometric random variable with mean k. It is easy to
check that there is a constant c5 such that with probability 1−O(n−3) all nodes of a random
geometric graph have degree smaller than c5 log n [71] provided r = O(

√
log n). Therefore,

P (Tpush(w1, w2) ≥ t) ≤
(

1 − 1

c5 logn

)t
≤ exp

(
− t

c5 logn

)
.

If we set t = 3c5 log2 n, we obtain that P
(
Tpush(w1, w2) ≥ 3c5 log2 n

)
≤ n−3 and, using

Lemma 2.4 we conclude that Tpush(w1, w2) ≤ 3c5 log2 n for all w1, w2 with probability 1 −
O(n−1).

1In order to simplify the notation, we apply the convention that f(n) = ω(g(n)) stands for
lim sup

n→∞
f(n)/g(n) = ∞.



CHAPTER 2. STATIC NETWORKS 20

ui-1 ui

ui+1
er

Xi-1 Xi

Xi+1

w

w’

Figure 2.3: Illustration of the path considered to obtain Tpush(v1, v2). The picture shows
three consecutive nodes ui−1, ui, and ui+1 of the path from v1 to v2 and the balls Xi−1, Xi,
and Xi+1 around them. Two other nodes w ∈ Xi and w′ ∈ Xi+1 are depicted to illustrate
the edges that arise from the construction of the Xi’s.

Before proceeding, note that the lemma above shows that Tpush(v1, v2) can be upper
bounded by O(dG(v1, v2) log2 n). We derive a much better bound in the sequel. Let r′ be
defined such that rc < r′ < r. Note that such an r′ exists since r > rc. For convenience,
write r′ = r(1 − 2ε). Let G′ be the subgraph of G obtained by using r′ instead of r. Since
r′ > rc, G

′ contains a connected component of size Ω(n) with probability 1 − e−Ω(
√
n).

Our strategy to obtain an upper bound for Tpush(v1, v2) is the following. First, we assume
that v1 and v2 belong to the giant component of G′. (We address the case where they do
not belong to the giant component of G′ later.) Then, we take a path in G′ from v1 to v2.
Instead of calculating the time it takes for the push algorithm to transmit the information
along this path, which gives a rather pessimistic upper bound, we enlarge the path using
the fact that G′ is a subgraph of G and calculate the time it takes for the push algorithm to
transmit the information along this enlarged path.

Let u1, u2, . . . , um be a path from v1 to v2 in G′, where u1 = v1 and um = v2. For each i,
we define the region Xi ⊆ S in the following way. Set X1 to be the point where u1 is located
and Xm to be the point where um is located; for 2 ≤ i ≤ m−1, define Xi to be the ball with
center at ui and radius εr. Our goal is to get an upper bound for Tpush(v1, v2) by following
the path X1, X2, . . . , Xm (refer to Figure 2.3).

Define the random variable T (Xi, Xi+1), 1 ≤ i ≤ m− 1, as the time the push algorithm
takes to first inform a node in Xi+1 given that it started at a node chosen uniformly at random
from Xi. Note that, for any two nodes w ∈ Xi and w′ ∈ Xi+1, the triangle inequality and the
definition of Xi give ‖w−w′‖2 ≤ 2εr+ ‖ui− ui+1‖2 ≤ r. Therefore, w and w′ are neighbors
in G. Moreover, for any i, once the push algorithm informs a node inside Xi, then the node
that receives the information is a uniformly random node from Xi. Thus, we can clearly
obtain the following upper bound:

Tpush(v1, v2) ≤
m−1∑

i=1

T (Xi, Xi+1).
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Note that Lemma 2.7 implies T (Xm−1, Xm) = O(log2 n) with probability 1 − O(n−1),
for each choice of v1 and v2. The next lemma gives the expectation of T (Xi, Xi+1) for each
1 ≤ i ≤ m− 2.

Lemma 2.8. For any 1 ≤ i ≤ m− 2, we have that E [T (Xi, Xi+1)] ≤ 1/ε2.

Proof. Let w be a node chosen uniformly at random from Xi. Assume w 6∈ Xi+1 (otherwise,
the broadcast time from w to Xi+1 is zero). Let Y be the number of neighbors of w and let
Y ′ be the number of nodes in Xi+1. Therefore, E [T (Xi, Xi+1)] = E [Y/Y ′]. We know that
Y ≥ 1 and Y ′ ≥ 1, so Y − 1 and Y ′ − 1 are Poisson random variables with means πr2 and
πε2r2, respectively. Conditional on Y − 1 = k, the value of Y ′ − 1 is given by a Binomial
distribution with mean k πε

2r2

πr2
= kε2. We obtain

E [T (Xi, Xi+1)] =
∞∑

k=0

k∑

i=0

k + 1

i + 1
e−πr

2 (πr2)k

k!

(
k

i

)
(ε2)i(1 − ε2)k−i

=
1

ε2

∞∑

k=0

e−πr
2 (πr2)k

k!

k∑

i=0

(
k + 1

i + 1

)
(ε2)i+1(1 − ε2)k−i

≤ 1

ε2

∞∑

k=0

e−πr
2 (πr2)k

k!
=

1

ε2
.

For any two connected nodes v1 and v2 such that ‖v1 − v2‖2 = Ω(log6 n/r4) (we come
back to the case ‖v1 − v2‖2 = o(log6 n/r4) at the end of this section), we know that there
is a path like the ones derived in Section 2.1 for the proof of Theorem 2.1. In particular,
we know that there is a path v1 = u1, u2, . . . , um−1, um = v2 such that m = O(

√
n/r′) and,

provided E(v1, v2) holds, the annuli A(Sk,Γk) and A(Sk′,Γk′) are disjoint if |k − k′| ≥ λ.
Recall that the cells S1, S2, . . . , S2κ have side lengths r/2 and r/3; therefore, we need to take
six adjacent cells together to obtain a rectangle with largest side length 2r. Recall also that
only every other cell is adjacent. Then, for k and k′ such that |k− k′| ≥ λ+ 12, the distance
between any point in A(Sk,Γk) and any point in A(Sk′,Γk′) is at least 2r. Each annulus has
at most c1 log2 n/r2 nodes in the path, so letting λ′ = (c1 log2 n/r2)(λ+ 12) = O(log3 n/r3),
we obtain that for any two nodes ui and uj in the path such that |i−j| ≥ λ′, ‖ui−uj‖2 ≥ 2r
and, consequently, T (Xi, Xi+1) and T (Xj , Xj+1) are independent.

It is important to remark that the path has length m = O(
√
n/r′), for all v1 and v2.

Conditional on the existence of this particular path, the Poisson point process over S \⋃m
i=1{ui}, where the union is over the points where the nodes of the path are located,

remains unchanged since
⋃m
i=1{ui} spans a set of measure 0 in S.

Let the index set Jj = {1 ≤ i ≤ m : i ≡ j (mod λ′)}. We can write

Tpush(v1, v2) = O(log2 n) +

λ′−1∑

j=0

∑

i∈Jj

T (Xi, Xi+1),
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where the first term comes from the time it takes for the push algorithm to inform v2 once
any neighbor of v2 is informed. For all j, the term

∑
i∈Jj T (Xi, Xi+1) is given by the sum

of independent geometric random variables. Using a standard Chernoff bound for geometric
random variables (cf. Lemma A.4), we obtain that for each j,

P



∑

i∈Jj

T (Xi, Xi+1) ≥ (1 + ε)
∑

i∈Jj

E [T (Xi, Xi+1)]


 ≤ exp

(
−ε2 |Jj|

2(1 + ε)

)
.

Note that |Jj| = Ω(dG(v1, v2)r
3/ log3 n) = Ω(log n), since dG(v1, v2) ≥ ‖v1 − v2‖2/r =

Ω(log6 n/r5). Using the fact that E [T (Xi, Xi+1)] = O(1) for all i, and taking the union
bound over all j, allows us to conclude that for all pairs of connected nodes v1 and v2 such
that ‖v1 − v2‖2 = Ω(log6 n/r4), there is a constant c6 for which

P



λ′−1∑

j=0

∑

i∈Jj

T (Xi, Xi+1) ≥ c6(m− 2)


 ≤ n−3.

Applying Lemma 2.4, we can conclude that for any two nodes v1 and v2 in the giant
component of G for which ‖v1 − v2‖2 = Ω(log6 n/r4), we obtain Tpush(v1, v2) = Θ(‖v1 −
v2‖2/r). Note that there exist v1, v2 ∈ G for which ‖v1 − v2‖2 = Θ(

√
n) and, consequently,

Tpush(v1, v2) = Θ(
√
n/r).

Now we treat two remaining cases. First, since G′ is a subgraph of G, there may exist
some nodes in the giant component of G that do not belong to the giant component of G′.
Nevertheless, it is a known fact from random geometric graphs [71, Theorem 10.18] that
the second largest component of G′ contains O(log2 n) nodes with probability 1 − O(n−1).
Therefore, since Tpush(w1, w2) = O(log2 n) for every pair of neighbors w1 and w2, we conclude
that the time it takes to inform all the remaining nodes is O(log4 n), which is negligible in
comparison to Θ(

√
n/r). The second case corresponds to the nodes that are within distance

o(log6 n/r4) of the initially informed node, which we take to be v1. Take Q to be a square
centered at v1 with side length c7 log6 /r4, for some constant c7 (the orientation of Q does
not matter). Note that Q contains all nodes within distance o(log6 n/r4) of v1. Now, take Q′

to be a square centered at v1, with the same orientation as Q but with sides having twice the
length of the sides of Q. Clearly, Q′ \Q is an annulus centered at v1 and Lemma 2.6 can be
used to show that F (Q′ \Q) holds with probability 1 − e−Ω(log6 n/r4). Thus, all nodes within
distance o(log6 n/r4) of v1 are contained inside the crossings of Q′ \ Q and their distance
to v1 in G must be smaller than 44c27 log12 n/r10 by Lemma 2.5. So using Lemma 2.7 we
conclude that all nodes within distance o(log6 n/r4) of v1 are informed after O(log14 n/r10)
rounds, which is also negligible in comparison to Θ(

√
n/r).
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Case r = ω(
√

logn).

In this section we prove the following lemma, which deals with Theorem 2.3 in the remaining
case r = ω(

√
logn).

Lemma 2.9. If r = ω(
√

log n), then for all node s ∈ G we obtain Tpush(s,G) = O(
√
n/r +

log n) with probability 1 −O(n−1).

Remark 2.10. We point out that Lemma 2.9 can be generalized to random geometric
graphs in higher dimensions. For dimension d ≥ 2, the lemma holds with S = [0, n1/d]d and
r = ω(log1/d n) as long as d is a constant independent of n.

In order to prove Lemma 2.9, we consider a tessellation of S into squares of side-length
min {r/3,√n/2}, which we refer to as “cells.” (If

√
n is not a multiple of r/3, then we make

the cells in the last row or column of the tessellation be smaller than the others.) It is very
easy to verify that nodes in the same cell are neighbors in G and that a node in a given
cell can have neighbors in at most 49 different cells. Let amin be the number of nodes inside
the cell that contains the smallest number of nodes, and let amax be the number of nodes
inside the cell that contains the largest number of nodes. Since r = ω(

√
log n), a standard

Chernoff bound for Poisson random variables (cf. Lemma A.3) can be used to show that
there are constants c1 < c2 such that a fixed cell contains at least c1r

2 nodes and at most
c2r

2 nodes with probability larger than 1− n−2. Using the union bound over the cells of the
tessellation, we obtain that amin and amax are Θ(r2) with probability 1 −O(n−1).

We are now in position to start our proof of Lemma 2.9. We index the cells by i ∈ Z
2

and let Zi be the event that the cell i contains at least one informed node. We say that cells
i and j are adjacent if and only if they share an edge. Therefore, each cell has exactly four
adjacent cells and this adjacency relation induces a 4-regular graph C over the cells.

Given two adjacent cells i and j, at any round of the push algorithm, an informed node
in cell i chooses a node from cell j with probability larger than amin/(49amax) = Θ(1). We
want to derive the time until Zi = 1 for all i. Given a path between two cells j1, j2 ∈ C,
the number of rounds the information takes to be transmitted along this path can be upper
bounded by the sum of independent geometric random variables with mean Θ(1). Applying
Lemma A.4, we infer that the number of rounds required to transmit the information from
j1 to j2 is smaller than O(diam(C)+ logn) with probability 1−e−Ω(diam(C)+log n). Since there
are O(n/r2) cells and diam(C) = O(

√
n/r), we obtain that with probability 1 − O(n−1),

Zi = 1 for all i after O(
√
n/r + log n) rounds.

Now, we consider a faulty version of the push algorithm, in which each transmission may
fail with probability p ∈ [0, 1) independently of all other transmissions. Then, a node that
is not informed at the beginning of the algorithm can only become informed if it receives
the information from a transmission that did not fail. We denote by T ppush(s,G) the runtime
of the faulty version of the push algorithm initiated at node s ∈ G. We use the following
relation between Tpush(s,G) and T ppush(s,G).
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Lemma 2.11 ([36, Theorem 6]). For any graph G, any node s ∈ G, and any p ∈ [0, 1),
there exists a coupling between T ppush(s,G) and Tpush(s,G) such that

T ppush(s,G) = O

(
Tpush(s,G)

1 − p

)
.

Assume that each cell contains at least one informed node. We want to bound the number
of additional rounds until all nodes in G become informed. Note that each cell constitutes
a clique with Θ(r2) nodes. According to the push algorithm, at any round, a node chooses
a neighbor inside its own cell with probability larger than amin/(49amax) = Θ(1). Therefore,
a standard coupling argument can be used to show that the time until all nodes from a
given cell get informed can be upper bounded by the time the faulty version of the push
algorithm with failure probability Θ(1) takes to inform all nodes of a complete graph with
Θ(r2) nodes. Thus, using [42, Theorem 5.2], which establishes the runtime of the push
algorithm in complete graphs, and Lemma 2.11 above, we obtain that all nodes of a given
cell get informed within O(log r2) steps with probability 1 −O(r−2).

Now we need to extend this result to all cells. For each cell i, let Wi be an independent
geometric random variable with parameter ρ (and thus mean 1/ρ), where we assume ρ =
1 − O(r−2). Therefore, once Zi = 1 for all cell i, then the time it takes until all nodes get
informed can be upper bounded by O(log r2) maxiWi, where the maximum is taken over
all cells. Since we have Θ(n/r2) cells, we obtain that all Wi’s are smaller than c log(n/r2)
for some constant c with probability (1 − (1 − ρ)c log(n/r

2))Θ(n/r2) ≥ 1 − O(n−1) for a proper
choice of c. Therefore, we obtain that Tpush(s,G) ≤ O(diam(C)+log n+log(r2) log(n/r2)) =
O(

√
n/r + log n), which concludes the proof of Lemma 2.9.
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Chapter 3

Mobile Networks

We consider the following random graph model, which was introduced by van den Berg,
Meester and White [12] and which we refer to as the mobile geometric graph model. Let
Π0 = {Xi}i be a Poisson point process on R

d of intensity λ. To avoid ambiguity, we refer to
the points of a point process as nodes. We let each node Xi move according to a standard
Brownian motion (ζi(s))s≥0 independently of the other nodes, and set Πs = {Xi + ζi(s)}i
to be the point process obtained after the nodes of Π0 have moved for time s. By standard
arguments [12] it follows that Πs is again a Poisson point process of the same intensity λ.

At any given time s we construct a graph Gs by putting an edge between any two nodes
of Πs that are at distance at most r. In what follows we take r to be an arbitrary but fixed
constant. There exists a critical intensity λc = λc(d) such that if λ > λc, then a.s. there
exists a unique infinite connected component in Gs, which we denote by C∞(s), while if
λ < λc then all connected components are finite a.s. [65, 71].

In this chapter, unless otherwise stated, we take the infinite mobile geometric graph
defined in the whole of R

d. We study four problems for this model: detection, coverage,
percolation and broadcast. We define these problems and state our results below.

Detection. Consider a “target” particle u which is initially placed at the origin, and
whose position at time s is given by g(s), which is a continuous process in R

d. We are
interested in the time it takes for u to be detected by the mobile geometric graph, namely
how long it takes until a node of Π0 has come within distance at most r from u. More
formally we define

Tdet = inf
{
t ≥ 0 : g(t) ∈

⋃

i

B(Xi + ζi(t), r)
}
,

where the union is taken over all the nodes {Xi} of Π0 and B(x, r) denotes the ball of radius
r centered at x. In Section 3.1 we prove the following theorem, which extends previous
classical results on detection for non-mobile particles u [83, 58].
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Theorem 3.1. In two dimensions, for any fixed λ and any g independent of the motions of
the nodes of Π0, we have

P (Tdet > t) ≤ exp

(
−2πλ

t

log t
(1 + o(1))

)
.

In addition, if g is an independent Brownian motion then the above bound is tight, i.e.,

P (Tdet > t) = exp

(
−2πλ

t

log t
(1 + o(1))

)
. (3.1)

Remark 3.2. Theorem 3.1 is stated for d = 2. In Section 3.1 it is extended to all dimensions
d ≥ 1 (see Theorem 3.12), where the tail of Tdet is shown to be exp(−Θ(

√
t)) for d = 1 and

exp(−Θ(t)) for d ≥ 3. All these results exploit a connection between the detection time and
the volume of the Wiener sausage, as explained in Section 3.1.

Remark 3.3. From [83, 58], we have that for d = 2 the result in (3.1) also holds when u
does not move (i.e., g ≡ 0). Thus Theorem 3.1 establishes that, asymptotically, the best
strategy for a particle u (that is not informed of the motion of the nodes of Π0) to avoid
detection is to stay put. In Section 3.1 we show that this is true for d = 1 for any fixed t
(not only asymptotically).

Coverage. Let A be a subset of Rd. We are interested in the time it takes for all the points
of A to be detected. We thus define

Tcov(A) = inf
{
t ≥ 0 : A ⊂

⋃

s≤t

⋃

i

B(Xi + ζi(s), r)
}
.

