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Abstract

The impact of causality on information-theoretic source and channel coding problems

by

Harikrishna R. Palaiyanur

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Anant Sahai, Chair

This thesis studies several problems in information theory where the notion of causality
comes into play. Causality in information theory refers to the timing of when information is
available to parties in a coding system.

The first part of the thesis studies the error exponent (or reliability function) for several
communication problems over discrete memoryless channels. In particular, it studies an
upper bound to the error exponent, or equivalently, a lower bound to the error probability
of general codes, called the Haroutunian exponent. The Haroutunian exponent is the best
known upper bound to the error exponent for two channel coding problems: fixed blocklength
coding with feedback and fixed delay coding without feedback. For symmetric channels like
the binary symmetric channel and the binary erasure channel, the Haroutunian exponent
evaluates to the sphere-packing exponent, but for asymmetric channels like the Z-channel,
the Haroutunian exponent is strictly larger than the sphere-packing exponent. The reason for
the presumed looseness of the Haroutunian exponent is that it assumes, despite the inherent
causality of feedback, a code might be able to predict future channel behavior based on
past channel behavior and accordingly tune its input distribution. Intuitively, this kind of
noncausal information should not be available to an encoder when the channel is memoryless.
While we have not been able to tighten the Haroutunian exponent to the sphere-packing
exponent for fixed blocklength codes with feedback, we describe some attempts made at
bridging the gap. Additionally, we describe how to tighten the upper bound for two cases
when the encoder is somehow limited: if the encoding strategy is constrained to use fixed
type inputs regardless of output sequence and if there is a delay in the feedback path. The
latter of these results leads to the insight that the Haroutunian exponent of a parallel channel
constructed of independent uses of the original asymmetric channel approaches the sphere-
packing exponent of the original channel after normalization. This fact can then be used to
show that the error exponent for fixed delay codes is upper bounded by the sphere-packing
exponent.

The second part of the thesis studies lossy compression of the arbitrarily varying sources
introduced by Berger in his paper entitled ‘The Source Coding Game’. An arbitrarily varying
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source is a model for a source that samples other subsources under the control of an agent
called a switcher. Motivated by compression of active vision sources, we seek upper and lower
bounds for the rate-distortion function of an arbitrarily varying source when the switcher
has noncausal knowledge about the realizations of the subsources it samples from. We find
that when the subsources are memoryless, noncausal knowledge of subsource realizations is
strictly better than information about past subsource realizations only.
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Chapter 1

Introduction

In a theory of information, it is not surprising that the idea of causality naturally arises.
This is because the utility of knowledge is based on many factors: what is learned, how much
it costs, who learns it (i.e., what actions can they carry out with the information) and when
the knowledge is learned. The last factor, the timing of when knowledge is learned, is the
subject of this thesis.

In the popular vernacular, the concept of causality is about cause and effect. In the social
and physical sciences, effects are observed and correlated with hypothetical causes, and one
of the goals of science is to show that a hypothesized cause is actually causative of the effect.
A related meaning is the idea that before one event happens, a different one must occur first.
This meaning of causality is related to the causality in the information theoretic problems
in this thesis. We will study source and channel coding problems where actions of agents in
the problems are taken with varying levels of knowledge of the realizations of certain random
variables in the problems. The amount of knowledge available before these actions are taken
will determine whether we think of the problems as having a causal or noncausal nature.

The first part of the thesis continues the study of error exponents for point-to-point
channel coding. In point-to-point channel coding, as shown in Figure 1.1, an encoder wishes
to communicate a message over a noisy communication medium called a channel to a decoder.
The message is assumed to be uniformly random from a finite set and the encoder maps the
message to input symbols for the channel. The channel randomly (noisily) maps the channel
input symbol to a channel output symbol according to a known conditional probability
distribution, W (y|x). The encoder has a certain number of uses of the channel (called
blocklength) to communicate the message to the decoder reliably (with low probability of
error). Shannon, in his seminal paper [1] launching the field of information theory, showed
that there is a critical quantity called the capacity of the channel, C(W ), that determines
how much information can be communicated reliably across the channel. He showed the
capacity can be calculated as

C(W ) = max
P

I(P,W ),
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Encoder DecoderW(y|x)M M

>

{1,2,...,2  }
nR

Block length n

X (M)
i

Y
i

DMC

Figure 1.1: Fixed blocklength coding over a discrete memoryless channel W (y|x). The rate
of communication is R bits per channel use, and the blocklength is n, so the message is
uniformly drawn from one of exp(nR) possibilities.

where P is a distribution on the input of the channel and I(P,W ) denotes the mutual
information between the input and output of the channel W when the input distribution is P .
The operational meaning of the capacity of the channel is that if the rate of communication
(measured in bits communicated per use of the channel) is less than the capacity, there are
codes that communicate the message with arbitrarily low probability of error in the limit of
large blocklengths.

Because large blocklengths also correspond to large delay, one would also like to know
how large a blocklength is needed to achieve a desired reliability while communicating at a
given rate over the channel. The study of error exponents seeks to answer this question by
analyzing the probability of error for optimal codes with a given blocklength and rate. It
can be shown that for optimal codes,

P(Error) ' e−nE(R),

where n is the blocklength and E(R) is the error exponent at rate R. One finds lower bounds
to E(R) by proving upper bounds to error probability for specific codes and upper bounds
to E(R) by finding lower bounds to error probability for general codes.

The first part of the thesis explores the noncausal interpretation of one upper bound,
called the Haroutunian bound, to the error exponent for several variants of the communica-
tion problem just described. The original problem where the Haroutunian exponent appears
is channel coding with casual output feedback. Shannon showed [2] that even if the en-
coder is given knowledge of the realizations of previous channel outputs before choosing a
channel input at each time, the capacity of the (discrete, memoryless) channel is unchanged.
Haroutunian [3] proved an upper bound to the error exponent for fixed blocklength codes
with feedback that suffers from a technical weakness: it assumes that causal feedback allows
the encoder to predict future channel behavior based on past channel behavior. The bound
assumes that this knowledge can then be acted on by the encoder to improve error perfor-
mance by optimizing its input distribution using this noncausal knowledge of the channel
behavior it will face. This fact only makes the bound weak for asymmetric channels (chan-
nels for which the uniform input distribution is not optimal in some sense). The weakness
of the bound lies in the fact that for memoryless channels, past channel behavior cannot be
used to predict future channel behavior. Thus, the Haroutunian bound appears to grant the
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encoder with feedback a power it does not in reality possess. A more precise introduction
to the problem is given in Chapter 2, but suffice to say for now that Chapters 2 and 3 are
devoted to disallowing this possibliity that such noncausal knowledge could be learned by
the code in several channel coding problems where the Haroutunian bound arises.

The second part of the thesis deals with lossy compression of arbitrarily varying sources
(AVSs). Arbitrarily varying sources are used to model sources which output data that is
actually a processed or dynamically sampled version of other ‘subsources’, as shown in Figure
1.2. An agent with some knowledge about the realizations and distributions of the subsources
controls the processing or sampling operation. The concept of an arbitrarily varying source
was introduced by Berger in his paper “The Source Coding Game” [4]. The source coding
game is a game played between two players, a coder and a switcher. The coder is trying
to lossily compress the output of the AVS to a specified distortion. The switcher is the
agent in control of which subsource is sampled at each time, and in the game, is trying to
make life difficult for the coder by forcing the coder to use as high a rate as possible. In
this version of the game, the switcher is an adversary to the coder. Berger characterizes the
rate-distortion function when the switcher is adversarial and has strictly causal knowledge of
the realizations of memoryless subsources. That is, the switcher must set the switch position
before learning of the subsource realizations at the current time. Berger asks the question
of whether ‘noncausal’ knowledge of the subsource realizations can be used by the switcher
to increase the rate-distortion function. It is this question that we answer in Chapter 4,
both for the adversarial model of the switcher studied by Berger and a ‘helpful’ model we
introduce, where the switcher is actually trying to help the coder use less rate.

In both parts of the thesis, we will model subsources and channels as discrete, memoryless
systems. The impact of causality will then come through by how varying levels of knowledge
for the agent in the two problems can shape the relevant controlled distributions. In the
channel coding problem, the encoder is the agent in control of the output of the channel by
using its input distribution as a ‘control’ input. In the source coding problem, the switcher
is the agent in control of the output distribution of the AVS by using its knowledge of the
subsource realizations and distributions to decide how to sample the subsource.

1.1 What could noncausal feedback do?

To get a glimpse of what can happen when we look at differing levels of causality in an
information-theoretic problem, let us think of channel coding with feedback. The main
weakness of the Haroutunian bound is that it assumes that causal output feedback can allow
the encoder to tune its input distribution by predicting future channel behavior (because
it is difficult to prove otherwise). Thus, the causal output feedback is giving some kind of
‘precognitive’ knowledge of future channel behavior. Why is this something to be afraid of
to begin with, from the point of view of understanding fundamental behavior of optimal
codes? One might guess that knowledge of the channel behavior at the encoder only is not



4

p1
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Figure 1.2: An arbitrarily varying source whose output symbol at each time is the output of
one of a finite number of ‘subsources’. In Berger’s paper [4] and this thesis, the subsources are
assumed to be discrete, memoryless and stationary. The switcher decides which subsources’
symbol will be output based on the knowledge it has, which may be noncausal.

1 1

0 0

1-

1-

Figure 1.3: The binary symmetric channel with crossover probability δ. The output Y is the
input X with probability 1− δ and is 1−X with probability δ.

enough to improve performance because the decoder is still unaware of the channel noise the
encoder faced, and therefore the lack of synchronicity might render the noncausal knowledge
useless. To dispel this notion, we look into some models of feedback that appear aphysical
and are noncausal, but do have applications in problems involving interference and storage
on memories.

How does one begin to think of precognitive knowledge of channel behavior? For example,
take the binary symmetric channel (BSC), shown in Figure 1.3, which flips its input with
probability δ < 1/2. The capacity of the BSC (without feedback or with causal output
feedback) is 1 − hb(δ), where hb(δ) is the binary entropy function hb(δ) = −δ log δ − (1 −
δ) log(1− δ). One model for the BSC is that the output Y is the modulo-2 sum of the input
X an an independent Bernoulli random variable Z with parameter δ, Yi = Xi ⊕ Zi. In
this model, if the encoder knows the value of Zi in a procognitive way before inputting Xi,
clearly the capacity is 1 bit per channel use, which is larger than 1− hb(δ). But this is not
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the only model for noise in the BSC. Consider a ‘noisy packet drop’ model for the BSC. Let
Z̃i be a Bernoulli process with parameter 2δ and Ỹi an independent Bernoulli process with
parameter 1/2. Then, let the output of the channel be

Yi = Xi(1− Z̃i) + ỸiZ̃i.

This channel outputs the input Xi with probability 1− 2δ and disconnects the output from
the input and outputs a random bit with probability 2δ. The effective channel, without
knowledge of the Z̃i, is a BSC with crossover probability δ. It can be shown, however,
that even if the encoder knows the value of the Z̃i (but not the Ỹi), the capacity under
this model is still 1 − hb(δ). So we have two models of channel noise that appear the
same to the coding system without noncausal knowledge, but are different with noncausal
knowledge. It is unclear how to generalize these two models to anything other than additive
noise channels, so let us consider a model that is analogous to the switching model for source
coding developed by Berger.

In channel coding, the agent capable of acting on feedback information is the encoder. In
a sense, the goal of the encoder is to use the knowledge it has of the conditional distributions
of the channel output given the channel inputs to ‘control’ the output of the channel and
convey the message. One can then think of the channel output as being the switched output
of |X | memoryless ‘subchannel’ outputs with distributions {W (·|x) : x ∈ X}, as shown in
Figure 1.4. With causal output feedback, where the encoder learns Yi immediately before
deciding on the switch position Xi+1, the capacity of the channel is unchanged, as shown by
Shannon [2].

What might a more general model that includes ‘precognitive’ feedback look like? In
the traditional setup, there is only one channel output Yi whose conditional distribution is
W (Yi|Xi). We propose that precognitive feedback give the encoder advance knowledge of
the realizations of the |X | subchannels. We will think of two cases of precognitive feedback:
barely precognitive feedback if Xi is decided with knowledge of the realizations of the |X |
subchannels up to and including time i, and fully precognitive feedback if Xi is decided with
knowledge of the realizations of the |X | subchannels over the entire blocklength of n time
steps. We are simply interested in knowing if this advance knowledge can be used by the
encoder to increase capacity. Further, if it does increase capacity, does fully precognitive
feedback increase capacity even more than barely precognitive feedback?

Luckily for us, these questions have already been answered if we transform the problem
from one where the encoder has feedback to one where the encoder has advance knowledge
of a channel ‘state’. At time i, we let the state si be the realizations of the |X | subchannels,
si = (yi[x] : x ∈ X ). That is, the channel state tells the encoder exactly what the output
of the channel will be if the input x is chosen for each input symbol. The probability the
channel is in each state will be

PS(s) = P(s = (y[x] : x ∈ X )) =
∏
x∈X

W (y[x]|x),
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W( |1).

W( |  ).

y[1]

y[  ]

. . .

. . .Encoder Decoder

Input letter X

Message

. . .

Precognitive feedback

Y

Figure 1.4: A way of thinking of channels analogous to the arbitrarily varying source. The
channel is composed of |X | subchannels, each of which produce symbols from the output
alphabet IID according to distributions {W (·|x)}. The encoder then chooses which symbol
is the output of the channel by selecting the input symbol. Without feedback, or with causal
feedback, the channel appears to the encoder and decoder to be a DMC with transition
probabilities W (y|x). This model allows for a notion of ‘precognitive feedback’, where the
encoder would be aware of the outputs of each of the subchannels before making a decision
on the input symbol.

where for simplicity, we have made the assumption that the subchannels are independent
of each other. We note that other models for a DMC can be recovered by making the
subchannels correlated with each other (but independent over time). For example, the
additive noise model for the BSC has fully correlated subchannels, where either both inputs
are flipped or neither input is flipped.

Without any feedback or only causal knowledge of the channel state, the encoder appears
to be facing a channel with conditional distribution W , because its knowledge of the output
of the channel for a given input symbol is just the conditional distribution. With precogni-
tive feedback, it knows the state and therefore the output of the channel deterministically
given the input. Barely precognitive feedback then means that the encoder decides Xi with
knowledge of (s1, . . . , si) and fully precognitive feedback means the encoder chooses Xi with
knowledge of (s1, . . . , sn). The capacity for these ‘state knowledge’ problems was determined
by Shannon [5] in the barely precognitive case and Gelfand and Pinsker [6] in the fully pre-
cognitive case. These are also called channel side-information problems because the encoder
gets side-information about the state of the channel before deciding on the input letter.
However, in this precognitive feedback instance, the side-information is very special because
given the side-information of the channel state, the output is a deterministic function of the
input. The key insight of [5] is that, rather than thinking of inputs as being letters from
X , we think of inputs as being ‘strategies’, i.e., functions mapping an observed state to a
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Figure 1.5: The possible states the BSC can be in for the model in Figure 1.4.

channel input letter,

t : S → X .

In the case of barely precognitive feedback, the capacity as determined by Shannon is

Cbp = max
PT

I(T ;Y ),

where the joint distribution is

P(s, t, y) = PS(s)PT (t)1(y[t(s)] = y),

and I(T ;Y ) is the mutual information between the random variables T and Y . The notation
y[x] denotes the component of s corresponding to the input x, which has marginal distribu-
tion W (·|x). In the fully precognitive case, Gelfand and Pinsker showed that the capacity
is

Cfp = max
PT |S

I(T ;Y )− I(T ;S),

where the joint distribution is

P(s, t, y) = PS(s)PT |S(t|s)1(y[t(s)] = y)

and the optimization is over conditional distributions of the strategy T , conditioned on the
state S.

Let us evaluate these capacities for two simple binary input, binary output channels: the
binary symmetric channel (BSC) and the Z-channel. For the BSC, at each time, the channel
can be in one of four states: flip both inputs with probability δ2, don’t flip the inputs with
probability (1−δ)2, output only 0 with probability δ(1−δ), or output only 1 with probability
δ(1− δ) as shown in Figure 1.5.

When the state of the channel is ‘flip both inputs’ or ’don’t flip the inputs’, the encoder
with advance knowledge of the state can make the output of the channel be either 0 or 1. In
the other states, the encoder is constrained to output the symbol that occurs as the realization
of both subchannels. It is inconsequential what a strategy does in these constrained states
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Figure 1.6: Capacity of the BSC with no feedback, barely precognitive feedback and fully
precognitive feedback as a function of the crossover probability δ ∈ [0, 1/2]. Fully precog-
nitive feedback increases capacity over barely precognitive feedback, which in turn is larger
than capacity without feedback.

as it cannot affect the output of the channel. It can be shown that, with barely precognitive
feedback, the capacity of the channel is the capacity of a BSC with crossover probability
δ(1− δ), which is less than δ. Thus

Cbp = 1− hb(δ(1− δ)) > 1− hb(δ).

In a paper that studies storage in memories with known defects, Heegard and El Gamal [7]
show that with fully precognitive feedback, the encoder can communicate a bit for every
time instant that the state allows the output of the channel to be chosen, even though the
decoder does not know when these time instants occur. Thus,

Cfp = 1− 2δ(1− δ) > Cbp > 1− hb(δ).

Hence, we find that noncausal knowledge of channel behavior can indeed be used to increase
capacity. In the example of the BSC, the difference between barely precognitive feedback
and fully precognitive feedback is also an increase in capacity, as shown in Figure 1.6.

As another example, consider the Z-channel, a channel which faithfully transmits 0’s as
0’s, but flips 1’s to 0’s with probability δ. Without feedback, or with causal output feedback,
the capacity of the Z-channel with crossover probability δ is

CZ(δ) = hb (p∗(δ)(1− δ))− p∗(δ)hb(δ),
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Flip Don't Flip
Figure 1.7: The states that a Z-channel can be in. A 0 is always transmitted as a 0, but a 1
can either be transmitted as a 1 or flipped to a 0.

where

p∗(δ) =

[
(1− δ)

(
1 + exp

(
hb(δ)

1− δ

))]−1
.

With precognitive feedback, the encoder is made to know in advance whether the channel
will flip an input of 1 to 0 or not, as shown in Figure 1.7. With barely precognitive feedback,
it can be checked that the capacity is unchanged, i.e., Cbp = CZ(δ). With fully precognitive
feedback, the capacity actually increases to Cfp = 1− δ (bits per channel use), the fraction
of time the channel output can be freely chosen to be either 0 or 1. Hence, for the Z-
channel, knowledge of the channel state immediately before deciding the input does not
increase capacity (as shown in Figure 1.8), but knowledge of all future channel behavior
does increase capacity. These examples show that:

1. Noncausal knowledge can have a large impact on the fundamental limits of performance
in information theoretic problems.

2. The degree of noncausality can also have an impact for some problems, but not for
others, even when the underlying randomness is memoryless.

Jafar [8] has shown that for encoders with channel side-information, even one bit of side-
information about the channel state given to the encoder before choosing the input can
increase capacity by an unbounded amount. So we see that in terms of increasing capacity,
the future can start now (as in the BSC example) or later (as in the Z-channel example) and
knowledge of the future can increase capacity by an unbounded amount.

The purpose of these examples is to foreshadow that causality can indeed have a big on
information-theoretic problems. We will see this quite clearly in the source coding problem
by the impact on the rate-distortion function. For the Haroutunian exponent, we want to
rule out that a code with causal feedback might be able to improve its error performance by
tuning its input distribution to future channel behavior. To avoid confusion, we note that
the Haroutunian exponent does not assume that the encoder knows future channel behavior
and thus can increase capacity. Rather, it can be interpreted as assuming that when the
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channel behaves atypically, the encoder knows this in advance and can change the input
distribution according to an optimal one (in a sense to be described in Chapter 2). The fact
that the optimal input distribution changes with the channel is only true for asymmetric
channels, where the uniform input distribution is not optimal.

1.2 Contributions

While we detail the contributions of the thesis precisely in the chapters where the results are
given, here we briefly highlight those results. Chapter 2 studies the Haroutunian exponent
as the upper bound to the error exponent for fixed blocklength codes with causal output
feedback. The goal, as has been the case since the bound was first proved, is to show that the
sphere-packing exponent, which is tighter than the Haroutunian exponent for asymmetric
channels, is an upper bound to the error exponent. The sphere-packing exponent is also an
upper bound for fixed blocklength codes without feedback, and is tight at rates near capacity,
so this problem is really about showing that causal output feedback does not improve the
asymptotic reliability of fixed blocklength codes.

Unfortunately, we have not succeeded in proving that the sphere-packing bound holds
for fixed blocklength codes with feedback. Chapter 2 chronicles some of the attempts made
and what technical obstacles were faced. We then show that tightening the error exponent
from the Haroutunian exponent is possible in two restricted cases. First, if the encoder
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is constrained to use a fixed input distribution regardless of the feedback information it
receives, the sphere-packing bound holds. Second, if there is a delay in the feedback path,
the sphere-packing bound holds in the limit as the delay gets large. This result essentially
makes the feedback even more causal and shows that the more stale the feedback information,
the more we can prove that feedback cannot be used to optimally change the channel input
distribution according to future channel behavior. We then reinterpret the delayed feedback
result as applying to parallel channels with instantaneous feedback rather than the original
channel with delayed feedback. This reinterpretation leads to the surprising result that
the Haroutunian exponent of the parallel channel is not the addition of the Haroutunian
exponent of the original channels for asymmetric channels W . In fact, after normalization,
the Haroutunian exponent of the parallel channel approaches the sphere-packing exponent
of W in the limit as the parallelization of the channels gets large. While this insight is
not useful for proving stronger results for block codes with feedback, it can be applied to
another problem where the Haroutunian exponent appears in Chapter 3. In fixed delay
coding, bits arrive at the encoder in a streaming fashion as opposed to the message being
known fully in advance for fixed blocklength codes. Each bit is then to be decoded within a
fixed delay of the time it arrives at the encoder. The error exponent for fixed delay codes is
taken with respect to delay, analogous to the blocklength for fixed blocklength codes. The
Haroutunian exponent appears as the best known upper bound to the error exponent for
fixed delay codes without feedback. While there is no feedback, the previously employed
proof technique could not disallow the possibility that the encoder might be able to predict
when the channel behavior is bad enough so that reliably communicating any given bit is
hopeless. Using the insight for parallel channels developed in Chapter 2, we are able to
tighten the upper bound to the sphere-packing exponent for fixed delay codes.

In Chapter 4, we are motivated by the field of computer vision and Berger’s paper
to study the arbitrarily varying source with new models of knowledge and intentions for
the switcher. Extending the work of Berger, we first study the rate-distortion function
of the AVS when the switcher is adversarial and has knowledge of the realizations of the
memoryless subsources either immediately before selecting the switch position or fully in
advance. This rate-distortion function is characterized completely as the maximum of the
IID rate-distortion function over distributions the switcher can simulate at the output of the
AVS. In this problem, the level of noncausality does not matter: the rate-distortion function
increases when going from causal knowledge to barely noncausal, but no further increase
occurs when the switcher receives fully noncausal knowledge of subsource realizations. We
then characterize the rate-distortion function if the switcher is adversarial and has noisy
and noncausal access to the subsource realizations. The next step is to then consider what
happens if the switcher is actually helpful, the opposite of adversarial. If the switcher is
helpful and has fully noncausal knowledge of subsource realizations, we fully characterize the
rate-distortion function as the IID rate-distortion function for an associated source. With
other levels of causality in knowledge, we give upper bounds on the rate-distortion function
for helpful switching. Finally, to show that brute force computation of the R(D) function
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of an AVS can be provably done in a finite amount of time, we prove a technical lemma
about the uniform continuity of the IID rate-distortion function that may be of independent
interest.

While the statements here may seem vague, we invite the reader to proceed to the chapter
introductions for a more precise description of the contents of the thesis.
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Chapter 2

The Haroutunian exponent for block
coding with feedback

2.1 Introduction

This chapter explores a particular problem that arises in the classical information-theoretic
study of block coding for discrete memoryless channels (DMCs). A DMC is a communication
medium with a finite input space X and finite output space Y for which, at any time, if the
input to the channel is x ∈ X , the output of the channel is y ∈ Y with probability W (y|x),
where W is a probability transition matrix. Block coding refers to the assumption that the
entire message to be communicated is known before transmission is commenced for a fixed
(pre-determined) amount of time1. The duration of transmission for a (message) block, in
number of channel uses, is called the blocklength.

For this problem, Shannon [1] showed that the capacity of the channel, C(W ), is a
fundamental quantity that determines quite precisely the number of bits per channel use that
can be reliably communicated in the limit of long blocklengths. In this first-order notion of
reliable communication, all that is required is that the probability of incorrect decoding of
the message goes to 0 with longer and longer blocklengths. Soon after the first rigorous proof

1In the anytime coding chapter, we study communication systems where the message to be communicated
is causally revealed to the transmitter. There are also notions of variable-length codes ( [9], [10], [11]) that
allow for the transmission duration to depend on the quality of the channel. In this thesis, we do not consider
variable-length codes, only fixed-length codes.

M W
X Y

Enc Dec M

<

Figure 2.1: Fixed-length block coding with feedback is the problem considered in this chapter.
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by Feinstein [12] that C(W ) was the highest rate one could reliably communicate messages
over W , it was also proved by Feinstein [13] that the reliability, or probability of error, decays
exponentially to 0 with the blocklength for any rate below capacity. This result set afire the
study of the reliability function for communication over DMCs, a second-order notion of the
quality of the channel W for communication purposes.

Around the same time as the reliability function was being investigated, there was also
heavy interest in understanding the fundamental information-theoretic limits on communica-
tion when the additional resource of feedback is available. In many practical communication
situations, the receiver may be able to send information to the transmitter while the trans-
mitter is attempting to send a message to the receiver. In order to simplify the practical
aspects of the problem (i.e., the feedback is noisy, rate-limited and/or delayed), efforts were
concentrated on understanding what can happen when the transmitter is made aware of
the channel outputs (received symbols) at the same time that the receiver is made aware of
them. This is the case of perfect feedback; perfect because the received symbol is available
to the transmitter both noiselessly and without delay.

Shannon himself [2] showed that for DMCs, feedback does not increase the capacity of
the channel. The natural question at this point was

Does feedback increase the reliability function of a DMC?

The answer to this question is not as simple as the answer that Shannon provided for capacity.
It turns out that if the channel is symmetric (e.g. the binary symmetric channel or binary
erasure channel), in a sense to be defined later, feedback does not increase the reliability
function much. However, if the channel is asymmetric, the answer to this question is still
unknown. This leaves us with one of two possibilities: either feedback does not improve
reliability for asymmetric channels and this is difficult to prove, or feedback can improve
reliability only by exploiting asymmetry of the channel.

In order to get to the point where we can more meaningfully discuss the contents of this
chapter, a brief review of the literature on the reliability function (also known as the error
exponent) is in order.

2.1.1 A brief history of error exponents for block coding over
DMCs

If we let Pe(n,R) denote2 the lowest error probability of all block codes without feedback
of blocklength n and rate at least R that can be used for communicating over W , the error

2The notation, for now, suppresses the dependence of the error probability on the channel W .
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exponent or reliability function is defined as3

E(R) , lim
n→∞

− 1

n
logPe(n,R).

As noted earlier, Feinstein [13] showed that E(R) is positive for all R < C(W ). If we let
Pe,fb(n,R) denote the lowest error probability for all block codes with feedback of blocklength
n and rate at least R that can be used for communicating over W , the error exponent or
reliability function with feedback is defined as

Efb(R) , lim
n→∞

− 1

n
logPe,fb(n,R).

Because a code with feedback can simply choose to ignore the feedback, it trivially follows
that Pe,fb(n,R) ≤ Pe(n,R), and therefore,

E(R) ≤ Efb(R).

We will say that feedback does not improve reliability if E(R) = Efb(R), even though it
might be possible that Pe(n,R) can be strictly larger then Pe,fb(n,R) in this case. More
precisely, what we mean is that feedback does not improve the reliability function.

As an aside, the notion of an error exponent or reliability function is only useful if
−(1/n) logPe(n,R) approaches E(R) fairly quickly (and similarly for Efb(R)). The results

discussed in this chapter typically have a ‘convergence rate’ of O(
√

log(n)/n), meaning that
if El(R) is a lower bound to E(R) and Eu(R) is an upper bound to E(R), we can say that

exp

(
−n

[
Eu(R) +O

(√
log n

n

)])
≤ Pe(n,R) ≤ exp

(
−n

[
El(R)−O

(√
log n

n

)])
.

Error exponents without feedback

In order to determine E(R), researchers set out to find upper and lower bounds to Pe(n,R)
(yielding lower and upper bounds to E(R) respectively). One of the first ways to find lower
bounds to the error exponent4 was to analyze the performance of random codes. Upper

3Throughout this chapter and Chapter 3, the log and exp functions are taken to the base e, but in plots
the units may be to the base 2 (as noted in each plot). Also, we note that the limit is presumed to exist,
but it is not known for sure at some rates if it does. In seeking bounds to the error exponent, bounds to the
lim inf and lim sup are sought.

4The term error exponent refers both to the reliability function E(R) and to exponents that serve as upper
or lower bounds to E(R). When we say ‘the error exponent’, we are referring to the reliability function, but
when we say ‘an error exponent’ or ‘error exponents’, we mean upper and lower bounds to the reliability
function. Hopefully, this distinction is clear from context.
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Figure 2.2: Error exponents without feedback for a BSC with crossover probability 0.1.
The capacity for this channel in bits is 0.53 bits per channel use. The random coding
exponent Er(R), expurgated exponent Eex(R), straight line exponent Esl(R) and sphere-
packing exponent Esp(R) are shown (they are individually denoted by color, but can be
identified also by the ordering Er(R) ≤ Eex(R) ≤ Esl(R) ≤ Esp(R)). For this channel,
Rcr = 0.1881 bits per channel use, Rx = 0.0452 bits per channel use and Eex(0) = 0.3685,
which is much less than Esp(0) = 0.737. Thus, the straight line bound is significantly tighter
for rates between 0 and Rsl = 0.13 bits per channel use.
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bounds to the error probability of random codes yielded the random coding exponent, Er(R),
where

E(R) ≥ Er(R)

Er(R) , max
ρ∈[0,1]

max
P

E0(ρ, P )− ρR (2.1)

E0(ρ, P ) , − log
∑
y

[∑
x

P (x)W (y|x)
1

1+ρ

]1+ρ
, (2.2)

with P denoting a distribution (probability mass function) on X . Elias [14] showed that
E(R) ≥ Er(R) if W is a binary symmetric channel (BSC) or binary erasure channel (BEC),
while Fano [15] showed that E(R) ≥ Er(R) for a general DMC. Gallager [16] gave a simple
derivation of the random coding exponent bound and derived most of the useful properties
of the function Er(R).

Since any realization of a random code can be bad because the codewords drawn could
be identical to each other or otherwise ‘too close’, Gallager ( [16], [17]) improved on ran-
dom codes by expurgating these ‘bad’ codewords and showed that the resulting expurgated
exponent, Eex(R), is a lower bound to E(R), where

Eex(R) , sup
ρ≥1

max
P

Ex(ρ, P )− ρR

Ex(ρ, P ) , −ρ log
∑
x,x′∈X

P (x)P (x′)

[∑
y

√
W (y|x)W (y|x′)

]1/ρ
.

In general, there is an Rx ∈ [0, C(W )] for which,

Er(R) = Eex(R), if R ∈ [Rx, C(W )]

Er(R) < Eex(R), if R ∈ [0, Rx),

so Eex(R) improves on Er(R) only for low rates.
For upper bounding the reliability function, the most fundamentally important upper

bound is the sphere-packing exponent5, Esp(R),

Esp(R) , sup
ρ≥0

max
P

E0(ρ, P )− ρR,

where E0(ρ, P ) is defined in (2.2). The sphere-packing bound was first shown to hold by
Elias [14] for rates close to capacity if W is a BSC or a BEC, and discovered by Fano [15]
for general DMCs. The first rigorous proof of the sphere-packing bound for general DMCs
was given by Shannon, Gallager and Berlekamp [18]. It was later independently recognized

5For a quick reminder of important notation, please flip ahead to Tables 2.1 and 2.2 in Section 2.2.
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by Haroutunian [19] and Blahut [20] that the sphere-packing exponent could be expressed
another way, as

Esp(R) = max
P

min
V :I(P,V )≤R

D(V ||W |P ), (2.3)

= max
P

Esp(R,P ) (2.4)

where I(P, V ) denotes the mutual information across the channel V when the input distri-
bution is P and D(V ||W |P ) denotes the conditional divergence between the two channels
V and W when the input distribution is P . The form of the sphere-packing exponent above
lends itself to a simple interpretation. One can prove the sphere-packing bound by the fol-
lowing process. Since the code is a block code with codewords fixed ahead of time, there is
a subcode of rate nearly R whose codewords are all of some type P . Then, for this subcode
and a test channel V that have a low mutual information, the error probability must be high
(actually convergent to 1). The exponent that governs6 the probability of the channel W
‘acting like’ channel V when the input type is P is D(V ||W |P ).

From the so-called parametric-ρ form of Esp(R) and Er(R), and the properties of E0(ρ, P )
derived by Gallager in [16], it can be shown that there is a critical rate, Rcr ∈ [0, C(W )],
such that Er(R) = Esp(R) if R is at least Rcr. Therefore, for R ≥ Rcr, the reliability
function is pinned down to be E(R) = Er(R) = Esp(R). For R < Rcr, we see that the
reliability function is sandwiched between the random coding exponent and the sphere-
packing exponent, Er(R) ≤ E(R) ≤ Esp(R).

Another interesting fact about the error exponent for block codes without feedback can
be deduced by studying the parametric ρ-form of Esp(R) for rates below Rcr ( [17], Problem
5.20). If we relax the notion of decoding to allow a fixed number, L, of decoded messages
(called list decoding), one can show that random codes with maximum-likelihood decoding
to lists of size L achieves the following error exponent:

Er,L(R) = max
ρ∈[0,L]

max
P

E0(ρ, P )− ρR.

By the properties of maxP E0(ρ, P ) as a function of ρ, it also follows that Er,L(R) = Esp(R)
for R ≥ Rcr,L and Rcr = Rcr,1 ≥ Rcr,2 ≥ Rcr,3 ≥ . . .. Further, one can show that for each
R > 0, there is an L′ such that if L ≥ L′, Er,L(R) = Esp(R). Therefore, the sphere-packing
bound is achievable with random codes and list decoding for a large enough (but finite and
not growing with blocklength) list size. Hence, the gap between Er,1(R) = Er(R) and the
sphere-packing exponent is caused by the decoder being uncertain of the message up to just
a few bits.

6This intuition is reminiscent of the analysis of the optimal asymptotic error probability for hypothesis
testing between two distributions. In the limit as the number of observations go to infinity, the exponent
of the error probability (say of deciding on P ′ when the true distribution is P ) is the divergence D(P ′||P ).
This result is known as Stein’s Lemma (Theorem 12.8.1 of [21]) and can be interpreted as forcing an error
by making a random variable with distribution P behave like distribution P ′.
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Around the same time that the sphere-packing bound was being rigorously proved, a
related upper bound to E(R) called the straight-line bound, Esl(R), was derived by Shannon,
Gallager and Berlekamp ( [18], [22]). The straight-line bound takes any non-increasing upper
bound to the reliability function, call it Eu(R), and shows that for all 0 ≤ R1 ≤ R2 ≤ C(W )
and λ ∈ [0, 1],

E (λR1 + (1− λ)R2) ≤ λEu(R1) + (1− λ)Esp(R2). (2.5)

The straight-line bound is generally used with

Eu(R) = max
P
−
∑
x,x′∈X

P (x)P (x′) log
∑
y

√
W (y|x)W (y|x′)

= Eex(0).

The result that Eex(0) is an upper bound to the error exponent for zero-rate communication
(i.e., the reliability function for codes with a fixed number of messages, as the number
of messages goes to infinity) is also derived in [22]. Then, because it can be shown that
Eex(0) < Esp(0), and Esp(R) is convex-∪ in R, there is some Rsl ∈ [0, C(W )] for which
R2 = Rsl and R1 = 0 gives the best upper bound to E(R) from (2.5), so

Esl(R) =

{
Rsl−R
Rsl

Eex(0) + R
Rsl
Esp(Rsl), R ∈ [0, Rsl]

Esp(R), R > Rsl.

Note that because E(R) = Esp(R) for R ∈ [Rcr, C(W )], Rsl < Rcr. Unfortunately, the
straight-line bound does not have an intuitive interpretation like the sphere-packing bound
(other than the obvious geometric interpretation).

For block codes without feedback, since 1968, the state of affairs has been that E(R) =
Er(R) = Esp(R) if R ≥ Rcr and Eex(R) ≤ E(R) ≤ Esl(R) for R ∈ [0, Rcr] with Esl(0) =
Eex(0). The four exponents discussed in this section are plotted in Figure 2.2 for a BSC
with crossover probability 0.1.

Error exponents with feedback

While our focus is on upper bounds to Efb(R), we will briefly discuss lower bounds to Efb(R)
that are different from the lower bounds to E(R). Clearly, because a code with feedback can
choose to ignore the feedback, E(R) ≤ Efb(R).

An important coding scheme with feedback is called posterior matching. When posterior
matching is used, the transmitter calculates the posterior probabilities of each message based
on the received symbols and groups them in a particular way to determine the next input
symbol. Zigangirov [23] showed that the error exponent of the posterior matching scheme
with feedback, Epm(R), when used over BSCs has the property that Epm(R) = Esp(R) for
R ≥ Rcr,fb, where Rcr,fb < Rcr. Therefore, posterior matching has a better error exponent
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than the best known schemes for codes without feedback: random coding and expurgation.
Also, it was shown that Epm(0) > Eex(0) for the BSC, so feedback at least improves the
reliability function for very low rates. Further extensions of this result followed by Dyachkov
[24] (showing how to perform posterior matching for arbitrary DMCs and analyzing its
performance for a larger class of symmetric channels), Burnashev (adapting his two-phase
approach for variable-length codes with feedback [9] to fixed-length codes with feedback
for the BSC [25]) and Nakiboglu (extending the schemes of Dyachkov and Burnashev and
improving their analyses).

Meanwhile, for upper bounds to Efb(R), Dobrushin [26] had shown that Efb(R) ≤ Esp(R)
if the channel is symmetric at both the input and output7. This result showed that Efb(R) =
E(R) for R ≥ Rcr for symmetric channels, so it seemed that feedback did not increase
reliability (at least for ‘high’ rates).

Intuitively, the Dobrushin’s result says that when dealing with ‘additive noise’ channels
like the BSC, the important factor in determining the quality of the channel is the ‘variance’
or ‘power’ of the noise and not really what is happening at the input. From a coding theory
perspective, the sphere-packing bound is looking at points in the input space and puts noise
spheres around the ‘codewords’. When the channel is augmented with feedback, the noise-
spheres still determine the minimum distance needed between codewords and hence the
sphere-packing bound still holds provided the channel looks like an ‘additive noise’ channel.

At this point, the steady march of progress in this area took an interesting turn. In 1970,
Haroutunian presented ( [27], [28]) an upper bound to Efb(R) valid for all DMCs, which is
presently called the Haroutunian exponent. The Haroutunian exponent is denoted Eh(R)
and defined as

Eh(R) , min
V :C(V )≤R

max
P

D(V ||W |P ). (2.6)

He also showed that Eh(R) = Esp(R) if W is output-symmetric8, recovering the upper
bound proved by Dobrushin, but in general Eh(R) > Esp(R) for asymmetric channels. Some-
what disturbed by the gap between Eh(R) and Esp(R) for asymmetric channels, Haroutunian
waited five years to submit his result to a journal [3], at which time he wrote

The result derived here was included in [27] and [28]. The author, however, was
in no hurry to have it published in full. The whole point lies in that in the widely
adopted hypothesis, the lower bound of error probability for channels with feedback

7A DMC W is symmetric at both the input and the output if the rows are permutations of each other
and the columns are also permutations of each other. A BSC is symmetric at both the input and the output,
but a BEC is not.

8A channel is output-symmetric if the output set can be partitioned into subsets such that in each subset
the matrix of transition probabilities (from all inputs to this subset of the output) has the property that
each row is a permutation of every other row and each column is a permutation of every other column.
Output-symmetric channels include BSCs and BECs.
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or with no feedback is the bound for packing of spheres.... The author has tried
for some time to improve the proof so that the hypothesis is valid for any discrete
channels, although up until now without success. A related question also arises: is
it possible to construct block codes with feedback possessing an error probability
for unsymmetric channels which would be exponentially lower than the bound for
packaging a sphere?

There are two points in the above paraphrasing of Haroutunian that are important to
note here. First is the point that it is widely believed that Efb(R) ≤ Esp(R) for all DMCs.
That is, even with feedback, ‘almost everyone’ believes that one cannot beat the sphere-
packing bound. The reason for this intuition is that the output feedback is available only
causally. The major difference between the Haroutunian exponent (2.6) and the sphere-
packing exponent (2.3) is that the order of the max and min is interchanged. The sphere-
packing bound knows the strategy of the code (P ) and chooses a test channel (V ) that will
cause error with high probability. The Haroutunian bound, on the other hand, fixes a test
channel (V ) that will cause error with high probability and the code chooses a strategy
(P ) that makes the error less likely. However, because feedback is in reality, only available
causally, the code should not be able to ‘predict’ what channel will occur and pick its input
distribution accordingly.

The second point, which is much more provocative is that perhaps the sphere-packing
bound does not hold for asymmetric channels when feedback is available. If this were the
case, then it leaves open the possibility that Efb(R) > Esp(R) = Er(R) for R > Rcr if
the channel is asymmetric. What makes this idea so provocative (and likely far-fetched) is
that the channel W is not handed down from Nature with no possibility of change. Rather,
W is a probabilistic model of a designed communication system that can involve/require
modulation, time and phase synchronization, equalization, etc. For the simple case of BPSK
modulation, it is generally assumed that the modulation and demodulation operations should
be symmetric irrespective of whether the symbol to be sent is 0 or 1. However, it could easily
be designed that the energy used to send a 1 be less than the energy used to send a 0 for
example. This redesigned BPSK modulation might have the dual advantage of lowering
power consumption and increasing reliability. While we don’t believe this to be the case, it
is an important reason to verify the sphere-packing bound is still an upper bound on the
reliability function for all DMCs with feedback9.

For completeness, we should also mention that the straight-line bound of (2.5) also holds
for codes with feedback provided the second error exponent (which is the sphere-packing
exponent in codes without feedback) applies to codes with feedback using list decoding. The
Haroutunian bound applies to codes with feedback using list decoding, but Eex(0) is no
longer a proven upper bound to Efb(0), so the lowest left endpoint of the straight-line bound

9Additionally, W may be asymmetric even though it was intended to be symmetric due to imperfections
in the physical components in the communication system.
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Figure 2.3: A Z-Channel is a binary input, binary output channel with a one-sided crossover
probability, denoted here by δ. A 0 is always perfectly received, while a 1 is received as a 0
with probability δ.

(to our knowledge) that has been proved is Eh(0). This straight line is always looser than
Eh(R) because Eh(R) is convex.

2.1.2 The simplest family of asymmetric channels: the Z-channel

For now, let us investigate a bit more closely the bound of Haroutunian:

Efb(R) ≤ Eh(R) = min
V :C(V )≤R

max
P

D(V ||W |P ). (2.7)

The first thing to note is that because D(V ||W |P ) is linear in P , it is maximized by a P
that places all its mass on a single x ∈ X , so

Eh(R) = min
V :C(V )≤R

max
x

D(V (·|x)||W (·|x)),

where D(V (·|x)||W (·|x)) denotes the divergence between the distributions on Y : V (·|x) and
W (·|x). In order to prove that the Haroutunian exponent upper bounds E(R) for block
codes with feedback, one takes a test channel V with capacity lower than the rate of the
code. The weak or strong converse can be used to show that the error probability under
the ‘test’ channel V is high. Then, the probability that an error occurs under channel W
is governed by D(V ||W |P ) where P can be thought of as the input distribution during the
error event for channel V .

Unfortunately, because the code has feedback10, the input distribution for the error event
under channel V need not be the same as the distribution under channel W , and hence the
max in (2.7) is taken as a worst-case bound. The conditional divergence is linear in the input
distribution however, so the resulting optimizing input distribution places all its mass on one
letter. Of course, no good code could do such a thing without dooming itself to error, but
the bound of (2.7) essentially assumes that because the code has feedback, it can somehow
realize that the channel is behaving like V and use this maximizing letter repeatedly.

10When a code has feedback, the input symbols depend on past output symbols, so the input distribution
can depend nontrivially on the probabilistic description of the channel.
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Figure 2.4: Capacity of the Z-Channel for all crossover probabilities δ ∈ [0, 1]. The capacity
is a monotone strictly decreasing function of δ, and also convex-∪ in δ.

Let us now see what this all means for the simplest asymmetric channel: the Z-channel,
shown in Figure 2.3. A Z-channel with crossover probability δ ∈ [0, 1] sends a 0 to a 0 with
probability 1 and flips a 1 with probability δ. The capacity of the Z-channel as a function
of δ, denoted CZ(δ), is shown in Figure 2.4.

The most fundamental property of asymmetric channels that separate them from sym-
metric channels is that the capacity achieving distribution depends quite a bit (and varies)
with the channel W . Figure 2.5 shows the capacity achieving distribution (the probability of
inputting 1) for a Z-channel with crossover probability δ. The capacity achieving probability
ranges from 0.5 at δ = 0 (a noiseless one-bit pipe) to approximately 0.36 as δ → 1. Contrast
this to the BSC, for which the capacity achieving distribution inputs 1 with probability 1/2
for all crossover probabilities. Perhaps even more striking is Figure 2.6, which plots the
sphere-packing optimizing probability of inputting 1 for the Z-channel with crossover proba-
bility δ = 0.5 as a function of the rate. That is, the optimizing P in (2.3) changes for a fixed
channel as a function of the rate, from 1 to the capacity achieving P (1). Again, for the BSC
or BEC, the sphere-packing optimizing P is uniform on the input for all rates.

Fix a δ and assume that W is a Z-channel with crossover probability δ. Although it
is somewhat repetitive, for clarity, we want to interpret the Haroutunian bound for the
Z-channel. Now, if a test channel V is not a Z-channel (meaning that V (1|0) > 0) and
P (0) > 0, D(V ||W |P ) = ∞, so the only test channels that are feasible in the optimization
of 2.7 are other Z-channels. If V and W are Z-channels with crossover probabilities β and δ
respectively,

D(V ||W |P ) = P (1)D(V (·|1)||W (·|1))

= P (1)Db(β||δ),
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Figure 2.5: The capacity achieving distribution p∗(δ) for a Z-channel with crossover proba-
bility δ ∈ [0, 1). Note how p∗(0) = 1/2 and for increasing δ, p∗(δ) is decreasing, requiring
a different capacity achieving distribution for each channel in the family, as opposed to
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Figure 2.7: The sphere-packing exponent, Esp(R), and the Haroutunian exponent, Eh(R),
for a Z-channel with crossover probability 1/2. The capacity of the channel is 0.32 bits per
channel use.

where Db(β||δ) = β log β
δ

+ (1 − β) log 1−β
1−δ is the binary divergence between β and δ. The

Haroutunian exponent for the Z-channel therefore evaluates to

Eh(R) = min
β:CZ(β)≤R

max
P

P (1)Db(β||δ)

= min
β:CZ(β)≤R

Db(β||δ),

where the maximizing P (1) is 1 because divergence is non-negative. Now, presumably
R < CZ(δ) (otherwise reliable communication is not possible). Therefore, any β for which
CZ(β) ≤ R will be larger than δ. Because Db(β||δ) is increasing in β if β ≥ δ, and CZ(β)
has an inverse function, it follows that

Eh(R) = Db

(
C−1Z (R)||δ

)
.

This means that for the Haroutunian bound, the best ‘test’ channel to bound the error
probability with is the Z-channel with rate (slightly less than) R. The probability that
W ‘behaves like’ V is exponential in n with exponent P (1)Db(C

−1
Z (R)||δ), where P (1) is

the probability the code with feedback inputs the symbol 1 during the error event. The
unsatisfactory part of the Haroutunian bound is that it assumes (because it is difficult
to prove otherwise) that the code only inputs 1 during the error event. The reason this
assumption is unsatisfactory is the causal nature of feedback. By definition, the input
symbol to the channel is decided by the transmitter before the output symbol is revealed
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Figure 2.8: The ratio of the Haroutunian exponent to the sphere-packing exponent,
Eh(R)/Esp(R), for a Z-channel with crossover probability 1/2. The ratio tends to a value
greater than 2 as the rate approaches capacity.

to the receiver and fed back to the transmitter. It stands to reason, therefore, that the
transmitter does not know that the error event will definitely occur until at least partway
through the block because there are output sequences that lead to error as well as those
that do not, which share the same common initial sequence. By memorylessness of the
channel and causality of feedback, the transmitter cannot only input the symbol 1 without
‘abandoning’ those output sequences that do not lead to error.

Figure 2.7 plots the sphere-packing and Haroutunian exponents for a Z-channel with
crossover probability 1/2. They are equal at rates 0 and C(W ) but there is a sizable gap for
all rates in between. Figure 2.8 shows the ratio of the two exponents. Interestingly, the ratio
of the exponents is always larger than 2 (for the Z-channel) as the rate approaches capacity.

2.1.3 An alternate view of the rate-reliability tradeoff

The reliability function characterizes the relationship between rate, blocklength and error
probability for optimal codes by fixing a rate and blocklength and asking the (approximate)
error probability of the optimal code of that rate and blocklength. This error probability
turns out to be exponential in blocklength, so one can invert this relationship to get bounds
on the required blocklength to achieve a given rate and desired error probability. There is
an alternate view of the tradeoff between these fundamental performance parameters. This
view looks at the maximum achievable rate for a given blocklength n, and allowable error
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probability ε. For block codes without feedback, let this quantity be defined as

R∗(n, ε),

while the same quantity for block codes with feedback is denoted R∗f (n, ε). We know from
the channel coding theorem and converse (with feedback), that for a DMC W ,

lim
n→∞

R∗(n, ε) = lim
n→∞

R∗f (n, ε) = C(W ).

Polyanskiy, et. al. [29] have built on prior work and shown that

R∗(n, ε) = C(W )−
√
σ2
W

n
Q−1(ε) +O

(
log n

n

)
,

where σ2
W is a channel dependent constant called the channel dispersion andQ−1 is the inverse

of the standard Gaussian Q function. This view of the rate-reliability tradeoff is derived from
the central-limit theorem perspective of the limiting distribution for mutual information, as
opposed to the large-deviations perspective that gives rise to error exponents. For symmetric
channels, they have also shown that [11]

R∗f (n, ε) = C(W )−
√
σ2
W

n
Q−1(ε) +O

(
log n

n

)
(2.8)

even though feedback is available. Therefore, for symmetric channels, feedback does not
significantly improve the rate-reliability tradeoff from this perspective either. As noted
in [11], this should not be surprising because the sphere-packing exponent is the governing
error exponent for block codes with and without feedback. Further, the behavior of the
sphere-packing exponent around capacity is given by

Esp(R) ' (C(W )−R)2

2σ2
W

,

a fact possibly due to moment generating functions being at the heart of proofs of both
the central-limit theorem and large-deviations theorems. Unfortunately, it is not known if
for asymmetric channels like the Z-channel, whether the approximation of (2.8) still holds,
leaving the door open for an improvement in the rate-reliability tradeoff from this perspective
with feedback for asymmetric channels. Again, this may incidentally be due to the fact that
the Haroutunian bound has significantly different behavior around capacity than the sphere-
packing bound, as seen in Fig. 3.3. The hope is that if one can even prove an upper bound to
Efb(R) that has the same behavior around capacity as Esp(R), then feedback can be shown
to be useless for improving rate for a fixed reliability over asymmetric channels from this
alternative point of view.
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2.1.4 Contributions

Unfortunately, we have not been able to show that the sphere-packing bound holds with
feedback (i.e., Efb(R) ≤ Esp(R)) for general DMCs. The main contribution of this chapter
is a documentation of the progress made in our understanding of this difficult problem. This
progress was made both by succeeding in proving partial results towards sphere-packing in
special cases as well as by failing to get to there in general through what looked to be several
promising methods. A minor contribution is a description of why the proof in a paper by
Sheverdyaev [30] claiming that Efb(R) ≤ Esp(R) for general DMCs has serious flaws, which
can be read in Appendix A.7.

First, the failures (presented in Section 2.4) are described. Upon seeing Haroutunian’s
exponent and its change-of-measure approach to error exponents, the first exploratory at-
tempt at the problem might be to try Fano’s inequality. At first glance, the restriction on
capacity in (2.6) is useful because we know that if the capacity of V is too small, the error
probability will be bounded away from 0. We do not require the capacity of V to be too
small to reach this conclusion however. By Fano’s inequality, we need only that the mutual
information across the channel is too low. If PV is the input distribution for a given code
with feedback when11 the channel is V and I(PV , V ) ≤ R − ε (for some small ε > 0), the
error probability under channel V is bounded away from 0 (even if the capacity of V is larger
than the rate). The exponent of the error probability for a given code can then be shown to
be upper bounded by

min
V :I(PV ,V )≤R−ε

D(V ||W |PI,V ), (2.9)

where PI,V is the distribution of the input restricted to the error causing output sequences
for each message. Through our interactions with Baris Nakiboglu at MIT, we knew that
(somewhat surprisingly)

min
V :I(PV ,V )≤R−ε

D(V ||W |PV ) ≤ Esp(R− ε), (2.10)

but such a conclusion is difficult to reach in (2.9) because nothing is known about PI,V . For
example, without more information, PI,V could place all its mass on the x that maximizes
D(V (·|x)||W (·|x)) for each V . Further, without more information, the only V for which we
definitively know that I(PV , V ) ≤ R − ε are those V for which C(V ) ≤ R − ε. So without
information to refute these last two points, the exponent of (2.9) reduces to

min
V :I(PV ,V )≤R−ε

D(V ||W |PI,V ) ≤ min
V :C(V )≤R−ε

max
x

D(V (·|x)||W (·|x))

= Eh(R− ε),
11If the code has feedback, the input distribution depends on the probability measure on the output

sequences, which in turn depends on the channel.
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which is of course the Haroutunian exponent.
At this point, one might think that in order to make use of (2.10), we should try to show

that PI,V ' PV . One way of showing that PI,V ' PV is to show that under channel V , the
error probability is very close to 1. If C(V ) ≤ R − ε, this conclusion is called the strong
converse, but we want to show that the error probability is close to 1 even if I(PV , V ) ≤ R−ε.
This conclusion actually turns out to be untrue, and we give a basic counterexample showing
that this kind of ‘refined’ strong converse does not hold.

Following this development, we stepped back and thought about what makes codes with
feedback different from codes without feedback. The only reason that codes with feedback
could conceivably beat the sphere-packing bound is that they might learn that the channel
is behaving atypically and change their input distribution accordingly. Causality of feedback
and memorylessness of the channel should imply that the Haroutunian bound is unattainable,
but perhaps doing better than sphere-packing is not out of the question. The last failure
attempted to combat this reasoning by allowing the test channel V to also adapt according
to the strategy of the code. Essentially, we let the test channel have memory, i.e., at each
time, the test channel depends on the output sequence received so far. For each time instant
in the block and received sequence at that time, the received channel is chosen optimally
(i.e., the sphere-packing test channel) depending on the posterior input distribution. Due to
some technical difficulties we had with convergence of random variables, we were not able
to show that this choice of test channel yields the sphere-packing bound, but we conjecture
that it does.

