
Interactive Text Recognition and Translation on a

Mobile Device

Michael Hsueh

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-57

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-57.html

May 13, 2011



Copyright © 2011, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Interactive Text Recognition and Translation on a

Mobile Device

Michael Hsueh

University of California, Berkeley

Computer Science Division

Abstract—The convergence of powerful processors and high
resolution cameras on mobile devices has made them an attractive
platform for optical character recognition (OCR) software. Most
traditional OCR applications have been designed to be highly
automated and used on desktop machines. These recognition
engines perform well but usually require high quality input
images that are reliably obtained. In adapting recognition systems
for use on mobile devices, conventional assumptions about the
need for automation, available processing power, and input image
quality should be re-evaluated. This paper presents a mobile
text recognition and translation system that is designed with
consideration for these factors. The application presented runs
on the Nokia N900 smartphone and introduces human-assisted
elements into the OCR pipeline to enhance accuracy. These
elements include manual cropping, classification, segmentation,
and thresholding. The system also employs vignetting correction
and a web-based recognition service in order to address the
camera and performance limitations of the N900. The completed
application was deployed publicly for testing by the Maemo
community under the name MIR Translator. Feedback for the
system was positive overall and confirms the utility of text
recognition software on mobile devices.

I. INTRODUCTION

The overall capabilities of mobile devices have rapidly

increased in recent years in terms of processing power, con-

nectivity, and available sensors. These advancements, together

with the growing prevalence of smartphones, have made it

feasible and in some cases preferable to run OCR software

on mobile platforms. Naturally, image processing applications

that are ported to mobile devices frequently must adapt to very

different technical and usage assumptions than those under

which they were originally developed. For example, traditional

OCR users often use workstations to set up long running, au-

tomated jobs to process large amounts of scanned documents.

In contrast, mobile users might only need to process short

segments of text on demand and with the expectation of low

response times.

One challenge in adapting OCR for mobile devices is in

handling lower quality input images. Conventional recognition

systems assume input data to be high resolution images

obtained from flatbed or sheet fed scanners. As a result,

many existing engines are optimized for processing clean

and sharp images of text. Unfortunately, hardware limitations

and volatile operating environments usually cause cell phone

cameras to produce lower fidelity images that suffer from

defects such as noise or uneven lighting.

A second drawback in running OCR on mobile devices

is that they have much lower processing capabilities than

workstations. This presents an obstacle in particular for the

recognition of complex scripts and characters such as those of

certain East Asian languages. Recognition of these languages

is resource intensive, as the engine must distinguish among

significant numbers of characters. The problem is magnified

by the fact that use of mobile applications is commonly

characterized by short bursts of “on-the-go” activity [1]. This

usage behavior means short response times are a necessity for

any mobile application.

Fortunately, mobile devices also offer advantages to recog-

nition applications that extend beyond simply portability and

ubiquity. Smartphones can be used to capture images of text

from arbitrary objects at distances that are impractical for scan-

ners. In addition, mobile OCR is particularly useful when the

user needs to input a foreign language, especially those based

on a foreign script. Take for example a traveler in a foreign

country who has neither the input method nor knowledge to

enter the local language into his or her mobile device. The user

may need to translate a physically encountered piece of text

but has no convenient way of doing this, even given access

to a multilingual electronic dictionary. Objects requiring quick

translation can include anything from signs or product labels

to restaurant menu items.

Various mobile recognition–translation applications for con-

sumers currently exist, but none have yet to completely resolve

the issues outlined above. A number of these offerings are very

promising but have been primarily focused only on languages

based on the Latin alphabet. Recognition of a wide range of

languages including those with complex, logographic writing

systems is necessary for a solution to be truly adequate.

A practical solution addressing these issues can be devel-

oped by leveraging (1) the camera and Internet connectivity

built into most modern mobile platforms and (2) an OCR

pipeline adapted to address the platform’s unique limitations

and advantages. This paper presents MIRATS, a system de-

signed around these points.

The presented system uses web services to increase the

mobile platform’s effective processing power for character

recognition. It also addresses some limitations specific to the

N900 camera that interfere with OCR accuracy. MIRATS

modifies the typical recognition pipeline from being entirely

automated to more user interactive. In this way, it takes ad-

vantage of the high user engagement afforded by smartphone

usage patterns and aids the accuracy of the system in face of

the aforementioned challenges.



The rest of this paper is organized as follows. Section II

discusses related work on text recognition and translation on

mobile devices. Section III gives an overview of the design and

implementation of the presented system. Section IV describes

the N900 application used to interface with the system. In

Section V, experiments and an evaluation of the system are

explained. Section VI proposes future enhancements to the

system, and a summary of this work follows in Section VII.

II. RELATED WORK

Since the popularization of digital cameras, efforts have

been made to adapt text recognition algorithms to work on

digital camera platforms. In shifting from the pseudo-binary

nature of scanned text images to real world pictures, much

focus has been on the problem of text localization and ex-

traction. Work in areas such as text line detection, perspective

removal, and environmental background removal from natural

pictures have yielded accuracy rates ranging from 50 to 70

percent [2]–[4], depending on the images tested. For surveys

on general issues surrounding camera-based text digitization,

see [5], [6].

Researchers have built early examples of standalone OCR

systems that run on cell phone hardware [7]–[9]. Senda et al.