For R ∈ R+, let QR be the cube in R
d of side length R. A natural question proposed by

Konstantopoulos [60] is to determine the asymptotics of E [Tcov(QR)] as R → ∞.
In Section 3.2 we prove Theorem 3.4 below, which gives the asymptotics for the expected

time to cover the set QR as R → ∞ and shows that Tcov(QR) is concentrated around its

expectation. We write f ∼ g as x→ ∞ to mean that f(x)
g(x)

→ 1 as x→ ∞.

Theorem 3.4. We have that, as R → ∞,

ETcov(QR) ∼





π
8λ2

(logR)2 for d = 1
1
λπ

logR log logR for d = 2
d logR

λc(d)rd−2 for d ≥ 3
and

Tcov(QR)

E [Tcov(QR)]
→ 1 in probability,

where c(d) =
Γ( d

2
−1)

2π
d
2

and Γ stands for the Gamma function.
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Remark 3.5. Instead of covering a whole cube, we could ask for the coverage time of other
sets. We prove Theorem 3.4 in this general setting in Section 3.2; for instance, we show that
E [Tcov] for a line segment of length R is smaller than E [Tcov(QR)] by a factor of 1+o(1)

d
and

also obtain asymptotics for fractal sets (see Theorem 3.15).

Percolation. Let u be an extra node which is initially at the origin and which moves
independently of the nodes of Π0 according to some function g. We investigate the time it
takes until u belongs to the infinite connected component. We denote this time by Tperc,
which can be more formally written as

Tperc = inf{t ≥ 0 : ∃y ∈ C∞(t) s.t. ‖g(t) − y‖2 ≤ r}.

The detection time clearly provides a lower bound on the percolation time, so we may
deduce from Theorem 3.1 and Remark 3.2 above that, as t → ∞, P (Tperc > t) is at least
exp (−O(t/ log t)) for d = 2 and at least exp (−O(t)) for d ≥ 3, when u is non-mobile or
moves according to an independent Brownian motion. We will prove the following stretched
exponential upper bound in all dimensions d ≥ 2 in Section 3.3:

Theorem 3.6. For all dimensions d ≥ 2, if λ > λc(d) then there exist constants c and t0,
depending only on d, such that

P (Tperc > t) ≤ exp

(
−c λt

log3+6/d t

)
, for all t ≥ t0.

This holds when u is non-mobile or moves according to an independent Brownian motion.

We briefly mention some of the ideas used in the proof, which we believe are of independent
interest. The key technical challenge is the dependency of the Gs’s over time. To overcome
this, we partition R

d into subregions of suitable size and show via a multi-scale argument
that all such subregions contain sufficiently many nodes for a large fraction of the time
steps. This is the content of Proposition 3.19. This result allows us to couple the evolution
of the nodes in each subregion with those of a fresh Poisson point process of slightly smaller
intensity λ′ < λ which is still larger than the critical value λc. After a number of steps ∆ that
depends on the size of the subregion, we are able to guarantee that the coupled processes
match up almost completely. As a result, we can conclude that there are Θ(t/∆) time steps
for which the mobile geometric graph contains an independent Poisson point process with
intensity λ′′ > λc. This fact, which we believe is of wider applicability, is formally stated in
Proposition 3.18. This independence is sufficient to complete the proof.

Broadcast. As a sample application of Theorem 3.6, we consider the time taken to broadcast
a message in finite mobile geometric graph. Consider a mobile geometric graph in a torus
S of volume n. Suppose a message originates at an arbitrary node at time 0, and at each
integer time step s each node that has already received the message broadcasts it to all
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nodes in the same connected component. (Here we are making the reasonable assumption
that the speed of transmission is much faster than the motion of the nodes, so that messages
can travel throughout a connected component before it is altered by the motion.) Let Tbc
denote the time until all nodes have received the message. We prove the following result in
Section 3.4.

Corollary 3.7. In a mobile geometric graph on the torus of volume n with any fixed λ > λc,
the broadcast time Tbc is O(logn(log logn)3+6/d) w.h.p. in any dimension d ≥ 2.

3.1 Detection time

In this section we give the proof of Theorem 3.1. We first state a generalization of a well-
known result [83], which we will use in several proofs; we include its proof here for the sake
of completeness.

Lemma 3.8. Suppose that u starts from the origin at time 0 and its position at time s is
given by a deterministic function g(s). Let Wg(t) = ∪s≤tB(g(s) − ζ(s), r) be the so-called
“Wiener sausage with drift” up to time t. Then, for any dimension d ≥ 1, the detection
probability satisfies

P (Tdet > t) = exp(−λE [vol(Wg(t))]),

where vol (A) stands for the Lebesgue measure of the set A in R
d.

Proof. Let Φ be the set of points of Π0 that have detected u by time t, that is

Φ = {Xi ∈ Π0 : ∃s ≤ t s.t. g(s) ∈ B(Xi + ζi(s), r)}.

Since the ζi’s are independent we have that Φ is a thinned Poisson point process with intensity
given by

Λ(x) = λP (x ∈ ∪s≤tB(g(s) − ζ(s), r)) ,

where ζ is a standard Brownian motion.
So for the probability that the detection time is greater than t we have that

P (Tdet > t) = exp(−λ
∫

Rd

P (x ∈ ∪s≤tB(g(s) − ζ(s), r))dx)

= exp(−λE [vol(∪s≤tB(g(s) − ζ(s), r))]) = exp(−λE [vol (Wg(t))]).

Remark 3.9. The preceding lemma implies that when the motion g of u is random and
independent of the motions of the nodes of the Poisson point process Π0 then

P (Tdet > t) = E [exp(−λE [vol(Wg(t)) | (g(s))s≤t])] .
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Remark 3.10. We note that the above proof can be easily generalized to show that the
time Tdet(K) until we detect some point in a compact set K ⊂ R

d satisfies

P (Tdet(K) > t) = exp(−λE [vol (∪s≤t(Kr − ζ(s)))]), (3.2)

where Kr stands for the r-enlargement of K, i.e. Kr = ∪x∈KB(x, r).

From Lemma 3.8 we see that estimating P (Tdet > t) translates to deriving estimates
for E [vol (Wg(t))]. When u does not move (i.e., g ≡ 0), it is well known that in two
dimensions [82, 11]

E [vol (W0(t))] =
2πt

log t
(1 + o(1)).

The following Lemma implies that E [vol (Wg(t))] ≥ E [vol (W0(t))] (1−o(1)) for any function
g that is deterministic and continuous.

Lemma 3.11. Let ζ be a standard Brownian motion in two dimensions and let g be a
deterministic continuous function, g : R+ → R

2. Let Wg(t) = ∪s≤tB(g(s) − ζ(s), r) be a
Wiener sausage with drift g up to time t. We then have that as t→ ∞

E [vol (Wg(t))] ≥
2πt

log t
(1 − o(1)).

Proof. We may write

E [vol(Wg(t))] =

∫

R2

P (y ∈ ∪s≤tB(g(s) − ζ(s), r))dy =

∫

R2

P
(
τB(y,r) ≤ t

)
dy,

where τA is the first hitting time of the set A by g − ζ . Define

Zy =

∫ t

0

1(g(s) − ζ(s) ∈ B(y, r)) ds,

i.e., the time that the process g − ζ spends in the ball B(y, r) before time t. It is clear by

the continuity of g − ζ that {Zy > 0} = {τB(y,r) ≤ t}. Clearly P (Zy > 0) = E[Zy]
E[Zy | Zy>0]

and

for the first moment we have

E [Zy] =

∫ t

0

P (g(s) − ζ(s) ∈ B(y, r)) ds

=

∫ t

0

∫

B(y,r)

1

2πs
e−

‖z−g(s)‖22
2s dz ds =

∫ t

0

∫

B(0,r)

1

2πs
e−

‖z+y−g(s)‖22
2s dz ds.
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For the conditional expectation E [Zy | Zy > 0], if we write τ for the first time before time t
that g − ζ hits the boundary of the ball B(y, r), denoted by ∂B(y, r), then we get

E [Zy | Zy > 0] = E

[∫ t−τ

0

1(g(s+ τ) − ζ(s+ τ) ∈ B(y, r)) ds

]

≤ 1 + E

[∫ (t−τ)∨1

1

1(g(s+ τ) − ζ(s+ τ) ∈ B(y, r)) ds

]

≤ 1 + max
x∈∂B(y,r)

∫ t

1

∫

B(y,r)

E

[
1

2πs
e−

‖z−g(s+τ)−x+g(τ)‖22
2s

]
dz ds

≤ 1 +

∫ t

1

∫

B(y,r)

1

2πs
dz ds ≤ 1 + r2

log t

2
.

So, putting everything together we obtain that

E [vol(Wg(t))] =

∫

R2

E [Zy]

E [Zy | Zy > 0]
dy

≥

∫ t
0

∫
B(0,r)

(∫
R2

1
2πs
e−

‖z+y−g(s)‖22
2s dy

)
dz ds

1 + r2 log t
2

=
2πtr2

2 + r2 log t

and hence as t→ ∞
E [vol (Wg(t))] ≥

2πt

log t
(1 − o(1)).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. From Remark 3.9 we have

P (Tdet > t) = E [exp(−λE [vol(Wg(t)) | (g(s))s≤t])] ,

where g is independent of ζ . By Lemma 3.11, we have the upper bound

P (Tdet > t) ≤ exp

(
−2πλ

t

log t
(1 − o(1))

)
, as t→ ∞.

So it remains to show the lower bound on this probability for the case when g is a standard
Brownian motion independent of the motions of the nodes of Π0. Letting R = log t, it is
clear that

P (Tdet > t) ≥ P
(
u stays in B(0, R) for all s ≤ t, TB(0,R) > t

)
, (3.3)
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where TB(0,R) is the detection time of the ball B(0, R), i.e.,

TB(0,R) = inf{s > 0 : ∃i s.t. B(Xi + ζi(s), r) ∩ B(0, R) 6= ∅}.

Since the motions of u and the nodes of Π0 are independent, we get that

P
(
u stays in B(0, R) for all s ≤ t, TB(0,R) > t

)

= P (u stays in B(0, R) for all s ≤ t)P
(
TB(0,R) > t

)
. (3.4)

From Remark 3.10 with K = B(0, R) we get

P
(
TB(0,R) > t

)
= exp(−λE [vol (∪s≤tB(0, R+ r) − ζ(s))])

and writing ∪s≤t(B(0, R + r) − ζ(s)) = R ∪s≤t B
(
− ζ(s)

R
, 1 + r

R

)
and for R large enough we

get that, for all s,

B

(
−ζ(s)

R
, 1

)
⊂ B

(
−ζ(s)

R
, 1 +

r

R

)
⊂ B

(
−ζ(s)

R
, 2

)
.

For any x > 0 we have by Brownian scaling that

E

[
vol

(
⋃

s≤t
B

(
−ζ(s)

R
, x

))]
= E



vol




⋃

s′≤ t
R2

B
(
ζ̃(s′), x

)






 ,

where ζ̃ is a standard Brownian motion. So finally, using the asymptotic expression for the
expected volume of the Wiener sausage in two dimensions [11, 82], i.e.,

E [vol (∪s≤tB(ζ(s), x))] ∼ 2π
t

log t
as t→ ∞,

for any x independent of t, we get that

E [vol (∪s≤tB(0, R + r) − ζ(s))] ∼ R22π
t/R2

log t− logR2
∼ 2π

t

log t
.

Hence,

P
(
TB(0,R) > t

)
= exp

(
−2πλ

t

log t
(1 + o(1))

)
, as t→ ∞.

Thus we only need to lower bound the probability that u stays in the ball B(0, R) for all
times s ≤ t.

For any t ≥ R2 and any dimension d ≥ 1, we have by [21] that

P (u stays in B(0, R) for all s ≤ t) ≥ exp(−ct/R2), (3.5)
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for a positive constant c and hence, since R = log t, we get that

P (Tdet > t) ≥ exp

(
−2πλ

t

log t
(1 + o(1))

)
exp

(
−c t

(log t)2

)

= exp

(
−2πλ

t

log t
(1 + o(1))

)
.

General dimensions and the Wiener sausage

For d = 1, the volume of Wg(t) can be computed from the maximum and minimum values
of g − ζ via the formula

vol (Wg(t)) = 2r + max
s≤t

(g(s) − ζ(s)) − min
s≤t

(g(s) − ζ(s)).

Let t? and t? be the random times in the interval [0, t] at which −ζ achieves its maximum
and minimum values respectively. Then we have

E [vol (Wg(t))] ≥ 2r + E [(g(t?) − ζ(t?)) − (g(t?) − ζ(t?))]

= 2r + E [−ζ(t?) + ζ(t?)] = E [vol (W0(t))] , (3.6)

where E [g(t?)] = E [g(t?)] holds since t? and t? have the same distribution. Thus, for d = 1
the inequality E [vol (Wg(t))] ≥ E [vol (W0(t))] holds for all fixed t; for d = 2 Lemma 3.11
gives this inequality only asymptotically as t→ ∞.

For dimensions d ≥ 3, the proof of Lemma 3.11 can be used to obtain the following
weaker result: there exists a positive constant c such that

E [vol (Wg(t))] ≥ cE [vol (W0(t))] . (3.7)

The expected volume of the Wiener sausage with g ≡ 0 is known to satisfy [82, 11]

V0(t) = E [vol (W0(t))] =






√
8t
π

+ 2r for d = 1
2πt
log t

(1 + o(1)) for d = 2

c(d)rd−2t(1 + o(1)) for d ≥ 3,

(3.8)

where c(d) =
Γ( d

2
−1)

2πd/2 . (For d = 1 the quantity above follows from well-known results for

Brownian motion [68]; namely E [maxs≤t ζ(s)] = −E [mins≤t ζ(s)] =
√

2t
π

.) Hence plugging

(3.6–3.8) into Lemma 3.8 gives an upper bound for P (Tdet > t) when d = 1 and d ≥ 3.
Regarding the lower bound, when g is an independent Brownian motion, the same strategy
as in the proof of Theorem 3.1 works for d = 1 and d ≥ 3 provided we set R properly. For
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d = 1 it suffices to take R = t1/3; for d ≥ 3 we can set R = r. Then we obtain a positive
constant c1 such that, as t→ ∞,

P
(
TB(0,R) > t

)
≥
{

exp
(
−
√

8t
π

(1 + o(1))
)

for d = 1

exp
(
−c1rd−2t(1 + o(1))

)
for d ≥ 3.

This together with (3.4) and (3.5) give us the following theorem, which holds in all dimensions
d ≥ 1.

Theorem 3.12. Let g be a continuous process in R
d, for d ≥ 1. If g is a deterministic

continuous function, then we have

−1

λ
logP (Tdet > t) = E [vol (Wg(t))] .

If g is random but independent of the motion of the nodes of Π0, we obtain a positive constant
β1 such that as t→ ∞

−1

λ
logP (Tdet > t) ≥





V0(t) for d = 1
(1 − o(1))V0(t) for d = 2

(1 − o(1))β1V0(t) for d ≥ 3,

where V0(t) is defined in (3.8).
If g is a standard Brownian motion, then we obtain a positive constant β2 such that as

t→ ∞
−1

λ
logP (Tdet > t) ≤

{
(1 + o(1))V0(t) for d = 1, 2

(1 + o(1))β2V0(t) for d ≥ 3.

Remark 3.13. Very recently, Peres and Sousi [74] established that

E [vol (Wg(t))] ≥ E [vol (W0(t))]

for all dimensions d ≥ 1 and any fixed t > 0. This result was previously known only for
particles performing continuous-time random walks on Z

d [67, 32].

3.2 Coverage time

In this section we will prove a more general version of Theorem 3.4. Let A be a subset of Rd.
For R ∈ R+ we define the set RA = {Ra : a ∈ A}. We recall the definition of Minkowski
dimension, which can be found, e.g., in [64].
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Definition 3.14. Let A be a non-empty bounded subset of Rd. For ε > 0 let M(A, ε) be the
smallest number of balls of radius ε needed to cover A:

M(A, ε) = min

{
k : A ⊂

k⋃

i=1

B(xi, ε) for some xi ∈ R
d

}
.

The Minkowski dimension of A is defined as

dimM(A) = lim
ε→0

logM(A, ε)

log ε−1
,

whenever this limit exists.

We now proceed to state the more general version of Theorem 3.4.

Theorem 3.15. Let A be a bounded subset of Rd of Minkowski dimension α. We have that
as R→ ∞

ETcov(RA) ∼






α2π
8λ2

(logR)2 for d = 1
α

2πλ
logR log logR for d = 2

α logR
λc(d)rd−2 for d ≥ 3

and
Tcov(RA)

E [Tcov(RA)]
→ 1 in probability,

where c(d) =
Γ( d

2
−1)

2π
d
2

and Γ stands for the Gamma function.

Proof. In the proof we will drop the dependence on RA from Tcov(RA) and E [Tcov(RA)] to
simplify the notation. We will carry the proof for the case d = 2 only and discuss how to
adapt the proof for other dimensions at the end.

Let M(A, ε) = min{k ≥ 1 : ∃ B1, . . . , Bk balls of radius ε covering A}; then it is easy
to see that M(RA, ε) = M(A, ε

R
). By the assumption that A has Minkowski dimension α,

for any δ > 0 we can find ε0 small enough such that

ε−α+δ ≤ M(A, ε) ≤ ε−α−δ, for any ε < ε0. (3.9)

We will first show that

lim sup
R→∞

E [Tcov]
α

2πλ
logR log logR

≤ 1.

To do so, we are going to cover the set RA by M = M(RA, ε) balls of radius 0 < ε < r.
From (3.9) we get that

( ε
R

)−α+δ
≤M ≤

( ε
R

)−α−δ
for R sufficiently large. (3.10)
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Let Zt be the number of balls not covered by the nodes at time t. It is clear that {Tcov >
t} ⊂ {Zt ≥ 1}. For the first moment of Zt we have

E [Zt] ≤M P (a given ball B(x, ε) is not covered by time t) .