Finally, we worked backwards. We assumed that the sphere-packing bound holds with
feedback and attempted to reduce this fact to a simple condition on codes with feedback and
their encoding trees. This approach does not appear to be very illuminating, but provides
an alternative statement to aim to prove, and is described in Section 2.6.

In terms of partial results, our first one came out of bridging from codes without feedback
to codes with feedback. The natural candidate for a code that uses feedback but does not
change its “strategy” during the block is a code composed of what we term ‘fixed-type
encoding trees’. In a fixed-type encoding tree (an encoding tree is the encoding function
for one message in a code), the type (or composition or empirical distribution) of the input
sequence is the same for every received sequence. This restriction does not preclude the code
from using the feedback in a non-trivial way. We show that in this special case, the code
appears to not be using feedback at all. What is meant by this is that, for any conditional
type that relates input sequences to output sequences, the number of output sequences
with that conditional type is exactly the same as when the code does not have feedback
(but instead uses a codeword of the same input type). This can be used to prove that the
sphere-packing bound holds by the usual combinatorial approach. What is interesting about
this result is not that the sphere-packing bound continues to hold (which can be shown by
change-of-measure and Fano’s inequality), it is that the sizes of the conditional shells are
exactly the same as they would be if the code did not use feedback. This insight is described
in Section 2.5.
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The second partial result moves in the direction of making the feedback model more
realistic. When proving upper bounds to Efb(R), we assume that the feedback is noiseless
and delay-free, as this is the best that one could hope for in practice. In reality, however,
for the same reasons that noise and delay impair the forward channel W , they also impair
the output feedback. Our partial result in Section 2.7 shows that if the output feedback is
delayed by T symbols, the error exponent is upper bounded by

Efb,T (R) ≤ Esp

(
R−O

(
log T

T

))
+O

(
log T

T

)
. (2.11)

In the limit as T tends to infinity, we see that the sphere-packing bound must hold. This
result shows that feedback information about the very far past is useless for improving the
error exponent. It also complements recent results of Baris Nakiboglu and Giacomo Como
(which are commented on in Section 2.9), who showed that the sphere-packing bound holds
for codes with feedback if the encoders are restricted to hold information about the very
near past only.

The result of (2.11) naturally leads into the question of what the Haroutunian exponent
behaves like for parallel channels. The reason is that, instead of thinking of using the channel
W one symbol at time with a delay of T symbols in the feedback path, we can think of using
W T symbols at a time with a delay of 1 supersymbol (a block of T symbols from Y), with
each use of W being independent of the others. If we let W (T ) denote this T -wise parallel
channel, we show in Section 2.8 that

Eh(TR;W (T )) ≤ TEsp

(
R− |X |

T
log(T + 1);W

)
,

where the left hand side denotes the Haroutunian exponent for the parallel channel at rate
TR and the right hand side denotes T times the sphere-packing exponent for W evaluated
at rate R − O((log T )/T ). Thus, in the limit as T gets large, the normalized Haroutunian
exponent for the parallel channel approaches the sphere-packing exponent of W . This is a
rather surprising discovery when compared to the analogous statements about capacity and
sphere-packing exponents for the parallel channel. Namely, the capacity of W (T ) is TC(W )
and the sphere-packing exponent of W (T ) at rate TR is TEsp(R;W ). As described in Section
2.8, the parallel channel W (T ) starts to look more and more symmetric as T gets large. While
this development is not of further use for block coding with feedback, it is used in Chapter
3 to show that the Haroutunian exponent can be tightened to sphere-packing for fixed delay
codes.

To conclude the chapter, we discuss the current state of affairs for the error exponent
with feedback for general DMCs. As a final introductory remark, we note that much of the
work in this chapter came out of discussions with Baris Nakiboglu and Giacomo Como at
MIT on the paper of Sheverdyaev [30]. We use two results of theirs in this chapter and cite
them accordingly. The result on delayed feedback appears in [31].
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2.2 Definitions and notation

For those familiar with channel coding in information theory, the notation used in this section
is introduced in Tables 2.1 and 2.2. For a further description of notation, please see Appendix
A.1.

2.3 The sphere-packing and Haroutunian bounds

To understand the motivation for our failed approaches to proving that Efb(R) ≤ Esp(R),
it is important to know how the sphere-packing bound is proved for codes without feedback
and how the Haroutunian bound is proved for codes with feedback. We should mention here
that much of the work in this thesis uses the method of types [32] to prove and get intuition
about discrete, memoryless systems. Knowledge of the method of types will make it much
easier to understand the material.

Theorem 1 (Sphere-packing for block codes without feedback). Fix a δ > 0. There is a
finite nSP (W, δ) such that for n ≥ nSP (W, δ), any block code of length n and rate R without
feedback has

− 1

n
logPe(W ) ≤ Esp(R− δ) + δ.

Proof: There are two conceptually different proofs that we will consider. The first is
a combinatorial proof by the method of types and the second is a proof motivated by the
strong converse and involves the use of a ‘change-of-measure’. In both proofs, however, a
‘pre-processing’ step must be performed. Given any code without feedback of blocklength
n, there is a subcode whose codewords are all of the same type and the rate of this subcode
is at least R− |X |

n
log(n+ 1). So fix this subcode and the common type of its codewords P .

We give here an outline of the two proofs.

• Method of types For a full proof, see Appendix A.2. Given P , we choose the V ∈
Vn(P ) that is ‘closest’ to the sphere-packing optimizer, that is

V ∈ arg min
U∈Vn(P ):I(P,V )≤R−2δ

D(U ||W |P ).

Consider the V -shells around each xn(m),m ∈ M. These V -shells have cardinality at
least exp(nH(V |P ))/(n+ 1)|X ||Y|, and for every m ∈M, TV (xn(m)) ⊂ TPV , with

|TPV | ≤ exp(nH(PV ))� exp

(
n

(
R− |X |

n
log(n+ 1) +H(V |P )

))
because we chose V so that I(P, V ) ≤ R − 2δ and we can assume for large enough n,
|X |
n

log(n + 1) ≤ δ. Therefore, there must be significant overlap in the V -shells around
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Notation Description
log, exp Logarithm and exponential to the base e unless otherwise specified
X Finite channel input alphabet
Y Finite channel output alphabet
W ‘True’ channel
V ‘Test’ channel
κV maxx,y:V (y|x)>0− log V (y|x)
τV minx,y V (y|x)
W Set of channel transition matrices with input/output alphabets X and Y
P Set of distributions on X
Q Set of distributions on Y
Pn Set of types of length n for alphabet X
Vn(P ) Set of conditional types of length n for input type P
Qn Set of types of length n for alphabet Y
xn Vector notation for xn = (x1, . . . , xn) (non-random)
Xn Vector notation for Xn = (X1, . . . , Xn) (capital letters for random variables)
TP Type class of vectors with type P for some P ∈ Pn

TV (xn) Conditional V -shell of vector xn

H(P ) Entropy of distribution P
H(V |P ) Conditional entropy of output of channel V when input has distribution P
PV Distribution on Y when input distribution is P and channel is V

(P, V ) Joint distribution in X × Y when input distribution is P and channel is V
I(P, V ) Mutual information between input and output of channel V

when input has distribution P
I(X;Y ) Mutual information between random variables X and Y
C(V ) Capacity of channel V

D(P ||P̃ ) Divergence between distributions P and P̃
D(V ||W |P ) Conditional divergence between V and W when input distribution is P
||P − P ′||1 L1 distance between P and P ′

hb(δ) Binary entropy −δ log δ − (1− δ) log(1− δ)
Db(δ||β) Binary divergence between δ and β
Eh(R) Haroutunian exponent at rate R
Esp(R) Sphere-packing exponent at rate R

Table 2.1: Definitions for distributions, channels, types and functions of distributions.



33

Notation Description
n Blocklength
M Message set
|M| Message set size
R Rate of code, 1

n
log |M|

φ(m) Codeword for message m (for block code without feedback)
xn(m) Codeword for message m (for block code without feedback)
xi(m) i-th input letter for message m (for block code without feedback)

xn(m, yn) Codeword for message m when received output is yn

(for block code with feedback)
xi(m, y

i−1) i-th input letter for message m when received output is yi−1

(for block code with feedback)
P (m, yn) Type of xn(m, yn)
V (m, yn) Conditional type that yn is in if input is xn(m, yn)
B(m,P, U) yn for which P (m, yn) = P and V (m, yn) = U
Dm Decoding region for message m (all block codes)
Pe(V ) Average error probability under channel V
Pc(V ) Average correct reception probability under channel V
PV Average input distribution under channel V (block code with feedback)
PI,V Average input distribution under error event for channel V

Table 2.2: Block coding definitions.
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each of the messages. The overlap implies that when those sequences lying in overlapping
V -shells are output, an error occurs with high probability because each sequence can
only be decoded to one message. For each message, the probability of the output being
in the V -shell around its codeword is approximately exp(−nD(V ||W |P )). The exponent
of the error probability is thus approximately

min
V ∈Vn(P ):I(P,V )≤R−2δ

D(V ||W |P ).

The set of conditional types for P , Vn(P ), gets ‘close’ to all of W as n gets large, so for
large n,

min
V ∈Vn(P ):I(P,V )≤R−2δ

D(V ||W |P ) ' min
V ∈W:I(P,V )≤R−2δ

D(V ||W |P )

, Esp(R− 2δ, P ).

Because Esp(R) = maxP Esp(R,P ), the proof is complete.

• Change of measure For a full proof, see Appendix A.3. Given P ∈ Pn, directly choose
the sphere-packing optimizing V . That is, let

V ∈ arg min
U∈W:I(P,U)≤R−2δ

D(V ||W |P ).

Because all the codewords are of type P , and I(P, V ) ≤ R − 2δ, one can prove a
strong converse for this subcode12 and show that if n is large, Pe(V ) ' 1. We want
to show that Pe(W ) is lower bounded by the sphere-packing bound, so we perform a
change of measure from V to W . The change of measure says that, approximately up
to subexponential terms,

Pe(W )

Pe(V )
≥ exp (−nD(V ||W |P ))

= exp(−nEsp(R− 2δ, P ))

≥ exp(−nEsp(R− 2δ)).

Because Pe(V ) ' 1, we get that the sphere-packing bound holds.

Now, moving to codes with feedback, the type of the input over the blocklength depends
on both the message and the output sequence. The first idea for extending the sphere-
packing proofs to codes with feedback might be to group message and output sequence pairs
(m, yn) according to the type of the input sequence P (m, yn), and concentrate on the P
with the largest representation. Unfortunately, there is no guarantee that if we look at

12The usual strong converse says that if C(V ) < R, Pe(V ) tends to 1 as n→∞.
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a sphere-packing optimizing V and its conditional shell B(m,P, V ) around each message,
|B(m,P, V )| is large enough to cause errors with high probability. This is the impediment
that prevented the original proof of the sphere-packing bound from going through for codes
with feedback, as noted by Shannon, Gallager and Berlekamp [18]. Therefore, Haroutunian
looks at channels V that he knows will cause errors: those that have a capacity lower than
the rate.

Theorem 2 (Haroutunian bound for block codes with feedback). For any δ > 0, there
exists a finite nh(W,R, δ) such that any fixed-length code with feedback of rate R and length
n ≥ nh(W,R, δ) has

− 1

n
logPe(W ) ≤ Eh(R− δ) + δ.

Proof: For a full proof, see Appendix A.4. This proof also proceeds by a strong converse
and then a change of measure. Fix the Haroutunian optimizing V ,

V ∈ arg min
U∈W:C(U)≤R−δ

{
max
P∈P

D(U ||W |P )

}
.

Because C(V ) ≤ R − δ, the strong converse with feedback says that Pe(V ) ' 1. A change
of measure shows that, up to subexponential terms,

Pe(W )

Pe(V )
≥ exp(−nD(V ||W |PI,V )),

where PI,V is the distribution of the input ‘during the error event’. This distribution could be
anything, so to get a bound for all codes, we take the maximum over PI,V to get Haroutunian’s
exponent.

2.4 Failed Approaches to proving the sphere-packing

bound for codes with feedback

After being interested in the reliability function with feedback problem for some time, we
were made aware by Baris Nakiboglu at MIT of a paper by Sheverdyaev [30] that claimed
to prove that Efb(R) ≤ Esp(R) for all DMCs that have no 0’s. After examining the paper,
we found two major flaws (which are described in more detail in Appendix A.7). One flaw
was a claim (without proof and stated to be obvious) that

inf
V :I(PV ,V )≤R

D(V ||W |PV ) ≤ max
P

min
V :I(P,V )≤R

D(V ||W |P ) (2.12)

= Esp(R), (2.13)



36

where PV is the average input distribution of a given code when the channel is V . It is not at
all obvious how to show (2.12) is true (or whether it is true at all). The problem is the lack
of information available about the distribution PV as a function of V . In particular, what if
PV is the capacity achieving distribution for V with C(V ) > R and is a point mass on the
Haroutunian exponent maximizing x for V with C(V ) ≤ R? The left hand side of (2.12)
would then evaluate to Eh(R). Of course, such a PV is not possible because we know that the
input distribution must be continuous as a function of the channel. Using this information,
Nakiboglu [33] was able to prove the following lemma.

Lemma 1. Let PV be any continuous function from W to P, and let for any V ∈ W,
κV = maxx,y:V (y|x)>0 log(1/V (y|x)). Then, for all R > 0, ε ≥ 0,

inf
V :I(PV ,V )≤R

D(V ||W |PV ) + εmax {κV , κW} ≤ Esp(R) + ε(κW + log |Y|).

The proof of the lemma can be found in Appendix A.5 as it is not available in the
literature and Nakiboglu currently has no plans to publish it. The proof involves considering
a special family of parametrized test channels and using the intermediate value theorem.
The fact that max{κW , κV } ≤ κW + log |Y| for this family of channels is useful in bounding
for change of measure.

Lemma 1 closes one gap in the proof of Sheverdyaev, but there is a second flaw in the
paper involving Taylor expansions (as detailed in Appendix A.7). This flaw can be exposed
by showing that a claim derived by Sheverdyaev (after taking Taylor expansions and using
‘uniformly bounded’ constants for the error terms in the expansion) can be refuted by a
counterexample. It is our feeling that one philosophical reason why the Sheverdyaev proof
does not work is because it does not use causality of feedback in a serious way. We believe that
any proof of sphere-packing with feedback must crucially use causality and memorylessness
of the channel.

Imre Csiszar informed us at ISIT 2010 that it was known within the community of
researchers interested in this problem that there are flaws in the proof of [30]. He also
pointed us to a manuscript of Augustin [34] that was never published in a peer-reviewed
format which claims13 to show that Efb(R) ≤ Esp(R) for all channels. We cannot make
a definitive statement about the correctness of Augustin’s proof because of the quality of
the translation (from German) as well as lack of detail in the proof. See Appendix A.8 for
further comments.

We now give three of our attempts to prove Efb(R) ≤ Esp(R) for general DMCs, starting
with the simplest idea of using Fano’s inequality to induce errors.

13Csiszar noted that he had never reviewed the proof due to the length of the manuscript and did not
know if it was correct.
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2.4.1 A first attempt via Fano’s inequality

For any V ∈ W , and a given block code with feedback, let the input distribution under
channel V be

∀ x ∈ X , PV (x) =
1

|M|
∑
m∈M

∑
yn

PV (Y n = yn|M = m)
1

n

n∑
i=1

1(xi(m, y
i−1) = x) (2.14)

and let the incorrect input distribution under channel V be

∀ x ∈ X , PI,V (x) =
1

|M|
∑
m∈M

∑
yn /∈Dm

PV (Y n = yn|M = m)

Pe(V )

1

n

n∑
i=1

1(xi(m, y
i−1) = x). (2.15)

To recap, we have just defined two input distributions of the code with feedback as
a function of the channel V it faces. The reason new definitions are required is because
the input distribution of a code with feedback critically depends on the channel behavior.
The input distribution of the code can be used to select a channel that we know (by Fano’s
inequality) will induce errors because the mutual information of the input distribution (under
V ) over channel V is too low. When, we change the measure from V to W , we will see that
the input distribution that shows up in the divergence is the incorrect input distribution.

Lemma 2 (Not quite sphere-packing via Fano’s inequality). Fix an R > 0 and δ ∈ (1/n,R).
For any block code with feedback of rate R and length n,

− 1

n
logPe(W ) ≤ inf

V :I(PV ,V )≤R−δ
D(V ||W |PI,V ) +

2 max{κV , κW}
1
R

(
δ − 1

n

) β(n, |X |, |Y|)+

1

n
log

(
1

R

(
δ − 1

n

))
,

where

β(n, |X |, |Y|) = inf
ε>0

ε+ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
= O

(√
|X ||Y| log n

n

)
.

This lemma is proved by using Fano’s inequality for channel V and then performing a
change of measure from V to W . The full proof is in Appendix A.6.1. The important term
above (that does not decay to 0 as n→∞) is the divergence term.

2.4.2 A refined strong converse

It looks as though the approach given by Fano’s inequality will not yield the sphere-packing
bound because we do not know enough about PI,V as a function of V . In fact, the best we
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can say without further information is that PI,V might be a point mass for a given V (it
cannot simultaneously be a point mass that changes for each V because it must at least be
continuous). Therefore, we cannot apply Lemma 1 to get a relation between the exponent
in Lemma 2 and the sphere-packing exponent. Seeing this, we posit a property of codes
with feedback that, if it held, would ensure that the sphere-packing bound would hold.
Unfortunately, we will show that the condition we posited does not hold and altering it to
one that likely does hold would not allow us to prove that the sphere-packing holds.

Definition 1. We say the refined strong converse holds for block codes with feedback if
∀δ > 0, V ∈ W , n ≥ 1, there exists a function γRSC(n, δ, R, κV ) such that for any length n
block code with feedback of rate R, if I(PV , V ) ≤ R− δ, then

Pc(V ) ≤ γRSC(n, δ, R, κV )

and if δ, R, V are fixed,

lim
n→∞

γRSC(n, δ, R, κV )→ 0.

This is called the refined strong converse because the standard strong converse requires that
the probability of error goes to 1 if C(V ) < R, while this refined condition requires only
that I(PV , V ) < R, where PV is the average input distribution under channel V . Also, we
require that the dependence on V be through κV (and |X | and |Y|, which are suppressed in
the notation), with a smaller κV leading to a smaller upper bound on the error probability.

Lemma 3. If the refined strong converse holds, then for any R > 0, δ ∈ (0, R), there
is a finite nRSC(W,R, δ) such that for any block code with feedback of rate R and length
n ≥ nRSC(W,R, δ),

− 1

n
logPe(W ) ≤ Esp(R− δ) + δ.

Hence, if the refined strong converse holds, so does the sphere-packing bound.

For the proof of this lemma, see Appendix A.6.2. Essentially, it uses the refined strong
converse assumption to show that if I(PV , V ) ≤ R− δ, ||PI,V − PV ||1 ' 0 and so

inf
V :I(PV ,V )≤R−δ

D(V ||W |PI,V ) ' inf
V :I(PV ,V )≤R−δ

D(V ||W |PV ) ≤ Esp(R),

where the inequality is from Lemma 1.
While Lemma 3 is correct, the assumption that the refined strong converse holds is not.

In fact, the refined strong converse does not even hold for codes without feedback.
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Example 1. Consider a binary code without feedback with 1/8 its codewords in the type
(1/2, 1/2) and the rest being all zero codewords. So 1/8 of the code can be considered a good
code, while 7/8 is a bad code that communicates nothing. The average input distribution of
the code is PV = (15/16, 1/16) for all V ∈ W (where W is the set of binary input, binary
output channels). Suppose the rate of this code is R = 1− hb(1/3) ' 0.082 bits per symbol.

Now let V be a binary symmetric channel with crossover probability 1/4, so C(V ) =
1 − hb(1/4) ' 0.19 bits per symbol. Now, I(PV , V ) = 0.046 < R = 0.082. However, the
subcode composed of type (1/2, 1/2) codewords can be a very good code and its rate is about
0.082 for large n. The channel V has capacity 0.19 > 0.082, so this good subcode can have a
very low error probability (say about 0). Hence, the probability of error for large n is upper
bounded by approximately 7/8 and does not approach closer to 1 in the limit. Therefore the
refined strong converse does not hold.

With this example in mind, what is likely to be true is a weaker refined strong converse,
a condition that we define below.

Definition 2. We say the refined strong converse with message selection holds if for
n ≥ nMS(R, δ, |X |, |Y|), δ > 0, R > 0, V ∈ W, there is a γMS(n, δ, R, κV ) such that for all
length n, rate R codes with feedback, if I(PV , V ) ≤ R − δ, there is a subcode (a subset of

messages) of rate at least R− |X ||Y|
n

log(n+ 1) with

Pc(V ) ≤ γMS(n, δ, R, κV )

and γMS(n, δ, R, κV )→ 0 as n→∞ with the other parameters fixed.

The refined strong converse with message selection certainly holds for codes without
feedback. In fact, it is how the sphere-packing bound for codes without feedback is proved.
Additionally, intuition suggests that it is also true for codes with feedback. Unfortunately,
if we assume that the refined strong converse with message selection holds for codes with
feedback, it does not immediately follow that the sphere-packing bound holds as in Lemma 3.
The reason is that Lemma 1 requires that the input distribution PV be continuously varying
with V . When the strong converse only holds for a subset of messages, it is possible that the
subset can depend on the test channel V . Therefore PV will vary discontinuously with V
if that subset changes (as the subset must change discontinuously with V , being a discrete
object). It is unclear if an additional argument on top of this can be made to somehow
‘smooth out’ the discontinuity with V by adding in terms from different messages according
to how far the messages are from lying in the ‘bad’ subcode guaranteed by Definition 2.

2.4.3 A test channel with memory

As mentioned earlier, another approach we took was to step back and give ourselves a wider
choice of test channels to force errors for a code with feedback. We will do so by allowing
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the test channel to depend on the received sequence (essentially using a test channel with

memory). For a given block code with feedback, let Ṽ denote a probability measure on
M×X n × Yn with

PṼ (m,xn, yn) =
1

|M|

n∏
i=1

1(xi(m, y
i−1) = xi)Ṽyi−1(yi|xi),

where Ṽyi ∈ W for i = 0, . . . , n−1, yi ∈ Y i. Let Pyi ∈ P denote the input distribution under

measure Ṽ after the channel output yi has been received. That is,

∀ x ∈ X , Pyi(x) =
1

|M|
∑
m∈M

PṼ (Y i = yi|M = m)

PṼ (Y i = yi)
1(xi+1(m, y

i) = x)

=
∑
m∈M

PṼ (M = m|Y i = yi)1(xi+1(m, y
i) = x), (2.16)

where

PṼ (Y i = yi) =
1

|M|
∑
m∈M

PṼ (Y i = yi|M = m).

Note that the Pyi are defined recursively. That is, first define for y0 = ∅,

P∅(x) =
1

|M|
∑
m∈M

1(xi(m) = x).

Then, set a Ṽ∅ ∈ W . The choice of V∅ now induces the measure PṼ (Y 1 = y1|M = m) for
each m through the code, which in turn induces the input distribution Py1 for each y1 ∈ Y1

through (2.16). Now, for each y1 ∈ Y1, set a Ṽy1 ∈ W . Thereafter, an input distribution Py2

is induced for each y2 ∈ Y2, and so on. Hence, if just choose Ṽyi for each yi, i = 0, . . . , n− 1,

the measure Ṽ is well defined. The channel Ṽyi depends on the received sequence yi and

hence the test channel Ṽ is a channel with memory. Additionally, like the test channel used
in the proof of the sphere-packing bound, it should depend on the code to give a good lower
bound to the probability of error. This attempt at least tries to use causality of feedback in
a nontrivial way in order to prove a lower bound for the error probability. For each time and
with each received sequence, we are attempting to see what happens if the best (in terms of
divergence), bad (in terms of mutual information) channel shows up.

The intuition for attempting this approach is that a code with feedback can potentially
change its coding strategy according to how ’good’ or ’bad’ the channel is. Indeed, this is
exactly the reason why Haroutunian’s bound contains the maximization over input distribu-
tions inside the minimization over channels. However, we know that even though the code
can adaptively change its input, it cannot ‘predict’ whether the channel will be good or bad.
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At best, it can only react to whether the channel has been good or bad up to the present
time because of the causal nature of feedback. Therefore, allowing the channel to depend on
the past received symbols might allow us to tailor the error inducing channel to the part of
the encoding tree we are in. With that in mind, we will make the following choice for Ṽyi :

Ṽyi ∈ arg min
V ∈W

{
D
(
V ||W |Pyi

)
: I
(
Pyi , V

)
≤ R− 2δ

}
,∀ i = 0, . . . , n− 1, yi ∈ Y i (2.17)

for some small δ > 0.
At this point, we will do two things with this test channel with memory. First, we will

show that if two statements about the code used over this test channel with memory are
true, then the sphere-packing bound holds. Second, we will consider the technical obstacles
in showing that those two technical statements are true for the choice of Ṽ in (2.17).

First, we will show that the sphere-packing bound must hold for channel W provided
two statements can be made with high probability. This approach is adapted from the
information-spectrum literature [35].

Lemma 4 (Information Spectrum Converse). Let Ṽ be a measure14 on M× Yn. Fix a
δ > 0. Let15

A ,

{
(m, yn) :

1

n
log

PṼ (Y n = yn|M = m)

PṼ (Y n = yn)
≤ R− δ

}
(2.18)

B ,

{
(m, yn) :

1

n
log

PṼ (Y n = yn|M = m)

PW (Y n = yn|M = m)
≤ Esp(R− 2δ) + δ

}
(2.19)

E , {(m, yn) : yn /∈ Dm} .

Then,

Pe(W ) ≥ exp (−n [Esp(R− 2δ) + δ])
[
1− exp(−nδ)− PṼ (Bc)− PṼ (Ac)

]
.

Hence,

Pe(W ) ≥ exp(−n[Esp(R− 2δ) + 2δ])

for large n provided

PṼ

(
1

n
log

PṼ (Y n|M)

PṼ (Y n)
≤ R− δ

)
→ 1, n→∞ (2.20)

PṼ

(
1

n
log

PṼ (Y n|M)

PW (Y n|M)
≤ Esp(R− 2δ) + δ

)
→ 1, n→∞. (2.21)

14Of course, this measure is induced from one on M×Xn × Yn.
15Recall that capital letters are used to denote random variables while lower case vectors denote nonrandom

realizations.
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A proof of the lemma can be found in Appendix A.6.3. Our task now would be to show
that with the choice of Ṽ in (2.17), statements (2.20) and (2.21) hold. Unfortunately, this

task is harder than in the case when Ṽ does not have memory and the code does not have
feedback. First, note that

Z ,
1

n
log

PṼ (Y n|M)

PṼ (Y n)

=
1

n

n∑
i=1

log
PṼ (Yi|M,Y i−1)

PṼ (Yi|Y i−1)

=
1

n

n∑
i=1

log
ṼY i−1(Yi|Xi(M,Y i−1))∑
x PY i−1(x)ṼY i−1(Yi|x)

=
1

n

n∑
i=1

Zi

Zi , log
PṼ (Yi|M,Y i−1)

PṼ (Yi|Y i−1)
. (2.22)

Similarly,

Z̃ ,
1

n
log

PṼ (Y n|M)

PW (Y n|M)

=
1

n

n∑
i=1

log
PṼ (Yi|M,Y i−1)

PW (Yi|M,Y i−1)

=
1

n

n∑
i=1

log
ṼY i−1(Yi|Xi(M,Y i−1))

W (Yi|Xi(M,Y i−1))

=
1

n

n∑
i=1

Z̃i

Z̃i , log
PṼ (Yi|M,Y i−1)

PW (Yi|M,Y i−1)
. (2.23)

{Zi}ni=1 and {Z̃i}ni=1 are random variables whose normalized sums are equal to Z and Z̃
respectively. Now, we have two claims that amount to nothing more than algebraic book-
keeping (the proofs can be found in Appendix A.6.3).

Proposition 1. With the choice of Ṽ in (2.17) and the definitions of Zi and Z̃i in (2.22)
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and (2.23) respectively, we have for i = 1, . . . , n,

EṼ [Zi] =
∑

yi−1∈Yi−1

PṼ (yi−1)I(Pyi−1 , Ṽyi−1) ≤ R− 2δ (2.24)

EṼ [Z̃i] =
∑

yi−1∈Yi−1

PṼ (yi−1)Esp(R− 2δ, Pyi−1) ≤ Esp(R− 2δ). (2.25)

Therefore, by linearity of expectation,

EṼ [Z] ≤ R− 2δ < R− δ

EṼ
[
Z̃
]
≤ Esp(R− 2δ) < Esp(R− 2δ) + δ.

Proposition 1 shows the rationale behind setting Ṽ as in (2.17). The random variables we
want to converge with high probability in (2.20) and (2.21) have expectations on the proper
side of R − δ and Esp(R − 2δ) + δ respectively at least. Now, this is a good start, but at
this point all standard ways of proving convergence in probability of a normalized sum of
random variables fail because of one crucial point. The point is that the expectations in
(2.24) and (2.25) are averaged over both M and Y n. Necessarily, any ‘off-the-shelf’ proof
of convergence will require the Zi to be independent or weakly dependent in some sense,
otherwise convergence does not hold in general. Unfortunately, while that may be the case
if M is held random while Zi is averaged over, it cannot be the case for general codes once
we fix M = m. That is, the course of 1

n

∑n
i=1 Zi strongly depends on M and information

about M may be revealed in Z.
For example, consider forming a martingale sequence as follows. Let the filtration be

defined as Fi = σ(M,Y i), and let

Ti ,
1

n
(Zi − EṼ [Zi|Fi−1])

T =
n∑
i=1

Ti.

Then, T is a martingale because the Ti are zero mean martingale differences by construc-
tion. So with appropriate boundedness restrictions on Ti, we know that T → 0 with high
probability (w.h.p.). Notably, however, this only implies that

1

n

n∑
i=1

Zi →
1

n

n∑
i=1

EṼ [Zi|Fi−1] w.h.p.
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But,

EṼ [Zi|Fi−1] = EṼ
[
Zi|M,Y i−1]

= EṼ

[
log

PṼ (Yi|M,Y i−1)

PṼ (Yi|Y i−1)

∣∣∣∣∣M,Y i−1

]

=
∑
y

PṼ (Yi = y|M,Y i−1) log
PṼ (Yi = y|M,Y i−1)

PṼ (Yi = y|Y i−1)

=
∑
y

ṼY i−1(y|Xi(M,Y i−1)) log
ṼY i−1(y|Xi(M,Y i−1))

(PY i−1ṼY i−1)(y)

6= I
(
PY i−1 , ṼY i−1

)
=
∑
x

PY i−1(x)
∑
y

ṼY i−1(y|x)) log
ṼY i−1(y|x))

(PY i−1ṼY i−1)(y)
.

We see that EṼ [Zi] 6= I(PY i−1 , ṼY i−1) and therefore, it is difficult to say much about what Z
converges to except that the average of what it converges to over M,Y n is less than R − δ.
The same problem arises when we attempt to analyze the convergence of Z̃.

This argument, of course, does not preclude one from using more information about the
Z and Z̃ processes to obtain convergence results in probability. Indeed, it is our opinion
that the event when Z is below R − δ and Z̃ is below Esp(R − 2δ) + δ has non-negligible
probability for large n.

Conjecture 1. With the choice of Ṽ as in (2.17), it is true that for some g(δ) > 0,

PṼ

(
1

n
log

PṼ (Y n|M)

PṼ (Y n)
> R− δ

)
≤ 1

2
− g(δ), n→∞

PṼ

(
1

n
log

PṼ (Y n|M)

PW (Y n|M)
> Esp(R− 2δ) + δ

)
≤ 1

2
− g(δ), n→∞.

Thus, while there may not be true convergence for the two events, there should at least
be non-negligible overlap of the complementary events.

2.4.4 The back-story bound

One of the unsatisfying elements of the Haroutunian exponent is that it leaves open the
possibility that one should try to design the channel W to be asymmetric in order to beat
the sphere-packing exponent with feedback. However, we know that for output-symmetric
channels, the sphere-packing bounds holds (because Eh(R) = Esp(R) for those channels).
This fact suggests a possible strategy to show that Eh(R) is not achievable for some asym-
metric channels. The idea is, given a symmetric channel such as a BEC, the decoder can add
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noise to the output symbols to simulate an asymmetric channel. The upper bound on the
error exponent for the symmetric channel then also is an upper bound for the asymmetric
channel because the contraposition leads to a contradiction.

Suppose that the error exponent for the simulated asymmetric channel is indeed larger
than the error exponent for the symmetric channel. Then we can code over the symmetric
channel by adding noise at the decoder and simulating the asymmetric channel. We thus
have a contradiction if the error exponent for the asymmetric channel is larger than the error
exponent for the symmetric channel. We call this the back-story bound. Unfortunately, in
the examples we have tried, the resulting bound is weaker than the Haroutunian bound.
Appendix B.2 shows how a Z-channel simulated by a BEC followed by collapsing the erasure
and 0 symbols does not give a better bound than the Haroutunian exponent for the Z-
channel.

2.5 Sphere-packing holds when the fixed type encoding

tree condition holds

Thus far, we have attempted to show that Efb(R) ≤ Esp(R) by looking at feedback codes
at a high level. In Section 2.4.3, we attempted to use memoryless of the channel to choose
the test channel optimally at each time (and received sequence). Calculating bounds on the
relevant probabilities turn out to be difficult, however. We turn our attention now to some
analyses that look at codes with feedback in more detail.

In this section, we will show that the sphere-packing bound holds for a restricted class of
codes with feedback. The restricted class of codes is said to have encoding trees that satisfy
the ‘fixed type encoding tree’ condition. In these codes, the input codewords all have the
same type regardless of the received sequence. The fact that sphere-packing holds for this
restricted class of codes with feedback can be proved analogously to Haroutunian’s bound
for codes without feedback, by first proving a strong converse and then analyzing the error
probability after a change-of-measure. We will, however, prove it in a combinatorial manner,
analogous to Theorem 1. This approach will illuminate a somewhat surprising fact: that if
one is restricted to using a fixed type P (with feedback) for a given message, at the output,
it looks as if feedback is not being used at all. The precise meaning of this statement will be
given later.

Definition 3 (Fixed type encoding tree condition). An encoding tree of an arbitrary message
m ∈M for a fixed-length code with feedback is said to satisfy the fixed type encoding tree
condition if there exists a P ∈ Pn such that for all yn ∈ Yn, P (m, yn) = P . Recall that
P (m, yn) denotes the type of the input codeword for message m along a received sequence yn,
i.e., the type of (x1(m), x2(m, y

1), . . . , xn(m, yn−1)).

Note that an encoding tree satisfying the fixed type encoding tree condition need not give
up the use of feedback. That is, the channel input codeword can still depend non-trivially
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on the received sequence. For example consider the encoding tree in Figure 2.9. The channel
input codewords along different received sequences are not necessarily the same.

Proposition 2. Suppose an encoding tree for a message m ∈ M satisfies the fixed type
encoding tree condition with type P ∈ Pn. Then, for all V ∈ Vn(P ),

|B(m,P, V )| = |TV (xn)|

≥ exp(nH(V |P ))

(n+ 1)|X ||Y|
,

where xn ∈ TP is arbitrary because |TV (xn)| depends only on the type of xn.

This proposition says that if the types of the input vectors are the same for all yn, then
the conditional V -shells have the same size as for a code without feedback. This may be
somewhat surprising, because in some sense, even though the encoding tree can use feedback
nontrivially, it appears at the output (through the conditional relationship between input and
output) as if feedback had not been used at all. Before proving the proposition rigorously,
we give some intuition for why this result might hold. First, note that

B(m,P, V ) = {yn : P (m, yn) = P, V (m, yn) = V }

=

{
yn : ∀ x, y,

n∑
i=1

1(xi(m, y
i−1) = x, yi = y) = nP (x)V (y|x)

}

=

{
yn : ∀ x, y,

n∑
i=1

1(xi(m, y
i−1) = x, yi = y) ≤ nP (x)V (y|x)

}
.

The last line follows because if

n∑
i=1

1(xi(m, y
i−1) = x, yi = y) 6= nP (x)V (y|x),

then there is at least one x, y with
∑n

i=1 1(xi(m, y
i−1) = x, yi = y) > nP (x)V (y|x) because

∑
x,y

n∑
i=1

1(xi(m, y
i−1) = x, yi = y) =

∑
x,y

nP (x)V (y|x) = n

and all terms in the sum are non-negative.
Consider the encoding tree for a message in a code with feedback as shown in Figure

2.9. We wish to count sequences yn that end up in B(m,P, V ). Since P (m, yn) = P for all
yn ∈ Yn, we need to verify that V (m, yn) = V for a given yn to be in B(m,P, V ). Consider
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Figure 2.9: A nontrivial encoding tree for a code with feedback, n = 3,X = Y = {0, 1}. A
symbol at a node denotes a channel input and a symbol on an edge denotes a channel output.
The type of x3(m, y3) is (2/3, 1/3) for all y3 ∈ Y3, so this encoding tree satisfies the fixed
type encoding tree condition. It uses feedback nontrivially, however, as x3(m, (0, 0, 0)) =
(0, 0, 1) 6= x3(m, (1, 1, 1)) = (0, 1, 0).
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marching along a received sequence from left to right in Figure 2.9. If yn /∈ B(m,P, V ),
there is some minimal k such that

∀ x, y,
k∑
i=1

1(xi(m, y
i−1) = x, yi = y) ≤ nP (x)V (y|x)

and

∃ x̃, ỹ such that
k+1∑
i=1

1(xi(m, y
i−1) = x̃, yi = ỹ) > nP (x̃)V (ỹ|x̃).

In other words, we are marching along yn from left to right and at time 0, y0 = ∅ still
has children in B(m,P, V ), y1 still has children in B(m,P, V ), . . . , yk still has children in
B(m,P, V ), but yk+1 has no children in B(m,P, V ). On the graph of the encoding tree, with
nodes corresponding to channel inputs and edges corresponding to channel outputs, we can
visualize this by pruning the tree at the edge corresponding to yk+1. The rule for whether
or not to prune an edge does not change whether a code has feedback or not, and in some
sense the pruning of an edge in one part of the tree does not affect any other part of the tree
that is not a child. Therefore, one might intuitively deduce that B(m,P, V ) should have at
least the same size as TV (xn) for some xn in TP .

The proposition is proved rigorously (in Appendix A.9.1) by showing that given any
xn ∈ TP , there must exist a one-to-one mapping τ from Yn to Yn that has the following
property. For all yn ∈ Yn, if yn ∈ TV (xn) for some V ∈ Vn(P ), then τ(yn) ∈ B(m,P, V ).
Therefore, it is not possible via feedback to move sequences into ‘good’ V -shells (those
with high mutual information) from ‘bad’ ones (those with low mutual information) if the
fixed type condition holds. Using Proposition 2, one can prove that the sphere-packing
bound holds analogously to the method of types proof of sphere-packing for codes without
feedback.

Theorem 3 (Sphere-packing holds if fixed type encoding tree condition holds). Fix a δ >
0, R > 0. There exists a finite nFT (W,R, δ) such that for any fixed-length code with feedback
of length n ≥ nFT (W,R, δ) and rate R with encoding trees for all messages satisfying the
fixed type encoding tree condition,

− 1

n
logPe(W ) ≤ Esp(R− δ) + δ.

For a proof, see Appendix A.9.2.

2.6 What needs to be proved for sphere-packing to

hold for fixed-length codes with feedback?

This section addresses the question of what is needed to prove the sphere-packing bound for
fixed-length block codes with feedback. There are many potential answers to that question,
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but here we give one take on what sets apart the case with feedback from the case without
feedback. To that end, we will define two ‘assertions’. The first assertion, call it A, is that
the sphere-packing bound holds for codes with feedback. The second assertion, call it B,
roughly says that encoding trees for codes with feedback are not so different from input
codewords for codes without feedback in the way that output sequences are related back to
them.

In this section, we show that if B holds, then so must A. It would be tempting to also
claim that if A holds, then so does B, as we would then have an equivalent statement about
encoding trees that would both imply and be implied by the assertion that sphere-packing
holds for codes with feedback. Rather, what we can show holds is a much weaker condition,
call it C, on all the encoding trees in an arbitrary code of length n and rate R. We will show
that A implies C and C implies A, and hence B also implies C. All in all, we will have

B ⇒ A⇔ C.

Definition 4 (SP holds with feedback). We say that sphere-packing holds for fixed-length
codes with feedback, or SP holds with feedback for short, if for all δ > 0, R > 0 and
W ∈ W, there is a finite nSP,fb(δ, R,W ) such that any fixed-length code with feedback of rate
at least R and length n ≥ nSP,fb(δ, R,W ) has

− 1

n
logPe(W ) ≤ Esp(R− δ) + δ.

Definition 5 (SP Encoding Tree Condition). We say that the sphere-packing encoding
tree condition holds, if for all δ > 0, R > 0,W ∈ W, there is a finite nET,fb(δ, R,W ) such
that the following is true. Given any encoding tree for a fixed-length code with feedback of
length n ≥ nET,fb(δ, R,W ), there exists a P ∈ Pn, V ∈ Vn(P ) (dependent on the encoding
tree) such that

|B(m,P, V )| ≥ exp(n(H(V |P )− δ)) (2.26)

D(V ||W |P ) ≤ Esp(R− 2δ) + 2δ (2.27)

I(P, V ) ≤ R− 2δ, (2.28)

where the m in B(m,P, V ) is an indicator of the encoding tree in a code.

Whether the sphere-packing encoding tree condition is a true assertion is unproven cur-
rently. The impetus behind its definition is to look at the proof of the sphere-packing theorem
for block codes without feedback. In both the case with and without feedback, showing the
existence of a P ∈ Pn and channel V with I(P, V ) ≤ R−δ and D(V ||W |P ) ≤ Esp(R−δ)+δ
is straightforward for large n. In the case without feedback, we have good estimates for
the size of the ‘typical’ output under channel V for a given message with codeword type
P , namely it is exponential in H(V |P ). This allows us to prove the part of the statement
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Figure 2.10: The encoding tree of Example 2 that inputs X1 = 1 and Xi+1 = Yi for 1 ≤ i ≤ 4,
with n = 5. Nodes in the tree represent input symbols, while edges represent channel output
symbols. Only paths in the tree that occur with non-zero probability when W is a Z-channel
are shown.

in (2.26) after selection of a P, V that satisfy (2.27) and (2.28). In the case of codes with
feedback, however, the portion of the statement in (2.26) certainly does not hold for an
arbitrary P, V because we do not know much about the types of the input codewords along
different received sequences. We look at a simple example to explore the difficulty in proving
the sphere-packing encoding tree coding in general.

Example 2. Suppose X = Y = {0, 1} and W is a Z-channel with crossover probability 0.5.
Consider the encoding tree for which (for arbitrary n),

X1 = 1

Xi+1 = Yi, i ≥ 1.

For this example (the encoding tree is shown in Figure 2.10), there are only n + 1 strings
yn that occur with non-zero probability (because once a 0 is output, the rest of the output
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symbols will be 0 with probability 1). The strings and their type and conditional types are:

yn xn(m, yn) P (m, yn) V (m, yn) H(V |P )
(0, 0, 0, . . . , 0, 0) (1, 0, 0, . . . , 0) (n−1

n
, 1
n
) Z(1) 0

(1, 0, 0, . . . , 0, 0) (1, 1, 0, . . . , 0) (n−2
n
, 2
n
) Z(1/2) 2

n
hb(1/2)

(1, 1, 0, . . . , 0, 0) (1, 1, 1, . . . , 0) (n−3
n
, 3
n
) Z(1/3) 3

n
hb(1/3)

...
...

...
...

...
(1, 1, 1, . . . , 1, 0) (1, 1, 1, . . . , 1) (0, 1) Z(1/n) hb(1/n)
(1, 1, 1, . . . , 1, 1) (1, 1, 1, . . . , 1) (0, 1) Z(0) 0

(2.29)

where Z(p) is shorthand for the Z-channel with crossover probability p and hb(p) = −p log p−
(1− p) log(1− p) is the binary entropy function.

This is an important example to keep in mind because, for almost every P ∈ Pn (except
for P = (1, 0)), there is a yn ∈ Yn such that P (m, yn) = P . Furthermore, for every
P ∈ Pn that occurs, there is exactly one yn with P (m, yn) = P . So, in this example, if
P ∈ Pn, V ∈ Vn(P ) and D(V ||W |P ) < ∞, either |B(m,P, V )| = 0 or |B(m,P, V )| = 1. It
appears in this example as if the sphere-packing encoding tree condition will not hold because
none of the |B(m,P, V )| are exponential in n. A closer inspection, however, is in order for
the right hand side column above showing H(V |P ) for all B(m,P, V ) that are not empty.
The maximum H(V |P ) there is, for a given n,

kn , max
2≤m≤n

m

n
hb

(
1

m

)
= max

2≤m≤n

m

n

(
1

m
logm+

m− 1

m
log

m

m− 1

)
=

1

n
max

2≤m≤n

(
logm+ (m− 1) log

m

m− 1

)
=

1

n
max

2≤m≤n
(m logm− (m− 1) log(m− 1)) .

The function x log x is convex-∪, so the maximum above occurs when m = n and hence,

kn =
1

n
(n log n− (n− 1) log(n− 1))

= log n− n− 1

n
log(n− 1)

= log
n

n− 1
+

1

n
log(n− 1)

≤ 1

n− 1
+

1

n
log(n− 1).
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Figure 2.11: This plot shows the sphere-packing exponent when W is a Z-channel with
crossover probability 0.5. Also shown is a scatter plot of D(V ||W |P ) versus I(P, V ) for the
first 150 (P, V ) = (P (m, yn), V (m, yn)) in (2.29) when n = 2, 000. The plot highlights the
fact that as n→∞, there are pairs (P, V ) in (2.29) such that the point (I(P, V ), D(V ||W |P ))
is arbitrarily close to (0, 0). Therefore, for this encoding tree, there is a (P, V ) that satisfies
(2.26), (2.27) and (2.28).

Therefore, kn = O((1/n) log n) and for every δ > 0, for large enough n, H(V |P ) < δ for
every P, V with |B(m,P, V )| = 1. So for a fixed δ > 0 and large enough n, every P, V with
|B(m,P, V )| satisfies (2.26). In order to check that there is a P, V such that (2.27) and
(2.28) hold as well, we plot I(P, V ) versus D(V ||W |P ) for n = 2, 000 in Figure 2.11. For
this example encoding tree, for large enough n, there are (P, V ) that are arbitrarily close to
(0, 0), so the sphere-packing encoding tree condition holds almost trivially. This corresponds
to using the sequences with just a few 1’s at the beginning in order to prove error bounds.

Currently, it seems difficult to prove the sphere-packing encoding tree condition holds
except in special cases (like an encoding tree without feedback or one that satisfies the fixed
type encoding tree condition). This example shows the core difficulty. If we fixate on one P
for which we know that there are sequences with P (m, yn) = P , it is difficult (and untrue)
to say that B(m,P, V ) is large for arbitrary V ∈ Vn(P ). All we can say is that there exists
at least one V ∈ Vn(P ) for which B(m,P, V ) can be quantified in some way. This V may
have D(V ||W |P ) > Esp(R) or I(P, V ) > R however and cannot be used to prove the sphere-
packing bound. That said, if the sphere-packing encoding tree condition holds (i.e., it can be
proved for all codes with feedback), the sphere-packing bound also holds for all codes with
feedback used over general DMCs.
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Proposition 3 (SP Encoding Tree condition implies SP holds). If the sphere-packing en-
coding tree condition holds, then sphere-packing for fixed-length codes with feedback holds.

For a proof of the proposition, see Appendix A.11.1. One might be tempted to say that if
sphere-packing holds for fixed-length codes with feedback, then the sphere-packing encoding
tree condition also must hold. Unfortunately, this seems difficult to prove as well. What can
be shown to hold is a much weaker condition.

Definition 6 (Intermediate SP Condition). We say that the intermediate sphere-packing
condition holds, if for all δ > 0, R > 0,W ∈ W, there is a finite nSPI,fb(δ, R,W ) such
that the following is true. Given any fixed-length code of rate at least R and length n ≥
nSPI,fb(δ, R,W ), there exists a P ∈ Pn and V ∈ Vn(P ) such that

D(V ||W |P ) ≤ Esp(R− δ) + 2δ (2.30)

1

n
log

[
1

|M|
∑
m∈M

|B(m,P, V ) ∩ Dcm|

]
≥ H(V |P )− [Esp(R− δ) + 2δ −D(V ||W |P )] .

(2.31)

Note that if (2.31) holds, then (2.30) also holds by properties of B(m,P, V ) (Proposition
14). However, (2.30) reinforces the intuition that (P, V ) are such that error probability
under channel W is at least the probability prescribed by the sphere-packing bound.

The intermediate sphere-packing condition turns out to be equivalent to sphere-packing
holding for codes with feedback. For a proof of this result, see Appendix A.11.2. The
intermediate sphere-packing condition is quite un-intuitive, however, so it does not seem
promising to attempt to prove that it must hold in general.

Proposition 4 (Equivalence of SP and Intermediate SP condition). If SP holds with feed-
back, then the intermediate SP condition holds. Conversely, if the intermediate SP condition
holds, SP holds with feedback.

2.7 Delayed feedback is not useful for very large delays

This section gives an upper bound to the error exponent for block codes used over DMCs
with noiseless feedback, where the feedback is delayed by some fixed number of symbols. It is
interesting to consider this problem, because in modern, high rate communication systems,
the number of symbols that must be encoded before the encoder receives a previous channel
output (or more likely, a function of the channel output) can be potentially large. Two
possible reasons for this gap between sending a channel input and receiving information
about the channel output come to mind: propagation delays and the inherent processing
time for demodulation and other processing at the decoder.
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Consider communicating 20 symbols per microsecond on a 20 MHz channel over a distance
of 1.5 km (round trip 3km). Even without accounting for processing time, the delay for an
electromagnetic signal to travel to and fro would be 10 microseconds, meaning at least
200 symbols should have been transmitted before feedback can be received. Additionally,
many communications systems have a half-duplex constraint, meaning they cannot listen and
transmit at the same time. Thus, feedback information may not return until the transmitter
is finished transmitting some appropriate ‘block’ of symbols.

Suppose that information about the channel outputs is delayed by T symbols. Then, the
result of this section is that the error exponent for rate R codes used with noiseless feedback
delayed by T symbols is upper bounded by

Esp(R−O(log T/T )) +O(log T/T ),

where the constants hidden in the big-O notation depend on the channel transition matrix
W . Hence, for large delays in the feedback path, the sphere-packing bound is essentially
an upper bound on the error exponent for fixed-length block codes. To avoid confusion,
the result applies to a fixed delay in the feedback path (T ), as the blocklength (n) goes to
infinity. Before giving the result, some definitions germane to this section are in order.

2.7.1 Problem Setup

A rate R, blocklength n coding system is an encoder-decoder pair (E ,D).

Definition 7 (Type 1 Encoder - Delay T feedback). A rate R, blocklength n encoder E used
with feedback delayed by T symbols is a sequence of maps {φi}ni=1, with for 1 ≤ i ≤ T ,

φi : {1, 2, . . . , 2nR} → X ,

and for i > T ,

φi : {1, 2, . . . , 2nR} × Y i−T → X .

Note that T = 1 is the usual perfect-feedback setting where the encoder is aware of the channel
output immediately before the next channel input must be selected.

Definition 8 (Type 2 Encoder - T block feedback). This is a more powerful class of encoding
systems than the ‘Delay T feedback’ encoders. Here feedback is provided to the encoder in
blocks of T symbols at a time. That is, (Y1, . . . , YT ) is given to the encoder before the encoder
chooses XT+1 and in general, the received symbol block (YiT+1, . . . , Y(i+1)T ) is provided to the
encoder at time (i + 1)T before the encoder must choose X(i+1)T+1. Hence a blocklength n
type 2 encoder with rate R is a sequence of maps {φi}ni=1,

φi : {1, . . . , 2nR} × Yb(i−1)/T cT → X .

Note that a type 1 encoder is a restricted type 2 encoder that does not use all possible symbols
that have been fed back.
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Figure 2.12: Block coding for a DMC W with delayed feedback.

A blocklength n decoder D is a map

ψ : Yn → {1, 2, . . . , 2nR}.

The decoding regions for each message are then Dm , ψ−1(m) = {yn : ψ(yn) = m} for
m ∈ {1, . . . , 2nR}. The average probability of error for a rate R, blocklength n coding
system (E ,D) is thus defined as

Pe(n, E ,D) =
1

2nR

2nR∑
m=1

P(ψ(Y n) 6= m|M = m).

If we let C(n,R, T ) be the appropriate set of blocklength n coding systems with rate at
least equal to R used with delay T feedback type 2 encoders, we define the relevant error
exponent at rate R to be

E(R, T ) = lim sup
n→∞

− 1

n
log min

(E,D)∈C(n,R,T )
Pe(n, E ,D).

Haroutunian’s bound applies to codes without any delay in the feedback path, so it also
applies for any T > 1, hence for all T ≥ 1, E(R, T ) ≤ Eh(R).

2.7.2 Error exponent bound for delayed feedback

We prove a bound on type 2 encoding systems, which immediately becomes a bound on type
1 encoders as well. Without loss of generality, we restrict attention to n that are multiples
of T , that is n = NT for some N ≥ 1 (i.e., there are N total blocks of size T symbols each).

Lemma 5. Define a channel independent constant

α(T ) ,
|X |(2 + |Y|) log(T + 1)

T
.
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Fix an ε > α(T ). Then, for any blocklength n = NT (with N ≥ 1) rate R coding system
with a type 2 encoder,

− 1

NT
logPe(NT, E ,D) ≤ Esp,T (R− ε) + α(T ) + γ(N, T, ε),

where

Esp,T (R) , max
P∈PT

min
V ∈VT (P ):I(P,V )≤R

D(V ||W |P ), (2.32)

and

γ(N, T, ε) =
1

NT
log

1

1− exp(−NT (ε− α(T )))
.

The proof of this lemma is given in Appendix A.12.1. The proof chooses the test channel
V within each block of length T according to the most used type of the input during that
block. Notice how in (2.32), we have already interchanged the order of the max and min
in the Haroutunian exponent, but the set of V is restricted to have low mutual information
over length T . We now give an inequality relating the ‘sphere-packing bound for length-T ’
with the sphere-packing bound (proved in Appendix A.12.2).

Lemma 6. For any T ≥ 2|X ||Y|, for all P ∈ PT ,

min
U∈VT (P ):I(P,U)≤R

D(U ||W |P ) ≤ Esp

(
R− 2|X ||Y| log T

T
, P

)
+
κW |X ||Y|

T
+

|X ||Y| log(T/|X |)
T

,

where16

Esp(R,P ) , min
V :I(P,V )≤R

D(V ||W |P ),

κW , max
x,y:W (y|x)>0

log
1

W (y|x)
.

Putting the two lemmas together, we get

16The constant κW can be arbitrarily large, but is finite for a given W. It is our opinion that the appearance
of κW in our bound is an artifact of the proof method, and not intrinsic to the problem. However, to our
knowledge, such a term appears in most, if not all, proofs of the sphere-packing bound where an explicit
lower bound to probability of error as a function of blocklength is given. For example, see Theorem 5.8.1
of [17] or Theorem 1 and 2 of [36].
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Figure 2.13: A plot of the bound on E(R, T ) from Theorem 4 for the Z-channel with T =
5, 000 (all quantities are base 2). The bound is only approaching the usefulness of the
Haroutunian bound (which works for all T ≥ 1) at this point.

