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Abstract

Learned Factorization Models

to Explain Variability

in Natural Image Sequences

by

Benjamin Jackson Culpepper

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Bruno A. Olshausen, co-Chair

Robust object recognition requires computational mechanisms that compensate for vari-
ability in the appearance of objects under natural viewing conditions. Yet, these have proven
to be difficult to engineer. For this reason, the development of computational models that
achieve invariance to the types of transformations that occur during natural viewing will both
benefit our understanding of biological systems and help to achieve the goals of computer
vision. This thesis develops a set of models that learn low dimensional representations of the
transformations occurring in dynamic natural scenes. Good models of these transformations
allow their effect to be compensated through an inference process, which jointly estimates a
stable percept and a parsimonious description of its appearance.

I propose a series of models based on the idea of factoring apart image sequences into two
types of latent variables: a stable percept, and a low dimensional time-varying representation
of its transformation. Such a two component model is a general mechanism for teasing apart
the causes that conspire to produce a time-varying image. First, I show that when both
components are represented by linear expansions, the resulting bilinear model can achieve
some degree of image stabilization by utilizing the transformation model to explain the
translation motions that occur in a small window of a movie. Yet, the recovered latent
factors exhibit dependencies that motivate the investigation of a richer, exponential map
as a second model for the dynamics of appearance. In addition to the translation motions
captured by the linear appearance model, this richer model learns transformations that can
compensate for rotations, expansions, and complex distortions in the data. Lastly, I propose
a hierarchical model that describes images in terms of a hierarchy of grouped lower-level
features; learning parameters in this hierarchy is enabled by a procedure that maintains
uncertainty in the posterior distributions over the latent variables.
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The contribution of this work is a demonstration of an adaptive mechanism that can au-
tomatically learn transformations in a structured model, which enables sources of variability
to be factored out by inverting it. This is an important step, because sources of variability
are the main factor causing difficulties in artificial object recognition systems, and visual
invariance is also closely related to the idea of generalization, an ability that is commonly
equated with intelligence. Thus, to the extent that we are able to build seeing machines that
can automatically compensate for category-level variability we will have achieved some part
of the goal of artificial intelligence.
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Chapter 1

Introduction

Despite the fact that most animals solve it naturally, vision is a computationally challenging
problem that has defied efforts to capture it in algorithms. Paradoxically, the difficulty of
vision comes as a shock to those unfamiliar with the subject. Because we are born with an
algorithm that provides a nearly perfect solution, we tend to take it for granted. Yet, vision
algorithms must determine the causal structure of the world in the presence of significant
obstacles, such as the vast loss of information that occurs when projecting a 3d scene onto
a pair of 2d images, and the fact that every object we recognize gives rise to an infinite
number of distinct patterns on the retina. These truths, combined with evidence that a
satisfactory solution has eluded many great minds, make less surprising the large amount
of real estate occupied in the cortex by vision-related neural circuits, and raise a profound
question. What do we compute from the retinal image that endows us with such a powerful
ability to generalize and identify categories with vast amounts of variability?

1.1 What computations are required to ‘see’?

“Developing general-purpose computer vision systems has proved surprisingly difficult and
complex. This has been particularly frustrating for vision researchers, who daily experience
the apparent ease and spontaneity of human perception [Barrow and Tenenbaum, 1981].” In
the 30 years since Barrow & Tenenbaum expressed this sentiment, vision has been dissected
and parceled out into a variety of problems and sub-problems. For some time we have known
that vision is an under-determined inverse problem and would be impossible to solve were
there not some basic constraints that apply universally: there are only three dimensions in
the world; the sun is usually the primary source of light; the distance of familiar objects can
be judged by their apparent size; etc. However, when a particular sub-problem in vision is
considered, it immediately becomes clear that these basic constraints are insufficient, and
a search for others begins. This activity has resulted in many useful facts and algorithms.
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Chapter 1. Introduction

It has enabled us to identify the limitations and requirements of a particular approach, and
given us an understanding of why it works, how well it works, and what its failings are. It
is through this process of exploration that we know the estimation of optical flow requires
a pooling of spatial constraints [Horn and Schunk, 1981], that depth discontinuities are a
heavy tailed phenomena [Black and Anandan, 1996], and that precise feature matching can
provide complementary information to smoothness [Brox and Malik, 2011]. However, we
can only debate about whether these techniques will play a final role in a robust perceptual
algorithm. It is not clear that combining the solutions to optical flow and other sub-problems
will together amount to a significant whole in general purpose vision. Indeed, the problem
of unifying what we know in a common framework is a difficult challenge itself, and it is not
clear how to best approach it.

Our near-perfect ability to recognize categories of objects with large in-category variabil-
ity under highly variable viewing conditions produced by shadows, occlusions, deformations,
and positioning of parts or limbs is not well-understood. Although we have many algorithms
for solving sub-problems in computer vision, there are few principles by which different
algorithmic solutions to the same sub-problem can be related in a common framework. Al-
though the biological solution to vision is certainly not the only valid one, at some level it
seems relevant to ask, “Can biology be combining so many separate solutions, or are there
some generic computations that can be applied to many sub-problems?” This question was
answered to some extent, by [Koenderink and van Doorn, 1997], who showed that many
problems in vision, including the estimation of albedo, edge detection, photometric stereo,
photogrammetry, and various forms of shape from motion can be cast as inference prob-
lems in the context of bilinear models. This general framework may help to understand
isolated successes of computer vision. Herein, I take an approach of this nature and focus
on building representations of the sensory signals that make many visual tasks simpler. One
way to achieve such a representation is to specify its desirable high level attributes in an
optimization framework. These representational goals are then pursued jointly. The main
goals investigated in this work are perceptual stability – the formation of a stable percept
from highly variable and dynamic images – and the separation of causal latent variables.

1.2 Variability

The appearance of an object can be mainly attributed to four factors: shape, reflectance
properties, pose, and illumination. There is a class of rigid objects for which shape and re-
flectance are intrinsic properties that do not vary. However, even this is not universally true.
Many natural objects such as plants and animals have surfaces defined by deformable con-
tours and articulated branches or limbs that move and can take on a variety of configurations.
Furthermore, the reflectance properties of surfaces can change under certain conditions; for
example, when they come into contact with moisture, or are polished, corroded, or abraded.
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Chapter 1. Introduction

x(2)x(1) x(3)

i(1) i(2)

i(3)

n

ρ

Figure 1.1: Shape from illumination variability. A sequence of images x(t) in which
the illuminant i(t) changes position enables the estimation of surface normals n and reflectance
properties ρ at observed locations on the object.

In outdoor environments, the sun is the primary, and usually the only source of light, but
complex shadows can easily arise from the interaction of multiple objects in a scene. Even
in isolation, any one of these factors can generate a set of object appearances too numer-
ous to count, and jointly these sources of variability render simple brute-force comparison
algorithms useless for recognition purposes.

However, image variability is constrained by the physics of light. The variability produced
by the cross product of shape, pose, and lighting makes recognition seem like a challeng-
ing task, but it is possible to build detailed models of how 3d shape and lighting interact to
produce appearance. These models can be inverted to recover shape from appearance [Wood-
ham, 1980], as depicted in Figure 1.1, and are largely responsible for the recent development
of high accuracy face recognition systems. By having people sit still in lighting domes, their
faces can be imaged repeatedly, under many different poses, illuminations, and expressions.
Then, detailed 3d models of an individual’s face can be constructed and used to compute
the appearance of the face under an arbitrary illuminant. Although the number of pixels
required to represent a face is not insignificant, with this ability to densely sample the con-
tinuous surface of face images, a clever comparison algorithm can accurately and efficiently
narrow the set of candidates with which to associate a face. Although technically possible,
this idea is far more difficult to apply to arbitrary objects in unconstrained environments,
such as the zebra depicted in Figure 1.2.

3



Chapter 1. Introduction

Figure 1.2: Image variability in unconstrained environments. 60 frames of a movie,
shown through a 31x31 pixel patch (time advances left to right, top to bottom). Although
our experience is a stable percept of a zebra moving its head naturally, the actual pixels vary
dramatically, even between pairs of sequential frames.

1.3 Invariance

Mammalian vision systems contain machinery composed in a hierarchy which gives rise
to units that are both increasingly selective to their inputs and invariant in their response
properties to certain naturally occurring input transformations. We know that the perceptual
machinery in animal vision contains complex cells in primary visual cortex (V1) that are
selective for oriented bars, but invariant to slight displacements of the bar perpendicular to
its orientation [Hubel and Wiesel, 1962]. The discovery of this fact marked an important
advancement in our understanding of the cortex, and, in particular, the invariant response
properties of cells in the early visual pathway. Since then, methods and approaches for
forming invariant representations have been the subject of extensive study in both computer
vision and neural computation, yet still relatively little is known about the mechanisms
by which cortex achieves it. Fukushima’s neocognitron, in which layers of features are
computed and pooled to shunt variability in position, is widely regarded as the seed from
which many functioning computer vision models of invariance sprouted [Fukushima, 1980].
One significant extension, Le Cun’s convolutional neural network, uses the backpropagation
algorithm to train layered networks in which each subsequent layer provides a progressively
increasing level of spatial invariance and invariance to typical distortions of handwritten
digits, and is convincing both as a model of cortical function and as a means of solving
practical computer vision problems [LeCun et al., 1989]. Essentially the same model has
also been used to differentiate between 3-dimensional object classes, even with significant
variety between object instances [LeCun et al., 2004]. The idea of making comparisons stage-
wise, with a hierarchy of progressive, increasingly accurate and computationally intensive
modules is also widely regarded as a good design principle in both biological and artificial

4



Chapter 1. Introduction

vision systems [Simard et al., 2001]. However, these models achieve invariance by discarding
information about the signal – once discarded, this information is gone forever, since it
cannot be recovered from the resulting representation.

Notably, this same behavior is exhibited in many computer vision models that have been
used successfully in scene categorization and object recognition – texton models [Renninger
and Malik, 2004], other ‘bags of keypoints’ models [Csurka et al., 2004], and other models
based on the neocognitron. While it may be true that certain kinds of information are
useless once separated – and can thus safely be discarded – this is certainly not the case
for information about spatial position and scale, and many ‘bag’ models do exactly this. It
is only acceptable when viewed in the highly unnatural context of doing object recognition
independent of any other task such as grasping. Even in this case, only coarse category
information can be obtained this way, and only for certain categories. This is not to say
that perception requires all information to be represented precisely as it is passed up the
processing hierarchy; on the contrary: perceptual systems likely learn approximate solutions
rather than explicitly describe physics or geometry. However, finding the right approximation
that preserves all information of importance requires careful function design, or learning.

An alternative mechanism by which invariance can be achieved is to directly model the
process by which the image of an object is transformed [Frey and Jojic, 1999; Miller et al.,
2000; Memisevic and Hinton, 2007]. By then inverting the forward model, the invariant
properties of the object can be separated from the transformations it undergoes due to
lighting, motions, changes in viewpoints, and other factors in the scene [Olshausen et al.,
1993; Rao and Ruderman, 1999; Tenenbaum and Freeman, 2000; Arathorn, 2002]. Since we
know that many of these properties combine multiplicatively, their separation can be achieved
by factoring the image. Even if the relationship is not purely multiplicative, multiplication
is often a useful tool in obtaining a stage-wise approximation to the true relationship. In
this case multiplication acts as a convenient, simple non-linearity.

Needless to say, a suitably complex task is required to measure the benefit of preserving
information about transformations. In particular, object recognition in isolation, without a
subsequent grasping task, may not be a suitable benchmark. However, factorization models
capture many vision problems in a natural way, allowing us to think about them in a common
framework. The close relationship between factorization and invariance can be viewed in the
following way: invariance is an important side-effect of a proper factorization!

1.4 Factorization

Many problems in vision boil down to the factorization of two variables that interact mul-
tiplicatively. A canonical example of this is the problem of estimating the albedo of some
material (or, equivalently, the radiance of the light source), given only the irradiance at
its surface. In this problem the irradiance, o, is produced by a multiplicative interaction
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Chapter 1. Introduction

between the light source, i, and the albedo, ρ:

o = ρ i . (1.1)

Only o is observed, so without prior information the ‘fair’ solution, which loads both factors
equally, is

ρ =
√
o a (1.2)

i = a−1
√
o , (1.3)

where there is an ambiguous scale factor, a. To resolve this ambiguity, we must introduce
constraints. Some constraints come from the way we have formulated the problem: we know
the albedo must be positive and less than unity, and the radiance must be positive. By
learning a parameterized model of the distribution of albedos in the environment, we can
constrain the solution further. We are by no means guaranteed to eliminate the ambiguity
entirely, but because data collected from the natural world is so intricately structured, we
have a reasonable chance of getting ρ and i mostly right most of the time.

It is important to observe that a factoring problem cannot be solved one variable at a time.
The answer obtained for one factor influences the other, and the ‘invariant representation’ (in
this case, the albedo of the material) is only one factor. Absent any sources of uncertainly,
one factor determines the other exactly. More generally, especially when we are working
with phenomena for which we do not have a perfect forward model, or lack all the necessary
information to invert our model, constraints can be introduced in the form of prior probability
distributions on latent variables. The introduction of evidence in combination with these
priors allows us to compute posterior distributions over our latent variables, which become
delta functions in the limit, where our forward model is perfect and we have sufficient
evidence to invert it. Uncertainty or not, because the constraints can interact in potentially
subtle ways during the computation of the posterior, an unavoidable explaining away process
is necessitated. The focus of my research is essentially an elaboration on this theme applied
to general image transformations.

1.4.1 Bilinear models

A bilinear model factors data, x, into two multiplicatively combined latent variables, y and
z:

xi =
∑
jk

Γijk yj zk . (1.4)

To familiarize readers with this equation, it is useful to express it in two other, equivalent
forms, to see how y and z interact with Γijk. First, each scalar xi is equal to the vector-
matrix-vector product yT Γi z. In this form, it is clear that each matrix Γi, obtained by taking
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Chapter 1. Introduction

a slice of the full parameter tensor, defines an inverse covariance for a squared Mahalanobis
distance between vectors y and z. Alternatively, we can view the settings of y as linearly
blending together J matrices to form a basis for x, and the coordinates of z are the coefficients
for that basis. In this case, we have x = (

∑
j Γj yj) z. Models of this form are called ‘bilinear’

because when one latent factor is held constant, a linear relationship holds between the
data and the other factor. Perhaps the simplest non-linear model, it provides an elegant,
utilitarian framework for achieving an explicit separation of ‘what’ and ‘where.’ Koenderink
& van Doorn pointed out that many problems in vision have this particular form, and
there is similar support in theoretical neuroscience literature for bilinear models being the
appropriate formalism to explain spatial attention modulation [Olshausen et al., 1993] and
the use of multiplication to perform motion estimation [Gabbiani et al., 2002]. Hinton
proposed using 3-way interactions as a way to factor out viewpoint variability in neural
networks receiving visual inputs [Hinton, 1981], and although the idea had a clear bilinear
form, this was not formalized in mathematics until four years later [Hinton and Lang, 1985].
Olshausen’s model of visual attention [Olshausen et al., 1993] is bilinear in input pixels y
and control neurons c, which specify a route to higher level variables x via a linear operator
A(c).

x =
∑
jk

wjk ck yj = A(c) y . (1.5)

With many control neurons, the types of routing operations that can be effected by A(c) are
quite flexible, encompassing translation, scaling (with subsampling and/or interpolation),
and rotation. The idea is that for the appropriate choice of c, the transformation imposed
by the scene can be compensated for, and a canonical representation routed for matching
to a previously stored memory. In the case of an input that has been affected by some
translation, correctly recovering the c variables clearly separates out ‘where’ information,
leaving a canonical ‘what’ representation in x that can easily be matched to a memory.
There is experimental evidence supporting this idea of two separate processing streams in
cortex from lesion studies in monkeys, where damage to dorsal or ventral cortical regions
impairs abilities of spatial perception or object identification, respectively [Ungerleider and
Mishkin, 1982]. However, little is known about the mechanisms by which these streams are
formed in cortex. Specifically, it is not known whether they are produced by a factorization
process or two separate analysis circuits: all of the available evidence is consistent with both
of these explanations.