[10] demonstrate a “camera-typing” interface that relies on the

concatenation of multiple photos taken by a smartphone cam-

era for text input. The system built by Laine and Nevalainen

[9] was found to consume most of its computational time

performing tasks that are specific to adapting text recognition

for mobile environments (e.g., skew adjustment). Experiments

from the mentioned systems suggested that performing OCR

on commodity mobile hardware was of borderline practicality

due to long processing times. This problem is likely to have

been mitigated to an extent by recent advances in mobile

technology. Work in mobile OCR by Joshi et al. [11] takes

advantage of new hardware features such as the tilt sensor to

aid proper user input.

A number of OCR engines are widely available and in

current use. Open-source projects include GOCR1, OCRAD2,

OCROpus [12], OpenOCR3, and Tesseract [13], [14]. Com-

mercial products supporting mobile platforms include ABBYY

FineReader4, Nuance OmniPage5, and ExperVision Open-

RTK6, among others.

Image recognition systems that incorporate human-

assistance have been developed. Wilkinson, Garris, and Geist

[15] used an OCR engine augmented with human verification

to generate large test sets for other OCR systems. Blostein

[16] approached assistance from the user interface perspective,

employing specialized input devices and N-best lists to correct

errors in diagram recognition. User-driven segmentation and

classification were shown to improve recognition of UML

1http://jocr.sourceforge.net/
2http://www.gnu.org/software/ocrad/
3http://en.openocr.org/
4http://finereader.abbyy.com/
5http://www.nuance.com/for-individuals/by-product/omnipage/
6http://www.expervision.com/ocr-sdk-toolkit/openrtk-ocr-toolkit-sdk

diagrams in a system built by Lank, Thorley, and Chen

[17]. Researchers in the area of mathematics recognition have

demonstrated style-preserving morphs for inputting and ma-

nipulating hand-written formulas [18], [19]. Mankoff, Abowd,

and Hudson [20] created a user interface toolkit consisting

of reusable error correction elements and architectural exten-

sions to provide structural support for handling ambiguity in

recognizers.

Solutions combining recognition and translation services on

mobile devices have come largely from the industry. By far the

most popular offering is Google Goggles7, an image analysis

and visual search tool available for Android and iPhone

devices. It supports recognition and search of a growing va-

riety of subjects including landmarks, barcodes, and everyday

objects. The application is also capable of text recognition

and translation; at the time of this writing, the supported

languages are English, French, German, and Spanish. Google

Goggles works by capturing images of interest on the device

and then sending them over the Internet for recognition in the

company’s databases.

Augmented reality is a relatively new area where several text

recognition and translation applications have emerged. Nokia

Point & Find8 was an experimental application that recognized

movie posters in real time and displayed relevant information

to the user. World Lens9 is an application for iPhone that

translates text visible in the viewfinder and overlays the results

on the screen in real time. The system works without Internet

connectivity and currently supports translation from English

to Spanish and vice versa. In the academic domain, Fragoso

et al. [21] built a similar application that relies on a web-based

service for translation.

III. SYSTEM OVERVIEW

The MIRATS system was developed in Qt. The N900

application also uses the open-source library FCam API10

for interfacing with the platform’s camera. A recognition and

translation cycle in the system follows the process outlined in

Fig. 1 and the steps below.

1) The user begins by capturing an image containing text

of interest using the N900 camera.

2) The user manually specifies the region of the image

containing the text to be recognized.

3) The specified area of the image is partially preprocessed

on the device in order to optimize it for transfer and

input to the OCR server.

4) The preprocessed data is sent to a web service where

recognition takes place. The results are delivered back

to the device.

5) The device sends the results of the recognition to a

translation web service and obtains a translated string.

7http://www.google.com/mobile/goggles/
8http://pointandfind.nokia.com/
9http://questvisual.com/
10http://fcam.garage.maemo.org/



Fig. 1. MIRATS system organization. The application captures an input
image and sends it to an OCR web service. The results are returned to the
device and inspected by the user. The user performs manual error correction
tasks as needed. When the recognized text is correct, it is sent to a translation
web service as the final step.

6) The user examines the results and makes manual adjust-

ments to the recognized text if necessary to produce a

better translation.

In designing the system, it had to be decided how the steps

for recognition would be divided between the device and the

server. It is possible to perform the OCR process partially on

the mobile device. Specifically, it was considered to have the

N900 complete feature extraction locally and then send the re-

sulting feature vectors to the server for classification. Because

the client would be responsible for inspecting the input image,

image preprocessing steps would be forced to take place on the

mobile device. This organization avoids network transmission

of raster image data, which if uncompressed is almost certain

to be much larger than feature vectors (the N900 has a

5MP camera). Ultimately, it was determined that input images

can usually be sufficiently reduced in size by downsampling,

compressing, and converting them (to grayscale) such that

they become smaller than their associated feature vectors.

These steps can be parameterized to minimize their impact on

recognition accuracy in most cases. This is the design route

taken for MIRATS.

A. Server

It was important for the MIRATS server to support recog-

nition of as many different languages as possible. Especially

difficult are languages such as Chinese or Japanese, which

contain large sets of symbols that are problematic for OCR en-

gines designed for small alphabets. Several language-specific

engines address this issue, such as the one by Huo, Ge,

and Feng [22], which uses Gabor features and discriminative

feature extraction. On the opposite end, language-independent

systems such as the one built by Lu et al. [23] using hidden

Markov models have shown good results. The solution chosen

for MIRATS was Tesseract due to its open-source availability

and prepackaged support for many languages [14]. It is UTF-

8 capable, fully trainable, and available with trained data for

over 30 languages.