Theorem 4. For any T ≥ 2|X ||Y|,

E(R, T ) ≤ Esp

(
R− α(T )− 2|X ||Y|

T
log T

)
+
κW |X ||Y|

T
+
|X ||Y|
T

log
T

|X |
+ α(T ).

In other words, for type 1 and type 2 coding systems with feedback delay T and rate R,

E(R, T ) ≤ Esp(R−O(log T/T )) +O(log T/T ).

Proof: The result of Lemma 5 is monotonic in the rate, so we need only that RN ≥ R
and bound using R. We have just combined the results of the two lemmas together and
taken the limit as N tends to ∞. The only thing that needs to be checked is that the term

1

NT
log

1

1− exp2(−NT (ε− α(T )))
(2.33)

converges to 0 as N →∞ for any ε > α(T ), which is readily seen. Therefore, we can take ε
arbitrarily close to α(T ) and since Esp is continuous for all R expect possibly the R at which
Esp becomes infinite, we substitute α(T ) for ε.

Figures 2.13 and 2.14 show the resulting bound on E(R, T ) for the Z-channel when
T = 5, 000 and 50, 000 respectively. As can be seen, even at T = 5, 000, the constants in the
bound for E(R, T ) do not bring it close enough to Esp to be much more useful than Eh(R),
so this problem is not necessarily ‘practically’ solved either.
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Figure 2.14: A plot of the bound on E(R, T ) from Theorem 4 for the Z-channel with T =
50, 000 (all quantities are base 2). At this point, the upper bound is ‘essentially’ the same
as sphere-packing. If a system has a delay in its feedback path this large for the Z-channel,
the feedback does not help increase the error exponent for all practical purposes.
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Figure 2.15: The parallel channel W (L) obtained by using W L times. Each use of W
is independent. The capacity of W (L) is LC(W ) and the scaled sphere-packing exponent
Esp(LR;W (L)) for W (L) at rate LR is equal to LEsp(R;W ).

2.8 The Haroutunian exponent for a parallel channel

In this section, we interpret the result of Section 2.7 and arrive at a surprising conclusion. We
will think of the block-T feedback coding systems of Section 2.7 (where the encoder receives
output symbols in blocks of size T ) as having instantaneous feedback when used over a
parallel channel. Shifting notation a bit, let L ≥ 1 be an integer. A block-L feedback system
receives feedback in increments of L symbols at a time, so consider the parallel channel one
gets by using L symbols from X at a time, as shown in Figure 2.15. The block-L feedback
system can then be viewed as a code with instantaneous feedback used over the DMC W (L)

with input alphabet X L, output alphabet YL and transition probabilities

W (L)(yL|xL) =
L∏
i=1

W (yi|xi).

It is straightforward to show that C(W (L)) = LC(W ), and with a bit more effort, it can be
shown that Esp(LR;W (L)) = LEsp(R;W ) where Esp(LR;W (L)) denotes the sphere-packing
exponent for channel W (L) evaluated at rate LR and Esp(R;W ) denotes the sphere-packing
exponent for channel W at rate R. Theorem 4 then shows that

Efb(LR;W (L)) ≤ LEsp(R;W ) +O

(
log(L+ 1)

L

)
.

Another upper bound on Efb(LR;W (L)) can be had by applying the Haroutunian bound
to the channel W (L), yielding Efb(LR;W (L)) ≤ Eh(LR;W (L)), where Eh(LR;W (L)) is the
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Haroutunian exponent for W (L) evaluated at rate LR . Considering that C(W (L)) =
LC(W ) and Esp(LR;W (L)) = LEsp(R;W ), it wouldn’t be much of a stretch to guess that
Eh(LR;W (L)) = LEh(R;W ). If W is an asymmetric channel such as the Z-channel, then

LEh(R;W ) > LEsp(R;W ) + O
(

log(L+1)
L

)
for large enough L. This means that we have the

following interesting dichotomy: either (a) or (b) below must be true.

(a) We have shown that Efb(LR;W (L)) < Eh(LR;W (L)) for some asymmetric channel W (L)

(W (L) is still asymmetric if W is for all L ≥ 1). That is, we have shown a class of channels
for which the Haroutunian exponent is strictly loose, which would partially confirm our
hypothesis that sphere-packing is a valid upper bound on the error exponent for block
codes with feedback for asymmetric channels as well.

(b) The Haroutunian exponent for the parallel channel Eh(LR;W (L)) does not decompose
like the sphere-packing exponent and capacity, i.e.,

Eh(LR;W (L)) < LEh(R;W ).

Surprisingly, it turns out that (b) is true17. In the optimizations that characterize
C(W (L)) (maximization over distributions on X L) and Esp(LR;W (L)) (maximization over
distributions on X L and minimizations over channels from X L to YL), it suffices to consider
product distributions due to the concavity and convexity properties of mutual informa-
tion and divergence. This causes the optimizations to decompose into optimizations over
L individual symbols, resulting in the multiplicative scaling. In the optimization for the
Haroutunian exponent, it turns out that it is not sufficient to consider channels V from X L

to YL that are independent over time, i.e., V (yL|xL) =
∏L

i=1 Vi(yi|xi).

Lemma 7. For the parallel channel W (L) with input alphabet X L, output alphabet YL and
transition probabilities

W (L)(yL|xL) =
L∏
i=1

W (yi|xi),

we have

Eh(LR;W (L)) ≤ LEsp

(
R− |X |

L
log(L+ 1);W

)
.

Thus, in the limit as L→∞ (because Esp is left-continuous),

lim
L→∞

1

L
Eh(LR;W (L)) ≤ Esp(R;W ).

17While (a) may be true in the sense that the Haroutunian exponent is strictly loose for some class of
asymmetric channels, we have not shown it to be true by the result in Section 2.7.
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Note that for all L,

1

L
Eh(LR;W (L)) ≥ 1

L
Esp(LR;W (L)) = Esp(R;W ).

The proof of this result is given in Appendix A.13, but we will describe here the test
channel V that is used to prove the result. Fix εL = |X |

L
log(L+ 1) and for each P ∈ PL, let

UP ∈ arg min
U :I(P,U)≤R−εL

D(U ||W |P ),

and define V (·|xL) according to the type of xL. If xL ∈ TP , let for all yL

V (yL|xL) =
L∏
i=1

UP (yi|xi).

Note that V is a product channel only when restricting the type of xL. The fact that V
depends on the type of xL makes it a non-product channel. In Appendix A.13, it is shown
that for this V , C(V ) ≤ LR, so it is included in the minimization for the Haroutunian
exponent. It is also shown that the maximal divergence between V and W (L) is at most
LEsp(R− εL;W ).

The intuitive reason for this lemma is that the channelW (L) is becoming ‘more symmetric’
as L gets large. The channel {W (·|xL)}xL∈TP for any given type P ∈ PL is output symmetric,
and the number of types is at most (L + 1)|X |, which is inconsequential with respect to the
size of the channel input alphabet (which is growing exponentially with L) in the limit. This
lemma can also be used to prove the result in the delayed feedback section by applying the
Haroutunian bound to the parallel channel. In Section 3.5, we show how the lemma can be
used to prove that fixed delay codes without feedback cannot have an error exponent larger
than the sphere-packing exponent.

2.9 Limited memory at the encoder means the sphere-

packing bound holds

There are two results in this section that chip away at the notion that feedback might be
able to beat the sphere-packing bound. They are both due to Baris Nakiboglu and Giacomo
Como of MIT, coming out of their interaction with us (HP and Anant Sahai) on the problem
of proving sphere-packing for fixed-length codes with feedback. The first result was suggested
as an exercise by Anant Sahai to Baris and Giacomo to investigate what sort of degradation
to the assumption of delayless, noiseless feedback allows one to prove the sphere-packing
bound.
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2.9.1 An encoder that dumps its memory is bound by the sphere-
packing exponent

Consider the class of feedback encoders that empty their memory (of received symbols) every
k symbols. So for all i, yi−1, Xi is a function of the message m and the previous (i−1)−b i−1

k
ck

received symbols,

xi(m, y
i−1) = xi

(
m, yi−1b i−1

k
ck+1

)
.

That is, the encoder stores at successive times, 0, then 1, then 2 received symbols, and so
on, until it reaches k − 1, at which point it erases its memory. We will see that this class of
codes is bound by the sphere-packing exponent. This will be done by viewing blocks of k
symbols for the original channel as supersymbols and inputs to a new channel. Let

X ′ = X × X |Y| ×X |Y|2 × · · · × X |Y|k−1

Y ′ = Yk

be the input and output alphabets for the new super channel. Let P ′ be the set of distri-
butions on X ′, Q′ the set of distributions on Y ′ and W ′ the set of probability transition
matrices from X ′ to Y ′. The input letter for a message on one super symbol is actually a
vector of k functions from the received symbols available to the encoder to the X space.
That is,

x′ ∈ X ′ ⇒ x′ = (x1, f2, . . . , fk)

x1 ∈ X
fi : Y i−1 → X , i = 2, . . . , k.

So, xi(m, y
i−1) = fi(y

i−1) for i = 2, . . . , k and x1 for i = 1 if x′ is the supersymbol for the
first k symbols of message m. Now, the channel for the supersymbols induced by W is

W ′(y′|x′) = W ′(y1, . . . , yk|x1, f2, . . . , fk)
= W (y1|x1)W (y2|f2(y1)) · · ·W (yk|fk(yk−1)).

For this superchannel W ′, the sphere-packing bound holds because the code with supersym-
bols does not use feedback (all the feedback used has been hidden in the choice of feedback
functions f in the supersymbol). Therefore, the sphere-packing bound for codes without
feedback (Theorem 1) holds for this superchannel. Let E ′sp(R) denote the sphere-packing
exponent for this superchannel at rate R,

E ′sp(R) = max
P ′∈P ′

min
V ′∈W ′:I(P ′,V ′)≤R

D(V ′||W ′|P ′).
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Proposition 5. The following relationship between Esp(R) and E ′sp(R) holds for all k ≥ 2
(i.e., all interesting k):

E ′sp(R) = kEsp

(
R

k

)
.

This result is due to Baris Nakiboglu and Giacomo Como [33].

The proof of this proposition does not appear in the literature, so it is included in Ap-
pendix A.10. The proof shows that within the supersymbols, the sphere-packing optimization
decomposes into k individual sphere-packing optimizations for rate R/k.

Now, we see that the sphere-packing exponent for a k-block supersymbol is at most k
times the sphere-packing exponent at rate R/k for the original channel. Note that the new
length of the code (in superblocks) is n/k and the new rate is thus k

n
log |M| = k

n
nR = kR.

Hence, the asymptotic bound is still

lim sup
n→∞

1

n
logPe(W ) ≤ 1

k
E ′sp(kR) ≤ Esp(R).

Of course, the asymptotics hide the terrible dependence of the bound on the memory length
k. The size of the input alphabet grows doubly exponentially in k, as

log |X ′| =
k−1∑
i=0

|Y|i log |X |

log |Y ′| = k log |Y|.

Hence, this bound does not scale well, but it does show that having access to only the recent
past does not allow us to beat the sphere-packing bound with feedback (in an exponential
sense).

2.9.2 Finite state memory encoders cannot beat the sphere-packing
bound

The following result of Giacomo Como and Baris Nakiboglu is a philosophical extension of the
idea that forcing the encoder to forget feedback symbols renders it unable to beat the sphere-
packing bound asymptotically. Instead of encoders that forget all memory periodically, it
applies to encoders that can only hold on to all received information in a summarized way
through a finite state. Hence, it smooths out the periodic dumping of all memory from the
previous problem setup to a dumping of individual symbols at each time.

Define the class of finite memory encoders with feedback as follows. For each i ≥ 1, the
input at time i is a function of the message m and a state si ∈ S where S is a finite state
alphabet. That is,

xi(m, y
i−1) = Φi(m, si)
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and

si+1 = Γi(si, yi)

for some state update functions Γi : S × Y → S. If S were infinite, we could simply store
all the past received symbols, but by keeping it finite, the encoder has limited memory of
all the received symbols, summarized by the state. Assume that there exists a finite k such
that for all i ≥ 1, for all s, s′ ∈ S,

∃ yi+ki+1 ∈ Yk : Γi+k(Γi+k−1(· · · (Γi+1(s, yi+1), yi+2), · · · ), yi+k) = s′. (2.34)

This is a reachability constraint on the encoder’s state update mechanism. Essentially, it
also enforces that eventually (i.e., after k symbols) every received symbol is forgotten at the
encoder. Furthermore, assume that

τW , min
x,y

W (y|x) > 0.

Theorem 5. [36] Fix a channel W with τW > 0 and suppose the encoder with feedback is
as described above with k as in (2.34). Then,

− 1

n
logPe(W ) ≤ min

l∈{1,...,n}
Esp(R− α(l)) + α(l)

α(l) ,
2k log e

τW

lτ kW
+
l

n
(log 4 + |S| log |X |)+

log(1 + n/l)

n
exp (l|S|(|Y| log |S|+ log |X |))

Note that as n → ∞, l can scale slightly sub-logarithmically with n and we will have
α(l)→ 0 as n→∞. So, again, for this restricted class of encoders with feedback used over
channels with no zero elements, we see that the sphere-packing bound holds asymptotically.
The proof in [36] uses the reachability condition on the encoder to show that certain proba-
bilistic terms relating to mutual information and divergence converge to their average. This
is done by a mixing argument for Markov chains.

2.10 Concluding remarks

In this chapter, we have presented a collection of mini-results that we hope has advanced
understanding of the error exponent problem for block codes with feedback. The partial
results showing that having feedback information from only the very far past or only the
near past does not allow codes to beat the sphere-packing bound seem to suggest that the
question is not far from begin ‘practically’ solved (meaning solved for any case one might
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see in practice, due to limited memory at the encoder or delay in the feedback path). The
partial result for fixed type encoding trees, however, shows that in some cases, we can
precisely show the same sphere-packing bound holds for codes with feedback and without.
In the general case, the sphere-packing bound that holds for codes with feedback may turn
out to be slightly looser than the bound for codes without feedback, but only polynomially
looser in the blocklength n. In our estimation, the most promising paths to showing that
sphere-packing holds with feedback are coming up with a refined analysis for the ‘optimized’
test-channel with memory (Section 2.4.3) and proving the sphere-packing encoding tree
condition holds (Section 2.6). If these proofs can be made to go through, they may resolve
the uncertainty about asymmetric channels from the perspective of Polyanskiy et al., as
discussed in Section 2.1.
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Chapter 3

Tightening to sphere-packing for fixed
delay coding without feedback

3.1 Introduction

For communicating information over a noisy channel, capacity is the first-order description
of how much information we can communicate reliably. A refined understanding can be
gained through studying the error exponent for a channel. The error exponent governs the
exponential decay with which the optimal error probability decays as more and more channel
‘resources’ (e.g. block length, expected block length, delay) are provided while maintaining
a given rate of information transmission. If d is the number of channel ‘uses’ and Pe(d,R)
is the optimal error probability for a rate R that ‘uses’ the channel d times, then the error
exponent is generally defined to be

E(R) = lim
d→∞
−1

d
logPe(d,R).

In Chapter 2, we have discussed at length the problem of upper bounding the error
exponent for fixed-length block codes with and without feedback. For the reader who is
reading this chapter independently, we briefly summarize the relevant discussion. Recall
that for block codes without feedback, the sphere-packing bound,

Esp(R) = max
P

min
V :I(P,V )≤R

D(V ||W |P ),

is an upper bound to the error exponent (with respect to blocklength). For codes with
feedback, the Haroutunian exponent,

Eh(R) = min
V :C(V )≤R

max
P

D(V ||W |P ) (3.1)

= min
V :C(V )≤R

max
x∈X

D(V (·|x)||W (·|x))
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is the best known upper bound to the error exponent (with respect to blocklength). Recall
also that, except for symmetric channels such as the BSC and BEC, Esp(R) < Eh(R) in
general. The reason for this gap is believed to be the proof technique and not a fundamental
advantage gained with feedback when communicating over asymmetric channels. In order to
lower bound the error probability for codes with feedback, Haroutunian’s bound calculates
the probability that the ‘true’ channel W behaves like a ‘test’ channel V with a capacity
less than the rate (which automatically induces a non-negligible error probability by the
strong converse). The exponent of this probability is the conditional divergence D(V ||W |P )
where P is the average input distribution under channel V during the error event. It is
quite difficult to prove anything useful about this input distribution, so a worst-case bound
is taken, hence the inner max in (3.1).

In other words, the bound of (3.1) essentially assumes that because the code has feed-
back, it can somehow noncausally realize that the channel is behaving like V and use the
exponent maximizing letter repeatedly. Intuition strongly suggests that, because the channel
is assumed to be memoryless, a code could not tell in advance that future channel behavior
will not be able to support the desired rate and pursue this strategy successfully. In fact,
one might conjecture that the following exponent should be an upper bound to the error
exponent for block codes with feedback,

Ẽ(R) = min
V :C(V )≤R

max
P :I(P,W )≥R

D(V ||W |P ).

The idea here is that for an optimal code to be reliable over W , the input distribution under
other channels must still support a rate that is high enough if the channel were W because
the code cannot ‘predict’ that the memoryless channel will behave like V and not W .

This new exponent Ẽ(R) is easily seen to be sandwiched between Eh(R) and Esp(R), and
therefore is equal to both for symmetric channels. However, for general asymmetric channels,
Esp(R) < Ẽ(R) < Eh(R) (as shown in Figure 3.1 for the Z-channel). The improvement in
the new exponent over Haroutunian is pronounced at rates near capacity (as shown in Figure
3.2). This is because any distribution that has a mutual information I(P,W ) near capacity
must be ‘close’ to a capacity achieving distribution, and hence far away from the degenerate
distribution that achieves the inner maximization in Eh(R).

Perhaps even more interesting though, is that the ratio of Ẽ(R) to Esp(R) approaches
1 as R tends to capacity, at least for the Z-channel (as shown in Figure 3.3), while the
ratio of Eh(R) to Esp(R) approaches a constant greater than 2 as R tends to capacity for
the Z-channel. While this fact may not seem interesting in itself, it has an interesting
connection to another view of the rate-reliability tradeoff for block codes. As discussed in
the introduction of Chapter 2, there is a connection between the second-order derivative
of the error exponent at capacity and the other view of the rate-reliability tradeoff studied
recently by Polyanskiy ( [11], [29]) through the channel dispersion. The fact that Ẽ(R)
and Esp(R) have the same second-order derivatives at capacity (at least for the Z-channel)

suggests that if Ẽ(R) can be shown to be an upper bound to the error exponent for block
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Figure 3.1: A plot of Esp(R) (sphere-packing), Eh(R) (Haroutunian) and Ẽ(R) (the new
exponent) for a Z-channel with crossover probability 1/2. The new exponent is sandwiched
in between the sphere-packing and Haroutunian exponents.
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Figure 3.2: A plot of Esp(R), Eh(R) and Ẽ(R) for the Z-channel with crossover probability
1/2 for rates near capacity. The new exponent seems to approximate the sphere-packing
exponent much better that the Haroutunian exponent near capacity.
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Figure 3.3: A plot of Eh(R)/Esp(R) compared to Ẽ(R)/Esp(R). As the rate approaches
capacity, the ratio of the new exponent to the sphere-packing exponent approaches 1 for
the Z-channel, while the ratio of Haroutunian to sphere-packing approaches a value greater
than 2 for the Z-channel. This is equivalent to the new exponent’s second-order derivative at
capacity being equal to the sphere-packing exponent’s second-order derivative at capacity.

codes with feedback, then feedback does not significantly improve the maximum achievable
rate for a given error probability and block length for all channels W . Such a conclusion can
only be drawn for symmetric channels such as the BSC and BEC today [11].

Regrettably, we have not been able to prove that Ẽ(R) is an upper bound to E(R)
for block codes with feedback precisely because it is difficult to get a handle on the input
distribution when the channel W behaves like an arbitrary test channel V . The Haroutunian
exponent, however, also appears as an upper bound to the error exponent in the context of
fixed delay codes [37] and neighborhood decoding of message-passing decoders [38]. The
common tie between all these problems is that the input distribution is not known for
the test channel V when the error event is happening. Therefore, a change-of-measure
argument using V as the test channel ends up making a worst-case assumption on the input
distribution.

3.2 Fixed delay coding and anytime codes

In order to make further progress in understanding asymmetric channels, we turn our atten-
tion to fixed delay codes. In many communication scenarios, data arrives in a steady stream
at a transmitter to be sent to a receiver and the communication process must begin before
the transmitter knows all the data to be sent to the receiver. One reason for this might be
that the message is actually composed of many individual submessages, each of which must
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Figure 3.4: A fixed delay code differs from a block code in that bits stream into the encoder
causally as time elapses. The decoder must produce an estimate of each bit within a fixed
delay of when the bit arrives at the encoder.

be received within a fixed delay, e.g. interactive voice communication. A fixed delay code
(as shown in Figure 3.4) can be modelled as taking an infinite stream of message bits that
are causally revealed (at a uniform rate) to the encoder and communicating them across a
channel, with each bit being decoded correctly with high probability within some fixed delay
of arriving at the encoder.

In [37], the Haroutunian exponent is shown to be an upper bound for the error exponent
of fixed delay codes (with respect to delay d). This is done by showing that for a test
channel V with capacity lower than the rate, some bit must have non-vanishing error. An
argument in [37] shows that the channel need only behave like V for the d uses between when
the bit arrives at the encoder and when it is decoded for the error to occur with the same
probability. The exponent with which this error happens is D(V ||W |P ), where P is the input
distribution during the error event for the d symbols before the bit’s deadline. Again, we
run into the issue of not being able to say anything about the input distribution P during
this time span because only the bit with non-vanishing error probability is both revealed
and decoded within this window. For the purposes of the proof, the code can pretend it
has already decoded all previous bits before this bit arrives and it can pretend that it will
reliably decode all bits arriving after this one after the deadline for this bit. Therefore using
only the Haroutunian optimizing input symbol over the d symbols only adversely affects the
error probability of this one bit (at least we cannot prove this to be untrue).

Near the completion of this thesis, the result of Section 2.8 was derived, showing that
the Haroutunian exponent for an L-wise parallel channel constructed from using W L times
independently at rate LR is at most LEsp(R − O(logL/L);W ), where Esp(R;W ) is the
sphere-packing exponent of W at rate R. Thus, by grouping uses of the channel together
into large blocks, the error exponent one gets (after properly normalizing) approaches the
sphere-packing exponent. This fact can be used to obtain the main result of this chapter in
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Section 3.5: if Edelay(R) denotes the error exponent for fixed delay coding without feedback,

Edelay(R) ≤ Esp(R).

This result shows that there is nothing special about asymmetric channels, especially without
feedback, that allows codes used over them to predict when they will commit errors and
‘give up’ in that event. However, the proof does not give a sense of the true nature of
the communication process in fixed delay codes and how individual bits are forced to share
channel resources in any d-length decoding window. For this reason, we also will present a
result for a more restricted class of fixed delay codes that will be more intuitive.

While we cannot prove that non-trivial communication is happening over the length d
decoding window, there is an extended notion of fixed-length codes that this chapter will also
focus on, called anytime codes, for which this property1 will be shown to hold (an example
of an anytime code is shown in Figure 3.5). Anytime codes differ from fixed delay codes
in that at ‘any time’, the decoder produces estimates of all message bits that have arrived
at the encoder at that point. The natural fixed delay codes: tree codes and convolutional
codes, all have the anytime property that is needed here. As time elapses, the delay between
when a bit arrives at the encoder and the current time also becomes large, and we evaluate
the probability of error with respect to each delay for each bit2. The error exponent for an
anytime code is then the error exponent with respect to delay. Note that for any delay d, an
anytime code can be made into a delay-d fixed delay code by only providing the estimate for a
bit when exactly d channel uses have elapsed since the bit arrived at the encoder. Therefore,
the Haroutunian exponent is also an upper bound to the error exponent for anytime codes
without feedback.

As just mentioned, good anytime codes enforce the requirement that nontrivial commu-
nication is happening within any (large) given window of channel uses. If it were not, some
bit would arrive within the window and a smaller (than the window) delay estimate of that
bit would be too unreliable. This anytime property has the consequence of forcing the input
distribution during the large window to be nondegenerate. In fact, because reliable commu-
nication over W must happen for moderate delays, this implies that the input distribution
over large delays must have mutual information over channel W of at least the rate. This
intuition can be formalized to give the second result of this chapter, which is that if Eany(R)
denotes the optimal error exponent for anytime codes without feedback,

Eany(R) ≤ Ẽ(R).

This result is strictly weaker than the result that shows that Edelay(R) ≤ Esp(R), but it
was obtained first and is more intuitively understood.

1In [39], the authors assume a similar ‘steady progress in communication’ condition for a different error
exponent problem.

2In a fixed delay code, once a bit’s deadline has passed, there is no reason to ensure that the bit’s
probability of error continues to get lower.
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Figure 3.5: An anytime code with a universal delay decoder. Message bits arrive in a steady
stream at the encoder. At each time, the decoder outputs estimates of all bits that have
arrived at the encoder. The longer the delay between when a bit arrives at the encoder and
the current time, the better the estimate of that bit is expected to be. In particular, we are
interested in codes that achieve an exponentially decaying error probability with delay.

3.3 Control and anytime coding

Another important reason to study anytime codes is that they turn out to be of fundamental
importance in the study of control and estimation over noisy channels for particular metrics3

on the estimation or control error [40]. Rather than going into an in-depth exposition
of control and its relation to anytime communication, which would vastly overstate the
contribution of the result in this chapter to control theory, we will describe the specific
control problem this result has application to. For those interested in the broader context
of control and where anytime coding fits in it, see [40].

Consider the problem of controlling a scalar, linear unstable plant over a noisy DMC W ,
as shown in Figure 3.6. The plant state starts at Z0 = 0 and updates at integer times t as

Zt+1 = λZt + Ut + St (3.2)

St ∈
[
−Ω

2
,
Ω

2

]
. (3.3)

The state evolution depends on the unstable eigenvalue of the plant, |λ| > 1, real-valued
control inputs {Ut} and real-valued noise process {St}, which is assumed to be bounded by
|St| ≤ Ω/2 almost surely. The state observer and controller are separated, but the observer
may communicate to the controller through a DMC W , with one channel use per unit time.
At each time t, the observer inputs a channel symbol Xt ∈ X based on the current as well
as past plant states {Zk}k≤t. The controller receives Yt ∈ Y with probability W (Yt|Xt) and
chooses the control input Ut based on the current as well as past channel outputs {Yk}k≤t.
The plant state then evolves according to (3.2).

3For control of unstable systems under a bounded moment condition on the error, anytime capacity is
the relevant quantity, while for other requirements such as asymptotically almost sure controllability, first-
order notions such as capacity turn out to be sufficient. Even for these other asymptotic controllability
requirements, however, anytime decoding turns out to be required, but the probability of error can decrease
to 0 subexponentially [40].
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Figure 3.6: Control of an unstable plant over a noisy channel. The observer and controller of
the plant are separated, but have the use of a noisy communication medium. The observer
must also then perform some channel encoding to communicate information about the plant
state and the controller must decode that information to decide its control input.

For any η > 0, we say that the channel W is sufficient to η-stabilize the plant if there
exists an observer and controller pair and K <∞ such that

sup
t≥1

E [|Zt|η] ≤ K

for every noise process {St}t≥0 that obeys the bound in (3.3). According to [40], if there is
an R > log λ for which the anytime error exponent without feedback is at least η log λ, i.e.,
Eany(R) > η log λ, then W is sufficient to η-stabilize the plant. This sufficiency character-
ization, however, is not the fundamental relationship between control of (3.2) and anytime
communication. Rather, the true relationship is between control of (3.2) and anytime com-
munication with noiseless feedback, as shown in Figure 3.7. The main results of [40] show
that a channel W with perfect output feedback is sufficient to η-stabilize the plant if and
only if there is a rate R ≥ log λ such that the anytime error exponent with feedback is at
least η log λ, i.e., Eany,fb(R) > η log λ.

The result of this chapter says only that Eany(R) ≤ Ẽ(R), so it does not necessarily rule
out that a channel is sufficient to η-stabilize the plant without feedback. It merely says when
a channel W without feedback is not automatically sufficient to η-stabilize the plant without
feedback.
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Figure 3.7: Control of an unstable plant over a noisy channel W . In addition to the noisy
channel from the observer to the controller, there is a feedback path from the controller to
the observer that carries the channel output symbols noiselessly and without delay.

3.4 Problem setup

Some of the notation used in Chapter 2 will continue to be used. Please refer to Tables 2.1
and 2.2 if some notation seems unfamiliar and it does not appear in this section.

We have an infinite sequence of IID equiprobable bits {Bi}∞i=1 that will be communicated
over a noisy channel. The bits are revealed to the encoder in a steady stream, at rate R bits
per channel use (one channel use per unit of time). At time j, the encoder has access to4

BbjRc = (B1, B2, . . . , BbjRc).

The communication medium is a discrete memoryless channel (DMC) induced by a proba-
bility transition matrix W from a finite input alphabet X to a finite output alphabet Y . If
the input to the channel at time j is Xj = x ∈ X , the probability that the output at time j
is Yj = y ∈ Y is

PW (Yj = y|Xj = x) = W (y|x).

A rate-R streaming encoder without feedback is a sequence of encoders E = {Et}∞t=1 with

Et : {0, 1}btRc → X .
4We will use capital letters to denote random variables and lower case letters to denote realizations

of those random variables. Superscripts and subscripts will be used to denote vectors, for example xji =
(xi, xi+1, . . . , xj). For the special case of i = 1, we drop the subscript, i.e., xj = (x1, . . . , xj).
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At time j, the input to the channel with encoder E is Xj = Ej(BbjRc).

3.4.1 Fixed delay codes

A rate-R, delay-d fixed delay code is a pair C = (E ,D) where E is a rate-R streaming encoder
and D is a rate-R delay-d decoder. The decoder is a sequence of maps D = {Di}∞i=1 with

Di : Ydi/Re+d−1 → {0, 1}.

The fixed delay code’s estimates of the bits are B̂i(d) = Di(Y di/Re+d−1). Let CR,d denote the
set of rate-R, delay-d fixed delay codes C = (E ,D). Define the error probability of C ∈ CR,d
to be

Pe(d, C) = sup
i

PW (B̂i(d) 6= Bi).

The error exponent for fixed delay codes without feedback is defined to be

Edelay(R) = lim sup
d→∞

−1

d
log

[
inf
C∈CR,d

Pe(d, C)

]
.

It was shown by Sahai [37] that

Edelay(R) ≤ Eh(R) = min
V :C(V )≤R

max
P

D(V ||W |P ).

By constructing random tree-codes with maximum-likelihood decoding, it can be shown that
the random-coding exponent is achievable, so

Edelay(R) ≥ Er(R).

3.4.2 Anytime codes

A rate-R anytime decoder D is a set of maps D = {Di,d}i≥1,d≥0, with

Di,d : Ydi/Re+d−1 → {0, 1}.

Di,d is called the delay-d decoder for bit i since d channel uses after bit i arrives at the

encoder are allowed before decoding bit i. We let B̂i(d) = Di,d(Y di/Re+d−1). A rate-R anytime
(universal delay) code without feedback is a pair C = (E ,D), where E is a rate-R streaming
encoder and D is a rate-R anytime decoder. Let CR denote the set of all possible rate-R
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anytime codes without feedback. For a fixed anytime code C, define the error performance
metrics5

Pe,i(d, C) = PW
(
B̂i(d) 6= Bi

)
Pe(d, C) = sup

i
Pe,i(d, C)

E(C) , lim inf
d→∞

−1

d
logPe(d, C).

The anytime error exponent without feedback, at rate R, is defined to be

Eany(R) , sup
C∈CR

E(C).

A fixed delay code can be created by an anytime code for any delay d by just using the delay
d decoder from the anytime decoder, so it immediately follows that

Eany(R) ≤ Edelay(R) ≤ Eh(R).

3.5 Tightening to sphere-packing for fixed delay codes

In order to show that the sphere-packing exponent upper bounds the error exponent for fixed
delay codes, we will use the result proved by Sahai along with the parallel channel lemma
about the Haroutunian exponent (Lemma 7 of Section 2.8).

Theorem 6 (Sahai [37], Theorem 3.1). For all δ > 0 and rates R > 0, there is a finite
dh(δ, R,W ) such that any fixed delay code C of rate R and delay d ≥ dh(δ, R,W ) has

−1

d
logPe(d, C) ≤ Eh(R− δ;W ) + δ, (3.4)

where Eh(R;W ) is the Haroutunian exponent for channel W evaluated at rate R.

Theorem 7. For all δ > 0, R > 0, there is a finite dsp(δ, R,W ) such that for any fixed delay
code C of rate R and delay d ≥ dsp(δ, R,W ),

−1

d
logPe(d, C) ≤ Esp(R− δ;W ) + δ,

where Esp(R;W ) is the sphere-packing exponent for channel W evaluated at rate R.

5The sup in the definition of Pe(d, C) can be replaced by lim sup without affecting the result in this
chapter.
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Proof: Consider a large L and W (L), the parallel channel of W used L times indepen-
dently within one symbol (as in Lemma 7), with input alphabet X L and output alphabet
YL. Let C ′LR,d′ be the set of rate LR, delay d′ fixed delay codes for W (L). By Theorem 6

applied to W (L), there is a finite dh(δ, LR,W
(L)) such that if d′ ≥ dh(δ, LR,W

(L)),

− 1

d′
logPe(d

′, C ′) ≤ Eh(LR− δ;W (L)) + δ

for any C ′ ∈ C ′LR,d′ . Let us construct a code C ′LR,d′ for some d′ by using a code in CR,d. For
some d large to be specified later, let

d′ =

⌈
d

L

⌉
+ 1.

We will use t to denote the symbol number for C (in terms of symbols from X ) and s to denote
the symbol number for C ′ (in terms of supersymbols from X L). LetX ′s = (X(s−1)L+1, . . . , XsL)
and Y ′s = (Y(s−1)L+1, . . . , YsL) for s ≥ 1. Consider the encoder for C ′ one gets by using the
encoder from C. That is, E ′ = {E ′s}∞s=1 with

E ′s : {0, 1}bsLRc → X L

where

E ′s(BbsLRc) =
(
E(s−1)L+1

(
Bb((s−1)L+1)Rc) , . . . , EsL (BbsLRc)) .

That is, E ′ uses the encoder E by giving the encoder knowledge of the bits in blocks of
time of length L. Now, we want to use the delay d decoder from C to construct a delay
d′ decoder for C ′. In order to use this decoder, we must ensure that C ′ has the necessary
channel outputs to run D. Bit i arrives at the encoder E ′ at time (in supersymbols)

⌈
i
LR

⌉
.

Bit i arrives at encoder E at time (in regular symbols) di/Re. It is decoded by D at time (in
regular symbols) di/Re+ d− 1. We need to ensure that if d′ = dd/Le+ 1, the supersymbol
Y ′di/LRe+d′−1 contains Ydi/Re+d−1. This is guaranteed if

L

(⌈
i

LR

⌉
+

⌈
d

L

⌉)
≥
⌈
i

R

⌉
+ d− 1

because the last regular symbol in Y ′s is YsL. Now, using the fact that L dx/Le ≥ x and
dxe ≤ x+ 1 yields

L

(⌈
i

LR

⌉
+

⌈
d

L

⌉)
≥ L

⌈
i

LR

⌉
+ d

= L

⌈
(i/R)

L

⌉
+ 1 + (d− 1)

≥ (i/R) + 1 + (d− 1)

≥
⌈
i

R

⌉
+ d− 1.



78

Therefore, simply by running the original rate-R delay-d code C over channel W , we get a
code C ′ of rate LR and delay d′ for channel W (L). The estimates for these codes are the
same, so

Pe(d, C) = Pe(d
′, C ′).

Now, if d′ ≥ dh(δ, LR,W
(L)), it follows by Theorem 6 that

− 1

d′
logPe(d, C) = − 1

d′
logPe(d

′, C ′)

≤ Eh
(
LR− δ;W (L)

)
+ δ.

Therefore, using Lemma 7 to bound the Haroutunian exponent of the parallel channel,

− 1⌈
d
L

⌉
+ 1

logPe(d, C) ≤ Eh
(
LR− δ;W (L)

)
+ δ

≤ LEsp

(
R− δ

L
− |X |

L
log(L+ 1);W

)
+ δ.

Rescaling to d yields

−1

d
logPe(d, C) ≤

L(dd/Le+ 1)

d
Esp

(
R− δ

L
− |X |

L
log(L+ 1);W

)
+ δ

(
dd/Le+ 1

d

)
≤ Esp

(
R− δ

L
− |X |

L
log(L+ 1);W

)
+

2L

d
Esp

(
R− δ

L
− |X |

L
log(L+ 1);W

)
+ δ

(
1

L
+

2

d

)
.

By first making L large enough, then δ small enough, followed by d large enough, and at
least as large as dh(δ, LR,W

(L)), it follows that for all ε > 0, there is a finite dsp(ε, R,W )
such that

−1

d
logPe(d, C) ≤ Esp(R− ε;W ) + ε

for every C ∈ CR,d with d ≥ dsp(ε, R,W ).

3.6 A weaker result for anytime codes

This result, guided largely by intuition about anytime codes, was obtained earlier than the
stronger result for fixed delay codes. It is included in the thesis for completeness and because
it may be useful in think about the problem of fixed blocklength coding with feedback.
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1 nn-d+1

d

Figure 3.8: Constructing a block code of length n by using C for the first n channel uses.
Only bits arriving at the encoder by time n− d+ 1 are expected to be decoded.

Theorem 8. Fix a channel W ∈ W. Then,

Eany(R) ≤ Ẽ(R)

= min
V ∈W:C(V )≤R

max
P∈P:I(P,W )≥R

D(V ||W |P ). (3.5)

The theorem also holds if common randomness is provided to the encoder and decoder.
This is because the error probability bounds will hold for any fixed realization of the common
randomness. To avoid cluttering notation, however, we will assume that common randomness
is not present. In order to prove the theorem, we will show that for any C ∈ CR, for any
ε > 0, E(C) ≤ Ẽ(R − ε). Since ε > 0 can be made arbitrarily small, we will show that the

theorem holds by left continuity of the exponent Ẽ(R) in R. We will give here an outline of
the proof, and make it rigorous in Appendix B.1.

First, fix an ε ∈ (0, R) and a C ∈ CR. We will show that E(C) ≤ Ẽ(R− ε). Let V denote

an Ẽ(R− ε) optimizing channel, that is

V ∈ arg min
U∈W:C(U)≤R−ε

{
max

P :I(P,W )≥R−ε
D(U ||W |P )

}
.

We will show that

E(C) ≤ max
P :I(P,W )≥R−ε

D(V ||W |P )

in several steps.

1. We will take two integer sequences, dl, d̃l, going to infinity, with dl/d̃l approximately

fixed (up to integer effects), 1� d̃l � dl in the limit. Now, fix a d and d̃ (that is, drop
the subscript l). First, we will construct a random block code of length n� d by using
the encoder E for the first n channel uses. The message bits will be those bits that have
arrived at the encoder by time n−d+1. The block decoder will use the delay-d decoder
for each of the message bits.

If n is large enough, then the rate of this code is at least R − ε/2 since the number of
wasted bits at the encoder can be made arbitrarily small relative to the length of the
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block. Using arguments already made in [37], we can say that there are ‘genie-aided’
feedforward decoders, Df , that use only the past d received channel outputs as well as
the true message bits up to the one being decoded that perform at least as well as D. Let
this feedforward decoder be denoted Dfi,d for each i, d of interest and, more concretely,
they are maps

Dfi,d : {0, 1}i−1 × Yd → {0, 1}

B̂f
i (d) = Dfi,d

(
Bi−1, Y

di/Re+d−1
di/Re

)
.

These maps are as good as D for the channel W , namely for all i, d,

PW
(
B̂f
i (d) 6= Bi

)
≤ PW

(
B̂i(d) 6= Bi

)
.

Now, the channel V has capacity at most R−ε and the rate of the code is at least R−ε/2,
so we should expect errors in some of the bits when the channel is V . Then, [37] shows

that under channel V , if we let B̃f
i (d) = Bi ⊕ B̂f

i (d) be the errors made by these genie-
aided feedforward decoders,

b(n−d+1)Rc∑
i=1

H(B̃f
i (d)) ≥ n

ε

2
.

Therefore, since entropy is non-negative, there is at least one i such that H(B̃f
i (d)) ≥

ε/2R. For this i,

PV
(
B̂f
i (d) 6= Bi

)
≥ h−1b

( ε

2R

)
, (3.6)

where h−1b is the inverse of the binary entropy function. We now note that in order for

the channel W to behave like V and induce an error when the decoder is Dfi,d, it only
needs to behave like V for the d channel uses after bit i is available to the encoder,
as opposed to the full n channel uses that were needed to construct a block code of
sufficient rate.

2. To show that the error probability of our actual decoder under W is not too small, we
will study another block code’s performance. Figure 3.9 shows the relevant times that
we use C to construct this second block code. We wish to make a statement about the
type of the input during the d channel uses that are of importance in (3.6). So, we use
C to communicate over the channel W starting at time di/Re (the first channel use that

bit i is available to the encoder) for a total of d channel uses. We have a fixed d̃ < d, so
the message bits are

M =
(
Bi, Bi+1, . . . , Bb(di/Re+d−d̃)Rc

)
.
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Figure 3.9: A random block code constructed to show that the type of the input during
the period when bit i’s error event happens must have a large enough mutual information.
The block code uses C starting from the time bit i arrives at the encoder for a total of d
channel uses. The delay-d̃ decoder for C is used to yield a code with low error probability
for large enough d̃. Randomness in the form of the bits before i and those that arrive after
time di/Re+ d− d̃ is given to the encoder.

The rate of this code, can be made arbitrarily close to R provided that d̃/d is made

small enough. To decode the message, we use for each bit in the message, the delay-d̃
decoder from Df . That is,

M̂ =

(
B̂f
i (d̃), . . . , B̂f

b(di/Re+d−d̃)Rc(d̃)

)
.

Now, assume that E(C) ≥ 2Ẽ(R)/3, as otherwise there is nothing to prove. Then, there

is a d̃ large enough so that the error probability of the block code, using the union bound
over the bits, is upper bounded as

PW
(
M̂ 6= M

)
≤
⌈
(d− d̃)R

⌉
exp

(
−d̃ Ẽ(R)

2

)

≤ dR exp

(
−d̃ Ẽ(R)

2

)

= exp

(
−d

[
d̃

2d
Ẽ(R)− 1

d
log dR

])

≤ exp

(
−d

[
d̃

4d
Ẽ(R)

])
,

where the last statement holds for d large enough. Now, we have used the bits arriving
before bit i and those arriving after time di/Re+ d− d̃ as common randomness. Since
the error probability is averaged over all values of this common randomness, Markov’s
inequality tells us that with high probability, any particular realization of the block code
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will have error probability upper bounded by

exp

(
−d

[
d̃

8d
Ẽ(R)

])
(3.7)

for large enough d. Now, provided that d̃ and d are large enough, while the ratio d̃/d is
small enough, we have that for most realizations of the block code of rate nearly R, the
error probability is very small (crucially, exponential in d), as in Eqn. (3.7).

At this point, we prove a lemma that shows that if the error probability of a block code
is exponentially decaying in the block length, the type of the input must have mutual
information across the channel W high enough to support nearly the rate. Using this
lemma, we can show that for our encoding system, for δ > 0 small,

P
(

Type of X
di/Re+d−1
di/Re = P, I(P,W ) ≥ R− δ

)
' 1, (3.8)

where the above means that the probability6 tends to 1 with parameters d, d̃ chosen
properly. Therefore, the type of the input during the error event in (3.6) supports rate
R− δ with high probability.

3. At this point, we perform a change-of-measure argument to get a lower bound on Pe,i(d).
We already know from the arguments in [37] that

PW
(
B̂i(d) 6= Bi

)
≥ PW

(
B̂f
i (d) 6= Bi

)
PV
(
B̂f
i (d) 6= Bi

)
≥ h−1b

( ε

2R

)
.

Using (3.8) and a straightforward change of measure argument, we can show that

PW
(
B̂f
i (d) 6= Bi

)
≥ 1

4
h−1b

( ε

2R

)2
exp

(
−d

[
max

P :I(P,W )≥R−δ
D(V ||W |P ) +O

(√
log d

d

)])
.

Taking, limits as d, d̃ get large and d̃/d gets small (less than ε/2) yields that

E(C) ≤ max
P :I(P,W )≥R−ε

D(V |W |P ),

which completes the proof.

6Note that since the code does not have feedback, the channel inputs depend only on the bits arriving at
the encoder. Therefore, probability statements about the type of the input do not depend on the channel.
For codes with feedback, probability statements about the input to the channel necessarily also depend on
the channel, and hence this proof cannot be used to prove the same result for codes with feedback.
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3.6.1 The relationship between Esp, Ẽ and Eh for the Z-channel

We have the following properties, which were alluded to earlier, of Ẽ(R) when W is a Z-
channel.

Proposition 6. If W is a Z-channel with crossover probability δ ∈ (0, 1),

lim
R→CZ(δ)

Eh(R)

Esp(R)
≥ 1

p∗(δ)
≥ 2, (3.9)

where p∗(δ) is the capacity achieving distribution’s probability on 1 and CZ(δ) is the capacity
for W . Meanwhile,

lim
R→CZ(δ)

Ẽ(R)

Esp(R)
= 1.

Equivalently, since both Esp(R) and Ẽ(R) have zero first derivative at CZ(δ),

d2Esp(R)

dR2

∣∣∣∣
R=CZ(δ)

=
d2Ẽ(R)

dR2

∣∣∣∣
R=CZ(δ)

. (3.10)

The proofs of these two results can be found in the appendix on Z-channels (Appendix
B.2). We conjecture that (3.10) holds for any asymmetric DMC that has a unique capacity
achieving distribution. The lower bound of 2 for the family of Z-channels in (3.9) does
not extend to all asymmetric channels. One can see this by considering binary asymmetric
channels as the crossover probabilities go to the same value.

3.7 Concluding remarks

To conclude, we would like to reflect on why Ẽ(R) seems to be a good approximation to
Esp(R) for rates very near capacity (at least for the Z-channel), but is much closer to Eh(R)

for most rates. The improvement in Ẽ(R) from Eh(R) is coming entirely from restricting the
set of P in the inner maximization of (3.1) to those that satisfy I(P,W ) ≥ R. When R is
very near capacity, the only P allowed are very close to the capacity achieving distribution
(which usually are far from degenerate). However, because mutual information is concave-∩
in P , the derivative (or gradient) around the capacity achieving distribution is 0, and hence
any increase in the separation of R from capacity (at least initially) yields a large increase
in the set of allowable P . This issue is seen clearly in the form of a plot for the Z-channel,
as shown in Figure 3.10.
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Figure 3.10: A plot of I(P,W ) when W is a Z-channel with crossover probability 1/2. The
capacity achieving P has P (X = 1) = 0.4 and C(W ) = 0.322 bits per channel use. Even if
R = 0.3, the set of P such that I(P,W ) ≥ R is already any P with P (X = 1) ∈ [0.267, 0.545].

This is the reason why Ẽ(R) is a much better bound than Eh(R) only for rates very near
capacity.
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Chapter 4

Lossy compression of arbitrarily
varying sources

4.1 Introduction

4.1.1 Motivation

The arbitrarily varying source (AVS) was introduced by Berger [4] as a source that samples
other ‘subsources’ under the control of an agent called a switcher. The AVS was used in
the model of an information-theoretic ‘source coding game’ between two players, the afore-
mentioned switcher and a coder. The goal of the coder was to encode the output of the
AVS to within a specified distortion, and the goal of the switcher was to make the coder use
as large a rate to attain the specified distortion as possible. Berger studied the adversarial
rate-distortion function (the rate the coder needs to achieve a target distortion regardless of
switcher strategy) under certain rules for the switcher. Primarily, [4] gives the rate-distortion
function when the switcher is not allowed to observe present or future subsource realizations.

The purpose of this chapter is to deepen understanding of the source coding game by
looking into variations where the capabilities of the switcher are enhanced. In [4], Berger
himself asks what happens to the rate-distortion function when the switcher is allowed to
‘cheat’ and observe present or future realizations of the subsources. In addition to tackling
this question, we further study scenarios where the switcher receives noisy observations of
the subsources or the switcher is not adversarial, but helpful.

As a motivation for studying the source coding game, Berger mentions that the results
might have application to situations where multiple data streams are multiplexed into a
single data stream. Another potential application is in the field of active sensing or active
vision [41], a subfield of computer vision in which sensors actively explore their environment
using information they have previously sensed.
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4.1.2 Active sources and causality

Active vision/sensing/perception [41] is an approach to computer vision, the main principle
of which is that sensors choose to explore their environment actively based on what they
currently sense or have previously sensed. As Bajcsy says it in [41], “We do not just see, we
look.” The contrast to passive sensors can be seen by comparing a fixed security camera (non-
active) to a person holding a camera (active). Even if the person is otherwise stationary, they
may zoom the camera into any part of their visual field to obtain a better view (e.g. if they see
a trespasser). Perhaps more concretely, cameras autonomously operated by algorithms and
principles developed in the field of computer vision fit into the category of ‘active sources’1.
Another example of active sensing is a sequence of sensor-measurements that are dynamically
sampled by a distributed sensor network. Yet another is the case of measurements taken
by an autonomously moving sensor that chooses where to go in part based on what it is
observing.

Suppose one were to design a system which required compressing the output of an active
source. Standard rate-distortion theory [42] tells us that if we can model the source as a
stochastic process with suitable probabilistic structure (e.g. stationary and ergodic), we can
find its rate-distortion function and are guaranteed the existence of codes with rates that
approach the information-theoretic limit. However, for many active sources, such probabilis-
tic structure is difficult to establish because of the difficulty in precisely modelling the inner
workings of the source. This difficulty may arise, for example, due to the active source mak-
ing decisions using a complex algorithm that introduces memory in ways that are hard to
quantify (and hence make the source nonergodic). Alternatively, this difficulty might occur
because the entity controlling the active source has some degree of free will2.

At this point, we might relax the assumption of a known distribution for the source’s
output and turn to universal coding over some class of sources with limited structure (e.g. the
class of m-th order Markov processes). Going further, we could give up hope of specifying a
possible distribution for the source process and instead take an individual-sequence approach
to compression. Here, we are guaranteed the existence of universal coding algorithms such
as those based on the Lempel-Ziv algorithm ( [43], [44]) that asymptotically approach the
compression rate required for any particular individual sequence, as measured by the best
one can do with (arbitrarily large) finite-state coding systems.

The individual sequences/universal coding framework gives an answer to the algorithmic
question of how we might optimally encode and decode the source. In this paradigm, how-
ever, we cannot know in advance the actual number of bits per symbol needed to represent
the source output until the time of encoding. This lack of a priori knowledge would be
unacceptable to, e.g., the designer of a distributed control system in which rate must be pro-

1We use the terms active sensors, vision/video and sources interchangeably, but strictly speaking active
sensors and active vision are types of active sources.

2As an extreme example, consider accurately probabilistically modelling the output stream of a camera
operated by a human, even assuming a simple probabilistic model of the environment being filmed.
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visioned. For example, if we were to provision enough rate for reconstructing all individual
sequences with zero distortion, the required rate would be the log of the alphabet size. It
seems that requiring every individual sequence be accounted for gives high model generality
at the cost of excessive provisioning of rate.

In order to answer the question of how much rate to provision for an active source, while
allowing for flexibility in the model of the source, we propose to model it as an arbitrarily
varying source (AVS) and study its rate-distortion function. Bounds on the fixed-length
block coding rate-distortion function of an AVS give usable estimates for the designer of
a system wishing to know how much rate to provision for the transmission or storage of
a compressed active source. The key strength of an AVS model is that it allows for a
tradeoff between model generality and the corresponding tightness of the rate bounds for
compression provided by the model. Two basic ways to model the goals of the source are
worst case (adversarial) and helpful (joint optimization of active source and coding system),
which respectively correspond to upper and lower bounds to the rate needed to compress
the output of an active source.

We start with the notion that knowledge allows the switcher to use the switching mech-
anism to gain freedom from ambient distributions. In developing a suitable model for an
active source as an AVS, we would like to have simple ways of restricting the knowledge of
the switcher. This restriction should align with how the active source makes its decisions on
sampling from the environment. Causality of the decision making is an important restriction,
as there is the possibility that the source has noncausal information about the environment.
For example, a cameraman at a sporting event generally has only causal knowledge of the
environment. A cameraman on a movie set, however, has noncausal information about the
environment through the script. The noncausal information can be advantageous to the cam-
eraman in (actively) capturing the important features of a scene. Additionally, it may be
that the entity controlling the source does not have perfect knowledge of the subsources, i.e.,
it observes the sources noisily. In general, the more power/knowledge given to the switcher,
the larger the gap between the upper and lower bounds on the rate-distortion function.
These various ways of modelling the switcher allow us to quantify this intuition through a
tradeoff between model generality and potential conservatism in rate provisioning.

There are many issues to consider in the study of lossy compression for active sources,
but we concentrate here entirely on the simplest aspect of the problem: what is the impact
on the rate-distortion function of having the source being actively sampled by an entity that
knows something about the realizations of the environment? Thus, we assume a simplified
traditional rate-distortion setting with known finite alphabets and bounded distortion mea-
sures. The goal is the traditional block-coding one: meet an average distortion constraint
using as little rate as possible. Admittedly, the most interesting practical problems involve
subsources with memory, but following tradition3 and for simplicity, we first focus in this

3See ( [42], Section VII.) for an account of the slow pace that rate-distortion theory impacted practical
compression applications during its first 25 years.
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Switcher model R(D)
Strictly causal (adversarial) Berger [4]

Noncausal (adversarial) Section 4.3
Noncausal noisy

observations (adversarial)
Section 4.4

Noncausal (helpful) Section 4.5

chapter on memoryless subsources to understand the basic differences between active and
non-active sources for lossy compression.

4.1.3 Contributions

Intuitively, a strictly causal adversary switching amongst memoryless sources is no more
threatening than a switcher that randomly switches. This intuition was proved correct in [4]
by Berger as he determined the rate-distortion function for memoryless subsources and a
strictly causal adversarial model. Section 4.3 gives the rate-distortion function for an AVS
when the adversary has noncausal access to realizations of a finite collection of memory-
less subsources and can sample among them. As shown in Theorem 9, the rate-distortion
function for this problem is the maximization of the rate-distortion function over the IID
sources the adversary can simulate. The adversary requires only causal information to im-
pose this rate-distortion function. This establishes that when the subsources are memoryless,
the rate-distortion function can strictly increase when the adversary has knowledge of the
present subsource realizations, but no further increase occurs when the adversary is allowed
knowledge of the future realizations.

In order to give more ways to restrict the knowledge of the switcher, we then extend
the AVS model to include noisy or partial observations of the subsource realizations and
determine the rate-distortion function for this setting in Section 4.4. As shown in Theorem
10, the form of the solution is the same as for the adversary with clean observations, with the
set of attainable distributions essentially being related to the original distributions through
Bayes’ rule.