1.4.2 Separating structure and motion from image streams

An interesting application of a bilinear model to a vision problem is in the factorization of
image streams into structure and motion; in particular, the work of [Tomasi and Kanade,
1992]. Rather than operate on pixels directly, they formulate their model as the generation
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Chapter 1. Introduction

of a time evolution of image keypoint coordinates, where a stationary 3-d object is observed
by a moving camera. Using the singular value decomposition of a matrix, they recover the
3-d keypoint coordinates and the camera rotation (camera translation is factored out in
their problem formulation), under orthography. The observed variables are P 2-d keypoint
coordinates tracked through F frames. These coordinates are stacked together to form a
2F × P measurement matrix W. If the image coordinates are measured with respect to
their centroid, under the assumption of no noise, W has rank three, and can be factored
into the product of two smaller matrices:

W = R S . (1.6)

Here R is a 2F×3 matrix describing the camera rotation at each time point, and S is a 3×P
matrix that gives structural information in the form of 3-space coordinates of each point in
a coordinate system relative to the object centroid. When the measurements are corrupted
by Gaussian noise, the rank of W will be greater than three. However, the singular value
decomposition W = U Σ VT neatly factors W such that R and S can be recovered.

A number of coinciding factors make this solution particularly elegant and relevant. First,
it shows that the separation of structure and motion, which is a plausible goal for both natural
and artificial vision systems, can be formulated as structured bilinear model, and solved via
factorization. Second, without introducing a few important constraints, factorization alone
gives a class of equivalent, ambiguous solutions. For the case of no measurement noise, the
constraints reduce the class of ambiguous solutions to just one. Lastly, even with noisy
measurements, the probabilistic interpretation of the model still leaves us with a single, best
solution, since the posterior is Gaussian and therefore convex. Can we somehow adapt this
model to deal with more natural, non-rigid objects, and operate without the assumption of
orthography and the fortuitous availability of P points tracked through F frames?

1.5 Learning to factor

There is a history in the artificial intelligence community of attempting to write down, from
first principles, sets of rules that describe how to shunt or nullify sources of variability,
leaving the identification of the object or part intact. Such a strategy has been taken in
vision, with some success. For certain sources of variability, we are able to write down a set
of rules that discount them. David Lowe’s SIFT descriptor is an excellent example of how a
considerable number of these rules about images can be integrated together, tuned manually,
but relentlessly, and levered to obtain a reliable image feature description that nullifies
viewpoint and lighting variability to a useful extent [Lowe, 1999]. The ‘standard’ instance
recognition pipeline, in which stable features are extracted from images, described in a way
that shunts variability, and matched against examples stored in a database is an example
of both the success and limitations of such schemes [Lowe, 2004]. In an impoverished world
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with only rigid, textured objects, where identification is the only goal with no required ability
to cope with objects for which no model is known, this system is a viable solution. However,
in the natural world, vision is not just about identification, texture is often missing, and
object categories have infinite variety that can never be fully experienced a-priori. Therefore,
to be useful in unconstrained environments, vision systems must have a powerful ability to
generalize, and the appropriate dimensions upon which to generalize depend on the statistics
of the world. These facts seem to necessitate learning.

We would like to compute a representation that factors out variability, and we know that
at least some of the sources of variability in image sequences combine multiplicatively. Thus,
it makes sense to recover factors in the structure of a bilinear model, which we will use as an
approximation to the true forward model that forms the images we observe. What we are
missing is the precise setting of parameters that will give our structured model the abilities
we desire, so we formulate an optimization process that will match them to the structure of
the world. Due to this automatic parameter adjustment, the symbolic meaning of the latent
variables in our bilinear model may not be as clear as they are in the matrices in the Tomasi
& Kanade model, and for this reason we must search for a sensical interpretation of them;
that is, we must experiment with the model to understand what is has learned.

1.5.1 Separating style and content

An important representative example of a case where the parameters in a factorization model
were not known in advance, but learned from data, appears in a model with nearly identical
structure to that of Tomasi & Kanade. Applied to a more general class of problems, dubbed
“style and content separation” problems, such as identifying a font or handwriting style across
letters, or recognizing a familiar face or object seen under unfamiliar viewing conditions,
the model and optimization strategy was introduced by [Tenenbaum and Freeman, 2000].
Such problems of generalization, or of untangling an observation into its underlying factors,
eluded capture in a widely applicable, computationally tractable framework for many years.
Indeed, Hofstadter wondered if understanding this ability of the cortex would unlock a
cascade of secrets, proposing that the central question in AI might be: “What is the letter
‘a’?” [Hofstadter, 1985]. Tenenbaum & Freeman address this question in their learning
algorithm, which can factor apart the ‘style’ of a font from the ‘content’ of the letter.

In their work, the goal of recovering variables with a precise symbolic meaning is foregone,
and replaced by the flexible notion that one set of variables (style) will change during gen-
eralization across a particular category, and another set of variables (content) will represent
information about the category itself. Style s and content c are represented with parameter
vectors as and bc, respectively. ysc denotes an observation vector that is a bilinear function
of as and bc:

ysc =
∑
ij

wij a
s
i b

c
j . (1.7)
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In this model, summing over i produces a set of basis vectors for reconstructing the input
vector under the style prescribed by as. Tenenbaum & Freeman call this their ‘symmetric’
model, giving styles and contents the same effective number of parameters. However, recog-
nizing that sometimes linear combinations of a few basis styles may not describe new styles
well, they introduce an ‘asymmetric’ model under which the wij themselves vary with style:

ysc =
∑
ij

ws
ij a

s
i b

c
j . (1.8)

Absent any obvious choices for constraints or prior information that could be introduced to
the model, Tenenbaum & Freeman use the straightforward SVD solution. In this case, SVD
can be viewed as just a fast algorithm for minimizing the following energy,

E =
∑
tsc

hsc(t) ||y(t)−
∑
ij

ws
ij a

s
i (t) b

c
j(t)||22 , (1.9)

with multiple observations for each pairing of content and style indexed by t, and hsc(t) is an
indicator function that gives 1 if y(t) is in style s and content c, and 0 otherwise. Viewing
the problem in terms of an energy function suggests a probabilistic interpretation, given by
exponentiating the negative of the energy:

P (y|as,bc,ws
ij) =

1

Z
exp(−E) , (1.10)

where Z is the normalization constant. Casting the problem this way suggests that the use
of Bayes’ rule would be a clear path to a principled method for integrating constraints in
the form of prior information into the model.

1.5.2 Probabilistic models for factoring out natural transformations

In contrast to the approaches of [Fukushima, 1980] and [LeCun et al., 1989], where succes-
sive stages of feature extraction and pooling attempt to map the underlying invariant part
of an image to a lower-dimensional space, several recent attempts have been made to learn
invariant representations using probabilistic factorization models. Training such a model
amounts to adjusting parameters in order to achieve a good prior for the data. What makes
a good prior? Fortunately, this is defined precisely: the goal of learning is to maximize the
likelihood of the model. Bayesian probability theory provides an elegant, natural way to
incorporate prior information into a probabilistic model. This is especially important for
factorization problems which are, by their nature, under-constrained. Priors act as con-
straints enabling non-sensical ambiguous solutions to be discounted from consideration, but
the question of which constraints to use is itself an ambiguous problem without an obvi-
ous solution. Fortunately, the problem of understanding the constraints of natural images
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has been studied extensively by statisticians; we take some advantage of their findings by
pursuing two additional goals.

A second goal is to achieve a representation where the sources of variability are rep-
resented separately from the identity of the scene elements. For this reason, such models
typically have latent variables corresponding to these separate causes, and these semantics
are achieved either through some supervision in the training scheme or the introduction of
a prior. In the Grimes & Rao model described below, this separation is achieved by des-
ignating which, among several training examples, is a special ‘canonical’ case which should
be represented by the model without the aid of a transformation. Another mechanism is to
impose a perceptual stability prior on the latent variables encoding object identity.

A third goal is to obtain a parsimonious explanation of the image in the sense of Occam’s
Razor; i.e., one that is somehow the simplest yet fully consistent with the facts. To achieve
this goal, it is constructive to view vision as an inference problem in a directed graph: we
would like to know ‘what caused this image?’ The causes of the image are clearly the most
compact explanation of it, and should we obtain it, it will tell us much about what we need
to know in order to interact in the environment captured by the image.

1.5.2.1 Sparse priors

There is growing evidence for sparse representations in the brain. The distribution of cell
activities in visual cortical areas is highly kurtotic, with neurons that exhibit little activity
for most inputs, but respond vigorously when stimulated with some feature they are selective
to, causing a distribution of firing rates that is peaked at zero with heavy tails. Previous
studies have shown that the features in ‘sparse’ dictionaries learned from natural images tend
to be localized, oriented, and bandpass, and the population statistics of these quantities,
when compared to those of receptive fields estimated in primate V1, are quantitatively
similar [Olshausen and Field, 1996; van Hateren and van der Schaaf, 1998]. Originally
motivated by the desire for parsimony in the image explanation, it has also been pointed
out that sparsity could plausibly result from the pursuit of a maximum entropy neural code
that is constrained by firing rate [Baddeley, 1996]. However it arises, it is a useful coding
principle, and when used as a prior has been shown to improve likelihood in probabilistic
models of images, enabling improved compression ratios, de-noising, and in-painting. In
contrast, Gaussian priors encourage the code to become more distributed and to use all
dictionary elements in a given image’s representation. In this case, also known as PCA or
factor analysis, more global features that resemble Fourier components are learned.

Sparse distributions are peaked at zero with heavier tails than a Gaussian. Since many
distributions satisfy both properties, and the data-specific amount of tail ‘heaviness’ is often
an unknown quantity, the most commonly used prior is the mean zero Laplacian distribution:

P (x) =
λ

2
exp(−λ |x|) . (1.11)
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The reason for its use is partly due to its simplicity, and partly due to a serendipitous corre-
spondence between the forms of the energy function defined this way and that of BPDN [Chen
et al., 1998] and Lasso [Tibshirani, 1996], which are well-known statistical methods for regu-
larizing the solutions to least squares problems. Ironically, this preference for the Laplacian
distribution is somewhat misplaced because it is not particularly heavy-tailed, and, unlike
the generalized Pareto distribution, does not guarantee recoverability [Baraniuk et al., 2010].

It is worth noting that sparse priors are most commonly used in conjunction with a
specific optimization scheme for finding model parameters, frequently referred to as MAP-
EM. In this scheme, the distribution over the latent variables is heavily approximated and
what is normally thought of as a firing rate parameter, λ, must be re-interpreted as a trade-
off between the quality of reconstruction and the aggregate (summed) absolute activity
of the latent variables. For this reason, sparse priors are generally described in the form
P (x) ∝ exp(−αS(x)), where α is a parameter that controls the degree of sparsity, and S(·)
is a ‘sparseness function,’ typically S(x) = |x| or S(x) = log(1 + x2).

Grimes & Rao achieve several of the goals from Section 1.5.2 in a bilinear sparse coding
model, closely related to the Tenenbaum & Freeman model, which integrates a sparse prior on
the as and bs variables to achieve parsimony. They apply it to sequences of images that have
been transformed in a natural fashion, and run experiments where they succesfully recover
from a synthetically transformed image a factored (canonical) image and the transformation
it has undergone [Grimes and Rao, 2005]. The sparse prior encourages the learning of
localized, oriented, bandpass functions in the wij tensor.

Omitting the normalizing constant, the following energy function defines a negative log
posterior distribution for their model:

E = ||y −
∑
ij

wij ai bj||22 + α
∑
i

S(ai) + β
∑
j

S(bj) , (1.12)

where β facilitates controlling a differential level of sparsity between the ‘style’ (transfor-
mation) and ‘content’ (image) variables, and S(x) = log(1 + x2). They use a variational
E-M (MAP-EM) algorithm to learn parameters that maximize the average likelihood of the
model over their data set, which they generate somewhat synthetically by applying discrete
2-dimensional translations in the range [−4,+4] pixels to whitened natural images. Their
result is a wij tensor which for a fixed ‘style’ (translation) reliably reproduces the [Olshausen
and Field, 1996] result, giving a set of localized, oriented, bandpass functions. For a fixed
‘content’, each of these oriented functions translate to one of several positions as the ‘style’
parameters are varied.
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1.5.2.2 Gated Boltzmann machines

Memisevic & Hinton offer an alternative formulation of the same problem, in the style of a
restricted Boltzmann machine [Memisevic and Hinton, 2007]. Modeling 3-way interactions
between variables in Boltzmann machines requires a slight twist on the traditional Boltzmann
machine of [Ackley et al., 1985]: the introduction of a set of ‘gating’ variables. Hence their
model is referred to as a ‘gated Boltzmann machine.’ A gated Boltzmann machine is roughly
equivalent to the Grimes & Rao model, except there is no sparse prior. Taking the first term
in the Grimes & Rao energy function, expanding the square, and keeping only the two cross
terms leads to an energy function of the following form:

E = −
∑
ijk

wijk xi yj hk . (1.13)

In the above equation, x and y are vectors of pixel intensities related through a transfor-
mation encoded by the weights wijk and the latent h vector, called a ‘gating’ term, whose
function can perhaps be seen more clearly by writing the negative energy as xT (

∑
k Wk hk) y.

Summing over k blends slices of Wk to form a correlation matrix, and the goal of learning is
to adjust the weights so that the average correlation of the two input patterns is maximized.
This maximization is accomplished via contrastive divergence, which, similar to MAP-EM, is
probabilistically motivated but makes use of simplifying approximations to make it tractible.

Aside from my own work, this is the first example I know of that applied learning in
a model with three-way interactions to natural sensory data and obtained a meaningful
result: they let their model ‘watch TV’ by setting x and y to adjacent frames of spatially
whitened natural movies, and after running many iterations of contrastive divergence, the
Wk matrices learned to become 2-d spatial derivatives, arranged in patterns corresponding
to translation and rotation of the input. After learning, the conditional density P (h|x,y)
describes a distribution over optic flows, and the MAP estimate gives the optic flow that
best describes the relationship between a pair of adjacent frames. By applying the model in
a ‘field,’ or regular, repeating lattice, the conditional density can give a distribution over a
flow field for a large image.