The server listens for connections from client devices re-

questing recognition service. A request includes the incoming

image as well as metadata specifying the desired language for

recognition. The server runs a version of the Tesseract engine

that has been modified to provide additional information

about the confidence, classification choices, and segmentation

boundaries for each recognized character. Specifically, the

engine outputs the confidence level as percentage ranging from

0-100 for each character that is recognized. It also produces

a configurable number of the best alternative characters that

were considered during classification but not chosen. Finally,

the engine attaches a bounding box to each recognized char-

acter that indicates the region of the input image in which the

character is located. It should be noted that while this system

uses Tesseract to power its OCR, any other engine capable of

producing these additional pieces of information can be easily

integrated into the MIRATS system design.

The server is intended to be deployed as a web service

but can also run locally on the mobile device. This may be

necessary in areas of limited connectivity or to avoid expen-

sive bandwidth charges while roaming. The server module

has been successfully deployed and tested on instances of

Amazon EC2, a desktop workstation, and the N900 itself. The

main disadvantage of running OCR on the N900 is limited

performance and a need to install large trained language files

for Tesseract. Additionally, if translation is desired, Internet

access to a translation web service is still necessary. Local

translation software can be used, but the limitations described

for local recognition apply similarly.

B. Client

The application begins with the user capturing an image

and then manually cropping out a region to process. The

application translates the cropping coordinates from viewport

space to image space and begins preprocessing the region.

Preprocessing involves vignetting correction (discussed in the

next section), conversion to grayscale, and compression. For

efficiency, only the selected region of the image is processed.

Subsequent recrops of the same source image will use pre-

viously computed data. If a new crop is made but includes

previously selected areas, only the new, unprocessed regions

need to be computed.

Once the cropped area is preprocessed, it is sent to the

recognition server. The application parses the results returned

by the server and sends them through a POST request to the

Google Translate API 11, specifying the user selected source

and destination languages.

11http://code.google.com/apis/language/translate/overview.html



(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) - An example of a non-corrected image that the application sends to the OCR server. (b) - A manually thresholded version of (a) that attempts
to keep all text pixels dark. (c) - A manually thresholded version of (a) that attempts to keep all background pixels white. In this image, the text contained in
lighter areas begin to disappear. (d) - The image from (a) with the vignetting correction function applied. (e) - The image from (d) thresholded by the OCR
engine. (f) - The image from (a) after local adaptive thresholding with window size 100×100 pixels and a pixel value bias of -10%.

C. Vignetting Correction

The N900 camera produces a severe amount of vignetting

(i.e., darkening) around the outer edges of captured images.

This issue appears in Nokia’s default camera application when

in the viewfinder mode but is resolved in captured images by

the software’s internal processing.

FCam outputs raw images captured by the CCD and there-

fore does not correct the vignetting effect. Although it does

not cause visual problems in casual pictures, it presents a

serious difficulty for OCR. Tesseract binarizes images into

text and background areas according to Otsu’s method [24],

which performs histogram shape-based thresholding over the

image. Because of the significant vignetting on the N900, this

technique alone yields poor results in many cases. When the

input image spans non-vignetted areas to severely vignetted

areas (see Fig. 2(a)), there is no appropriate global threshold-

ing value that can be chosen (see Fig. 2(b)(c)), even manually.

In these cases, the non-text pixels of vignetted areas appear

just as dark as the text pixels of the non-vignetted areas.

One way to resolve this issue is to employ local adaptive

thresholding over the image. This would correct, in addition

to the vignetting specific to any particular camera sensor, the

more general problem of uneven lighting . A drawback of this

approach is that it incurs considerable performance penalties

over the use of global thresholding. A more significant issue

is that local adaptive thresholding is most effective if its

parameters are chosen correctly. The two parameters that need

to be specified are (1) the size of the local area to be sampled

per pixel and (2) the amount of bias given to a pixel once a

threshold for its local area has been calculated. In Fig. 2(f), a

vignetted source image undergoes local adaptive thresholding

with a 100×100 pixel window size and a -10% bias for

thresholded pixels. As can be seen from the picture, the results

are good.

It was decided not to automatically enable local adaptive

thresholding but rather to leave this method available as a

manual task for the user. This feature will be explained in the

latter part of this paper. The decision to forgo automatic adap-

tive thresholding was motivated by the fact that poorly chosen

parameters can degrade instead of improve results. Window

sizes that are too small will end up hollowing out text with

thick lines. Large window sizes reduce the adaptive advantages

of local thresholding and result in poor performance.

To correct vignetting, a per-pixel correction function was

used. The function is based on comparing any given pixel’s

change in brightness to its distance from the center of the im-

age. To estimate the correction, several pictures of uniformly

colored surfaces were taken with the N900 camera. For every

image, the HSV value for each individual pixel was compared

with the average value Vc of the pixels in the central 10×10

pixel region of the image. For any given pixel px with Value

V (px), the point K(px) plotted is simply the relative change

going from V (px) to Vc:

K(px) =
Vc − V (px)

V (px)
(1)

The results are shown in the Fig. 3. A curve fitting produced

a second-degree polynomial with R2 = 0.92 that approximates

how much brightness to apply to each pixel to counteract

vignetting. Experiments indicate that the function brings pix-

els sufficiently close to appropriate values for Ostu’s global

thresholding algorithm to work effectively.

Because the function needs to be evaluated per pixel, it

is important for performance reasons that only the cropped

out region of the entire source image undergoes vignetting

correction. For a pixel px with Euclidean distance D(px)
from the center of the image, the correction factor C(px)
and corrected pixel value V ′(px) at the same location in the



 

 !"

 !#

 !$

 !%

 !&

 !'