The probability that a ball B(x, ε) is covered by time t is lower bounded by the probability
that a node of the Poisson point process Π0 has entered the ball B(x, r − ε) before time t.
Hence, P (B(x, ε) is not covered by time t) is at most the probability that x has not been
detected by time t by a mobile geometric graph with radius r − ε. From Lemma 3.8 we
obtain

P (B(x, ε) is not covered by time t) ≤ e−λE[vol(W0,r−ε(t))],

where Wz,ρ(t) = ∪s≤tB(z + ζ(s), ρ).
We are now prove the upper bound. Let δ′ > 0 be small. For t large enough we have

that (see (3.8))

(1 − δ′)2π
t

log t
≤ E [vol(W0,r−ε(t))] ≤ (1 + δ′)2π

t

log t
(3.11)

and hence,

E [Zt] ≤Me−2πλ(1−δ′) t
log t . (3.12)

By Markov’s inequality we have that P (Tcov > t) ≤ E [Zt]. Also,

E [Tcov] =

∫ ∞

0

P (Tcov > t) dt ≤ t∗(R) +

∫ ∞

t∗(R)
Me−2πλ(1−δ′) t

log t dt, (3.13)

where t∗(R) satisfies

M exp

(
−2πλ(1 − δ′)

t∗(R)

log t∗(R)

)
= 1 and t∗(R) > e, for sufficiently large R. (3.14)

We claim that the last integral appearing in (3.13) is o(t∗(R)). To see this set c = 2πλ(1−δ′)
and use a change of variable, x = t

log t
, which gives dx

dt
≥ 1

2 log t
≥ 1

4 log x
for t large enough.

Hence setting x∗ = t∗(R)
log t∗(R)

the integral is upper bounded by

∫ ∞

x∗

4M(log x)e−cx dx ≤ c′(1/x∗ + log x∗) = o(t∗(R)).

So we finally obtain that

E [Tcov] ≤ t∗(R)(1 + o(1)), as R → ∞.
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From (3.14) and (3.10) we get

(α− δ) log
R

ε
≤ c

t∗(R)

log t∗(R)
≤ (α + δ) log

R

ε
for R large enough,

and thus we conclude that

lim sup
R→∞

E [Tcov]
α

2πλ
logR log logR

≤ 1,

which follows by letting δ and δ′ go to 0.
We now proceed to show the lower bound

lim inf
R→∞

E [Tcov]
α

2πλ
logR log logR

≥ 1.

To do so, we are going to use the equivalent definition of Minkowski dimension involving
packings [64, Chapter 5]. Letting

K(A, ε) = max{k ≥ 1 : ∃ B1, · · · , Bk disjoint balls of radius ε centered in A},

it is clear that K(RA, ε) = K(A, ε
R

). For δ > 0 there exist K = K(RA, 1) disjoint balls with
centers in RA and radius 1 satisfying

Rα−δ ≤ K ≤ Rα+δ, for R large enough.

So, for R large enough, we can pack the set RA with points x1, · · · , xK (the centers of the
balls) that are at distance at least 2 from each other. Let Ut denote the number of centers
x1, · · · , xK that have not been detected by time t. Obviously we have that {Tcov > t} ⊃
{Ut ≥ 1}.

Recall that the Wiener sausage Wz,r(t) = ∪s≤tB(z + ζ(s), r) in two dimensions satisfies,
for δ′ > 0,

(1 − δ′)2π
t

log t
≤ E [vol (Wz,r(t))] ≤ (1 + δ′)2π

t

log t
, for t large enough. (3.15)

Let ε > 0 be small and let t∗ = t∗(R) > e satisfy the equation

t∗

log t∗
=

α− ε− δ

2πλ(1 + δ′)
logR. (3.16)

Applying the second moment method to the random variable Ut∗ we obtain

P (Tcov > t∗) ≥ (E [Ut∗ ])2

E [U2
t∗ ]

,



CHAPTER 3. MOBILE NETWORKS 37

so in order to obtain a lower bound for P (Tcov > t∗) it suffices to lower bound the first
moment of Ut∗ and upper bound its second moment. We will show that P (Tcov > t∗) ≥ 1

1+o(1)
,

hence we will get that E [Tcov] ≥ t∗ 1
1+o(1)

.

We have that E [Ut∗ ] =
∑K

i=1P (xi not detected by time t∗), and using Lemma 3.8 we
obtain that

P (xi not detected by time t∗) = exp(−λE [vol(Wxi)]),

where Wx = Wx,r(t
∗) =

⋃
s≤t∗ B(x + ζ(s), r).

Obviously E [vol(Wx)] is independent of x, and hence we get that

E [Ut∗ ] = K exp(−λE [vol(W0)]). (3.17)

Now, for the second moment of Ut∗ we have

E
[
U2
t∗
]

=
K∑

i=1

∑

j 6=i
P (xi, xj not detected by time t∗) + E [Ut∗ ] (3.18)

and using Remark 3.10 we get that

P (xi, xj not detected by time t∗) = exp(−λE
[
vol(Wxi ∪Wxj )

]
).

(Note that the two Wiener sausages Wxi and Wxj use the same driving Brownian motion.)
Writing

vol(Wxi ∪Wxj) = vol(Wxi) + vol(Wxj) − vol(Wxi ∩Wxj),

equation (3.18) becomes

E
[
U2
t∗
]
≤ exp (−2λE [vol(W0)])

N∑

i=1

∑

j 6=i
exp(λE

[
vol(Wxi ∩Wxj)

]
) + E [Ut∗ ] . (3.19)

Thus it remains to upper bound E
[
vol(Wxi ∩Wxj)

]
for all i and j. If ‖xi− xj‖2 ≤ (logR)2,

then we may use the bound vol(Wxi ∩Wxj ) ≤ vol(Wxi).
Recall from (3.16) that t∗(R) = Θ(logR log logR). The idea is that if xi and xj are at

distance greater than (logR)2 apart, then it is very unlikely that the two sets Wxi and Wxj

will intersect. Specifically, when ‖xi − xj‖2 ≥ (logR)2 it is easy to see that the probability
that the two sausages, Wxi and Wxj , intersect is smaller than the probability that a 2-
dimensional Brownian motion has traveled distance greater than 1

2
(logR)2 in t∗ time steps,

and this last probability is bounded above by ce−c(logR)
2

by the standard bound for the tail
of a Gaussian.

When ‖xi − xj‖2 ≥ (logR)2, writing S1 = B(xi, R) for the ball of radius R centered at
xi and defining inductively Sk = B(xi, 2

k−1R) \ B(xi, 2
k−2R) for all k ≥ 2, we can split the



CHAPTER 3. MOBILE NETWORKS 38

volume of Wxi ∩Wxj as follows:

E
[
vol(Wxi ∩Wxj )

]
=

∞∑

n=1

E
[
vol(Wxi ∩Wxj ∩ Sn)

]

≤ cπR2e−c(logR)
2

+

∞∑

n=2

c′22nR2e−c
′22nR ≤ c′′R−M ,

where c, c′, c′′ and M are all positive constants. The first part of the first inequality follows
from the discussion above, namely that if the intersection is nonempty, then the Brownian
motion must have traveled distance greater than 1

2
(logR)2 in less than t∗ steps. If this has

happened, then we simply bound the intersection of the two Wiener sausages in the ball
B(x,R) by the volume of the ball. The second part of the first inequality follows by the
same type of argument, since now in order to have a nonempty intersection in the set Sn,
the Brownian motion must have traveled distance at least 2n−2R in less than t∗ steps, which
again is exponentially small.

Finally, the sum appearing in (3.19) is bounded above by

K∑

i=1

∑

j 6=i
1(‖xi − xj‖2 ≤ (logR)2)eλE[vol(W0)] +

K∑

i=1

∑

j 6=i
1(‖xi − xj‖2 > (logR)2)ec

′′λR−M

.

(3.20)

By (3.15) and the definition of t∗ given in (3.16) we get that (3.20) is bounded from above
by

c1K(logR)4Rα−δ−ε +K2ec
′′λR−M

and hence

E
[
U2
t∗
]
≤ exp(−2λE [vol(W0)])

(
c1K(logR)4Rα−δ−ε +K2ec

′′λR−M
)

+ E [Ut∗ ] . (3.21)

Therefore, putting all the estimates together we get that

P (Ut∗ > 0) ≥ (E [Ut∗ ])2

E [U2
t∗ ]

≥ 1

ec′′λR−M + 1
K

((logR)4Rα−δ−ε + eλE[vol(W0)])
.

Using the lower bound K ≥ Rα−δ, the upper bound for the expected volume from (3.15)
and the definition (3.16) of t∗, we deduce that

P (Ut∗ > 0) ≥ 1

1 + o(1)
,

and thus E [Tcov] ≥ 1
1+o(1)

t∗. Since t∗ satisfies (3.16), we deduce that

lim inf
R→∞

E [Tcov]
α

2πλ
logR log logR

≥ 1 − ε
α
− δ

α

1 + δ′
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and hence, letting ε, δ and δ′ go to 0, we get that

lim inf
R→∞

E [Tcov]
α

2πλ
logR log logR

≥ 1.

So, we have shown that

E [Tcov] ∼ α

2πλ
logR log logR, as R → ∞. (3.22)

Now, for d = 2 it only remains to show the last part of the theorem, namely that Tcov
E[Tcov ]

converges to 1 in probability as R → ∞. For any γ > 0 we have that

P

(∣∣∣∣
Tcov

E [Tcov]
− 1

∣∣∣∣ > γ

)
= P (Tcov > (1 + γ)E [Tcov]) + P (Tcov < (1 − γ)E [Tcov])

≤ E
[
Z(1+γ)E[Tcov ]

]
+ P (Tcov < (1 − γ)E [Tcov]) .

From (3.12) and the definition of M we have that

E [Zt] ≤ Rα+δ exp

(
−2πλ(1 − δ′)

t

log t

)
.

Plugging in t = (1 + γ)E [Tcov], using (3.22) and taking δ′ sufficiently small gives that

E
[
Z(1+γ)E[Tcov ]

]
→ 0, as R → ∞.

For ε, δ, δ′ small enough we get that (1 − γ)E [Tcov] < t∗, so

P (Tcov < (1 − γ)E [Tcov]) ≤ P (Tcov ≤ t∗) ≤ P (Ut∗ = 0) ≤ 1 − (E [Ut∗ ])2

E [U2
t∗ ]

= o(1).

Hence we get the desired result that

P

(∣∣∣∣
Tcov

E [Tcov]
− 1

∣∣∣∣ > γ

)
→ 0, as R → ∞.

For dimensions d 6= 2, the same arguments carry through by employing the proper
expression for the expected volume of the Wiener sausage given in (3.8). Then, we need to
set t?(R) and t?(R) correspondingly. From (3.14) and (3.16), it suffices to set t? to satisfy

exp

(
λ(1 − δ′)

√
8t?(R)

π

)
= M for d = 1

exp
(
λ(1 − δ′)c(d)rd−2t?(R)

)
= M for d ≥ 3,
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and t? to satisfy

λ(1 + δ′)

√
8t?(R)

π
= (α− ε− δ) logR for d = 1

λ(1 + δ′)c(d)rd−2t?(R) = (α− ε− δ) logR for d ≥ 3.

Remark 3.16. While the limit defining Minkowski dimension in Definition 3.14 may not
exist, the corresponding lim sup is denoted by dimM(A) and always exists. The proof of
Theorem 3.15 also shows that for d = 2

lim sup
R→∞

E [Tcov(RA)]
1

2πλ
logR log logR

= dimM(A)

and similarly for lim inf and other dimensions.

Remark 3.17. The estimates in the proof of Theorem 3.15 actually imply that, as R → ∞,
we have Tcov(RA)

E[Tcov(RA)]
→ 1 .

3.3 Percolation time

In this section we give the proof of Theorem 3.6. We will observe the process (Gi)i≥0 in
discrete time steps i = 0, 1, . . . in order to be able to apply a multi-scale argument. For a
nonnegative integer i we define the event Ji that u does not belong to the infinite component
at time i; more formally,

Ji = {u /∈ ∪y∈C∞(i)B(y, r)}.
Then it is easy to see that, for all t, we have

P (Tperc > t) ≤ P
(
∩btc
i=0Ji

)
.

We define QL to be the cube with side length L centered at the origin and with sides
parallel to the axes of Rd. We tessellate QL into subcubes of side length ` < L , which we
call cells. We now state two key propositions that lie at the heart of our argument.

The first proposition says that, provided every cell of the tessellation contains sufficiently
many nodes, then we can couple the positions of these nodes after sufficiently many steps
with the nodes of an independent Poisson point process of only slightly smaller intensity on
a smaller cube. We prove this proposition in Section 3.3.1.

Proposition 3.18. Fix K > ` > 0 and consider the cube QK tessellated into cells of side
length `. Let Φ0 be an arbitrary point process at time 0 that contains at least β`d nodes at
each cell of the tessellation for some β > 0. Let Φ∆ be the point process obtained at time ∆



CHAPTER 3. MOBILE NETWORKS 41

from Φ0 after the nodes have moved according to standard Brownian motion for time ∆. Fix
ε ∈ (0, 1) and let Ξ be an independent Poisson point process with intensity (1 − ε)β. Then
there exists a coupling of Ξ and Φ∆ and constants c1, c2, c3 depending only on d such that, if
∆ ≥ c1`2

ε2
and K ′ ≤ K − c2

√
∆ log ε−1 > 0, then the nodes of Ξ are a subset of the nodes of

Φ∆ inside the cube QK ′ with probability at least

1 − Kd

`d
exp(−c3ε2β`d).

The second proposition, which we prove in Section 3.3.2, says that the above condition
that each cell contains sufficiently many nodes is satisfied at an arbitrary constant fraction
of time steps with high probability.

Proposition 3.19. Let t > 0 be a sufficiently large integer and ξ, ε ∈ (0, 1) be two constants.
Suppose that the cube QL, for L = t, is tessellated into cells of side length `, where `d ≥
C log3 t for some sufficiently large constant C. For i = 0, 1, . . . let

Ai = {at time i all cells contain ≥ (1 − ξ)λ`d nodes of Πi}.

Then there exists a positive constant c such that

P

(
t−1∑

i=0

1(Ai) ≥ (1 − ε)t

)
≥ 1 − exp

(
−c λt

log3+6/d t

)
. (3.23)

Proof of Theorem 3.6. Let u be a node that is at the origin at time 0 independent of the
nodes of Π0. We assume that u is non-mobile; the proof can easily be extended to mobile u
using translated cubes that track the motion of u as in [80, Section 4].

Let t be an integer sufficiently large. We consider the cube QL, for L = t. Set Ht to
be the event that u has never been in the infinite component from time 0 to t − 1. More
formally, we define

Ht = ∩t−1
i=0Ji = ∩t−1

i=0{u /∈ ∪y∈C∞(i)B(y, r)}.
We say that a cube QL has a crossing component at a given time i if among the nodes

in QL there exists a connected component that has a path connecting each pair of opposite
faces of QL. (A path connects two faces of QL if for each face there is at least one node of
the path within distance r of the face.) We then define H̃t to be the event that u has never
been within distance r of a crossing component of QL from time 0 to t − 1. Let Kt be the
event that, in each step from 0 to t − 1, there exists a unique crossing component of QL

and it intersects the infinite component. Therefore, if Kt holds and u belongs to a crossing
component of QL at some time step from 0 to t− 1, then at the same time step u will also
belong to the infinite component. We can then conclude that Kt ∩ H̃c

t ⊆ Hc
t , which gives

P (Ht) ≤ P(Kc
t ∪ H̃t) ≤ P(Kc

t ) + P(H̃t).
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By [72, Theorems 1 and 2] and by taking the union bound over all time steps, we have

P (Kc
t ) ≤ t exp(−c1L). (3.24)

We will now derive an upper bound for P(H̃t). Let ξ > 0 be a sufficiently small constant
such that (1 − ξ)λ > λc. Take the cube Q2L and tessellate it into cells of side length `,
where ` = C1 log3/d t, for C1 a sufficiently large constant in order to satisfy the assumptions
of Proposition 3.19. Call a cell dense if it contains more than (1−ξ)λ`d nodes. For δ > 0, let
D be the event that all cells inside Q2L are dense for at least (1 − δ)t time steps. Applying
Proposition 3.19 we obtain a constant c2 such that

P (D) ≥ 1 − exp

(
−c2

λt

log3+6/d t

)
.

We use the event D to obtain an upper bound for P(H̃t) via

P(H̃t) ≤ P(H̃t ∩D) + P(Dc) ≤ P(H̃t ∩D) + exp

(
−c2

λt

log3+6/d t

)
. (3.25)

On the event D, by definition, we can find a collection S of (1 − δ)t time steps for which all
cells of side length ` are dense inside the cube Q2L. We set ∆ = C2`

2 for some sufficiently
large constant C2. We define τ1 as the first time step for which all cells of Q2L are dense.
We now define τi+1 recursively as the first time step after τi + ∆ for which all cells are dense.
Obviously, τ1 < τ2 < · · · and if we take k = c3t/∆ = c′3t/ log6/d t for some constant c3, then
we can ensure that on D we have τk ≤ t− 1.

For each i, let Ai be the event that u does not belong to a crossing component of QL at
time τi + ∆. Since when D holds we have τk ≤ t− 1, we can write

P(H̃t ∩D) ≤ P

(
k⋂

i=1

Ai ∩D
)
. (3.26)

For each i, let Fi be the σ-field induced by the locations of the nodes of Π0 from time 0 to
τi. We now claim that for t sufficiently large there exists a positive constant c4 such that

P (Ai | Fi) < e−c4. (3.27)

We will define two events E1, E2 such that for any F ∈ Fi we have

P (Ai | F ) ≤ P (Ec
1 | F ) + P (Ec

2 | F ) . (3.28)

Take ε > 0 sufficiently small so that (1 − ε)(1 − ξ)λ > λc, and let Ξ be an independent
Poisson point process of intensity (1 − ε)(1 − ξ)λ. We define the events

E1 = {u belongs to a crossing component of Ξ in QL} and

E2 = {∃ a coupling of Ξ and Πτi+∆ so that Ξ ⊂ Πτi+∆ in QL},
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where “Ξ ⊂ Πτi+∆ in QL” means that the nodes of Ξ that lie inside the cube QL are a subset
of the nodes of Πτi+∆.