1.6 Learning good priors for images with sparse coding

Natural images have an underlying structure that is sparse; that is, one can learn a basis
such that any given image can be described efficiently in terms of coefficients of only a small
fraction of its elements [Olshausen and Field, 1996; Bell and Sejnowski, 1997]. In sparse
coding, the elements of the matrix Φ in the following linear generative model are adjusted
such that the coefficients to describe a corpus of data follow a kurtotic, mean-zero probability
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distribution with heavy tails:
z = Φ a + n , (1.14)

where z ∈ RL is a data item, Φ ∈ RL×M is the basis, a ∈ RM is a vector of coefficients, and
n is i.i.d. Gaussian noise with variance σ2; that is,

z|a ∼ N (Φ a, σ2 I) . (1.15)

It has been shown that when Φ is fit to natural images using

− logP (a) = −
∑
m

logP (am) ∝
∑
m

log(1 + a2m) , (1.16)

the activities of the a coefficients have response properties that are both qualitatively and
quantitatively similar to those of simple cells in V1 [Olshausen and Field, 1996; van Hateren
and van der Schaaf, 1998]. Furthermore, the columns of Φ become localized, oriented, and
bandpass, and therefore the set of active coefficients can be viewed as a symbolic represen-
tation of the image. Activating a single coefficient activates a group of pixels in the image,
and unlike a single pixel, a symbolic meaning can be attributed to this group: it is an edge.
A similar grouping emerges if the prior over the coefficients is factorial i.i.d. Laplacian:

− logP (a) = −
∑
m

logP (am) = λ
∑
m

|am| − log(
λ

2
) . (1.17)

Under this assumption, the negative log of the posterior probability of an image under the
model (omitting the normalizing constant),

E =
1

2σ2
||z−Φ a||22 + λ ||a||1 , (1.18)

corresponds to BPDN [Chen et al., 1998], which is an alternative formulation of the Lasso [Tib-
shirani, 1996] problem. Besides the fact that these problems have been studied extensively in
the statistics literature, an attractive property of this energy function is that it is convex in
a when Φ and z are held constant. This convexity is important, because finding arg minaE
is equivalent to computing the MAP estimate in the probabilistic model, arg maxa P (a|z) –
i.e., the most likely explanation of an image under the model. A straight-forward manner to
find this solution is to use the gradient of the energy function,

∆a ∝ −∂E
∂a

, (1.19)

but there are also many more efficient and accurate algorithms [Efron et al., 2004; Kim et
al., 2007; Figueiredo et al., 2007; Rozell et al., 2008].
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Since these definitions specify a probabilistic model, there exists a Monte Carlo algorithm
to estimate the parameters Φ, but such algorithms are usually computationally expensive.
A faster, approximate scheme for learning Φ was proposed by [Olshausen and Field, 1997]

and has since become quite popular and known as MAP-EM. The idea for the approximation
stems from the observation that since P (a) is sparse, then the distribution P (a|z) will be
tightly peaked, and thus adequately described by a single sample taken at its maximum. In
the estimation algorithm, Φ is refined using an iterative, alternating scheme in which MAP
estimates are computed for a few randomly selected data items using a fixed Φ, and then a
small update to Φ is taken by computing

∆Φ ∝ −∂E
∂Φ

, (1.20)

using the MAP-estimated values for a. Starting from a random initial Φ, this procedure is
repeated until the fractional energy decrease from one iteration to the next falls below some
threshold.

1.6.1 Capturing variability in learned group structures

The representation provided by MAP-estimated latent variables in sparse coding has been
shown to improve static image classification results [Raina et al., 2007; Ranzato et al., 2007;
Mairal et al., 2008b; Mairal et al., 2008a; Yang et al., 2009; Boureau et al., 2010; Yang et al.,
2010; Kavukcuoglu et al., 2010]. Thus, though highly simplified, a linear generative model
with a sparse prior yields a practically useful transformation of pixels that has a quantifiable
relationship to the response properties of cells in cortical visual areas which we believe to
be highly optimized machines for processing visual input. However, despite the fact that
the representation can be used to improve performance in a classification task, it is not a
structured model for capturing variability. In fact, small perturbations in the input will
give rise to dramatically different MAP estimates in the a variables, which in some sense is
exactly the opposite of what we would like.

To illustrate this point, consider the boxed portion of the whitened image shown in the
left portion of Figure 1.3 – the area of the box is 16x96 pixels. Imagine a camera slowly
panning down this area, foveating windows of 16x16 pixels. In the figure, the y coordinate
gives a window position. As the window translates down the image, each 16x16 sub-window
is coded in terms of a 256 element basis by solving

arg min
a(y)

1

2σ2
||x(y)−Φ a(y)||22 + λ ||a||1 , (1.21)

producing the 80 rows of coefficients on the right. The basis Φ is learned from whitened
images using sparse coding. After learning, the columns of Φ are sorted in increasing order
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Figure 1.3: Sparse codes and image variability. (left) One of the most prominent statis-
tical properties of natural images is that the intensities of spatially adjacent pixels are correlated.
By first removing this effect using a simple de-correlation procedure known as whitening, more
sophisticated models can focus exclusively on higher-order statistics that are more difficult to
capture. On the left is shown a whitened image of a natural scene with the section boxed in red
expanded to show the detail of a clear edge caused by a branch, and some textured rocks below
it. (center) Consider each of the 16x16 sub-windows of the expanded vertical slice labeled x(y).
The y axis, labeled at the far left, gives the position of the 16x16 window. At the top, y = 1,
and the region boxed in blue is the second 16x16 sub-window, representing x(2). The region
boxed in green is the 50-th sub-window, representing x(50). (right) Each of these sub-windows
has been encoded by a 16x16 pixel sparse basis whose elements have been ordered by decreasing
spatial frequency from left to right. That is, each row of the box labeled a(y) gives the solution
to arg mina(y)

1
2σ2 ||x(y) −Φ a(y)||22 + λ ||a(y)||1. Positive values are light, and negative values

are dark. The row boxed in blue corresponds to the code for x(1), the matching 16x16 window
in the center column boxed in blue. Correspondingly, the row boxed in green corresponds to the
code for x(50), the matching 16x16 window in the center column boxed in green. Note that for
y values from 20 to 40, between the blue and green boxed regions, there is a clear edge being
encoded in the window. Yet rows 20 to 40 in the code vary dramatically.
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of spatial frequency. Since the columns of Φ have been sorted this way, the activities of the
coefficients towards the right in the columns of the middle panel in the figure change more
slowly than that of those towards the left. This rate of change can be thought of as the
amount of invariance the image model alone has to changes in the underlying pixels (the
coefficients are certainly changing more slowly than the pixels).

Focus on rows 20 to 50 of the coefficient activities. Across these rows, the symbolic
content of the window remains essentially unchanged – there is a single edge – yet, the
activities of the coefficients change dramatically as the window slides. The reason dramatic
coefficient changes result from slight changes in the image content is that content and position
are confounded in the representation – the ‘what’ and the ‘where’ have not been separated.
If our model was able to account for the dramatic change in the pixels as being caused by a
motion rather than a change in content, the encoding of the content could remain fixed as
the motion occurred. This is the goal we hope to achieve by stabilizing the image component
of our model through the use of a time-varying transformation.

The variability exhibited by the coefficients during the window sliding experiment is
dramatic, and corresponds directly to regularities in the structure of the world. Presumably,
methods that capture these strong statistical dependencies and code the image in a way
that is stable under normal, changing circumstances in the environment should be capable
of yielding even better performance in classification tasks, and other applications. Clearly,
the aforementioned model is not sufficient; therefore, an important question to ask is: what
kind of model should we propose?

One approach to modeling these dependencies is based on subspace models which attempt
to impose a group structure on the coefficients, where sparsity is imposed on groups rather
than individual members within a group [Hyvarinen and Hoyer, 2000; Cadieu and Olshausen,
2009; Garrigues and Olshausen, 2010]. However, this approach is still unsatisfying when the
group structure is prescribed rather than learned. A few recent undirected probabilistic
models of static images have suceeded in learning these groupings [Köster and Hyvärinen,
2007; Ranzato et al., 2007; Ranzato et al., 2010a], and this research direction has been
gaining interest.

Work on modeling image transformations [Memisevic and Hinton, 2007; Memisevic and
Hinton, 2010], separating content and style [Freeman and Tenenbaum, 1997; Grimes and Rao,
2002], and capturing higher-order dependencies in natural images [Karklin and Lewicki, 2003;
Karklin and Lewicki, 2006; Osindero et al., 2006], can all be viewed as attempts to learn
grouping structures. Additionally, these models all have roots in the simple but powerful
bilinear model, which first drew attention from the vision community when it was used to
separate an object’s identity (or ‘content’) from its pose (‘style’) with some success [Freeman
and Tenenbaum, 1997]. Ironically, this important success story is somewhat of a departure
from the structure of a bilinear model, as identity and pose do not interact strictly in a
multiplicative fashion – which raises an important question: since the model does not match
the structure of the problem, why use it? Just as a linear model is often not a perfect fit to
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a problem, a bilinear model may not be a perfect fit. However, it is capable of compactly
representing a diversity of non-linear functions – though not so many that it suffers greatly
from over-fitting. Simply put, it is the simplest non-linear model. This non-linearity makes
it more powerful, but also more difficult to estimate. Yet, it is less difficult to estimate
than almost every other non-linear model. Tenenbaum & Freeman’s procedure to fit bilinear
models – an iterative, alternating optimization method based on SVD – was not described
in a probabilistic context, but if Gaussian priors are assumed then their technique can be
understood as a variational (MAP) EM based algorithm [Freeman and Tenenbaum, 1997].
Similar approaches have also been investigated with sparse priors [Grimes and Rao, 2002;
Karklin and Lewicki, 2003; Garrigues and Olshausen, 2007; Cadieu and Olshausen, 2009;
Garrigues and Olshausen, 2010]. In some sense, learning these groups is tantamount to
finding an invariant; thus, these models are highly related to the topic of this thesis.

1.7 Summary and outline of the thesis

In the following chapters, I develop adaptive models of the dynamics of appearance, which can
be inverted to recover stable percepts, a computational requirement for vision. Such models
are carefully designed equations relating data (pixels) to the latent causes that produce them
(objects). These causes are recovered by an ‘explaining away’ mechanism that operates
using feedback through a hierarchy of evidence. The proper recovery of these causes is of
paramount importance, as it converts the difficult challenge of answering high level, abstract
questions about the image into a far simpler task. While many vision researchers attempt
to achieve this indirectly, possibly through a carefully engineered sequence of filtering and
pooling operations, I express the goal directly, in a structured framework.

Bilinear models have an evident synergy in their dual applicability to neural models and
vision problems. As they are an abstract structure that can be applied to many vision prob-
lems, theoretic advancements could potentially lead to wide-spread improvements in vision
applications that need to be robust and operate in unconstrained natural environments. For
this reason, I view them as an attractive subject for long-term philosophical consideration.
Through the application of sufficient thought and effort, it seems likely that an elabora-
tion on the theme of bilinear models incorporating the correct priors may bring us closer to
understanding the computations of vision. In this thesis, I develop a novel probabilistic bi-
linear models of images and how they transform in time. Additionally, I develop algorithms
to train and evaluate these models at larger scales than have previously been investigated.
The models discover efficient, causal image representations with hierarchical structure, using
unsupervised learning.

In Chapter 2, I describe a factorization model that uses sparse and temporal stability
priors to learn the structure of transformations in natural movies. The core of the model
is the same as Olshausen’s routing circuit given in Equation 1.5, but it is derived from
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first principles by describing a short movie sequence in terms of a linear first-order ODE.
The solution to the ODE is approximated by a first order Taylor expansion. The learned
transformation operators form efficient ways to tile the distribution of translations in the
training data.

In Chapter 3, the first order Taylor approximation is forgone, and parameterizations
of the exponential map are learned. As only two operators are required to fully represent
translation motion in this model, different tiling properties emerge for the learned parameters
when they are trained using natural image sequences: the operators become localized, some-
times transforming only a portion of their input, and learn to code expansions, rotations,
shearing, and other non-uniform distortions as well as translation.

In Chapter 4, I anchor the ideas described in previous chapters to statistical estimation
methods and quantify the quality of several models, showing a sequence of improvements.

In Chapter 5, I conclude with an overview of the main ideas presented, and some discus-
sion of the direction I plan to take in the future.
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Chapter 2

Learning bilinear image sequence
transformation models

We would like to build a machine that ‘sees,’ as animals do; that is, computes some function
of the sensory input that enables it to know what is where in the environment. A natural
way to obtain these two separate symbolic representations is by fitting a model with two
components to the sensory input. However, because a significant part of the grand goal of
sight can be captured in a function from images to categories, determining only this function
is and has been a focal point of computer vision research. Although progress has been made,
current artificial vision systems are somewhat limited in terms of the types of tasks they can
perform robustly in unconstrained natural environments. There are no robust algorithms for
recognizing deformable objects defined by articulated contours and those without texture,
and artificial vision systems make strange, un-natural mistakes, such as confusing seemingly
unrelated categories.

The fundamental problem that causes difficulty for state of the art vision systems is
variability, which in images comes from a variety of different sources. All visual objects are
subject to lighting and viewpoint variability. However, modern computer vision systems have
been somewhat successful in discounting changes in appearance due to these factors. For
example, many artificial vision systems succeed by computing specific fixed visual features
and sending them to classifiers in a fully feed-forward manner, demonstrating that for some
level of performance on constrained tasks, feedback and learning are not necessary. Though
viewpoint and lighting are by no means simplistic sources of variability, in some ways they
are simpler than others, in that it is possible to write down sets of rules that describe their
effect. Given a significant, but measurable, amount of configuration information – such as
the exact position and orientation of the camera and light sources, their intensity, and the
position and configuration of reflecting surfaces – it is possible to directly compensate for
them. This is not the case for many other sources of variability: there are many sources for
which we cannot write down the forward model, or we cannot measure sufficient configuration
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information to properly invert it. In these cases, a system that can automatically learn rules
that achieve invariance would be useful, as it would greatly expand the number of sources
of variability that our artificial vision system can compensate for.

Sources of variability that are not properly compensated for are a clear obstacle for
current object recognition systems. One way this compensation process can fail is if no
model for the source variability is available. However, even if the source model is available,
inverting it properly is another difficult challenge. In object recognition systems that focus
exclusively on the ‘what’ pathway, considering only one part of the problem in isolation, this
inversion process could actually be made more difficult – not simpler, as the limited scope
might suggest. The reason is that these factors should interact with each other during an
explaining away process that takes place in the model inversion. Because both latent factors
can help contribute to finding a globally consistent solution, using only one would likely lead
to locally but not globally consistent explanations.

Since objects in the world persist across time, movies of objects can tell us about how
their visual image transforms due to natural factors in the environment. Can we learn a
representation to describe these natural transformations, by passively watching movies? A
model that is capable of learning how to factor sequences of images into two more stable
components – one representing an object’s identity, and another capturing scene elements
that cause it to appear in a specific way – would be a valuable tool, from which more so-
phisticated artificial vision systems could be built. The development of such a model is the
subject of this chapter. We proceed by first proposing a simple model of time. Subsequently,
we assemble, from two component models, a factorization model that separates an image
sequence into two more stable percepts: one describing an invariant underlying image, and
another that describes how it is transforming in time. Importantly, transformations describ-
ing the dynamics of appearance are learned from the image sequences themselves by fitting
model parameters. Our model is structured in a hierarchy with two levels of representation,
and functions to transform a gray-level image into a more symbolic form through an explain-
ing away process. The result is a representation where the main percept in the field of view
is stabilized with respect to distortions and other transformations due to natural viewing
circumstances.

2.1 Modeling time-varying images

Consider a continuously sampled image of the world whose values have been concatenated
into a real vector x ∈ RL. A simple model of time dynamics is a first-order linear differential
equation:

ẋ = A x , (2.1)

where the time derivative of the image ẋ is related to the image itself through a linear
operator A ∈ RL×L. The matrix A fully specifies the behavior of the system from any
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initial condition. Such a model is attractive primarily because it is understandable and the
mathematics are tractable, yet still powerful enough to perfectly capture a number of natural
phenomena under Newtonian kinematics. The solution to the above system is

x(t) = exp(A t) x(0) , (2.2)

where x(0) is an initial condition and exp(·) is the matrix exponential:

exp(A) =
∞∑
k=0

1

k!
Ak . (2.3)

Time is advanced from the initial condition by multiplying a scalar t with the matrix A,
exponentiating, then applying the resulting linear operator to the image. Though too im-
poverished to capture all of the dynamic effects of moving cameras and objects in natural
movies, linear ODEs represent a good footing from which to build, as they are a perfect
model for several important types of global transformations that are natural and occur fre-
quently, such as translation. The approach taken here is to locally approximate the data by
a linear ODE at each time point. To make this idea explicit, denote the initial condition to
be some arbitrary point in a long sequence of frames, x(t). Local perturbations δ around t
can be generated using the following equality:

x(t+ δ) = exp(A(t) δ) x(t) . (2.4)

Whereas the use of a single matrix A is insufficient to capture the time dynamics of a whole
movie, this model, which utilizes a different matrix at every time, A(t), is now so rich that
there is practically no phenomena it cannot capture. Instead, what we want is a model with
just enough complexity to capture the dynamics. A simple way to scale back the power of the
model is to utilize a lower dimensional representation in the functional form for A(t), with
adjustable parameters. Then, our goal is to learn good parameters of the function A(t) from
the statistics of natural images, where ‘good’ means that it should allow us to easily register
pairs of sequential frames in a movie. We do this by fitting the model – estimating A(t) –
using what is essentially a brightness constancy assumption. In performing this estimation,
the goal is to find a matrix that effects a proper remapping, in which every output pixel
x(t+δ) is derived from some combination of input pixels x(t). When all of the entries in A(t)
are zero, the identity matrix copies every value of x(t) to x(t+ δ). If A(t) contains negative
ones along the diagonal, this copying operation will be entirely negated. A translation can
be effected by first installing this diagonal of negative ones, then adding a second diagonal
with all ones. Expansions and contractions can be effected by mapping each input pixel to
multiple output pixels, or averaging over multiple input pixels to produce a single output
pixel.
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This type of approach is often referred to as a direct method [Irani and Anandan, 1999],
because we register pixels themselves, rather than a set of sparsely sampled image features
that summarize them. Direct methods fell out of favor over the last decade because they use
all of the available information in an image, and are more computationally intensive. How-
ever, there has been a recent resurgence of interest in them, because their sparse counterparts
often discard information that improves accuracy, and modern processors have ameliorated
many of the computational constraints that previously drove the investigation of sparsely
sampled features. Note that sparse representations do not have to discard information, and
thus it is likely possible to combine these ideas in a way that obtains computational benefits
without sacrificing accuracy.