Next, Section 4.5 changes the perspective from the traditional adversarial setting to a
cooperative setting. It explores the problem when the goal of the switcher is to help the coder
achieve a low distortion. Theorem 11 gives a characterization of the rate-distortion functions
if the helper has access to future realizations in terms of the rate-distortion function for an
associated lossy compression problem. As a corollary, we also give bounds for the cases of
causal observations and noisy observations. However, for most helpful switcher settings, a
tight characterization of the rate-distortion function is lacking.

Simple examples illustrating these results are given in Section 4.6. In Section 4.7, we
discuss how to compute the rate-distortion function for arbitrarily varying sources to within
a given accuracy using the uniform continuity of the IID rate-distortion function. This task
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needs some discussion because of the fact that the IID rate-distortion function is generally
nonconcave as a function of the distribution [45]. The main tool there is an explicit bound on
the uniform continuity of the IID rate-distortion function that is of potentially independent
interest, as we use it to quickly analyze the behavior (in probability) of a simple rate-
distortion estimator for IID sources. Finally, we conclude in Section 4.8. The results of
this chapter appear in [46], which is to be published in IEEE Transactions on Information
Theory.

4.2 Problem Setup

4.2.1 Notation

Let X and X̂ be the finite source and reconstruction alphabets respectively. Let xn =
(x1, . . . , xn) denote a vector from X n and x̂n = (x̂1, . . . , x̂n) a vector from X̂ n. When needed,
xk = (x1, . . . , xk) will be used to denote the first k symbols in the vector xn.

Let d : X ×X̂ → [0, d∗] be a distortion measure on the product set X ×X̂ with maximum
distortion d∗ <∞. Let

d̃ = min
(x,x̂): d(x,x̂)>0

d(x, x̂) (4.1)

be the minimum nonzero distortion. Define dn : X n × X̂ n → [0, d∗] for n ≥ 1 to be

dn(xn, x̂n) =
1

n

n∑
k=1

d(xk, x̂k).

Let P(X ) be the set of probability distributions on X , let Pn(X ) be the set of types
(see [21], [47]) of length-n strings from X , and let W be the set of probability transition

matrices from X to X̂ . Let pxn ∈ Pn(X ) be the empirical type of a vector xn. For a
p ∈ P(X ), let

Dmin(p) =
∑
x∈X

p(x) min
x̂∈X̂

d(x, x̂)

be the minimum average distortion achievable for the source distribution p. The (functional)
IID rate-distortion function of p ∈ P(X ) at distortion D > Dmin(p) with respect to distortion
measure d is defined to be

R(p,D) = min
W∈W(p,D)

I(p,W ),

where W(p,D) is a set of admissable probability transition matrices,

W(p,D) =

{
W :

∑
x∈X

∑
x̂∈X̂

p(x)W (x̂|x)d(x, x̂) ≤ D

}
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and I(p,W ) is the mutual information4

I(p,W ) =
∑
x∈X

∑
x̂∈X̂

p(x)W (x̂|x) ln

[
W (x̂|x)

(pW )(x̂)

]
,

with (pW )(x̂) =
∑

x′∈X p(x
′)W (x̂|x′). Let B = {x̂n(1), . . . , x̂n(K)} be a codebook with K

length-n vectors from X̂ n. Define

dn(xn;B) = min
x̂n∈B

dn(xn, x̂n).

If B is used to represent an IID source with distribution p, then the average distortion of
B is defined to be

d(p;B) =
∑

xn∈Xn
dn(xn;B)

n∏
k=1

p(xk) = Ep[dn(xn;B)].

For n ≥ 1, D > Dmin(p), let K(n,D) be the minimum number of codewords needed

in a codebook B ⊂ X̂ n so that d(p;B) ≤ D. By convention, if no such codebook exists,
K(n,D) = ∞. Let the (operational) rate-distortion function5 of an IID source be R(D) =
lim supn

1
n

lnK(n,D). Shannon’s rate-distortion theorem ( [48], [49]) states that for all n,
1
n

lnK(n,D) ≥ R(p,D) and

lim sup
n→∞

1

n
lnK(n,D) = R(D) = R(p,D).

4.2.2 Arbitrarily varying sources

As mentioned earlier, the AVS is a model of a source in the ‘source coding game’ introduced
by Berger in [4]. The two players are called the ‘switcher’ and ‘coder’. In a coding context,
the coder corresponds to the designer of a lossy source code and the switcher corresponds to
a potentially malicious adversary selecting symbols to be encoded.

Fig. 4.1 shows a model of an AVS. There are m IID ‘subsources’ with common alphabet
X . In [4], the subsources are assumed to be independent, but that restriction turns out not
to be required6. There can also be multiple subsources governed by the same distribution. In
that sense, the switcher has access to a list of m subsources, rather than a set of m different
distributions. The marginal distributions of the m subsources are known to be {pl}ml=1 and

4We use natural log, denoted ln, and nats in most of the chapter. In examples only, we use bits.
5We define R(Dmin(p)) = limD↓Dmin(p)R(D). This is equivalent to saying that a sequence of codes

represent a source to within distortion D if their average distortion is tending to D in the limit. The only
distortion where this distinction is meaningful is Dmin(p).

6In [4], the motivation was multiplexing data streams and independence is a reasonable assumption, but
the proof does not require it.
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Figure 4.1: A class of models for an AVS. The switcher can set the switch position according
to the rules of the model.

we let G = {p1, . . . , pm}. Let P (x1,1, . . . , xm,1) be the joint probability distribution for the
IID source {(x1,k, . . . , xm,k)}k≥1. Fix an n ≥ 1 and consider a block of length n. We let
xl,k denote the output of the lth subsource at time k. We will use xnl to denote the vector
(xl,1, . . . , xl,n). At each time k, the AVS outputs a letter xk which is determined by the
position of the switch inside the AVS. The switch positions are denoted sn = (s1, . . . , sn)
with sk ∈ {1, 2, . . . ,m} for each 1 ≤ k ≤ n. With this notation, xk = xsk,k for 1 ≤ k ≤ n.

The switcher can set the switch position according to the rules for the AVS. In the next
few sections, we will discuss different rules for the switcher, particularly different levels of
causality in knowledge of the subsource realizations. The switcher may or may not have
knowledge of the codebook, but this knowledge turns out to be inconsequential for the
worst-case rate-distortion function.

The coder’s goal is to design a codebook B of minimal size to represent xn to within
distortion D on average. The codebook must be able to do this for every allowable strategy
for the switcher according to the model. Define

M(n,D) = min

|B| :
E[dn(xn;B)] ≤ D
for all allowable

switcher strategies

 .

Here, E[dn(xn;B)] is defined to be
∑

xn (
∑

sn P (sn,xn)) dn(xn;B), where P (sn,xn) is an
appropriate probability mass function on {1, . . . ,m}n × X n that agrees with the model of
the AVS. We are interested in the exponential rate of growth of M(n,D) with n, and so we
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define the rate-distortion function of an adversarial AVS to be

R(D) , lim sup
n→∞

1

n
lnM(n,D).

In every case considered, it will also be clear that R(D) = lim infn→∞
1
n

lnM(n,D). For
notational convenience, we only refer to the rate-distortion function as R(D), removing its
dependence on the subsource distributions as well as all the different cases of switcher power.

4.2.3 Literature Review

Before presenting the results of this chapter, let us consider some of the relevant results
about rate-distortion for arbitrarily varying sources, starting with IID sources.

One IID source Suppose m = 1. Then there is only one IID subsource p1 = p and
the switch position is determined to be sk = 1 for all time. This is exactly the classical
rate-distortion problem considered by Shannon [48], and he showed

R(D) = R(p,D).

Computing R(p,D) can be done with the Blahut-Arimoto algorithm [47], and also falls under
the umbrella of convex programming.

Compound source Now suppose that m > 1, but the switcher is constrained to choose
sk = s ∈ {1, . . . ,m} for all k. That is, the switch position is set once and remains constant
afterwards. Sakrison [50] studied the rate-distortion function for this class of compound
sources and showed that planning for the worst subsource is both necessary and sufficient.
Hence, for compound sources,

R(D) = max
p∈G

R(p,D).

Recall that G = {p1, . . . , pm} is the set of marginal distributions of the m subsources. This
result holds whether the switch position is chosen with or without knowledge of the realiza-
tions of the m subsources. Here, R(D) can be computed easily since m is finite and each
individual R(p,D) can be computed.

Strictly causal adversarial source In Berger’s setup [4], the switcher is allowed to
choose sk ∈ {1, . . . ,m} arbitrarily at any time k , but must do so in a strictly causal manner
without access to the current time step’s subsource realizations. More specifically, the switch
position sk is chosen as a (possibly random) function of (s1, . . . , sk−1) and (x1, . . . , xk−1). The
conclusion of [4] is that under these rules,

R(D) = max
p∈G

R(p,D), (4.2)
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where G is the convex hull of G. It should be noted that this same rate-distortion function
applies in the following cases [4]:

• The switcher chooses sk at each time k without any observations at all.

• The switcher chooses sk as a function of the first k − 1 outputs of all m subsources.

Note that in (4.2), evaluating R(D) involves a maximization over an infinite set, so the
computation of R(D) is not trivial since R(p,D) is not necessarily a concave-∩ function. A
simple, provable, approximate (to any given accuracy) solution is discussed in Section 4.7.

4.3 R(D) for the cheating switcher

In the conclusion of [4], Berger poses the question of what happens to the rate-distortion
function when the rules are tilted in favor of the switcher. Paraphrasing Berger:

As another example, suppose the switcher is permitted to observe the candidates
for xk generated by each [subsource] before (randomly) selecting one of them. Then
it can be shown that [R(D) (except in certain special cases) strictly increases]. The
determination of R(D) under these rules appears to be a challenging task.

Suppose that the switcher were given access to the m subsource realizations before having
to choose the switch positions; we call such a switcher a ‘cheating switcher’. In this chapter,
we deal with two levels of noncausality and show they are essentially the same when the
subsources are IID over time:

• The switcher chooses sk based on the realizations of the m subsources at time k. We
refer to this case as 1-step lookahead for the switcher.

• The switcher chooses (s1, . . . , sn) based on the entire length-n realizations of the m
subsources. We refer to this case as full lookahead for the switcher.

Theorem 9. Define the set of distributions

C =


∑

x∈V p(x) ≥ P
(
∀ l, xl ∈ V

)
p : ∀ V such that

V ⊆ X

 , (4.3)

where the event {∀ l, xl ∈ V} is shorthand for {(x1, . . . , xm) : xl ∈ V , l = 1, . . . ,m}. Also,
define

R̃(D) , max
p∈C

R(p,D).
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For a general set of distributions Q ⊂ P(X ), let Dmin(Q) , supp∈QDmin(p). Suppose the
switcher has either 1-step lookahead or full lookahead. In both cases, for D > Dmin(C),

R(D) = R̃(D)

For D < Dmin(C), R(D) = ∞ by convention because the switcher can simulate a distri-
bution for which the distortion D is infeasible for the coder.

Remarks:

• In non-degenerate cases, G is a strict subset of C, and thus R(D) can strictly increase
when the switcher is allowed to look at the present subsource realizations before choosing
the switch position.

• As a consequence of the theorem, we see that when the subsources within an AVS are
IID, knowledge of past subsource realizations is useless to the switcher, knowledge of
the current step’s subsource realizations is useful, and knowledge of future subsource
realizations beyond the current step is useless if 1-step lookahead is already given.

• Note that computing R̃(D) requires the further discussion given in Section 4.7, just as
it does for the strictly causal case of Berger.

Proof: We give a short outline of the proof here. See Appendix C.1 for the complete
proof. To show R(D) ≤ R̃(D), we use the type-covering lemma from [4]. It says for a fixed
type p in Pn(X ) and ε > 0, all sequences with type p can be covered within distortion D
with at most exp(n(R(p,D) + ε)) codewords for large enough n. Since there are at most
(n + 1)|X | distinct types, we can cover all n-length strings with types in C with at most

exp(n(R̃(D) + |X |
n

ln(n + 1) + ε)) codewords. Furthermore, we can show that types not
in C occur exponentially rarely even if the switcher has full lookahead, meaning that their
contribution to the average distortion can be bounded by d∗ times an exponentially decaying
term in n. Hence, the rate needed regardless of the switcher strategy is at most R̃(D) + ε
with ε > 0 arbitrarily small.

Now, to show R(D) ≥ R̃(D), we describe one potential strategy for the adversary. This

strategy requires only 1-step lookahead and it forces the coder to use rate at least R̃(D).
For each subset V ⊆ X with V 6= ∅ and |V| ≤ m, the adversary has a random rule f(·|V),
which is a probability mass function (PMF) on V . At each time k, if the switcher observes
a candidate set {x1,k, . . . , xm,k}, the switcher chooses to output x ∈ {x1,k, . . . , xm,k} with
probability f(x|{x1,k, . . . , xm,k}). If β(V) = P ({x1,k, . . . , xm,k} = V), let

D ,


p(·) =

∑
V β(V)f(·|V),

p ∈ P : f(·|V) is a PMF on V ,
∀ V s.t. V ⊆ X , |V| ≤ m

 . (4.4)
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D is the set of IID distributions the AVS can ‘simulate’ using these memoryless rules requiring
1-step lookahead. It is clear by construction that D ⊆ C. Also, it is clear that both
C and D are convex sets of distributions. Lemma 28 in Appendix C.1 uses a separating
hyperplane argument to show D = C. The adversary can therefore simulate any IID source
with distribution in C and hence R(D) ≥ R̃(D).

Qualitatively, allowing the switcher to ‘cheat’ gives access to distributions p ∈ C which
may not be in G. Quantitatively, the conditions placed on the distributions in C are precisely
those that restrict the switcher from producing symbols that do not occur often enough on
average. For example, let V = {1} where 1 ∈ X , and suppose that the subsources are
independent of each other. Then for every p ∈ C,

p(1) ≥
m∏
l=1

pl(1).

∏m
l=1 pl(1) is the probability that all m subsources produce the letter 1 at a given time. In

this case, the switcher has no option but to output the letter 1, hence any distribution the
switcher mimics must have p(1) ≥

∏m
l=1 pl(1). The same logic can be applied to all subsets

V of X .

4.4 Noisy observations of subsource realizations

A natural extension of the AVS model of Fig. 4.1 is to consider the case when the adversary
has noisy access to subsource realizations through a discrete memoryless channel. Suppose
we let the switcher observe yk at time k, which is probabilistically related to the subsource
realizations through a discrete memoryless multiple access channel W by

W (yk|x1,k, x2,k, . . . , xm,k).

Since the subsource probability distributions are already known, through an application
of Bayes’ rule, this model is equivalent to one in which the switcher observes a state, tk = yk,
noiselessly. Namely,

Pr(x1,k = x1, . . . , xm,k = xm|tk = t) =

P (x1, . . . , xm)W (t|x1, . . . , xm)∑
x′1,...,x

′
m
W (t|x′1, . . . , x′m)P (x′1, . . . , x

′
m)
.

Conditioned on the state, the m subsources emit symbols independent of the past according
to a conditional distribution. This model is depicted in Fig. 4.2.

The overall AVS is comprised now of a ‘state generator’ and a ‘symbol generator’ that
outputs m symbols at a time. The state generator produces the state tk at time k from a finite
set T . We assume the states are generated IID across time with distribution α(t). At time k,
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Figure 4.2: A model of an AVS encompassing both cheating and non-cheating switchers. Ad-
ditionally, this model allows for noisy observations of subsource realizations by the switcher.

the symbol generator outputs (x1,k, . . . , xm,k) according to P (x1,k, . . . , xm,k|tk). This model
allows for correlation among the subsources at a fixed time. Let pl(·|t), l = 1, . . . ,m, be the
marginals of this joint distribution so that conditioned on tk, xl,k has marginal distribution
pl(·|tk). For a fixed t ∈ T , let G(t) = conv(p1(·|t), . . . , pm(·|t)).

The switcher can observe states either with full lookahead or 1-step lookahead, but these
two cases will once again have the same rate-distortion function when the switcher is an
adversary. So assume that at time k, the switcher chooses the switch position sk with
knowledge of tn,xk−11 , . . . ,xk−1m . The strictly causal and 1-step lookahead switchers with
noiseless subsource observations can be recovered as special cases of this model. If the
conditional distributions pl(x|t) do not depend on t, the strictly causal switcher is recovered.
The full lookahead switcher with noiseless subsource observations is recovered by setting
T = Xm and letting pl(x|t) = 1(x = t(l)) where the state t is an m dimensional vector
consisting of the outputs of each subsource.

With this setup, we have the following extension of Theorem 9.

Theorem 10. For the AVS problem of Fig. 4.2, where the adversary has access to the states
either with 1-step lookahead or full lookahead,

R(D) = max
p∈Dstates

R(p,D), (4.5)

where

Dstates =

{
p :

p(·) =
∑

t∈T α(t)f(·|t)
f(·|t) ∈ G(t),∀ t ∈ T

}
. (4.6)

Proof: See Appendix C.2.

One can see that in the case of the cheating switcher of the previous section, the set D of
(4.4) equates directly with Dstates of (4.6). In that sense, from the switcher’s point of view,
D is a more natural description of the set of distributions that can be simulated than C.
Again, actually computing R(D) in (4.5) falls into the discussion of Section 4.7.
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4.5 The helpful switcher

Arbitrarily varying sources and channels have generally been associated with adversarial
source and channel coding, but in this section, we consider the helpful cheating switcher to
more thoroughly explore the information-theoretic game established in [4]. The goal of the
helpful switcher is to help the coding system achieve low distortion. The model is as follows:

• The coder chooses a codebook that is made known to the switcher.

• The switcher chooses a strategy to help the coder achieve distortion D on average with
the minimum number of codewords. We consider the cases where the switcher has full
lookahead or 1-step lookahead.

As opposed to the adversarial setting, a rate R is now achievable at distortion D if there exist
switcher strategies and codebooks for each n with expected distortion at most D and the
rates of the codebooks tend to R. The following theorem establishes R(D) if the cheating
switcher has full lookahead.

Theorem 11. Let X ∗ = {V ⊆ X : V 6= ∅, |V| ≤ m}. Let ρ : X ∗ × X̂ → [0, d∗] be defined by

ρ(V , x̂) = min
x∈V

d(x, x̂).

Let Vk = {x1,k, . . . , xm,k} for all k. Note that Vi, i = 1, 2, . . . is a sequence of IID random vari-
ables with distribution β(V) = P ({x1,1, . . . , xm,1} = V). Let R∗(β,D) be the rate-distortion
function for this new IID source with distribution β at distortion D with respect to the dis-
tortion measure ρ(·, ·). For the helpful cheating switcher with full lookahead,

R(D) = R∗(β,D). (4.7)

Proof: Rate-distortion problems are essentially covering problems, so we equate the
rate-distortion problem for the helpful switcher with the classical covering problem for the
observed sets Vi. If the switcher is helpful, has full lookahead, and knowledge of the codebook,
the problem of designing the codebook is equivalent to designing the switcher strategy and
codebook jointly. At each time k, the switcher observes a candidate set Vk and must select an
element from Vk. For any particular reconstruction codeword x̂n, and a string of candidate
sets (V1,V2, . . . ,Vn), the switcher can at best output a sequence xn such that

dn(xn, x̂n) =
1

n

n∑
k=1

ρ(Vk, x̂k)
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Hence, for a codebook B, the helpful switcher with full lookahead can select switch positions
to output xn such that, at best

dn(xn;B) = min
x̂n∈B

1

n

n∑
k=1

min
x∈Vk

d(x, x̂k)

= min
x̂n∈B

1

n

n∑
k=1

ρ(Vk, x̂k).

Therefore, for the helpful switcher with full lookahead, the problem of covering the X space
with respect to the distortion measure d(·, ·) now becomes one of covering the X ∗ space with
respect to the distortion measure ρ(·, ·).

Remarks:

• Computing R(D) in (4.7) can be done by the Blahut-Arimoto algorithm [21].

• In the above proof, full lookahead was required in order for the switcher to align the
entire output word of the source with the minimum distortion reconstruction codeword
as a whole. This process cannot be done with 1-step lookahead and so the R(D) function
for a helpful switcher with 1-step lookahead remains an open question, but we have the
following corollary of Theorems 9 and 11.

Corollary 1. For the helpful switcher with 1-step lookahead,

R∗(β,D) ≤ R(D) ≤ min
p∈C

R(p,D)

Proof: If the switcher has at least 1-step lookahead, it immediately follows from the
proof of Theorem 9 that R(D) ≤ minp∈C R(p,D). The question is whether or not any lower
rate is achievable. We can make the helpful switcher with 1-step lookahead more powerful
by giving it n-step lookahead, which yields the lower bound R∗(β,D).

An example in Section 4.6.2 shows that in general, we have the strict inequalityR∗(β,D) <
minp∈C R(p,D).

One can also investigate the helpful switcher problem when the switcher has access to
noisy or partial observations as in Section 4.4. This problem has the added flavor of remote
source coding because the switcher can be thought of as an extension of the coder and
observes data correlated with the source to be encoded. However, the switcher has the
additional capability of choosing the subsource that must be encoded. For now, this problem
is open and we can only say that R(D) ≤ minp∈Dstates R(p,D).

4.6 Examples

We illustrate the results with several simple examples using binary alphabets and Hamming
distortion, i.e., X = X̂ = {0, 1} and d(x, x̂) = 1(x 6= x̂). Recall that the rate-distortion
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function of an IID binary source with distribution (1− p, p), p ∈ [0, 1
2
] is

R((1− p, p), D) =

{
hb(p)− hb(D) D ∈ [0, p]

0 D > p
,

where hb(p) is the binary entropy function (in bits for this section).

x1,1 x1,2, ,

x2,1 x2,2, ,

x , x ,...1 2

t , t ,..1 2z , z ,..1 2 T
Switch

Selection

Bernoulli
1/4

Bernoulli
1/3

Figure 4.3: Two independent Bernoulli subsources, which produce 1’s with probabilities 1/4
and 1/3.

4.6.1 Bernoulli 1/4 and 1/3 sources

Consider the example shown in Fig. 4.3 where the switcher has access to two independent IID
Bernoulli subsources. Subsource 1 outputs 1 with probability 1/4 and subsource 2 outputs 1
with probability 1/3, so p1 = (3/4, 1/4) and p2 = (2/3, 1/3). At time i, the switcher is given
access to an observation tk = T (x1,k, x2,k, zk) where T is a function and zk is independent
noise (that is, the switcher observes a potentially noisy version of the subsource realizations).

First, we consider the switcher as an adversary in the traditional strictly causal setting
of [4] and the 1-step lookahead setting, where switcher has the subsource realizations tk =
(x1,k, x2,k) before choosing the switch position. For any time k,

P (x1,k = x2,k = 0) =
3

4
· 2

3
=

1

2

P (x1,k = x2,k = 1) =
1

4
· 1

3
=

1

12

P ({x1,k, x2,k} = {0, 1}) = 1− 1

2
− 1

12
=

5

12
.

If the switcher is allowed 1-step lookahead and has the option of choosing either 0 or
1, suppose the switcher chooses 1 with probability f1. The coder then sees an IID binary
source with a probability of a 1 occurring being equal to:

p(1) =
1

12
+

5

12
f1.
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By using f1 as a parameter, the switcher can produce 1’s with any probability between
1/12 and 1/2. The attainable distributions are shown in Fig. 4.4. The switcher with
lookahead can simulate a significantly larger set of distributions than the strictly causal
switcher, which is restricted to outputting 1’s with a probability in [1/4, 1/3]. Thus, for the
strictly causal switcher, R(D) = hb(1/3)− hb(D) for D ∈ [0, 1/3] and for the switcher with
1-step or full lookahead, R(D) = 1− hb(D) for D ∈ [0, 1/2].

We now look at several variations of this example to illustrate the utility of noisy or
partial observations of the subsources for the switcher. In the first variation, the switcher
observes the mod-2 sum of the two subsources tk = x1,k⊕x2,k. Theorem 10 then implies that
R(D) = hb(1/3) − hb(D) for D ∈ [0, 1/3]. Hence, the mod-2 sum of these two subsources
is useless to the switcher in deciding the switch position. This is intuitively clear from the
symmetry of the mod-2 sum. If tk = 0, either both subsources are 0 or both subsources are
1, so the switch position doesn’t matter in this state. If tk = 1, one of the subsources has
output 1 and the other has output 0, but because of the symmetry of the mod-2 function,
the switcher’s prior as to which subsource output the 1 does not change and it remains that
subsource 2 was more likely to have output the 1.

In the second variation, the switcher observes the second subsource directly but not the
first, so tk = x2,i for all k. Using Theorem 10 again, it can be deduced that in this case
R(D) = 1−hb(D) for D ∈ [0, 1/2]. This is also true if tk = x1,k for all i, so observing just one
of the subsources noncausally is as beneficial to the switcher as observing both subsources
noncausally. This is clear in this example because the switcher is attempting to output as
many 1’s as possible. If t = 1, the switcher will set the switch position to 2 and if t = 0, the
switcher will set the switch position to 1 as there is still a chance that the first subsource
outputs a 1.

For this example, the helpful cheater with 1-step lookahead has a rate-distortion function
that is upper bounded by hb(1/12) − hb(D) for D ∈ [0, 1/12]. The rate-distortion function
for the helpful cheater with full lookahead can be computed from Theorem 11. In Fig. 4.5,
the rate-distortion function is plotted for the situations discussed so far.

Finally, consider an example where an adversarial switcher observes only the second
subsource through a binary symmetric channel with crossover probability δ ∈ [0, 1/2], i.e.,
tk = x2,k⊕zk where zk is a Bernoulli sequence that produces 1’s with probability δ. Applying
Theorem 10 again, it can be shown that if δ ∈ [0, 2/5],

R(D) = hb

(
1

2
− 5

12
δ

)
− hb(D), D ∈

[
0,

1

2
− 5

12
δ

]
and if δ ∈ [2/5, 1/2],

R(D) = hb

(
1

3

)
− hb(D), D ∈

[
0,

1

3

]
.

Here, increasing δ decreases the switcher’s knowledge of the subsource realizations. Some-
what surprisingly, the utility of the observation is exhausted at δ = 2/5, even before the state
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0 11/4 1/3

1/21/12

P(x=1)

Strictly causal knowledge

Noncausal knowledge

Figure 4.4: The binary distributions the switcher can mimic. G is the set of distributions
the switcher can mimic with strictly causal access to subsource realizations, and C is the set
attainable with noncausal access.
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Figure 4.5: R(D) for the cheating switcher and the non-cheating switcher with Bernoulli 1/4
and 1/3 subsources. Also, the rate-distortion function for the examples of Fig. 4.3 where
tk = x1,k ⊕ x2,k and tk = x2,k.
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and observation are completely independent at δ = 1/2. This can be explained through the
switcher’s a posteriori belief that the second subsource output was a 1 given the state. If the
switcher observes tk = 1 and δ ≤ 1/2, p(x2,k = 1|tk = 1) ≥ 1/3 > 1/4 so the switch position
will be set to 2. When the switcher observes tk = 0, if δ ≤ 2/5, p(x2,k = 1|tk = 0) ≤ 1/4, so
the switch will be set to position 1. However, if δ > 2/5, p(x2,k = 1|tk = 0) > 1/4, so the
switch position will be set to 2 even if t = 0 because the switcher’s a posteriori belief is that
the second subsource is still more likely to have output a 1 than the first subsource. Fig. 4.6
shows R(D) for this example as a function of δ for two values of D.
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Figure 4.6: R(D) as a function of the noisy observation crossover probability δ for D = 1/3
and D = 1/4 for the example of Fig. 4.3 with tk = x2,k ⊕ zk and zk ∼ B(δ).

4.6.2 Two Bernoulli 1/2 subsources

Suppose m = 2, and the subsources are independent Bernoulli 1/2 IID processes. For this
example, the rate-distortion function is R(D) = 1 − hb(D) for D ∈ [0, 1/2] whether the
adversarial switcher is strictly causal, causal or noncausal. When the helpful switcher has
1-step lookahead, R(D) ≤ RU(D) = hb(1/4) − hb(D) for D ∈ [0, 1/4]. One can also think
of this upper bound as being the rate-distortion function for the helpful switcher with 1-
step lookahead that is restricted to using memoryless, time-invariant rules. Using Theorem
9.4.1 of [17] and Theorem 11, one can show that when the switcher has full lookahead with
tk = (x1,k, x2,k),

R(D) = R∗(β,D) =
1

2
[1− hb(2D)] , D ∈ [0, 1/4].

The plot of these functions in Fig. 4.7 shows that the rate-distortion function can be sig-
nificantly reduced if the helpful switcher is allowed to observe the entire block of subsource
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realizations. It is also interesting to note how the switcher with full lookahead helps the coder
achieve a rate of R∗(β,D). In this example X ∗ = {{0}, {1}, {0, 1}}, ρ({0}, x̂) = 1(0 6= x̂),
ρ({1}, x̂) = 1(1 6= x̂), ρ({0, 1}, x̂) = 0 and β = (1/4, 1/4, 1/2). The R∗(β,D) achieving

distribution on X̂ is (1/2, 1/2), but R∗(β,D) < 1− hb(D). The coder is attempting to cover
strings with types near (1/2, 1/2) but with far fewer codewords than are needed to actually
cover all such strings. This problem is circumvented through the aid provided by the switcher
in pushing the output of the source inside the Hamming D-ball of a codeword. This is in
contrast to the strategy that achieves RU(D), where the switcher makes the output an IID
sequence with as few 1’s as possible and the coder is expected to cover all strings with types
near (3/4, 1/4).
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Figure 4.7: The R(D) function for an AVS with two Bernoulli 1/2 sources when the switcher
is helpful with full lookahead. For 1-step lookahead, the upper bound is shown.

4.7 Computing R(D) for an AVS

The R(D) function for an adversarial AVS with either causal or noncausal access to the
subsource realizations is of the form

R(D) = max
p∈Q

R(p,D), (4.8)

where Q is a set of distributions in P(X ). In (4.2), (4.3), and (4.6) Q is defined by a
finite number of linear inequalities and hence is a polytope. The number of constraints in
the definition of Q is exponential in |X | or |T | when the adversary has something other
than strictly causal knowledge. Unfortunately, the problem of finding R(D) is not a convex
program because R(p,D) is not a concave-∩ function of p in general. In fact, R(p,D) may
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not even be quasi-concave and may have multiple local maxima with values different from
the global maximum, as shown by Ahlswede [45].

Since standard convex optimization tools are unavailable for this problem, we consider the
question of how to approximate R(D) to within some (provable) precision. That is, for any
ε > 0, we will consider how to provide an approximationRa(D) such that |Ra(D)−R(D)| ≤ ε.
Note that for fixed p, R(p,D) can be computed efficiently by the Blahut-Arimoto algorithm
to any given precision, say much less than ε. Therefore, we assume that R(p,D) can be
computed for a fixed p and D. We also assume D ≥ Dmin(Q) since otherwise R(D) = ∞.
Checking this condition is a linear program since Q is a polytope and Dmin(p) is linear in p.

We will take a ‘brute-force’ approach to computing R(D). That is, we wish to compute
R(p,D) for (finitely) many p and then maximize over the computed values to yield Ra(D).
Since R(p,D) is uniformly continuous in p, it is possible to do this and have |Ra(D)−R(D)| ≤
ε provided enough distributions p are ‘sampled’. Undoubtedly, there are other algorithms to
compute R(D) that likely have better problem-size dependence. In this section, we are only
interested in showing that R(D) can provably be computed to within any required precision
with a finite number of computations.

4.7.1 Uniform continuity of R(p,D)

The main tool used to show that the rate-distortion function can be approximated is an
explicit bound on the uniform continuity of R(p,D) in terms of ‖p−q‖1 =

∑
x∈X |p(x)−q(x)|

for distortion measures that allow for 0-distortion to be achieved regardless of the source.
In [21], a bound on the continuity of the entropy of a distribution is developed in terms of
‖p− q‖1.

Lemma 8 (Uniform continuity of entropy, [21]). Let p and q be two probability distributions
on X such that ‖p− q‖1 ≤ 1/2, then

|H(p)−H(q)| ≤ ‖p− q‖1 ln
|X |

‖p− q‖1
.

In the following lemma, a similar uniform continuity is stated for R(p,D). The proof
makes use of Lemma 8.

Lemma 9 (Uniform continuity of R(p,D)). Let d : X ×X̂ → [0, d∗] be a distortion function.

d̃ is the minimum nonzero distortion from (4.1). Also, assume that for each x ∈ X , there is

an x̂0(x) ∈ X̂ such that d(x, x̂0(x)) = 0. Then, for p, q ∈ P(X ) with ‖p− q‖1 ≤ d̃
4d∗

, for any
D ≥ 0,

|R(p,D)−R(q,D)| ≤ 7d∗

d̃
‖p− q‖1 ln

|X ||X̂ |
‖p− q‖1

. (4.9)
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Proof: See Appendix C.3.

The restriction that d(x, ·) has at least one zero for every x can be relaxed if we are
careful about recognizing when R(p,D) is infinite. For an arbitrary distortion measure

d : X × X̂ → [0, d∗], define another distortion measure d0 : X × X̂ → [0, d∗] by

d0(x, x̂) = d(x, x̂)−min
x̃∈X̂

d(x, x̃).

Now let d∗0 = maxx,x̂ d0(x, x̂) and d̃0 = min(x,x̂):d0(x,x̂)>0 d0(x, x̂). We have defined d0(x, x̂) so
that Lemma 9 applies, so we can prove the following lemma.

Lemma 10. Let p, q ∈ P(X ) and let D ≥ max(Dmin(p), Dmin(q)). If ‖p− q‖1 ≤ d̃0/4d
∗,

|R(p,D)−R(q,D)| ≤ 11d∗

d̃0
‖p− q‖1 ln

|X ||X̂ |
‖p− q‖1

.

Proof: See Appendix C.4.
As ‖p− q‖1 goes to 0, − ln ‖p− q‖1 goes to infinity slowly and it can be shown that for

any δ ∈ (0, 1) and γ ∈ [0, 1/2],

γ ln
|X ||X̂ |
γ

≤ (|X ||X̂ |)δ

eδ
γ1−δ. (4.10)

In the sequel, we let f(γ) = γ ln |X ||X̂ |
γ

for γ ∈ [0, 1/2] with f(0) = 0 by continuity. It can

be checked that f is strictly monotonically increasing and continuous on [0, 1/2] and hence
has an inverse function g : f([0, 1/2]) → [0, 1/2], i.e., g(f(γ)) = γ for all γ ∈ [0, 1/2]. Note
that g is not expressible in a simple ‘closed-form’, but can be computed numerically. Also,
by inverting (4.10), we have a lower bound on g(r) for any r ∈ [0, f(1/2)] and δ ∈ (0, 1),

g(r) ≥

 eδ(
|X ||X̂ |

)δ r


1/(1−δ)

. (4.11)

4.7.2 A bound on the number of distributions to sample

Returning to the problem of computing R(D) in (4.8), consider the following simple algo-
rithm. Without loss of generality, assume X = {1, 2, . . . , |X |}. Let γ ∈ (0, 1) and let γZ|X |−1
be the |X | − 1 dimensional integer lattice scaled by γ. Let Õ = [0, 1]|X |−1

⋂
γZ|X |−1. Now,

define

O =

q ∈ P(X ) :
∃ q̃ ∈ Õ s.t.

q(i) = q̃(i), i = 1, . . . , |X | − 1,

q(|X |) = 1−
∑|X |−1

i=1 q̃(i) ≥ 0

 .
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In words, sample the |X | − 1 dimensional unit cube, [0, 1]|X |−1, uniformly with points
from a scaled integer lattice. Embed these points in R|X | by assigning the last coordinate of
the new vector to be 1 minus the sum of the values in the original point. If this last value
is non-negative, the new point is a distribution in P(X ). The algorithm to compute Ra(D)
is then one where we compute R(p,D) for distributions q ∈ O that are in or close enough
to Q.

1. Fix a q ∈ O. If minp∈Q ‖p− q‖1 ≤ 2|X |γ, compute R(q,D), otherwise do not compute
R(q,D). Repeat for all q ∈ O.

2. Let Ra(D) be the maximum of the computed values of R(q,D), i.e.,

Ra(D) = max

{
R(q,D) : q ∈ O,

min
p∈Q
‖p− q‖1 ≤ 2|X |γ

}
.

Checking the condition minp∈Q ‖p− q‖1 ≤ γ2|X | is essentially a linear program, so it can be
efficiently solved. By setting γ according to the accuracy ε > 0 we want, we get the following
result.

Theorem 12. The preceding algorithm computes an approximation Ra(D) such that |Ra(D)−
R(D)| ≤ ε if

γ ≤ 1

2|X |
g

(
εd̃0

11d∗

)
.

The number of distributions for which R(q,D) is computed to determine R(D) to within
accuracy ε is at most7

N(ε) ≤

 2|X |

g
(
εd̃0
11d∗

) + 2

|X |−1 .
Proof: The bound on N(ε) is clear because the number of points in Õ is at most

(d1/γe+ 1)|X |−1 and every distribution in O is associated with one in Õ, so |O| ≤ |Õ|.
Now, we prove |Ra(D)−R(D)| ≤ ε. For this discussion, we let γ = 1

2|X |g
(
εd̃0
11d∗

)
. First, for

all p ∈ Q, there is a q ∈ O with ‖p− q‖1 ≤ g
(
εd̃0
11d∗

)
= 2|X |γ. To see this, let q̃(i) = bp(i)

γ
cγ

7This is clearly not the best bound as many of the points in the unit cube do not yield distributions
on P(X ). The factor by which we are overbounding is roughly |X |!, but this factor does not affect the
dependence on ε.
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for i = 1, . . . , |X | − 1. Then q̃ ∈ Õ, and we let q(i) = q̃(i) for i = 1, . . . , |X | − 1. Note that

q(|X |) = 1−
|X |−1∑
i=1

q(i) = 1−
|X |−1∑
i=1

⌊
p(i)

γ

⌋
γ

≥ 1−
|X |−1∑
i=1

p(i) = p(|X |) ≥ 0.

Therefore q ∈ O and furthermore,

‖p− q‖1 ≤

1−
|X |−1∑
i=1

(p(i)− γ)− p(|X |)

+

|X |−1∑
i=1

(
p(i)−

⌊
p(i)

γ

⌋
γ

)

≤ 2(|X | − 1)γ ≤ 2|X |γ ≤ g

(
εd̃0

11d∗

)
.

By Lemma 10, R(q,D) ≥ R(p,D) − ε. This distribution q (or possibly one closer to
p) will always be included in the maximization yielding Ra(D), so we have Ra(D) ≥
maxp∈QR(p,D)− ε = R(D)− ε.

Conversely, for a q ∈ O, if minp∈Q ‖p− q‖1 ≤ 2|X |γ, Lemma 10 again gives

R(q,D) ≤ max
p∈Q

R(p,D) + ε = R(D) + ε

Therefore, |Ra(D)−R(D)| ≤ ε. To get a sense of how N(ε) scales as ε goes to 0, we can use

the bound of (4.11) with an arbitrary value of δ ∈ (0, 1). For example, with δ = 1/2, the
scaling becomes

N(ε) ≤

 2|X |(
ed̃0

22d∗
√
|X ||X̂ |

)2 ·
1

ε2
+ 2


|X |−1

= O
(
(1/ε)2(|X |−1)

)
.

4.7.3 Estimation of the rate-distortion function of an unknown
IID source

An explicit bound on the continuity of the rate-distortion function has other applications.
Recently, Harrison and Kontoyiannis [51] have studied the problem of estimating the rate-
distortion function of the marginal distribution of an unknown source. Let pxn be the
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(marginal) empirical distribution of a vector xn ∈ X n. They show that the ‘plug-in’ estimator
R(pxn , D), the rate-distortion function of the empirical marginal distribution of a sequence,
is a consistent estimator for a large class of sources beyond just IID sources with known
alphabets. However, if the source is known to be IID with alphabet size |X |, estimates of
the convergence rate (in probability) of the estimator can be provided using the uniform
continuity of the rate-distortion function.

Suppose the true source is IID with distribution p ∈ P(X ) and fix a probability τ ∈ (0, 1)
and an ε ∈ (0, ln |X |). We wish to answer the question: How many samples n need to be
taken so that |R(pxn , D)−R(p,D)| ≤ ε with probability at least 1−τ? The following lemma
gives a sufficient number of samples n.

Lemma 11. Let d : X × X̂ → [0, d∗] be a distortion measure for which Lemma 9 holds. For
any p ∈ P(X ), τ ∈ (0, 1), and ε ∈ (0, ln |X |),

P (|R(pxn , D)−R(p,D)| ≥ ε) ≤ τ

if

n >
2

g
(
εd̃
7d∗

)2 (ln
1

τ
+ |X | ln 2

)
. (4.12)

Proof: From Lemma 9, we have

P (|R(pxn , D)−R(p,D)| ≥ ε) ≤ P

(
‖pxn − p‖1 ≥ g

(
εd̃

7d∗

))

≤ 2|X | exp

−n
2
g

(
εd̃

7d∗

)2


The last line follows from Theorem 2.1 of [52]. This bound is similar to, but a slight im-
provement over, the method-of-types bound of Sanov’s Theorem. Rather than an (n+ 1)|X |

term, we just have a 2|X | term multiplying the exponential. Taking ln of both sides gives the
desired result.

We emphasize that this number n is a sufficient number of samples regardless of what the
true distribution p ∈ P(X ) is. The bound of (4.12) depends only on the distortion measure

d, alphabet sizes |X | and |X̂ |, desired accuracy ε and ‘estimation error’ probability τ .

4.8 Concluding remarks

In this chapter, we have seen how the rate-distortion function for an AVS is affected by
various constraints on the switcher’s knowledge involving causality and noise in observa-
tions (see Table 4.1). Several other natural constraints come to mind. First, there might
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Switcher model R(D)
Time-invariant (adversarial) [50] maxp∈G R(p,D)
Strictly causal (adversarial) [42] maxp∈G R(p,D)

Causal or noncausal (adversarial) maxp∈C R(p,D)
Casual or noncausal

noisy observations (adversarial)
maxp∈Dstates R(p,D)

Noncausal (helpful) R∗(β,D)

Table 4.1: Summary of results.

be a constraint on how much information the switcher has when making its decisions on
subsampling. This could be handled by performing an optimization in Theorem 10 over all
channels from the subsources to the state observations that satisfy a mutual information
constraint. Secondly, one might be interested in studying the rate-distortion function if the
switching speed is fixed or constrained in some way. Another interesting area to study might
be ‘mismatched objectives’ where the switcher is trying to be helpful for some particular
distortion metric but the source is actually being encoded with a different metric in mind.
Here, some understanding of how the rate-distortion function behaves with continuity of the
metric might prove useful.

Finally, if the active sensor and coding system are part of a tightly delay-constrained
control loop, we would want to study these issues from the causal source code perspective
of [53]. It seems likely that the adversarial results of Theorems 9 and 10 would follow
straightforwardly with the same sets of distributions C and D, with the IID rate-distortion
function for noncausal source codes replaced by the IID rate-distortion functions for causal
source codes.
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Chapter 5

Conclusion

Let us now briefly look back on the contributions of this thesis and look forward to the
many interesting questions that remain. Chapters 2 and 3 focused on an upper bound to
the error exponent for two channel coding problems: fixed blocklength coding with feed-
back and fixed delay coding without feedback. The upper bound, called the Haroutunian
bound, has a noncausal interpretation. It assumes that a code may be able to predict future
channel behavior and adjust its input distribution accordingly, even though the channel is
memoryless. The Haroutunian exponent luckily evaluates to the sphere-packing exponent
for symmetric channels, but is strictly larger for asymmetric ones. It has been presumed
for both problems that the sphere-packing exponent is a valid upper bound to the error
exponent for all channels, but proving so ran into difficulty because little can be said about
the local input distribution used by an arbitrary code during the error event.

For block codes with feedback, the core difficulty is that the input distribution depends
on the channel behavior faced over the block through the feedback. However, the feedback
is causal, in the sense that an output is only produced after an input is put into the channel.
In Chapter 2, we documented several failed attempts made at circumventing this issue to
prove that sphere-packing must hold for block codes with feedback. Unable to make progress
for general codes, we then considered codes with feedback for which the input type is fixed
regardless of the output sequence. We showed that for these ‘fixed-type encoding tree’ codes,
the code appears to have the same input-output profile as a code without feedback when
one considers the conditional relationship between input and output sequences. This result
solidified the intuition that the only way a code with feedback could beat the sphere-packing
bound is by changing its input distribution according to the channel behavior it sees. Next,
we showed that if the feedback information is delayed, the sphere-packing exponent holds in
the limit of large delays in the feedback path. This result was reinterpreted by looking at
the Haroutunian exponent for a parallel channel constructed by using the original channel
T times independently. We showed that, surprisingly, the Haroutunian exponent for the
parallel channel converges to the sphere-packing exponent for the original channel as T gets
large after normalization. In essence, this means that when grouping asymmetric channel
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uses together, the resulting channel looks more and more symmetric.
Ultimately, we were not able to show that the sphere-packing exponent holds for block

codes with feedback without placing restrictions on the encoder. Why is this? Perhaps it
is because beating the sphere-packing bound is possible with feedback over an asymmetric
channel, although we think it unlikely. In our estimation, more needs to be understood
about encoding trees with feedback. If they are not constrained to use fixed type inputs,
is it possible that they can recognize when an error is unavoidable and ‘give up’ to yield
something like the Haroutunian exponent? This seems unlikely because the Haroutunian
exponent minimizing channel will be a channel V for which the capacity, C(V ) is (almost)
equal to the rate R due to the convexity of capacity and conditional divergence. So, even if
part of the way through the block, the encoder realizes the channel W is behaving like V , it
cannot give up on decoding properly because for the rest of the block, the channel is likely
to behave like W . Because W has a capacity larger than R, a good code will make up for
poor channel behavior earlier in the block by using good channel behavior later in the block.
After all, the whole point of channel coding is to smooth out channel noise over long periods
of time. So we should not expect that the a good code will behave in such a way to yield
anything like the Haroutunian exponent.

Additional progress in the practical problem could be made by studying noisy feedback.
Much like delay, noise is an unavoidable hindrance in the feedback path of most systems. It
would be interesting to know if small amounts of noise in the feedback path can be used to
prove an upper bound to the error exponent much closer to the sphere-packing exponent for
asymmetric channels.

In Chapter 3, we studied fixed delay coding without feedback, another problem where
the Haroutunian exponent was the best known upper bound to the error exponent. In
fixed delay coding without feedback, there is no conceivable method by which a code could
tailor its input distribution for the channel behavior it faces because there is no feedback
information. Rather, the Haroutunian exponent comes up because little is known about
the input distribution over short periods of communication between when an individual bit
arrives at the encoder and when it is decoded. Using the result about the Haroutunian
exponent for parallel channels, we were able to show that the sphere-packing exponent holds
for fixed delay codes. While this is exactly what we wanted to prove, we should hope for
more. The proof of Section 3.5 yields only an asymptotic result. Ideally, we would like a
lower bound to the error probability for fixed delay codes with good constant factors, i.e.,
something of the form

Pe(d,R) ≥ exp

(
−d

[
Esp

(
R−O

(
log d

d

))
+O

(√
log d

d

)])
.

Such a lower bound could then be turned around to give an upper bound on the maximum
rate of information that can be communicated for a given error probability and delay, akin
to the perspective of Polyanskiy et al. [11] for block coding.
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Finally, the Haroutunian exponent shows up as the best known upper bound to the error
exponent for message-passing decoding on VLSI circuitry [38]. Once again, like fixed delay
coding, one gets the Haroutunian bound because the local input type for the ‘neighborhood’
of channel outputs that a bit’s decoder sees is not known. The parallel channel trick used
for fixed delay codes does not work in this case, so it would seem that a new approach to
proving the sphere-packing bound for asymmetric channels must be devised.

The second part of the thesis continued the study of the source coding game and arbi-
trarily varying sources. In Berger’s paper [4], the question was asked of what happens to
the rate-distortion function for the adversarial arbitrarily varying source if the switcher has
noncausal knowledge of the memoryless subsources’ realizations. In Chapter 4, we character-
ized the R(D) function for this case, and extended it to allow for the switcher to have both
noisy and noncausal knowledge of subsource realizations. The characterization showed that
noncausal knowledge allowed the switcher to enlarge the set of distributions the output of
the AVS could ‘simulate’. We saw that knowledge of the future does not increase the R(D)
function any more once knowledge of present subsources realizations are given to the switcher
before deciding the switch position. We also studied the helpful switcher, who is trying to
help the coder use the lowest possible rate to achieve a specified distortion. There, we could
only characterize the R(D) function if the switcher was given fully noncausal knowledge of
subsource realizations. Finally, as an aside used for the computation of the R(D) function,
we proved a result about the uniform continuity of the rate-distortion function analogous to
one for entropy.

The big question for the future pertaining to arbitrarily varying sources is what happens
when the subsources have memory. Subsources with memory are of practical interest because
the sources that motivate the consideration of AVSs the most are video streams in active
vision. Dobrushin [54] has analyzed the case of the non-anticipatory AVS composed of in-
dependent subsources with memory with different distributions when the switcher is passive
and blindly chooses the switch position. In the case of subsources with memory, additional
knowledge will no doubt increase the adversary’s power to increase the rate-distortion func-
tion. If we let R(k)(D) be the rate-distortion function for an AVS composed of subsources
with memory and an adversary with k step lookahead, one could imagine that in general,

R(0)(D) < R(1)(D) < R(2)(D) < · · · < R(∞)(D).

Results that can be evaluated with finite dimensional optimizations are especially desirable,
but it is not clear if they are attainable.
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Appendix A

Block coding appendix

A.1 Definitions and notation for Chapter 2

This section introduces the notation used throughout Chapter 2. However, for those familiar
with information theory, a glance through Tables 2.1 and 2.2 might suffice to read through
the chapter.

A.1.1 Alphabets, channels and distributions

The finite channel input and output alphabets are X and Y respectively. We let xn =
(x1, . . . , xn) denote a length n vector1 from X n and similarly for yn. Uppercase versions
of symbols are generally meant to denote random variables. For example Xn is a random
vector, while xn is a fixed deterministic vector. We let P denote the set of distributions
(probability mass functions) on X and Q the set of distributions on Y . A distribution P on
X is a vector of non-negative real numbers such that

∑
x P (x) = 1.

A channel, or more formally, a channel transition matrix W , from X to Y is a non-
negative real matrix with X rows and Y columns with values denoted by W (y|x) for each
x ∈ X , y ∈ Y . The rows of W are distributions on Y , that is,

∑
yW (y|x) = 1 for all x ∈ X .

We let W denote the set of channel transition matrices from X to Y . Occasionally, we will
write V (·|x) to refer to the distribution on Y given by fixing x.

A.1.2 Types and conditional types

The concept and properties of types and conditional types is explained quite well in the
textbook of Csiszár and Körner [47], as well as the survey article on the method of types by

1Throughout the thesis, when we speak of vectors from X or Y, we mean only tuples from the alphabet,
no formal algebraic vector space definition is implied. The only vector spaces in this thesis are real vector
spaces corresponding to the native spaces of distributions on X and Y.
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Csiszar [32]. Here, we only define the notation as used in this thesis, assuming the reader is
familiar with the terms. We let Pn ⊂ P be the set of types of X n, i.e. the set of types of
length n vectors from X . For a type P ∈ Pn, TP denotes the type class of P , i.e. the set of
vectors in X n with type P . Similarly, Qn ⊂ Q denotes the set of types of length n for Y .

For a type P ∈ Pn, we let Vn(P ) denote the set of conditional types of length n ‘com-
patible’ with P . That is, if for each x that P (x) > 0, V (·|x) ∈ QnP (x), then V ∈ Vn(P ).
Together, the pair (P, V ) defines a joint type on X n × Yn. For a vector xn of type P ∈ Pn
and conditional type V ∈ Vn(P ), define the V -shell around xn, TV (xn), to be the set of yn

such that

∀ x, y, |{i : (xi = x, yi = y)}|
n

= nP (x)V (y|x).

The V -shell for conditional types is analogous to the type class for types.

A.1.3 Functions on distributions and channels

Throughout this thesis, we will use log to denote the logarithm to base e, but the results can
apply to any base so long as the exponential function and logarithm are taken to the same
base. For a distribution P on an alphabet2 X , we define the entropy of P to be

H(P ) =
∑
x

P (x) log
1

P (x)
.

The conditional entropy of a channel V and input distribution P is defined to be

H(V |P ) =
∑
x

P (x)
∑
y

V (y|x) log
1

V (y|x)
=
∑
x

P (x)H(V (·|x)).

The mutual information of input distribution P over channel V is defined to be I(P, V ) =
H(PV )−H(V |P ) where PV denotes the distribution on Y given by

∀ y ∈ Y , (PV )(y) =
∑
x

P (x)V (y|x).

If X and Y are random variables on X and Y respectively, the mutual information I(X;Y )
is equal to the mutual information I(P, V ) where P is the distribution of X and V (y|x) =
P(Y = y|X = x) is the conditional probability. Throughout the thesis, the symbol P denotes
a relevant probability measure, which should be clear from context. The divergence3 between
two distributions P and P̃ on X is

D(P ||P̃ ) =
∑
x

P (x) log
P (x)

P̃ (x)
.

2The alphabet in these definitions is arbitrary, so long as it is finite.
3By continuity, 0 log 0

0 = 0, 0 log 1
0 =∞, 0 log 0

1 = 0.
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The conditional divergence between two channels V and W when the input distribution is
P is

D(V ||W |P ) =
∑
x

P (x)D(V (·|x)||W (·|x)) =
∑
x,y

P (x)V (y|x) log
V (y|x)

W (y|x)
.

The L1 distance between two distributions P, P ′ ∈ P is

||P − P ′||1 =
∑
x

|P (x)− P ′(x)|.

A.1.4 Fixed blocklength channel codes

In our model, the communication medium is assumed to be a stationary discrete memoryless
channel (DMC) W . That means that at any time j ∈ N,

∀ x ∈ X , y ∈ Y , PW (Yj = y|Xj = x) = W (y|x),

where the subscript in PW is used to denote that the channel is W . Further the memoryless
portion of the definition can be taken to mean that for any j ∈ N,

∀ x ∈ X , y ∈ Y , yj−1 ∈ Yj−1, PW (Yj = y|Xj = x, Y j−1 = yj−1) = W (y|x).

A fixed blocklength channel code can either have feedback or not have feedback. In
either case, a fixed blocklength code has a blocklength n, message set M and decoding
regions {Dm}m∈M. Without loss of generality (WLOG), M = {1, . . . , |M|}, where |M| is
referred to as the message set size or code size. The rate of the code is

R =
1

n
log |M|.

The decoding regions, Dm,m ∈ M, are disjoint subsets of Yn that cover Yn. If Y n = yn,
the decoder is assumed to produce a ‘decoded message’ of M̂ = m, where yn ∈ Dm.

A fixed blocklength n code without feedback consists of |M| codewords in X n. The
codeword for message m is denoted by φ(m) ∈ X n or equivalently, φ(m) = xn(m) =
(x1(m), x2(m), . . . , xn(m)), where xi(m) denotes the input symbol at time i when the mes-
sage is m. For a given fixed blocklength n code without feedback, message m, and channel
output vector yn,

PW (Y n = yn|M = m) =
n∏
j=1

W (yj|xj(m)),

where M = m denotes conditioning on the event that the random message M is equal to m.
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A fixed blocklength n code with (noiseless, delayless output) feedback4 consists of |M|
encoding functions or encoding trees, which tell the encoder what input symbol to use
depending on the message and received channel outputs. For each m, at time i, if the past
received channel symbols are yi−1, then input is denoted xi(m, y

i−1). For the whole block,
we use xn(m, yn) = (x1(m), x2(m, y

1), . . . , xn(m, yn−1)) to denote the input vector when the
message is m and the output vector is yn (note that the input vector does not actually
depend on the last received symbol yn with this notation). We let P (m, yn) denote the type
of the input xn(m, yn) when the message is m and received output vector is yn. We let
V (m, yn) denote the conditional type whose V -shell yn lies in when the input is xn(m, yn).
For a P ∈ Pn, U ∈ Vn(P ), let for each m ∈M,

B(m,P, U) = {yn : P (m, yn) = P, V (m, yn) = U} .