Note that when E1 and E2 both hold, then u belongs to a crossing component of QL at
time τi + ∆, which implies that Ai does not hold. Since the intensity of Ξ is strictly larger
than λc and E1 is independent of F by construction, we obtain P (E1 | F ) ≥ c5 for some
constant c5 ∈ (0, 1) by [72, Theorem 1].

All cells are dense at time τi, by the definition of τi. Taking K and K ′ appearing in
Proposition 3.18 to be K = 2L and K ′ = L, we see by the choice of ∆ that for large enough
t the condition for K ′ in Proposition 3.18 is satisfied and thus we obtain, uniformly over all
F ∈ Fi, that, for a positive constant c6,

P (Ec
2 | F ) ≤ exp

(
−c6λ log3 t

)
.

Plugging everything into (3.28) we get

P (Ai | F ) ≤ 1 − c5 + exp
(
−c6λ log3 t

)
,

which can be made strictly smaller than 1 by taking t sufficiently large. This establishes
(3.27).

Note that by definition we have τi + ∆ < τi+1 for all i, which gives Ai ∈ Fi+1. We can
write (3.26) as

P(H̃t ∩D) ≤ P
(
∩ki=1Ai

)
=

k∏

i=2

P
(
Ai
∣∣ ∩i−1

j=1Aj
)
P (A1) ,

which by (3.27) translates to

P(H̃t ∩D) ≤ exp (−c4k) ≤ exp

(
−c7

t

log6/d t

)
,

for a positive constant c7. Plugging this into (3.25) concludes the proof of Theorem 3.6.

3.3.1 Coupling

In this section we give the proof of Proposition 3.18. We begin by stating and proving a
small technical lemma that will be used in the proof.

Lemma 3.20. Assume ε ∈ (0, 1) and ρ > 0. Let ∆ ≥ 16d2ρ2/ε2 and R ≥ 2
√
d∆ log(8dε−1).

Define

g(z) =
1

(2π∆)d/2
exp

(
−(‖z‖2 + ρ)2

2∆

)

on R
d. Then we have ∫

B(0,R)

g(z) dz ≥ 1 − ε/2.
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Proof. Let ψ(x) = 1
(2π∆)1/2

exp
(
− (|x|+ρ)2

2∆

)
, for x ∈ R.

Note that
∑d

i=1(|zi| + ρ)2 = ‖z‖22 + 2ρ‖z‖1 + ρ2d ≥ (‖z‖2 + ρ)2, so

d∏

i=1

ψ(zi) ≤ g(z), for z = (z1, . . . , zd) ∈ R
d. (3.29)

Next observe that
∫ ∞

−∞
ψ(x) dx = 1 −

∫ ρ

−ρ

1

(2π∆)1/2
exp

(
− y2

2∆

)
dy ≥ 1 − 2ρ√

2π∆
≥ 1 − ρ√

∆
≥ 1 − ε

4d
.

By the Gaussian tail bound we have that

∫ ∞

R/
√
d

ψ(x) dx ≤ exp

(
− R2

2d∆

)
≤ ε2

64d2
≤ ε

8d
,

for any ε ∈ (0, 1). Thus
∫ R/√d
−R/

√
d
ψ(x) dx ≥ 1 − ε

2d
. Since [−R/

√
d, R/

√
d]d ⊂ B(0, R), we

deduce from (3.29) that

∫

B(0,R)

g(z) dz ≥
∫

[−R/
√
d,R/

√
d]d

d∏

i=1

ψ(zi) dz ≥
(

1 − ε

2d

)d
≥ 1 − ε/2.

We now proceed to the proof of Proposition 3.18.

Proof of Proposition 3.18. We will construct Ξ via three Poisson point processes. We
start by defining Ξ0 as a Poisson point process over QK with intensity (1 − ε/2)β. Recall
that Φ0 has at least β`d nodes in each cell of QK . Then, in any fixed cell, Ξ0 has fewer nodes
than Φ0 if Ξ0 has less than β`d nodes in that cell, which by a standard Chernoff bound (cf.

Lemma A.3) occurs with probability larger than 1− exp
(
− ε′2(1−ε/2)β`d

2
(1 − ε′/3)

)
for ε′ such

that (1 + ε′)(1 − ε/2) = 1. Since ε ∈ (0, 1) we have ε′ ∈ (ε/2, 1), and the probability above
can be bounded below by 1 − exp

(
−cε2β`d

)
for some constant c = c(d). Let {Ξ0 � Φ0} be

the event that Ξ0 has fewer nodes than Φ0 in every cell of QK . Using the union bound over
cells we obtain

P (Ξ0 � Φ0) ≥ 1 − Kd

`d
exp(−cε2β`d). (3.30)

If {Ξ0 � Φ0} holds, then we can map each node of Ξ0 to a unique node of Φ0 in the same
cell. We will now show that we can couple the motion of the nodes in Ξ0 with the motion
of their respective pairs in Φ0 so that the probability that an arbitrary pair is at the same
location at time ∆ is sufficiently large.
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To describe the coupling, let v′ be a node from Ξ0 located at y′ ∈ QK , and let v be the
pair of v′ in Φ0. Let y be the location of v in QK , and note that since v and v′ belong to the
same cell we have ‖y − y′‖2 ≤

√
d`. We will construct a function g(z) that is smaller than

the densities for the motions of v and v′ to the location y′ + z, uniformly for z ∈ R
d. That

is,

g(z) ≤ 1

(2π∆)d/2
exp

(
−max{‖z‖22, ‖y′ + z − y‖22}

2∆

)
(3.31)

for all z ∈ R
d.

To this end we set

g(z) =
1

(2π∆)d/2
exp

(
−(‖z‖2 +

√
d`)2

2∆

)
. (3.32)

Note that this definition satisfies (3.31) since by the triangle inequality ‖y′ + z − y‖2 ≤
‖y′ − y‖2 + ‖z‖2 and ‖y′ − y‖2 ≤

√
d`. Define ψ = 1 −

∫
Rd g(z) dz. Then, with probability

1 − ψ we can use the density function g(z)
1−ψ to sample a single location for the position of

both v and v′ at time ∆, and then set Ξ′
0 to be the Poisson point process with intensity

(1−ψ)(1− ε/2)β obtained by thinning Ξ0 (i.e., deleting each node of Ξ0 with probability ψ).
At this step we have crucially used the fact that the function g(z) in (3.32) is oblivious of
the location of v and, consequently, is independent of the point process Φ0. (If one were to
use the maximal coupling suggested by (3.31), then the thinning probability would depend
on Φ0, and Ξ′

0 would not be a Poisson point process.)
Let Ξ′

∆ be obtained from Ξ′
0 after the nodes have moved according to the density function

g(z)
1−ψ . Thus we are assured that the nodes of the Poisson point process Ξ′

∆ are a subset of the
nodes of Φ∆ and are independent of the nodes of Φ0, where Φ∆ is obtained by letting the
nodes of Φ0 move from time 0 to time ∆.

By Lemma 3.20 we get that if ∆ and K −K ′ are large enough, then the integral of g(z)
inside the ball B = B(0, (K −K ′)/2) is larger than 1 − ε/2. (We are interested in the ball
B since for all z ∈ QK ′ we have z +B ⊂ QK .)

When {Ξ0 � Φ0} holds, Ξ′
∆ consists of a subset of the nodes of Φ∆. Note that Ξ′

∆ is a
non-homogeneous Poisson point process over QK . It remains to show that the intensity of
Ξ′
∆ is strictly larger than (1 − ε)β in QK ′ so that Ξ can be obtained from Ξ′

∆ via thinning;
since Ξ′

∆ is independent of Φ0, so is Ξ.
For z ∈ R

d, let µ(z) be the intensity of Ξ′
∆. Since Ξ′

0 has no node outside QK , we obtain
for any z ∈ QK ′,

µ(z) ≥ (1 − ψ)(1 − ε/2)β

∫

z+B

g(z − x)

1 − ψ
dx = (1 − ε/2)β

∫

B

g(x) dx,

where the inequality follows since z +B ⊂ QK for all z ∈ QK ′. From Lemma 3.20, choosing
the constants c1 and c2 sufficiently large we have

∫
B
g(x) dx ≥ 1 − ε/2. We then obtain
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µ(z) ≥ (1−ε/2)2β ≥ (1−ε)β, which is the intensity of Ξ. Therefore, when {Ξ0 � Φ0} holds,
which occurs with probability given by (3.30), the nodes of Ξ are a subset of the nodes of
Φ∆, which completes the proof of Proposition 3.18.

3.3.2 Density

In this section we prove Proposition 3.19 using a multi-scale argument. Since the argument
is rather involved, we begin with a high-level overview.

Proof overview

Our goal is to show that if we tessellate the cube QL, with L = t, into cells of volume of
order (log t)c, then the probability that all cells contain sufficiently many nodes for a fraction
1 − ε of the time steps is at least the expression given in Proposition 3.19.

We start at scale 1 with the cube QL1 where L1 > L. We tessellate QL1 into cells that
are so large that we can easily show that with very high probability during all time steps all
these cells contain sufficiently many nodes. We refer to this as the event that “the density
condition is satisfied at all steps for scale 1.” Then, when going from scale j − 1 to scale j,
we take a smaller cube QLj

with Lj < Lj−1, and tessellate it into cells that are smaller than
the cells at the previous scale (see Figure 3.1). We define the density condition for scale j
at a given time step as the event that all the cells at scale j contain a number of nodes that
is sufficiently large but strictly smaller than the one used for the density condition for scale
j−1. Since this density requirement becomes less strict when going from scale j−1 to scale
j, we will be able to show that the density condition for scale j is satisfied for a large fraction
of the time steps at which the density condition is satisfied for scale j − 1. We repeat this
procedure until we obtain, at the last scale, the cube QL and cells of side length `.

The importance of the multi-scale approach is that it allows us to recover quickly from
instances of low density, i.e., if the density condition holds in scale j − 1 but fails (at some
time) in scale j, there are enough nodes nearby to recover density shortly thereafter.

We now proceed to the detailed argument.

Full proof

Let κ be the number of scales; we will see in a moment that κ = O(log t) will suffice. Let
L1 > L2 > · · · > Lκ = L such that L1 = t2 and Lκ = t.

Let `1 > `2 > · · · > `κ = `. At scale j, we consider the cube QLj
and tessellate it into

cells of side length `j (see Figure 3.1(b–c)). We say that a cell is dense at a given time step
for scale j if it contains more than (1 − ξj)λ`

d
j nodes at that step, where the ξj satisfy

ξ

2
= ξ1 < ξ2 < · · · < ξκ = ξ and ξj − ξj−1 =

ξ

2(κ− 1)
, for all j.

We start by analyzing the event that all cells are dense for scale 1 during all time steps,
which we denote by D1. The next lemma shows that D1 occurs with very high probability.
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QLj-1
QLj

(a) (b)

j-1

Lj-1Lj

(c)

j

QLj-1

QLj

Figure 3.1: (a) The cube QLj−1
and the smaller cube QLj

obtained when going from scale
j − 1 to scale j. (b) The tessellation of QLj−1

into cells of side length `j−1. (c) The finer
tessellation of QLj

into cells of side length `j < `j−1.

scale j-1

Dj-1

scale j

 mj-1 

 mj 

Dj-1 Dj-1 Dj-1

 mj  mj  mj 

Figure 3.2: Illustration for how 1 time interval of scale j − 1 gives 4 subintervals of scale j.

Lemma 3.21. If `d1 > C log t for some large enough constant C, then there exists a constant
c such that

P (D1) ≥ 1 − exp
(
−cλ`d1

)
.

Proof. For any fixed time i and cell k, the number of nodes in k at time i is given by a
Poisson random variable with mean λ`d1. Then, using a Chernoff bound (cf. Lemma A.3),
we obtain that there are more than (1 − ξ1)λ`

d
1 nodes in that cell at that time step with

probability larger than 1 − exp(−ξ21λ`d1/2). The number of cells inside QL1 is O(t2d) by our
choice of L1 and `1. The proof is completed by taking the union bound over all cells and
time steps, and using the assumption on `1.

We will need to disregard some time steps when going from one scale to the next. During
this discussion it will be useful to refer to Figure 3.2. Let sj be the number of time steps
considered for scale j. We start with s1 = t so that at scale 1 all time steps are considered;
we will have s1 > s2 > · · · > sκ. For each scale j, we will split time into intervals of mj
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consecutive time steps. We start with m1 = t, so that at scale 1 we have only one time
interval of length t.

In each interval [a, a + mj−1) at scale j − 1 we consider the following four separated
subintervals of length mj (see Figure 3.2):

[a+ k∆j−1 + (k − 1)mj , a+ k∆j−1 + kmj), for k = 1, 2, 3, 4, (3.33)

where

mj =
mj−1 − 4∆j−1

4
. (3.34)

We will set the ∆j in a moment. We skip ∆j−1 steps in order to allow the nodes to move
far enough and enable the application of the coupling from Proposition 3.18. Note that this

gives sj = sj−1

(
1 − 4∆j−1

mj−1

)
.

For a given scale j, we say that a time interval is dense if all cells are dense during all
the time steps contained in this time interval, i.e., each cell contains more than (1 − ξj)λ`

d
j

nodes at all time steps.
Let 0 = ε1 < ε2 < · · · < εκ = ε satisfy εj − εj−1 = ε

κ−1
. For each scale j ≥ 1, we define

the event

Dj = {a fraction of at least ≥
(

1 − εj
2

)
time intervals of scale j are dense}. (3.35)

If Dκ holds, the number of time steps for which all cells are dense for the last scale κ is
at least

(
1 − εκ

2

)
sκ =

(
1 − εκ

2

)
s1

κ−1∏

j=1

(
1 − 4∆j

mj

)
≥
(

1 − ε

2

)
t

(
1 −

κ−1∑

j=1

4∆j

mj

)
. (3.36)

Since we are aiming to obtain (1 − ε)t time steps for which the density condition is satisfied
for the last scale, we set ∆j to satisfy

∆j

mj

=
ε

8κ
(3.37)

for all j. The value of ∆j must be sufficiently large to allow nodes to move over a distance
`j. We then define `j by

∆j = C ′`2jκ
2, (3.38)

where C ′ is a sufficiently large constant.
From (3.34), (3.37) and (3.38), we obtain

`2j
mj

=
ε

8C ′κ3
and `j+1 = `j

√
1

4
− ε

8κ
. (3.39)
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Since m1 = t, we get that `21 = ε
8C′κ3 t ≤ ε

8C′ t and since we want to get `dκ = `d ≥ C(log t)3,
it is easy to see that κ = O(log t) is sufficient.

For any time step i, let Fi be the σ-field induced by the locations of the nodes of Π0 from
time 0 up to time i.

Lemma 3.22. Let A = [a, a + mj) be a time interval considered in scale j. We write
b = a− ∆j−1 and E = {at time b all cells are dense for scale j − 1}. Let `d ≥ C(log t)3 for
some sufficiently large constant C > 0. Then there exists a constant c such that

P (A not dense, E | Fb) ≤ exp
(
−cλ`dj/κ2

)
.

Proof. For any F ∈ Fb such that F ∩E = ∅ the lemma clearly holds. We then take F ∩E 6= ∅
and give an upper bound for P (A not dense | E, F ). Let Φb be the point process obtained
at time b after conditioning on F ∩E. We first fix a time w ∈ A and derive an upper bound
for

P (at time w not all cells are dense for scale j | E, F ) .

Since we condition on E, all cells are dense for scale j− 1 at time b. We now set δ such that
(1− δ)2(1− ξj−1) = 1− ξj, which implies δ = Θ(ξj − ξj−1). We also choose a constant c and
the constant C ′ appearing in the definition of ∆j in (3.38) so that, setting

Lj ≤ Lj−1 − c

√
∆j−1 log

1

δ
, (3.40)

allows us to apply Proposition 3.18 with K = Lj−1 and K ′ = Lj . Thus we obtain a fresh
Poisson point process Ξ with intensity (1−δ)(1−ξj−1)λ that can be coupled with Φw (which
is the point process obtained at time w after the points of Φb have moved for time w− b) in
such a way that Ξ is stochastically dominated by Φw inside QLj

with probability at least

1 − exp
(
−c1δ2(1 − ξj−1)λ`

d
j−1

)
, (3.41)

for some positive constant c1. We note that the choice of L1 = t2 and the fact that κ =
O(log t) together with equation (3.38) gives that it is always possible to choose the Lj’s
satisfying (3.40) and such that Lκ = t.

A given cell is dense for scale j at time w if Ξ contains at least (1−ξj)λ`dj nodes in that cell,

which by the choice of δ happens with probability at least 1−exp
(
−c2δ2(1 − δ)(1 − ξj−1)λ`

d
j

)

for some constant c2 (cf. Lemma A.3). The proof is completed by taking the union bound
over all cells and over all time steps in A and using the condition for `.

We now use Lemma 3.22 to give an upper bound for P
(
Dc
j ∩Dj−1

)
that holds for all j,

where Dj was defined in (3.35).
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Lemma 3.23. If `d ≥ C(log t)3 for some large enough C, then there exists a constant c such
that for any j ≥ 2 we have

P
(
Dc

j ∩Dj−1

)
≤ exp

(
−cλt(log t)3−6/d

κ6

)
.

Proof. If Dj−1 happens, then there are at least
(
1 − εj−1

2

) sj−1

mj−1
dense time intervals for scale

j − 1. When we go to scale j, these intervals will give us

4
(

1 − εj−1

2

) sj−1

mj−1
(3.42)

time intervals that we will consider for scale j. On the other hand, if the event Dc
j holds,

then there are less than (
1 − εj

2

) sj
mj

(3.43)

dense intervals for scale j. Let w be obtained by subtracting (3.43) from (3.42), that is,

w =
sj
mj

(
εj − εj−1

2

)
.

Let Z be the number of subintervals [a, a+mj) of scale j that are not dense for scale j, but
are such that the time step a − ∆j−1 is dense for scale j − 1. (We call a time step dense if
all cells are dense at that time.) It is easy to see that if both Dj−1 and Dc

j happen, then
Z ≥ w.