 !(

 #  %  '  )  "   "#  "%  "'  

��
���

���
�	


��
��
���
�
�

��

��
��
�

��������	
�����	��

���
��	���

Fig. 3. Relative change in pixel brightness versus Euclidean distance from
the image center.

corrected image is given by the following:

C(px) = 2× 10−7 ×D(px)
2 + 7× 10−5 ×D(px) (2)

V ′(px) = V (px)× (1 + C(px)) (3)

Since the C(px) correction factors depend only on the

distances of individual pixels, their values can be precomputed

during the first run of the application and stored for all possible

pixel-to-center offsets. This allows the correction function to

subsequently look up the factors at run time instead of calculat-

ing them, avoiding costly multiplication operations. It is only

necessary to store correction factors for one quadrant of the

entire image area, since the vignetting effect is approximately

symmetric across all quadrants. The N900 camera produces

images at a resolution of 2560× 1944, and thus C(px) values

are stored only for offsets landing in the upper left 1280×972
area.

It is important to note that the stored factors are indexed

by offsets (from the center pixel) rather than actual Euclidean

distance. This is to avoid pixel-wise calculations of distance at

run time. A further optimization can be realized by omitting

redundant storage of factors. Specifically, it is only necessary

to store values for the set of all unordered pairs of offsets in

each direction. For example, let xc and yc be the horizontal

and vertical coordinates of the center, respectively. Then the

pixels at positions (k1 + xc, k2 + yc) and (k2 + xc, k1 + yc)

have the same Euclidean distance and thus only one C(px)
value is stored for the both of them. With the factors stored

as 32-bit floating-point numbers, the precomputed file is 3MB

in size.

The vignetting profile of the sensors on different N900s may

not be exactly the same. If this is the case, a calibration process

that automates the above steps can be used to determine the

appropriate correction function for each individual device. The

results are expected to work well so as long as the vignetting

profiles are not radically different across devices.

Fig. 4. Interface for cropping the area to translate.

IV. USER INTERFACE

Typical usage of the application is summarized in Fig. 1

and below.

1) The viewfinder is used to capture an image containing

text of interest.

2) The user manually selects the area containing the text

to be recognized from the image (see Fig. 4). The

application is designed for cropping to take place after

the image is captured. The reason for this is that it is

significantly easier to crop from a stationary image than

directly on a live viewfinder. The latter approach is taken

by Google Goggles.

3) The source and destination languages are specified using

drop down menus. The application currently supports

over 30 different languages for both input and output.

4) The user presses the Send button and awaits the results.

5) The results screen displays the recognized text as well as

its translation (see Fig. 5). After inspecting the results,

the user has the option of performing manual corrective

tasks to fix any errors in the recognized text. These tasks

are described in the following sections.

6) The user can return to the original captured photo and

select another area to translate, or capture a new photo

to process.

MIRATS is designed with the belief that human assistance

is both useful and viable for mobile text recognition. There are

two reasons for this assumption. The first is that users are not

expected to use smartphones to digitize large corpuses. Mobile

OCR is more likely to serve as a handy tool for capturing short

segments of text that may be difficult or inconvenient to enter

manually. Consequently, full automation of the OCR pipeline

is not a strict requirement. The second reason is that usage

sessions on mobile devices tend to be short, occur in physically

stable situations, and have a high level of user engagement [1].

It is expected, therefore, that mobile users will be willing to

engage in the interactive use of OCR if response times are

kept low. MIRATS provides several interactive mechanisms

with which the user can improve recognition accuracy given

a reasonable amount of effort.



Fig. 5. Results screen showing color coding on the recognized string. The
window shown on the right provides visual reference of the three selected
characters.

A. Visual Reference of OCR Results

Recognized characters are displayed in either black or red

font. Red characters indicate a recognition confidence level

below a configurable threshold. The system uses 75% as the

default threshold. Color coding confidence levels allows rapid

verification of results. Individual or clusters of red characters

immediately draw attention to areas that may require user

attention.

In order to aid manual correction, the application displays

visual references of the recognized characters. The bounding

rectangles returned by the recognition service record the

regions in the input image from which each character was

extracted. When the user highlights an individual character,

the local region of the image corresponding to that character is

displayed in a window on the interface. The image is appropri-

ately scaled and the character’s precise bounding box is drawn

over the image. This gives the user feedback about the precise

segmentation that took place during recognition. If instead a

group of characters is selected, the visual reference window

presents the maximum bounding rectangle encompassing all

the selected characters (see Fig. 5).

B. Manual Classification

Because translation is highly sensitive to even minor errors

in recognized text, the application allows the user to assist

in classifying segmented characters. Manual classification is

most helpful in the recognition of languages containing large

numbers of characters that share strong resemblances. In some

cases involving small or blurry print, it is difficult for even

humans to make the distinction between similar characters

without semantic, contextual clues.

Upon selection of a recognized character, the application

displays a list of the best alternative characters that were

considered but not chosen during classification (see Fig. 6).

These choices are displayed in order of decreasing confidence.

The user can select one of these alternatives to replace the

original character. Once changes to all desired characters are

made, a new translation request can be sent with the revised

text.

Fig. 6. Manual classification of a selected character using the menu shown
on the right.

C. Manual Segmentation

Segmentation errors are more serious and cannot usually be

corrected by manual classification. When manual classification

is insufficient or when a large region of the image is incorrectly

recognized, the user can specify an area of the image to

reprocess. To do this, the user first selects the erroneous

characters from the recognized text and then clicks on the

visual reference window. The resulting dialog box displays an

area in which the user manually adjusts a cropping rectangle

to contain the region of the input image to reprocess (see

Fig. 7). The cropping rectangle is initially configured as the

bounding box over the selected text. In some cases, the original

segmentation was correct and no adjustments to the cropping

rectangle are necessary. When the user has appropriately

adjusted the cropping area, a new recognition request of the

selected region is sent to the OCR server. The response to the

request is inserted into the existing result body, replacing the

initially selected contents.