For a fixed blocklength n code with feedback, channel output vector yn and message m,

PW (Y n = yn|M = m) =
n∏
i=1

W (yi|xi(m, yi−1)).

Note that the definitions of P (m, yn), V (m, yn) and B(m,P, U) are well defined for fixed-
length block codes without feedback as well. If the code does not have feedback, P (m, yn)
and V (m, yn) do not depend on yn.

In the remainder of the thesis, we will refer to fixed blocklength channel codes as block
codes and fixed-length codes interchangeably. We will generally qualify if a result applies to
block codes with or without feedback. Of course, any block code without feedback is trivially
also a block code with feedback. For a given block code (either with or without feedback),
the (average) error probability5 under channel V is

Pe(V ) =
1

|M|
∑
m∈M

PV (Y n /∈ Dm|M = m) ,

and the (average) probability of correct reception under channel V is

Pc(V ) =
1

|M|
∑
m∈M

PV (Y n ∈ Dm|M = m) .

4Later in the chapter, we will discuss the notation for fixed blocklength codes with noiseless, delayed
feedback.

5All the results for block codes in this thesis pertain to average error probability. Maximum error
probability is another criterion that leads to the same error exponent results for the block coding problems
studied in this thesis.
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A.2 Sphere-packing without feedback via method of

types

Theorem 1 (first part) of Section 2.3: Fix a δ > 0. There is a finite nSP (W, δ) such
that for n ≥ nSP (W, δ), any block code of length n and rate R without feedback has

− 1

n
logPe(W ) ≤ Esp(R− δ) + δ.

Proof: By basic properties of types, we know that |Pn| ≤ (n+ 1)|X |. We have

|M| =

∣∣∣∣∣ ⋃
P∈Pn

M(P )

∣∣∣∣∣ =
∑
P∈Pn

|M(P )|,

where M(P ) = {m ∈M : φ(m) ∈ TP}. By the pigeon-hole principle, there must then exist
a P ∈ Pn (depending on the code) such that

|M(P )| ≥ |M|
(n+ 1)|X |

.

Now, we have

Pe(W ) =
1

|M|
∑
m∈M

P(Y n /∈ Dm|Xn = φ(m))

(a)

≥ 1

|M|
∑

m∈M(P )

P(Y n /∈ Dm|Xn = φ(m)) (A.1)

(b)
=

1

|M|
∑

m∈M(P )

∑
V ∈Vn(P )

∑
yn∈TV (φ(m))∩Dcm

P(Y n = yn|Xn = φ(m))

(c)
=

1

|M|
∑

m∈M(P )

∑
V ∈Vn(P )

∑
yn∈TV (φ(m))∩Dcm

exp (−n [D(V ||W |P ) +H(V |P )])

(d)
=

1

|M|
∑

V ∈Vn(P )

exp (−n [D(V ||W |P ) +H(V |P )])
∑

m∈M(P )

∑
yn∈TV (φ(m))∩Dcm

1

(e)
=

1

|M|
∑

V ∈Vn(P )

exp (−n [D(V ||W |P ) +H(V |P )])
∑

m∈M(P )

|TV (φ(m)) ∩ Dcm| . (A.2)

In the above, (a) is due to the sum being over fewer non-negative terms, (b) expands the
probability by summing over individual output vectors, (c) follows from the properties of
V -shells, (d) interchanges sums and (e) notes that the innermost sum in (d) is simply the
size of a set. Now, we need to understand when the term

∑
m∈M(P ) |TV (φ(m)) ∩ Dcm| is large.
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Now, ∀ m ∈M(P ), we know |TV (φ(m))| = |TV (φ(m))∩Dm|+ |TV (φ(m))∩Dcm|, so it follows
that ∑

m∈M(P )

|TV (φ(m)) ∩ Dcm| =
∑

m∈M(P )

|TV (φ(m))| − |TV (φ(m)) ∩ Dm|

(a)

≥ |M(P )| exp(nH(V |P ))

(n+ 1)|X ||Y|
−

∑
m∈M(P )

|TV (φ(m)) ∩ Dm|. (A.3)

In the above line, (a) follows by standard properties of V -shells. At this point, note that for
all m ∈ M(P ), TV (φ(m)) ∩ Dm are disjoint sets because Dm are disjoint. Furthermore, if
m ∈ M(P ), yn ∈ TV (φ(m)) implies that yn ∈ TPV also, where TPV is the type class of yn

vectors that have type PV . Therefore, we have

∑
m∈M(P )

|TV (φ(m)) ∩ Dm| =

∣∣∣∣∣∣
⋃

m∈M(P )

TV (φ(m)) ∩ Dm

∣∣∣∣∣∣
≤ |TPV |
≤ exp(nH(PV )).

Hence, plugging the above inequality into (A.3), we have∑
m∈M(P )

|TV (φ(m)) ∩ Dcm| ≥
|M(P )| exp(nH(V |P ))

(n+ 1)|X ||Y|
− exp(nH(PV ))

(a)

≥ exp(n(R +H(V |P )))

(n+ 1)|X |(1+|Y|)
− exp(nH(PV ))

(b)
= exp

(
n

(
R +H(V |P )− |X |(1 + |Y|)

n
log(n+ 1)

))
×[

1− exp

(
−n
(
R− I(P, V )− |X |(1 + |Y|)

n
log(n+ 1)

))]
.

In the above, (a) follows from the fact that |M(P )| is almost as large as |M| (at least
exponentially), and (b) follows by the fact that I(P, V ) = H(PV )−H(V |P ). We want the
term in brackets above to be close to 1, so we restrict the choice of V to those V that have
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I(P, V ) ≤ R− δ for some small δ > 0. Plugging this into (A.2) gives

Pe(W ) ≥ 1

|M|
∑

V ∈Vn(P ):I(P,V )≤R−δ

exp

(
−n
(
D(V ||W |P )−R +

|X |(1 + |Y|)
n

log(n+ 1)

))
×[

1− exp

(
−n
[
δ − |X |(1 + |Y|)

n
log(n+ 1)

])]
=

∑
V ∈Vn(P ):I(P,V )≤R−δ

exp

(
−n
(
D(V ||W |P ) +

|X |(1 + |Y|)
n

log(n+ 1)

))
×[

1− exp

(
−n
[
δ − |X |(1 + |Y|)

n
log(n+ 1)

])]
. (A.4)

Now, for n large enough, depending on |X |, |Y| and δ, we have that

(n+ 1)−|X |(1+|Y|)
[
1− exp

(
−n
[
δ − |X |(1 + |Y|)

n
log(n+ 1)

])]
≥ exp(−nδ),

so plugging into (A.4), we have that for n large enough,

Pe(W ) ≥ exp

(
−n
[

min
V ∈Vn(P ):I(P,V )≤R−δ

D(V ||W |P ) + δ

])
(a)

≥ exp

(
−n
[

max
P∈Pn

min
V ∈Vn(P ):I(P,V )≤R−δ

D(V ||W |P ) + δ

])
.

In the above, (a) follows because we do not know the most populous codeword type a priori,
so we take the most optimistic one in terms of the exponent. Now, we have a term that
depends on n that looks like the sphere-packing exponent. Lemma 6 of Appendix A.12.2
tells us that

max
P∈Pn

min
V ∈Vn(P ):I(P,V )≤R−δ

D(V ||W |P ) ≤ max
P∈P

min
V ∈W:I(P,V )≤R−δ− 2|X||Y|

n
log(n)

D(V ||W |P )

+ κW
|X ||Y|
n

+
|X ||Y|
n

log

(
n

|X |

)
= Esp

(
R− δ − 2|X ||Y|

n
log n

)
+

κW
|X ||Y|
n

+
|X ||Y|
n

log

(
n

|X |

)
,

where

κW = max
x,y:W (y|x)>0

log
1

W (y|x)
.
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Hence, for n large enough depending6 on κW , |X |, |Y| and δ, we have

Pe(W ) ≥ exp (−n [Esp(R− 2δ) + 2δ]) .

A.3 Sphere-packing without feedback via change of mea-

sure

Theorem 1 (second part) of Section 2.3: For any δ > 0, there exists a finite nsp(W, δ)
such that any block code without feedback of rate at least R and length n ≥ nsp(W, δ) has

− 1

n
logPe(W ) ≤ Esp (R− δ) + δ.

Proof: We will use a change-of-measure approach to prove that a high error probability
under channel V implies an error probability under channel W involving a divergence term
that is exponentially decaying with the sphere-packing exponent after proper selection of
V . To do so, we will use Lemma 12 in this Appendix and a lemma about what happens
to the error probability when we change measures. First, restrict attention to the largest
fixed-type subcode of the code being bounded. That is, assume that there is a P ∈ Pn such
that φ(m) ∈ TP for all m ∈ M. We know from Lemma 12 that if all codewords have the
same type P and R− I(P, V ) ≥ δ > 0,

Pc(V ) ≤ γSC(n, δ, |X |, |Y|)

with γSC being defined in Lemma 12. The critical feature of γSC is that γSC(n, δ, |X |, |Y|)→ 0
as n→∞. Now we can apply Lemma 18 of Appendix A.14 to get (since all codewords are
assumed to be of type P ∈ Pn),

Pe(W ) ≥ Pe(V ) exp

(
−n
[
D(V ||W |P ) +

max{κV , κW}
Pe(V )

β(n, |X |, |Y|)
])

,

where

β(n, |X |, |Y|) = inf
ε>0

ε+ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
.

Therefore,

Pe(W ) ≥ (1− γSC(n, δ, |X |, |Y|))×

exp

(
−n
[
D(V ||W |P ) +

max{κV , κW}
1− γSC(n, δ, |X |, |Y|)

β(n, |X |, |Y|)
])

.

6Note that |X |, |Y| and κW are all quantities that can be derived from W .
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At this point, we remove the restriction that all message codewords have to be of the
same type. Since there are at most (n+ 1)|X | types of length n for X n, there is at least one
type P that has at least |M|/(n+ 1)|X | codewords. We can apply the previous argument to
lower bound Pe(W ) for this subset of messages. This adds a penalty of |X | log(n + 1)/n to
the probability term (to account for the thinning of the code in order to make the preceding
argument). Furthermore, we must assume that R − |X | log(n + 1)/n − I(P, V ) = δ > 0
in order to apply Lemma 12. In the limit as n → ∞, however, these two penalties can be
absorbed into slack parameters in the exponent. Taking these two points into consideration
yields

Pe(W ) ≥ (1− γSC(n, δ, |X |, |Y|))
(n+ 1)|X |

×

exp

(
−n
[
D(V ||W |P ) +

max{κV , κW}
1− γSC(n, δ, |X |, |Y|)

β(n, |X |, |Y|)
])

,

where implicitly, we are now restricted to choices of V such that I(P, V ) ≤ R−δ−|X | log(n+
1)/n. Optimizing over such V (i.e. setting V to be the sphere-packing optimizing V ∗ for

type P at rate R− δ − |X |
n

log(n+ 1)) yields

Pe(W ) ≥ exp

(
−n
[
Esp

(
R− δ − |X |

n
log(n+ 1)

)
+

max{κV ∗ , κW}
1− γSC(n, δ, |X |, |Y|)

β(n, |X |, |Y|)
])
×

(1− γSC(n, δ, |X |, |Y|))
(n+ 1)|X |

.

Lemma 1 shows that κV ∗ ≤ κW + log |Y|, and we know that β(n, |X |, |Y|) = O

(√
logn
n

)
, so

Pe(W ) ≥ exp

(
−n

[
Esp

(
R− δ − |X |

n
log(n+ 1)

)
+

κW + log |Y|
1− γSC(n, δ, |X |, |Y|)

O

(√
log n

n

)])
×

(1− γSC(n, δ, |X |, |Y|))
(n+ 1)|X |

.

Since 1
n

log(n + 1) → 0 and γSC(n, δ, |X |, |Y|) → 0, it follows that for n large enough,
depending on κW , |X |, |Y| and δ,

− 1

n
logPe(W ) ≤ Esp(R− 2δ) + 2δ.

Lemma 12 (Strong converse without feedback). Fix a block code without feedback of length
n. Suppose there is a P ∈ Pn such that ∀ m ∈ M, φ(m) ∈ TP . Fix an ε ∈ (0, 1/2). Then,
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for any W ∈ W,

Pc(W ) ≤ exp

(
−n
[
ε2

2
− |X ||Y|

n
log(n+ 1)

])
+

exp

(
−n
[
R− I(P,W )− 2ε log

|X ||Y|
ε
− |Y|

n
log(n+ 1)

])
.

Therefore, we have

Pc(W ) ≤ γSC(n,R− I(P,W ), |X |, |Y|),

where

γSC(n, δ, |X |, |Y|) = inf
ε∈(0,1/2)

[
exp

(
−n
[
ε2

2
− |X ||Y|

n
log(n+ 1)

])
+

exp

(
−n
[
δ − 2ε log

|X ||Y|
ε
− |Y|

n
log(n+ 1)

])]
.

Note that γSC(n,R− I(P,W ), |X |, |Y|)→ 0 as n→∞ for a fixed R− I(P,W ) > 0.

Proof: Fix an ε ∈ (0, 1/2). For each m, define a typical set

Am,ε(W ) = {yn : yn ∈ TV (φ(m)), V ∈ Vn(P ), (P, V ) ∈ Jε(W )}

Jε(W ) =

{
(P, V ) ∈ P ×W :

∑
x

P (x)
∑
y

|V (y|x)−W (y|x)| ≤ ε

}
.

By Lemma 19 of Appendix A.14, we know that for each m,

PW (Y n /∈ Am,ε(W )|Xn = φ(m)) ≤ (n+ 1)|X ||Y| exp(−nε2/2).
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Now,

Pc(W ) =
1

|M|
∑
m∈M

PW (Y n ∈ Dm|Xn = φ(m))

=
1

|M|
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )|Xn = φ(m))+

1

|M|
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )c|Xn = φ(m))

≤ 1

|M|
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )|Xn = φ(m))+

1

|M|
∑
m∈M

PW (Y n ∈ Am,ε(W )c|Xn = φ(m))

≤ 1

|M|
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )|Xn = φ(m))+

(n+ 1)|X ||Y| exp

(
−nε

2

2

)
. (A.5)

Considering just the first term in the bound above, we have

T1 ,
1

|M|
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )|Xn = φ(m))

=
1

|M|
∑
m∈M

∑
V ∈Vn(P ):(P,V )∈Jε(W )

∑
yn∈Dm∩TV (φ(m))

PW (Y n = yn|Xn = φ(m))

=
1

|M|
∑
m∈M

∑
V ∈Vn(P ):(P,V )∈Jε(W )

∑
yn∈Dm∩TV (φ(m))

exp (−n [D(V ||W |P ) +H(V |P )])

=
1

|M|
∑
m∈M

∑
V ∈Vn(P ):(P,V )∈Jε(W )

|Dm ∩ TV (φ(m))| exp (−n [D(V ||W |P ) +H(V |P )])

=
∑

V ∈Vn(P ):(P,V )∈Jε(W )

exp (−n [D(V ||W |P ) +H(V |P ) +R])
∑
m∈M

|Dm ∩ TV (φ(m))|

≤
∑

V ∈Vn(P ):(P,V )∈Jε(W )

exp (−n [H(V |P ) +R])
∑
m∈M

|Dm ∩ TV (φ(m))|.

Now, we note that for all V such that (P, V ) ∈ Jε(W ), H(V |P ) is close to H(W |P ), as
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shown in Proposition 15, so we have

T1 ≤
∑

V ∈Vn(P ):(P,V )∈Jε(W )

exp

(
−n
[
H(W |P )− ε log

|X ||Y|
ε

+R

]) ∑
m∈M

|Dm ∩ TV (φ(m))|

= exp

(
−n
[
H(W |P )− ε log

|X ||Y|
ε

+R

]) ∑
V ∈Vn(P ):(P,V )∈Jε(W )

∑
m∈M

|Dm ∩ TV (φ(m))|

= exp

(
−n
[
H(W |P )− ε log

|X ||Y|
ε

+R

])
|Aε(W )| ,

where we have defined the union of the message-typical sets to be

Aε(W ) =
⋃
m∈M

Am,ε(W ).

From Proposition 7, we know that

|Aε(W )| ≤ (n+ 1)|Y| exp

(
n

[
H(PW ) + ε log

|Y|
ε

])
.

Hence,

T1 ≤ (n+ 1)|Y| exp

(
−n
[
H(W |P )−H(PW )− 2ε log

|X ||Y|
ε

+R

])
= (n+ 1)|Y| exp

(
−n
[
R− I(P,W )− 2ε log

|X ||Y|
ε

])
.

Plugging the bound above back into equation (A.5) gives the result of the lemma.

Proposition 7. Let PW denote the distribution induced on Y by the distribution P on X
with channel W , that is (PW )(y) =

∑
x P (x)W (y|x). Then,

|Aε(W )| ≤ (n+ 1)|Y| exp

(
n

[
H(PW ) + ε log

|Y|
ε

])
.

Proof: If yn ∈ Am,ε(W ), then yn ∈ TV (φ(m)) for some V ∈ Vn(P ) with∑
x

P (x)
∑
y

|V (y|x)−W (y|x)| ≤ ε.

This also implies that yn ∈ TPV ⊂ Yn, where PV ∈ Qn. Now, since V is not far from
W , we can show that PV is not far from PW .∑

y

|(PV )(y)− (PW )(y)| =
∑
y

∣∣∣∣∣∑
x

P (x)V (y|x)− P (x)W (y|x)

∣∣∣∣∣
≤
∑
x

P (x)
∑
y

|V (y|x)−W (y|x)|

≤ ε.
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Since we have assumed that ε ∈ (0, 1/2), we can apply Lemma 20 of Appendix A.14 to
deduce that

|H(PV )−H(PW )| ≤ ε log
|Y|
ε
.

Hence, if yn ∈ Aε(W ), we also have yn ∈ TQ for some Q ∈ Qn with |H(Q) − H(PW )| ≤
ε log |Y|

ε
. Therefore, by standard properties of types,

|Aε(W )| =
⋃
m∈M

Am,ε(W )

≤
⋃
Q∈Qn

|TQ|

≤ (n+ 1)|Y| exp

(
n

[
H(PW ) + ε log

|Y|
ε

])
.

A.4 Haroutunian exponent for fixed-length codes with

feedback

Theorem 2 of Section 2.3: For any δ > 0, there exists a finite nh(W,R, δ) such that any
fixed-length code with feedback of rate R and length n ≥ nh(W,R, δ) has

− 1

n
logPe(W ) ≤ Eh(R− δ) + δ.

Proof: We will use Lemma 13 of this Appendix to show that if the capacity of a test
channel V is too small, the error probability will be high. Then, we will use a change-of-
measure argument to show that the error probability under channel W will be the error
probability under V multiplied by an exponentially decaying divergence term that corre-
sponds to the Haroutunian exponent. Fix a test channel V . We know from Lemma 13 that
if R− C(V ) = δ > 0,

Pc(V ) ≤ γSC,fb(n, δ, |X |, |Y|)

with γSC,fb being defined in Lemma 13. The critical feature of γSC,fb is that γSC,fb(n, δ, |X |, |Y|)→
0 as n→∞. At this point, we apply Lemma 18 to get

Pe(W ) ≤ Pe(V ) exp

(
−n
[
max
P

D(V ||W |P ) +
max{κV , κW}

Pe(V )
β(n, |X , |Y|)

])
,

where

β(n, |X |, |Y|) = inf
ε>0

ε+ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
.
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If we let V be V ∗, where

V ∗ ∈ arg min
V :C(V )≤R−δ

max
P

D(V ||W |P ),

then

Pe(W ) ≥ exp

(
−n
[
Eh(R− δ) +

max{κV ∗ , κW}
1− γSC,fb(n, δ, |X |, |Y|)

β(n, |X , |Y|)
])
×

(1− γSC,fb(n, δ, |X |, |Y|)).

Now, β(n, |X |, |Y|) = O

(√
logn
n

)
, and γSC,fb(n, δ, |X |, |Y|) → 0, so for n large enough

depending on W , R and δ,

− 1

n
logPe(W ) ≤ Eh(R− δ) + δ.

Lemma 13. Let C(W ) = maxP∈P I(P,W ) be the capacity of W . Then, for a fixed-length
block code used with feedback of length n and rate R, and any ε ∈ (0, 1/2),

Pc(w) ≤ exp

(
−n
[
ε2

2
− |X ||Y|

n
log(n+ 1)

])
+

exp

(
−n
[
R− C(W )− 2ε log

|X ||Y|
ε
− |X ||Y|

n
log(n+ 1)

])
.

Therefore,

Pc(W ) ≤ γSC,fb(n,R− C(W ), |X |, |Y|),

where

γSC,fb(n, δ, |X |, |Y|) , inf
ε∈(0,1/2)

exp

(
−n
[
ε2

2
− |X ||Y|

n
log(n+ 1)

])
+

exp

(
−n
[
δ − 2ε log

|X ||Y|
ε
− |X ||Y|

n
log(n+ 1)

])
.

Note that γSC,fb(n,R−C(W ), |X |, |Y|)→ 0 as n→∞ if R−C(W ) > 0 is fixed, and hence
the probability of correct reception goes to 0 if R < C(W ).

Proof: Fix an ε ∈ (0, 1/2). Define for each m, a typical set for the encoding tree of
message m,

Am,ε(W ) , {yn : (P (m, yn), V (m, yn)) ∈ Jε(W )}

Jε(W ) ,

{
(P, V ) ∈ P ×W :

∑
x∈X

P (x)
∑
y∈Y

|V (y|x)−W (y|x)| ≤ ε

}
.
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Recall that P (m, yn) ∈ Pn is the type of input for message m along the output sequence7 yn.
That is, P (m, yn) is the type of xn(m, yn) , (x1(m), x2(m, y

1), x3(m, y
2), . . . , xn(m, yn−1)),

where yk denotes the first k entries of the vector yn. Accordingly, V (m, yn) is the conditional
shell that yn lies in when viewed from the input xn(m, yn), i.e. yn ∈ TV (m,yn)(x

n(m, yn)).
Now,

Pc(W ) =
1

|M|
∑
m∈M

PW (Y n ∈ Dm|M = m)

=
1

|M|
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )|M = m)

+
1

|M|
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )c|M = m)

≤ 1

|M|
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )|M = m)

+
1

|M|
∑
m∈M

PW (Y n ∈ Am,ε(W )c|M = m)

≤

[
1

|M|
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )|M = m)

]
+ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
.

where the last line is arrived at by Lemma 19. Restricting attention to the first term above,

T1 ,
1

|M|
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )|M = m)

= exp(−nR)
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )|M = m). (A.6)

For each m and P ∈ Pn, V ∈ Vn(P ), recall the ’conditional shell with feedback’

B(m,P, V ) , {yn : P (m, yn) = P, V (m, yn) = V }.
7When feedback is available, the channel input codeword and hence the channel input type depends on

both the message and the received channel symbols.
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Bounding further using this definition,

T2 ,
∑
m∈M

PW (Y n ∈ Dm ∩ Am,ε(W )|M = m)

=
∑
m∈M

∑
(P,V )∈Jε(W )

PW (Y n ∈ B(m,P, V ) ∩ Dm|M = m)

(a)
=
∑
m∈M

∑
(P,V )∈Jε(W )

|B(m,P, V ) ∩ Dm| exp (−n [D(V ||W |P ) +H(V |P )])

=
∑

(P,V )∈Jε(W )

exp (−n [D(V ||W |P ) +H(V |P )])
∑
m∈M

|B(m,P, V ) ∩ Dm|

(b)

≤
∑

(P,V )∈Jε(W )

exp (−n [D(V ||W |P ) +H(V |P )]) exp(nH(PV ))

(c)

≤
∑

(P,V )∈Jε(W )

exp(nI(P, V )), (A.7)

where in the above, (a) follows from Proposition 14b, (b) follows from Proposition 14a and
the fact that the decoding regions are disjoint, and (c) follows from divergence being non-
negative and I(P, V ) = H(PV ) −H(V |P ). From Proposition 15, we know that I(P, V ) ≤
I(P,W ) + 2ε log(|X ||Y|/ε) for (P, V ) ∈ Jε(W ), so plugging (A.7) into (A.6), and taking the
max over P ∈ P yields

T1 ≤ (n+ 1)|X ||Y| exp

(
−n
[
R−max

P∈P
I(P,W )− 2ε log

|X ||Y|
ε

])
= exp

(
−n
[
R− C(W )− 2ε log

|X ||Y|
ε
− |X ||Y|

n
log(n+ 1)

])
.

So, for any ε ∈ (0, 1/2), we have shown that

Pc(W ) ≤ exp

(
−n
[
ε2

2
− |X ||Y|

n
log(n+ 1)

])
+

exp

(
−n
[
R− C(W )− 2ε log

|X ||Y|
ε
− |X ||Y|

n
log(n+ 1)

])
.

Optimizing over ε ∈ (0, 1/2) yields the desired result.

A.5 A special family of test channels

Lemma 1 of Section 2.4:
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Let P (V ) be any continuous function from W to P , and let for any V ∈ W ,

κV = max
x,y:V (y|x)>0

log(1/V (y|x)).

Then, for all R > 0, ε > 0,

inf
V :I(P (V ),V )≤R

D(V ||W |P (V )) + εmax {κV , κW} ≤ Esp(R) + ε(κW + log |Y|).

Proof: This result is due to Baris Nakiboglu. It can be used to fill in an apparent gap in
the proof of Sheverdyaev’s result (although there is another issue with that paper, as noted
in Appendix A.7). Recall that the sphere-packing exponent has two forms ( [18], [47]):

Esp(R) = max
P∈P

min
V :I(P,V )≤R

D(V ||W |P )

Esp(R) = sup
ρ≥0

E0(ρ)− ρR

E0(ρ) , max
P∈P
− log

∑
y

(∑
x

P (x)W (y|x)1/(1+ρ)

)1+ρ

= − log min
P∈P

∑
y

(∑
x

P (x)W (y|x)1/(1+ρ)

)1+ρ

= − log min
P∈P

f(P, ρ)

f(P, ρ) ,
∑
y

(∑
x

P (x)W (y|x)1/(1+ρ)

)1+ρ

.

Let

P∗ρ , arg min
P∈P

f(P, ρ).

It is known that f(P, ρ) is convex in P [16] and therefore, for each ρ ≥ 0, P∗ρ is either a
unique distribution in P or a convex region of distributions in P . Further, for every ρ, it
can be shown ( [47], Problem 2.5.23(iv)) that P ∈ P∗ρ if and only if, for all x ∈ X ,

∑
y

W (y|x)1/(1+ρ)

[∑
x′

P (x′)W (y|x′)1/(1+ρ)
]ρ
≥
∑
y

(∑
x′

P (x′)W (y|x′)1/(1+ρ)
)1+ρ

, (A.8)

with equality for all x such that P (x) > 0.

Proposition 8. There exists a parametrized family of distributions

{Pδ}δ≥0 ⊂ P

and a continuous, monotone nondecreasing map g : [0,∞)→ [0,∞) such that
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(a) Pδ is continuous as a function of δ

(b) Pδ satisfies the condition in (A.8) for ρ = g(δ)

(c) g(0) = 0, and limδ→∞ g(δ) =∞

The idea is that for each ρ, there is either a unique optimizer or a convex set of optimizers
for f(P, ρ). The problem is to make sure that we get a continuous family of Pδ that are each
optimizers for a ρ. This is a subtle issue because a priori we have no information about how
many ρ have optimizers which are actually sets and not unique elements. We will see that
this distinction is equivalent to the fact that E0(ρ) may be nondifferentiable at some points.

First, define for ρ, ε ≥ 0,

P[ρ,ε] ,
{

(P, s) ∈ P × [0,∞) : |f(P, s)− E0(ρ)| < ε,∃ P ′ ∈ P∗ρ s.t. ||(P, s)− (P ′, ρ)||1 < ε
}
.

Although f(P, ρ) is convex in P and ρ, it is not necessarily convex in both at the same time.
Therefore, when taking the minimum over P , it may not be differentiable in ρ. Therefore,
even though E0(ρ) is continuous, monotone nondecreasing and concave [16], it can be non-
differentiable in places. However, there is a way to bridge optimizers when this happens.
Define the sets

P−[ρ,ε],γ , P
∗
ρ

⋂ ⋂
s∈(ρ−γ,ρ)

P[s,ε]


P−ρ , lim

ε→0
lim
γ→0
P−[ρ,ε],γ.

Similarly, for the other side, define P+
ρ . By continuity of f(P, ρ), we know that both P+

ρ

and P−ρ are non empty. If their intersection is nonempty, we will choose one element from
the intersection and call it Pδ for some δ that will be clear with g(δ) = ρ. If not, we will
take one element from each, call them P+

ρ and P−ρ and construct a convex combination
βP−ρ + (1 − β)P+

ρ = Pρ,β. Note that by convexity, Pρ,β ∈ Pρ. Also, when the intersection
between P+

ρ and P−ρ is nonempty, Pρ is continuous, and when the intersection is empty, we
can construct an arbitrary positive length continuous segment going from P−ρ to P+

ρ . We
use the monotonically nondecreasing function g to account for these gaps.

Now, the only thing that remains to be checked is that the number of points at which
E0(ρ) is nondifferentiable is countable so that such a function g exists. To see this, we
recall that E0(ρ) is continuous and concave. Therefore, its derivative is monotonic and
nonincreasing where it exists (assign it to be the upper derivative at points of discontinuity).
It is easy to see however, that the set of discontinuities for a monotonic function is countable
(otherwise the jumps add up too fast). Therefore, a function g as the proposition requires
exists to map the δ to ρ parametrically and in a monotonic way. Note that g will not be
one-to-one if E0(ρ) is ever nondifferentiable.
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From now on, for a given δ ≥ 0, let ρ = g(δ) be parametrically defined through δ and g.
Define, for each δ > 0, a channel

Vδ(y|x) ,
W (y|x)1/(1+ρ)

(∑
x′ Pδ(x

′)W (y|x′)1/(1+ρ)
)ρ∑

y′W (y′|x)1/(1+ρ) (
∑

x′ Pδ(x
′)W (y′|x′)1/(1+ρ))ρ

(A.9)

r(x, δ) ,
∑
y′

W (y′|x)1/(1+ρ)

(∑
x′

Pδ(x
′)W (y′|x′)1/(1+ρ)

)ρ

.

Note, by (A.8), we have for all x, δ,

r(x, δ) ≥
∑
y

(∑
x

Pδ(x
′)W (y|x)1/(1+ρ)

)1+ρ

= exp (−E0(ρ)) (A.10)

where the last line follows because Pδ is a member of P∗ρ . Also, r(x, δ) = exp(−E0(ρ)) for x
such that Pδ(x) > 0. Now, fix a δ ≥ 0 and consider D(Vδ||W |P ) for an arbitrary P ∈ P .

D(Vδ||W |P ) =
∑
x,y

P (x)Vδ(y|x) log
Vδ(y|x)

W (y|x)

(a)
=
∑
x,y

P (x)Vδ(y|x) log
Vδ(y|x)

Vδ(y|x)1+ρ exp(−(1+ρ)E0(ρ))

(
∑′
x Pδ(x

′)W (y|x′)1/(1+ρ))
ρ(1+ρ)

(b)

≤
∑
x,y

P (x)Vδ(y|x) log

[((∑
x′ Pδ(x

′)W (y|x′)1/(1+ρ)
)1+ρ

Vδ(y|x)e−E0(ρ)

)ρ

eE0(ρ)

]
,

where (a) follows by inversion of (A.9) and (b) from (A.10).

D(Vδ||W |P ) ≤ E0(ρ) + ρ
∑
x,y

P (x)Vδ(y|x) log

(∑
x′ Pδ(x

′)W (y|x′)1/(1+ρ)
)1+ρ

Vδ(y|x)e−E0(ρ)

= E0(ρ)− ρ
∑
x,y

P (x)Vδ(y|x) log

[
Vδ(y|x)

(PVδ)(y)
× (PVδ)(y)e−E0(ρ)

(
∑

x′ Pδ(x
′)W (y|x′)1/(1+ρ))1+ρ

]
= E0(ρ)− ρI(P, Vδ)−

ρ
∑
x,y

P (x)Vδ(y|x) log

(
(PVδ)(y)

(
∑

x′ Pδ(x
′)W (y|x′)1/(1+ρ))1+ρ /e−E0(ρ)

)
.

(A.11)
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Now, let Qδ(x|y) be the conditional distribution defined by

Qδ(x|y) =
P (x)Vδ(y|x)

(PVδ)(y)
.

Then, picking up from (A.11),

D(Vδ||W |P ) ≤ E0(ρ)− ρ(I(P, Vδ))−

ρ
∑
x,y

P (x)Vδ(y|x) log

(
Qδ(x|y)(PVδ)(y)

Qδ(x|y) (
∑

x′ Pδ(x
′)W (y|x′)1/(1+ρ))1+ρ /e−E0(ρ)

)
.

Now, note that

∑
y

(∑
x

Pδ(x)W (y|x)1/(1+ρ)

)1+ρ

= e−E0(ρ)

Therefore, (∑
x′ Pδ(x

′)W (y|x′)1/(1+ρ)
)1+ρ

e−E0(ρ)

is a distribution on Y since for each y, it is nonnegative and sums to one over Y . Call this
distribution Qδ ∈ Q. Then, we have

D(Vδ||W |P ) ≤ E0(ρ)− ρ(I(P, Vδ))−

ρ
∑
x,y

P (x)Vδ(y|x) log

(
Qδ(x|y)(PVδ)(y)

Qδ(x|y)Qδ(y)

)
= E0(ρ)− ρ(I(P, Vδ))−

ρ
∑
x,y

P (x)Vδ(y|x) log

(
P (x)Vδ(y|x)

Qδ(x|y)Qδ(y)

)
(c)

≤ E0(ρ)− ρI(P, Vδ)

≤ sup
ρ≥0

E0(ρ)− ρI(P, Vδ)

= Esp(I(P, Vδ)), (A.12)

where (c) follows because the term that was eliminated was a divergence and hence nonneg-
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ative. Now,

inf
V :I(PV ,V )≤R

D(V ||W |PV ) ≤ inf
Vδ,δ≥0:I(PVδ ,Vδ)≤R

D(Vδ||W |PVδ)

(d)

≤ inf
Vδ,δ≥0:I(PVδ ,Vδ)≤R

Esp(I(PVδ , Vδ))

(e)

≤ Esp

(
sup

Vδ,δ≥0:I(PVδ ,Vδ)≤R
I(PVδ , Vδ)

)
,

where (d) is true because of (A.12) and (e) follows because Esp(R) is a monotonically non-
increasing function of R. Now, Vδ is continuous in δ by Proposition 8 and (A.9). By
assumption, PV is continuous in V , so PVδ is continuous in δ. Further, I(P, V ) is continuous
in the pair P, V , so I(PVδ , Vδ) is continuous in δ. Note that V0 = W by definition. As δ →∞,
it follows that (because ρ = g(δ)→∞, Vδ → V ∗ where for each x,

V ∗(y|x) =
1

|{y : W (y|x) > 0}|
.

We claim that

lim
δ→∞

C(Vδ) = C(V ∗)

= inf{R : Esp(R) <∞}.

That the limit of capacities is equal to the capacity of the limit is clear because capacity is
a continuous function of the channel and Vδ converges to V ∗ for a suitable norm (such as L1

norm). Also, note that these Vδ are the channels that are sufficient to upper bound for the
sphere-packing exponent ( [47], Problem 2.5.23a), so limδ→∞C(Vδ) ≤ inf{R : Esp(R) <∞}.
Conversely, if Esp(R) =∞, since D(V ∗||W |P ) <∞ for all P ∈ P , it follows that C(Vδ) > R.
Therefore limδ→∞C(Vδ) = inf{R : Esp(R) <∞}.

Now, returning to the quantity of interest supδ≥0 I(PVδ , Vδ), by the intermediate value
theorem applied to the continuous function I(PVδ , Vδ), whose endpoints are at I(P,W ) and
inf{R : Esp(R) <∞}, we must have one of two things.

(i) I(PVδ , Vδ) < R for all δ > 0

(ii) There is a δ∗ such that I(PVδ∗ , Vδ∗) = R

In case (i), it is true that I(P,W ) < R, so by Fano’s inequality, the error exponent is as
small as desired for large enough n. In case (ii), we have

inf
V :I(PV ,V )≤R

D(V ||W |PV ) ≤ Esp(R) + εmax {κVδ∗ , κW} .
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Now, note that if θW = minx,y:W (y|x)>0W (y|x), and x, y is such that W (y|x) > 0, we have
for any δ ≥ 0

Vδ(y|x) ,
W (y|x)1/(1+ρ)

(∑
x′ Pδ(x

′)W (y|x′)1/(1+ρ)
)ρ∑

y′W (y′|x)1/(1+ρ) (
∑

x′ Pδ(x
′)W (y′|x′)1/(1+ρ))ρ

≥ θW θ
ρ/(1+ρ)
W∑′
y 1

=
θW
|Y|

κVδ ≤ κW + log |Y|.

which concludes the proof of the lemma. .

A.6 Failed Approaches to proving the sphere packing

bound for codes with feedback

A.6.1 A first attempt via Fano’s inequality

Lemma 2 of Section 2.4.1: Fix an R > 0 and δ ∈ (1/n,R). For any block code with
feedback of rate R and length n,

− 1

n
logPe(W ) ≤ inf

V :I(PV ,V )≤R−δ
D(V ||W |PI,V )+

2 max{κV , κW}
1
R

(
δ − 1

n

) β(n, |X |, |Y|) +
1

n
log

(
1

R

(
δ − 1

n

))
,

where

β(n, |X |, |Y|) = inf
ε>0

ε+ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
.

Proof: Fix a V such that I(PV , V ) ≤ R − δ, with δ ∈ (1/n,R). From Proposition 9, we
know that

Pe(V ) ≥ 1

R

(
δ − 1

n

)
. (A.13)

Then, from Lemma 18 in Appendix A.14,

Pe(W ) ≥ Pe(V ) exp (−nd(V,W )) ,
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where

d(V,W ) =
1

|M|
∑
m∈M

∑
yn∈Dcm

PV (Y n = yn|M = m)

Pe(V )

1

n

n∑
i=1

log
V (yi|xi(m, yi−1))
W (yi|xi(m, yi−1))

.

Now, recalling that B(m,P, U) = {yn : P (m, yn) = P, V (m, yn) = U}, we have

d(V,W ) =
1

|M|
∑

m∈M,P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

∑
x,y

P (x)U(y|x) log
V (y|x)

W (y|x)

=
1

|M|
∑

m∈M,P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×[

D(V ||W |P ) +
∑
x,y

P (x)(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)

]
.

A little bit of algebra and linearity of D(V ||W |P ) in P shows that

1

|M|
∑

m∈M,P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
D(V ||W |P ) = D(V ||W |PI,V ),

so we need to control the difference term. For ε > 0, let

Jε(V ) =

{
(P,U) ∈ P ×W :

∑
x

P (x)
∑
y

|U(y|x)− V (y|x)| ≤ ε

}
.
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Then, splitting the difference term into ‘typical’ and ‘atypical’ parts gives

T ,
1

|M|
∑

m∈M,P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

∑
x,y

P (x)(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)

= T1 + T2

T1 ,
1

|M|
∑

m∈M,P∈Pn,U∈Vn(P ):(P,U)∈Jε(V )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

∑
x,y

P (x)(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)

T2 ,
1

|M|
∑

m∈M,P∈Pn,U∈Vn(P ):(P,J)/∈Jε(V )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

∑
x,y

P (x)(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)
.

Now, by Proposition 13, if (P,U) ∈ Jε(V ), we have∑
x,y

P (x)(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)
≤ εmax{κV , κW},

for all the terms in T1 that contribute something non-zero to the sum. That is, if P(Y n =
yn|M = m) = 0, then it does not matter if the difference is infinite. Hence,

T1 ≤ εmax{κV , κW}.

As for term T2, sinceD(V ||W |PI,V ) <∞ by assumption,
∑

x,y P (x)(U(y|x)−V (y|x)) log V (y|x)
W (y|x) <

∞ for all terms in the sum that are not 0. By Lemma 19, we know that for each m ∈M,∑
P∈Pn,U∈Vn(P ):(P,U)/∈Jε(V )

PV (Y n ∈ B(m,P, U)|M = m) ≤ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
.

Therefore, because
∑

y |U(y|x)− V (y|x)| ≤ 2 for all x and U, V ∈ W ,

T2 ≤
2 max{κV , κW}

Pe(V )
exp

(
−n
[
ε2

2
− |X ||Y|

n
log(n+ 1)

])
.

Combining the bounds for T1 and T2 tells us that

T ≤ 2 max{κV , κW}
Pe(V )

[
ε+ (n+ 1)|X ||Y| exp

(
−nε

2

2

)]
.

Optimizing over ε > 0 gives us the result of the lemma with β(n, |X |, |Y|).



137

Proposition 9 (Fano’s inequality for codes with feedback). If for some V ∈ W, I(PV , V ) ≤
R− δ for a rate R length n block code with feedback, then

Pe(V ) ≥ 1

R

(
δ − 1

n

)
.

Proof: First, we will show that if I(PV , V ) ≤ R− δ, then 1
n
I(M ;Y n) ≤ R− δ also8. For

two random variables A,B on the product set A× B, recall that the mutual information is

I(A;B) =
∑

(a,b)∈A×B

P(A = a,B = b) log
P(A = a,B = b)

P(A = a)P(B = b)

= H(A)−H(A|B),

where H(A) denotes the entropy of A and H(A|B) denotes the conditional entropy of A
given B. Using standard properties of the mutual information of a collection of random
variables (see [21]),

1

n
I(M ;Y n) =

1

n
(H(Y n)−H(Y n|M))

=
1

n

n∑
i=1

(
H(Yi|Y i−1)−H(Yi|M,Y i−1)

)
=

1

n

n∑
i=1

I(M ;Yi|Y i−1)

(a)

≤ 1

n

n∑
i=1

I(Xi;Yi|Y i−1),

where (a) follows because given Y i−1, M and Yi are conditionally related through Xi. That
is,

PV (M = m,Xi = x, Yi = y|Y i−1 = yi−1) = PV (M = m|Y i−1 = yi−1)×[
1(xi(m, y

i−1) = xi)V (yi|xi)
]
.

8The probabilities in this proposition are all with respect to the measure induced by V .
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Continuing and expanding the conditional mutual information,

1

n
I(M ;Y n) ≤ 1

n

n∑
i=1

I(Xi;Yi|Y i−1)

=
1

n

n∑
i=1

∑
yi−1

PV (yi−1)I(Xi;Yi|Y i−1 = yi−1)

=
1

n

n∑
i=1

∑
yi−1

PV (yi−1)I(Pyi−1 , V )

∀ x ∈ X , Pyi−1(x) ,
∑
m∈M

PV (M = m|Y i−1 = yi−1)1(xi(m, y
i−1) = x).

At this point, we can use concavity of mutual information in the input distribution to show

1

n
I(M ;Y n) ≤ 1

n

n∑
i=1

∑
yi−1

PV (yi−1)I(Pyi−1 , V )

≤ I

 1

n

n∑
i=1

∑
yi−1

PV (yi−1)Pyi−1 , V

 .

However, noting that

1

n

n∑
i=1

∑
yi−1

PV (yi−1)Pyi−1 = PV ,

we have shown that 1
n
I(M ;Y n) ≤ I(PV , V ) ≤ R − δ for a code with feedback. Now, by

Fano’s inequality (see [21], Theorem 2.11.1), we have

H(M |Y n) ≤ hb(Pe(V )) + log(|M| − 1)Pe(V )

≤ 1 + nRPe(V ).

Now, we also have that

H(M |Y n) = H(M)− I(M ;Y n)

≥ nR− n(R− δ) = nδ.

Therefore,

nδ ≤ 1 + nRPe(V )

Pe(V ) ≥ 1

R

(
δ − 1

n

)
.
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A.6.2 A refined strong converse

Lemma 3 of Section 2.4.2: If the refined strong converse holds, then for any R > 0,
δ ∈ (0, R), there is a finite nRSC(W,R, δ) such that for any block code with feedback of rate
R and length n ≥ nRSC(W,R, δ),

− 1

n
logPe(W ) ≤ Esp(R− δ) + δ.

Hence, if the refined strong converse holds, so does the sphere-packing bound.
Proof: Fix a V such that I(PV , V ) ≤ R− δ. From the proof of Lemma 2, we know that

Pe(W ) ≥ Pe(V ) exp

(
−n
[
D(V ||W |PI,V ) +

2 max{κV , κW}
Pe(V )

β(n, |X |, |Y|)
])

,

where PI,V is defined in (2.15) and

β(n, |X |, |Y|) = inf
ε>0

ε+ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
.

From the assumption that the refined strong converse holds, we have

Pe(V ) ≥ 1− γRSC(n, δ, R, κV ).

Now, we claim that since the error event has high probability as γRSC(n, δ, R, κV ) → 0, it
must be that PV is close to PI,V and hence D(V ||W |PV ) is close to D(V ||W |PI,V ).

||PV − PI,V ||1 =
∑
x∈X

|PV (x)− PI,V (x)|

=
∑
x∈X

|(Pc(V )PC,V (x) + Pe(V )PI,V (x))− PI,V (x)|

=
∑
x∈X

|Pc(V )PC,V (x)− Pc(V )PI,V (x)|

= Pc(V )
∑
x∈X

|PC,V (x)− PI,V (x)|

≤ Pc(V )
∑
x∈X

PC,V (x) + PI,V (x)

≤ 2Pc(V ) ≤ 2γRSC(n, δ, R, κV ), (A.14)

where the ‘correct input distribution’ is

PC,V (x) ,
1

|M|
∑
m∈M

∑
yn∈Dm

PV (Y n = yn|M = m)

Pc(V )

1

n

n∑
i=1

1(xi(m, y
i−1) = x). (A.15)
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Now,

D(V ||W |PI,V )−D(V ||W |PV ) =
∑
x,y

PI,V (x)V (y|x) log
V (y|x)

W (y|x)
− PV (x)V (y|x) log

V (y|x)

W (y|x)

=
∑
x,y

(PI,V (x)− PV (x))V (y|x) log
V (y|x)

W (y|x)

≤
∑
x,y

|PI,V (x)− PV (x)|V (y|x) max {κV , κW}

= ||PI,V − PV ||1 max {κV , κW}
≤ 2γRSC(n, δ, R, κV ) max {κV , κW}

provided that V (y|x) = 0 whenever W (y|x) = 0. Therefore,

D(V ||W |PI,V ) ≤ D(V ||W |PV ) + 2γRSC(n, δ, R, κV ) max {κV , κW} .

So, if I(PV , V ) ≤ R− δ,

Pe(W ) ≥ exp

(
−n
[
D(V ||W |P ) +

2 max{κV , κW}
1− γRSC(n, δ, R, κV )

(β(n, |X |, |Y|) + 2γRSC(n, δ, R, κV ))

])
×

(1− γRSC(n, δ, R, κV )).

Now, we optimize over all V such that I(PV , V ) ≤ R− δ. From Lemma 1, we know that
for the family of sphere-packing optimizing V ’s, κV ≤ κW + log |Y|, so

− 1

n
logPe(W ) ≤ inf

V :I(PV ,V )≤R−δ
D(V ||W |PV ) +

1

n
log(1− γRSC(n, δ, R, κV ))+

2 max{κV , κW}
1− γRSC(n, δ, R, κV )

(β(n, |X |, |Y|) + 2γRSC(n, δ, R, κV ))

≤ Esp(R− δ) +
1

n
log(1− γRSC(n, δ, R, κW + log |Y|))+

2(κW + log |Y|)
1− γRSC(n, δ, R, κW + log |Y|)

×

(β(n, |X |, |Y|) + 2γRSC(n, δ, R, κW + log |Y|)).

Since β(n, |X |, |Y|)→ 0 as n→∞, and γRSC(n, δ, R, κW +log |Y|)→ 0 as n→∞ (assuming
the refined strong converse holds), it follows that for large enough n (depending on W , R
and δ),

− 1

n
logPe(W ) ≤ Esp(R− δ) + δ.
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A.6.3 A test channel with memory

Lemma 4 of Section 2.4.3: Let Ṽ be a measure9 on M×Yn. Fix a δ > 0. Let10

A ,

{
(m, yn) :

1

n
log

PṼ (Y n = yn|M = m)

PṼ (Y n = yn)
≤ R− δ

}
(A.16)

B ,

{
(m, yn) :

1

n
log

PṼ (Y n = yn|M = m)

PW (Y n = yn|M = m)
≤ Esp(R− 2δ) + δ

}
(A.17)

E , {(m, yn) : yn /∈ Dm} .

Then,

Pe(W ) ≥ exp (−n [Esp(R− 2δ) + δ])
[
1− exp(−nδ)− PṼ (Bc)− PṼ (Ac)

]
.

Hence,

Pe(W ) ≥ exp(−n[Esp(R− 2δ) + 2δ])

for large n provided

PṼ

(
1

n
log

PṼ (Y n|M)

PṼ (Y n)
≤ R− δ

)
→ 1, n→∞ (A.18)

PṼ

(
1

n
log

PṼ (Y n|M)

PW (Y n|M)
≤ Esp(R− 2δ) + δ

)
→ 1, n→∞. (A.19)

Proof: The proof of this lemma is essentially the same as the proof of the information-
spectrum converse. The only difference is the addition of the set B to make sure that
the error event under channel Ṽ has a high enough probability under channel W . In the
information spectrum vernacular, log(PṼ (Y n|M)/PṼ (Y n)) would be the information density
random variable and log(PṼ (Y n|M)/PW (Y n|M)) would be the divergence density random
variable. Now,

Pe(W ) = PW (E)

≥ PW (E ∩B)

=
∑

(m,yn)∈E∩B

1

|M|
PW (Y n = yn|M = m)

(a)

≥
∑

(m,yn)∈E∩B

1

|M|
PṼ (Y n = yn|M = m) exp(−n(Esp(R− 2δ) + δ))

= exp(−n(Esp(R− δ) + δ))PṼ ((M,Y n) ∈ B ∩ E) . (A.20)

9Of course, this measure is induced from one on M×Xn × Yn.
10Recall that capital letters are used to denote random variables while lower case vectors denote nonrandom

variables.
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In the above, (a) follows from the definition of B in (2.19). Now,

PṼ (B ∩ E) = 1− PṼ ((B ∩ E)c)

= 1− PṼ (Bc ∪ Ec)

≥ 1− PṼ (Bc)− PṼ (Ec). (A.21)

Now,

PṼ (Ec) =
∑

(m,yn)∈Ec

1

|M|
PṼ (yn|m)

=
∑

(m,yn)∈Ec∩A

1

|M|
PṼ (yn|m) +

∑
(m,yn)∈Ec∩Ac

1

|M|
PṼ (yn|m)

(b)

≤
∑

(m,yn)∈Ec∩A

exp(n(R− δ))
|M|

PṼ (yn) +
∑

(m,yn)∈Ec∩Ac

1

|M|
PṼ (yn|m)

= exp(−nδ)
∑

(m,yn)∈Ec∩A

PṼ (yn) +
∑

(m,yn)∈Ec∩Ac

1

|M|
PṼ (yn|m)

(c)

≤ exp(−nδ) +
∑

(m,yn)∈Ec∩Ac

1

|M|
PṼ (yn|m)

≤ exp(−nδ) + PṼ (Ac), (A.22)

where (b) follows from the definition of A in (A.16) and (c) follows because each yn appears
in at most one Dm by the definition of decoding regions. Plugging (A.22) into (A.21) and
(A.21) into (A.20) completes the proof.

Proposition 1 of Section 2.4.3: With the choice of Ṽ in (2.17) and the definitions of

Zi and Z̃i in (2.22) and (2.23) respectively, we have for i = 1, . . . , n,

EṼ [Zi] =
∑

yi−1∈Yi−1

PṼ (yi−1)I(Pyi−1 , Ṽyi−1) ≤ R− 2δ (A.23)

EṼ [Z̃i] =
∑

yi−1∈Yi−1

PṼ (yi−1)Esp(R− 2δ, Pyi−1) ≤ Esp(R− 2δ). (A.24)
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Proof: Starting with the definition of Zi,

EṼ [Zi] = EṼ

[
log

PṼ (Yi|M,Y i−1)

PṼ (Yi|Y i−1)

]
=

∑
m∈M,yi−1∈Yi−1,yi∈Y

1

|M|
PṼ (yi−1|m)PṼ (yi|m, yi−1) log

PṼ (yi|m, yi−1)
PṼ (yi|yi−1)

=
∑
yi−1

PṼ (yi−1)
∑
m,yi

PṼ (M = m|Y i−1 = yi−1)PṼ (yi|m, yi−1) log
PṼ (yi|m, yi−1)
PṼ (yi|yi−1)

.

(A.25)

Now,

PṼ (yi|m, yi−1) = Ṽyi−1(yi|xi(m, yi−1))

PṼ (yi|yi−1) =
∑
m∈M

PṼ (M = m|Y i−1 = yi−1)Ṽyi−1(yi|xi(m, yi−1))

=
∑
m∈M

∑
x∈X

PṼ (M = m|Y i−1 = yi−1)1(xi(m, y
i−1) = x)Ṽyi−1(yi|x)

=
∑
x∈X

Ṽyi−1(yi|x)
∑
m∈M

PṼ (M = m|Y i−1 = yi−1)1(xi(m, y
i−1) = x)

(a)
=
∑
x∈X

Ṽyi−1(yi|x)Pyi−1(x)

=
(
Pyi−1Ṽyi−1

)
(y). (A.26)

where (a) follows from the definition of the input distribution conditioned on yi−1 in (2.16).



144

Plugging (A.26) into (A.25) yields

EṼ [Zi] =
∑
yi−1

PṼ (yi−1)
∑
m,yi

PṼ (M = m|Y i−1 = yi−1)Ṽyi−1(yi|xi(m, yi−1)) log
Ṽ (yi|xi(m, yi−1))(
Pyi−1Ṽyi−1

)
(yi)

=
∑
yi−1

PṼ (yi−1)
∑
m,yi

∑
x∈X

1(xi(m, y
i−1) = x)PṼ (M = m|Y i−1 = yi−1)×

Ṽyi−1(yi|x)) log
Ṽ (yi|x)(

Pyi−1Ṽyi−1

)
(yi)

=
∑
yi−1

PṼ (yi−1)
∑
yi

∑
x∈X

Ṽyi−1(yi|x)) log
Ṽ (yi|x)(

Pyi−1Ṽyi−1

)
(yi)
×

∑
m∈M

PṼ (M = m|Y i−1 = yi−1)1(xi(m, y
i−1) = x)

(b)
=
∑
yi−1

PṼ (yi−1)
∑
yi

∑
x∈X

Pyi−1(x)Ṽyi−1(yi|x)) log
Ṽ (yi|x)(

Pyi−1Ṽyi−1

)
(yi)

(c)
=
∑
yi−1

PṼ (yi−1)I
(
Pyi−1 , Ṽyi−1

)
(d)

≤
∑
yi−1

PṼ (yi−1)(R− 2δ) ≤ R− 2δ,

where again (b) follows from the definition of the input distribution in (2.16), (c) is from the

definition of mutual information and (d) comes from the choice of Ṽ in (2.17). An entirely
analogous sequence of equations shows that

EṼ
[
Z̃i

]
=
∑
yi−1

PṼ (yi−1) min
V ∈W

{
D(V ||W |Pyi−1) : I

(
Pyi−1 , V

)
≤ R− 2δ

}
=
∑
yi−1

PṼ (yi−1)Esp
(
R− 2δ, Pyi−1

)
≤
∑
yi−1

PṼ (yi−1)Esp(R− 2δ).