We can write Z as a sum of sj/mj indicator random variables Ik, one for each time
interval of scale j. Although the Ik’s depend on one another, Lemma 3.22 gives that the
probability that Ik = 1 given an arbitrary realization of the previous k − 1 indicators is
smaller than ρj = exp

(
−c1ξ2λ`dj/κ2

)
for some constant c1. Therefore, Z is stochastically

dominated by a random variable Z ′ obtained as a sum of sj/mj i.i.d. Bernoulli random
variables with mean ρj. Using a Chernoff bound (cf. Lemma A.2), we obtain

P (Z ′ ≥ w) = P

(
Z ′ − E [Z ′] ≥ sj

mj

(
εj − εj−1

2
− ρj

))

≤ exp

(
− sj
mj

(
εj − εj−1

2

)(
log

(
εj − εj−1

2ρj

)
− 1

))
. (3.44)

Note that εj − εj−1 = ε
κ−1

and log(ρ−1
j ) = Θ(ξ2λ`dj/κ

2). Also `dj ≥ `d ≥ C(log t)3 and
κ = O(log t), so we obtain a constant c2 such that

P (Z ′ ≥ w) ≤ exp

(
−c2ξ2λsj

`dj
mj

ε

κ3

)
.
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Recall from (3.39) that
`2j
mj

= ε
8C′κ3 . By (3.36) and (3.37) we have that sj−1 = Θ(t) for all j,

so we finally obtain

P (Z ′ ≥ w) ≤ exp

(
−c3

ε2ξ2

κ6
λ`d−2

j t

)

for some constant c3 > 0. Using `j ≥ ` and the assumption on ` in the statement of the
lemma completes the proof.

We are now in a position to prove Proposition 3.19.

Proof of Proposition 3.19. To prove Proposition 3.19, we need to derive an upper bound
for P (Dc

κ). Note that P (Dc
κ) ≤ P (Dc

κ ∩Dκ−1) + P
(
Dc
κ−1

)
. Applying this inequality

recursively for the term P
(
Dc
κ−1

)
we obtain

P (Dc
κ) ≤

κ∑

j=2

P
(
Dc
j ∩Dj−1

)
+ P (Dc

1) .

Each term in the sum can be bounded using Lemma 3.23 and the last term can be bounded
using Lemma 3.21. The proof is completed since κ = O(log t) and the initial value

`1 =
ε

8C ′κ3
t ≥ c1

t

(log t)3
.

3.4 Broadcast time

In this section we use Theorem 3.6 to prove Corollary 3.7 for a finite mobile network of
volume n.

We may relate the mobile geometric graph model on the torus to a model on R
d as

follows. Let Sn denote the cube Q(n)1/d . The initial distribution of the nodes is a Poisson

point process over R
d with intensity λ on Sn and zero elsewhere. We allow the nodes to

move according to Brownian motion over R
d as usual, and at each time step we project

the location of each node onto Sn so that nodes “wrap around” Sn when they reach the
boundary.

Proof of Corollary 3.7. Let t = C logn(log log n)3+6/d for some sufficiently large constant
C = C(d). We define a giant component as a connected component that contains at least

two nodes at distance larger than (n)1/d

4
. It follows from [72, Theorem 2] and the union bound

over time steps that, with probability 1 − e−Θ(n1/d), Gi contains a unique giant component
for all integer i ∈ [0, 2t− 1].
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The proof proceeds in two stages. First, we show that for any fixed i ∈ [0, 2t− 1], w.h.p.
the giant component of Gi has at least one node in common with the giant component
of Gi+1. This means that, once the message has reached the giant component, it will reach
any node v as soon as v itself belongs to the giant component. Then we show that, after t
steps, all nodes have belonged to the giant component w.h.p. This implies that broadcast is
achieved after 2t steps w.h.p.

To establish the first stage, let ε > 0 be sufficiently small so that (1 − ε)λ > λc. We
use the thinning property to split Πi into two Poisson point processes, Π′

i and Π′′
i , with

intensities (1 − ε)λ and ελ respectively. Let G′
i and G′

i+1 be the graphs induced by Π′
i and

Π′
i+1 respectively. Then with probability 1 − e−Θ(n1/d) both G′

i and G′
i+1 contain a unique

giant component [72, Theorem 2]. We show that at least one node from Π′′
i belongs to

both giant components. For any node v of Π′′
i , the probability that v belongs to the giant

component of G′
i is larger than some constant c = c(d). Moreover, using the FKG inequality

we can show that v belongs to the giant components of both G′
i and G′

i+1 with probability
larger than c2. Therefore, using the thinning property again, we can show that the nodes
from Π′′

i that belong to the giant components of both G′
i and G′

i+1 form a Poisson point
process with intensity ελc2, since c does not depend on Π′′

i . Hence, there will be at least one
such node inside Sn with probability 1 − e−εc

2n, and this stage is concluded by taking the
union bound over time steps i.

We now proceed to the second stage of the proof. We first need to show that the tail
bound on Tperc from Theorem 3.6 also holds when applied to the finite region Sn defined
above. Note that all the derivations in the proof of Theorem 3.6 were restricted to the
cube QL1 , where L1 = t2 was defined in Section 3.3.2. We have that QL1 is contained inside
Sn for all sufficiently large n since L1 = t2 = O(log2 n(log log n)6+12/d) while Sn has side
length n1/d. In order to check that the toroidal boundary conditions do not affect the result,
it suffices to observe that, during the time interval [0, 2t], no node moved distance larger

than n1/d

2
w.h.p.

Now note that, by a Chernoff bound, G has at most (1 + δ)λn nodes with probability
larger than 1 − e−Ω(n) for any fixed δ > 0. These nodes are indistinguishable, so letting ρ
be the probability that an arbitrary node has percolation time at least t, we can use the
union bound to deduce that this applies to at least one node in G with probability at most
(1 + δ)λnρ. Let v be an arbitrary node. In order to relate ρ to the result of Theorem 3.6,
we can use translation invariance and assume that v is at the origin. Then, by the “Palm
theory” of Poisson point processes [83], ρ is equivalent to the tail of the percolation time for
a node added at the origin, which is precisely P (Tperc > t). Thus finally, using Theorem 3.6
we get ρ ≤ exp(−c t

(log t)3+6/d ), which can be made o(1/n) by setting C sufficiently large in

the definition of t.
We then obtain that with probability 1 − o(1/n) all nodes of G have been in the giant

component during the time interval [0, t − 1], which implies that at time step t − 1, the
nodes of the giant component contain the message being broadcast. By stationarity, with
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probability 1 − o(1/n) all nodes have been in the giant component during the time interval
[t, 2t − 1], and thus have received the message by time 2t. This completes the proof of
Corollary 3.7.

Remark 3.24. It is easy to see that the above result also holds in the case where the graph
has exactly λn nodes. The proof above shows that, by setting C large enough, we can ensure
P (Tbc > 2t) = o(1/n) for the given value of t. Also, it is well known that a Poisson random
variable with mean λn takes the value λn with probability p = Θ(1/

√
n). Therefore, for a

graph with exactly λn nodes, we have Pr[Tbc < t] = p−o(1/n)
p

= 1 − o(1/
√
n).
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Chapter 4

Randomized Broadcast on General

Networks

In this chapter, we consider the push algorithm, which was discussed in Chapter 2 for
random geometric graphs, and study its performance in general networks. Recall that, in
this algorithm, at the beginning, one node has a piece of information and, at each discrete
step, each informed node chooses a neighbor independently and uniformly at random and
informs it. We denote by It the set of nodes that have the information by the end of step t.

Let G = (V,E) be an undirected, simple, connected graph with n nodes. For a node
u ∈ V , deg(u) denotes the degree of u and Γ(u) denotes the set of neighbors of u in G;
therefore, deg(u) = |Γ(u)|. A graph is called vertex transitive if, for each pair of nodes
u, v ∈ V , there exists a permutation π : V → V such that π(u) = v and, for each pair of
nodes r, s ∈ V , we have that {r, s} ∈ E if and only if {π(r), π(s)} ∈ E.

Definition 4.1 (Vertex Expansion). The vertex expansion of a graph G = (V,E) is

α = min
S⊆V,|S|≤n/2

|∂(S)|
|S| ,

where ∂(S) is the boundary of S, i.e., the nodes in V \ S having an edge to a node in S.

Clearly α ≤ 1 for any graph G, and if G is connected then α > 0. When α = Θ(1), we
say that G is a vertex expander. For any two sets of nodes S, T ⊆ V we define E(S, T ) as
the set of edges between a node in S and a node in T . We now define conductance.

Definition 4.2 (Conductance). The conductance of a graph G = (V,E) is

Φ = min
S⊆V,0<vol(S)≤vol(V )/2

|E(S, V \ S)|
vol (S)

,

where vol (S) =
∑

v∈S deg(v).
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It is easy to see that for any d-regular graph G, α/d ≤ Φ ≤ α. Hence any d-regular
graph with constant conductance also has constant vertex expansion, but the converse is
not true. An elementary example is obtained by connecting two cliques with n/2 nodes by
a matching, which yields a graph with constant vertex expansion, but with conductance of
order Θ(1/n).

Another important class of graphs for which the vertex expansion can be potentially
much larger than the conductance is vertex transitive graphs. While vertex transitive graphs
always have a vertex expansion of at least 1/(4D) [6, Theorem 3.2], where D is the diameter
of the graph, the conductance can be much smaller (even exponentially smaller) than 1/D.
Even for the hypercube with n nodes, there is already a substantial difference between vertex
expansion α = Θ(1/

√
log n) and conductance Φ = Θ(1/ logn). The difference between these

two expansion measures is closely linked to the fact that vertex expansion is monotone under
adding edges, while conductance is not.

Our first result, which we prove in Section 4.1, relates vertex expansion to the runtime
of the push algorithm.

Theorem 4.3. For any d-regular graph with vertex expansion α, all nodes are informed
within O

(
(1/α) log5 n

)
steps by the push algorithm, with high probability.

We remark that this result does not extend to non-regular graphs. To see this, consider
two cliques of size

√
n and n − √

n, and for each node of the smaller clique add an edge
between it and one node of the larger clique in such a way that we obtain a matching of
size

√
n between the two cliques. It is easy to verify that this graph has constant vertex

expansion. Now if the information is initially placed in the large clique, then we need Ω(
√
n)

steps in expectation until one node of the large clique informs one in the smaller clique, since
each of the

√
n nodes of the larger clique having an edge to the smaller clique will transmit

the information through that edge with probability Θ(1/n).
Another interesting application of Theorem 4.3 is to vertex transitive graphs. The

runtimes of the push algorithm on certain vertex transitive graphs (e.g., the hypercube) have
been analyzed in [39, 34, 77]. Moreover, much research has been devoted to the construction
of efficient determininistic algorithms on vertex transitive graphs, e.g., [47, 54, 79]. Our
result provides a nearly optimal runtime that applies to all vertex transitive graphs.

Corollary 4.4. Let G be any vertex transitive graph with diameter D. Then all nodes are
informed in O(D log5 n) steps, with high probability.

The corollary above follows immediately from Theorem 4.3 and a result of Babai [6,
Theorem 3.2] saying that every vertex transitive graph with diameter D has vertex expansion
at least 1/(4D).

Since D is a trivial lower bound, Corollary 4.4 implies that the runtime on vertex
transitive graphs is “fast,” i.e., of order O(polylog(n)), if and only if D = O(polylog(n)).
From another perspective, as α ≥ 1/(4D) and we need at least D steps to inform all nodes,



CHAPTER 4. RANDOMIZED BROADCAST ON GENERAL NETWORKS 56

the runtime for any vertex transitive graph is between Ω(1/α) and O((1/α) log5 n). This
shows that the dependency on 1/α in Theorem 4.3 is the best possible (neglecting logarithmic
factors).

Another natural question is whether there exists a substantial difference between the
performance of the push algorithm on graphs with constant conductance and on graphs with
constant vertex expansion. We show that this is indeed the case by proving that there are
graphs with constant vertex expansion on which the push algorithm takes ω(logn) steps,
while on any graph with constant conductance the push algorithm is known to take at most
O(logn) steps (cf. [69, 20, 77]). We give the proof of the theorem below in Section 4.2.

Theorem 4.5. There is a regular graph with constant vertex expansion (which is also vertex
transitive) for which the push algorithm requires Ω(log2 n) steps with high probability.

Finally, we conclude this chapter by giving in Section 4.3 applications of the push
algorithm to other processes such as the cover time of random walks, and by discussing
extensions of our results to non-regular graphs in Section 4.4.

4.1 Upper bound

This section is devoted to the proof of Theorem 4.3. In the proof we consider a different
version of the push algorithm, which we call the sequential model. In the sequential model,
each time step is divided into n substeps. At each substep 1/n, 2/n, 3/n, . . ., we choose a
node u ∈ V uniformly at random and a neighbor v ∈ Γ(u) also uniformly at random. Then,
if u is informed, it transmits the information to v. We remark that for regular graphs, this
procedure translates to choosing at each step an undirected edge {u, v} ∈ E uniformly at
random along with a uniformly random orientation of its endpoints.

Before proceeding, we emphasize that we refer to a substep of the sequential model as a
time interval of length 1/n. If t substeps of the sequential model are performed, then we say
that t/n time steps occurred, where t is an integer but t/n may be non-integer. As shown
in [77, Theorem 3], for any graph G and worst-case initial node, the sequential model and
the (standard) push algorithm take the same number of time steps (up to constant factors)
with high probability.

In what follows we only consider the sequential model. Our main motivation in resorting
to this model is that it has a useful symmetry property. In order to explain the property,
consider two nodes u, v ∈ V and a time step t, and let ptu,v = P (v ∈ It | I0 = {u}), where It
for the sequential model is defined as the set of informed nodes at time step t. In other words,
ptu,v is the probability that v is informed within t time steps given that initially u was the only
informed node. We extend this definition to sets of nodes by considering two sets X,X ′ ⊆ V
and defining ptX,X′ as the probability that at least one node of X ′ is informed given that
initially only the nodes of X were informed. More formally, ptX,X′ = P (It ∩X ′ 6= ∅ | I0 = X).
The symmetry property of the sequential model is expressed in the following lemma.
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Lemma 4.6. Let G = (V,E) be any regular graph. Let u, v ∈ V be two nodes and t ∈
{0, 1/n, 2/n, . . .} be arbitrary but fixed. Then for the sequential model we have ptu,v = ptv,u.
More generally, for any two subsets X,X ′ ⊆ V we have ptX,X′ = ptX′,X .

Proof. Let L be an instance of t time steps of the sequential model. We can see L as a list of
tn oriented pairs of nodes L = {(u1, v1), (u2, v2), . . . , (utn, vtn)}, where (ui, vi) is an edge of G
for all i ∈ [1, tn]. The existence of the pair (ui, vi) in L means that at substep i the sequential
model selected the node ui and its neighbor vi and ui informed vi if ui was informed at that
moment. From L we can construct another instance L′ = {(u′1, v

′
1), (u

′
2, v

′
2), . . . , (u

′
tn, v

′
tn)}

of the sequential model by setting (u′i, v
′
i) = (vtn−i+1, utn−i+1) for all i ∈ [1, tn]. In other

words, L′ is obtained by reversing the order in which the transmissions of L happen and also
inverting the direction according to which each transmission occurs in L. Therefore, if there
exists a sequence of nodes w1, w2, . . . , wk such that wi informed wi+1 according to L for all
1 ≤ i ≤ k − 1, then wi+1 informs wi in L′ for all 1 ≤ i ≤ k − 1. The lemma then follows
since L and L′ occur with the same probability for any regular graph.

In the sequel, whenever we say that u informs a set of nodes X within t time steps, we
mean that if the sequential model is initiated at u, then all nodes in X will be informed
within t time steps. Thus, u informing X does not necessarily mean that u transmits the
information directly to each node in X . We also note that this notion is different from ptu,X
which was defined as the probability that u informs at least one element in X within t time
steps.

We now start the proof of Theorem 4.3 by showing that in the first steps of the algorithm
the number of informed nodes grows exponentially fast.

Lemma 4.7. Let G = (V,E) be any d-regular graph and fix an arbitrary node u ∈ V . Let
t = log d+ 10. Then with probability at least 1/2, u informs at least d/2 nodes within t time
steps. Moreover,

E [|It|] =
∑

v∈V
ptu,v ≤ e10d.

Proof. We start with the upper bound. Assume that whenever an informed node v is chosen
at a certain substep, then the set of informed nodes increases by 1. Hence, we obtain the
inequality

E [|It|] = E
[
E
[
|It|
∣∣ |It−1/n|

]]
≤ E

[
|It−1/n|

]
+

E
[
|It−1/n|

]

n
=

(
1 +

1

n

)
E
[
|It−1/n|

]
,

and by induction

E [|It|] ≤
(

1 +
1

n

)nt
E [|I0|] ≤ exp(t), (4.1)
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and the upper bound on E [|It|] follows for t = log d+ 10.
We proceed to the lower bound. For any values 1 ≤ i < j ≤ d/2, let ∆i,j be the number

of time steps required to increase the number of informed nodes from i to j; therefore,
∆i,j ∈ {0, 1/n, 2/n, 3/n, . . .}. Let t = ∆1,i be the first time step with |It| = i. Then, ∆i,i+1

is 1/n times a geometric random variable with parameter |E(It, I
c
t )|/(2|E|). Assuming It to

constitute a clique, we obtain the lower bound

|E(It, I
c
t )|

2|E| ≥ id− 2 i(i−1)
2

nd
≥ i(d− i+ 1)

nd
≥ i(1 − i/d)

n
.

Hence, the expected number of time steps until u informs at least d/2 nodes is upper bounded
by

E
[
∆1,1+d/2

]
=

d/2∑

i=1

E [∆i,i+1] ≤
1

n

d/2∑

i=1

n

i(1 − i/d)
=

d/2∑

i=1

(
1

i
+

1

d− i

)
≤ log d+ 2.