Manual segmentation provides a “second chance” opportu-

nity to perform recognition on a particular area of the image.

This is helpful for cases in which there are extraneous marks

within the translation region that cannot be removed except

through a localized, intermediate segmentation step. Manual

segmentation also amounts roughly to a user-driven form of

adaptive thresholding. One can imagine the extreme case of an

input picture that is shaded on one side and brightly lit on the

opposite. Manual segmentation allows thresholding and recog-

nition of the two distinct parts of the image independently of

the parent image.

Other examples of failed segmentation include multiple

characters being mistakenly grouped together or a single

character being split apart. Either of these scenarios can be

remedied by manual segmentation. The same techniques can

be used to recover omitted characters from the recognized

string. Recoverable areas include those that were wiped out

for falling under the thresholding value or simply ignored

by the recognition engine. Entire areas of input images are

occasionally omitted by the engine because the text they

contain is dismissed as noise. This can happen for example if

the text is of a significantly smaller font than in other parts of



Fig. 7. Interface for manual segmentation and thresholding. Manual global
thresholding is active.

the image. The technique of using localized follow-up requests

usually yields more accurate results than single requests over

the entire image.

D. Manual Thresholding

The correction dialog described above also allows the user

to forgo automatic thresholding by the OCR engine in favor of

manual thresholding. Upon selecting either Global or Adaptive

modes from the thresholding options, the user is presented

with a slider bar for adjusting thresholding parameters. In

Global mode, the slider sets the [0-255] grayscale value used

for global thresholding. As the slider is adjusted, thresholding

is applied dynamically and the binarized result is updated in

real time for the user to verify (see Fig. 7).

In Adaptive mode, the application applies Sauvola’s adap-

tive thresholding [25] according to the method described

by Shafait, Keysers, and Breuel [27], allowing a run time

independent of the size of the thresholding window. Efficient

implementation is required for the application to be able to

provide continuous visual feedback on the thresholded image.

When Adaptive mode is first selected, the integral image of the

currently cropped region is computed. Subsequent adjustment

of the slider changes the window size used for thresholding,

which ranges from 0 to the maximum of either the length or

width of the cropped region.

All manually thresholded images are binarized on the client,

significantly reducing the amount of data that needs to be sent

to the server for reprocessing. It should also be noted that

while manual thresholding is most likely to be used to fix

localized areas of the input image, it can be just as readily

applied to the entire image.

V. EVALUATION

The accuracy of recognition in the system was measured

on a variety of images of small segments of text taken by the

N900. All images used were of printed materials or objects.

50 images were captured each for both English and Simplified

Chinese text. To measure performance, the average amount of

time required to perform recognition and vignetting correction

on these images was recorded. In the tests that follow, four

manual classification alternatives were sent per recognized

TABLE I
PHRASE MATCH ACCURACY

Language Corrected Auto Classification Manual Classification

English No 32.0% 40.0%

English Yes 44.0% 48.0%

Chinese No 24.0% 38.0%

Chinese Yes 34.0% 40.0%

character. The workstation used for testing was running 64-

bit Windows 7 with a 3.0GHz processor and 4GB RAM.

A. Accuracy

The results of the accuracy tests are summarized in Ta-

bles I and II. The results are divided by language (English

and Chinese), whether the input image underwent vignetting

correction (Yes/No), and whether the results allowed for

manually classified characters (Yes/No). Two methods for

scoring accuracy are used. The first is the rate of exact phrase

matches. This measures the number of requests in which

the recognized characters matched those in the source image

exactly. Phrase matching is difficult but important because

translations are sensitive to minor errors in the recognized

string. The second score is character-wise matches, which

reflects approximately how well the recognition performs in

terms of single characters. Given two strings A and B, the

character-wise match score between A and B is given by:

score(A,B) =
|A ∩B|

max(|A|, |B|)
(4)

Based on these tests, accuracy for individual character

recognition is reasonable at around 80% while phrase match-

ing leaves much room for improvement. The difficulty with

phrase matching is that it is likely for a series of recognized

characters, each having a roughly 20% chance of being

incorrect, to contain errors. A single incorrectly recognized

or omitted character results in a phrase match failure. The

tests revealed that recognition accuracy tends to be low when

dealing with stylized fonts or text with non-uniformly colored

backgrounds.

A large number of failed tests were due to incorrect seg-

mentation. For example, a “W” character can be misinterpreted

as the visually similar string “\/\/”. Resulting translations are

unlikely to be helpful in these cases. Still, this type of error

is not overly problematic for the system, since user-assisted

segmentation can be used when manual classification is insuf-

ficient. A more serious type of error is global segmentation

mistakes. This occurs when the overall granularity of text

is misinterpreted and usually causes catastrophic recognition

results. Grainy images in which the OCR engine mistakes

noise for text often cause global segmentation errors. These

issues reinforce that the system’s manual assistance features

are appropriate.

Overall, the tests show that both vignetting correction and

manual classification measurably improve recognition accu-

racy. Also, while phrase matching is important, its deficiency

is not viewed as fundamentally problematic for the system.



TABLE II
CHARACTER-WISE MATCH ACCURACY

Language Corrected Auto Classification Manual Classification

English No 56.0% 57.1%

English Yes 78.5% 80.0%

Chinese No 73.7% 77.8%

Chinese Yes 80.6% 83.9%

This is because manual segmentation makes phrase matching

more feasible.