A.7 Sheverdyaev’s proof

In 1978, Sheverdyaev submitted a paper to Problemy Peredachi Informatsii (Problems of
Information Transmission), entitled ‘Lower bound for error probability in a discrete mem-
oryless channel with feedback.’ The paper was published by PPI in 1982 [30] and a fairly
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good English translation is available at research university engineering libraries. There are
two results claimed in the paper about block codes with feedback:

1. The average probability of correct reception is exponentially decaying in the block length
n for rates R greater than the capacity C(W ). It is shown in this paper that this
exponent is the same as the case for block codes without feedback, where there is a
matching lower and upper bound. Hence, the ‘correct reception’ exponent is determined
for communication with feedback at all rates above capacity over a DMC (no zero
transition probabilities are allowed in W ).

2. The error exponent for block codes with feedback at rates R below capacity C(W ) is
upper bounded by the sphere-packing exponent Esp(R) (for W with no zero transition
probabilities), as is the case for block codes without feedback.

Of these two results, the first is certainly true, while the second’s proof has serious issues.
While we believe that the result is true (i.e. that the sphere-packing exponent is actually an
upper bound to the error exponent for block codes with feedback at rates below capacity),
we are not convinced the proof in [30] is complete. In this section, we will outline the proof
and detail its shortcomings (as we perceive them).

Claim 1. Fix a DMC W that has no zero probability transitions, i.e. τW , minx,yW (y|x) >
0. Let

P c,fb(W,R, n) , sup {Pc(W ) : code is at least rate R and blocklength is n}
P e,fb(W,R, n) , 1− P c,fb(W,R, n) (A.27)

be the optimal code correct reception and error probabilities for block codes with feedback of
length n and rate at least R. Then,

lim sup
n→∞

− 1

n
logP e,fb(W,R, n) ≤ Esp(R) = max

P
min

V :I(P,V )≤R
D(V ||W |P ),

so the sphere-packing exponent is an upper bound to the error exponent for block codes with
feedback.

Proof outline: A series of lemmas are proved to come to the conclusion of the claim.
We will state these lemmas and arrive at the point in the proof at the end where the
justifications of two steps are not obvious. This is not to say that there are counterexamples
to these justifications, but rather they are the same sticking points where Haroutunian could
not tighten his bound, and the justifications are hand-waving of not-so-obvious points. With
that in mind, the first lemma is intuitively straightforward and claims that non-randomized
encoders and decoders are optimal.
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Lemma 14. We need only consider deterministic encoders and decoders with feedback. That
is, randomized codes are not needed to achieve the performance in (A.27). This lemma is
intuitively true11 because of the absence of any adversarial agents such as in arbitrarily
varying channel coding [55].

The next lemma initiates the bounding of the error probability by using a reverse Hölder’s
inequality to get an inequality involving correct reception and error probabilities under two
channels. Fix a test channel V ∈ W and also a set of conditional distributions12{

q(·|yi−1) ∈ Q : ∀i = 1, . . . , n, yi−1 ∈ Y i−1
}

that determine a measure on M×Yn by

Pq(M = m,Y n = yn) =
1

|M|

n∏
i=1

q(yi|yi−1).

Similarly,

PV (M = m,Y n = yn) =
1

|M|
PV (Y n = yn|M = m).

Lemma 15. Fix an α ∈ R, α ≥ 1. For an arbitrary deterministic encoder and decoder pair
of rate at least R and length n,

Pc(V )α
(

1

|M|

)1−α

+ Pe(V )α
(

1− 1

|M|

)1−α

≤
∑
m,yn

PαV (m, yn)P1−α
q (m, yn) (A.28)

Pc(V )αPc(W )1−α + Pe(V )αPe(W )1−α ≤
∑
m,yn

PαV (m, yn)P1−α
W (m, yn). (A.29)

Lemma 15 is proved by Reverse Hölder’s inequality.

Proposition 10 (Reverse Hölder’s Inequality). Suppose for each i = 1, . . . , n, ai ≥ 0, bi >
0, ci ≥ 0, and

∑
i ci > 0. For α ≥ 1,

∑
i

aαi b
1−α
i ci ≥

(∑
i

aici

)α(∑
i

bici

)1−α

.

11It is always good to verify this though given that randomization is generally required to obtain the
optimal performance in hypothesis testing.

12Equivalently, one can straightaway define a distribution on Yn and deduce the conditional distributions.



147

Reverse Hölder’s inequality can be proved by using the usual Hölder’s inequality [56].
The restriction that τW > 0 is due to the use of Reverse Hölder’s inequality where the
channel transition probabilities are used as the bi in Proposition 10. Now, we will define the
‘tilted’ measures (distributions)

Pα(m, yn) , PαV (m, yn)P1−α
q (m, yn) exp(−µ(α))

µ(α) , log
∑
m,yn

PαV (m, yn)P1−α
q (m, yn)

and

P̃α(m, yn) , PαV (m, yn)P1−α
W (m, yn) exp(−µ̃(α))

µ̃(α) , log
∑
m,yn

PαV (m, yn)P1−α
W (m, yn).

Lemma 16. With the definitions above, which are used to continue bounding the bounds in
Lemma 15, we have

µ(α) ≤
∑
m,yn

Pα(m, yn)
n∑
i=1

log

[∑
y

V (y|xi(m, yi−1))αq(y|yi−1)1−α
]

(A.30)

µ̃(α) ≤
∑
m,yn

P̃α(m, yn)
n∑
i=1

log

[∑
y

V (y|xi(m, yi−1))αW (y|xi(m, yi−1))1−α
]
. (A.31)

At this point, Sheverdyaev makes a specific ‘optimal’ choice in setting q = q∗ which
induces Pα = P∗α. For this choice of q∗, he proves the following lemma.

Lemma 17.

µ(α)

αn
≤ λ(α) , log

∑
y

[∑
x

Pq∗,α(x)V α(y|x)

]1/α
(A.32)

Pq∗,α(x) ,
∑
m,yn

P∗α(m, yn)
1

n

n∑
i=1

1
(
xi(m, y

i−1) = x
)

µ̃(α)

n
≤ ν(α) , log

∑
x

P̃V,α(x)

[∑
y

V α(y|x)W 1−α(y|x)

]
(A.33)

P̃V,α(x) ,
∑
m,yn

P̃α(m, yn)
1

n

n∑
i=1

1
(
xi(m, y

i−1) = x
)
.
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At this point, we start to see the input distribution induced by different channels coming
into play, because Pq∗,α is the input distribution under the tilted measure Pα when q = q∗ and

P̃V,α is the input distribution under the tilted measure P̃α. Note that for both cases, as α→ 1,
the input distributions under the tilted measure converge to PV , the input distribution under
channel V .

Cascading the bounds of (A.28), (A.30) and (A.32) yields

Pα
c (V )

(
1

|M|

)1−α

≤ exp(µ(α)) ≤ exp(αnλ(α))

Pc(V ) ≤ |M|
1−α
α exp(nλ(α))

≤ exp

(
−n
(
−λ(α)− 1− α

α
R

))
,

where we have used that the rate of the code is at least R. Hence,

− 1

n
logPc(V ) ≥ −λ(α)− 1− α

α
R (A.34)

= − log
∑
y

(∑
x

Pq∗,α(x)V α(y|x)

)1/α

− 1− α
α

R.

If we let ρ = (1− α)/α, we have

− 1

n
logPc(V ) ≥ − log

∑
y

(∑
x

Pq∗,α(x)V
1

1+ρ (y|x)

)1+ρ

− ρR

≥ inf
P∈P
− log

∑
y

(∑
x

P (x)V
1

1+ρ (y|x)

)1+ρ

− ρR, ∀ ρ ∈ (−1, 0].

Hence, if we just let V = W , we get the first result given in the paper regarding correct
reception for rates above capacity:

− 1

n
logPc(W ) ≥ sup

ρ∈(−1,0]

[
inf
P
E0(P,W, ρ)− ρR

]
E0(P,W, ρ) = − log

∑
y

(∑
x

P (x)W
1

1+ρ (y|x)

)1+ρ

.

Hence,

lim inf
n→∞

− 1

n
logP c,fb(W,R, n) ≥ sup

ρ∈(−1,0]

[
inf
P
E0(P,W, ρ)− ρR

]
, Ec(R).
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It can be shown that Ec(R) > 0 for all R > C(W ) [47], so the strong converse holds with
feedback and exponentially decreasing probability of correct reception. Further, this bound
is the same as for block codes without feedback operating above capacity ( [47], Problem
2.5.16(a,b)).

Now, returning to the case for R < C(W ), from (A.34), we know that

R ≤ α

α− 1

[
− 1

n
logPc(V ) + λ(α)

]
=

α

α− 1

[
− 1

n
logPc(V )

]
+

α

α− 1

[
(α− 1)λ′(1) +O((α− 1)2)

]
, (A.35)

where we have taken a Taylor expansion13 of λ(α) about α = 1 and noted that λ(1) = 0.
From (A.29), we have

Pα
e (V )P 1−α

e (W ) ≤ exp(nν(α))

α logPe(V )− (α− 1) logPe(W ) ≤ nν(α).

Therefore, a little rearranging gives

− 1

n
logPe(W ) ≤ ν(α)

α− 1
+

α

α− 1

−1

n
logPe(V )

=
1

α− 1

(
(α− 1)ν ′(1) +O((α− 1)2)

)
+

α

α− 1

−1

n
logPe(V ), (A.36)

where we have taken a Taylor expansion of ν(α) about α = 1 and noted that ν(1) = 0. A
bit of differentiation shows that

λ′(1) = I(PV , V )

ν ′(1) = D(V ||W |PV ),

where PV is the input distribution under channel V . Plugging these values into (A.35) and
(A.36) yields

R ≤ α

α− 1

(
− 1

n
logPc(V )

)
+ αI(PV , V ) + g(V, α− 1) (A.37)

− 1

n
logPe(W ) ≤ α

α− 1

(
− 1

n
logPe(V )

)
+D(V ||W |PV ) + g̃(V, α− 1), (A.38)

where the g(V, α − 1) and g̃(V, α − 1) are constants depending on V (through the second-
order derivatives of λ and ν respectively). For a fixed V , g and g̃ can be made arbitrarily

13The notation O((α− 1)2) is meant to apply for α→ 1.
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small if α − 1 is arbitrarily small. However, it is unclear14 if there are uniform (over V
and n) constants that bound them. This is the first main issue with the proof of this claim.
Especially for the second derivative of ν, a uniform constant must be justified.

At this point, Sheverdyaev makes a choice of α = 1 + 1/
√
n and considers only channels

V such that I(PV , V ) ≤ R − ε for some ε > 0. Then, since mutual information is bounded
by log |Y|, (A.37) becomes

ε− log |Y|√
n
≤ R−

(
1 +

1√
n

)
I(PV , V )

≤ (
√
n+ 1)

(
− 1

n
logPc(V )

)
+ g(V, 1/

√
n).

From this, we can deduce that

Pc(V ) ≤ exp

(
− n√

n+ 1

[
ε− log |Y|

n
− g(V, 1/

√
n)

])
Pe(V ) ' 1, for large n provided I(PV , V ) ≤ R− ε

Note that this conclusion is dubious because we have a counterexample (Example 1) showing
that the ‘refined strong converse’ does not hold, even for codes without feedback. That is,
having a mutual information lower than the rate is not enough to force the error probability to
1. Although Fano’s inequality can be used, this only shows the probability of error is bounded
above some non-vanishing constant. Forging ahead, however, plugging this information into
(A.38) gives

− 1

n
logP e,fb(W,R, n) ≤ D(V ||W |PV ) + f(n, ε, V ),

where the function f incorporates g̃ and the logPe(V ) term in (A.38). By choice of V that
have a low mutual information, we also have

− 1

n
logP e,fb(W,R, n) ≤ inf

V :I(PV ,V )≤R−ε
D(V ||W |P ) + sup

V :I(PV ,V )≤R−ε
f(n, ε, V ).

It is then claimed that f(n, ε, V ) can be bounded uniformly over V , but as mentioned earlier,
it is unclear how to verify this point. In the next step, he claims that “a fortiori” (obviously),

inf
V :I(PV ,V )≤R−ε

D(V ||W |PV ) ≤ sup
P∈P

inf
V :I(P,V )≤R−ε

D(V ||W |P ). (A.39)

While this step might seem obvious, as it apparently did to Sheverdyaev and reviewers of the
paper, it suffers from a subtle logical error. One might think that by taking the supremum

14This is something that both we along with Giacomo Como and Baris Nakiboglu of MIT could not verify.
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over PV and then infimizing over V , we are only weakening the bound. However, we cannot
apply the error probability bound to all pairs (P, V ) ∈ P ×W that have I(P, V ) ≤ R − ε.
Rather the bound only applies to (PV , V ) that have I(PV , V ) ≤ R− ε. That is, if there is a
V such that PV = P , there is no guarantee that I(PV , V ) ≤ R− ε. So the infimizing channel
V for a given P is not necessarily available to use for bounding purposes. Hence, the RHS
of (A.39) contains more channels in the infimum than it should. There is a potential fix to
this issue as developed by Baris Nakiboglu (and reproduced in Lemma 1), but the necessity
of this bridge in the proof was not anticipated by Sheverdyaev, at least as can be reasonably
concluded from the paper.

A.8 Augustin’s manuscript

Augustin [34] claims that the sphere-packing bound holds for fixed-length block codes with
feedback. His Habilitationschrift, entitled Noisy Channels, from Universiät Erlangen-Nürenberg
was submitted to Springer Lecture Notes in 1978, but appears to be unpublished as it seems
to be unavailable in the literature15.

Our brief inspection of the contents of the manuscript indicate that it is a rigorous
treatment of point-to-point channel coding for channels with input and output spaces that
are not required to be finite or real-valued. Measurability is the main requirement for many
of the results, while stationarity of channels is sometimes assumed. One result of note is
an extension of the sphere-packing bound to these abstract input-output space channels,
inspired by the original proof of Shannon, Gallager and Berlekamp [18], without requiring a
fixed composition or type assumption. Of particular importance to us is one result located
towards the end of the manuscript. It is a result that claims that the sphere-packing exponent
is an upper bound on the error exponent for fixed-length block codes with feedback used
over finite-alphabet DMCs. In this section, we will discuss the result in question.

Unfortunately, we are not able to ascertain that the result was correctly proved nor say
for sure that the result has not been rigorously proved due to two reasons. First, the original
manuscript was written in German and translated to English. However, the phrasing used
in the translation makes it difficult to follow in many places. The second reason is that the
proof of the result is not explained in sufficient detail in several places where it is different
from the proof of sphere-packing for block codes without feedback (as done in [34]). With
that said, our observations in this section are much less formal than those made of the
Sheverdyaev paper.

Claim 2 (Theorem 41.7 of [34]). We are restricting here to what the theorem says about
stationary DMCs. The actual theorem applies in a more general form to finite input, sta-
tionary channels and list codes with feedback. For a DMC W , and length n, rate R code with

15We received a photocopy of the Springer Lecture Notes submission in Summer 2010 from Professor Fady
Alajaji of Queens University, Canada after being informed by Professor Imre Csiszár of its existence.
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feedback,

− 1

n
logPe(W ) ≤ sup

ρ≥0
E0(ρ)− ρ

(
R−O

(
log(n)

n1/3

))
+O

(
log(n)

n1/3

)
= Esp

(
R−O

(
log(n)

n1/3

))
+O

(
log(n)

n1/3

)
.

Note that the convergence of the error exponent involves terms of the order of log(n)/n1/3.
This is much slower than the convergence of the error exponent for block codes without
feedback, where the ‘slack’ terms are of the order of log(n)/n for the argument within the
sphere-packing exponent and 1/

√
n for the additive term outside.

Augustin’s proof, as might be expected considering the history of this problem, is pri-
marily concerned with ‘mutual information’ terms of the form

1

n

n∑
i=1

∑
y

Vi,ρ(y|xi(m, yi−1)) log
Vi,ρ(y|xi(m, yi−1))

Qρ(y)
(A.40)

and ‘divergence’ terms of the form

1

n

n∑
i=1

∑
y

Vi,ρ(y|xi(m, yi−1)) log
Vi,ρ(y|xi(m, yi−1))
Wρ(y|xi(m, yi−1))

, (A.41)

for appropriately chosen ‘tilted’ channels and distributions Vi,ρ and Qρ. His proof of the
sphere-packing bound for codes without feedback proves probabilistic statements about terms
like (A.40) and (A.41) when there is a measure over the tilting parameter ρ. He then
uses a pigeon-hole argument to claim that those probability statements also hold for an
exponentially-equivalent-rate subcode, for a small range of ρ of size Θ(1/n2), with a slightly
smaller probability. Then, he proves some continuity statements to show that since the range
of ρ is now very small, we get terms close to E0(ρ) from (A.41). Since we don’t know a priori
which ρ will come out of the pigeon-hole argument, a sup over all ρ ≥ 0 is taken.

For the proof with feedback, he notes that he will choose ρ depending not only on the
message, but also the input letter at a given time. He claims that a selection process to
refine down to a small range of ρ after this yields a probability that decays faster than
exponentially (as the ρ depend on too many factors now). The claimed fix to this problem
is to group instants of time into blocks of length k = O(n1/3), but not k = o(n1/3). The ρ
are then selected based on the message and received symbols up to those in the last block of
length k. Augustin claims that the resulting probability bounds, after thinning out to get
to a small range of ρ, are not sub-exponential anymore, but some bounding power is lost in
this process, resulting in the log(n)/n1/3 terms.

Unfortunately, this proof is only sketched and it is unclear how allowing the ρ to depend
on blocks of length k received symbols leads to a pigeon hole argument over a sub-exponential
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number of holes (as we understand it, this still leads to a super-exponential number of possible
holes). If the ρ’s do not depend on past histories but only the number of the sub-block in
the whole block, it is unclear how the probability statements are being made. Hence, we can
neither verify, nor refute this claim and proof.

A.9 Sphere packing holds when the fixed type encod-

ing tree condition holds

A.9.1 Proof of fixed type proposition

Proposition 2 of Section 2.5: Suppose an encoding tree for a message m ∈ M satisfies
the fixed type encoding tree condition with type P ∈ Pn. Then, for all V ∈ Vn(P ),

|B(m,P, V )| = |TV (xn)|

≥ exp(nH(V |P ))

(n+ 1)|X ||Y|
,

where xn ∈ TP is arbitrary because |TV (xn)| depends only on the type of xn.
Proof:

Definition 9 (Canonical sequence for type P ). For an integer n ≥ 1 and a type P ∈ Pn,
we define the canonical sequence of type P (and implicitly of length n) as follows. First,
without loss of generality, assume that X = {1, 2, . . . , |X |}. The canonical sequence of type
P is denoted xnP and is the ‘lexicographically’ ordered sequence in type P . That is, it is a
string with nP (1) 1’s, followed by nP (2) 2’s, followed by nP (3) 3’s, and so on until it is
ended by nP (|X |) |X |’s.

For example, if X = {1, 2, 3, 4, 5}, n = 10 and P = (2/10, 3/10, 0/10, 4/10, 1/10), then

xnP = (1, 1, 2, 2, 2, 4, 4, 4, 4, 5).

To warm up, we recall the reason that |TV (xnP )| = |TV (xn)| for all xn ∈ TP . Because xn

has type P , there is a permutation σ that rearranges xnP to result in xn. That is,

σ : {1, . . . , n} → {1, . . . , n}

is a permutation (so it is one-to-one and onto) such that

xP,i = xσ(i).

The fact that σ is a permutation means that the type of xn is the same as the type of xnP .
Now, fix a V ∈ Vn(P ). We want to show that |TV (xn)| = |TV (xnP )|, and we can do so
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by coming up with a one-to-one map from Yn to Yn that preserves the input-output pair
counts. Since we have a σ that maps indices and rearranges xn to get xnP , it turns out doing
the same for yn sequences preserves the conditional shell relationship. More rigorously, let
τ : Yn → Yn be defined by

τ(yn) = τ ((y1, . . . , yn)) = (yσ(1), yσ(2), . . . yσ(n)).

Clearly τ is a permutation map of Yn. All that needs to be checked is that it preserves
the (x, y) counts between sequences. Fix a yn ∈ TV (xn) and any x ∈ X , y ∈ Y . Because
yn ∈ TV (xn),

nP (x)V (y|x) =
n∑
i=1

1(xi = x, yi = y)

=
n∑
j=1

∑
i=σ(j)

1(xi = x, yi = y)

=
n∑
i=1

1(xσ(i) = x, yσ(i) = y)

=
n∑
i=1

1(xP,i = x, yσ(i) = y).

Therefore, we have that if yn ∈ TV (xn), τ(yn) ∈ TV (xnP ). Also, if yn /∈ TV (xn), yn ∈ TV ′(xn)
for some other V ′ ∈ Vn(P ) and hence τ(yn) ∈ TV ′(x

n
P ) and τ(yn) /∈ TV (xnP ). Therefore,

|TV (xn)| = |TV (xnP )|.
Now, if the code has feedback, a simple permutation of the indices does not work as a

map to show that |B(m,P, V )| = TV (xnP ). A bit more work needs to be done, and we start
with several definitions.

Definition 10 (Encoding tree (with feedback)). An encoding tree of length n, E, is a set
of channel input maps with feedback (with a dummy message index m),

E =
{
xi(m, y

i−1) ∈ X : i = 1, . . . , n, yi−1 ∈ Y i−1
}
.

The tree is visualized with nodes being labeled with channel inputs and edges being labeled
with channel outputs as in Figure 2.9.

Definition 11 (Canonical encoding tree). For a length n and type P ∈ Pn, the canonical
encoding tree of type P (and implicitly of length n), denoted by EP is

EP , {xi(m, yi−1) = xP,i : i = 1, . . . , n, yi−1 ∈ Y i−1}.

The canonical encoding tree uses the feedback trivially and uses the canonical sequence of
type P as the input.
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The result that we wish to prove in this proposition is that if E is an encoding tree
that satisfies the fixed-type encoding tree condition with type P , then for any V ∈ Vn(P ),
|B(m,P, V )| = |TV (xnP )|. We will prove this proposition by starting with the canonical
encoding tree for type P and performing a finite number of changes to the tree (in labeling
of the inputs at the nodes) to arrive at the given encoding tree E . Each of these changes
will be shown to keep |B(m,P, V )| = |TV (xnP )|. We will be working with several encoding
trees, so to avoid confusion, let BE(P, V ) denote the output sequences (leaves in the tree)
that have conditional type V when seen from the input sequence for encoding tree E .

So, assume that E satisfies the fixed type encoding tree condition with type P . Start with
the canonical encoding tree EP . If x1(m) = xP,1, then E and EP agree at the first letter and
we don’t need to modify EP . Suppose, however that x1(m) 6= xP,1 so that E and EP disagree
on the symbol at the root node of the tree. We claim that we can modify EP to get a new
encoding tree E ′ = {x′(m, yi−1) : i = 1, . . . , n, yi−1 ∈ Y i−1} such that x′1(m) = x1(m) and
for each y ∈ Y , the encoding tree of length n− 1 that is the child of y1 = y is the canonical
encoding tree EP ′ for the type P ′ with

P ′(x) =

{
nP (x)/(n− 1) if x 6= x1(m)

(nP (x)− 1)/(n− 1) if x = x1(m)

That is, P ′ is the type for length n−1 one gets by taking type P for length n and removing one
use of the symbol x1(m). This is done by using Proposition 11 repeatedly. The proposition
says that the input symbol at a node and the input symbol of its immediate children can be
interchanged without affecting the number of sequences in BEP (P, V ) (although the actual
sequences themselves will change) provided that the input symbols for children further down
do not depend on any more received symbols (only the depth in the tree). Therefore, we can
modify EP to E ′ by repeatedly applying Proposition 11. We simply slide the first occurrence
of symbol x1(m) in the canonical encoding tree (such an occurrence must exist because of
the fixed type encoding tree assumption) back to the root node (interchanging symbols as
we go) and the children of the root node are all canonical trees of type P ′ and length n− 1.
Proposition 11 ensures that for each V ∈ Vn(P ), |BEP (P, V )| = |BE ′(P, V )|.

Now, E can use the feedback from y1 nontrivially, so x(m, y1) can be different for each
y1 ∈ Y . This is fine, however, because we can repeat the process for each child of the root
node separately to get another encoding tree Ẽ of length n such that E and Ẽ agree for the
first two levels and the children after two levels are all canonical encoding trees of length n−2
(however, the types of canonical trees will be different if the encoding tree uses the feedback
at time 2 nontrivially), and |BẼ(P, V )| = |BEP (P, V )| for all V ∈ Vn(P ). The process can be
continued until we have modified EP to get E . We crucially use the fixed type encoding tree
condition because we require that along every sequence yn the number of x’s is the same for
each x ∈ X .

To finish off the proof, we need only recognize that |BEP (P, V )| = |TV (xnP )| since the
canonical encoding tree does not use feedback.
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Proposition 11. Let E be an encoding tree of length n and suppose there is a k ∈ {0, 1, . . . , n−
2} and yk ∈ Yk such that16 for all i ∈ {k + 1, . . . , n}, for all yi−1−k, ỹi−1−k ∈ Y i−1−k,

xi(m, (y
k, yi−1−k)) = xi(m, (y

k, yi−1−k)).

That is, if the received sequence up through time k was yk, the input symbol is independent
on any of the received symbols after time k. Consider the following modified encoding tree
Ẽ = {x̃i(m, yi−1) : i = 1, . . . , n, yi−1 ∈ Y i−1},

x̃i(m, y
i−1) =


xi(m, y

i−1), if i ≤ k
xi(m, y

i−1), if i > k, yk 6= yk

xk+1(m, y
k), if i = k + 2, yk = yk

xk+2(m, (y
k, 1)) if i = k + 1, yk = yk

Ẽ is the encoding tree one gets if we interchange the symbols of the input for encoding tree
E at time k + 1 and k + 2 when the received sequence after time k is yk. By the assumption
that feedback is not used after time k when the received sequences is yk, xk+2(m, (y

k, y)) is
independent of y ∈ Y, so in the above definition of x̃, we have used the dummy symbol 1 ∈ Y.
Then, for all P ∈ Pn and V ∈ Vn(P ),

|BE(P, V )| = |BẼ(P, V )|.

Proof: Figure A.1 depicts how E is modified to get Ẽ . In order to prove this proposition,
we will construct a mapping τ : Yn → Yn that is one-to-one and onto (i.e. a permutation)
that preserves the (x, y) counts for the E after the modification. Let

τ(yn) =

{
yn if yk 6= yk

(y1, . . . , yk, yk+2, yk+1, yk+3, . . . , yn) if yk = yk.

Hence, τ performs the same interchanging to yn as was done to modify E . It is clear
that τ is a permutation of Yn because it is one-to-one and onto (the inverse permutation is
actually τ as well). Now, fix a P ∈ Pn, V ∈ Vn(P ), and yn ∈ BE(P, V ). We wish to show
that τ(yn) ∈ BẼ(P, V ). If yk 6= yk, it is clear that yn = τ(yn) ∈ BẼ(P, V ) still because the

16If k = 0, Yk = ∅ and yk is the null string.



157

Time
k+1 k+2

x

yk

x'

x'

x'

Time
k+1 k+2

x'

yk

x

x

x

Figure A.1: The interchange of inputs for times k + 1 and k + 2 as described in Proposition
11. The encoding tree is assumed to have inputs that only depend on the time i after time
k when the received sequence is yk. The original tree is modified by interchanging the input
at time k+ 1 with the input at time k+ 2, only for the nodes along the branch yk. All parts
of the encoding tree that are not shown remain unchanged. The resulting modified tree has
the same number of sequences in its conditional shells with feedback as the original tree.
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encoding tree along yn has not changed. So suppose that yk = yk, and let zn = τ(yn), so

nP (x)V (y|x) =
n∑
i=1

1(xi(m, y
i−1) = x, yi = y)

=
k∑
i=1

1(xi(m, y
i−1) = x, yi = y) + 1(xk+1(m, y

k) = x, yk+1 = y)+

1(xk+2(m, y
k+1) = x, yk+2 = y) +

n∑
i=k+3

1(xi(m, y
i−1) = x, yi = y)

(a)
=

k∑
i=1

1(x̃i(m, y
i−1) = x, yi = y) + 1(xk+1(m, y

k) = x, yk+1 = y)+

1(xk+2(m, y
k+1) = x, yk+2 = y) +

n∑
i=k+3

1(x̃i(m, y
i−1) = x, yi = y)

(b)
=

k∑
i=1

1(x̃i(m, y
i−1) = x, yi = y) + 1(x̃k+1(m, y

k) = x, yk+2 = y)+

1(x̃k+2(m, y
k+1) = x, yk+1 = y) +

n∑
i=k+3

1(x̃i(m, y
i−1) = x, yi = y)

=
n∑
i=1

1(x̃i(m, z
i−1) = x, zi = y),

where in (a) we have used the fact that x̃i does not change for times other than i = k+1, k+2
and in (b), we have interchanged both the xi and yi for i = k+ 1, k+ 2. Hence, zn = τ(yn) ∈
BẼ(P, V ). Hence, τ maps BE(P, V ) into BẼ(P, V ) for each P ∈ Pn, V ∈ Vn(P ). Therefore,
since these are disjoint sets, |BE(P, V )| = |BẼ(P, V )| for each P ∈ Pn, V ∈ Vn(P ).

A.9.2 Proof of theorem

Theorem 3 of Section 2.5: Fix a δ > 0, R > 0. There exists a finite nFT (W,R, δ) such
that for any fixed-length code with feedback of length n ≥ nFT (W,R, δ) and rate R with
encoding trees for all messages satisfying the fixed type encoding tree condition,

− 1

n
logPe(W ) ≤ Esp(R− δ) + δ.

Proof: For now, assume that the fixed type encoding tree condition holds for all messages
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in the code with the same P ∈ Pn, so ∀ yn ∈ Yn, P (m, yn) = P . With that in mind,

Pe(W ) =
1

|M|
∑
m∈M

PW (Y n /∈ Dm|M = m)

=
1

|M|
∑
m∈M

∑
V ∈Vn(P )

PW (Y n ∈ Dcm ∩B(m,P, V )|M = m)

=
1

|M|
∑

m∈M(P )

∑
V ∈Vn(P )

∑
yn∈B(m,P,V )∩Dcm

PW (Y n = yn|M = m)

=
∑

V ∈Vn(P )

1

|M|
∑
m∈M

|Dcm ∩B(m,P, V )| exp (−n [D(V ||W |P ) +H(V |P )])

=
∑

V ∈Vn(P )

exp (−n [D(V ||W |P ) +H(V |P ) +R])
∑
m∈M

|B(m,P, V ) ∩ Dcm|

=
∑

V ∈Vn(P )

exp (−n [D(V ||W |P ) +H(V |P ) +R])×[∑
m∈M

|B(m,P, V )| − |B(m,P, V ) ∩ Dm|

]
(a)

≥
∑

V ∈Vn(P )

exp (−n [D(V ||W |P ) +H(V |P ) +R])

[(∑
m∈M

|B(m,P, V )|

)
− |TPV |

]
≥

∑
V ∈Vn(P )

exp (−n [D(V ||W |P ) +H(V |P ) +R])×[(∑
m∈M

|B(m,P, V )|

)
− exp(nH(PV ))

]
,

where (a) follows from Proposition 14. From Proposition 2, we know that |B(m,P, V )| ≥
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exp(nH(V |P ))/(n+ 1)|X ||Y| for all m ∈M , so for any δ > 0, we have

Pe(W ) ≥
∑

V ∈Vn(P )

exp (−n [D(V ||W |P ) +H(V |P ) +R])×[
exp

(
n

[
H(V |P ) +R− |X ||Y|

n
log(n+ 1)

])
− exp(nH(PV ))

]
≥

∑
V ∈Vn(P )

exp

(
−n
[
D(V ||W |P ) +

|X ||Y|
n

log(n+ 1)

])
×[

1− exp

(
−n
[
R−H(PV ) +H(V |P )− |X ||Y|

n
log(n+ 1)

])]
≥

∑
V ∈Vn(P ):I(P,V )≤R−δ

exp

(
−n
[
D(V ||W |P ) +

|X ||Y|
n

log(n+ 1)

])
×[

1− exp

(
−n
[
R−H(PV ) +H(V |P )− |X ||Y|

n
log(n+ 1)

])]
≥ exp

(
−n
[

min
V ∈Vn(P ):I(P,V )≤R−δ

D(V ||W |P ) +
|X ||Y|
n

log(n+ 1) + τ(n, δ, |X |, |Y|)
])

,

where

τ(n, δ, |X |, |Y|) , − 1

n
log

(
1− exp

(
−n
[
δ − |X ||Y|

n
log(n+ 1)

]))
.

Note that τ(n, δ, |X |, |Y|)→ 0 as n→∞ and is O(1/n). From Lemma 6, we know that

min
V ∈Vn(P ):I(P,V )≤R−δ

D(V ||W |P ) ≤ Esp

(
R− δ − 2

|X ||Y|
n

log n

)
+ κW

|X ||Y|
n

+
|X ||Y|
n

log
n

|X |
.

Therefore,

− 1

n
logPe(W ) ≤ Esp

(
R− δ − 2

|X ||Y|
n

log n

)
+ κW

|X ||Y|
n

+
|X ||Y|
n

log
n

|X |
+

|X ||Y|
n

log(n+ 1) + τ(n, δ, |X |, |Y|).

Now, the above is true when we assume that the fixed type encoding tree condition holds
with the same P for all messages. Removing the requirement that the condition holds with
the same P for all messages means we need to thin the code before applying the argument
that got us to the point above. Since there are at most (n+ 1)|X | types P that the condition
can hold with for each message, we have
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− 1

n
logPe(W ) ≤ Esp

(
R− δ − 2

|X ||Y|
n

log n− |X |
n

log(n+ 1)

)
+
|X ||Y|
n

log
n

|X |
+

κ
|X ||Y|
n

+
|X ||Y|
n

log(n+ 1) + τ(n, δ, |X |, |Y|) +
|X |
n

log(n+ 1)

Since log(n)/n→ 0 as n→∞, we have for large enough n depending on δ, R and W that

− 1

n
logPe(W ) ≤ Esp(R− 2δ) + 2δ.

A.10 Limited memory at the encoder means the sphere

packing bound holds

Proposition 5 of Section 2.9: The following relationship between Esp(R) and E ′sp(R)
holds for all k ≥ 2 (i.e. all interesting k):

E ′sp(R) = kEsp

(
R

k

)
.

This result is due to Baris Nakiboglu and Giacomo Como [33].
Proof: We will show this for the case of k = 2 and argue the rest by induction. First,

let S ′ be the set of test channels V ′ ∈ W ′ of the form

V ′(y1, y2|x1, f2) = V1(y1|x1)V2(y2|f2(y1))

for some V1, V2 ∈ W . So, V ′ is a succession of two possibly different DMCs. Then, for
V ′ ∈ S ′ ⊂ W ′,

D(V ′||W ′|P ′) =
∑
x1,f2

∑
y1,y2

P ′(x1, f2)V
′(y1, y2|x1, f2) log

V ′(y1, y2|x1, f2)
W ′(y1, y2|x1, f2)

=
∑
x1,f2

∑
y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V1(y1|x1)V2(y2|f2(y1))
W (y1|x1)W (y2|f2(y1))

=
∑
x1,f2

∑
y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V1(y1|x1)
W (y1|x1)

+

∑
x1,f2

∑
y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V2(y2|f2(y1))
W (y2|f2(y1))

.
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Now, for the first term above,

T1 ,
∑
x1,f2

∑
y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V1(y1|x1)
W (y1|x1)

=
∑
x1,y1

[∑
f2

P ′(x1, f2)
∑
y2

V2(y2|f2(y1))

]
V1(y1|x1) log

V1(y1|x1)
W (y1|x1)

(a)
=
∑
x1,y1

[∑
f2

P ′(x1, f2)

]
V1(y1|x1) log

V1(y1|x1)
W (y1|x1)

= D(V1||W |PX1) (A.42)

PX1 ,
∑
f2

P ′(x1, f2),

where (a) follows because for each fd, y1,
∑

y2
V (y2|f2(y1)) = 1. Note that PX1 depends only

on P ′. For the second term,

T2 ,
∑
x1,f2

∑
y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V2(y2|f2(y1))
W (y2|f2(y1))

=
∑
x1,f2

∑
y1,y2

∑
x2

1(f2(y1) = x2)P
′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log

V2(y2|x2)
W (y2|x2)

=
∑
x2,y2

 ∑
x1,y1,f2:f2(y1)=x2

P ′(x1, f2)V1(y1|x1)

V2(y2|f2(y1)) log
V2(y2|x2)
W (y2|x2)

=
∑
x2,y2

PX2(x2)V2(y2|f2(y1)) log
V2(y2|x2)
W (y2|x2)

= D(V2||W |PX2) (A.43)

PX2(x2) ,
∑

x1,y1,f2:f2(y1)=x2

P ′(x1, f2)V1(y1|x1),

where we note that PX2(·) is a distribution because it is nonnegative and sums to 1. Note
that PX2 depends on P ′ and V1 but not on V2. Combining (A.42) and (A.43) yields

D(V ′||W ′|P ′) = D(V1||W |PX1) +D(V2||W |PX2). (A.44)

Now, it is well known [47] that for P ∈ P , V ∈ V ,

I(P, V ) = D(V ||(PV )|P )

= min
Q∈Q

D(V ||Q|P ),



163

where the divergence between a conditional distribution V and a distribution Q on Y con-
ditioned on P is

D(V ||Q|P ) =
∑
x,y

P (x)V (y|x) log
V (y|x)

Q(y)
.

With this property in mind,

I(P ′, V ′) = min
Q′∈Q′

∑
x1,f2,y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V1(y1|x1)V2(y2|f2(y1))

Q(y1, y2)

≤
∑

x1,f2,y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V1(y1|x1)V2(y2|f2(y1))

(PX1V1)(y1)(PX2V2)(y2)

=
∑

x1,f2,y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V1(y1|x1)

(PX1V1)(y1)
+

∑
x1,f2,y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V2(y2|f2(y1))
(PX2V2)(y2)

=
∑
x1,y1

[∑
f2,y2

P ′(x1, f2)V2(y2|f2(y1))

]
V1(y1|x1) log

V1(y1|x1)
(PX1V1)(y1)

+

∑
x1,f2,y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V2(y2|f2(y1))
(PX2V2)(y2)

=
∑
x1,y1

PX1(x1)V1(y1|x1) log
V1(y1|x1)

(PX1V1)(y1)
+

∑
x1,f2,y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V2(y2|f2(y1))
(PX2V2)(y2)

= I(PX1 , V1) +
∑

x1,f2,y1,y2

P ′(x1, f2)V1(y1|x1)V2(y2|f2(y1)) log
V2(y2|f2(y1))
(PX2V2)(y2)

= I(PX1 , V1) +
∑
y2

∑
x2

 ∑
x1,y1,f1:f2(y1)=x2

P ′(x1, f2)V1(y1|x1)

V2(y2|x2) log
V2(y2|x2)

(PX2V2)(y2)

= I(PX1 , V1) +
∑
y2

∑
x2

PX2(x2)V2(y2|x2) log
V2(y2|x2)

(PX2V2)(y2)

I(P ′, V ′) ≤ I(PX1 , V1) + I(PX2 , V2). (A.45)
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Using the above bound for V ′ ∈ S ′, we can upper bound E ′sp(R) as

E ′sp(R) = max
P ′∈P ′

min
V ′∈W ′:I(P ′,V ′)≤R

D(V ′||W ′|P ′)

≤ max
P ′∈P ′

min
V ′∈S′:I(P ′,V ′)≤R

D(V ′||W ′|P ′)

(a)

≤ max
P ′∈P ′

min
V ′∈S′:I(PX1

,V1)+I(PX2
,V2)≤R

D(V ′||W ′|P ′)

(b)

≤ max
P ′∈P ′

min
V ′∈S′:I(PX1

,V1)≤R/2, I(PX2
,V2)≤R/2

D(V ′||W ′|P ′) (A.46)

(c)
= max

P ′∈P ′
min

V ′∈S′:I(PX1
,V1)≤R/2, I(PX2

,V2)≤R/2
D(V1||W |PX1) +D(V2||W |PX2),

where (a) is due to reducing the set of admissible V ′, (b) follows from (A.45) and (c) follows
from (A.44). Now, we have

E ′sp(R) ≤ max
P ′∈P ′

min
V1,V2:I(PX1

,V1)≤R/2, I(PX2
,V2)≤R/2

D(V1||W |PX1) +D(V2||W |PX2)

(d)

≤ max
PX1

,PX2

min
V1:I(PX1

,V1)≤R/2
D(V1||W |PX1) + min

V2:I(PX2
,V2)≤R/2

D(V2||W |PX2)

= 2Esp(R/2),

where (d) follows because while PX2 is induced by P ′ and V1, allowing it to be arbitrary can
only make the max larger.

The above proof can be extended to k symbols as follows. First, note that we never
used anywhere explicitly that the first and second symbol within the supersymbol are from
the same alphabet, so for example we can have X ′ = X × X k−1 and similarly for Y ′ and
W ′. Secondly, the bound from the line above (A.46) to (A.46) does not have to be an R/2,
R/2 split in the mutual information. We can just as well require I(PX1 , V1) ≤ R/k and
I(PX2 , V2) ≤ (k − 1)R/k. In the end, we would have

E ′sp(R) ≤ Esp,1(R/k) + Esp,2((k − 1)R/k), (A.47)

where Esp,1 denotes the sphere packing bound of the first channel and Esp,2 denotes the
sphere packing bound for the second channel. So to prove the proposition by induction,
assume that we have shown for all l ≤ k (we have already done the base case of k = 2),

E(l)
sp (R) ≤ lEsp(R/l),

where E
(l)
sp (R) denotes the sphere packing bound of the superchannel composed of l symbols
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from X . Then, using (A.47),

E(k+1)
sp (R) ≤ Esp(R/(k + 1)) + E(k)

sp (kR/(k + 1))

(e)

≤ Esp(R/(k + 1)) + kEsp(R/(k + 1))

= (k + 1)Esp(R/(k + 1)),

where (e) follows from the inductive hypothesis. As for the lower bound that E ′sp(R) ≥
kEsp(R/k), it follows obviously from the fact that the codes do not have to use feedback at
all, that is P ′ can be a product distribution on X k, in which case the optimization turns into
k independent optimizations over test channels. Using the fact that both mutual information
and divergence are convex in the channel V yields the desired lower bound. We only outline
this portion because we actually only need the upper bound for our purposes.

A.11 Equivalent statements

A.11.1 S-P encoding tree condition implies SP holds with feed-
back

Proposition 3 of Section 2.6: If the sphere-packing encoding tree condition holds, then
sphere-packing for fixed-length codes with feedback holds.

Proof: Fix a δ > 0, and block code with feedback of rateR and length n ≥ nET,fb(δ, R,W ).
If the sphere-packing encoding tree condition holds, we know that for each message encoding
tree, there exists a P ∈ Pn, V ∈ Vn(P ) such that (2.26), (2.27) and (2.28) hold. Now, the
(P, V ) can be different for different messages, but there are at most (n+ 1)|X ||Y| joint types
(P, V ), so there must be at least one (P, V ) such that (2.26), (2.27) and (2.28) hold for at
least |M|/(n+ 1)|X ||Y| of the messages. Fixing this P, V , and letting M′ ⊂M be the set of
messages for which (2.26), (2.27) and (2.28) hold, we have

Pe(W ) =
1

|M|
∑
m∈M

PW (Y n ∈ Dcm|M = m)

≥ 1

|M|
∑
m∈M

PW (Y n ∈ B(m,P, V ) ∩ Dcm|M = m)

=
1

|M|
∑
m∈M

|B(m,P, V ) ∩ Dcm| exp(−n(D(V ||W |P ) +H(V |P )))

≥ 1

|M|
∑
m∈M′

|B(m,P, V ) ∩ Dcm| exp(−n(D(V ||W |P ) +H(V |P )))

= exp(−n(R +D(V ||W |P ) +H(V |P ))
∑
m∈M′

|B(m,P, V ) ∩ Dcm|. (A.48)



166

At this point, we can use the properties of |B(m,P, V )|, D(V ||W |P ) and I(P, V ) that are
provided by the sphere-packing encoding tree condition.∑
m∈M′

|B(m,P, V ) ∩ Dcm| =
∑
m∈M′

|B(m,P, V )| − |B(m,P, V ) ∩ Dm|

≥
∑
m∈M′

|B(m,P, V )| − |TPV |

≥
∑
m∈M′

|B(m,P, V )| − exp(nH(PV ))

≥ |M|
(n+ 1)|X ||Y|

exp(n(H(V |P )− δ))− exp(nH(PV ))

= exp

(
n

[
H(V |P ) +R− |X ||Y|

n
log(n+ 1)− δ

])
×[

1− exp

(
−n
[
H(V |P )−H(PV ) +R− δ − |X ||Y|

n
log(n+ 1)

])]
= exp

(
n

[
H(V |P ) +R− |X ||Y|

n
log(n+ 1)− δ

])
×[

1− exp

(
−n
[
R− I(P, V )− δ − |X ||Y|

n
log(n+ 1)

])]
≥ exp

(
n

[
H(V |P ) +R− |X ||Y|

n
log(n+ 1)− δ

])
×[

1− exp

(
−n
[
2δ − δ − |X ||Y|

n
log(n+ 1)

])]
= exp

(
n

[
H(V |P ) +R− |X ||Y|

n
log(n+ 1)− δ

])
×[

1− exp

(
−n
[
δ − |X ||Y|

n
log(n+ 1)

])]
≥ 1

2
exp

(
n

[
H(V |P ) +R− |X ||Y|

n
log(n+ 1)− δ

])
, (A.49)

where the last line holds for large enough n depending on δ, |X | and |Y|. Plugging the
inequality of (A.49) into (A.48) yields that for large enough n,

Pe(W ) ≥ 1

2
exp

(
−n
[
D(V ||W |P ) + δ +

|X ||Y|
n

log(n+ 1)

])
≥ 1

2
exp

(
−n
[
Esp(R− 2δ) + δ +

|X ||Y|
n

log(n+ 1)

])
.

Since δ > 0 can be made arbitrarily small and log(n+ 1)/n→ 0 as n→∞, sphere-packing
then holds with feedback.
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A.11.2 Intermediate S-P condition and S-P holding with feedback
are equivalent

Proposition 4 of Section 2.6: If SP holds with feedback, then the intermediate SP
condition holds. Conversely, if the intermediate SP condition holds, SP holds with feedback.

Proof: First, assume that SP holds with feedback. Fix a δ > 0 and a block code with
feedback of rate R and length n ≥ nSP,fb(δ, R,W ). Now, because SP holds with feedback,

Pe(W ) ≥ exp (−n(Esp(R− δ) + δ)) .

Expanding the error probability,

Pe(W ) =
1

|M|
∑
m∈M

PW (Y n /∈ Dm|M = m)

=
1

|M|
∑
m∈M

∑
P∈Pn,V ∈Vn(P )

PW (Y n ∈ B(m,P, V ) ∩ Dcm|M = m)

(a)
=

1

|M|
∑
m∈M

∑
P∈Pn,V ∈Vn(P )

|B(m,P, V ) ∩ Dcm| exp(−n(D(V ||W |P ) +H(V |P )))

=
∑

P∈Pn,V ∈Vn(P )

1

|M|
∑
m∈M

|B(m,P, V ) ∩ Dcm| exp(−n(D(V ||W |P ) +H(V |P )))

=
∑

P∈Pn,V ∈Vn(P )

K(P, V )

K(P, V ) ,
1

|M|
∑
m∈M

|B(m,P, V ) ∩ Dcm| exp(−n(D(V ||W |P ) +H(V |P ))), (A.50)

where in the above, (a) follows from Proposition 14. Note that all the steps above are
equalities. Hence, we know that∑

P∈Pn,V ∈Vn(P )

K(P, V ) ≥ exp(−n(Esp(R− δ) + δ)).

Since all the K(P, V ) are non-negative, and there are at most (n+1)|X ||Y| joint types of length
n, it follows by the pigeonhole principle that there is at least one P ∈ Pn and V ∈ Vn(P )
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such that

K(P, V ) =
1

|M|
∑
m∈M

|B(m,P, V ) ∩ Dcm| exp(−n(D(V ||W |P ) +H(V |P )))

≥ 1

(n+ 1)|X ||Y|
exp(−n(Esp(R− δ) + δ))

1

n
logK(P, V ) = −D(V ||W |P )−H(V |P ) +

1

n
log

[
1

|M|
∑
m∈M

|B(m,P, V ) ∩ Dcm|

]

≥ −Esp(R− δ)− δ −
|X ||Y|
n

log(n+ 1).

Rearranging yields

ζ ,
1

n
log

[
1

|M|
∑
m∈M

|B(m,P, V ) ∩ Dcm|

]
(A.51)

≥ H(V |P )−
[
Esp(R− δ)−D(V ||W |P ) + δ +

|X ||Y|
n

log(n+ 1)

]
≥ H(V |P )− [Esp(R− δ)−D(V ||W |P ) + 2δ] (A.52)

for n large enough, as log(n+ 1)/n goes to 0 as n→∞. Now,

1

n
log

[
1

|M|
∑
m∈M

|B(m,P, V ) ∩ Dcm|

]
≤ 1

n
log

[
1

|M|
∑
m∈M

|B(m,P, V )|

]
(b)

≤ 1

n
log

[
1

|M|
∑
m∈M

exp(nH(V |P ))

]
= H(V |P ), (A.53)

where (b) comes from Proposition 14. Plugging the inequality of (A.53) into (A.52) implies
that additionally,

D(V ||W |P ) ≤ Esp(R− δ) + 2δ.

Hence, the intermediate sphere packing condition holds.
Now, suppose the intermediate sphere packing condition holds. That is, for n ≥ nSPI,fb(δ, R,W )

there exists a P ∈ Pn, V ∈ Vn(P ) such that (2.30) and (2.31) hold. Then, plugging (2.31)
into (A.50) and working backwards through the inequalities gives us that the sphere-packing
bound holds with feedback.



169

A.12 Delayed feedback

A.12.1 Error probability bound

Lemma 5 of Section 2.7: Define a channel independent constant

α(T ) ,
|X |(2 + |Y|) log(T + 1)

T
.

Fix an ε > α(T ). Then, for any block length n = NT (with N ≥ 1) rate R coding system
with a type 2 encoder,

− 1

NT
logPe(NT, E ,D) ≤ Esp,T (R− ε) + α(T ) + γ(N, T, ε),

where

Esp,T (R) , max
P∈PT

min
V ∈VT (P ):I(P,V )≤R

D(V ||W |P ), (A.54)

and

γ(N, T, ε) =
1

NT
log

1

1− exp(−NT (ε− α(T )))
.

Proof: The argument begins, as with the sphere-packing proof for codes without feed-
back, by showing that there is a subcode of approximate rate R for which most codewords
have the same input types. This is normally done by whittling down the messages to those
whose codewords belong to the largest common type, by message population. The challenge
is that now we have feedback every T symbols, so we need to carefully show in what sense
messages have the same input types. We do this by induction on N , the total number of
T -length blocks.

First, for N = 1, there has been no feedback. Let P1(m) denote the type of xT (m) ,
(φ1(m), . . . , φT (m)). Now, group messages according to their type P1(m). Since |PT | is at
most (T + 1)|X |, there exists a P1 ∈ PT such that

|{m : P1(m) = P1}| ≥
2nR

(T + 1)|X |
.

This is the usual argument for fixing the composition of a high-rate subcode in the proof of the
sphere-packing bound for codes used without feedback. After this, we choose a V1 ∈ VT (P1)
such that I(P1, V1) ≤ R − ε. The choice of V1 is made so as to minimize D(V1||W |P1)
amongst those V1 ∈ VT (P1) that have I(P1, V1) ≤ R − ε. The existence of a V1 such that
I(P1, V1) ≤ R − ε is not immediately obvious for channels in which Esp(R) can be infinite,
even if Esp(R) is not infinite for the given R. If no such V1 exists, the result of the lemma
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is meaningless if we take the convention that min over the null set is ∞. Hence, if the
optimization in the right hand side of (2.32) evaluates to something finite, we can safely
assume the existence, for each P1, of a V1 with I(P1, V1) ≤ R− ε. For the rest of the proof,
we assume we are in this case.

Without feedback, the selection at this point would be enough to show that for a high-rate
subcode with the same type, a substantial portion of the selected V1-shells (as defined in [47])
around the codewords for these messages overlap to cause a significant error. However, we
now have feedback every T symbols, so we will iterate this selection process N times. We
will prove a claim showing that the messages are not thinned too much and there are many
yn sequences which must ‘overlap’. We will do this by selecting N input types P1, . . . , PN
and N channel shells V1, . . . , VN sequentially by induction. Let, for 1 ≤ k ≤ N ,

B(k)(m) ,

{
ykT :

y(k−1)T ∈ B(k−1)(m), Pk(m, y
(k−1)T ) = Pk,

ykT(k−1)T+1 ∈ TVk
(
xkT(k−1)T+1(m, y

(k−1)T )
) }

,

where Pk(m, y
(k−1)T ) is the type of xkT(k−1)T+1(m, y

(k−1)T ), which is itself defined as(
φ(k−1)T+1(m, y

(k−1)T ), . . . , φkT (m, y(k−1)T )
)
.

Now, let for 1 ≤ k ≤ N ,

A(k) ,

{
m : |B(k)(m)| ≥ exp2(T

∑k
i=1H(Vi|Pi))

(T + 1)k(|X |+|X ||Y|)

}
,

where H(V |p) =
∑

x,y p(x)V (y|x) log(1/V (y|x)) denotes conditional entropy. Note the de-

pendence of both the A(k) and B(k)(m) sets on Pi and Vi. We drop the dependence in the
notation for convenience. In words, we are breaking the transmission length into blocks of
length T , and then coming up with a set of messages that have common types within each
block as long as the output sequence being fed back lies exactly in a certain V-shell. The
set B(k)(m) keeps track of how many of these output sequences lead to the common type
for each message and the set A(k) keeps track of how many of the messages have the desired
lower bound on size for B(k)(m).

Claim 3. For a block length n = NT , rate R type 2 encoder, there exist P1, . . . , PN ∈ PT
and V1, . . . , VN , with Vi ∈ arg minV ∈VT (Pi):I(Pi,V )≤R−εD(V ||W |Pi) such that

|A(N)| ≥ 2nR

(T + 1)N |X |
.