Our next goal is to prove that with constant probability ∆1,1+d/2 is smaller than log d+ 10.
Using Markov’s inequality and (4.1) we obtain that for any x ≥ 0

P
(
∆1,1+d/2 ≤ log d− x

)
= P (|Ilog d−x| ≥ 1 + d/2) ≤ E [|Ilog d−x|]

1 + d/2
≤ elog d−x

1 + d/2
≤ 2e−x. (4.2)

Now, if we write E
[
∆1,1+d/2

]
=
∑∞

x=0 xP
(
∆1,1+d/2 = x

)
, where the sum is over the values

of x in {0, 1/n, 2/n, 3/n, . . .}, we obtain

log d+ 2 ≥ E
[
∆1,1+d/2

]

=
∞∑

x=− log d

(log d+ x)P
(
∆1,1+d/2 = log d+ x

)

≥ log d+

log d∑

x=2+1/n

(−x)P
(
∆1,1+d/2 = log d− x

)

+ (−2)P
(
log d− 2 ≤ ∆1,1+d/2 ≤ log d+ 9 + (n− 1)/n

)

+ 10P
(
∆1,1+d/2 ≥ log d+ 10

)
. (4.3)
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Note that changing the index of the sum to y = x− 2 we can write

log d∑

x=2+1/n

xP
(
∆1,1+d/2 = log d− x

)

=

log d−2∑

y=1/n

(2 + y)P
(
∆1,1+d/2 = log d− 2 − y

)

= 2P
(
∆1,1+d/2 ≤ log d− 2 − 1/n

)
+

log d−2∑

y=1/n

yP
(
∆1,1+d/2 = log d− 2 − y

)

= 2P
(
∆1,1+d/2 ≤ log d− 2 − 1/n

)
+

1

n

log d−2∑

y=1/n

P
(
∆1,1+d/2 ≤ log d− 2 − y

)

≤ (2 + 1/n)P
(
∆1,1+d/2 ≤ log d− 2 − 1/n

)
+

∫ log d−2

1/n

P
(
∆1,1+d/2 ≤ log d− 2 − y

)
dy,

where the last inequality comes from the fact that P
(
∆1,1+d/2 ≤ log d− 2 − y

)
decreases as

y increases, and therefore,

1

n

log d−2∑

y=1/n

P
(
∆1,1+d/2 ≤ log d− 2 − y

)

≤ 1

n
P
(
∆1,1+d/2 ≤ log d− 2 − 1/n

)
+

∫ log d−2

1/n

P
(
∆1,1+d/2 ≤ log d− 2 − y

)
dy.

Now we use (4.2) to obtain

log d∑

x=2+1/n

xP
(
∆1,1+d/2 = log d− x

)
≤ 2(2 + 1/n)e−2−1/n + 2e−2−1/n − 2e− log d ≤ 1,

for all n ≥ 2. Plugging the result above and (4.2) into (4.3), and subtracting log d from both
sides, we obtain

−1 − 2P
(
log d− 2 ≤ ∆1,1+d/2 ≤ log d+ 9 + (n− 1)/n

)
+ 10P

(
∆1,1+d/2 ≥ log d+ 10

)
≤ 2.

Using P
(
log d− 2 ≤ ∆1,1+d/2 ≤ log d+ 9 + (n− 1)/n

)
≤ 1 and rearranging the terms yield

P
(
∆1,1+d/2 ≥ log(d/2) + 10

)
≤ 1

10
(1 + 2 + 2) =

1

2
.

This implies

P
(
∆1,1+d/2 ≤ log d+ 10

)
= P (|Ilog d+10| ≥ d/2) ≥ 1

2
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and therefore

E [|Ilog d+10|] ≥
1

2

d

2
=
d

4
,

which completes the proof.

Remark 4.8. The fact that the upper and lower bounds in Lemma 4.7 differ only by a
constant factor will turn out to be crucial in our proof of Theorem 4.3.

For the analysis to follow it will be important to distinguish the nodes that are likely to
be informed by u.

Definition 4.9. Let X ⊆ V be any subset and u be an arbitrary node. We call u a friend
of X if the probability that u informs d/4 or more nodes in X within log d+ 10 time steps is
at least 1/2.

The following lemma is a direct consequence of Lemma 4.7.

Lemma 4.10. Let X ⊆ V be any subset and u be an arbitrary node. Then u is a friend of
X or of V \X.

Note that u may be a friend of both X and V \X . In order to explain the motivation
behind Lemma 4.10, let X be the set of informed nodes and u /∈ X . Then, if u is a friend of
X , u will become informed within log d + 10 time steps with probability at least 1/2. This
follows by the symmetry property of Lemma 4.6. On the other hand, consider the case when
u is a friend of V \ X . Then, if u is only connected by one edge to X , it may take up to
d steps in expectation until u becomes informed. However, after that, since u is a friend of
V \ X , u will inform d/4 nodes in V \ X within log d + 10 time steps with probability at
least 1/2.

We are now ready to proceed with the proof of Theorem 4.3. We split the proof into
three phases according to the size of It. Let τ1, τ2 and τ3 be the number of time steps spent
in each phase, respectively.

• Phase 1: 1 ≤ |It| ≤ d/2. Thus τ1 is the smallest integer such that |Iτ1 | ≥ d/2.
The analysis of this phase follows almost directly from Lemma 4.7 and we have that
τ1 = O(log d logn).

• Phase 2: d/2 ≤ |It| ≤ d(8/α). Thus τ2 is the smallest integer such that |Iτ1+τ2 | ≥
8d/α. We show that τ2 = O((1/α) log3 n) with high probability. The analysis of this
phase relies on Lemma 4.10.

• Phase 3: d(8/α) ≤ |It| ≤ n/2 + 1. Thus τ3 is the smallest integer such that
|Iτ1+τ2+τ3 | ≥ n/2 + 1. In this phase, for any t satisfying τ1 + τ2 ≤ t ≤ τ1 + τ2 + τ3,
|It| is large enough such that after one time step, some nodes in |Γ(It) \ It| become
informed. After that, each of these nodes may inform up to Ω(d) other nodes within
O(log d) time steps, but dependencies may arise. This is the most challenging phase
and we prove that τ3 = O((1/α) log5 n) with high probability.
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Once we have verified the claimed time bounds for the three phases, the theorem follows
immediately. After τ1 + τ2 + τ3 = O((1/α) log5 n) time steps, n/2 + 1 nodes have been
informed with high probability. From Lemma 4.6 we know that in order to keep a node v
uninformed at step 2(τ1 + τ2 + τ3), with high probability at least n/2 + 1 nodes must be
uninformed in time step τ1 + τ2 + τ3. Since this does not happen, we obtain that with high
probability v is informed at time step 2(τ1 + τ2 + τ3) for all v.

We now present three lemmas that deal with each of the phases described above. These
will complete our proof.

Lemma 4.11 (Phase 1). Assume that |I0| = 1. For τ1 = O(log d logn), we have |Iτ1 | ≥ d/2
with high probability.

Proof. Let u be the initially informed node. Then by Lemma 4.7 we know that the expected
number of time steps until u informs at least d/2 nodes is O(log d). Hence the high probability
result is obtained by repeating this procedure O(logn) times.

Lemma 4.12 (Phase 2). If |It| ≥ d/2 for some t, then for τ2 = O((1/α) log3 n) we obtain
|It+τ2 | ≥ d(8/α) with high probability.

Proof. Let t be any time step such that d/2 ≤ |It| ≤ d(8/α). From now on we condition on
It and consider a case analysis concerning the nodes in Γ(It) \ It. The first case is that at
least half of the nodes in Γ(It) \ It are friends of It. Using Lemma 4.6 we conclude that each
node in Γ(It) \ It which is a friend of It becomes informed within log d+ 10 time steps with
probability at least 1/2. Hence we can upper bound the expected number of newly informed
nodes after k = log d+ 10 additional time steps as follows

E [|It+k \ It|] ≥ E [|It+k ∩ (Γ(It) \ It)|]

=
∑

u∈Γ(It)\It

P (u ∈ It+k) ≥
(

1

2
|Γ(It) \ It|

)
1

2
=

1

4
|Γ(It) \ It|.

Let Z = |It+k ∩ (Γ(It) \ It)| and µ = E [Z] ≥ 1
4
|Γ(It) \ It|. Applying Markov’s inequality we

obtain that

P

(
Z ≤ 1

2
µ

)
= P

(
|Γ(It) \ It| − Z ≥ |Γ(It) \ It| −

1

2
µ

)
≤ |Γ(It) \ It| − µ

|Γ(It) \ It| − 1
2
µ
≤ 6

7
.

Using this inequality and |Γ(It) \ It| ≥ α|It| we get that

P
(
|It+k| ≥

(
1 +

α

8

)
|It|
)
≥ P

(
|It+k \ It| ≥

1

8
|Γ(It) \ It|

)
≥ P

(
Z ≥ 1

2
µ

)
≥ 1

7
.

Let Y1 be the number of additional time steps spent in the first case. Note that whenever
we happen to be in the first case, |It| is increased by a factor of (1 + α/8) after k =
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log d+ 10 time steps with probability at least 1
7
. Hence the expected time to achieve such an

increase is smaller than 7k. Now observe that, in order to increase It from d/2 to d(8/α) it

suffices to repeat this procedure
(
8
α

+ 1
2

)
log(16/α) times since (d/2)(1+α/8)(

8
α
+ 1

2) log(16/α) ≥
(d/2)elog(16/α) = d(8/α), which follows from the inequality (1 + t/n)n+t/2 ≥ et for all t, n > 0.
We then obtain

E [Y1] ≤
(

8

α
+

1

2

)
log(16/α)7k = O

(
1

α
logn log d

)
.

We now consider the second case where at least half of the nodes in Γ(It) \ It are friends
of V \ It. We can upper bound the expected time until the first node in Γ(It) \ It which is

a friend of V \ It becomes informed by k1 = 1
n

2|E|
|Γ(It)\It|/2 ≤ 2d

α|It| , where the factor 1/n comes
from the fact that one time step comprises n substeps. By Markov’s inequality, a node in
Γ(It) \ It which is a friend of V \ It becomes informed within 2k1 time steps with probability
at least 1/2. Once such a node becomes informed, it will inform d/4 nodes in V \It within an
additional k2 = log d+ 10 time steps with probability at least 1/2. Combining these insights
we have that P

(
|It+2k1+k2 \ It| ≥ d

4

)
≥ 1

2
1
2

= 1
4
.

Thus, whenever we are in the second case, we increase |It| by d/4 after 2k1 + k2 time
steps with probability at least 1

4
. Let Y2 be the number of steps spent in the second case.

We have

E [Y2] ≤
(d 8

α
)/(d

4
)∑

i=1

4 (2k1 + k2) ≤
d 32

α
e∑

i=1

(
8

2d

α(id/4)
+ 4(log d+ 10)

)

= O

(
1

α
log(1/α) +

1

α
log d

)
.

Clearly, the number of time steps spent in the second phase satisfies τ2 = Y1 + Y2, giving
E [τ2] = O

(
(1/α) log2 n

)
. By Markov’s inequality, P (τ2 ≥ 2 E [τ2]) ≤ 1/2. By repeating this

Θ(logn) times we obtain τ2 = O((1/α) log3 n) with high probability.

Lemma 4.13 (Phase 3). Assume that |It| ≥ d(8/α) for some t. Then after the push
algorithm runs for τ3 = O((1/α) log5 n) additional time steps, we have |It+τ3 | ≥ n/2 + 1
with high probability.

Proof. Let t be any time step where d(8/α) ≤ |It| ≤ n/2. As in the proof of Lemma 4.11
above, we split the analysis into two cases. The first case is when at least half of the nodes
in Γ(It) \ It are friends of It. Let Y1 be the number of time steps spent in the first case.
Then, as in the proof of Lemma 4.12, it follows that after log d+ 10 time steps, we increase
|It| by a factor of (1 + α/8) with probability at least 1/7, and E [Y1] ≤ O

(
1
α

log n log d
)
.

Consider now the more difficult case when at least half of the nodes in Γ(It) \ It are
friends of V \ It. Let S ⊆ Γ(It) \ It be the set of nodes in Γ(It) \ It which are friends of
V \ It. Assume that each node in S has only one edge to It; if a node u ∈ S has more
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than one edge to It, then we select one edge {u, v} with v ∈ It and ignore transmissions
along the other edges. At first, we only consider transmissions from It to S. Let T be the
number of additional time steps until 8

d
|S| transmissions have been sent to S. Since the

expected time until a transmission from It to S occurs is 1
n
nd
|S| , we have E [T ] ≤ d

|S|
8
d
|S| = 8.

Hence by Markov’s inequality, P (T ≤ 16) ≥ 1
2
. From now on, from time step t to t + T

we only consider transmissions from a node in It to a node in S and disregard all the other
transmissions. This assumption clearly yields an upper bound for τ3.

We now concentrate on the first 8
d
|S| transmissions to S. Let S ′ ⊆ S be the set of nodes

in S that receive a transmission. Given our assumption that each node in S has only one
edge to It, a transmission from It to S is equally likely to hit each node in S. Moreover,
since from time step t to t+T we only consider direct transmissions from It to S, we obtain

E [|S ′|] = |S|
(

1 −
(

1 − 1

|S|

) 8
d
|S|
)

≥ |S|
(

1 − exp

(
−8

d

))

≥ |S|
(

1 − 1

1 + 8
d

)
= |S|

8
d

1 + 8
d

≥ |S|2
d
,

where the last inequality holds for all d ≥ 3. (If d = 2, then G is a cycle, and we never
enter Phase 3 since the condition on |It| in the statement of the lemma is never satisfied.)
By applying Markov’s inequality we obtain that

P

(
|S ′| ≤ 1

2
E [|S ′|]

)
= P

(
8

d
|S| − S ′ ≥ 8

d
|S| − 1

2
E [|S ′|]

)
≤

8
d
|S| − E [|S ′|]

8
d
|S| − 1

2
E [|S ′|] ≤

6

7
.

Hence we have shown that

P

(
|S ′| ≥ 1

d
|S|
)

≥ 1

7
. (4.4)

(By assumption we have |It| ≥ d(8/α) and |S| ≥ (1/2)|Γ(It) \ It| ≥ (1/2)α|It|, which implies
1
d
|S| ≥ 4.) From now on we condition our analysis on the event |S ′| ≥ 1

d
|S| and we address

the conditioning at the end.
We now briefly explain the remainder of the proof. We run for an additional number

k1 = log d+ 10 of time steps, after which every node in S ′ has informed d/4 nodes in V \ It
with probability at least 1/2. It will be helpful to imagine the set of nodes that are informed
by a node s ∈ S ′ as a directed graph, which we refer to as the broadcast graph Bs with root
s. The existence of a directed edge (u → v) in Bs means that u transmitted the information
to v. Note that v may receive the information from more than one node, so the in-degree of
v may be larger than one. We assign a label to each edge in such a way that (u → v) has
label k if u first transmitted the information to v at time step k. We would like to argue that
the informed nodes of S inform in total Θ(d|S|) nodes in V \ It. The problem is that the
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broadcast graphs rooted at different nodes may collide, giving rise to dependencies. To cope
with this, we first analyze the independent case, where all broadcast graphs are constructed
independently from one another. After that we design a coupling between the independent
case and the case where dependencies occur, which we refer to as the parallel case. We prove
that each path of transmissions appearing in the independent case can be translated to a
path in the parallel case. Our goal is to show that the paths translated to the parallel case
occur in a time interval that is not much larger than the path in the independent case. We
now proceed to the formal proof.

We first study the independent case. Consider the broadcast graph Bs rooted at some
node s ∈ S ′. For each s ∈ S ′, let Zs be the indicator random variable which is 1 if Bs contains
at least d/4 nodes from V \It. Recall that P (Zs = 1) ≥ 1/2 for all s ∈ S ′. Let Z =

∑
s∈S′ Zs.

Then E [Z] ≥ (1/2)|S ′|, and conditioning on |S ′| ≥ 1
d
|S| we obtain E [Z] ≥ 1

2d
|S| ≥ 2. Then,

by a Chernoff bound (cf. Lemma A.1), we get

P (Z ≤ (1/4)|S ′|) ≤ P (Z ≤ (1/2)E [Z]) ≤ exp

(
−(1/2)2E [Z]

2

)
≤ exp

(
−1

4

)
.

Now we bound the number of times a node v ∈ V \ It occurs in a broadcast graph
Bs, which we denote by the random variable Z ′

v. Recall that from time step t to t + T
we disregard all transmissions to nodes out of S. Recall also that we consider that each
node of S has only one edge to It. Under these assumptions, for any u ∈ S we have that
P (u ∈ It+T ) = 1 − (1 − 1/|S|) 8

d
|S| ≤ 8/d, and by linearity of expectations, we obtain

E [Z ′
v] =

∑

u∈S′

pk1uv =
∑

u∈S
P (u ∈ It+T ) pk1uv ≤

8

d

∑

u∈S
pk1uv ≤

8

d

∑

u∈V
pk1uv

=
8

d

∑

u∈V
pk1vu ≤ 8e10 = c1,

where the second inequality follows from Lemma 4.6 and the third one follows from Lemma 4.7.
Note that Z ′

v =
∑

u∈S′ 1v∈Bu is the sum of independent Bernoulli random variables, so
applying a Chernoff bound (cf. Lemma A.1)

P (Z ′
v ≤ 6c1 log n) ≥ 1 − n−3.

Taking the union bound, we obtain

P

(
max
v∈V

Z ′
v ≤ 6c1 log n

)
≥ 1 − n−2. (4.5)
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Hence, by taking the union bound one more time, we can lower bound the total number of
nodes in the union of all broadcast graphs as follows:

P

(
| ∪s∈S′ Bs| ≥

(1/4)|S ′|d/4
min{6c1 log n, |S ′|}

)
≥ P

(
(Z ≥ (1/4)|S ′|) ∩

(
max
v∈V

Yv ≤ 6c1 log n

))

≥ P (Z ≥ (1/4)|S ′|) −P

(
max
v∈V

Yv ≥ 6c1 log n

)

≥ 1 − exp(−1/4) − n−2. (4.6)

We now define a coupling between the independent and the parallel cases. Let Ls(u)
be the ordered list of nodes to which u transmits the information in the broadcast graph
Bs; note that the list may be empty. Let L(u) be an ordered list of nodes defined as the
concatenation of Ls(u) for all s ∈ V , where the order in which the lists are concatenated is
arbitrary. Note that the elements of L(u) are independently and uniformly random neighbors
of u. For each node u ∈ V , we use the list L(u) to define the nodes to which u transmits
in the parallel case. In other words, when u becomes informed in the parallel case, the
neighbors that u chooses to subsequently transmit the information to are obtained following
the list L(u). When the end of the list is reached, u will choose the neighbors independently
from the independent case.