B. Performance

The measured tasks run approximately seven to nine times

faster on the server than on the N900 (see Table III). Especially

costly is the recognition of Chinese on the N900, which

takes over four times the duration required for English on

the same platform. It is expected that other languages with

large character sets such as Japanese should incur similar

performance penalties. The increased complexity of these

languages is reflected in the significantly larger sizes of their

trained data files. For Tesseract, Chinese trained data occupies

40MB compared to just 2MB for English. Given these dif-

ferences, it may be practical to employ different approaches

to the recognition of logographic versus alphabetical scripts.

For example, the application can choose to perform English

recognition on the N900 but rely on the server for Chinese

recognition.

The application might also dynamically adjust how to divide

the work of image processing between the device and the

server. Currently, all image processing steps are performed on

the N900 so that only a grayscale, compressed image needs

to be transferred over the network. By far the most costly

of these steps is vignetting correction, which works best on

the color version of an image. Therefore, moving this step

to the server would require transferring a full-color image

and consuming more bandwidth. Whether the application

should attempt local image processing depends on how much

bandwidth is currently available. If the amount of time saved

by performing vignetting correction on the server outweighs

the extra time needed to send a full-color image, then it is

worthwhile to process the image on the server.

To see this more clearly, call Ts the time to transfer the

color image, Tn the time to transfer the grayscale image, Vs

the time for the server to perform image processing, and Vn

the time for the N900 to perform image processing. Server-

side image processing should be used if Ts−Tn < Vn−Vs. Ts

and Tn can be calculated by dividing the estimated file sizes

of the color and grayscale images by the available bandwidth.

Since vignetting correction accounts for the majority of image

processing times, Vs and Vn can be roughly approximated by

the vignetting correction times measured for the server and

N900. The exact values of Vs and Vn depend on the size

of the image to be processed, so a linear model estimating

processing time based on image dimensions can be devised if

greater precision is required.

TABLE III
RUN TIME PERFORMANCE

Task Server time N900 time

English Recognition 376 ms 3374 ms

Chinese Recognition 1760 ms 14182 ms

Vignetting Correction 307 ms 2239 ms

C. Public Deployment

The system was deployed publicly for testing by the Maemo

community under the name MIR Translator12. The server was

set up on an Amazon EC2 micro instance, with support for

translation to and from 35 different languages. Public usage of

the service was monitored via server logs over the first week

of deployment, during which over one thousand recognition

requests were serviced per day on average. The average size of

input images for requests was approximately 100KB. Manual

inspection of the requests confirmed that the recognition

module is dependent on input images being of good quality.

Results are best on images that are reasonably well and evenly

lit and have good contrast. Stylized fonts that are not well

aligned or are shown on complex backgrounds tend to strongly

degrade the accuracy of recognition. In addition, Tesseract

OCR uses rectangular regions for segmenting images and does

not employ any un-skewing step. As a result, italicized or

connected fonts can often present difficulties for the engine.

It may be possible to incorporate skew correction as a manual

step in future work.

Several examples of successfully processed images by the

server are presented in the top row of Fig. 8. The bottom row

contains input images from requests that failed. Images in the

top row fit the criteria of containing typographic-like fonts

that are well lit and approximately axis-aligned. They have

well defined and distinct areas corresponding to the text and

background. The extraneous handwritten markings in Fig. 8(c)

did not prevent the OCR module from producing a satisfactory

recognition.

Tesseract does not perform page layout analysis and thus

Fig. 8(d) was incorrectly recognized due to the frequent

extraneous border markings present in the image. Manual seg-

mentation was sufficient to separate the two distinct regions of

text in the image and produce a satisfactory result. Recognition

of Fig. 8(e) was affected by faulty segmentation because the

first and last letters in the word “Smile” appear in a stylized

font. Manual segmentation to crop out the tail-like features

of the stylized ‘S’ and ‘e’ characters yielded a satisfactory

result. The subtle pattern in the background of this image was

successfully eliminated through automatic thresholding and

did not present a problem. Fig. 8(f) suffers from a significant

amount of uneven lighting and non-axis aligned text. These

factors, along with the extraneous grey region in the lower

portion of the image, make it difficult to process. Recognition

on this image is not achievable even when manual correction

methods are used.

A considerable number of users expressed interest in an

12http://mhsueh.com/mir/



(a) (b) (c)

(d) (e) (f)

Fig. 8. A sample of images processed by the public MIR Translator OCR server. The top row [(a),(b),(c)] shows images that were recognized correctly. The
bottom row [(d),(e),(f)] contains examples of failed cases. (d) - This image failed segmentation due to extraneous border markings throughout the image. It
was correctable with manual segmentation. (e) - This image failed segmentation due to the stylized font used in the ‘S’ and ‘e’ characters of “Smile.” It was
correctable with manual segmentation. (f) - This image failed recognition due to uneven lighting, non-axis aligned characters, and extraneous marks. It was
not manually correctable.

offline version of the application. This is driven by the fact

that Internet roaming charges in foreign countries, in which a

photo translation tool might be handy, are often expensive.

Fortunately, offline operation of the application is feasible.

As described earlier, one solution is to deploy the server

module on the N900 for local processing. The MIR Translator

application was not initially released as local-only because

(1) it is desirable to minimize OCR processing times for

complex languages and (2) an online recognition service

significantly reduces the local complexity and install footprint

of the application. The current trained language data for the

approximately 35 supported languages amount to roughly

250MB. In contrast, the total package size for the client

application is only 1.5MB. An offline solution might handle

this by only supporting languages that the user preinstalls. The

languages to be supported can be configured at install time or

downloaded later.