Proof: We proceed by induction with the base case of N = k = 1. As we have seen there
is a P1 ∈ PT such that at least 2nR/(T + 1)|X | messages have P1(m) = P1. We then choose
V1 ∈ VT (P1) such that I(P1, V1) ≤ R− ε. It is clear that for those m with P1(m) = P1,

|B(1)(m)| = |TV1(P1)| ≥
1

(T + 1)|X ||Y|
exp2(TH(V1|P1)),



171

where |TV (p)| denotes the number of vectors in a V -shell around a vector of type p (i.e.
|TV (xT )| if xT is of type p). Hence, the claim is true for N = 1.

Now for N = k > 1, assume the claim is true for k − 1. For each m ∈ A(k−1), group
the y(k−1)T ∈ B(k−1)(m) according to Pk(m, y

(k−1)T ). At least |B(k−1)(m)|/(T + 1)|X | of the
y(k−1)T ∈ B(k−1)(m) have a common type Pk(m, y

(k−1)T ) = Pk(m). Now, group the messages
in A(k−1) according to Pk(m). At least |A(k−1)|/(T + 1)|X | have a common type Pk(m) = Pk.
Now select a Vk ∈ VT (Pk) such that I(Pk, Vk) ≤ R − ε. It is now readily seen that for the
m ∈ A(k−1) with Pk(m) = Pk,

|B(k)(m)| ≥ |B
(k−1)(m)|

(T + 1)|X |
|TVk(Pk)|

≥
exp2

(
T
∑k

i=1H(Vi|Pi)
)

(T + 1)k(|X |+|X ||Y|)
.

This holds for at least |A(k−1)|/(T + 1)|X | ≥ 2nR/(T + 1)k|X | messages, hence the claim is
true.

Now, note that for all yn ∈ B(N)(m) with m ∈ A(N), we also have yiT(i−1)T+1 ∈ TPiVi for all
1 ≤ i ≤ N . Hence,

∀ m, B(N)(m) ⊂ TP1V1 × · · · × TPNVN
∴ | ∪m∈A(N) B(N)(m)| ≤ |TP1V1| × · · · × |TPNVN |

≤ exp2

(
T

N∑
i=1

H(PiVi)

)
, (A.55)

where H(PV ) is the entropy of the distribution (PV )(y) =
∑

x p(x)V (y|x). Focusing our
attention on these output sequences,

Pe(n, E ,D) =
1

2nR

2nR∑
m=1

∑
yn /∈ψ−1(m)

n∏
i=1

W

(
yi

∣∣∣∣φi (m, ybi/T cT ))
≥ 1

2nR

∑
m∈A(N)

∑
yn∈ψ−1(m)∩B(N)(m)

PW (yn|M = m)

(a)
=

exp2

(
−T

∑N
i=1(D(Vi||W |Pi) +H(Vi|Pi))

)
2nR

∑
m∈A(N)

|ψ−1(m) ∩B(N)(m)|

=
exp2

(
−T

∑N
i=1(D(Vi||W |Pi) +H(Vi|Pi))

)
2nR

×∑
m∈A(N)

(|B(N)(m)| − |B(N)(m) ∩ ψ−1(m)|),
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where in (a), we have noted that the probability for all yn ∈ B(N)(m) is equal to

exp2

(
−T

N∑
i=1

(D(Vi||W |Pi) +H(Vi|Pi))

)
.

Continuing, we have

Pe(n, E ,D) ≥
exp2

(
−T

∑N
i=1(D(Vi||W |Pi) +H(Vi|Pi))

)
2nR

× ∑
m∈A(N)

|B(N)(m)|

−
∣∣∣∣∣∣
⋃

m∈A(N)

B(N)(m)

∣∣∣∣∣∣


≥
exp2

(
−T

∑N
i=1(D(Vi||W |Pi) +H(Vi|Pi))

)
2nR

× |A(N)|2T
∑N
i=1H(Vi|Pi)

(T + 1)N(|X |+|X ||Y|) −

∣∣∣∣∣∣
⋃

m∈A(N)

B(N)(m)

∣∣∣∣∣∣


(b)

≥ exp2(−T
∑N

i=1D(Vi||W |Pi))
2nR

[
|A(N)|

(T + 1)N(|X |+|X ||Y|) − exp2

(
T

N∑
i=1

I(Pi, Vi)

)]
(c)

≥ exp2(−T
N∑
i=1

D(Vi||W |Pi))
[

1

(T + 1)N(2+|Y|)|X | − exp2 (−NTε)
]

=
exp2

(
−T

∑N
i=1D(Vi||W |Pi)

)
exp2(NTα(T ))

[
1− 2−NT (ε−α(T ))

]
.

In inequality (b), we have used the inequality of equation (A.55). Claim 3 is used in
inequality (c). In the selection process of the claim, for each Pi ∈ PT , we choose a Vi ∈ VT (p)
with I(Pi, Vi) ≤ R − ε that minimizes the average divergence. Then, since we can’t say
anything about the Pi, we bound by the worst-case P to take a max over all P ∈ PT . Taking
logs and dividing by NT gives the result of the lemma.

A.12.2 Length T sphere-packing exponent

Lemma 6 of Section 2.7: For any T ≥ 2|X ||Y|, for all P ∈ PT ,

min
U∈VT (P ):I(P,U)≤R

D(U ||W |P ) ≤ Esp

(
R− 2|X ||Y| log T

T
, P

)
+
κW |X ||Y|

T
+

|X ||Y| log(T/|X |)
T

,
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where

Esp(R,P ) , min
V :I(P,V )≤R

D(V ||W |P ),

κW , max
x,y:W (y|x)>0

log
1

W (y|x)
.

Proof: First, write P ∈ PT as P (x) = kx/T where kx are nonnegative integers that sum
to T .

Claim 4. Let U be an arbitrary channel for which |U(y|x)−V (y|x)| ≤ 1/kx for all x, y, and
U(y|x) = V (y|x) = 0 when W (y|x) = 0. Then,

|D(U ||W |P )−D(V ||W |P )| ≤ |X ||Y|κW + log(T/|X |)
T

.

Proof: First, note that |r log r− s log s| ≤ −|r− s| log |r− s| whenever r, s ∈ [0, 1]. This
can be seen by noting that the function f(r) = −r log r, r ∈ [0, 1] is concave and maximal
absolute slope at r = 0, where the derivative is unbounded above. Hence, |f(r) − f(0)| =
−r log r, r ∈ [0, 1] is a bound to the difference between two points on the curve at distance
r. Now, keeping in mind that U(y|x) = V (y|x) = 0 whenever W (y|x) = 0, a little algebra
shows that

|D(U ||W |P )−D(V ||W |P )| ≤
∑
x

P (x)
∑
y

∣∣∣∣U(y|x) log
U(y|x)

W (y|x)
− V (y|x) log

V (y|x)

W (y|x)

∣∣∣∣
≤
∑
x

kx
T

∑
y

|U(y|x) logU(y|x)− V (y|x) log V (y|x)|+

∑
x

kx
T

∑
y:W (y|x)>0

|U(y|x)− V (y|x)| log
1

W (y|x)

≤
∑
x

kx
T

∑
y

[
1

kx
log kx +

1

kx
κW

]
≤ |X ||Y|κW

T
+
|Y|
T

∑
x

log kx

(a)

≤ |X ||Y|κW
T

+
|X ||Y| log T/|X |

T
.

In (a), we are also using the fact that since log is a symmetric, concave (∩) function, so

max
kx∈N:

∑
x kx=T

∑
x

log kx ≤ |X | log
T

|X |
.
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Now, for an ε > 0, pick V to be in arg minV ′:I(P,V ′)≤R−εD(V ′||W |P ). We will find a
U ∈ VT (P ) such that I(P,U) ≤ I(P, V ) + ε ≤ R. First, we show that there exists a
U ∈ VT (P ) such that |U(y|x)− V (y|x)| ≤ 1

kx
for all x, y.

For each x, y, let Ũ(y|x) = bkxV (y|x)c/kx. Note that Ũ is missing some mass to be a
transition matrix if the entries of V (·|x) are not multiples of 1/kx. The missing mass can be
bounded, for a fixed x,

1−
∑
y

Ũ(y|x) =
∑
y

V (y|x)− Ũ(y|x)

≤ |{y : kxV (y|x) /∈ Z}|/kx.

Now, the missing mass must be a multiple of 1/kx for each x because Ũ(·|x) has terms that
are multiples of 1/kx. Therefore, the missing mass can be distributed amongst the y that
have kxV (y|x) /∈ Z in multiples of 1/kx in such a way so that no y has more than 1/kx mass

added to it. We let U(y|x) be the resulting transition matrix. Since Ũ(y|x) = bkxV (y|x)c/kx
and either 0 or 1/kx is added to get to U(y|x), it follows that |V (y|x) − U(y|x)| ≤ 1/kx.
Also, U(y|x) = 0 when V (y|x) = 0.

Note that ∑
x

p(x)
∑
y

|U(y|x)− V (y|x)| ≤
∑
x

kx
T

∑
y

1

kx
≤ |X ||Y|

T
.

If T ≥ 2|X ||Y|, we can use the continuity lemma for entropy (Lemma 20). By using this
lemma twice after expanding mutual information, we get

|I(P,U)− I(P, V )| ≤ |H(PU)−H(PV )|+ |H(P,U)−H(P, V )|

≤ 2|X ||Y|
T

log T.

Hence,

I(P,U) ≤ R− ε+
2|X ||Y|
T

log T ≤ R

provided

2|X ||Y|
T

log T ≤ ε.

Therefore, there exists a U ∈ VT (P ), with I(P,U) ≤ R such that

D(U ||W |P ) = Esp(R− ε, P ) +D(U ||W |P )−D(V ||W |P )

≤ Esp

(
R− 2|X ||Y|

T
log T, P

)
+
κW |X ||Y|

T
+
|X ||Y|
T

log
T

|X |
.
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A.13 The Haroutunian exponent of a parallel channel

Lemma 7 of Section 2.8: Fix a W ∈ W and integer L ≥ 1. Let W (L) denote the
probability transition matrix from X L to YL obtained by using L independent copies of W .
That is, for (x1, . . . , xL) = xL ∈ X L and (y1, . . . , yL) = yL ∈ YL,

W (L)(yL|xL) =
L∏
i=1

W (yi|xi).

Let Eh(LR;W (L)) denote the Haroutunian exponent for W (L) at rate LR and let Esp(R;W )
denote the sphere-packing exponent for W at rate R. Then,

Eh(LR;W (L)) ≤ LEsp

(
R− |X |

L
log(L+ 1);W

)
.

Proof: First note that C(W (L)) = LC(W ) because the copies of W in W (L) are independent.
Let W(L) denote the set of probability transition matrices from X L to YL. Then,

Eh(LR;W (L)) = min
V ∈W(L):C(V )≤LR

max
xL

D(V (·|xL)||W (L)(·|xL)). (A.56)

For each length L type P ∈ PL, fix εL = |X |
L

log(L+ 1) and

UP ∈ arg min
V ′∈W:I(P,V ′)≤R−εL

D(V ′||W |P ). (A.57)

Then, for each xL ∈ TP , yL ∈ YL, define

V (yL|xL) =
L∏
i=1

UP (yi|xi). (A.58)

V is a legitimate probability transition matrix in W(L) because it is clearly nonnegative and
for each fixed xL ∈ X L, ∑

yL

V (yL|xL) =
∑
yL

L∏
i=1

UP (yi|xi)

=
∑
y1

· · ·
∑
yL

L∏
i=1

UP (yi|xi)

=
L∏
i=1

∑
yi∈Y

UP (yi|xi)

=
L∏
i=1

1 = 1,
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where P is the type of xL. It is shown in Proposition 12 that C(V ) ≤ LR. Therefore, V is
included in the minimization for Eh(LR;W (L)). Now, fix an xL and let P be the type of xL,
so xL ∈ TP . Then,

D(V (·|xL)||W (L)(·|xL)) =
∑
yL

V (yL|xL) log
V (yL|xL)

W (L)(yL|xL)

=
∑
yL

[
L∏
i=1

UP (yi|xi)

]
log

∏L
j=1 UP (yj|xj)∏L
j=1W (yj|xj)

=
∑
yL

[
L∏
i=1

UP (yi|xi)

][
L∑
j=1

log
UP (yj|xj)
W (yj|xj)

]

=
L∑
j=1

∑
yL

[
L∏
i=1

UP (yi|xi)

]
log

UP (yj|xj)
W (yj|xj)

=
L∑
j=1

(∑
yi,i 6=j

[∏
i 6=j

UP (yi|xi)

])∑
yj

UP (yj|xj) log
UP (yj|xj)
W (yj|xj)

=
L∑
j=1

(∑
yi,i 6=j

[∏
i 6=j

UP (yi|xi)

])
D(UP (·|xj)||W (·|xj))

(a)
=

L∑
j=1

D(UP (·|xj)||W (·|xj))

(b)
= LD(UP ||W |P )

(c)

≤ LEsp(R− εL;W ),

where (a) follows because the term that disappears is 1, (b) follows because the type of xL

is P and (c) follows by the choice of UP as a sphere-packing optimizing channel in (A.57).
This upper bound is independent of xL, therefore

max
xL

D(V (·|xL)||W (L)(·|xL)) ≤ LEsp(R− εL;W ),

which proves the lemma because V is included in the minimization of (A.56).

Proposition 12. For the channel V defined in (A.57) and (A.58), C(V ) ≤ LR.

Proof: Note that by definition17, C(V ) = maxP (L)(XL) I(XL;Y L) where P (L)(XL) is a

probability mass function on X L and P(Y L|XL) = V (Y L|XL). Let Z be the random variable

17Recall that in our notation capital letters such as XL denote random variables.
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which takes values in PL which takes the value of the type of XL. That is, if XL ∈ TP , Z = P .
Note that Z is a deterministic function of XL. Now, for any distribution P (L)(XL),

I(XL, Z;Y L) = I(XL;Y L) + I(Z;Y L|XL)

= I(XL;Y L),

where the first equality follows by chain rule for mutual information and the second equality
follows because Z is a function of XL and therefore independent of Y L given XL. Now, if
we expand the other way,

I(XL, Z;Y L) = I(Z;Y L) + I(XL;Y L|Z)

≤ H(Z) + I(XL;Y L|Z)

≤ |X | log(L+ 1) + I(XL;Y L|Z),

where the last line follows by the fact that Z takes its values in the set of types and |PL| ≤
(L+ 1)|X |. By definition,

I(XL;Y L|Z) =
∑
P∈PL

P(Z = P )I(XL;Y L|Z = P )

I(XL;Y L|Z = P ) = H(Y L|Z = P )−H(Y L|Z = P,XL).

Now, because Z = P specifies that XL ∈ TP ,

H(Y L|Z = P,XL) =
∑
xL∈TP

P(XL = xL|Z = P )H(Y L|XL = xL, Z = P ).
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For any xL ∈ TP , because we have the Markov property Z −XL − Y L,

H(Y L|XL = xL, Z = P ) =
∑
yL

V (yL|xL) log
1

V (yL|xL)

(a)
=
∑
yL

[
L∏
i=1

UP (yi|xi)

]
log

1∏L
j=1 UP (yj|xj)

=
∑
yL

[
L∏
i=1

UP (yi|xi)

][
L∑
j=1

log
1

UP (yj|xj)

]

(b)
=

L∑
j=1

∑
yL

[
L∏
i=1

UP (yi|xi)

]
log

1

UP (yj|xj)

=
L∑
j=1

∑
yj

[
UP (yj|xj) log

1

UP (yj|xj)

] ∑
yi,i 6=j

∏
i 6=j

UP (yi|xi)

=
L∑
j=1

∑
y

[
UP (yj|xj) log

1

UP (yj|xj)

]
(c)
= L

∑
x

P (x)
∑
y

UP (y|x) log
1

UP (y|x)

= LH(UP |P ),

where (a) follows by the definition of V for xL ∈ TP , (b) follows by the interchange of sums
and products, and (c) follows by the fact that xL ∈ TP and yj is just a dummy variable for
y ∈ Y . Now, by chain rule for entropy,

H(Y L|Z = P ) =
L∑
i=1

H(Yi|Z = P, Y1, . . . , Yi−1)

≤
L∑
i=1

H(Yi|Z = P )

because conditioning can only reduce entropy. For this fixed P , let Pi be the distribution of
Xi conditioned on Z = P . That is Pi(x) = P(Xi = x|Z = P ). Because we have conditioned
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Z = P , it follows that 1
L

∑L
i=1 Pi = P . Now, by the Markov property Z −Xi − Yi,

H(Yi|Z = P ) =
∑
y

P(Yi = y|Z = P ) log
1

P(Yi = y|Z = P )

=
∑
y

[∑
x

Pi(x)UP (y|x)

]
log

1∑
x Pi(x)UP (y|x)

= H(PiUP ).

Hence,

H(Y L|Z = P ) ≤
L∑
i=1

H(Yi|Z = P )

= L
L∑
i=1

1

L
H(PiUP )

(d)

≤ LH

(
1

L

L∑
i=1

(PiUP )

)
(e)
= LH(PUP ),

where (d) follows by concavity (∩) of entropy and (e) follows by linearity and the fact that
1
L

∑L
i=1 Pi = P . Therefore,

I(XL;Y L|Z = P ) = H(Y L|Z = P )−H(Y L|Z = P,XL)

≤ LH(PUP )− LH(UP |P )

= LI(P,UP )

≤ L(R− εL),

where the last inequality follows by the definition of UP in (A.57). Hence, for any distribution
P (L) on XL,

I(XL;Y L) ≤ I(XL;Y L|Z) + |X | log(L+ 1)

≤ L(R− εL) + |X | log(L+ 1)

= LR

because LεL = |X | log(L+ 1). Therefore, C(V ) ≤ LR.

A.14 Lemmas for block codes

The lemmas in this appendix are used in results elsewhere in the thesis. They are lemmas
on typicality as well as continuity of information measures.
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Lemma 18. Fix a block code of length n, either with or without feedback. Then,

Pe(W ) ≥ Pe(V ) exp(−nd(V,W )),

where

d(V,W ) ,
1

|M|
∑
m∈M

∑
yn∈Dcm

PV (Y n = yn|M = m)

Pe(V )

1

n

n∑
i=1

log
V (yi|xi(m, yi−1))
W (yi|xi(m, yi−1))

.

(a) If the code is a block code without feedback and there is a P ∈ Pn such that ∀ m ∈ M,
φ(m) ∈ TP , then

d(V,W ) ≤ D(V ||W |P ) +
max{κV , κW}

Pe(V )
β(n, |X |, |Y|),

where

β(n, |X |, |Y|) , inf
ε>0

ε+ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
.

(b) If the code is an arbitrary block code with feedback,

d(V,W ) ≤ max
P

D(V ||W |P ) +
max{κV , κW}

Pe(V )
β(n, |X |, |Y|),

where the constant β(n, |X |, |Y|) is defined above.

Note that by setting ε2 = 2 |X ||Y|+1
n

log(n+ 1), we immediately have

β(n, |X |, |Y|) = O

(√
log(n)

n

)
.

Proof: Assume for now that the code has feedback. In the case that it does not (i.e. part
(a) of the lemma), we will specialize the result along the way. Also assume thatD(V ||W |P ) <
∞ in the non-feedback case and maxP D(V ||W |P ) <∞ in the case with feedback, otherwise
there is nothing to prove.
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From the definition of Pe(W ), we have

Pe(W ) =
1

|M|
∑
m∈M

PW (Y n ∈ Dcm|M = m)

=
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PW (Y n = yn|M = m)

=
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)
PW (Y n = yn|M = m)

PV (Y n = yn|M = m)

=
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)
n∏
i=1

W (yi|xi(m, yi−1))
V (yi|xi(m, yi−1))

=
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)
∏
x,y

[
W (y|x)

V (y|x)

]nP (x)U(y|x)

,

where the last line follows from the definition of B(m,P, U). Note that in the above, by
the finite conditional divergence assumptions, if PW (Y n = yn|M = m) = 0, then PV (Y n =
yn|M = m) = 0 also. Continuing, and multiplying and dividing by Pe(V ), we have

Pe(W )

Pe(V )
≥ 1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )

∏
x,y

[
W (y|x)

V (y|x)

]nP (x)U(y|x)

=
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

exp

(
−n

[∑
x,y

P (x)U(y|x) log
V (y|x)

W (y|x)

])
(A)

≥ exp

(
− n

[
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

∑
x,y

P (x)U(y|x) log
V (y|x)

W (y|x)

])

= exp

(
− n

[
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )

1

n
×

n∑
i=1

log
V (yi|xi(m, yi−1))
W (yi|xi(m, yi−1))

])
,

where (A) follows by Jensen’s inequality applied to the function f(t) = et and the last line
follows by the definitive property of yn ∈ B(m,P, U). Fix an ε > 0. We can focus our
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attention on d(V,W ) by splitting it into two terms,

d(V,W ) =
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

∑
x,y

P (x)U(y|x) log
V (y|x)

W (y|x)

= T1 + T2

T1 ,
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P ):(P,U)∈Jε(V )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

∑
x,y

P (x)U(y|x) log
V (y|x)

W (y|x)

T2 ,
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P ):(P,U)/∈Jε(V )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

∑
x,y

P (x)U(y|x) log
V (y|x)

W (y|x)
,

where

Jε(V ) =

{
(P,U) ∈ P ×W :

∑
x,y

P (x)|U(y|x)− V (y|x)| ≤ ε

}
.

For the (P,U) ∈ Jε(V ) in T1, Proposition 13 tells us that∑
x,y

P (x)U(y|x) log
V (y|x)

W (y|x)
≤ D(V ||W |P ) + εmax{κV , κW}.

For T2, Lemma 19 tells us that for all m ∈M,∑
P∈Pn,U∈Vn(P ):(P,U)/∈Jε(V )

PV (Y n ∈ B(m,P, U)|M = m) ≤ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
. (A.59)

Now, if W (y|x) = 0, and U(y|x) > 0 for some yn in the sum for T2, then we are also
guaranteed that PV (Y n = yn|M = m) = 0, so that yn does not change the sum. Hence, for
all yn that have non-zero terms in the sum for T2,∑

x,y

P (x)U(y|x) log
V (y|x)

W (y|x)
≤ κW .
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So, we have

T1 ≤
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P ):(P,U)∈Jε(V )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

[D(V ||W |P ) + εmax{κV , κW}] (A.60)

T2 ≤
κW
Pe(V )

1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P ):(P,U)/∈Jε(V )

PV (Y n ∈ B(m,P, U) ∩ Dcm|M = m)

≤ κW
Pe(V )

1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P ):(P,U)/∈Jε(V )

PV (Y n ∈ B(m,P, U)|M = m)

≤ κW
Pe(V )

(n+ 1)|X ||Y| exp

(
−nε

2

2

)
,

where the last line follows from averaging over the bound in (A.59), which holds uniformly
for all m ∈ M. Now, if the code does not have feedback and all codewords have type P as
is assumed in part (a) of the lemma, then

T1 ≤ [D(V ||W |P ) + εmax{κV , κW}]×
1

|M|
∑
m∈M

∑
U∈Vn(P ):(P,U)∈Jε(V )

PV (Y n ∈ Dcm ∩B(m,P, U)|M = m)

Pe(V )

≤ [D(V ||W |P ) + εmax{κV , κW}]
1

|M|
∑
m∈M

∑
U∈Vn(P )

PV (Y n ∈ Dcm ∩B(m,P, U)|M = m)

Pe(V )

= [D(V ||W |P ) + εmax{κV , κW}]
1

|M|
PV (Y n ∈ Dcm|M = m)

Pe(V )

= [D(V ||W |P ) + εmax{κV , κW}].

Therefore, for part (a) of the lemma,

d(V,W ) ≤ T1 + T2

≤ [D(V ||W |P ) + εmax{κV , κW}] +
κW
Pe(V )

(n+ 1)|X ||Y| exp

(
−nε

2

2

)
≤ D(V ||W |P ) +

max{κV , κW}
Pe(V )

[
ε+ (n+ 1)|X ||Y| exp

(
−nε

2

2

)]
.

Optimizing over ε > 0 gives the result of part (a) of the lemma. As for part (b), if the code
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does have feedback, we can continue bounding T1 in (A.60) below to get

T1 ≤
1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P ):(P,U)∈Jε(V )

∑
yn∈Dcm∩B(m,P,U)

PV (Y n = yn|M = m)

Pe(V )
×

[D(V ||W |P ) + εmax{κV , κW}]

≤
[
max
P∈P

D(V ||W |P ) + εmax{κV , κW}
]
×

1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P ):(P,U)∈Jε(V )

PV (Y n ∈ B(m,P, U) ∩ Dcm|M = m)

Pe(V )

≤
[
max
P∈P

D(V ||W |P ) + εmax{κV , κW}
]
×

1

|M|
∑
m∈M

∑
P∈Pn,U∈Vn(P )

PV (Y n ∈ B(m,P, U) ∩ Dcm|M = m)

Pe(V )

=

[
max
P∈P

D(V ||W |P ) + εmax{κV , κW}
]

1

|M|
∑
m∈M

PV (Y n ∈ ∩Dcm|M = m)

Pe(V )

=

[
max
P∈P

D(V ||W |P ) + εmax{κV , κW}
]
.

Combining this with the bound on T2, we have for part (b),

d(V,W ) ≤ T1 + T2

≤
[
max
P∈P

D(V ||W |P ) + εmax{κV , κW}
]

+
κW
Pe(V )

(n+ 1)|X ||Y| exp

(
−nε

2

2

)
≤ max

P∈P
D(V ||W |P ) +

max{κV , κW}
Pe(V )

[
ε+ (n+ 1)|X ||Y| exp

(
−nε

2

2

)]
.

Once again, optimizing over ε > 0 gives the result of part (b).

Lemma 19. Fix an ε > 0 and a block code of length n either with or without feedback. For
a given m ∈M, V ∈ W, define the typical set under channel V ,

Am,ε(V ) , {yn : (P (m, yn), V (m, yn)) ∈ Jε(V )} ,

where

Jε(V ) ,

{
(P,U) ∈ P ×W :

∑
x∈X

P (x)
∑
y∈Y

|U(y|x)− V (y|x)| ≤ ε

}
.
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Then,

PV (Y n /∈ Am,ε(V )|M = m) ≤ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
.

Note that for a block code that does not have feedback, if xn(m) ∈ TP for some type P ∈ Pn,

Am,ε(V ) = {yn : yn ∈ TU(xn(m)), U ∈ Vn(P ), (P,U) ∈ Jε(V )} .

Proof: For now, assume that the code has feedback. Any code without feedback can be
thought of as having feedback and not using it.

For a (P,U) /∈ Jε(V ),

D(U ||V |P )
(a)
=
∑
x

P (x)D(U(·|x)||V (·|x))

(b)

≥
∑
x

P (x)
1

2

(∑
y

|U(y|x)− V (y|x)|

)2

(c)

≥ 1

2

(∑
x

P (x)
∑
y

|U(y|x)− V (y|x)|

)2

(d)

≥ ε2

2
.

In the above, (a) follows by the definition of conditional divergence, (b) follows by Pinsker’s
inequality [47], (c) from an application of Jensen’s inequality to the function f(t) = t2 and
(d) follows from the assumption that (P,U) ∈ Jε(V ).

Recall the definition of B(m,P, U) for P ∈ Pn, U ∈ Vn(P ),

B(m,P, U) = {yn : P (m, yn) = P, V (m, yn) = U}.

Using the fact that there are no more than (n+ 1)|X ||Y| joint types (P,U), we have

PV (Y n /∈ Am,ε(V )|M = m) =
∑

(P,U)/∈Jε(V )

PV (Y n ∈ B(m,P, U)|M = m)

(a)

≤
∑

(P,U)/∈Jε(V )

exp(−nD(V ||W |P ))

≤ (n+ 1)|X ||Y| exp

(
−nε

2

2

)
,

where (a) follows by Proposition 14.
For a block code without feedback, it is clear that yn ∈ B(m,P, U) if and only if yn ∈

TU(xn(m)), hence

Am,ε(V ) = {yn : yn ∈ TU(xn(m)), U ∈ Vn(P ), (P,U) ∈ Jε(V )} .
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Proposition 13. Let P ∈ P , U, V,W ∈ W and recall that κV = maxx,y:V (y|x)>0 log 1/V (y|x)
(similarly for κW ). Assume that V (y|x) = U(y|x) = 0 whenever W (y|x) = 0. If for some
ε > 0, (P,U) ∈ Jε(V ), that is,∑

x

P (x)
∑
y

|U(y|x)− V (y|x)| ≤ ε,

then ∑
x

P (x)
∑
y

U(y|x) log
V (y|x)

W (y|x)
≤ D(V ||W |P ) + εmax {κV , κW} .

Proof: Forgive the excessively slow pace of this proof, but several times I thought that
I had proved that the discrepancy from D(V ||W |P ) was bounded by κW ε, when that is not
the case. First,∑
x

P (x)
∑
y

U(y|x) log
V (y|x)

W (y|x)
=
∑
x

P (x)
∑
y

V (y|x) log
V (y|x)

W (y|x)
+

∑
x

P (x)
∑
y

(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)

= D(V ||W |P ) +
∑
x

P (x)
∑
y

(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)
.
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Now, splitting the ‘extra’ term above into different cases yields

T ,
∑
x

P (x)
∑
y

(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)

=
∑

x,y:U(y|x)>V (y|x)

P (x)(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)
+

∑
x,y:U(y|x)<V (y|x)

P (x)(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)

(a)

≤
∑

x,y:U(y|x)>V (y|x)

P (x)(U(y|x)− V (y|x))κW+

∑
x,y:U(y|x)<V (y|x)

P (x)(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)

=
∑

x,y:U(y|x)>V (y|x)

P (x)(U(y|x)− V (y|x))κW+

∑
x,y:U(y|x)<V (y|x)<W (y|x)

P (x)(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)
+

∑
x,y:U(y|x)<V (y|x),W (y|x)<V (y|x)

P (x)(U(y|x)− V (y|x)) log
V (y|x)

W (y|x)

=
∑

x,y:U(y|x)>V (y|x)

P (x)(U(y|x)− V (y|x))κW+

∑
x,y:U(y|x)<V (y|x)<W (y|x)

P (x)(V (y|x)− U(y|x)) log
W (y|x)

V (y|x)
+

∑
x,y:U(y|x)<V (y|x),W (y|x)<V (y|x)

P (x)(V (y|x)− U(y|x)) log
W (y|x)

V (y|x)

≤
∑

x,y:U(y|x)>V (y|x)

P (x)(U(y|x)− V (y|x))κW+

∑
x,y:U(y|x)<V (y|x)<W (y|x)

P (x)(V (y|x)− U(y|x))κV +

∑
x,y:U(y|x)<V (y|x),W (y|x)<V (y|x)

P (x)(V (y|x)− U(y|x))0

≤
∑
x,y

P (x)|U(y|x)− V (y|x)|max {κW , κV }

≤ εmax {κW , κV } ,
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where (a) follows because V (y|x) ≤ 1 and log 1/W (y|x) ≤ κW for the x, y where (U(y|x)−
V (y|x)) 6= 0. Similar reasoning yields the other inequalities above.

Proposition 14. For a fixed blocklength code with feedback, for each message m and P ∈ Pn,
V ∈ Vn(P ), recall the ’conditional shell with feedback’

B(m,P, V ) , {yn : P (m, yn) = P, V (m, yn) = V }.
Some properties of B(m,P, V ) are

(a) B(m,P, V ) ⊂ TPV ⊂ Yn

(b) If yn ∈ B(m,P, V ),

PW (Y n = yn|M = m) = exp (−n [D(V ||W |P ) +H(V |P )])

(c) |B(m,P, V )| ≤ exp(nH(V |P ))

(d) PW (Y n ∈ B(m,P, V )|M = m) ≤ exp(−nD(V ||W |P )).

Proof: Item (a) is true for the same reason that if yn ∈ TV (P ), yn ∈ TPV ⊂ Yn. As for
(b), if yn ∈ B(m,P, V ),

PW (Y n = yn|M = m) =
n∏
i=1

W (yi|xi(m, yi−1))

=
∏
x,y

W (y|x)
∑n
i=1 1(xi(m,y

i−1)=x,yi=y)

= exp

(
−n

[∑
x,y

log
1

W (y|x)

1

n

n∑
i=1

1(xi(m, y
i−1) = x, yi = y)

])

= exp

(
−n

[∑
x,y

log
1

W (y|x)
P (x)V (y|x)

])

= exp

(
−n

[∑
x,y

P (x)V (y|x)

(
log

V (y|x)

W (y|x)
+ log

1

V (y|x)

)])
= exp (−n [D(V ||W |P ) +H(V |P )]) .

To prove (c), we can apply item (b) with the ‘true channel’ being set to V to get a bound as
follows.

1 ≥ PV (Y n ∈ B(m,P, V )|M = m)

=
∑

yn∈B(m,P,V )

PV (Y n = yn|M = m)

= |B(m,P, V )| exp(−n[D(V ||V |P ) +H(V |P )])

= |B(m,P, V )| exp(−nH(V |P )).
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Therefore, |B(m,P, V )| ≤ exp(nH(V |P )). Finally, we can combine (b) and (c) to get (d):

PW (Y n ∈ B(m,P, V )|M = m) =
∑

yn∈B(m,P,V )

PW (Y n = yn|M = m)

=
∑

yn∈B(m,P,V )

exp (−n [D(V ||W |P ) +H(V |P )])

= |B(m,P, V )| exp (−n [D(V ||W |P ) +H(V |P )])

≤ exp (−nD(V ||W |P )) .

Proposition 15. Suppose P ∈ P and V,W ∈ W with
∑

x P (x)
∑

y |V (y|x) −W (y|x)| ≤
ε ≤ 1/2. Then,

(a) |H(V |P )−H(W |P )| ≤ ε log
|X ||Y|
ε

(b) |I(P, V )− I(P,W )| ≤ 2ε log
|X ||Y|
ε

.

Proof: Consider the distribution (P, V ) on X×Y with (P, V )(x, y) = P (x)V (y|x). Then,

|H(V |P )−H(W |P )| = |H(P ) +H(V |P )−H(P )−H(W |P )|
= |H(P, V )−H(P,W )|
(a)

≤ ε log
|X ||Y|
ε

.

In the above, (a) follows from Lemma 20 applied to joint distributions (P, V ) and (P,W ),
while noting that∑

x,y

|(P, V )(x, y)− (P,W )(x, y)| =
∑
x

P (x)
∑
y

|V (y|x)−W (y|x)| ≤ ε.

As for part (b) of the proposition, note that

|I(P, V )− I(P,W )| = |H(PV )−H(V |P )−H(PW ) +H(W |P )|
≤ |H(PV )−H(PW )|+ |H(V |P )−H(W |P )|

≤ ε log
|Y|
ε

+ ε log
|X ||Y|
ε

≤ 2ε log
|X ||Y|
ε

,
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where the bound on |H(PV )−H(PW )| follows from Lemma 20 and noting that

∑
y

|(PV )(y)− (PW )(y)| =
∑
y

∣∣∣∣∣∑
x

P (x)(V (y|x)−W (y|x))

∣∣∣∣∣
≤
∑
x

P (x)
∑
y

|V (y|x)−W (y|x)|

≤ ε.

Lemma 20 (Uniform continuity of entropy, [21], Theorem 16.3.2). Suppose P and P ′ are
distributions on a finite alphabet X and ||P − P ′||1 =

∑
x∈X |P (x)− P ′(x)| ≤ 1/2, then

|H(P )−H(P ′)| ≤ ||P − P ′||1 log
|X |

||P − P ′||1
.

Lemma 21 (Pinsker’s Inequality, [21], Lemma 12.6.1). Suppose P and P ′ are distributions
on a finite alphabet X . Then, with all logarithms and exponentials to the base e,

D(P ||P ′) ≥ 1

2

(∑
x

|P (x)− P ′(x)|

)2

.
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Appendix B

Fixed delay coding appendix

B.1 Proof of Theorem 8

We will now rigorously prove Theorem 8 following the outline given in Section 3.6. The goal
is to show that for a given rate R > 0,

sup
C∈CR

E(C) ≤ Ẽ(R) = min
V :C(V )≤R

max
P :I(P,W )≥R

D(V ||W |P ).

We will show that E(C) ≤ Ẽ(R − ε) for all ε > 0, and therefore, E(C) ≤ limε↓0 Ẽ(R − ε),
provided the limit exists. In Lemma 25, it is shown that Ẽ(R) = limε↓0 Ẽ(R − ε) for all
R > 0, which will complete the proof.

B.1.1 Inducing error by forming a block code

So first, fix an ε ∈ (0, R), a V ∈ W such that C(V ) ≤ R−ε and a C ∈ CR. Fix a d, d̃ ≥ 1. The

required properties of d, d̃ will be described later in the proof. The first step is to construct
a random block code of length n ≥ d as shown in Fig. 3.8. The message bits are

M =
(
B1, . . . , Bb(n−d+1)Rc

)
.

The encoder randomizes the code using the bits that arrive after time n− d+ 1, that is the
common randomness is

U =
(
Bb(n−d+1)Rc+1, . . . , BbnRc

)
.

The encoder for this block code is the encoder for C. The decoder for this block code is the
delay-d decoder from D applied to all the bits in the message,

M̂ =
(
B̂1(d), . . . , B̂b(n−d+1)Rc(d)

)
.
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The rate of the code is

R̃ =
b(n− d+ 1)Rc

n

≥ (n− d+ 1)R− 1

n

= R− (d− 1)R + 1

n
.

It follows that R̃ ≥ R− ε/2 if

n ≥
⌈

2[(d− 1)R + 1]

ε

⌉
. (B.1)

So for n large enough depending on d,R and ε, the rate of the block code is at least R− ε/2.

Definition 12. A rate-R decoder with feedforward information D is set of decoders
D =

{
Di,d

}
i≥1,d≥1 that have access to both all received channel outputs as well as all the past

message bit realizations. So,

Di,d : {0, 1}i−1 × Ydi/Re+d−1 → {0, 1}.

Clearly, any regular decoder D is also a feedforward decoder since the feedforward decoder
can choose to ignore the past message bits.

For any feedforward decoder, [37] shows that there is a feedforward decoder that uses
only the d recent channel outputs since the bit arrived at the encoder as well as the past
message bits, which performs at least as well as the original feedforward decoder for channel
W .

Lemma 22. [Lemma 4.1 of [37]] For a memoryless channel, a rate-R encoder E and a rate-

R feedforward decoder D, there is another feedforward decoder Df =
{
Dfi,d

}
i≥1,d≥0

using

only the past d channel outputs and the past message bits that performs at least as well as
D. That is,

Dfi,d : {0, 1}i−1 × Yd → {0, 1}

B̂f
i (d) = Dfi,d

(
Bi−1, Y

di/Re+d−1
di/Re

)
PW

(
Bi 6= Dfi,d

(
Bi−1, Y

di/Re+d−1
di/Re

))
≤ PW

(
Bi 6= Di,d

(
Bi−1, Y di/Re+d−1

))
≤ PW

(
Bi 6= Di,d

(
Y di/Re+d−1

))
.

The intuition behind this lemma is that if the channel is memoryless, the past message bits
provide us with more information about the inputs coming after bit i has entered the encoder
than the past channel outputs.
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Lemma 22 tells us that if we can prove a lower bound to the error probability for the
class of feedforward decoders that use only recent channel outputs, then we can also lower
bound the error probability to our actual decoder. The upshot is that a change-of-measure
argument applied to these feedforward decoders using recent channel outputs only requires
the ‘true’ channel W to act like a ‘test’ channel V for d time units, as opposed to the full n
symbols of the block code.

Define B̃f
i (d) = B̃f

i (d) ⊕ Bi to be the error sequence for decoder Df . Now, Lemmas 4.2
and 4.3 of [37] show that, provided n is large enough as in Eqn. (B.1),

H
(
B̃f,b(n−d+1)Rc(d)

)
≥ n(R− ε/2)− I(Xn;Y n),

where I(Xn;Y n) denotes the mutual information between the random variables Xn and Y n

(e.g. as in the textbook of Cover and Thomas [21]). It is straightforward to check (it is a
part of the converse to the channel coding theorem in [21]) that under a channel V with
C(V ) ≤ R− ε,

I(Xn;Y n) ≤ nC(V ) ≤ n(R− ε)

H
(
B̃f,b(n−d+1)Rc(d)

)
≥ nε/2.

The sum of the marginal entropies is at least the entropy of all the error bits, so

b(n−d+1)Rc∑
i=1

H
(
B̃f
i (d)

)
≥ nε/2

1

nR

b(n−d+1)Rc∑
i=1

H
(
B̃f
i (d)

)
≥ ε/2R.

Since entropy is non-negative and b(n− d+ 1)Rc ≤ nR, it follows that there is at least one

i such that H(B̃f
i (d)) ≥ ε/2. Then, for this i, it follows from the monotonicity of the binary

entropy function hb(t) = −t log t− (1− t) log(1− t), t ∈ [0, 1], that

PV
(
Bi 6= Dfi,d

(
Bi−1, Y

di/Re+d−1
di/Re

))
≥ h−1b

( ε

2R

)
. (B.2)

For each bi ∈ {0, 1}i, denote the error set for Dfi,d to be

A(bi) ,
{
y
di/Re+d−1
di/Re ∈ Yd : Dfi,d

(
bi−1, y

di/Re+d−1
di/Re

)
6= bi

}
.

Combining this definition of the error set with (B.2) gives

h−1b

( ε

2R

)
≤

∑
bb(di/Re+d−1)Rc∈{0,1}b(di/Re+d−1)Rc

1

2b(di/Re+d−1)Rc
×

PV
(
A(bi)

∣∣∣Bb(di/Re+d−1)Rc = bb(di/Re+d−1)Rc
)
. (B.3)
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Define the set G as

G ,
{
bb(di/Re+d−1)Rc : PV

(
A(bi)

∣∣∣Bb(di/Re+d−1)Rc = bb(di/Re+d−1)Rc
)
≥ h−1b

( ε

2R

)}
.

It is easily verified that

P(G) ≥ h−1b

( ε

2R

)
as assuming the contraposition leads to a contradiction of (B.3). At this point, we diverge
from the proof in [37]. We will now use the assumption that C is a good anytime code to
show that the type of the input over the d time steps of interest must be able to support a
rate close to R over the channel W .

B.1.2 The second block code construction

We wish to study the type of the input during the d time steps after bit i arrives at the
encoder. In order to do so, we will construct a second randomized block code as shown in
Fig. 3.9. The length of the block code is d and the message bits are

M =
(
Bi, . . . , Bb(di/Re+d−d̃)Rc

)
.

The rate of the block code is therefore⌊
(di/Re+ d− d̃)R

⌋
− i+ 1

d
≥ (di/Re+ d− d̃)R− i

d

≥ R− d̃

d
R.

Fix a γ > 0. The rate of this block code is at least R − γ provided that d̃ ≤ bγd/Rc. The
randomness used at the encoder is

U =
(
B1, . . . , Bi−1, Bb(di/Re+d−d̃)Rc+1, . . . , Bb(di/Re+d−1)Rc

)
,

that is, both the bits that come before i and the ones that arrive at the encoder after time
di/Re + d − d̃. The decoder used will be the feedforward delay-d̃ decoder that uses past
message bits as well as recent channel outputs Df from Lemma 22. So, the decoded message
is

M̂ =

(
B̂f
i (d̃), . . . , B̃f

b(di/Re+d−d̃)Rc(d̃)

)
.
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Since we have used the feedforward decoder, the performance of this block code, averaged
over the randomness in U is bounded by

PW (M̂ 6= M)
(A)

≤
b(di/Re+d−d̃)Rc∑

i′=i

PW
(
B̂f
i′(d̃) 6= Bi′

)
≤ dR sup

i′
PW

(
B̂f
i′(d̃) 6= Bi′

)
≤ dR sup

i′
PW

(
B̂i′(d̃) 6= Bi′

)
,

where (A) follows by union bound. By assumption, E(C) ≥ 2Ẽ(R)/3, otherwise there is

nothing to prove for this C. Therefore, there is some d0 such that if d̃ ≥ d0(C),

sup
i′

PW
(
B̂i′(d̃) ≤ Bi′

)
≤ exp(−d̃Ẽ(R)/2).

So for d̃ ≥ d0,

PW (M 6= M̂) ≤ dR exp(−d̃Ẽ(R)/2) = exp

(
−d

[
d̃

2d
Ẽ(R)− 1

d
log dR

])
,

and for d ≥ d1(d̃/d), log(dR)/d ≤ Ẽ(R)d̃/4d, so

PW (M 6= M̂) ≤ dR exp(−d̃Ẽ(R)/2) = exp

(
−d

[
d̃

4d
Ẽ(R)

])
.

Letting PW (M̂ 6= M |U) denote the error probability conditioned on a value of the common
randomness, we have by Markov’s inequality that

P

(
PW (M̂ 6= M |U) > exp

(
d

[
d̃

8d
Ẽ(R)

])
× exp

(
−d

[
d̃

4d
Ẽ(R)

]))
≤ exp

(
−d

[
d̃

8d
Ẽ(R)

])
.

So for
(

1− exp
(
−d
[
d̃
8d
Ẽ(R)

]))
fraction of the realizations of U , the error probability of

the deterministic block code for that value of U is at most exp
(
−d
[
d̃
8d
Ẽ(R)

])
provided that

d ≥ max(d1(d̃/d), d0(C)). Let U be the set of u for which the bound

PW (M̂ 6= M |U = u) ≤ exp

(
−d

[
d̃

8d
Ẽ(R)

])
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holds. For these realizations of the block code, we will apply Lemma 23 with the tuple
(n, δ, α,R) in Lemma 23 being the parameters (d, γ, d̃Ẽ(R)/8d,R − γ) here. The lemma

then says that if d is large enough, depending on γ, d̃Ẽ(R)/8d, |X | and |Y|, then

P
(

Type of X
di/Re+d−1
di/Re = P, I(P,W ) ≤ R− 2γ

∣∣∣U ∈ U) ≤ exp

(
−d
[
γ

4
− |X |

d
log(d+ 1)

])
.

Therefore, unconditioned on the common randomness,

P
(

Type of X
di/Re+d−1
di/Re = P, I(P,W ) > R− 2γ

)
≥ P

(
Type of X

di/Re+d−1
di/Re = P, I(P,W ) > R− 2γ, U ∈ U

)
≥ P

(
Type of X

di/Re+d−1
di/Re = P, I(P,W ) > R− 2γ|U ∈ U

)
×(

1− exp

(
−d

[
d̃

8d
Ẽ(R)

]))

≥
(

1− exp

(
−d
[
γ

4
− |X |

d
log(d+ 1)

]))
×(

1− exp

(
−d

[
d̃

8d
Ẽ(R)

]))
,

for d and d̃ large enough. Define the set

Gγ ,
{
bb(di/Re+d−1)Rc : Type of x

di/Re+d−1
di/Re = P, I(P,W ) > R− 2γ

}
.

So, we have that

P(Gγ) ≥
(

1− exp

(
−d
[
γ

4
− |X |

d
log(d+ 1)

]))(
1− exp

(
−d

[
d̃

8d
Ẽ(R)

]))

for large enough d and d̃. Recall the set

G ,
{
bb(di/Re+d−1)Rc : PV

(
A(bi)

∣∣∣Bb(di/Re+d−1)Rc = bb(di/Re+d−1)Rc
)
≥ h−1b

( ε

2R

)}
.

and that

P(G) ≥ h−1b

( ε

2R

)
.
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Now,

P(G ∩Gγ) = 1− P(Gc ∪Gc
γ)

≥ 1− P(Gc)− P(Gc
γ)

≥ 1−
(

1− h−1b
( ε

2R

))
−(

1−
(

1− exp

(
−d
[
γ

4
− |X |

d
log(d+ 1)

]))(
1− exp

(
−d

[
d̃

8d
Ẽ(R)

])))
≥ 1

2
h−1b

( ε

2R

)
, (B.4)

where the last line holds for all d larger than some finite d2(ε/2R, C, γ, d/d̃, d̃, Ẽ(R), |X |, |Y|)
since the exponents are all positive in the second to last line above. When we take the limit
of d going to infinity, we will particularly need d̃/d to not decay too fast (i.e. keep it is
a small constant, take the limit as d → ∞, and repeat the entire argument for a smaller
ratio d̃/d). So, we have succeeded in showing that the type supports a rate near R for large
enough d. At this point, we can finish the proof with a change of measure argument.

B.1.3 Finishing with a change of measure argument

Lemma 24 shows that if an event has a non-vanishing error probability under channel V ,
and the type of the input is known to have high mutual information, the probability of the
event under W can be lower bounded with a divergence term that is constrained by the
input distribution. In particular, if bb(di/Re+d−1)Rc ∈ G ∩Gγ, this means that

PW
(
B̂f
i (d) 6= Bi

∣∣∣bb(di/Re+d−1)Rc) = PW
(
Y
di/Re+d−1
di/Re ∈ A(bi)

∣∣∣∣bb(di/Re+d−1)Rc)
≥ 1

2
h−1b

( ε

2R

)
× exp

(
−d
[

max
P :I(P,W )≥R−2γ

D(V ||W |P )+√
4|X ||Y|

d
log(d+ 1) max{κV , κW}

])
,



198

provided that d is larger than some finite number depending on h−1b (ε/2R), |X | and |Y|.
Using the above, we have

ζ , PW (B̂i(d) 6= Bi)

≥ PW (B̂f
i (d) 6= Bi)

=
∑

bb(di/Re+d−1)Rc

P
(
bb(di/Re+d−1)Rc

)
PW

(
Y
di/Re+d−1
di/Re ∈ A(bi)

∣∣∣∣bb(di/Re+d−1)Rc)
≥

∑
bb(di/Re+d−1)Rc∈G∩Gγ

P
(
bb(di/Re+d−1)Rc

)
PW

(
Y
di/Re+d−1
di/Re ∈ A(bi)

∣∣∣∣bb(di/Re+d−1)Rc)
≥ 1

2
h−1b

( ε

2R

) ∑
bb(di/Re+d−1)Rc∈G∩Gγ

P
(
bb(di/Re+d−1)Rc

)
×

exp

(
−d

[
max

P :I(P,W )≥R−2γ
D(V ||W |P ) +

√
4|X ||Y|

d
log(d+ 1) max{κV , κW}

])

≥ 1

4
h−1b

( ε

2R

)2
exp

(
−d
[

max
P :I(P,W )≥R−2γ

D(V ||W |P )+√
4|X ||Y|

d
log(d+ 1) max{κV , κW}

])
.

Now, if we let γ ≤ min{ε/2, and let d and d̃ tend to∞ while the ratio d̃/d is at most γ (while
not being much smaller, up to integer effects), we can take log and the limit as d → ∞ to
get

lim sup
d→∞

−1

d
logPe(d, C) ≤ max

P :I(P,W )≥R−ε
D(V ||W |P ).

If V is an optimizing channel for Ẽ(R − ε), this shows that E(C) ≤ Ẽ(R − ε). Lemma

25(c) shows that limε↓0 Ẽ(R− ε) = Ẽ(R), so it follows that E(C) ≤ Ẽ(R), so the theorem is
proved.

B.1.4 Input types for good block codes

In this section, we show that if a sequence of block codes has an exponentially decaying
probability of error, most of the codewords in the codes eventually have types that ‘support
enough rate’ across the channel.

Lemma 23. Suppose we have a sequence of deterministic block codes of length n going to
∞ and rate at least R for each n. Suppose that there is an α > 0 so that for all n greater
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than some finite ñ(α),

P (n)
e (W ) ≤ exp(−nα),

where P
(n)
e (W ) denotes the error probability of the length n code over channel W . Fix a

δ ∈ (0, 2α). There exists some finite n′(δ, α, |X |, |Y|) such that for all n ≥ n′(δ, α, |X |, |Y|),

∣∣∣⋃P∈Pn:I(P,W )≤R−δ {m ∈Mn : φn(m) ∈ TP}
∣∣∣

|Mn|
≤ exp

(
−n
[
δ

4
− |X |

n
log(n+ 1)

])
,

where φn(m) is the codeword for message m in the length n code, Mn is the message set for
the length n code and Pn is the set of types of length n for X . Hence, the probability that the
type of the input supports rate less than R− δ is decaying exponentially (albeit with a small
exponent).

Proof: Fix an n in the sequence and the block code for length n and drop the subscript
n from Mn. For each P ∈ Pn, let M(P ) = {m ∈ M : φ(m) ∈ TP}, where TP is the type
class for type P [47]. Define

CP = − 1

n
log
|M(P )|
|M|

.

Consider the subcode one gets from only taking messages inM(P ) and using the maximum
likelihood (ML) decoder for the thinned out subcode. Let Pe(W ;P ) denote the (average)
error probability of this subcode. The rate of this subcode is at least RP = R − CP . Let
Pe(W ;P ) denote the error probability of this subcode with ML decoding over channel W ,
and let Pc(W ;P ) = 1− Pe(W ;P ). For any τ ∈ (0, 1/2), we can apply Lemma 12 to get

Pc(W ;P ) ≤ exp

(
−n
[
τ 2

2
− |X ||Y|

n
log(n+ 1)

])
+

exp

(
−n
[
RP − I(P,W )− 2τ log

|X ||Y|
τ
− |Y|

n
log(n+ 1)

])
. (B.5)

Now, if we let Dm denote the decoding set for each message in the code, we see that

Pe(W ) =
1

|M|
∑
P∈Pn

∑
m∈M(P )

PW (Y n /∈ Dm|Xn = φ(m))

≥ |M(P )|
|M|

1

|M(P )|
∑
m∈M

PW (Y n /∈ Dm|Xn = φ(m))

≥ exp(−nCP )Pe(W ;P ) (B.6)
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for any P ∈ Pn. Now, fix a δ > 0. Suppose we focus on a P ∈ Pn such that I(P,W ) ≤ R−δ.
Then, from (B.5), we can say that

Pc(W ;P ) ≤ exp

(
−n
[
τ 2

2
− |X ||Y|

n
log(n+ 1)

])
+

exp

(
−n
[
δ − CP − 2τ log

|X ||Y|
τ
− |Y|

n
log(n+ 1)

])
.

Now, there exists a finite n1(δ, |Y|) such that if n ≥ n1, we also have,

Pc(W ;P ) ≤ exp

(
−n
[
τ 2

2
− |X ||Y|

n
log(n+ 1)

])
+

exp

(
−n
[
3δ/4− CP − 2τ log

|X ||Y|
τ

])
.

If we let

g(δ, |X |, |Y|) , sup
τ∈(0,1/2)

{
τ 2

2
: 2τ log

|X ||Y|
τ

≤ δ

4

}
,

noting that g(δ, |X |, |Y|) > 0 for all δ > 0, we also have

Pc(W ;P ) ≤ exp

(
−n
[
g(δ, |X |, |Y|)− |X ||Y|

n
log(n+ 1)

])
+ exp (−n [δ/2− CP ])

by the appropriate choice of τ . Further, there exists a finite n2(δ, |X |, |Y|) (WLOG, n2 ≥ n1),
such that if n ≥ n2, we also have

Pc(W ;P ) ≤ exp (−ng(δ, |X |, |Y|)/2) + exp (−n [δ/2− CP ]) .

Therefore, for any P ∈ Pn with I(P,W ) ≥ R− δ and n ≥ n2(δ, |X |, |Y|),

Pe(W ) ≥ exp(−nCP ) [1− exp(−ng(δ, |X |, |Y|)/2)− exp(−n(δ/2− CP ))] ,

where g(δ, |X |, |Y|) > 0 for all δ > 0. Now, assume that for all n ≥ n0(α), Pe(W ) ≤
exp(−nα), where α > 0. So for n ≥ max(n0(α), n2(δ, |X |, |Y|)), P ∈ Pn with I(P,W ) ≤
R− δ,

exp(−nα) ≥ Pe(W ) ≥ exp(−nCP ) [1− exp(−ng(δ, |X |, |Y|)/2)− exp(−n(δ/2− CP ))] .