Now we look at paths in a broadcast graph Bs from the root s to a node v. Take the
path P = (v0 = s, v1, . . . , v` = v) such that for all i, vi+1 received the information for the
first time from vi. Note that the labels of the edges of P in the broadcast graph Bs are
monotonically increasing with the path.

From [77, Lemma 8], it holds that with probability at least 1 − n−2, ` ≤ 2000 logn for
all paths in a fixed broadcast graph Bs. Taking the union bound over all broadcast graphs,
this holds for all broadcast graphs simultaneously with probability at least 1 − n−1. We
proceed to upper bound |Ls(u)|. The broadcast graph Bs is restricted to the time interval
[t+ T, t+T + k1] and hence the number of transmissions of u is the sum of nk1 independent
bernoulli random variables with sucess probability 1/n each. Using a standard Chernoff
bound, we obtain a constant c2 > 0 such that P (|Ls(u)| ≤ c2 log n) ≥ 1 − n−4, and hence
by taking the union bound over all nodes s ∈ S ′ and u ∈ V ,

P

(
max

s∈S′,u∈V
|Ls(u)| ≤ c2 log n

)
≥ 1 − n−2.

Together with the upper bound for the number of broadcast graphs in which a node u
occurs (4.5), we obtain the following upper bound for maxu∈V |L(u)|:

P

(
max
u∈V

|L(u)| ≤ 6c1 log nc2 log n

)
≤ 1 − 2n−2.

Consider a path P = (v0 = s, v1, . . . , v` = v) from the root s ∈ S ′ to v in the broadcast
graph Bs. We want to bound the time until v becomes informed in the parallel case using
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our coupling. Consider the substep at which vi, 0 ≤ i ≤ `, becomes informed for the first
time. At that moment, either vi+1 is already informed, in which case we consider the step
at which vi+1 becomes informed for the first time, or vi+1 is not already informed. In the
latter, we know from the coupling that vi will transmit the information to vi+1 after at most
|L(vi)| ≤ 6c1 log nc2 logn transmissions. Therefore, v` becomes informed after at most

(6c1 log nc2 log n)` ≤ (6c1 lognc2 log n)2000 logn = c3 log3 n

transmissions. Regardless of where we are on the path P , a transmission from the current
node on P occurs in a given substep with probability 1/n. Hence the number of time steps
until the path P is completed can be upper bounded by 1/n times the sum of c3 log3 n
independent geometric random variables each of which has parameter 1/n. Hence by a
Chernoff bound (cf. Lemma A.4), it follows that the path P is completed within c4 log3 n
steps with probability at least 1 − n−3 for some constant c4 > 0. Now for every node v for
which there is a node s with v ∈ Bs, we can take the path from s to v in Bs. Taking the
union bound over all possible nodes v, we obtain that the probability that the parallel case
informs all the nodes informed by the independent case within c4 log3 n time steps is at least
1 − n−2. Combining this with (4.6), we get

P

(
|It+16+c4 log

3 n \ It| ≥
(1/4)|S ′|d/4

6c1 logn

)

≥ P

((
|It+16+c4 log

3 n \ It| ≥
(1/4)|S ′|d/4

6c1 logn

)
∩ (T ≤ 16)

)

≥ P

((
|It+T+c4 log3 n \ It| ≥

(1/4)|S ′|d/4
6c1 log n

)
∩ (T ≤ 16)

)
.

We know that P (T ≤ 16) ≥ 1
2

and that the event
{
|It+T+c4 log3 n \ It| ≥ (1/4)|S′|d/4

6c1 logn

}
is

independent of T if we fix |S ′| = d1
d
|S|e (we deal with the complementary case in a moment

using (4.4)). We obtain

P

((
|It+T+c4 log3 n \ It| ≥

(1/4)|S ′|d/4
6c1 log n

)
∩ (T ≤ 16)

)

= P (T ≤ 16)P

(∣∣It+T+c4 log3 n \ It
∣∣ ≥ (1/4)|S ′|d/4

6c1 log n

∣∣∣∣ T ≤ 16

)

≥ 1

2
P

(∣∣It+T+c4 log3 n \ It
∣∣ ≥ (1/4)|S ′|d/4

6c1 log n

)

≥ 1

2

(
P

(
| ∪s∈S′ Bs| ≥

(1/4)|S ′|d/4
min{6c1 log n, |S ′|}

)
−P

(
It+T+c4 log3 n 6⊇ ∪s∈S′Bs

))

≥ 1

2

(
1 − exp(−1/4) − 2n−2

)
.
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Recall that P
(
S ′ ≥ 1

d
|S|
)
≥ 1

7
(cf. (4.4)); therefore,

P

(
|It+16+c4 log

3 n \ It| ≥
(1/16)|S|
6c1 log n

)
≥ 1

14

(
1 − exp(−(1/4)) − 2n−2

)
.

Using the vertex expansion of G, we obtain |S| ≥ 1
2
|Γ(It) \ It| ≥ α

2
|It|, which yields

P

(
|It+16+c4 log

3 n \ It| ≥
(1/32)α|It|

6c1 log n

)
≥ 1

14

(
1 − exp(−(1/4)) − 2n−2

)
.

Let W be the indicator random variable which is 1 if |It+16+c4 log
3 n \ It| ≥ (1/32)α|It|

6c1 logn
. We

are going to iterate this procedure many times and will denote by Wi the event {W = 1}
for the ith iteration. From the calculations above, we obtain that P (Wi = 1) ≥ c5 for some
constant c5 > 0 uniformly over all realizations of the random variables Wj , j 6= i. We assume
that if Wi = 0 no node becomes informed during the ith iteration and that Wi = 1 implies
that the set of informed nodes increases by a factor of Ω(α/ logn) during the ith iteration.
Therefore, in order to increase the set of informed nodes from d(8/α) to n/2 + 1 it suffices
to obtain O(log2 n/α) values of i for which Wi = 1. Since the lower bound P (Wi = 1) ≥ c5
holds for all i independently of the other Wj’s, we can apply a Chernoff bound and find a
number k2 = O(log2 n/α) such that

P
(
|It+k2(16+c4 log3 n)| ≥ n/2 + 1

)
≥ 1 − n−1.

Therefore with high probability τ3 ≤ Y1+k2(16+c4 log3 n) = O((1/α) log5 n). This completes
the proof of Lemma 4.13.

4.2 A vertex expander with large broadcast time

In this section we give the proof of Theorem 4.5 and show the existence of a regular graph
with constant vertex expander for which the push algorithm takes Ω(log2 n) steps to inform
all nodes of the graph.

First, we recall the following result of Lubotzky, Phillips and Sarnak [63] about the
explicit construction of Ramanujan graphs. (Recall that the girth of a graph is the length
of its shortest cycle.)

Theorem 4.14 (Lubotzky, Phillips and Sarnak [63]). For any pair of unequal prime numbers
p, q, both congruent to 1 mod 4, there exists a (p + 1)-regular vertex transitive graph G =
G(p, q) with Θ(q(q2 − 1)) nodes such that

• the girth of G is 2 logp q − logp 4,

• the second largest eigenvalue of the adjacency matrix in absolute value λ2, satisfies
|λ2| ≤ 2

√
p.
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We use this theorem to show the existence of a vertex expander with large girth, which
we use in our proof of Theorem 4.5. The result below is well known, but we give a proof for
the sake of completeness.

Lemma 4.15. There is an infinite, increasing sequence of values (nk)
∞
k=1 such that for each

k, there exists a nk-node graph G such that: G has girth Ω(log nk), the degree is constant,
and the vertex expansion α is constant.

Proof. We will use Theorem 4.14. Choosing p = O(1) and q = Θ(n), it follows that G =
G(p, q) has girth Ω(log n) and bounded degree. It only remains to verify that the upper
bound on λ2 implies that G has vertex expansion > 0. To this end, we use the following
bound from Tanner [84]. This bound states that for any subset S ⊆ V of a d-regular graph,
we have

|Γ(S)| ≥ d2 |S|
λ22 + (d2 − λ22)|S|/n

.

Therefore if λ2 ≤ C
√
d for some constant 0 < C <

√
d,

|Γ(S) \ S| ≥ d2 |S|
λ22(1 − |S|/n) + d2|S|/n − |S| = |S|

(
1

C2/d(1 − |S|/n) + |S|/n − 1

)
,

where the right factor is larger than zero, since C2/d < 1 by assumption on C. This ends
the proof of Lemma 4.15.

Now we recall the definition of the Cartesian product of two graphs.

Definition 4.16. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The Cartesian product
G = G1 × G2 is the graph with node set V = V1 × V2 and and edges between each pair of
nodes (u1, u2) and (v1, v2) for which either {u1, v1} ∈ E1 and u2 = v2 or {u2, v2} ∈ E2 and
u1 = v1.

We use the Cartesian product of the graph from Lemma 4.15 with a complete graph.
The lemma below shows that the resulting graph is also a vertex expander.

Lemma 4.17. Let n1 and n2 be arbitrary integers. Let Gn1 be a graph with n1 nodes and
vertex expansion α. Then Gn1 ×Kn2 is a graph with vertex expansion at least α2

64
, where Kn2

is the complete graph on n2 nodes.

Proof. We first make the following simple claim about the vertex expansion of large subsets.

Claim. Let G be any graph with n nodes and vertex expansion α. Then, for any m ≤
(1 + α

4
)n
2
, ∂m ≥ 3

5
αm, where ∂m = minS⊆V : |S|=m ∂(S).
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Let us first prove this claim. We know that for any X ⊆ V and |X| = n
2
, it holds that

|Γ(X)\X| ≥ αn
2
. Clearly, |Γ(X)\X| decreases by at most one if the set X is enlarged by

one node. More generally, for any n
2
≤ m < n, it holds that ∂m ≥ αn

2
− (m− n

2
). Hence, for

n
2
≤ m ≤ (1 + α

4
)n
2

we have

∂m ≥ α
n

2
−
(
m− n

2

)
≥ 3

4
α
n

2
≥ 3

4
α

m

1 + α
4

≥ 3

5
αm,

and thus for any m ≤ (1 + α
4
)n
2
, δm ≥ min{3

5
α, α}m ≥ 3

5
αm, which yields the claim.

Now let X ⊆ V be any subset with |X| ≤ n1n2

2
. We will frequently use the fact that

G = Gn1 × Kn2 consists of n1 node-disjoint Kn2 subgraphs which are connected by edges
induced by Gn1. We distinguish between two cases:

1. A portion of at most α
8

of nodes in X is located in a complete graph Kn2 which contains
less than (1− α

8
)n2 nodes of X . Let X ′ be the set of these nodes. Note that every such

node in X ′ has at least α
8

neighbors, considering only edges induced by Kn2 . Denote
by ΓKn2

(Y ) the set of neighbors of some set Y ⊆ V which are adjacent to some node
in Y by an edge induced by Kn2 . We have

|Γ(X)\X| ≥ |ΓKn2
(X)\X| ≥ |ΓKn2

(X ′)\X| = |ΓKn2
(X ′)\X ′| ≥ |X ′|α

8
≥ α2

64
|X|,

and the first case is finished.

2. A portion of at least 1 − α
8

of nodes in X is located in a complete graph Kn2 which
contains more than (1− α

8
)n2 nodes of X . In other words, |X ′| ≥ (1− α

8
)|X|. Let y be

the number of Kn2’s containing more than (1− α
8
)n2 nodes. We claim that y ≤ 1+α

4

2
n1.

Assuming the converse, we obtain

|X| ≥ y
(

1 − α

8

)
n2 >

1 + α
4

2
n1

(
1 − α

8

)
n2 =

1 + α
4
− α

8
− α2

32

2
n1n2 ≥

n1n2

2
,

which contradicts the assumption |X| ≤ n1n2

2
. We can also lower bound y by y ≥ |X′|

n2
≥

(1−α
8
)|X|

n2
≥ 7

8
|X|
n2
. Now, as y ≤ 1+α

4

2
n1, the Claim above implies that the number of Kn2 ,

which are neighbors of a Kn2 containing more than (1 − α
8
)n2 nodes of X , is at least

3
5
αy. Hence,

|Γ(X ′)\X ′| ≥ 3

5
αy
(

1 − α

8

)
n2 ≥

3

5
α

7

8

|X|
n2

7

8
n2 ≥

3

8
α|X|,

and finally

|Γ(X)\X| ≥ |Γ(X ′)\X| ≥ |Γ(X ′)\X ′| − |X\X ′|

≥ 3

8
α|X| − α

8
|X| =

1

4
α|X| ≥ 1

64
α2|X|,
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and the lemma follows.

Remark 4.18. We suspect that the dependency on α in Lemma 4.17 could be made linear.
But, as α is constant in our application, the quadratic dependency suffices.

The proof of Theorem 4.5 is concluded with the next lemma, which shows that the push
algorithm takes Ω(log2 n) steps in the graph obtained from the Cartesian product.

Lemma 4.19. Let G√
n be an arbitrary d-regular graph with

√
n nodes, degree d = O(1) and

girth c logn for some constant c > 0. Then for the graph G = K√
n×G√

n, the push algorithm

takes Ω(log2 n) steps with high probability.

Proof. Let s = (s1, s2) with s1 in K√
n, and s2 in G√

n be the initially informed node. Note
that the subgraph in G√

n formed by s2 and all nodes within distance at most min{ c
2

log n−
1, 1

16
log∆ n} − 1 = c′ logn forms a tree with root s2. For 0 ≤ i ≤ c′ log n, let Bi be the set of

nodes in G√
n with distance i to s; so B0 = {s2}. We will lower bound the time X until the

first node in K√
n × Bc′ logn becomes informed. Let Xi, 1 ≤ i ≤ d(c′/2) log ne be the number

of steps until the first node in K√
n × B2i becomes informed after K√

n × B2i−2 contains one

informed node. By definition, X =
∑d(c′/2) logne

i=1 Xi.
Consider an arbitrary but fixed Xi. In order to lower bound Xi, we may assume that

K√
n × B2i−2 is completely informed. Fix an arbitrary u2i−1 ∈ B2i−1 and let Y (t) be the set

of informed nodes in K√
n×u2i−1 at step t. By a Chernoff bound, we obtain with probability

1 − n−4 that K√
n ×B2i−2 informs at most 24 logn nodes in K√

n × (Γ(u2i−1) ∩B2i−1) in one
step. Moreover, a set of informed nodes can only inform a set of the same size in one step.
Therefore, |Y (t+ 1)| ≤ 2|Y (t)|+ 24 logn with probability 1− n−3, provided that no node in
K√

n× (Γ(Γ(u2i−1))∩B2i) is informed. Assuming that no node in K√
n× (Γ(Γ(u2i−1))∩B2i)

becomes informed and applying the union bound, we conclude that |Y ( 1
96

logn)| ≤ n
1
16 with

probability 1−n−2. As long as |Y (t)| ≤ n
1
16 in a step t, the probability that there is a node in

Y (t) which informs a node in K√
n×(Γ(Γ(u2i−1))∩B2i) in one step is bounded by n

1
16

∆

(
√

n
2 )+∆

≤
n− 3

8 . By the Union bound over 1
96

log n steps, no node in K√
n× (Γ(Γ(u2i−1))∩B2i) becomes

informed during these 1
96

log n steps with probability at least 1− n− 1
4 . Using a Union bound

over all nodes in B2i (|B2i| ≤ ∆2i ≤ n
1
8 ), this establishes Xi ≥ 1

96
log n with probability

1 − |B2i|n− 1
4 ≥ 1 − n− 1

8 . Finally, by applying a Chernoff bound on
∑d(c′/2) logne

i=1 Xi ≤ X, we
conclude that X = Ω(log2 n) with high probability, and the claim follows.

4.3 Applications to other models

In this section, we give some applications of our results to other processes such as the cover
time of random walks and random subgraph generation.
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4.3.1 Cover time

Let G be a graph and C(G) be the expected time for a random walk to visit all nodes of G
(we assume that the random walk starts at the node maximizing this expectation). We first
state the known upper bound on the cover time in terms of the vertex expansion, which is
a slight reformulation of [17, Theorem 12].

Theorem 4.20 (cf. [17, Theorem 12]). For any graph G = (V,E) with minimum degree δ

and vertex expansion α, C(G) = O
(

1
α2

|E|
δ

log n
)
.

Note that for regular graphs, the upper bound becomes O
(

1
α2n log n

)
. In [17], the authors

remark on Theorem 4.20 that “it is unknown whether the quadratic dependence on 1/α is
necessary.” To address this question, we make use of the following relation between the
runtime of the push algorithm and the cover time, shown in [35]. Let τ be the expected
runtime of the push algorithm on G considering the worst-case initial node. Then, as in [35,

Theorem 3.8], we have for any graph G that C(G) = O
(

|E|
δ

log nτ
)
.

Combining this with Theorem 4.3 we immediately get the following result.

Corollary 4.21. For any regular graph G = (V,E) with vertex expansion α, C(G) =
O
(
1
α
n log6 n

)
.

We believe that this result represents some progress towards the question raised in
[17] concerning the dependency on the vertex expansion. In addition, we now prove that
Corollary 4.21 is tight up to logarithmic factors in the following sense. For any integer k, let
Ck be a cycle with k nodes. For any x that divides n, consider the graph G = Kx × Cn/x
(cf. Definition 4.16). Note that D = Θ(n/x), and since G is a vertex transitive graph, [6,
Theorem 3.2] implies that G has vertex expansion α = Ω(1/D) = Ω(x/n). Plugging this
into Corollary 4.21, we obtain an upper bound of O(n2/x log6 n).