For unstructured x(t), it is conceivable that the distribution of matrices A(t) that register
pairs of sequential frames would be uniform over RL×L. However, natural image sequences are
highly structured. Variability in the appearance of objects in the world must obey physical
laws governing motion and the reflectance of light. For this reason, it is not unreasonable
to assume that there is a high concentration of mass in this distribution, which we can take
advantage of in the formulation of a model for A(t). Specifically, we can parameterize it
using fewer than L×L latent variables. The simplest way to do this is to express A(t) as a
linear combination of some basis:

A(t) =
∑
j

Ψj cj(t) . (2.5)

In this case, the computation required to fit the model to an image sequence is reduced from
the consideration of L× L variables per pair of frames to only J .

For small δ, the first two terms in the sum of Equation 2.3 serve as a reasonable approx-
imation:

exp(A) ≈ I + A . (2.6)

The use of this approximation in combination with the low-dimensional parameterization of
A(t) means that the model may now be incapable of perfectly describing the dynamics in
real image sequences. Thus, we introduce a noise variable, n(t), to explain portions of the
data that are not captured by the model:

x(t+ δ) = (I + δA(t)) x(t) + n(t) . (2.7)

In this section, we have introduced a simple model of time and briefly explained how it
might be parameterized and fit to sequences of natural images. At this point, it is useful to
divert briefly and consider two contextual questions: Why is such a model useful, and how
does it relate to vision? The fundamental problem being solved by fitting the c(t) variables to
a sequence is correspondence, which is widely considered to be a computational requirement
for both artificial and biological vision systems. In artificial vision systems it is closely related
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to optical flow, depth from stereo, and 3d structure from motion. Additionally, the process
of learning suitable parameters Ψj is akin to learning a rich prior for motion. Since the
introduction of a simple, smooth motion prior [Horn and Schunk, 1981], several researchers
have attempted to learn more nuanced priors to avoid smoothing over regions where multiple
separate motions occur. In these cases, such as regions containing transparency or occlusion
boundaries, smoothing is clearly improper. An early example of one such effort that bears
a close resemblance to the approach described here is the work of [Jepson and Black, 1993],
who used an E-M algorithm to estimate the parameters of a Gaussian mixture model for
describing multiple motions in patches of sequential images. An overview of work that
followed up on this idea is given in [Roth and Black, 2007], who did a careful study of the
statistical properties of optical flow fields, and showed that many of them could be captured
in a Field-of-Experts style model. A similar technique was used by [Sun et al., 2008] to
model the joint statistics of image intensity and flow.

A handful of researchers have made use of exponential maps to model the variability
caused by complex 3d motions. In perhaps the earliest example of its use in vision, ex-
ponential maps were applied to model kinematic chains that generate articulated human
motions [Bregler and Malik, 1998]. The approach described here is also highly related to the
exponential maps used to learn transformations between sequential movie frames by [Rao
and Ruderman, 1999].

In biological vision systems, there are a variety of neural constructs that seem to partici-
pate in the computation of correspondence: Reichardt detectors in insects [Reichardt, 1969]

are a particularly simple example, followed in order of increasing complexity by cells found
in areas MT and MST in human, macaque, and cat. Good predictive models of Reichardt
detectors combine the use of coincidence detection and specific propagation delays. To a
lesser extent, we are also able to predict the firing properties of cells in MT [Zemel and
Sejnowski, 1998]. In this chapter, our goal is not specifically to develop a predictive model
of biology, but we hope that by optimizing it to natural image sequences it may learn a
solution that has some analogue in nature. If this turns out to be true, in addition to its
main purpose as a functioning part of an artificial vision system, the model proposed here
may provide new insights about the types of stimulae that may effectively characterize the
behavior of higher-level MST cells, which often pool outputs from multiple MT cells, and
whose response properties are less well-understood.

2.2 Learning natural image transformations from movies

Up until recently, sparse coding has been mostly used to learn the content of natural images.
Now we turn to a second problem: learning how the content of the image is transforming in
time. Like static images, time-varying natural images also have an underlying structure that
is sparse [Olshausen, 2003], and due to the persistence of objects through time, they have
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time-invariant components [Wiskott and Sejnowski, 2002; Hyvarinen et al., 2003; Einhauser
et al., 2002]. In this section, we describe algorithms for fitting the model to natural image
sequences by learning Ψj and Φ.

We begin by learning the model parameters one component at a time. Since the camera
captures images of the scene at a fixed interval, our measurements will occur at integer
values for t for some choice of units. Additionally, if we restrict ourselves to model only
frame-to-frame transformations, we can fix δ = 1. We impose a Laplacian prior on the c
variables, with parameter γ, giving the following form for the negative log of the posterior
probability of an image sequence under the model (omitting the normalization constant):

E =
∑
t

1

2σ2
||x(t+ 1)− (I +

∑
j

Ψj cj(t)) x(t)||22 + γ ||c(t)||1 . (2.8)

Note the similarity to Equation 1.18; in fact, the inference problem in this case is again
equivalent to BPDN. Our learning procedure for Ψj is MAP-EM, and thus quite similar to
that described in Section 1.6. However, here our goal is to learn a set of basis functions Ψj

from pairs of sequential frames of a natural movie such that the correspondence between any
pair can be described compactly using a small number of non-zero coefficients c.

The raw data used in these experiments comes from a BBC documentary filmed in Africa,
and is exemplified in Figure 1.2. As a form of pre-processing, we perform PCA dimensionality
reduction and whitening on the individual frames of our image data before using it in training
(see Appendix 2.A for further details). One final point to mention is that to prevent the
model from trying to transform unrelated content from frame t into new content that has
entered into frame t+ 1, a binary mask that contains zeros along the boundary of the patch
is multiplied point-wise with the reconstruction error, before computing its L2 norm.

2.2.1 Inference

Since we approximate the posteriors over our latent variables by samples taken at the MAP-
estimate, doing inference in the model is equivalent to computing MAP-estimates. The
optimization problem that must be solved to compute these estimates is again equivalent
to BPDN, but converting it to this form requires precomputing the tensor Θljt = (I +
Ψj) x(t). This operation is memory intensive, and adds computational overhead to inference,
marginalizing the gains one would achieve from using a specialized BPDN solver. In the
following experiments, we set γ = 0.1, and the L-BFGS algorithm [Liu and Nocedal, 1989] is
used to compute arg minc(t)E directly. For J < L, this optimization problem has a unique
minimum. However, in practice the optimization is never run to completion – it is run until
the fractional energy decrease between iterations of L-BFGS falls below some threshold, or
a maximum number of L-BFGS iterations is exceeded. For this reason, and to be consistent
with the procedure used in all the transformation models described herein, we solve this
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optimization via the continuation method described in Appendix 2.B. This serves to steer
the solution towards something sensible in the cases where the optimization is terminated
early.

2.2.2 Learning

Learning is accomplished by adjusting the Ψj from a random initialization, according to

∆Ψj ∝ −
∂E

∂Ψj

, (2.9)

as described in Section 1.6. Each iteration, the inferred coefficients for a 10 frame image
sequence, randomly selected from the much larger movie, is used to compute a learning
gradient. After each learning step, an additional constraint on the Frobenius norm of each
Ψj element is imposed:

||Ψj||F = L ∀ j , (2.10)

with forces each Ψj to have the same norm as I. The purpose of this constraint is to guide
the learning process early on, preventing the Ψj from finding idiosyncratic solutions with
dramatically long norms, and from collapsing to a small norm, essentially turning off, instead
of learning something useful. Figure 2.1 shows the result for P = 225, L = 100, J = 9,
projected back to pixel space for display. These top 100 PCA components capture more
than 99.12% of the variance in the data. At this small value for J , the most obvious pattern
that has been learned by the basis elements is spatial locality and consistency. That is, all
pixels are transformed using only pixels in a local region around them, and in each learned Ψj

operator the outputs are all transformed similarly. These properties of the learned operators
confirm that the model is working correctly – they are essentially the prior constraints that
have been used in the estimation of optical flow since its early days, proposed by [Horn and
Schunk, 1981] to overcome the under-constrained nature of the flow problem. Since many
motions are caused by light reflecting from rigid surfaces, flow fields are usually smooth.
This fact implies that intensity measurements can be pooled over some region to obtain two
displacement estimates for every intensity measurement. However, some important questions
remain, which, left unanswered, make it difficult to feel confident in estimates obtained this
way:

• How large a region should be pooled over?

• How do we avoid pooling over occlusion edges, where the flow should certainly not be
smooth?

In this case of the model proposed here, these questions can be answered naturally. The
smoothness property has emerged by maximizing the log probability of a model that could
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have learned something dramatically different, and for this reason, as we increase J , the
model will attempt to describe more nuances of the data. In particular, we expect it to
develop a mechanism for dealing with occlusion boundaries.

The learned operators are not obviously dominated by first-order oriented spatial deriva-
tives that simply shift the input in a particular direction by less than a pixel. Since locally,
most image transformations look like translation, one might assume that first-order differ-
ential translation operators would be a prominent mode that the model would be drawn
towards. However, the characteristic form for an oriented first-order spatial derivative is
evident in the weights for each output pixel in only one of the nine functions. In every other
case, there are multiple oscillations in these weights: they do not simply change from bright
to dark along any line crossing the patch. This effect grows in strength as the number of
basis elements is increased. Figure 2.3 shows functions learned from a model with J = 16,
and, remarkably, none of the learned functions look like first-order spatial derivatives. In
this larger model, one function learned to localize the effect of its transformation to the
upper-left corner of its output, suggesting that although spatial consistency is dominant,
there are other prevalent patterns waiting to be learned as J is increased further. Indeed,
strong differences in the effect of a given Ψj across the patch have been observed for J = 49.
Often, a sharp horizontal, vertical, or diagonal boundary neatly partitions the effect of the
transformation to only one half of its input.

It is evident that the learned functions have tiled the space of translation operators by
learning 1st, 2nd, 3rd, and possibly higher-order spatial derivatives. These are combined
together additively to effect precise sub-pixel shifts, and to well-approximate shifts more
distant than one pixel. Recall that in Equation 2.6, we truncated our expansion of the
matrix exponential to two terms. Were only first-order spatial derivatives learned in our
Ψj matrices, a three term truncation would include terms of the form 1

2
Ψj Ψj in the sum,

implicitly producing second-order spatial derivatives. Since these higher order terms have
been truncated, the model has learned their structure in the lower-order terms. Obviously,
this comes at a price: instead of learning independent actions in each basis element, the
basis elements must now have correlated activation. Through the emergence of this effect,
the data telling us that a more compact representation could be achieved by not truncating,
or performing a non-linear transformation of the input to a space where a linear operator
better approximates shift.

Due to the high degree of spatial locality learned in the Ψj functions, the weights them-
selves seem to follow a sparse distribution, preferring to be at zero, with heavy tails. We
incorporate this characteristic into the model itself, using a Laplacian prior on the values
of Ψj. This prior is simply added to the energy function, where the vec(·) operator simply
stacks the columns of its matrix argument on top of one another, yielding a vector:

E =
∑
t

1

2σ2
||x(t+ 1)− (I +

∑
j

Ψj cj(t)) x(t)||22 + γ ||c(t)||1 + α || vec(Ψj)||1 . (2.11)
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(a) 1st order spatial derivative (b) 2nd order spatial derivative

(c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 2.1: Learned pixel space transformations for natural movies. (a) and (b)
each display one of the nine Ψj transformation basis elements learned in a model with P = 152,
L = 100, J = 9 and a border of one pixel. Each basis function is displayed in a 2d x 2d embedded
space where the connection weights from frame t to an output pixel in frame t+ 1 are arranged
in a square centered at the output pixel position. The function displayed in (a) has learned what
appears to be a first-order spatial derivative that is repeated uniformly across the entire input
space. That is, there is a spatial symmetry to the way each output pixel is derived from the
input. This symmetry is evident in all of the basis functions learned in this model. The function
displayed in (b) has learned what appears to be a second-order spatial derivative. In (c-k), the
center output pixel has been extracted from each of the nine learned basis elements, and manually
arranged (by eye) in order of increasing spatial derivative order. The function displayed in (c)
seems to be the only first-order derivative, followed by three second-order derivatives in (d-f),
and then higher-orders in (g-k).
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Figure 2.2: Joint dependencies between transformation basis elements. In a subset of
pairs of functions taken from the model displayed in Figure 2.1, joint histograms of MAP estimates
and their contours of equal log-probability are plotted. The prior (not shown) has diamond shaped
equal log-probability contours, with the points of the diamond aligned to the axes. Since we are
plotting MAP-estimates here, if the prior were a perfect fit to the data, we would expect the
contours to be diamond-shaped, but somewhat bowed in towards zero. However, many of the
learned transformation basis elements have marginal MAP-estimated coefficient distributions that
are primarily one-sided; that is, their coefficients strongly prefer to be positive or negative. Also,
there are still significant dependencies between the coefficients in the learned representation. In
(a), we see such dependency between a first-order spatial derivative and a second-order spatial
derivative with a similar orientation: there is significantly more mass in the second quadrant than
would be expected under an independence assumption. In (b), we see a similar effect across a
second-order spatial derivative and a higher-order spatial derivative. In (c), we see it between two
higher-order derivatives. Such dependencies are consistent with the hypothesis that the model is
compensating for the first order Taylor series approximation of the matrix exponential by learning
basis elements for the higher-order terms.
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(a) Spatially varying effect (b) Higher order spatial derivative

(c) (d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q) (r)

Figure 2.3: Learned pixel space transformations for natural movies. (a) and (b)
each display one of the 16 Ψj transformation basis elements learned in a model with P = 152,
L = 100, J = 16 and a border of one pixel. The function displayed in (a) has learned a spatially
varying pattern that is repeated, but its effect decays in the output pixels towards the lower right.
This type of break in spatial symmetry was not evident in the smaller model with J = 9. The
function displayed in (b) has learned a higher-order spatial derivative that appears to higher order
than any of the functions learned in the model with J = 9. In (c-r), the center output pixel has
been extracted from each of the 16 learned basis elements, and manually arranged (by eye) in
order of increasing spatial derivative order.
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The scalar α is set to 0.001, and the previously described learning procedure is used to adjust
randomly initialized Ψj. With this prior, the model converges much more quickly, enabling
experimentation with much larger models. In Figure 2.4 we show four of the learned Ψj

for P = 900, L = 900, J = 49 and an extremely conservative masking boundary of 10
pixels on each edge. That is, each Ψk maps a 30 × 30 patch in frame t to a 10 × 10 patch
in frame t + 1. Two particularly interesting aspects of the solution are: (1) the first and
third basis functions perform horizontal translations of greater than one pixel; motions of
this magnitude cause motion blur in the movie, which is evident in the elongation of the
filters along the direction of motion, and (2) the fourth basis function has become localized
to operate only in the upper and lower right corners of the image; other basis functions (not
shown) became localized to other regions.