VI. FUTURE WORK

A number of potentially helpful future enhancements to the

system are described below.

Interactive mode. It may be helpful for the application to

support an entirely interactive mode in which the user does not

make corrections but rather controls all steps of the recognition

pipeline. For example, a translation request might consist of a

series of prompts for the user to adjust segmentation bound-

aries or un-skew lines. This process significantly increases the

required level of user engagement, but can nevertheless be

useful if absolute accuracy is needed.

Automatic language detection for recognition. Users

may not be sure about the language of the text they are

attempting to translate. A system-level approach to language

detection is to attempt recognition in multiple languages in

parallel. For each attempted language, the confidences for the

recognized characters are multiplied together. The product of

the confidences corresponds roughly to the likelihood for a

particular language to match the input. The detected language

is defined as the one yielding the highest aggregate confidence

level. Language detection might also be handled internally by

the OCR engine, for example by detecting certain characters

(with high confidence) that are unique to specific languages.

An experimental language detection feature is currently under

development for Tesseract 3.01.

Exploit parallelism. There are many opportunities for

parallel processing in the system. One of the most expensive

tasks in a request is preprocessing the image on the phone

before sending it to the server. Since the application is centered

around interactive sessions, it may be useful to optimistically

begin preprocessing in the background while the user is

making a cropping selection. This way, there is a chance

that some of the user’s cropped area will have already been

processed upon confirmation of the selection.

Opportunities for parallelism also exist between the web

service and mobile device. The client can split the source

image into blocks that are dynamically provided to the server

for processing in parallel. The application might also begin

other preprocessing steps, such as computing the integral

image, while waiting for results from the server or transferring

data.

Make use of user-generated data. Manual classification

provides human feedback on results from the recognition

module. Specifically, user-selected alternatives are expected to

correctly identify the characters being recognized in the source

image. Therefore, they can be prepared and iteratively fed back

into the OCR system as training data. This can work by having

the application send manually classified characters and their

associated segmentation boundaries to the recognition server

when making a re-translation requests. The server would then



extract the portions of the source images indicated by the

bounding boxes and annotate them using the selected alterna-

tives. The annotated images can then optionally be filtered by

humans for quality before being used as supplemental training

data. This amounts to a semi-supervised process for adapting

the recognizer. Plauché and Nallasamy [28] proposed a similar

method for speech recognition adaptation.

Optimization of bandwidth use. Bandwidth use can be

reduced by experimentally determining the optimal number

of alternative characters to send for a given confidence level.

Additionally, bandwidth used for re-recognition requests can

be minimized by relying on already-transferred data. The

application currently makes a new, standalone request per

manual segmentation or manual thresholding task. Since the

server already has the original input image, it is sufficient to

send only the parameters defining these manual corrections.

Follow up requests would be reduced to only consist of the

manually specified segmentation coordinates and thresholding

value.

Offline mode. Feedback gathered from the public suggests

that an offline operating mode would be helpful, especially

in avoiding heavy roaming costs while using the application

abroad. An offline application will have to address the issue of

large trained data files. This can be addressed by supporting

individual language packages that are installed by the user. A

similar strategy can be applied for local translation modules.

VII. CONCLUSION

This paper presented MIRATS, a system for performing

text recognition and translation on images captured by the

N900 smartphone. The system uses vignetting correction to

overcome the platform’s camera limitations and a server-based

OCR service to lower response times.

Mobile OCR systems must adapt to the unique conditions

under which they operate. Specifically, mobile image analysis

software is subject to limited computing performance and

lower-quality input images. Fortunately, mobile applications

benefit from short usage sessions characterized by high user

engagement. MIRATS minimizes the platform’s drawbacks

and takes advantage of its strengths by introducing human

assistance into OCR, a process that has traditionally been

automated.

Experiments show that MIRATS performs well for indi-

vidual character recognition. Phrase recognition remains short

of a satisfactory level, and addressing this issue will likely

require additional work on the OCR engine itself. Engine

improvements aside, overall accuracy can be significantly

improved by using manual classification, segmentation, and

thresholding throughout the recognition process.

Users are unlikely to attempt large-scale text recognition

on portable devices and thus full automation is not a strict

requirement for a mobile OCR solution. Introducing human

assistance into the OCR process removes the all-or-nothing

nature of fully automated pipelines. This approach can be

extended and applied to other types of recognition software.

For example, an object recognition application might present

a series of guided questions about the target object being

identified in order to tend the recognition towards the right

answer. Doing so reduces the risk of an inflexible error in

which the correct object was almost determined but discarded

in favor of a similar, but incorrect object. The opportunity to

interactively and successively improve results is helpful for

tasks that are sensitive to even small errors in recognition.

The translation component of MIRATS is an example of such

a task.

REFERENCES

[1] Y. Cui and V. Roto, “How people use the web on mobile devices,” in
WWW ’08 Proc. 17th Int. Conf. World Wide Web. Beijing, China, 2008,
pp. 905-914.

[2] P. Clark and M. Mirmehdi, “Recognising text in real scenes,” Interna-

tional Journal on Document Analysis and Recognition, vol. 4, no. 4, pp.
243-257, 2002.

[3] R. Lienhart and A. Wernicke, “Localizing and Segmenting Text in
Images and Videos,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 12, pp. 256-268, April, 2002.