We argue that this bound is tight up to logarithmic factors. The random walk has to
spend Θ(x) steps in expectation in each clique before leaving it. Clearly, the random walk
has to traverse at least D = Θ(n/x) different cliques to cover all nodes. Since the cliques
are arranged in a cycle, we obtain that the cover time is Ω(xD2) = Ω(n2/x), which proves
the tightness up to logarithmic factors.

4.3.2 Random subgraphs

Given a parameter p ∈ [0, 1], we construct a random subgraph Gp of a graph G by adding all
nodes of G to Gp, and adding each edge of G to Gp independently with probability p. This
is related to the so-called bond percolation process on graphs, but in this section we will be
mostly concerned with whether Gp is a connected subgraph of G.

Bond percolation has been studied on many lattices [48], and the main focus of existing
work on bond percolation regards the emergence of the so-called giant component. An
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example of a random subgraph as described above is the so-called Erdős-Rényi random
graphs [13], which is a random subgraph of the complete graph. Also, the expansion
properties of random subgraphs have been studied recently [3, 7]. The corollary below
shows how our results can be interpreted in terms of random subgraphs.

Corollary 4.22. Let G be any d-regular graph with n nodes and vertex expansion α, and

Gp be the subgraph obtained via the process described above with p = min{1, 4C log5 n
αd

}, where
C is the constant from Theorem 4.3. Then with high probability, Gp is connected and has
diameter O((1/α) log5 n).

Proof. We can assume that 4C log5 n
αd

≤ 1, since otherwise the claim is trivial. The proof
uses a standard technique known also as “Poissonization”. Let POIS be a continuous-time
version of the push algorithm defined as follows. Let Pn be a Poisson process with rate n.
Whenever the clock ticks, we choose a random node v ∈ V and let this node forward the
information to a random neighbor if v was informed earlier. Using a Chernoff bound for
Poisson random variables (cf. Lemma A.3), it follows that the runtime of this process is
the same as the runtime of the sequential algorithm used in the proof of Theorem 4.3 up
to factor of 2 with high probability. Hence we can use Theorem 4.3 to conclude that this
continuous-time version of the push algorithm has finished before time

2C
log5 n

αd

with high probability, where C > 0 is the constant from Theorem 4.3.
By standard properties of Poisson processes, POIS can be also regarded as the union

of 2|E| independent Poisson processes for every (u, v) ∈ V × V with {u, v} ∈ E, where
each such Poisson process has rate 1. Now fix an (undirected) edge e = {u, v} ∈ E. The
probability that (u, v) or (v, u) is used in POIS is at most

2P

(
Pois

(
2C

log5 n

αd

)
> 0

)
≤ 2

(
1 − exp

(
−2C

log5 n

αd

))
≤ 4C

log5 n

αd
,

where we have used the fact that 1 − exp(x) ≤ x for any x ∈ R. Note that the events
{ POIS uses {u, v} } with {u, v} ∈ E are independent. Hence there is a coupling between an
execution of POIS and a randomly chosen subgraph of G such that if a transmissions occurs

along the edge {u, v} in either direction within the first 2C log5 n
αd

steps, then this edge also

appears in the random subgraph. In particular, if POIS informs all nodes within 2C log5 n
αd

steps, then by the coupling above, the random subgraph is also connected. This finishes the
proof.

This corollary essentially says that sparse random subgraphs of vertex expanders are
connected and have small diameter. However, the random subgraph may have small vertex
expansion. Consider for example the graph G which consists of two cliques of size n/2
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connected by a matching. This yields a (n/2)-regular graph with n nodes and constant

vertex expansion. However, for p = O(polylog(n)
n

), only O(polylog(n)) edges of the matching
are present in the random subgraph Gp. Hence, the vertex expansion is reduced vastly from

a constant in G to O(polylog(n)
n

) in the random subgraph Gp.

4.4 Extension to non-regular graphs

We now extend some of our results to non-regular graphs. We first consider the push-pull
algorithm, and then derive some stronger results for random subgraphs.

Push-pull algorithm

We first recall the push-pull algorithm. In this algorithm, at each step, not only does each
informed node choose a neighbor uniformly at random and send the information to that
neighbor, but also, each uninformed node chooses a neighbor uniformly at random and
becomes informed if the neighbor is informed. We have already observed that for non-
regular graphs it is essential to consider both push and pull transmissions. We now prove a
sublinear runtime bound for the push-pull algorithm on arbitrary expanders. We first prove
the following lemma that corresponds to Lemma 4.7.

Lemma 4.23. Let G be an arbitrary, possibly non-regular graph with vertex expansion α.
Suppose that initially only one node v with degree deg(v) is informed. Then after 2 deg(v)1/8

steps, at least (1/4) deg(v)1/4 nodes become informed with probability at least 1/2.

Proof. If half of the neighbors of v have degree at most deg(v)7/8, then each of those
nodes becomes informed via pull within the first deg(v)1/8 steps with probability at least
(1/2) deg(v)−6/8. Hence the expected number of informed nodes is at least

deg(v)/2(1/2)(1/2) deg(v)−6/8 = (1/4) deg(v)1/4.

Since the number of informed nodes is binomially distributed, it follows that with probability
at least 1/2, at least (1/4) deg(v)1/4 nodes become informed via pull.

The other case to consider is when half of the neighbors of v have degree at least deg(v)7/8.
Then after deg(v)1/8 steps, a set I which consists of at least 1

2
deg(v)1/8 of such neighbors

become informed via push with probability at least 3/4. The probability that during the
next deg(v)1/8 steps, two nodes in I inform the same node via push can be bounded from
above by

(
deg(v)1/8

2

)(
deg(v)1/8

2

)
1

deg(v)7/8
≤ 1

4 deg(v)3/8
.
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If no two nodes in I inform the same node within the next deg(v)1/8, then all the nodes
in I together inform at least 1

2
deg(v)1/8 deg(v)1/8 = 1

2
deg(v)1/4 with probability at least

1 − 2 · 1/4 = 1/2.

As in Definition 4.9, we say that a node v is a friend of a set V if the push-pull algorithm
initialized with v informs at least (1/8) deg(v)1/4 nodes in V . Using Lemma 4.23, we conclude
as in the regular case that for any set X ⊆ V , a node v is a friend of X or a friend of V \X .

Theorem 4.24. Let G be an arbitrary, possibly non-regular graph with vertex expansion α.
Then the push-pull algorithm informs all nodes in time O((1/α)n1−ε).

Proof. We divide the time into two phases. The first phase covers the case where 1 ≤ |It| ≤
n7/8 and the second phase covers n7/8 ≤ |It| ≤ n/2.

For the first phase, consider any step t with 1 ≤ |It| ≤ n7/8. Let |It| = x. By definition
of vertex expansion, |Γ(It) \ It| ≥ αx. Our goal is now to show that with probability α/2,
at least one node in V \ It becomes informed by a push transmission. This is clearly true, if
there is a node u ∈ It with deg(u) ≥ 2x, since then half of the neighbors of u are in V \ It.
Hence suppose that for all nodes u ∈ It, deg(u) ≤ 2x. This means every node in u ∈ Γ(It)\It
becomes informed with probability at least 1

2x
. Let Zu = 1 if u ∈ It+1 and Zu = 0 otherwise.

Clearly, for any subset S ⊆ Γ(It) \ It we have

P

(
Zu = 0

∣∣∣∣∣
⋂

v∈S
(Zv = 0)

)
≤ P (Zu = 0) ,

and hence,

P




⋂

v∈Γ(It)\It

(Zv = 0)



 ≤
∏

v∈Γ(It)\It

P (Zv = 0) ≤
(

1 − 1

2x

)αx
≤ e−α/2 ≤ 1 − α

8
,

as α ≤ 1. Hence the expected time to finish the first phase is 8n7/8/α.
Let us now analyze the second phase. First note that we may assume that half of the

nodes in Γ(It) \ It have degree at least n6/8, as otherwise all of them become informed by a
pull transmission within O(n6/8 logn) steps.

Consider again first the case where there is a node in u ∈ It with deg(u) ≥ 4x. Then at
least 3x of its neighbors are outside It. Moreover, we may assume that a quarter of those
neighbors are not friends of It (otherwise a quarter of those neighbors become informed
within O(n1/8) steps by Lemma 4.23). Then with high probability, at least one such node v
becomes informed within O(logn) steps. After an additional deg(v)1/8 rounds, this neighbor
informs by itself deg(v)1/4 nodes by Lemma 4.23, as it is a friend of V \ It.

Hence we may now assume that all nodes in It have degree at most 4x. However, then
we can conclude with the same calculations as above that, with probability α/2, at least
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one node u ∈ Γ(It) \ It which has degree at least n6/8 and is a friend of V \ It becomes
informed by push. Hence after an additional O(logn) rounds, this node informs by itself
(1/4)(n6/8)1/4 = (1/4)n6/32 nodes within 2(n6/8)1/8 = 2n3/32 steps due to Lemma 4.23.

Note that in all these cases, there is a number y such that within y steps we inform at
least y1+1/8 nodes. Moreover, note that y ≥ n3/32. Using a similar analysis as in Lemma 4.12,
it follows that after O(n1−ε) steps (ε = 3/32 · 1/8 = 3/256), the number of informed nodes
is at least n/2 + 1 with high probability. As in the proof of Theorem 4.3, this shows that
after 2O(n1−ε) steps all nodes are informed with high probability.

Random subgraphs

We now return to the problem of constructing a random subgraph ofG, but without assuming
that G is regular.

We use the concept of resistance in electrical networks. We view a graph G as an electrical
network with each edge corresponding to a unit resistor. The resistance R(u, v) between two
nodes u and v is defined as the voltage difference induced between u and v by passing a
current flow of one between them [31]. Note that R(u, v) = R(v, u).

We first note the following slight extension of a result of [17, Theorem 5.2].

Corollary 4.25 (cf. [17, Theorem 5.2]). For any graph G with vertex expansion α and
minimum degree d,

R(s, t) ≤ 24

α2(d̃(s, t) + 1)
,

where d̃(s, t) = min{deg(s), deg(t)}.
The proof of Corollary 4.25 is exactly the same as the proof of [17, Theorem 5.2], except

that the minimum degree of G is replaced by the ”local” minimum degree of s and t, d̃(s, t).
We also observe the following basic fact about resistances.

Lemma 4.26. For any graph G and two nodes s and t, we have R(s, t) ≥ 1

d̃(s,t)
. Moreover,∑

{i,j}∈E R(i, j) ≥ n
2
.

Proof. It is known [1] that R(s, t) is the minimum cost of a unit flow fs,t from s to t with
cost function

∑
e∈E (fs,t(e))

2 , where fs,t(e) is the amount of flow routed over edge e by fs,t.
Assume without loss of generality that deg(s) ≤ deg(t). Then

∑

e∈E
(fs,t(e))

2 ≥
∑

j∈N(s)

(fs,t(s, j))
2 .

As fs,t is a unit flow from s to t,
∑

j∈N(s) fs,t(s, j) = 1 and hence

∑

j∈N(s)

(fs,t(s, j))
2 ≥

∑

j∈N(s)

(
1

deg(s)

)2

≥ 1

deg(s)
,
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which proves the first statement. For the second statement, note that

∑

{i,j}∈E
R(i, j) ≥

∑

{i,j}∈E

1

min{deg(i), deg(j)} .

Since 1
min{a,b} ≥ 1

2

(
1
a

+ 1
b

)
, we can lower bound this term by

∑

{i,j}∈E
R(i, j) ≥

∑

{i,j}∈E

1

2

(
1

deg(i)
+

1

deg(j)

)
=

1

2
n.

We use the following theorem, which is a direct consequence of a sparsification result of
Spielman and Srivastava [81].

Theorem 4.27 ([81, Theorem 1]). Let C ≥ 1 be a sufficiently large constant. Consider a
random subgraph H which is obtained from G by picking Cn log n edges e = {u, v}, each of
which is chosen with probability pe proportional to R(u, v) (with replacement). Then with
probability at least 1/2, H is connected.

We point out that [81] proved a stronger result which relates the expansion of a (weighted
version) of H to the expansion of G. We now use Theorem 4.27 and Lemma 4.26 to prove
the following result.

Corollary 4.28. Let F be the subgraph obtained when every node of a graph G with vertex
expansion α chooses 4C(logn/α2) incident edges uniformly at random and with replacement
(C > 0 is the constant from Theorem 4.27). Then H is connected with probability 1/2−o(1).

Proof. In this corollary, we relate several randomized procedures that all construct a subgraph
of G and are defined as follows:

1. G1. Every edge e = {u, v} is associated to an independent Poisson process with rate
R(u,v)∑

{i,j}∈E R(i,j)
. The subgraph G1 is obtained by taking every edge whose Poisson process

ticks until time 2Cn logn.

2. G2. Every edge e = {u, v} is associated to an independent Poisson process with rate
48

α2 min{deg(u),deg(v)} . The subgraph G2 is obtained by taking every edge whose Poisson
process ticks until time 2Cn log n.

3. G3. Every node is associated to an independent Poisson process with rate n. Whenever,
this process ticks at a certain node u, then u chooses a neighbor uniformly at random.
The subgraph G3 is obtained by taking every edge until time 2C 48

α2n log n.
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The strategy of the proof is to construct a coupling of H,G1, G2 and G3 such that with
probability 1 − o(1) the following inclusions hold:

H
(1)

⊆ G1

(2)

⊆ G2

(3)

⊆ G3

(4)

⊆ F. (4.7)

As H is connected with probability at least 1/2 by Theorem 4.27, this implies that F is also
connected with probability 1/2 − o(1).

In the following, we shall make use of some standard properties of Poisson processes
(cf. [66, Chapter 8]). One of these properties is that the union of two independent Poisson
processes with respective rates λ1 and λ2 forms a Poisson process with rate λ1 + λ2. The
following converse also holds. Suppose that there is a Poisson process with rate λ and
everytime the Poisson process ticks, we classify this step as type A with probability p and
otherwise as type B. Then the original Poisson process restricted to those steps which
are classified as A forms a Poisson process with rate λp, and the original Poisson process
restricted to those steps which are classified as B forms a Poisson process with rate λ(1−p).
In addition, these two Poisson processes are independent.

We now proceed to prove each of the inclusions in (4.7) above.
Proof of (1). Clearly, the Poisson process involved in the construction of G1 is equivalent

to a Poisson process with rate 1 such that whenever this process ticks, we choose an edge
e = {u, v} with probability pe = R(u,v)∑

{i,j}∈E R(i,j)
. Using a Chernoff bound, we obtain that with

probability 1 − n−1, the Poisson process ticks at least Cn logn times until time 2Cn logn.
Coupling the choices of edges in the construction of H and in the construction of G1, we
obtain

P (H ⊆ G1) ≥ 1 − n−1.

Proof of (2). Combining Corollary 4.25 and Lemma 4.26, we obtain that

R(u, v)∑
{i,j}∈E R(i, j)

≤
24

α2 min{deg(u),deg(v)}
n
2

≤ 48

α2 min{deg(u), deg(v)} .

Hence we can couple all Poisson processes involved in G1 and G2 such that whenever a
process in G1 ticks at some step 0 ≤ t ≤ 2C log n, then so does the corresponding process in
G2. Hence,

P (G1 ⊆ G2) = 1.

Proof of (3). The model for constructing G3 is equivalent to a model, where every
edge e = {u, v} is associated to an independent Poisson process with rate 1

deg(u)
+ 1

deg(v)
≥

1
min{deg(u),deg(v)} . Since a Poisson process with rate λ1 until time t1 is the same as a Poisson
process with rate λ2 until time t2 if λ1t1 = λ2t2, we conclude that

P (G2 ⊆ G3) = 1.
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Proof of (4). Using a Chernoff bound for Poisson random variables (cf. Lemma A.3),
it follows that every node u ticks not more than 4C 48

α2 logn times with probability 1 − n−1.
Since this holds for all nodes, we can couple the choices made by each node u ∈ V in the
construction of G3 with the choices made by node u in the construction of F . Therefore,
with probability at least 1 − n−1,

P (G3 ⊆ F ) ≥ 1 − n−1.

We can also derive a similar result for random subgraphs for which the edges are picked
in a centralized fashion.

Corollary 4.29. Let F be the subgraph obtained when every edge e = {u, v} of the graph
G is included with probability pe = min{ 48

α2
C logn

min{deg(u),deg(v)} , 1}. Then F is connected with

probability 1/2 − o(1).

Note that for non-regular graphs, it is essential to pick edges with different probabilities.
Recall the graph which consists of two cliques of size

√
n and n −√

n which are connected
by a matching. This graph has constant vertex expansion, but if we pick Θ(n log n) edges
chosen uniformly at random, then with high probability no edge of the matching is picked
and the random subgraph is disconnected.
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Appendix A

Large Deviation Results

We use the following standard Chernoff bounds.

Lemma A.1 (Chernoff bound for binomial, see [4, Lemma A.1.4]). Let X1, X2, . . . , Xn be
independent Bernoulli random variable such that E [Xi] = pi. Let X =

∑n
i=1Xi. Then, for

any ε > 0,

P (X ≥ (1 + ε)E [X ]) ≤ exp

(
−2ε2(E [X ])2

n

)
,

and

P (P ≤ (1 − ε)λ) ≤ exp

(
−λε

2

2

)
.

Lemma A.2 (Another Chernoff bound for binomial [4, Corollary A.1.10]). Let X be the
sum of n i.i.d. Bernoulli random variables with mean p. Then,

P (X ≥ np+ a) ≤ exp

(
a− (pn + a) log

(
1 +

a

pn

))
.

Lemma A.3 (Chernoff bound for Poisson). Let P be a Poisson random variable with mean
λ. Then, for any 0 < ε < 1,

P (P ≥ (1 + ε)λ) ≤ exp

(
−λε

2

2
(1 − ε/3)

)
,

and

P (P ≤ (1 − ε)λ) ≤ exp

(
−λε

2

2

)
.

Lemma A.4 (Chernoff bound for geometric). Let X1, . . . , Xn be independent geometric
random variables, each having parameter p, and let X =

∑n
i=1Xi. Then, for any ε > 0,

P

(
X ≥ (1 + ε)

n

p

)
≤ exp

(
− ε2

2(1 + ε)
n

)
.