2.3 Factoring image sequences

If we are to separate the time-invariant components of a movie (i.e., the objects) from
their time-varying positions, our model naturally requires two components: an invariant
part that denotes the features of the image, and a variant part that captures changes in
the image due to object motion or observer self-motion. In the previous section, from the
solution to a linear ODE we obtained a model of natural image sequences that captures
local perturbations about a point in time using a linear transformation operator. Next, we
show how a two component model can be obtained using these operators. By substituting
Equation 2.5 into Equation 2.7, we arrive at the following forward model:

x(t+ δ) = (I + δ
∑
j

Ψj cj(t)) x(t) + n(t) . (2.12)

In this model, the observed variables are x(t + δ) and x(t). There are two sets of latent
variables: c(t), which encodes the time-varying transformation, and n(t), that accounts for
parts of the image sequence that cannot be explained by the transformation model. In
some sense, this is a two component model – one component is x(t) and the other is the
transformation given by I+δ

∑
j Ψj cj(t) – but one that does not explicitly achieve a stable,

invariant representation. The set of parameters Ψj enable us to compactly describe small
perturbations around x(t), but we cannot easily use this information to bring the entire
sequence into register. What we are lacking is a smooth curve z(t) that, at each time t,
gives a value close enough to x(t) that the model is still able to approximately produce it by
transforming z(t). In this case, z(t) is a second set of latent variables that must be estimated
simultaneously with c(t). The following model makes this idea explicit:

x(t) = (I +
∑
j

Ψj cj(t)) z(t) + n(t) . (2.13)
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(a)

(b) (c)

(d)

Figure 2.4: Four of 49 remapping bases, Ψj, learned from the transformations
contained in natural image sequences. Most of the 49 basis elements learn to become
shifts, tiling the space of distances. Since there are so many basis elements, the model can
allocate them to specialized tasks such as shifting the entire patch by a fixed number of pixels.
(a) A spatially-varying transformation basis function. Each box within the grid depicts how a pixel
in frame t+1 is connected to the 30x30 patch from frame t (arranged according to their position
in the frame). An i.i.d. Laplace ‘weight decay’ prior was imposed on the elements of Ψj itself,
causing the parts of the basis elements in the error masked region to become completely zeroed
out – for that reason we display only the central 10x10 region of the output. (b-d) Because each
basis element outputs an even-sized, 10x10 region, there are four center output pixels. We have
extracted and enlarged the upper-right output pixel of these central four. (b) A basis element
that shifts to the right when its coefficient is negative. A negative coefficient will invert the
bright region, weighting it negatively. However, these inverted bright regions will cancel out the
contribution of the identity matrix, since the operator is formed via A(t) = I+

∑
j Ψj cj(t). The

remaining positive weights are all to the left of each output pixel, effecting a shift to the right.
(c) A first-order spatial derivative from another spatially uniform basis function (the full function
is not pictured). (d) An output pixel from another basis function that shifts to the left by more
than a pixel.
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To re-iterate an important conceptual change in this new model, note that both c(t) and
z(t) are latent variables. Thus, each frame of the image sequence is expressed in terms of
the product of two latent variables. As discussed in Section 1.4, with this information alone,
there is no unique solution for c(t) and z(t). To resolve this, we introduce several types of
constraints. Some of these constraints are quite straight-forward, such as the parameteri-
zation of the function A(t) = (I +

∑
j Ψj cj(t)). Specifying J < L2 reduces the number of

degrees of freedom in A(t), as well as the number latent variables we must estimate in order
to fit the model to an image sequence. Furthermore, we plan to learn these parameters from
the data, in a probabilistic framework, using a sparse prior on the c(t) variables. This sparse
prior, and our goal of achieving a stable representation are somewhat ‘soft’ constraints, and
are encoded probabilistically. One way this can be done is by adding a term to the energy
function: the goal ‘z(t) should vary smoothly in time’ can be encoded probabilistically by
adding a term like

∑
t ||ż(t)||22. The notion of using smooth regularizers for under-constrained

optimization problems is by no means a new idea. However, it is worth pointing out that we
are not blindly regularizing, but using stability to discover invariants – Foldiak, Hyvarinen,
and others have demonstrated that the principle of stability can be used as a ‘grouping’
cue, similar to sparsity [Foldiak, 1991; Wallis and Rolls, 1997; Wiskott and Sejnowski, 2002;
Einhauser et al., 2002; Hyvarinen et al., 2003]. Explicit grouping cues have also been used
before in this way to learn functions that can transform groups of related objects to an
underlying invariant [Miller et al., 2000]. By utilizing a linear decomposition for the z(t)
component of our model,

z(t) = Φ a(t) , (2.14)

and imposing a sparse prior on these new latent a variables, the learned parameters in Φ will
function as another set of regularizing constraints. Underlying our approach with both of
these parameterized representations is the assumption that images, their underlying invari-
ants, and image transformations have a sparse structure that occupies only a small fraction of
the possible parameter space. Furthermore, we assume that relevant directions in this space
can be captured in a dictionary of frequently occurring elements that correspond to mean-
ingful causes in the environment. Substituting the decomposition given by Equation 2.14
into Equation 2.13 yields the following factorization model:

x(t) = (I +
∑
j

Ψj cj(t)) Φ a(t) + n(t) . (2.15)

To recap, this factorization emerged from the idea of substituting a smooth latent vari-
able for the starting point x(t) from Equation 2.12. This smooth latent variable, while
representing something slightly different than the content of the image sequence at time t,
should take on a value close enough to it that the transformation operator we derived from
the approximated solution to the original ODE is still rich enough to describe it. Observe
that there is another, somewhat different path we can take, which is likely advantageous.
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Rather than describing the time evolution of x directly, we can instead describe the time
evolution of a more symbolic, latent representation d, obtained from the decomposition
x(t) = Φ d(t) + n(t). The resulting factorization model is quite similar to Equation 2.15:

x(t) = Φ (I +
∑
j

Ψj cj(t)) d(t) + n(t) , (2.16)

with the only difference being in where Φ is multiplied. The advantage of this approach is
that the transformations produced by I +

∑
j Ψj cj(t) now operate in a sparse feature space

given by the latent d(t). With a localized, oriented, bandpass basis for Φ, the activation of
a single d variable will indicate the presence of an edge; therefore, transformations among d
variables will describe coordinated movements of edges. Although the model can be stated
simply, learning the parameters Φ and Ψj in this two-level hierarchy is a difficult challenge.
Thus, in the following sections, we approach our final goal of learning the parameters of this
model by proceeding stage-wise, investigating the sequence of increasingly complex models
in the order they have been presented in this section.

2.3.1 Learning to transform underlying invariants

From the image basis Φ learned in Section 1.6, and the transformation basis Ψj learned
in Section 2.2, we can assemble the parameters required by the model described in Equa-
tion 2.15. Performing inference in this model factors an image sequence into a stabilized,
parsimonious, and hopefully more symbolically meaningful representation though an explain-
ing away procedure. To obtain the stability property, we introduce priors on the time rate
of change of the a and c variables through two new terms in the energy function:

E =
∑
t

1

2σ2
||x(t)− (I +

∑
j

Ψj cj(t)) Φ a(t)||22+ (reconstruction)

λ ||a(t)||1 + λ ||c(t)||1+ (parsimony)

γ ||ȧ(t)||22 + α ||ċ(t)||22 . (stability) (2.17)

These two stability properties have slightly different interpretations. Imposing stability on
the invariant underlying image a can be interpreted as a prior belief that objects in the world
persist across time – they do not spontaneously appear and disappear. Imposing stability
on the transformation variables c can be viewed as an inertial prior that captures Newton’s
first law. Note that these stability priors are non-causal, which means that the graphical
model representing this energy function now contains both directed and undirected edges.
While there is nothing technically wrong with specifying a probability distribution in this
way, it does have a more philosophical downside, which is that the latent variables recovered
in the factorization are not causal in time.
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We learn Ψj under this model, using MAP-EM with λ = 0.1, γ = 100, α = 1, and the
length constraint enforced after each learning step:

||Ψj||F = L ∀ j . (2.18)

The Ψj that result from this training procedure have a coarse qualitative similarity to those
learned in the model described in Section 2.2, but here we have demonstrated a functioning
training scheme for Ψj that is motivated by recovering an underlying invariant using a
prior for stability in time. Figure 2.5 shows the learned Ψj for a model with a large patch
size: P = 192, L = 100 and J = 9, with a border of two pixels masking errors at the
edges of the frame. The solution that emerges is again 1st, 2nd, and 3rd order spatial
derivatives that operate symmetrically across the whole patch – there is little localization of
the transformation to any specific part of the patch, even in the large P = 192 case. However,
such localization does appear to begin to emerge when J = 25. Unfortunately, the number
of model parameters in this case is so large that it takes an extremely long time to optimize
them. However, they do indicate that spatially localized transformation operators emerge in
a factorization model with a linearized transformation, even with no L1 ‘weight decay’ prior.
This is an important result, because it means that by tuning the optimization further, this
framework will enable us to learn richer motion priors than simply spatial smoothness. Note
that for P = 192, 100 PCA components (L = 100) capture 97.97% of the variance in the
image sequence, which is still quite significant, though some loses of high spatial frequencies
are evident.

After learning Ψj, we perform inference on the sequence shown in Figure 2.6, under the
model given by Equation 2.17, using the coarse to fine procedure described in Appendix 2.B.
Figure 2.7 shows the image sequence and reconstruction under the model, and Figure 2.8
shows the underlying invariant the model extracts from the sequence. Figure 2.9 shows the
whitened, dimensionality reduced representation of the image sequence, compared to the
stabilized representation under the model.

2.3.2 Learning to transform features of an underlying invariant

Having learned the structure of natural transformations in pixel input vectors, we now turn to
the problem of learning the structure of transformations between feature vectors. The model
we propose is nearly identical to the previous model, except for the order of multiplication
for Φ:

x(t) = Φ (I +
∑
j

Ψj cj(t)) d(t) + n(t) . (2.19)

Our motivation for learning in feature space is that it is a more natural domain for expressing
certain kinds of transformations as a basis function expansion in the linearization of the
exponential operator. To illustrate this idea, consider the relationship of our proposed model
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(a)

(b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 2.5: Transformations learned in a factorization model with 19x19 pixel
image sequences. Remarkably, the transformation basis functions learned in the factorization
model, which has a latent invariant that must be inferred simultaneously with the transformation,
are remarkably similar to those learned in the frame-to-frame transformation model. Nine learned
Ψj for P = 192, L = 100, J = 9, with a border of two pixels. (a) One of the learned functions
has a spatially varying effect which decays toward the lower-right. (b-j) The weights connecting
the center output pixel in each of the nine learned functions, manually ordered by increasing
spatial derivative order.
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Figure 2.6: An example of the image sequence data used to train the model. We
perform inference on this sequence under the model by computing MAP estimates the latent a(t)
and c(t) variables. The scene depicts a running zebra, though only a small portion of it is visible
in a small patch. There is clear continuity visible between frames at a symbolic level, but also
dramatic changes at the level of pixels.

to the bilinear models of [Freeman and Tenenbaum, 1997; Tenenbaum and Freeman, 2000;
Grimes and Rao, 2005]. They can be equated to each other by first absorbing our I term
into a new Ψj basis element, with a corresponding cj coefficient that is always equal to 1.
Then, pre-compute

Γlkj =
∑
m

φlm ψmkj . (2.20)

This gives a bilinear model with the same for as a dynamic routing circuit [Olshausen et al.,
1993]:

x(t) =
∑
j

Γj cj(t) d(t) . (2.21)

With M image basis vectors and J transformation basis vectors, this model has L2J + LM
free parameters, which can quickly become quite large. However, by not collapsing the sum
over m, taken above to equate the two models, we gain an explicit separation of the image
and transformation bases. Furthermore, although there are L2J+LM free parameters in our
model and only LKJ in theirs, we expect that the L2J parameters in our model will be mostly
zeros, whereas in the other bilinear models, all of the parameters contain significantly non-
zero ‘pixel’ values. We believe that this fact will enable our learning procedure to converge
quickly, despite the large number of free parameters. The feature space transformation model
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(a)

(b)

(c)

Figure 2.7: Example image sequence reconstruction. (a) The 64 frame example
image sequence, as represented by 100 PCA components. (b) The model’s reconstruction of the
sequence from the MAP estimate of the latent variables. (c) The MAP estimate does not perfectly
reconstruct the input; shown here are the reconstruction errors, which are mostly concentrated at
the borders, where new content entering the patch is difficult to describe in terms of the invariant.
A two pixel border was used to train this model, so there are zero errors along the very edge.
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Figure 2.8: Visualizing the invariant. The invariant component underlying the sequence
of images, that is extracted by performing inference under the model, can be visualized by
computing Φ a(t) and passing it through the unwhitening matrix. The bilinear model is somewhat
limited in its capabilities, and when visualized as an array of frames this way, it is difficult to see
what has been stabilized in the image. In the original movie, the pattern of zebra stripes is
undergoing considerable translation as the zebra gallops. The translation is too dramatic to
completely stabilize, so what the model has done is break the invariant into segments, each
of which are stable; at their boundaries, the segments neatly fade in and out, with one stable
pattern replacing another. The image sequence x(t), the invariant component Φ a(t), and the
time-varying transformation I+

∑
j Ψj cj(t) can be viewed as movies by clicking on the following

links: Φ a(t) , x(t) , I +
∑

j Ψj cj(t) .

is given by the following energy function:

E =
∑
t

1

2σ2
||x(t)−Φ (I +

∑
j

Ψj cj(t)) d(t)||22+ (reconstruction)

λ ||a(t)||1 + λ ||c(t)||1+ (parsimony)

γ ||ȧ(t)||22 + α ||ċ(t)||22+ (stability) (2.22)

Inference and learning proceed as previously described with Φ set to a previously learned
144 function image basis learned as described in Section 1.6. The effect of each learned
transformation operator is explored in Figure 2.10. Where φm denotes column m of Φ,
and em denotes the m-th unit vector, each of the nine larger squares in Figure 2.10 shows
φm(I + Ψj cj) em for m ∈ 1 . . . 64 and j ∈ 1 . . . 9; cj is scanned across a range of values that
correspond to its empirical distribution. The contrast of each individual Φ column in the
animation has been adjusted by κmj =

√∑
n |ψnmj|2 to reflect the amount of control Ψj for

a given j has over it. Evidently, each transformation operator has learned to phase shift a
subset of the columns of Φ. Some transformation operators are selective for columns with a
particular orientation; others are selective to a high or low spatial frequencies.
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x(t)

c(t)

a(t)

t

t

Figure 2.9: The factored representation of the example image sequence. (left)
Each column shows the 100 PCA component representation of a frame. This is the data that
is fed into the model. PCA coefficients often change dramatically between frames, even though
at a symbolic level, the visible content does not change much. (middle) Each column depicts
MAP estimates for the latent variables in the model representing the underlying invariant. (right)
Each column depicts MAP estimates for the latent variables in the model representing how the
underlying invariant is transformed into the specific realization of a frame.
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This figure must be viewed in a web browser.
Please choose your viewing format by clicking on one of the following links:

gif or avi
(These movies are about 40 MB and will take a moment to load.)

Figure 2.10: Exploring the effect of the learned Ψj operators. The following movies
show the effect of eachj Ψj basis function, as cj is scanned across a range corresponding to its
empirical distribution.

2.4 Discussion and concluding remarks

Taking intuition from our world’s property of object constancy, we have built upon the work
of Grimes and Rao, who in turn built on Tenenbaum and Freeman’s idea of using bilinear
models to separate style and content factors in images. Our starting point for modeling image
dynamics was a linear generative sparse coding model, described in Section ??. A striking
deficiency of this model is that the code for an image confounds content and position. In this
chaper, we began a treatment of the extraction of motion and form as separate problems,
developing a linear generative sparse coding model for transformations, and learning them
from movies. In a natural third step, these two linear models were combined into a bilinear
model that can also learn without supervision using the established framework. We find in
practice that the model is capable of fitting smooth curves to fairly long (64 frame) image
sequences, and extracting somewhat meaningful invariance components, such as the zebra
stripes shown in Figure 2.8. Thus the model is succeeding in terms of representing an image
sequence as a set of features that are stable over reasonable time epochs.