Now, further suppose that CP ≤ δ/4, so we would have

exp(−nα) ≥ exp(−nδ/4) [1− exp(−ng(δ, |X |, |Y|)/2)− exp(−nδ/4)]

exp(−nα/2) ≥ [1− exp(−ng(δ, |X |, |Y|)/2)− exp(−nδ/4)] ,
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where the last line holds since δ < 2α. Now the LHS above is decaying exponentially in
n, while the RHS is converging to 1, this is a contradiction for n greater than some finite
n3(δ, α, |X |, |Y|) ≥ max(n0(α), n2(δ, |X |, |Y|)). Therefore, for n ≥ n3, there is no P ∈ Pn for
which I(P,W ) ≤ R − δ and CP ≤ δ/4. The number of types of length n for X is at most
(n+ 1)|X |, so we have for n ≥ n3,∑

P :I(P,W )≤R−δ

|M(P )| ≤ (n+ 1)|X | exp(−n(R− δ/4)),

which completes the proof of the lemma, with n′ = n3.

B.1.5 Another change of measure lemma

Lemma 24. Let A be a set of vectors in Yd and let xd ∈ TP ⊂ X d for some type P ∈ Pd
with I(P,W ) ≥ R− 2γ. Suppose, that for some β > 0,

PV
(
Y d ∈ A|Xd = xd

)
≥ β.

Then,

PW
(
Y d ∈ A|Xd = xd

)
≥ β

2
exp

(
−d
[

max
P :I(P,W )≥R−2γ

D(V ||W |P )+√
4|X ||Y|

d
log(d+ 1) max{κV , κW}

])
,

for all d at least some finite d4(β, |X |, |Y|), where κV = maxx,y:V (y|x)>0− log V (y|x) and
similarly for κW .

Proof: For θ > 0, define a typical set under channel V ,

Tθ =

{
yd : yd ∈ TU(xd), U ∈ Vd(P ),

∑
x,y

P (x)|V (y|x)− U(y|x)| ≤ θ

}
.

Then, as shown in Lemma 19,

PV (Y d /∈ Tθ|Xd = xd) ≤ (d+ 1)|X ||Y| exp(−dθ2/(2)).

Now,

PV
(
Y d ∈ A ∩ Tθ|Xd = xd

)
= 1− PV (Y d ∈ Ac ∪ T cθ |Xd = xd)

≥ 1− (1− β)− (d+ 1)|X ||Y| exp(−dθ2/(2))

= β − (d+ 1)|X ||Y| exp(−dθ2/(2)). (B.7)
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Now, for yd ∈ Tθ,

PW (Y d = yd|Xd = xd)

PV (Y d = yd|Xd = xd)
=

d∏
l=1

W (yl|xl)
V (yl|xl)

= exp

(
−d

[∑
x,y

P (x)U(y|x) log
V (y|x)

W (y|x)

])
,

where U ∈ Vd(P ) is some conditional type such that
∑

x,y P (x)|V (y|x) − U(y|x)| ≤ θ, yd ∈
TU(xd). Hence,∑

x,y

P (x)U(y|x) log
V (y|x)

W (y|x)
≤
∑
x,y

P (x)V (y|x) log
V (y|x)

W (y|x)
+∑

x,y

P (x)|U(y|x)− V (y|x)|max{κV , κW}

≤ D(V ||W |P ) + θmax{κV , κW}.
Therefore,

ζ , PW (Y d ∈ A|Xd = xd)

≥ PW (Y d ∈ A ∩ Tθ|Xd = xd)

=
∑

yd∈A∩Tθ

PW (Y d = yd|Xd = xd)

=
∑

yd∈A∩Tθ

PV (Y d = yd|Xd = xd)
PW (Y d = yd|Xd = xd)

PV (Y d = yd|Xd = xd)

≥
∑

yd∈A∩Tθ

PV (Y d = yd|Xd = xd) exp (−d [D(V ||W |P ) + θmax{κV , κW}])

= exp (−d [D(V ||W |P ) + θmax{κV , κW}])PV (Y d ∈ A ∩ Tθ|Xd = xd)

≥ exp (−d [D(V ||W |P ) + θmax{κV , κW}])
(
β − (d+ 1)|X ||Y| exp(−dθ2/2)

)
,

where the last line follows from (B.7). By setting

θ =

√
4|X ||Y|

d
log(d+ 1),

we get

PW (Y d ∈ A|Xd = xd) ≥

(
−d

[
D(V ||W |P ) +

√
4|X ||Y|

d
log(d+ 1) max{κV , κW}

])
×(

β − (d+ 1)−|X ||Y|
)

and hence the lemma holds for d large enough depending on β, |X | and |Y|, since we can
trivially take a max over all P such that I(P,W ) ≥ R− 2γ.
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B.1.6 Left continuity of Ẽ(R)

Lemma 25. Fix a W and R ≥ 0. Recall that

Ẽ(R) , min
V :C(V )≤R

max
P :I(P,W )≥R

D(V ||W |P ).

For R ≥ C(W ), let Ẽ(R) = 0 by convention1. Then,

(a) Ẽ(R) is a monotone nonincreasing function of R.

(b) For all R ≥ 0,Esp(R) ≤ Ẽ(R) ≤ Eh(R).

(c) For all R > 0, Ẽ(R) is left continuous, that is Ẽ(R) = limε↓0 Ẽ(R− ε).

Proof: Let VR = {V ∈ W : C(V ) ≤ R} and PR = {P ∈ P : I(P,W ) ≥ R}. Then,

VR is increasing and PR is decreasing as a set with increasing R. Therefore, Ẽ(R) is a

monotone nonincreasing function of R, proving (a). For (b), note that Ẽ(R) ≤ Eh(R)

obviously because the inner maximization’s feasible set in Ẽ(R) is expanded to give Eh(R).
Recalling the definition of the sphere-packing exponent,

Esp(R) , max
P

min
V :I(P,V )≤R

D(V ||W |P )

(A)
= max

P :I(P,W )≥R
min

V :I(P,V )≤R
D(V ||W |P )

(B)

≤ max
P :I(P,W )≥R

min
V :C(V )≤R

D(V ||W |P )

(C)

≤ min
V :C(V )≤R

max
P :I(P,W )≥R

D(V ||W |P )

= Ẽ(R),

where (A) follows because if I(P,W ) ≤ R, W is included in the minimization, (B) follows
because we are making the feasible set in the minimization smaller and (C) follows because
max-min is smaller than min-max. As for the proof of (c), we need to be careful about

discontinuities in Ẽ(R), which really can only happen when the divergence jumps to ∞.
For real vector spaces, define a set ‘distance’ d(A,B) between two sets A,B to be

d(A,B) = max

{
sup
a∈A

inf
b∈B
||a− b||1, sup

b∈B
inf
a∈A
||a− b||1

}
1There is no feasible P in the inner maximization if R > C(W ) and V = W is feasible for the outer

minimization for R = C(W ).
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where || · ||1 denotes the L1 norm. We say that VR is continuously increasing with R because
for all R ∈ (0, C(W )), ε > 0, there is a δ > 0 such that if |R′ − R| ≤ δ, d(VR,VR′) ≤ ε.
This is due to the fact that capacity is continuous (and convex-∪) with the channel V with
respect to L1 norm. Similarly, PR is a continuously decreasing set with R. So, we have

Ẽ(R) = min
V ∈VR

max
P∈PR

D(V ||W |P ).

Now, for R ∈ (0, C(W )), let

XR =

{
x ∈ X : max

P∈PR
P (x) > 0

}
.

We claim that XR is independent of R, i.e. there is a X ′ ⊂ X such that X ′ = XR for all
R ∈ (0, C(W )). To see this, fix an R,R′ ∈ (0, C(W )) with R′ < R. Since PR is shrinking
with increasing R, XR is shrinking with increasing R, so XR ⊆ XR′ . Now, suppose x ∈ XR′ .
There is a P ′ ∈ PR′ with P ′(x) > 0. Let P ∗ ∈ PC(W ) be a capacity achieving distribution
and for α ∈ (0, 1), let Pα = αP ∗ + (1− α)P ′. The mutual information I(P,W ) is concave-∩
in the input distribution P , so

I(Pα,W ) ≥ αI(P ∗,W ) + (1− α)I(P ′,W )

≥ αC(W ) + (1− α)R′.

For α close enough to 1, but strictly smaller, Pα ∈ PR, and Pα(x) > 0. Therefore, x ∈ XR.
Hence, XR ⊂ XR′ also. So now, let X ′ be XR for R ∈ (0, C(W )). Let

V ′ , {V ∈ W : ∀ x ∈ X ′,∀ y ∈ Y ,W (y|x) = 0⇒ V (y|x) = 0}
V ′R , VR ∩ V ′.

Then, in the definition of Ẽ(R) for R ∈ (0, C(W )), we can restrict attention to V ∈ V ′R
because if V /∈ V ′R, there is a P ∈ PR that causes the inner maximization to be infinite.

Ẽ(R) = min
V ∈V ′R

max
P∈PR

D(V ||W |P )

= min
V ∈V ′R

g(V,R)

g(V,R) , max
P∈PR

D(V ||W |P ).

Now, restricting to the domain of V ′, g(V,R) is continuous in V for a fixed R because
D(V ||W |P ) is continuous in V . Similarly, g(V,R) is continuous in R for a fixed V provided
that V in V ′ because D(V ||W |P ) is continuous in P and PR is continuously decreasing in

R. Now, if Ẽ(R) = ∞, monotonicity guarantees left continuity at R. If Ẽ(R) < ∞, this
means that V ′R is not empty. Esp(R) and Eh(R) become infinite at the same R, both are

left continuous, and Ẽ(R) is sandwiched between the two, so for small enough δ > 0, this
means that V ′R−δ is also not empty. Since V ′R is continuously varying with R, and g(V,R) is

continuous in R and V , it follows that Ẽ(R) is left continuous.
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Figure B.1: Mutual information IZ(p, 1/2) for a Z-channel with crossover probability 1/2.
The mutual information is strictly concave-∩ on (0, 1) and 0 at the endpoints, so there is a
unique maximizing p and the capacity is IZ evaluated at that p.

B.2 The Z-Channel

B.2.1 Capacity and capacity achieving distribution

In this section, we will derive simple expressions for Ẽ(R), Eh(R) and Esp(R) when W is in
the family of Z-channels. A Z-channel (shown in Fig. 2.3) is an asymmetric binary input,
binary output (X = Y = {0, 1}) channel for which

W =

[
1 0
δ 1− δ

]
,

where δ is called the crossover probability. The Z-channel is particularly amenable to compu-
tation and visualization of error exponents because it is a one-parameter family of channels
and the input distributions for the channel can also be described with one parameter. For
the remainder of this section, we will let p denote the probability that an input distribution
P places on 1, so P (1) = p.

Define the mutual information for a Z-channel of crossover probability δ and input dis-
tribution p to be IZ(p, δ), and note that

IZ(p, δ) = hb (p(1− δ))− phb(δ).

Similarly, let CZ(δ) be the capacity of a Z channel with crossover probability δ,

CZ(δ) = max
p∈[0,1]

IZ(p, δ).
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Since IZ(p, δ) is strictly concave-∩ (see Fig. B.1) for δ ∈ [0, 1), it follows that there is a
unique capacity achieving p for each δ.

Proposition 16. Let p∗(δ) denote the capacity achieving p for a Z-channel with crossover
probability δ. Then, for all δ ∈ [0, 1),

p∗(δ) =

[
(1− δ)

(
1 + exp

(
hb(δ)

1− δ

))]−1
, (B.8)

and

CZ(δ) = hb (p∗(δ)(1− δ))− p∗(δ)hb(δ)

= hb

([
1 + exp

(
hb(δ)

1− δ

)]−1)
− hb(δ)

(1− δ)
(

1 + exp
(
hb(δ)
1−δ

)) . (B.9)

A plot of p∗(δ) is shown in Fig. 2.5 and a plot of CZ(δ) is given in Fig. 2.4.

Proof: Assume that all log’s and exponentials are base e. Then, for t ∈ (0, 1),

dhb(t)

dt
= log

1− t
t

,

and hence,

∂IZ(p, δ)

∂δ
=

∂

∂p
[hb (p(1− δ))− phb(δ)]

= (1− δ) log
1− p(1− δ)
p(1− δ)

− hb(δ).

Now, IZ(p, δ) is strictly concave-∩ in p, nonnegative and IZ(0, δ) = IZ(1, δ) = 0, so we can
set the derivative to 0 and solve for p to yield the capacity achieving p∗(δ) in (B.8). Then
CZ(δ) = IZ(p∗(δ), δ), yielding (B.9).

B.2.2 Evaluating error exponents

The mutual information IZ(p, δ) is convex-∪ in δ for a fixed p and the capacity, CZ(δ) is
convex-∪ in δ as it is the maximum of a set of convex-∪ functions. It is easy to see as well
that both are strictly decreasing in δ. The range of CZ(δ) is [0, 1], so let it’s inverse function
be, for R ∈ [0, 1],

f(R) , C−1Z (R) = min{β ∈ [0, 1] : CZ(β) ≤ R}. (B.10)
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Figure B.2: IZ(p, δ) is a strictly decreasing, convex-∪ function of δ for all p ∈ (0, 1). It is
plotted here for p = 0.1. The left endpoint is hb(p).

Similarly, for a fixed p ∈ [0, 1], the range of IZ(p, δ) is [0, hb(p)] (see Fig. B.2), so for
R ∈ [0, hb(p)], let the inverse function be denoted

g(R, p) , I−1Z (p,R) = min{β ∈ [0, 1] : IZ(p, β) ≤ R}. (B.11)

Both f(R) and g(R, p) are well defined, convex-∪ and strictly monotonically decreasing with
R (for all p ∈ (0, 1) for g(R, p)).

We will evaluate the three exponents Eh(R), Ẽ(R) and Esp(R) when W is a Z-channel
with crossover probability δ. For all three exponents, it will be sufficient to consider test
channels V that are also Z-channels. The reason is that if a binary input, binary output
channel V has V (0|1) > 0, then D(V ||W |P ) = ∞ if P (1) > 0. Therefore, no such channel
would be included in the minimizations over channels V for the exponents. Now, if V is a
Z-channel with crossover probability β, then

D(V ||W |P ) =
∑

x,y∈{0,1}

P (x)V (y|x) log
V (y|x)

W (y|x)

= P (0)× 0 + P (1)

[
β log

β

δ
+ (1− β) log

1− β
1− δ

]
= P (1)Db(β||δ),

where Db(β||δ) denotes the binary divergence

Db(β||δ) , β log
β

δ
+ (1− β) log

1− β
1− δ

.
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Proposition 17. If W is a Z-channel with crossover probability δ, then, for R ∈ [0, CZ(δ)],

Eh(R) = Db (f(R)||δ)
Ẽ(R) = pr(R, δ)Db (f(R)||δ)

Esp(R) = max
p∈[0,1]:IZ(p,δ)≥R

pDb (g(R, p)||δ) ,

where g and f are defined in (B.11) and (B.10) respectively and

pr(R, δ) , max{p ∈ [0, 1] : IZ(p, δ) ≥ R}.

Proof: First,

Eh(R) = min
β∈[0,1]:CZ(β)≤R

max
p∈[0,1]

pDb(β||δ).

The inner maximization is independent of β, and Db is nonnegative so p = 1 is the maximizer.
Also, since CZ(β) is monotonically decreasing and R ≤ CZ(δ), and Db(β||δ) is increasing in
β for β ≥ δ, it follows that the minimizing β is f(R).

Second,

Ẽ(R) = min
β∈[0,1]:CZ(β)≤R

max
p∈[0,1]:IZ(p,δ)≥R

pDb(β||δ).

Similarly to the argument for Eh(R), the maximizing p in the inner max is the largest p such
that I(p, δ) ≥ R, which we denote pr(R, δ), and the minimizing β is f(R).

Finally,

Esp(R) = max
p∈[0,1]

min
β:IZ(p,β)≤R

pDb(β||δ)

= max
p∈[0,1]:IZ(p,δ)≥R

min
β:IZ(p,β)≤R

pDb(β||δ)

= max
p∈[0,1]:IZ(p,δ)≥R

Esp(R, p)

Esp(R, p) , min
β:IZ(p,β)≤R

pDb(β||δ)

= pDb (g(R, p)||δ) ,

where we may as well remove p such that I(p, δ) < R because Esp(R, p) evaluates to 0
for those p (as Db(δ||δ) = 0). Similarly to CZ(β), for a fixed p, IZ(p, β) is monotonically
decreasing in β. For those p that have IZ(p, δ) ≥ R, the set of β that have IZ(p, β) < R all
lie to the right of δ, hence the minimizing β is g(R, p).

Obtaining an analytical expression for the maximizing p in Esp(R) seems to be difficult.
Fig. B.3 shows a plot of Esp(R, p), and it can be seen to be non-concave-∩, but quasi-concave
(∩) in p. Define the sphere-packing optimizing p to be

p∗sp(R, δ) , arg max
p∈[0,1]:IZ(p,δ)≥R

Esp(R, p).
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Figure B.3: A plot of Esp(R, p) in base 2 for R = 0.2 (bits/channel use), when δ = 0.5,
CZ(δ) = 0.322 bits/channel use. As a function of p, Esp(R, p) is not concave-∩, but is
quasi-concave.

Figure 2.6 shows a plot of p∗sp(R, δ) for δ = 0.5 and R near capacity. As can be seen from
the figure, p∗sp(R, δ) approaches p∗(δ) from above as R→ CZ(δ) with a non-zero slope.

The expressions in Proposition 17 can be used to quickly plot the three exponents, as
shown in Fig. 3.1, because evaluating the inverse functions of CZ and IZ can be done in
logarithmic time as the accuracy desired tends to 0. Evaluating the max over p for Esp is
done by brute force.

B.2.3 Exponents near capacity

Proposition 18. If W is a Z-channel of crossover probability δ ∈ (0, 1),

lim
R→CZ(δ)

Eh(R)

Esp(R)
≥ 1

p∗(δ)
≥ 2.

Proof: We know that Eh(R) = Db(f(R)||δ). Now, since CZ(f(R)) = R, this means that
for all p ∈ [0, 1], IZ(p, f(R)) ≤ R, hence we can upper bound Esp(R) as

Esp(R) ≤ max
p∈[0,1]:IZ(p,δ)≥R

pDb(f(R)||δ)

= pr(R, δ)Db(f(R)||δ).
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Using the fact that limR→CZ(δ) pr(R, δ) = p∗(δ) yields

lim
R→CZ(δ)

Eh(R)

Esp(R)
≥ lim

R→CZ(δ)

Db(f(R)||δ)
pr(R, δ)Db(f(R)||δ)

=
1

limR→CZ(δ) pr(R, δ)

=
1

p∗(δ)
.

For all values of δ ∈ [0, 1), p∗(δ) ≤ 1/2.

With regards to Ẽ(R), it can be seen from a plot (Fig. 3.3) that

lim
R→CZ(δ)

Ẽ(R)

Esp(R)
= 1.

This fact can also be proved by looking at Taylor expansions of the two exponents around
capacity.

Proposition 19. If W is a Z-channel with crossover probability δ ∈ (0, 1),

lim
R→CZ(δ)

Ẽ(R)

Esp(R)
= 1.

Proof: First, fix a δ and let C = CZ(δ). It is straightforward to check that the second-
order expansion of Db(δ + ε||δ) around ε = 0 is

Db(δ + ε||δ) =
ε2

2δ(1− δ)
+O(ε3),

where the notation O(ε3) means that there are constants K > 0 and εK > 0 such that if
|ε| ≤ εK ,

|O(ε3)| ≤ K|ε|3.

Now, recall that

Ẽ(R) = pr(R, δ)Db(f(R)||δ).

where pr(R, δ) is the largest p such that IZ(p, δ) ≥ R and f(R) is the inverse function of
CZ(β) defined in (B.10). By continuity2 of IZ(p, δ) there is a real valued function k(·) such
that

pr(R, δ) = p∗(δ) + k(R− C),

2IZ(p, δ) has a derivative of 0 at p = p∗(δ), hence the first derivative of pr(R, δ) at C is undefined, i.e.
−∞. That does not prevent us from using continuity however.
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and limt→0 k(t) = 0. Note also that f(R) has a Taylor expansion about R = C, which is

f(R) = δ + f ′(C)(R− C) +O(|R− C|2).

Using these expansions, we have

Ẽ(R) = (p∗(δ) + k(R− C))×Db

(
δ + f ′(C)(R− C) +O(|R− C|2)||δ

)
= (p∗(δ) + k(R− C))×

[
(f ′(C)(R− C) +O(|R− C|2))2

2δ(1− δ)
+O(|R− C|3)

]

= (p∗(δ) + k(R− C))×
[
f ′(C)2(R− C)2

2δ(1− δ)
+O(|R− C|3)

]
=
p∗(δ)f ′(C)2

2δ(1− δ)
(R− C)2 +

f ′(C)2

2δ(1− δ)
(R− C)2k(R− C) +O(|R− C|3). (B.12)

Now, we already know that Esp(R) ≤ Ẽ(R) for all R, so we want a lower bound on Esp(R),
because a simple expression for the sphere-packing optimizing p∗sp(R, δ) is lacking. Hence,
we take the lower bound

Esp(R) = max
p:IZ(p,δ)≥R

pDb(g(R, p)||δ)

≥ p∗(δ)Db(g(R, p∗(δ))||δ).

Having fixed p = p∗(δ) for all R, we can define the function of one variable,

g̃(R) , g(R, p∗(δ)).

We can take a Taylor expansion of g̃ to yield

g̃(R) = δ + g̃′(C)(R− C) +O((R− C)2).

Plugging this into the lower bound for Esp(R) gives

Esp(R) ≥ p∗(δ)Db

(
δ + g̃′(C)(R− C) +O((R− C)2)||δ

)
= p∗(δ)

[
(g̃′(C)(R− C) +O(|R− C|2))2

2δ(1− δ)
+O(|R− C|3)

]

= p∗(δ)

[
g̃′(C)2(R− C)2

2δ(1− δ)
+O(|R− C|3)

]
=
p∗(δ)g̃′(C)2

2δ(1− δ)
(R− C)2 +O(|R− C|3). (B.13)
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At this point, we would like to show that f ′(C) = g̃′(C). Since f(R) is the inverse function
of CZ(β), it follows that

f ′(C) =

[
dCZ(β)

dβ

∣∣∣∣
β=δ

]−1
.

Now, CZ(β) = IZ(p∗(β), β), so by chain rule,

C ′Z(β) = ∇IZ(p, τ)

∣∣∣∣
(p,τ)=(p∗(β),β)

·

[
dp∗(τ)

dτ

∣∣∣∣
τ=β

1

]

=

[
∂Iz(p, β)

∂p

∣∣∣∣
p=p∗(β)

∂IZ(p∗(β), τ)

∂τ

∣∣∣∣
τ=β

]
·

[
dp∗(τ)

dτ

∣∣∣∣
τ=β

1

]
,

where · denotes dot product in the above. Since p∗(β) is the capacity achieving p for β, it
follows by concavity of IZ(p, β) in p that

∂Iz(p, β)

∂p

∣∣∣∣
p=p∗(β)

= 0

C ′Z(δ) =
∂IZ(p∗(δ), τ)

∂τ

∣∣∣∣
τ=δ

.

Now, g̃(R) = g(R, p∗(δ)) is the inverse function of IZ(p∗(δ), β) when viewed as a function of
β. Therefore,

g̃′(R) =

[
∂IZ(p∗(δ), β)

∂β

∣∣∣∣
β:IZ(p∗(δ),β)=R

]−1

g̃′(C) =

[
∂IZ(p∗(δ), β)

∂β

∣∣∣∣
β=δ

]−1

=

[
dCz(β)

dβ

∣∣∣∣
β=δ

]−1
= f ′(C).

Therefore, using the fact that f ′(C) = g̃′(C) and the expansions of (B.12) and (B.13),

1 ≤ lim
R→C

Ẽ(R)

Esp(R)
≤ lim

R→C

p∗(δ)f ′(C)2

2δ(1−δ) (R− C)2 + f ′(C)2

2δ(1−δ)(R− C)2k(R− C) +O(|R− C|3)
p∗(δ)g̃′(C)2

2δ(1−δ) (R− C)2 +O(|R− C|3)

= lim
R→C

1 + k(R− C)/p∗(δ) +O(|R− C|)
1 +O(|R− C|)

= 1,

where the last line follows because k(R− C)→ 0 as R→ C.
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Figure B.4: Simulating a Z-channel by using a BEC and collapsing the erasure symbol into
0.

B.2.4 The back-story bound for the Z-channel

Let Efb(R;Z(δ)) denote the error exponent with feedback for the Z-channel with crossover
probability δ. and let Esp(R;BEC(δ)) denote the sphere-packing exponent for the BEC
with erasure probability δ. It is readily seen that for R ∈ [0, 1− δ],

Esp(R;BEC(δ)) = Db(1−R||δ)

and we have already seen that

Efb(R;Z(δ)) ≤ Eh(R;Z(δ)) = Db(C
−1
Z (R)||δ).

Now, one can simulate Z(δ) with BEC(δ) as shown in Figure B.4 by collapsing the erasure
symbol and 0 into 0 at the output of the BEC. We know from the ‘back-story’ bound that

Efb(R;Z(δ)) ≤ Esp(R;BEC(δ)).

The question then becomes whether Esp(R;BEC(δ)) < Eh(R;Z(δ) or not. From the plot of
CZ(δ) in Figure 2.4, we know that CZ(β) ≤ 1− β for all β ∈ [0, 1] (with strict inequality for
β ∈ (0, 1)). Therefore, 1−R > C−1Z (R) > δ if δ ∈ (0, 1). Therefore

Esp(R;BEC(δ)) = Db(1−R||δ)
> Db(C

−1
Z (R)||δ)

= Eh(R;Z(δ)).

So the back-story bound is not tighter than Haroutunian if we use a BEC as the back-story
for a Z-channel. It seems unlikely to get a different result by using a larger channel than the
BEC as the back-story to the Z-channel. Numerical evaluations of the BSC followed by a
Z-channel as the back-story to a binary asymmetric channel have also not yielded anything
tighter than the Haroutunian bound.
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Appendix C

Arbitrarily varying sources appendix

C.1 The cheating switcher with clean observations

Theorem 9 of Section 4.3: Define the set of distributions

C =


∑

x∈V p(x) ≥ P
(
∀ l, xl ∈ V

)
p : ∀ V such that

V ⊆ X

 ,

where the event {∀ l, xl ∈ V} is shorthand for {(x1, . . . , xm) : xl ∈ V , l = 1, . . . ,m}. Also,
define

R̃(D) , max
p∈C

R(p,D).

For a general set of distributions Q ⊂ P(X ), let Dmin(Q) , supp∈QDmin(p). Suppose the
switcher has either 1-step lookahead or full lookahead. In both cases, for D > Dmin(C),

R(D) = R̃(D)

For D < Dmin(C), R(D) = ∞ by convention because the switcher can simulate a distri-
bution for which the distortion D is infeasible for the coder.

C.1.1 Achievability for the coder

The main tool of the proof is:

Lemma 26 (Type Covering). Let SD(x̂n) , {xn ∈ X n : dn(xn, x̂n) ≤ D} be the set of

X n strings that are within distortion D of a given X̂ n string x̂n. Fix an ε > 0. Then for
all n ≥ n0(d, ε), for any p ∈ Pn(X ), there exists a codebook B = {x̂n(1), x̂n(2), . . . , x̂n(M)}
where M ≤ exp(n(R(p,D) + ε)) and

T np ⊆
⋃

x̂n∈B

SD(x̂n),
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where T np is the set of X n strings with type p.

Proof: See [47], Lemma 2.4.1. Note that n0(d, ε) is independent of both p and D.

We now show how the coder can get arbitrarily close to R̃(D) for large enough n. For a
δ > 0,

Cδ ,


∑

x∈V p(x) ≥ P (∀l, xl ∈ V)− δ
p ∈ P : ∀ V such that

V ⊆ X

 .

Lemma 27 (Converse for switcher). Let ε > 0. For all n sufficiently large

1

n
lnM(n,D) ≤ R̃(D) + ε.

Proof: Fix a λ > 0 and λ ≤ λ(ε) < D−Dmin(C) to be defined later. We know R(p,D−
λ) is a continuous function of p ( [47]). It follows then that because Cδ is monotonically
decreasing (as a set) with δ that for all ε > 0, there is a δ > 0 so that

max
p∈Cδ

R(p,D − λ) ≤ max
p∈C

R(p,D − λ) + ε/3.

We will have the coder use a codebook such that all X n strings with types in Cδ are covered
within distortion D−λ. The coder can do this for large n with at most M codewords in the
codebook B, where

M ≤ (n+ 1)|X | exp

(
n

(
max
p∈Cδ

R(p,D − λ) + ε/3

))
≤ exp(n(max

p∈C
R(p,D − λ) + ε)).

Explicitly, this is done by taking a union of the codebooks provided by the type-covering
lemma and noting that the number of types in Pn(X ) is less than (n + 1)|X |. Next, we will
show that the probability of the switcher being able to produce a string with a type not in
Cδ goes to 0 exponentially with n.

Consider a type p ∈ Pn(X )∩ (P(X )−Cδ). By definition, there is some V ⊆ X such that∑
x∈V p(x) < P (xl ∈ V , 1 ≤ l ≤ m)− δ. Let ζk(V) be the indicator function

ζk(V) =
m∏
l=1

1(xl,k ∈ V).

ζk indicates the event that the switcher cannot output a symbol outside of V at time k. Then
ζk(V) is a Bernoulli random variable with a probability of being 1 equal to κ(V) , P (xl ∈
V , 1 ≤ l ≤ m). Since the subsources are IID over time, ζk(V) is a sequence of IID binary
random variables with distribution q′ , (1− κ(V), κ(V)).
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Now for the type p ∈ Pn(X )∩(P(X )−Cδ), we have that for all strings xn in the type class
Tp,

1
n

∑n
i=1 1(xi ∈ V) < κ(V)− δ. Let p′ be the binary distribution (1− κ(V) + δ, κ(V)− δ).

Therefore ||p′− q′||1 = 2δ, and hence we can bound the binary divergence D(p′||q′) ≥ 2δ2 by
Pinsker’s inequality. Using standard types properties [21] gives

P

(
1

n

n∑
k=1

ζk(V) < κ(V)− δ
)
≤ (n+ 1) exp(−nD(p′||q′))

≤ (n+ 1) exp(−2nδ2).

This bound holds for all V ⊂ X ,V 6= ∅, so we sum over types not in Cδ to get

P (pxn /∈ Cδ) ≤
∑

p∈Pn(X )∩(P(X )−Cδ)

(n+ 1) exp(−2nδ2)

≤ (n+ 1)|X | exp(−2nδ2)

= exp

(
−n
(

2δ2 − |X | ln(n+ 1)

n

))
.

Then, regardless of the switcher strategy,

E[d(xn;B)] ≤ D − λ+ d∗ × exp

(
− n

(
2δ2 − |X | ln(n+ 1)

n

))
.

So for large n we can get arbitrarily close to distortion D − λ while the rate is at most
maxp∈C R(p,D−λ) + ε. Using the fact that the IID rate-distortion function is continuous in
D (uniformly over p such that Dmin(p) < D, see (C.8)) gives us that the coder can achieve

at most distortion D on average while the asymptotic rate is at most R̃(D) + 2ε (provided

λ ≤ λ(ε) is small enough). Since ε is arbitrary, R(D) ≤ R̃(D).

C.1.2 Achievability for the switcher

This section shows that R(D) ≥ R̃(D) when the switcher has 1-step lookahead. We will
show that the switcher can target any distribution p ∈ C and produce a sequence of IID
symbols with distribution p. In particular, the switcher can target the distribution that
yields maxp∈C R(p,D), so R(D) ≥ R̃(D).

The switcher will use a memoryless randomized strategy. Let V ⊆ X and suppose that
at some time k the set of symbols available to choose from for the switcher is exactly V , i.e.
{x1,k, . . . , xm,k} = V . Recall β(V) , P ({x1,1, . . . , xm,1} = V) is the probability that at any
time the switcher must choose among elements of V and no other symbols. Then let f(x|V)
be a probability distribution on X with support V , i.e. f(x|V) ≥ 0, ∀ x ∈ X , f(x|V) = 0
if x /∈ V , and

∑
x∈V f(x|V) = 1. The switcher will have such a randomized rule for every
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nonempty subset V of X such that |V| ≤ m. Let D be the set of distributions on X that
can be achieved with these kinds of rules,

D =


p(·) =

∑
V⊆X ,|V|≤m β(V)f(·|V),

p : ∀ V s.t. V ⊆ X , |V| ≤ m,
f(·|V) is a PMF on V

 .

It is clear by construction that D ⊆ C because the conditions in C are those that only
prevent the switcher from producing symbols that do not occur enough on average, but put
no further restrictions on the switcher. So we need only show that C ⊆ D. The following
gives such a proof by contradiction.

Lemma 28 (Achievability for switcher). The set relation C ⊆ D is true.

Proof: Without loss of generality, let X = {1, . . . , |X |}. Suppose p ∈ C but p /∈ D. It is
clear that D is a convex set. Let us view the probability simplex in R|X |. Since D is a convex
set, there is a hyperplane through p that does not intersect D. Hence, there is a vector
(a1, . . . , a|X |) such that

∑|X |
i=1 aip(i) = t for some real t but t < minq∈D

∑|X |
i=1 aiq(i). Without

loss of generality, assume a1 ≥ a2 ≥ . . . ≥ a|X | (otherwise permute symbols). Now, we will

construct f(·|V) so that the resulting q has
∑|X |

i=1 aip(i) ≥
∑|X |

i=1 aiq(i), which contradicts the
initial assumption. Let

f(i|V) ,

{
1 if i = max(V)
0 else

,

so for example, if V = {1, 5, 6, 9}, then f(9|V) = 1 and f(i|V) = 0 if i 6= 9. Call q the
distribution on X induced by this choice of f(·|V). Recall that κ(V) = P (xl ∈ V , 1 ≤ l ≤ m).
Then, we have

|X |∑
i=1

aiq(i) = a1κ({1}) + a2[κ({1, 2})− κ({1})] +

· · ·+ a|X |

[
κ({1, . . . , |X |})− κ({1, . . . , |X | − 1})

]
By the constraints in the definition (4.3) of C, we have the following inequalities for p:

p(1) ≥ κ({1}) = q(1)

p(1) + p(2) ≥ κ({1, 2}) = q(1) + q(2)
...

|X |−1∑
i=1

p(i) ≥ κ({1, . . . , |X | − 1}) =

|X |−1∑
i=1

q(i).
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Therefore, the difference of the objective is

|X |∑
i=1

ai(p(i)− q(i)) = a|X |

[ |X |∑
i=1

p(i)− q(i)
]

+

(a|X |−1 − a|X |)
[ |X |−1∑

i=1

p(i)− q(i)
]

+

· · ·+ (a1 − a2)
[
p(1)− q(1)

]
=

|X |−1∑
i=1

(ai − ai+1)

[ i∑
j=1

p(j)−
i∑

j=1

q(j)

]
≥ 0.

The last step is true because of the monotonicity in the ai and the inequalities we derived
earlier. Therefore, we see that

∑|X |
i=1 aip(i) ≥

∑|X |
i=1 aiq(i) for the p we had chosen at the be-

ginning of the proof. This contradicts the assumption that
∑|X |

i=1 aip(i) < minq∈D
∑|X |

i=1 aiq(i),
therefore it must be that C ⊆ D.

C.2 Adversarial switching with noisy observations

Theorem 10 of Section 4.4: For the AVS problem of Fig. 4.2, where the adversary has
access to the states either with 1-step lookahead or full lookahead,

R(D) = max
p∈Dstates

R(p,D),

where

Dstates =

{
p :

p(·) =
∑

t∈T α(t)f(·|t)
f(·|t) ∈ G(t),∀ t ∈ T

}
.

Proof: It is clear that R(D) ≥ maxp∈Dstates R(p,D) because the switcher can select
distributions f(·|t) ∈ G(t) for all t ∈ T and upon observing a state t, the switcher can
randomly select the switch position according to the convex combination that yields f(·|t).
With this strategy, the AVS is simply an IID source with distribution p(·) =

∑
t α(t)f(·|t).

Hence, R(D) ≥ maxp∈Dstates R(p,D).
We will now show that R(D) ≤ maxp∈Dstates R(p,D). This can be done in the same way

as in Appendix C.1. We can use the type covering lemma to cover sequences with types in
or very near Dstates and then we need only show that the probability of xn having a type
ε-far from Dstates goes to 0 with block length n.
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Lemma 29. Let pxn be the type of xn and for ε > 0 let Dstates,ε be the set of p ∈ P(X ) with
L1 distance at most ε from a distribution in Dstates. Then, for ε > 0,

P (pxn /∈ Dstates,ε) ≤ 4|T ||X | exp(−nξ(ε)),

where ξ(ε) > 0 for all ε > 0. So for large n, pxn is in Dstates,ε with high probability.

Proof: Let tn be the n-length vector of the observed states. We assume that the switcher
has advance knowledge of all these states before choosing the switch positions. First, we show
that with high probability, the states that are observed are strongly typical. Let N(t|tn) be
the count of occurrence of t ∈ T in the vector tn. Fix a δ > 0 and for t ∈ T , define the event

Atδ =

{∣∣∣∣N(t|tn)

n
− α(t)

∣∣∣∣ > δ

}
. (C.1)

Since N(t|tn) =
∑n

i=1 1(ti = t) and each term in the sum is an IID Bernoulli variable with
probability of 1 equal to α(t), we have by Hoeffding’s tail inequality [57],

P (Atδ) ≤ 2 exp(−2nδ2).

Next, we need to show that the substrings output by the AVS at the times when the
state is t have a type in or very near G(t). This will be done by a martingale argument
similar to that given in Lemma 3 of [4]. Let t∞ denote the infinite state sequence (t1, t2, . . .)
and let F0 = σ(t∞) be the sigma field generated by the states t∞. For i = 1, 2, . . ., let
Fi = σ(t∞, si,xi1, . . . ,x

i
m). Note that {Fi}∞i=0 is a filtration and for each i, xi is included in

Fi trivially because xi = xsi,i.
Let Ci be the |X |-dimensional unit vector with a 1 in the position of xi. That is, Ci(x) =

1(xi = x) for each x ∈ X . Define Ti to be

Ti = Ci − E[Ci|Fi−1]

and let S0 = 0. For k ≥ 1,

Sk =
k∑
i=1

Ti.

We claim that Sk, k ≥ 1 is a martingale1 with respect to the filtration {Fi} defined previously.
To see this, note that E[|Sk|] <∞ for all k since Sk is bounded (not uniformly). Also, Sk ∈ Fk
because Ti ∈ Fi for each i. Finally,

E[Sk+1|Fk] = E[Tk+1 + Sk|Fk]
= E[Tk+1|Fk] + Sk

= E[Ck+1 − E[Ck+1|Fk]|Fk] + Sk

= E[Ck+1|Fk]− E[Ck+1|Fk] + Sk

= Sk.

1Sk is a vector, so we show that each component of the vector is a martingale. For ease of notation, we
drop the dependence on the component of the vector until it is explicitly needed.
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Now, define for each t ∈ T ,
T ti = Ti · 1(ti = t)

and analogously,

Stk =
k∑
i=1

T ti .

It can be easily verified that Stk is a martingale with respect to Fi for each t ∈ T .
Expanding, we also see that

1

N(t|tn)
Stn =

1

N(t|tn)

n∑
i=1

Ti1(ti = t)

=
1

N(t|tn)

∑
i: ti=t

Ci −

1

N(t|tn)

∑
i: ti=t

E[Ci|Fi−1]. (C.2)

The first term in the difference above is the type of the output of the AVS during times
when the state is t. For any i such that ti = t,

E[Ci|Fi−1] =
m∑
l=1

P (l|Fi−1)pl(·|t) ∈ G(t).

In the above, P (l|Fi−1) represents the switcher’s possibly random strategy because the
switcher chooses the switch position at time i with knowledge of events in Fi−1. The symbol
generator’s outputs, conditioned on the state at the time are independent of all other ran-
dom variables, so

∑m
l=1 P (l|Fi−1)pl(·|t) is the probability distribution of the output at time

i conditioned on Fi−1.
Thus, the second term in the difference of (C.2) is in G(t) because it is the average of

N(t|tn) terms in G(t) and G(t) is a convex set. Therefore, Stn/N(t|tn) measures the difference
between the type of symbols output at times when the state is t and some distribution
guaranteed to be in G(t).

Let pxn be the empirical type of the string xn, and let ptxn be the empirical type of the
sub-string of xn corresponding to the times i when ti = t. Then,

pxn =
∑
t∈T

N(t|tn)

n
ptxn .

Let G(t)ε be the set of distributions at most ε in L1 distance from a distribution in G(t).
Recall that for |X | dimensional vectors, ‖p− q‖∞ < ε/|X | implies ‖p− q‖1 < ε. Hence, we
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have

P

(⋃
t∈T

{
ptxn /∈ G(t)ε

})
≤

∑
t∈T

P

(⋃
x∈X

{∣∣∣∣ 1

N(t|tn)
Stn(x)

∣∣∣∣ > ε

|X |

})

≤
∑
t

∑
x

P

(∣∣∣∣ 1

N(t|tn)
Stn(x)

∣∣∣∣ > ε

|X |

)
. (C.3)

Let (Atδ)
c denote the complement of the event Atδ. So, for every (t, x) we have

P

(∣∣∣∣ 1

N(t|tn)
Stn(x)

∣∣∣∣ > ε

|X |

)
≤ P (Atδ) + P

(∣∣∣∣ 1

N(t|tn)
Stn(x)

∣∣∣∣ > ε

|X |
, (Atδ)

c

)
≤ 2 exp(−2nδ2) +

P

(∣∣∣∣ 1

N(t|tn)
Stn(x)

∣∣∣∣ > ε

|X |
, (Atδ)

c

)
.

In the event of (Atδ)
c, we have N(t|tn) ≥ n(α(t)− δ), so

P

(∣∣∣∣ 1

N(t|tn)
Stn(x)

∣∣∣∣ > ε

|X |
, (Atδ)

c

)
≤ P

(
|Stn(x)| > n(α(t)− δ) ε

|X |
, (Atδ)

c

)
≤ P

(
|Stn(x)| > n(α(t)− δ) ε

|X |

)
.

Stk(x) is a martingale with bounded differences since |Stk+1(x) − Stk(x)| = |T tk+1(x)| ≤ 1.
Hence, we can apply Azuma’s inequality [58] to get

P

(∣∣∣∣ 1

N(t|tn)
Stn(x)

∣∣∣∣ > ε

|X |
, (Atδ)

c

)
≤ 2 exp

(
−n(α(t)− δ)2ε2

2|X |2

)
. (C.4)

Plugging this back into (C.3),

P

(⋃
t∈T

{
ptxn /∈ G(t)ε

})
≤ 2|T ||X |

(
exp(−2nδ2) +

exp

(
−n(α∗ − δ)2ε2

2|X |2

))
≤ 4|X ||T | exp(−nξ(ε, δ))

where

ξ(ε, δ) = min

{
2δ2,

(α∗ − δ)2ε2

2|X |2

}
α∗ , min

t∈T
α(t).
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We assume without loss of generality that α∗ > 0 since T is finite. We will soon need that
δ ≤ ε/|T |, so let

ξ̃(ε) = max
0<δ<min{ε/|T |,α∗}

ξ(ε, δ)

and note that it is always positive provided ε > 0, since ξ(ε, δ) > 0 whenever δ ∈ (0, α∗).
Hence,

P

(⋃
t∈T

{
ptxn /∈ G(t)ε

})
≤ 4|X ||T | exp(−nξ̃(ε)).

We have shown that with probability at least 1 − 4|X ||T | exp(−nξ̃(ε)), for each t ∈ T
there is some pt ∈ G(t) such that ‖ptxn − pt‖1 ≤ ε and (Atε/|T |)

c occurs. Let

p =
∑
t∈T

α(t)pt.

By construction, p ∈ Dstates. To finish, we show that ‖pxn − p‖1 ≤ 2ε.

‖pxn − p‖1 =
∑
x∈X

|pxn(x)− p(x)|

=
∑
x

∣∣∣∣∣∑
t∈T

N(t|tn)

n
ptxn(x)− α(t)pt(x)

∣∣∣∣∣
≤

∑
t

∑
x

∣∣∣∣N(t|tn)

n
ptxn(x)− α(t)pt(x)

∣∣∣∣
=

∑
t

α(t)
∑
x

∣∣∣∣N(t|tn)

nα(t)
ptxn(x)− pt(x)

∣∣∣∣
≤

∑
t

α(t)
∑
x

|ptxn(x)− pt(x)|+
∣∣∣∣N(t|tn)

nα(t)
− 1

∣∣∣∣ ptxn(x).

From (C.1), we are assumed to be in the event that∣∣∣∣N(t|tn)

nα(t)
− 1

∣∣∣∣ ≤ δ

α(t)

Hence,

‖pxn − p‖1 ≤
∑
t

α(t)

(
ε+

δ

α(t)

)
= ε+ |T |δ ≤ 2ε.

We have proved P (pxn /∈ Dstates,2ε) ≤ 4|X ||T | exp(−nξ̃(ε)), so we arrive at the conclusion of

the lemma by letting ξ(ε) = ξ̃(ε/2).
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C.3 Uniform continuity of R(p,D)

Lemma 9 of Section 4.7.1:
Let d : X×X̂ → [0, d∗] be a distortion function. d̃ is the minimum nonzero distortion from

(4.1). Also, assume that for each x ∈ X , there is an x̂0(x) ∈ X̂ such that d(x, x̂0(x)) = 0.

Then, for p, q ∈ P(X ) with ‖p− q‖1 ≤ d̃
4d∗

, for any D ≥ 0,

|R(p,D)−R(q,D)| ≤ 7d∗

d̃
‖p− q‖1 ln

|X ||X̂ |
‖p− q‖1

.

Proof: Let W ∗
p,D ∈ argminW∈W(p,D)I(p,W ). Then

|R(p,D)−R(q,D)| = |I(p,W ∗
p,D)− I(q,W ∗

q,D)|.

Consider d(p,W ∗
q,D), the distortion of source p across q’s distortion D achieving channel.

d(p,W ∗
q,D) ≤ d(q,W ∗

q,D) + |d(p,W ∗
q,D)− d(q,W ∗

q,D)|
≤ D + ‖p− q‖1d∗.

By definition, W ∗
q,D is in W(p, d(p,W ∗

q,D)), so R(p, d(p,W ∗
q,D)) ≤ I(p,W ∗

q,D).

R(p, d(p,W ∗
q,D)) ≤ I(p,W ∗

q,D)

≤ |I(p,W ∗
q,D)− I(q,W ∗

q,D)|+ I(q,W ∗
q,D)

= |I(p,W ∗
q,D)− I(q,W ∗

q,D)|+R(q,D) (C.5)

Expanding mutual informations yields

|I(p,W ∗
q,D)− I(q,W ∗

q,D)| ≤ |H(p)−H(q)|+ |H(pW ∗
q,D)−H(qW ∗

q,D)|+
|H(p,W ∗

q,D)−H(q,W ∗
q,D)|.

Above, for a distribution p on X and channel W from X to X̂ , H(pW ) denotes the entropy

of a distribution on X̂ with probabilities (pW )(x̂) =
∑

x p(x)W (x̂|x). H(p,W ) denotes the

entropy of the joint source on X × X̂ with probabilities (p,W )(x, x̂) = p(x)W (x̂|x). It is
straightforward to verify that ‖pW − qW‖1 ≤ ‖p− q‖1 and ‖(p,W )− (q,W )‖1 ≤ ‖p− q‖1.
So using Lemma 8 three times, we have

|I(p,W ∗
q,D)− I(q,W ∗

q,D)| = |I(p,W ∗
q,D)− I(q,W ∗

q,D)|

≤ 3‖p− q‖1 ln
|X ||X̂ |
‖p− q‖1

.
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Now, we have seen d(p,W ∗
q,D) ≤ D + d∗‖p − q‖1. We will use the uniform continuity of

R(p,D) in D to bound |R(p,D)−R(p,D + d∗‖p− q‖1)|. This will give an upper bound on
R(p,D)−R(q,D) as seen through (C.5), namely,

R(p,D)−R(q,D) ≤ |I(p,W ∗
q,D)− I(q,W ∗

q,D)|+
R(p,D)−R(p, d(p,W ∗

q,D))

≤ |I(p,W ∗
q,D)− I(q,W ∗

q,D)|+
R(p,D)−R(p,D + d∗‖p− q‖1), (C.6)

where the last step follows because R(p,D) is monotonically decreasing in D. For a fixed p,
the rate-distortion function in D is convex-∪ and decreasing and so has steepest descent at
D = 0. Therefore, for any 0 ≤ D1, D2 ≤ d∗,

|R(p,D1)−R(p,D2)| ≤ |R(p, 0)−R(p, |D2 −D1|)|.

Hence, we can restrict our attention to continuity of R(p,D) around D = 0. By assumption,
W(p, 0) 6= ∅ ∀p ∈ P(X ). Now consider an arbitrary D > 0, and let W ∈ W(p,D). We will
show that there is some W0 ∈ W(p, 0) that is close to W in an L1-like sense (relative to the
distribution p). Since W ∈ W(p,D), we have by definition

D ≥
∑
x

p(x)
∑
x̂

W (x̂|x)d(x, x̂)

=
∑
x

p(x)
∑

x̂: d(x,x̂)>0

W (x̂|x)d(x, x̂)

≥ d̃
∑
x

p(x)
∑

x̂: d(x,x̂)>0

W (x̂|x). (C.7)

Now, we will construct a channel in W(p, 0), denoted W0. First, for each x, x̂ such that
d(x, x̂) = 0, let V (x̂|x) = W (x̂|x). For all other (x, x̂), set V (x̂|x) = 0. Note that V is not
a channel matrix if W /∈ W(p, 0) since it is missing some probability mass. To create W0,
for each x, we redistribute the missing mass from V (·|x) to the pairs (x, x̂) with d(x, x̂) = 0.
Namely, for (x, x̂) with d(x, x̂) = 0, we define

W0(x̂|x) = V (x̂|x) +

∑
x̂′: d(x,x̂′)>0W (x̂′|x)

|{x̂′ : d(x, x̂′) = 0}|
.

For all (x, x̂) with d(x, x̂) > 0, define W0(x̂|x) = 0. So, W0 is a valid channel in W(p, 0).
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Now for a fixed x ∈ X ,∑
x̂

|W (x̂|x)−W0(x̂|x)| =
∑

x̂: d(x,x̂)>0

W (x̂|x) +
∑

x̂: d(x,x̂)=0

|W (x̂|x)−W0(x̂|x)|

=
∑

x̂: d(x,x̂)>0

W (x̂|x) +
∑

x̂: d(x,x̂)=0

∣∣∣∣∣
∑

x̂′: d(x,x̂′)>0W (x̂′|x)

|{x̂′ : d(x, x̂′) = 0}|

∣∣∣∣∣
= 2

∑
x̂: d(x,x̂)>0

W (x̂|x).

Therefore, using (C.7) ∑
x

p(x)
∑
x̂

|W (x̂|x)−W0(x̂|x)| ≤ 2D

d̃
.

So, for W = W ∗
p,D, there is a W0 ∈ W(p, 0) with the above ‘modified L1 distance’ with respect

to p betweenW andW0 being less than 2D/d̃. Going back to the bound on |R(p, 0)−R(p,D)|,

|R(p, 0)−R(p,D)| = min
W∈W(p,0)

I(p,W )− I(p,W ∗
p,D)

≤ I(p,W0)− I(p,W ∗
p,D)

≤ |H(pW0)−H(pW ∗
p,D)|+ |H(p,W0)−H(p,W ∗

p,D)|.

It can be easily verified that ‖pW0 − pW ∗
p,D‖1 is at most 2D/d̃. Similarly, ‖(p,W0) −

(p,W ∗
p,D)‖1 ≤ 2D/d̃.

Now, assuming D ≤ d̃/4, we can again invoke Lemma 8 to get

|R(p, 0)−R(p,D)| ≤ 2D

d̃
ln
d̃|X |
2D

+
2D

d̃
ln
d̃|X ||X̂ |

2D

≤ 4D

d̃
ln
d̃|X ||X̂ |

2D
. (C.8)

Going back to (C.6), we see that if ‖p− q‖1 ≤ d̃
4d∗

,

|R(p,D + d∗‖p− q‖1)−R(p,D)| ≤ 4d∗‖p− q‖1
d̃

ln
d̃|X ||X̂ |

2d∗‖p− q‖1

≤ 4d∗‖p− q‖1
d̃

ln
|X ||X̂ |
‖p− q‖1

.



226

The last step follows because d̃/d∗ ≤ 1. Substituting into (C.6) gives

R(p,D)−R(q,D) ≤ 3‖p− q‖1 ln
|X ||X̂ |
‖p− q‖1

+ 4
d∗

d̃
‖p− q‖1 ln

|X ||X̂ |
‖p− q‖1

≤ 7d∗

d̃
‖p− q‖1 ln

|X ||X̂ |
‖p− q‖1

.

Finally, this bound holds uniformly on p and q as long as the condition on ‖p−q‖1 is satisfied.
Therefore, we can interchange p and q to get the other side of the inequality

R(q,D)−R(p,D) ≤ 7d∗

d̃
‖p− q‖1 ln

|X ||X̂ |
‖p− q‖1

.

C.4 Proof of Lemma 10

We now assume d : X × X̂ → [0, d∗] to be arbitrary. However, we let

d0(x, x̂) = d(x, x̂)−min
x̃∈X̂

d(x, x̃)

so that Lemma 9 applies to d0. Let R0(p,D) be the IID rate-distortion function for p ∈ P(X )
at distortion D with respect to distortion measure d0(x, x̂). By definition, R(p,D) is the IID
rate-distortion function for p with respect to distortion measure d(x, x̂). From Problem 13.4
of [21], for any D ≥ Dmin(p),

R(p,D) = R0(p,D −Dmin(p)).

Hence, for p, q ∈ P(X ), D ≥ max(Dmin(p), Dmin(q)),

|R(p,D)−R(q,D)| = |R0(p,D −Dmin(p))−R0(q,D −Dmin(q)|
≤ |R0(p,D −Dmin(p))−R0(p,D −Dmin(q))|+
|R0(p,D −Dmin(q))−R0(q,D −Dmin(q))|. (C.9)

Now, we note that |Dmin(p)−Dmin(q)| ≤ d∗‖p− q‖1. The first term of (C.9) can be bounded
using (C.8) and the second term of (C.9) can be bounded using Lemma 9. The first term

can be bounded if ‖p− q‖1 ≤ d̃0/4d
∗ and the second can be bounded if ‖p− q‖1 ≤ d̃0/4d

∗
0.

Since d∗0 ≤ d∗, we only require ‖p− q‖1 ≤ d̃0/4d
∗.

|R(p,D)−R(q,D)| ≤ 4d∗

d̃0
‖p− q‖1 ln

d̃0|X ||X̂ |
2d∗‖p− q‖1

+

7d∗0

d̃0
‖p− q‖1 ln

|X ||X̂ |
‖p− q‖1

≤ 11d∗

d̃0
‖p− q‖1 ln

|X ||X̂ |
‖p− q‖1

.
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