[4] T. de Campos, B. Babu, and M. Varma, “Character recognition in natural
images,” in VISAPP 2009, Lisboa, Portugal, 2009, pp. 92-103.

[5] D. Doermann, J. Liang, and H. Li, “Progress in camera-based document
image analysis,” in ICDAR ’03 Proc. 7th Int. Conf. Document Analysis

and Recognition, Edinburgh, UK, 2003, pp. 606-616.

[6] J. Liang, D. Doermann, and H. Li, “Camera-based analysis of text and
documents: a survey,” International Journal on Document Analysis and

Recognition, vol. 7, no. 2, pp. 84-104, July, 2005.

[7] M. Koga et al., “Camera-based kanji OCR for mobile-phones: practical
issues,” in Proc. 8th Int. Conf. Document Analysis and Recognition, Seoul,
Korea, 2005, pp. 635-639.

[8] K. S. Bae, K. K. Kim, Y.G. Chung, and W. P. Yu, “Character recognition
system for cellular phone with camera,” in COMPSAC ’05 29th Annu.

Int. Computer Software and Applications Conf., Edinburgh, UK, 2005, pp.
539-544.

[9] M. Laine and O. Nevalainen, “A standalone OCR system for mobile
cameraphones,” in PIMRC ’06 17th Annu. IEEE Int. Symp. Personal,

Indoor and Mobile Radio Communications, Helsinki, Finland, 2006, pp.
1-5.

[10] S. Senda, K. Nishiyama, T. Asahi, and K. Yamada, “Camera-typing
interface for ubiquitous information services,” in PERCOM ’04 Proc. 2nd

IEEE Annu. Conf. Pervasive Computing and Communications, Orlando,
FL, 2004, pp. 366-370.

[11] A. Joshi et al., “OCRdroid: A Framework to Digitize Text Using Mobile
Phones,” unpublished.

[12] T. M. Breuel, “The OCRopus open source OCR system,” in Proc.

IS&T/SPIE 20th Annu. Symp., 2008.

[13] R. Smith, “An overview of the Tesseract OCR engine.” in ICDAR ’07

Proc. 9th Int. Conf. Document Analysis and Recognition, Curitiba, Brazil,
2007, pp. 629-633.

[14] R. Smith, D. Antonova, and D. Lee, “MOCR ’09 Adapting the Tesseract
open source OCR engine for multilingual OCR,” in Proc. Int. Workshop

Multilingual OCR, Barcelona, 2009.

[15] R. A. Wilkinson, M. D. Garris, and J. Geist, “Machine-assisted human
classification of segmented characters for OCR testing and training,” in
IS&T/SPIE Symp. Electronic Imaging: Science and Technology,, San Jose,
CA, 1993, pp. 44-54.

[16] D. Blostein, E. Lank, A. Rose, R. Zanibbi, and W. P. Yu, “User interfaces
for on-line diagram recognition,” in GREC ’01 Selected Papers from

4th Int. Workshop Graphics Recognition Algorithms and Applications,
Kingston, Canada, 2001, pp. 92-103.

[17] E. Lank, J. Thorley, and S. J. Chen, “An interactive system for recog-
nizing hand drawn UML diagrams,” in CASCON ’00 Proc. 2000 Conf.

Centre for Advanced Studies on Collaborative Research, Toronto, Canada,
2000, pp. 7.

[18] S. Smithies, K. Novins, and J. Arvo, “Equation entry and editing
via handwriting and gesture recognition,” Behaviour and Information

Technology, vol. 20, no. 1, pp. 53-67, January, 2001.



[19] R. Zanibbi, K. Novins, J. Arvo, and K. Zanibbi, “Aiding manipulation
of handwritten mathematical expressions through style-preserving morphs,”
in GRIN ’01 Proc. Graphics Interface 2001, Ottawa, Canada, 2001, pp.
127-134.

[20] J. Mankoff, G. D. Abowd, and S. E. Hudson, “OOPS: a toolkit
supporting mediation techniques for resolving ambiguity in recognition-
based interfaces,” Computers & Graphics, vol. 24, no. 6, pp. 819-834,
December 2000.

[21] Fragoso et al., “TranslatAR: a mobile augmented reality translator on
the Nokia N900,” unpublished.

[22] Q. Huo, Y. Ge, and Z. Feng, “High performance Chinese OCR based
on Gabor features, discriminative feature extraction and model training,”
in Proc. 2001 IEEE Int. Conf. Acoustics, Speech, and Signal Processing,
Salt Lake City, UT, 2001, pp. 1517-1520.

[23] Z. Lu et al., “A robust, language-independent OCR system,” in Proc.

27th AIPR Workshop: Advances in Computer-Assisted Recognition, Wash-
ington, DC, 1998, pp. 96-104.

[24] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62-66,
January, 1979.

[25] J. Sauvola and M. Pietikainen, “Adaptive document image binarization,”
Pattern Recognition, vol. 33, no. 2, pp. 225-236, 2000.

[26] F. Shafait, D. Keysers, and T. M. Breuel, “Efficient implementation of
local adaptive thresholding techniques using integral images,” in DPR ’08

Proc. 15th Document Recognition and Retrieval Conf., San Jose, CA, 2008.
[27] F. Shafait, D. Keysers, and T. M. Breuel, “Efficient implementation of

local adaptive thresholding techniques using integral images,” in DPR ’08

Proc. 15th Document Recognition and Retrieval Conf., San Jose, CA, 2008.
[28] M. Plauché and U. Nallasamy, “Speech interfaces for equitable access to

information technology,” Information Technologies and Int. Development,
vol. 4, no. 1, pp. 69-86, 2007.