Teasing apart confounded variables is a fundamental difficulty to surmount in vision. This
chapter has presented a general principle for approaching such a problem, and demonstrated
on a small scale that it works. When applied hierarchically it is likely that the higher order
representation will have positive implications for compression and object/pose/movement
detection. One shortcoming of the models described that has become evident through our
exploration of them is that the first order Taylor expansion is perhaps too coarse an ap-
proximation, for the following reason: while the primary mode of variability in the movies
is translatory motion and our exponential model can capture such motion perfectly, with a
first order Taylor approximation it can only well-approximate short (sub-pixel) translations.
In ours and most other natural movies, the temporal sampling frequency is not high enough
to characterize all frame to frame changes in terms of sub-pixel translations. Registration
experiments with full translation operators give estimates that a significant number of pixels
move 4 or more pixels between sampling intervals, though it is impossible to know with
certainty since we have no ground truth 3d structure for our movies. Thus, somewhat sur-
prisingly, the assumption of sub-pixel translations between successive movie frames, which
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allows a mathematically and computationally convenient linearization, is not practical. In
the next chapter, we resolve this by exploring our model of time-varying images in its original
form, without approximation.

Appendix 2.A Data pre-processing details

As a pre-processing step, we perform PCA whitening and dimensionality reduction on the
individual frames in our image sequences. First, a large batch of data is collected by randomly
sampling contiguous sequences of images from the much larger movie. Each frame contains
P pixels, and there are T frames in each sequence. The mean (a single scalar) is subtracted
from each sequence, and B of these mean-subtracted sequences are collected in a matrix
X ∈ RP×TB. The eigen-decomposition of the covariance of X is computed,

U D = XXT , (2.23)

where each column of U ∈ RP×P contains an eigenvector of XXT and D is a diagonal matrix
of eigenvalues, sorted in decreasing order. Next, a whitening matrix W ∈ RP×L is computed
by dividing the top L eigenvectors by the square root of their corresponding eigenvalue.
Denoting these L columns of U by vectors u1...L,

W = [
u1√
D11

· · · uL√
DLL

] . (2.24)

A corresponding unwhitening matrix W̄ ∈ RP×L is also computed:

W̄ = [u1

√
D11 · · · uL

√
DLL] . (2.25)

Together, these matrices enable a transformation from a P dimensional image patch, to a
lower, L dimensional whitened patch, and back again, via projections. That is, if our original
image patch is x̃, the representation we model is

x = WT x̃ , (2.26)

and for visualizing it in the pixel domain, we compute

x̂ = W̄ x . (2.27)
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Appendix 2.B Coarse to fine

Consider the frame to frame transformation model described in Section 2.1:

x(t+ 1) = A(c) x(t) + n(t) (2.28)

A(c) = exp(
∑
j

Ψj cj(t)) , (2.29)

with energy function

E =
∑
t

1

2σ2
||x(t+ 1)− exp(

∑
j

Ψj cj(t)) x(t)||22 + γ ||c(t)||1 . (2.30)

Inference in this model amounts to the computation of

arg min
c(t)

E , (2.31)

which brings the two frames into registration. Such a registration task requires solving
the correspondence problem, and thus we expect it to be particularly challenging to solve
robustly for the same reason that applies to optical flow: the generalized aperture problem.
Several facts are known about the best way to optimize such objective functions. Specifically,
there are two standard techniques used by many algorithms to improve the minimization of
optical flow objective functions: graduated non-convexity [Blake and Zisserman, 1987], and
coarse-to-fine strategies [Glazer, 1987]. Here we have taken inspiration from these ideas to
formulate a mechanism that is highly effective, simple to understand, and computationally
tractable in the context of the models we use it to optimize. The main idea comes from
an empirical observation that most of the local minima in our energy landscape are due to
fast motions or large displacements between the two images being registered. These can
be avoided by constructing a sequence of objective functions that are successively better
approximations of the true objective function, and solving them one after the other starting
each subsequent optimization at the solution to the previous. The sequence of objective
functions is constructed by initially limiting the number of PCA components considered
in the registration process. The first objective function in the series considers only the
component that corresponds to the largest eigenvalue – for natural images, this represents
low spatial frequencies. Once the low frequencies have been registered, progressively higher
spatial frequencies are considered. All local minima in the energy function can be avoided
by starting the optimization using only the lowest spatial frequencies in the input, and this
sequence of objective functions can be obtained without any additional computation (recall
from Appendix 2.A that they are already ordered this way) – these two factors make it
particularly attractive.
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W
x(t)x(t + 1)

× × A(c) − ×W

Figure 2.11: Coarse-to-fine registration procedure. To avoid poor registrations obtained
by converging to a local minima in the energy landscape, pairs of frames are registered in a
procedure that progressively builds up power across the frequency spectrum, starting at the low
end. Due to the 1/f falloff in the power spectrum of natural images and the fact that the columns
of our whitening matrix W have been ordered by decreasing eigenvalue magnitude, when an image
is projected on W the resulting coordinates are ordered and represent progressively increasing
spatial frequencies. Progressively more coordinates of x(t) and x(t + 1) are considered by each
objective function in the sequence, by increasing the width of W as indicated by the arrows
growing the blue rectangles. A similar growth occurs in the size of the sub-matrix of A(c) at
each of the L energy functions E(l), indicated by the arrows growing the green rectangles. At
the beginning of registration, the c variables are initialized to zero, and E(1) (with only the
lowest spatial frequencies) is minimized. Next, this solution for the c variables is refined by
minimizing E(2), which contains additional high spatial frequencies. This process is repeated, by
progressively expanding the number of coordinates in the output of the image’s projection on the
whitening matrix, until all L of the coordinates are considered in the optimization of E(L).

To make this precise, for x ∈ RL, we construct a sequence of L objective functions,
denoted E(l) for l ∈ {1, . . . , L}. Each objective function is minimized by initializing cl(t)
to cl−1(t), then solving arg mincl(t)E(l). The initialization for the first objective, c0(t), is
the vector of all zeros. Each objective function is constructed by considering only the first l
coordinates in x(t) and x(t+ 1), and the l× l sub-matrix of each Ψj that includes the first l
rows and columns. Figure 2.11 depicts this procedure, where progressively more coordinates
of x(t) and x(t + 1) are considered by increasing the width of the whitening matrix W, as
indicated by the arrows. As a side-note, because of the 1/f fall-off in the power spectrum of
natural images, any spectral image decomposition whose components are registered in order
of decreasing power will automatically implement this mechanism, which makes it seem likely
to emerge in biological systems.

We also use this coarse to fine procedure during learning, by initially truncating the
sequence of objective functions at some approximate level L̄ < L, which is increased every
10,000 learning updates. This means that learning only takes place in the L̄× L̄ sub-matrix
of each Ψj. During the course of learning, more entries of Ψj are adjusted, and eventually
L̄ = L and each learning update modifies every entry.
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Learning continuous transformation
groups from image sequences

It is well known that natural images occupy a small fraction of the space of all possible
images. Moreover, as images change over time in response to observer motion or changes in
the environment, they trace out particular trajectories along manifolds in this space. It is
reasonable to expect that perceptual systems have evolved ways to efficiently model these
manifolds, and thus mathematical models that capture their structure in operators that
transport along them may be of use for understanding perceptual systems, as well as for
engineering artificial vision systems. In this chapter, we derive methods for learning these
transport operators from data.

Rather than simply learning a mapping of individual data points to a low-dimensional
space, we seek a compact representation of the entire manifold via the operators that traverse
it. We investigate a direct application of the Lie approach to invariance [VanGool et al., 1995],
utilizing a matrix exponential generative model for transformed images. This is in contrast
to previous methods that rely mainly upon a first order Taylor series approximation of the
matrix exponential [Rao and Ruderman, 1999; Miao and Rao, 2007], and bilinear models,
in which the transformation variables interact multiplicatively with the input [Tenenbaum
and Freeman, 2000; Grimes and Rao, 2002; Olshausen et al., 2007]. It is also distinct from
the class of methods that learn embeddings of manifolds from point cloud data [Roweis and
Saul, 2000; Weinberger and Saul, 2004; Tenenbaum et al., 2000; Belkin and Niyogi, 2002].
We share the goal of learning a model of the manifold which can then be generalized to new
data with [Bengio and Monperrus, 2005; Bengio et al., 2006; Dollar et al., 2007].

Our method is essentially an unsupervised manifold learning algorithm that represents
a surface through a compact description of operators that traverse it. These operators
are based on matrix exponentials, which are the solution to a system of first-order linear
differential equations. The matrix exponents are represented by a basis that is adapted
to the statistics of the data so that the infinitesimal generator for a trajectory along the
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underlying manifold can be produced by linearly composing a few elements.
In Chapter 2 we introduced the idea of modeling short image sequences using first-order

linear ODEs. We proposed to model longer sequences through the use of time-varying
matrix exponent with a low-dimensional parameterization. However, in the end we coarsely
approximated the matrix exponential by truncating Equation 2.3 to two terms, imposing
severe limitations on the length of time over which the resulting approximation error is
reasonably small. In this chapter, we undo this approximation and model image sequences
with continuous transformation groups. As in Chapter 2, we develop algorithms for fitting the
model parameters to natural image sequences, and factoring the sequences into an underlying
invariant component and its time-varying transformation.

3.1 Continuous transformation model

Here we show how a particular class of transport operators for moving along manifolds
may be learned from data. The model is first applied to synthetic datasets to demonstrate
interesting cases where it can recover topology, and that for more difficult cases it neatly
approximates the local structure. Subsequently, we apply it to time-varying natural images
and show that it learns to a more compact representation of the dynamics of appearance
compared to that which is learned by its first order Taylor approximated counterpart.

As in Chapter 2, let us consider an image of the visual world as a point x ∈ RL. We
describe the evolution of x in terms of temporal changes δ from a starting time t by the
solution to a linear ODE:

x(t+ δ) = exp(A δ) x(t) . (3.1)

The matrix A is a linear operator capturing some action in the environment that transforms
the image. Such an action belongs to a family that occupies a subspace of RL×L given by

A =
∑
j

Ψj cj , (3.2)

with Ψj ∈ RL×L. The amount of a particular action from the dictionary Ψj that occurs is
controlled by the corresponding cj. To capture the fact that natural movies contain sequences
of many actions which share structural properties, we express the action as a time-varying
function of a small set of coefficients, and add a noise term n(t) to account for structure in
natural image sequences that cannot be explained by the model:

x(t+ δ) = exp(
∑
j

Ψj cj(t)) x(t) + n(t) . (3.3)

Beginning at time t, a vision system takes an image x(t), and then makes repeated obser-
vations at a fixed interval; thus, for some unit of time, our measurements always occur at
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integer values of t. Given an initial scene x(t) and an action in the environment A, the pro-
gression of time increases δ and traces out a continuously differentiable manifold of images
given by Equation 3.1, which we observe periodically. Our goal is to learn an appropriate set
of bases, Ψj, that allow for a compact description of observed frame to frame transformations
by training on many pairs of related observations.

In terms of modeling capacity, exponential operators are far more expressive than their
linear counterparts. Thus, if learned properly, a reasonable expectation would be for them
to capture the structure of natural image transformations to a greater degree, but at a far
greater computational cost. Although it is still slightly more computationally expensive than
its linearized approximation, in the next section we see that the partial derivatives of the
energy function for this continuous transformation model have a simple form that may be
computed efficiently.

3.1.1 Learning

The model parameters Ψj are learned by maximizing log-likelihood using the MAP-EM
algorithm, described in Section 1.6, and briefly reviewed here. Consider two ‘close’ states of
the system in isolation. Let x(t) be our initial condition, and x(t+1) be a second observation.
These points are related through an exponentiated matrix that itself is composed of a few
basis elements, plus zero-mean white i.i.d. Gaussian noise, n(t):

x(t+ 1) = exp(
∑
j

Ψj cj(t)) x(t) + n(t) (3.4)

We assume a factorial sparse prior over the transform variables c(t) of the form P (cm(t)) ∝
exp(−γ |cm(t)|). The variance of the noise is σ2, and thus the negative log of the posterior
probability of the data under the model is given by

E =
∑
t

1

2σ2
||x(t+ 1)− exp(

∑
j

Ψj cj(t)) x(t)||22 + γ||c(t)||1 . (3.5)

Given two data points, the solution of the c(t) variables which relate them through Ψj is
found by a fast minimization of E with respect to c(t). Learning of the basis Ψj proceeds
by gradient descent with respect to E, holding this solution for c(t) fixed. The Ψj variables
are initialized randomly, and adjusted according to ∆Ψj ∝ − ∂E

∂Ψj
.

To simplify our notation, let us temporarily consider two sequential points, x(0) and
x(1) in isolation. The partial derivatives of E w.r.t. c and Ψj can be cast in a simple
form using the spectral decomposition of A, given by

∑
α λαuαv

T
α , with right eigenvectors

uα, left eigenvectors vα, and eigenvalues λα [Ortiz et al., 2001]. Let U = [u1u2...uN ] and
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V = [v1v2...vN ]. Then
∂ exp(A)ij
∂Akl

=
∑
αβ

FαβUiαVkαUlβVjβ , (3.6)

where the matrix F is given by:

Fαβ =

{
exp(λβ)−exp(λα)

λβ−λα
if λβ 6= λα

exp(λα) otherwise.
(3.7)

Application of the chain rule yields simplified forms for the partials of E w.r.t. c and Ψj.
After computing two intermediate terms P and Q,

P = UT ( exp(A) x(0) x(0)T − x(1) x(0)T ) V (3.8)

Q = V ( F�P ) UT , (3.9)

the partial derivatives for inference and learning are given by

∂E

∂cj
= vec(Q)T vec(Ψj) + γ sgn(cj) (3.10)

and
∂E

∂Ψj

= Q cj , (3.11)

where the vec(·) operator stacks the columns of its matrix argument on top of each other to
form a vector. The order of complexity for both derivatives is determined by the computa-
tion of Q, which requires an eigen-decomposition and a few matrix multiplications. Note,
however, that by simplifying our notation we have glossed over the fact that the composed
action operator A is a function of time, as are U,V,P,Q and F. Thus, to compute Equa-
tions 3.10 and 3.11 over a sequence, these matrices must be computed separately for each
pair of sequential points.

3.1.2 Recovery experiments

We first test the model by applying it to simple datasets where the solutions are known:
learning the topology of a sphere and a torus, and the local geometry of a Klein bottle,
where the topology cannot be captured by first order exponential operators. In these recovery
experiments, we add a Gaussian ‘weight decay’ term to the energy function, which encourages
the solution to use only a subset of the operators if possible:

E =
∑
t

1

2σ2
||x(t+ 1)− exp(

∑
j

Ψj cj(t)) x(t)||22 + γ||c(t)||1 + ζ
∑
j

||Ψj||F . (3.12)

48



Chapter 3. Learning continuous transformation groups from image sequences

−1

0

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

x1
x2

x 3

−1

0

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

x1
x2

x 4

−1

0

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

x2
x3

x 4
−1

0

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

x1
x2

x 3

−1

0

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

x1
x2

x 4

−1

0

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

x2
x3

x 4

Figure 3.1: Orbits of learned torus operators. Each row shows three projections of a
Ψj basis element applied to a point on the surface of the torus. The orbits shown are generated
by setting x(0) = (0, 1, 0, 1) then plotting x(t) = exp(Ψj t) x(0) for t = [−1000, 1000] in
projections constructed from each triplet of the four coordinates. In each plot, two coordinates
always obey a circular relationship, while the third varies more freely.

Related pairs of points on a torus are generated by first choosing two angles θ(0), φ(0)
uniformly at random from [0, 2π]. Two related angles θ(1), φ(1) are produced by sampling
from von Mises distributions with means θ(0) and φ(0), and concentration κ = 5. For the
sphere, we generate the first pair of angles using the normal-deviate method, to avoid con-
centration of samples near the poles. Though parameterized by two angles, the coordinates
of points on these surfaces are 3- and 4-dimensional; pairs of points x(t) for t = 0, 1 on the
unit sphere are given by x(t) = (sin θ(t) cosφ(t), sin θ(t) sinφ(t), cos θ(t)), and points on a
torus by x(t) = (cos θ(t), sin θ(t), cosφ(t), sinφ(t)).

For the sphere, L = 3, thus setting J = 9 gives the model the freedom to generate the
full space of A operators. The Ψj are initialized to mean-zero white Gaussian noise with
variance 0.01, and 10, 000 learning updates are computed by generating a pair of related
points, minimizing E w.r.t. c, then updating Ψj according to ∆Ψj = −η ∂E

∂Ψj
. In all of the
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Figure 3.2: Orbits of learned sphere operators. (a) Three Ψm basis elements ap-
plied to points at the six poles of the sphere, (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), and
(0, 0,−1). The orbits are generated by setting x0 to a pole, then plotting xt = exp(Ψm t) x0 for
t = [−100, 100]. (b) When superimposed on top of each other, the three sets of orbits clearly
define the surface of a sphere.

point set experiments, γ = 0.01 and ζ = 0.0001. For cases where topology can be recovered,
the solution is robust to the settings of γ and ζ – changing either variable by an order of
magnitude does not change the solution, though it may increase the number of learning steps
required to get to it. In cases where the topology can not be recovered, the influence on the
solution of the settings of γ and ζ is more subtle, as their relative values effectively trade-off
the importance of data reconstruction and the sparsity of the vector c. We adjust η during
learning as follows: when ∆Ψj causes E to decrease, we multiply η by 1.01; otherwise, we
divide by the same amount. When the model has more parameters than it needs to fully
capture the topology of the sphere this fact is evident from the solution it learns: six of the
dictionary elements Ψj drop out (they have norm less than 10−6). Figure 3.2 shows orbits
produced by applying each of the remaining Ψj operators to points on the sphere. Similar
experiments are successful for the torus; Figure 3.1 shows trajectories of the operators learned
for the torus.

In cases where topology cannot be captured by a matrix exponential operator, we would
like the operators to capture local structure. The Klein bottle is a topology we are partic-
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ularly interested in modeling, since studies have shown that it is the topology of natural
image patches [Carlsson et al., 2007], and is reflected in the structure of cortical orientation
maps [Swindale, 1996]. The model gives a locally good approximation to the Klein bottle
surface, detailed in Figure 3.4. However, there are many pairs of points on the Klein bottle
that cannot be related through an operator whose trajectory exactly tracks the manifold. To
see this, recall that the surface of a Klein bottle can be viewed as a 2-dimensional sheet with
a periodic horizontal boundary, and a reflected vertical boundary, as depicted in Figure 3.3.
Two points related by non-zero horizontal and vertical displacements are connected through
a diagonal line on this sheet. Locations A and B on the sheet correspond to the same point,
as do C and D, due to the side identifications. The line intersects itself at point E, and at
the intersection, the directions of travel are perpendicular. Since the effect of the Lie group
operators is entirely determined by x, there can be no operator A that exhibits this global
behavior. However, when given two nearby points, our inference procedure should deliver an
A that can be used to locally interpolate between points along the surface; as the separation
distance increases, the interpolation path will begin to slip off. For the case of the Klein
bottle, we investigate the extent to which this slippage occurs by attempting to interpolate
over sufficiently long segments.

Related pairs of points on a Klein bottle are generated by choosing two angles θ0, φ0

uniformly at random from [0, 2π]; two related angles θ1, φ1 are produced by sampling from
two von Mises distributions with means θ0 and φ0, and concentration κ = 5. We use the
4-dimensional embedding of [Tompkins, 1941]:

x(t) = (cos θ(t) cosφ(t), sin θ(t) cosφ(t), 2 cos
θ(t)

2
sinφ(t), 2 sin

θ(t)

2
sinφ(t)) . (3.13)

Our interpolation along the path shown in Figure 3.4 is three times better than linear
interpolation (as measured by MSE), and when both techniques have twice as many segments,
ours is superior by an order of magnitude. This illustrates the robustness of our algorithm in
a case where the underlying data cannot be captured by a linear ODE. A piecewise model,
where each piece is approximated by a linear ODE using an A generated from a learned
basis Ψ, gives a sensible answer.

Near-perfect translation operators are recovered from paired synthetic noise images re-
lated through sub-pixel 2d translations. Figure 3.5(b-e) shows operators learned with L =
112, J = 4 from data generated in the following way. First, a 15x15 pixel frame x(0) was
drawn from a normal i.i.d. Gaussian distribution, and horizontal and vertical shift parame-
ters p and q were drawn uniformly from [−1, 1]. These parameters specify a translation which
is applied to the frame to generate a paired frame x(1) through the following equation:

x(1) = exp(Ψ1 p+ Ψ2 q) x(0) , (3.14)

where Ψ1 and Ψ2 are horizontal and vertical translation operators with wrap-around bound-
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A

B

CD

E

Figure 3.3: The problem with the Klein bottle surface. The line connecting the two
points intersects itself at E, and at this intersection the line is perpendicular to itself, making clear
why a single A operator that interpolates between two such points cannot globally stay on the
Klein bottle: each operator determines a single direction of movement from an initial condition.

ary conditions; such operators are easy to specify through the use of the Fourier shift theorem.
Figure 3.5(a) shows the center row of the horizontal shift operator used to generate the data.
After generating paired 15x15 images, the center 11x11 region in each image is extracted to
remove the effect of the wrap-around boundary condition which will not occur in natural
images.

The independence between vertical and horizontal translation is clearly evident in the
learned operators, though no one operator effects exclusively vertical or horizontal transla-
tion. Instead, all four operators translate diagonally, with two pairs of operators effecting
primarily vertical or horizontal shifts. Compare the second and fourth operators shown
in Figure 3.5(c) and (d), which primarily effect horizontal translation, to the structure of
the horizontal translation operator used to generate the data, shown in Figure 3.5(a). The
learned operators are structurally similar, but do not ring across the entire input patch.
Instead, operator 2 rings only to the right of the output pixel, whereas operator 4 rings
to the left. A similar asymmetry is evident in operators 1 and 3, the two that primarily
translate vertically. These asymmetries occur because the circular boundary condition in
the analytical operator was removed training data by clipping out the center 11x11 region.
Thus, although only a single operator is required to synthesize horizontal translation with
circular boundary conditions, when it is removed two are required: one for each direction.

3.1.3 Natural image sequences

As an intermediate step towards modeling time varying natural images, we investigate the
model’s ability to learn the response surface for a single complex oriented filter to a moving
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Figure 3.4: Approximating the surface of a Klein bottle. Interpolated paths estimated
along trajectories anchored to the surface at their endpoints. The red line shows the true surface;
the blue is the interpolation given by the model; the black is linear interpolation. Our model does
three times better than linear interpolation (as measured by MSE).

53



Chapter 3. Learning continuous transformation groups from image sequences

(a)

(b) (c) (d) (e)

Figure 3.5: Analytically specified and learned shift operators. (a) The weights con-
necting the center row of output pixels to the input pixels. Each box in the grid displays weights
for a single output pixel in frame t + 1, arranged according to the spatial position of the con-
necting input pixel from frame t. This function effects horizontal translation with wrap-around
boundary conditions. This operator and its vertical counterpart were used to generate data in the
translation recovery task. (b-e) The weights connecting the center output pixel in frame t+ 1 to
each input pixel in frame t, in each of the four Ψj operators. Note that in each learned function,
the ringing pattern is one sided. The model has learned four operators, because each operator
effects a shift operation with no boundary; that is, unlike the analytical operator pixels shifted
off the patch by these operators do not come back in the other side of the patch. This is due to
the masking operation used to remove the boundary condition in the data generation process.
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Figure 3.6: Learning transformations of oriented filter pairs across time. The orbits
of three three complex filter outputs in response to a natural movie. The blue points denote the
complex output for each frame in the movie sequence and are linked to their neighbors via the
blue line. The points circled in red were observed by the model, and the red curve shows an
extrapolation along the estimated trajectory.

image. A complex pyramid is built from each frame in a movie, and pairs of filter responses
1 to 4 frames apart are observed by the model. Four 2x2 basis functions are learned in the
manner described above. Figure 3.6 shows three representative examples that illustrate how
well the model is able to extrapolate from the solution estimated using the learned basis Ψ,
and complex responses from the same filter within a 4 frame time interval. In most cases,
this trajectory follows the data closely for several frames.

We apply the model to natural movies using the binary window, PCA decomposition,
and coarse-to-fine inference strategy described in Chapter 2. Rather than try to collapse the
space of operators by adding a weight decay term to the energy function, we assume that
the variety of transformations that occur between frames in natural movies are rich enough
that we will run into computational limitations long before we provide enough operators to
capture them all completely. Our energy function is:

E =
∑
t

1

2σ2
||x(t+ 1)− exp(

∑
j

Ψj cj(t)) x(t)||22 + γ ||c(t)||1 . (3.15)

We train on 10 frame sequences of frames, whitened and dimensionality reduced as described
in Chapter 2. Two models were trained: one with J = 9 and the other with J = 16. Both
models had P = 152, L = 100, and a binary mask along a one pixel border. The parameters
learned in these models are shown in Figure 3.8, and contours of equal log-probability between
the MAP estimated coefficients for two basis elements are shown in Figure 3.9. In contrast
to the operators learned in the linear model of Chapter 2, none of the operators learned in
the continuous transformation models have spatially uniform effects. Instead, they either
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This figure must be viewed in a web browser.
Please view the effect of each transformtion basis element via the following links:

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8 Ψ9

Figure 3.7: Exploring the effect of the learned Ψj operators. The following movies
show the effect of eachj Ψj basis function, as cj is scanned across a range corresponding to
its empirical distribution. The operator is applied to three different types of data, shown in
four separate panels. Two of these panels are natural image patches. In the upper right panel
are individual Fourier components, which have a regular structure that covers the entire patch,
making it easier to understand the effect of the transformation. The lower left panels contains
pink noise, which is colored by applying the unwhitening matrix to white Gaussian noise. Many
of the basis elements cannot be characterized by a single type of effect, though there is often
a dominant one. Ψ2 seems to perform vertical translation and some deformation. Ψ3 effects
vertical translation in the upper part of the patch, and horizontal translation in the lower part. Ψ4

effects horizontal translation and some rotation. Ψ7 is dominated almost entirely by horizontal
expansion. Ψ8 performs horizontal translation and some rotation. Ψ9 performs almost exclusively
rotation.

become localized to a certain region, have an effect that gradually changes across space,
or some combination of these two. The effect of these operators is easiest to visualize by
applying them to a static natural scene and generating a movie; unfortunately, this is not
easy to capture in paper form so Figure 3.7 links to movies of it that must be viewed in a
web browser. It is clear that while translation motion has been learned, because it can be
represented so compactly in just two operators, it does not dominate what they learn, which
is a rich, diverse set of image distortions.

3.2 Factoring with continuous transformations

In Section 2.3, we introduced a general, two component form for factorization models, then
explored specific choices for each component: a first order Taylor approximation for the
transformation component, and a sparse coding model for the invariant image component.
In this section we follow a similar progression, but explore different choices for each of
the components. For the transformation component, we use the continuous transformation
model described in Section 3.1, and introduce a new, group sparse coding model to describe
the underlying invariant image.
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 3.8: Basis functions learned in a continuous transformation model with
J = 9. (a-b) Two of the nine continuous transformation operators learned from natural movies.
Strikingly, not a single one of these nine learned operators effect the same transformation at each
pixel: every function has a spatially varying pattern. (c-d) The weights for two strongly connected
output pixels from two different basis elements. These are examples of a common form of weight
patterns learned in many of the functions. (e) The weights for two output pixels taken from the
same function with a large amount of variability across space to the transformation effected by
it. The two shown output pixels are spatial derivatives but of different order and orientation.
(f-g) Summaries of the spatial variability effects in two of the learned functions. (f) The nine
sets of output pixel weights shown seem to produce an expansion or contraction, since the spatial
derivatives flip orientation by 180 degrees across the center output pixel. (g) The nine sets of
output pixel weights show seem to produce a rotation, as the orientation of the spatial derivative
in each output pixel changes smoothly from the lower right to upper left corners of the output.
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(a) (b)

Figure 3.9: Joint dependencies between continuous transformation basis elements.
(a) In a pair of functions taken from the model displayed in Figure 3.8, joint histograms of MAP
estimates and their contours of equal log-probability are plotted. The prior (not shown) has
diamond shaped equal log-probability contours, with the points of the diamond aligned to the
axes. In contrast to the linear transformation model shown in Figure 2.2, here we see a joint
distribution that is fairly close to the shape of the prior. We do not see any basis elements that
have one-sided marginals: the coefficients for each basis element are approximately equally likely
to be positive or negative. (b) Four joint histograms of coefficients from a randomly chosen
subset of basis elements learned in a larger model, with J = 16. Nearly all pairs of coefficients
have joint histograms that are roughly symmetric and factorial Laplacian. The histograms look
more elliptically symmetric than diamond-shaped, which suggests that an elliptically symmetric
sparse prior would be a better fit to the data.
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3.2.1 Group sparse coding

Group sparsity refers to models in which the activities of groups of variables inhibit each
other and themselves, but the singleton activities within the groups do not. The activity of a
group is analogous to that of a complex cell in V1 – the activity of any cell with membership
causes the group to become active. Group sparse coding is best understood as the following
bilinear factorization model:

xl =
∑
jk

Γljk cjk dj + nl , (3.16)

though by imposing some carefully chosen constraints, the parameters can be learned in an
equivalent linear model. The bilinear model shown in Equation 3.16 has structure linking
each dj variable to a group of cjk variables; the size of this group is K. Indices j ∈ {1, . . . , J}
and k ∈ {1, . . . , K} address basis vectors across and within groups; thus setting K = 2,
J = 100 would produce 100 groups with 2 elements each. For notational convenience, we
denote a specific group of size K by cj, and also denote the k-th element of all J groups by
ck. Some degrees of freedom are removed from the model by imposing positivity on the dj
variables, and angular structure on the ckj variables. For K = 2, this angular structure is
specified by these constraints:

c1j = sin(θj) (3.17)

c2j = cos(θj) . (3.18)

That is, both variables can be described by a single angle. We can generalize these constraints
to larger K through the use of Euler angles, and the introduction of K−1 angular θ variables.
The formulas given above denote the base case (K = 2) in a recurrence relation. To generalize
the model to larger K, we use the following recurrence relation:

c
(K)
kj = sin(θKj) c

(K−1)
kj 0 < k < K (3.19)

c
(K)
kj = cos(θKj) k = K . (3.20)

Under these constraints, each of the cj vectors with K elements is generated from K − 1
angles, enforcing that for all settings of the underlying θ variables, each of the resulting cj
vectors lies on the surface of a K-sphere. Equivalently, the product of each cj vector with
its corresponding dj can be viewed as a factorization of a zero-centered coordinate in a K-
dimensional space into a set of K − 1 angles cj and a non-negative radius dj. Interestingly,
this is a multi-angle generalization of the magnitude and phase factorization of [Cadieu and
Olshausen, 2009]. By imposing a sparse prior on the magnitude variable only, we endow the
model with the ability to learn relevant subspaces for coding the data, rather than just basis
vectors. The subspaces that are selected to code a given data item should now give a coarse
scale identification of its content, while the position within each subspace specifies finer level
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details about its appearance. The energy function corresponding to this prior can be written
concisely as follows:

E = ||x−
∑
k

Γk (ck � d)||22 + λ ||d||1 , (3.21)

where � denotes element-wise multiplication. Although our derivation of this model began
with the assumption that x would be a bilinear function of the d and cj variables, due to
the angular constraints we have chosen, there is a simpler, linear energy function that is
equivalent and thus far easier to optimize:

E = ||x−
∑
j

Γj aj||22 + λ
∑
j

||aj||2 . (3.22)

where
akj = ckj dj . (3.23)

Additionally, there is a simple equality that will recover the underlying cj and d variables,
given the aj solution:

dj = ||aj||2 (3.24)

ckj =
akj
dj

. (3.25)

Note that ckj is only defined if the magnitude of the group is non-zero. This form of sparsity
is based on the model of [Hyvarinen and Hoyer, 2000] but also known in the statistics
community as group Lasso [Yuan and Lin, 2006]. Under this convenient simplification, an
image in our model x ∈ RL is generated from a linear super-position of vectors zj plus i.i.d.
Gaussian noise n,

x =
∑
j

zj + n , (3.26)

where, each vector zj is constrained to lie within a learned subspace; that is,

zj = Γj aj . (3.27)

There is a practical matter we must address before optimizing this model using MAP-EM.
Due to the MAP approximation, there is a degeneracy in the learned solution: the model
prefers to have all vectors in each subspace point in the same direction! The reason for this
can be seen by considering the case where one vector in a subspace points in exactly the right
direction as a data item we would like to reconstruct, but the others do not. In this case, the
energy can always be reduced by distributing load from one coefficient onto many, and thus
when only one element is used, the learning gradient will steer unused vectors in the subspace
towards the vector that was used. Unfortunately, without maintaining the full posterior in
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the E-step, this effect results in a positive feedback loop and every subspace collapses to
point in a single direction. As is often the case when optimizing models with MAP-EM, we
are forced to make a slight adjustment to our model to avoid this degeneracy. One solution is
to interdigitate stochastic learning updates with an orthonormalization operation applied to
each subspace [Hyvarinen and Hoyer, 2000], but this can be viewed as a projection onto a set
of auxiliary constraints that are hidden from the gradient, and can potentially fight against
it. Instead, we choose a convenient alternative energy that does not have this degeneracy:
simply apply the i.i.d. Laplacian sparse prior to the norm of the contributing vectors zj,
giving the following energy function:

E =
1

2
||x−

∑
j

zj||22 + λ
∑
j

||zj||2 . (3.28)

Since the sparse prior is placed on the norm of the contributing vectors zj, there is no
tendency for subspace vectors to align. Our model has a straightforward probabilistic inter-
pretation:

− logP (x|z) ∝ 1

2
||x−

∑
j

zj||22 (3.29)

− logP (zj) = − logP (Γj, aj) ∝ λ
∑
j

||Γj aj||2 . (3.30)

3.2.2 Learning phase transformations from image sequences

Composing the group sparse coding model with one continuous transformation model per
group yields the following factorization model:

x(t) =
∑
j

Γj exp(
∑
m

Ψmj emj(t)) aj(t) + n(t) . (3.31)

We fit the model parameters to natural image sequences one component at a time. First, we
learn a group sparse coding basis for natural image sequences by adding a stability prior to
the energy function in Equation 3.28:

E =
∑
t

1

2
||x(t)−

∑
j

zj(t)||22 + λ
∑
jt

||zj(t)||2 + γ
∑
jt

ḋj(t) . (3.32)

and optimizing it using MAP-EM. The result is a set of parameters Γj that is optimized to
natural image sequences, and produces the representation depicted in Figures 3.11 and 3.10(b).
Second, an over-complete exponential model with weight decay is learned to compactly de-
scribe how the MAP-estimated coefficients within each subspace change over time. This
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Figure 3.10: A stabilized image sequence representation, using group sparse cod-
ing. (a) After learning Γj, inference is performed on a 20 frame sequence of an 8x8 pixel movie.
The pixels x(t) (left) are encoded in terms of the product of a slow, non-negative amplitude dj(t)
(center) and unconstrained time-varying phase coefficients cj(t) (right). In this factorized form,
the representation is sparse and temporally stable. (b) The MAP-estimated reconstruction of a
20 frame 8x8 pixel natural image sequence.

is accomplished in the framework described in Equation 3.1.1, with a weight decay prior.
After convergence, 2-4 basis functions per subspace have significant norm. The resulting Ψj

operators are depicted in Figure 3.10(a). The next step, which is to jointly estimate the
ej(t) and aj(t) variables in Equation 3.31 using stability priors, is left for future work.

3.3 Discussion and concluding remarks

We have shown that it is possible to learn low-dimensional parameterizations of operators
that transport along the non-linear manifolds formed by natural images over time. Surpris-
ingly little work has previously been done on learning such high dimensional Lie groups.
Early attempts to model the manifold structure of images train on densely sampled point
clouds and find an embedding into a small number of coordinates along the manifold. How-
ever such an approach does not actually constitute a model, since there is no function for
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Figure 3.11: A compact representation for coding phase changes among groups
of basis functions. At the far left and right of the figure are trajectories generated by a
representative subset of the learned continuous transformation operators, using the 6 poles of
the unit sphere as initial conditions, super-imposed on each other in 3-space. Each operator
is shown in a different color, which corresponds to the color of the bar sitting above one 3x3
image adjacent to the trajectory. Each 3x3 image represents an operator, whose real values have
been converted to gray-scale intensities, scaled by the maximum absolute value and symmetric
around zero, which appears gray; positive values are lighter, and negative values are darker. The
group of corresponding lower-level features whose coefficients follow each trajectory are in the
row indicated by the arrow. The effect of a particular operator can be ascertained by animating
the sum of these three lower-level features multiplied by their coefficients as the coefficients are
modulated according to the trajectory. Most trajectories, when animated this way, result in the
translation of an edge in a direction perpendicular to the orientation of the group. Prominent
exceptions to this are the red trajectories of the second and sixth groups, which modulate the
contrast of their group.
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mapping arbitrary points, or moving along the manifold. One must always refer back to
original data points on which the model was trained – i.e., it works as a lookup table rather
than being an abstraction of the data. Here, by learning operators that transport along the
manifold we have been able to learn a compact description of its structure.

An advantage of having such a model-based representation is that it can be leveraged to
compute geodesics. One possible approach is to use a numerical approximation to the arc
length integral:

S =

∫ 1

0

||A exp(A t)||22 dt = lim
T→∞

T∑
t=1

|| exp(A
t

T
) x(0)− exp(A

t− 1

T
) x(0)||22 , (3.33)

where T is the number of segments chosen to use in the piecewise linear approximation
of the curve, and each term in the summation gives the length of a segment. We believe
that this aspect of our model will be of use in difficult classification problems, such as face
identification, where Euclidean distances measured in pixel-space give poor results.

Previous attempts to learn Lie group operators have focused on linear approximations.
Here we show that utilizing the full Lie operator/matrix exponential in learning, while com-
putationally intensive, is tractable, even in the extremely high dimensional cases required by
models of natural movies. A spectral decomposition of A is the key component that enables
this, and, in combination with careful mitigation of local minima in the objective function
using a coarse-to-fine technique, gives us the power to factor out large transformations from
data.

Appendix 3.A A circuit for MAP inference

Due to the fact that trajectories from the model can be extrapolated by integrating a linear
ODE, our model has an elegant interpretation as a possible mechanism by which the cortex
could make predictions about the world. Two circuits that operate on different time scales
are necessary. On a slower scale – perhaps 10 Hz – a state change prediction is accumulated
into an internal variable representing the predicted state. This circuit runs at a speed that is
matched to the speed at which predictions about the world are needed for taking actions. On
a faster scale, another circuit continuously descends an objective, optimizing the c variables
to produce state change predictions about the world. This inner loop needs to converge
before a new state of the world arrives. Specifically, what is not necessary is neural circuitry
for computing matrix exponentials or eigen-decompositions of matrix exponents. For this
reason, implementation of this system in a circuit would likely be strikingly computationally
efficient compared to the way we have described its implementation on a general purpose
computer.

The circuit shown in Figure 3.12(a) demonstrates the ‘feed-forward’ operation of the
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system: given some internal representation x of the state of the world and a setting of the
c variables that designates a direction of movement along the manifold at time t, the circuit
produces a predicted set of changes to the internal state vector.

ˆ̇xk(t) =
∑
lj

ψklj cj xl(t) (3.34)

These changes are accumulated in a second internal state vector which naturally decays, but
is ‘charged up’ by continuously integrating the output of the feedforward circuit in a loop.
Thus, this internal state vector maintains an exponentially decaying moving average of the
predicted state, by integrating predicted state changes. The rate of decay should be matched
to the statistics of the environment so that the window is not too large or small.

Figure 3.12(b) illustrates an interlocking circuit that runs on a time-scale faster than the
frequency with which new states of the world are delivered, and compares the predicted state
change with the observed change the world. By taking advantage of axonal, or electronically
imposed propagation delays, the next observed state can become available in coincidence
with the prediction. The circuit makes adjustments to the c variables, which modulate
couplings between the observed and predicted states, to correct prediction errors. On a
much slower time-scale than either of the two previous circuits, a similar third circuit (not
shown) makes adjustments to the Ψj variables, which represent the manifold structure of
states in the world.
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Figure 3.12: A circuit for computing MAP estimates in the frame-to-frame con-
tinuous transformation model. (a) Simulation of the continuous linear ODE predicts the
next sensory input. (b) Inference of c variables is accomplished by comparing the predicted state
change to the observed state change, weighted by Ψj.
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Factoring with uncertainty

A perfect model for the image formation process in the natural world in combination with a
rich prior that captures all of the regularities imposed by nature could be inverted with little
need to represent uncertainty in the latent variables. That is, causes would be disambiguated
with such certainty, that their posterior distributions would be well-represented by delta
functions. In Chapters 2 and 3, this idea is essentially built in to our inference process, which
represents posterior distributions by single samples taken at MAP estimates. However, we
have by no means proposed a perfect forward model of the image formation process; in fact,
we know at least one key assumption – a linear or bilinear image formation process – is wrong,
because of the prevalence of occlusion in the real world. This knowledge that our models
are only approximate motivates us to preserve uncertainty in full posterior distributions
over our latent variables. To the extent that these distributions differ from delta functions,
we know know there are flaws in our model; conversely, as our models improve we should
observe a corresponding tightening of these posteriors towards delta functions. Thus, the
preservation of uncertainty in posterior distributions provides a mechanism whereby we can
measure incremental progress in a natural way during a sequence of proposed model changes.

This chapter anchors the main ideas presented in Chapters 2 and 3 in a directed proba-
bilistic model. In Chapter 2 we introduced the idea of modeling short image sequences using
a first-order ODE, and longer sequences through the use of time-varying function in the
matrix exponent. Though the priors and learning schemes are both probabilistically moti-
vated, the models described in the previous chapters lack some of the properties we desire in
probabilistic models. For example, we would like to be able to measure the probability of the
model given some data, synthesize image sequences without running a complicated sampling
procedure, and visually compared image sequences synthesized from the model to the data.
In this chapter we introduce a model and framework that meets all of these requirements. A
straight-forward Monte Carlo algorithm for fitting the models is presented, which requires
virtually no tuning or modification as extensions to the model are added and experimented
with. First, we develop a bilinear model of static images. When fit to natural scenes, the
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model parameters learn sensible group dependency structures, and we show that the likeli-
hood of this bilinear model under hold-out data is superior to that of the mcRBM [Ranzato
and Hinton, 2010]. Image patches generated from a closely related linear-exponential model
exhibit the elongated structures, texture, and distribution of contrast that are characteristic
of natural image patches. Next, we extend the linear-exponential model to be causal in time,
developing ideas introduced in Chapter 2 and 3, but this time in a framework that preserves
full posterior distributions over the latent variables. We demonstrate how modeling progress
can be measured by evaluating the log likelihood of each model in this sequence of progres-
sively more complex models, and, lastly, we propose an extension to time-varying images
which links several static image models together using an auto-regressive process.

4.1 Factoring static images with uncertainty

We begin by showing how a sparse representation for static images may be factorized to
learn higher-order features of natural scenes. We propose two layers of representation: the
first layer is a sparse code; the second layer factors these sparse variables into two linear
decompositions. Importantly, we show how Hamiltonian Markov chain Monte Carlo sim-
ulations may be used to sample from the posterior, enabling learning of the second layer.
When trained on natural images, the first layer features learn oriented, localized bandpass
functions and the second layer features learn structural dependencies that produce more
elongated functions.

4.1.1 Bilinear model

Our first model of static images that preserves uncertainty in the posterior is a bilinear
factorization model, closely related to group sparse coding of Section 3.2.1. Rather than
having each basis function accompanied by one ‘phase’ variable, and imposing a fixed group-
ing structure by linking several phases to a common magnitude, in the following model the
entire grouping structure is learned in the model parameters by maximizing log likelihood.
The forward model is:

x =
∑
j

Γj cj d + n , (4.1)

where x ∈ RL is a vector of PCA whitened and dimensionality reduced pixels, each Γj ∈
RL×K is a basis element for a linear operator, n ∈ RL is mean-zero i.i.d. Gaussian noise
with variance σ2, and the variables c ∈ RJ and d ∈ RK

≥0 encode a latent representation of
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the image. The constraints that define our model’s density are:

c ∼ N (0, I) (4.2)

d ∼ E(1) (4.3)

x | c,d ∼ N (Φ a, σ2 I) , (4.4)

where
a = Θ c � Ψ d . (4.5)

E(1) denotes the exponential distribution with rate parameter one, and the operator �
performs an element-wise product. Here we have factorized the tensor Γj from Equation 4.1
into the product of three matrices,

Γjkl =
∑
m

Φlm Ψmj Θmk , (4.6)

reducing the model parameters from JKL to M(J + K + L), where M is the number
of factors coupling each l, j, and k. Factorizing tensors this way has recently been used
successfully by [Memisevic and Hinton, 2010; Ranzato et al., 2010a] to impose constraints
that are reasonably matched to structure in the data being modeled.

This density can also be viewed as a linear generative model,

x = Φ a + n , (4.7)

with a non-factorial prior over a, parameterized by Ψ and Θ. If Ψ = I and Θ = I, it takes
the form of a Gaussian scale mixture [Wainwright and Simoncelli, 2000]. We depart from
previous work by relaxing the assumption of a factorial distribution for a. The intent is that
Ψ learns cliques in a which tend to coactivate, and Θ learns to enforce consistency between
the elements in a by inducing, for example, sign agreement.

4.1.2 Model estimation

We wish to maximize the likelihood of our model given the data by estimating the parameters
Λ ≡ {Φ,Ψ,Θ}. Since c and d are latent, we use Expectation Maximization (EM), which
iteratively maximizes a lower bound on the log-likelihood, derived using Jensen’s inequality:

logP (x|Λ) ≥
∫
Q(c,d|x) log

P (x, c,d|Λ)

Q(c,d|x)
dc dd . (4.8)

The lower bound on the right hand side is called the expected complete log likelihood,
L(Q,Λ). In the case that Q(c,d|x) = P (c,d|x,Λ), L(Q,Λ) becomes the true log likelihood.
Using the superscript t to distinguish the parameters at each of the iterates, we alternate
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between maximizing L(Q,Λ) with respect to Λ (M-step),

Λ(t+1) = arg max
Λ
L(Q(t+1),Λ) , (4.9)

and updating Q(c,d|x) (E-step),

Q(t+1)(c,d|x) = P (c,d|x,Λ(t)). (4.10)

In the E-step we update samples from the distribution computed at the previous time step
Q(t)(c,d|x) using a Hamiltonian Monte Carlo sampler, described in Appendix 4.A. In the M-
step, we maximize the lower bound L(Q,Λ) with respect to Λ, which amounts to maximizing∫

Q(c,d|x) logP (x, c,d|Λ) dc dd . (4.11)

This is equivalent to minimizing the energy, E, averaged over the samples, since our density
is factorial over data items and the normalization factor Z is constant:

Λ(t+1) = arg min
Λ

1

B

B∑
b=1

E(qb) . (4.12)

We accomplish this using the L-BFGS algorithm [Byrd et al., 1995].

4.1.3 Model recovery

Before applying the model to real datasets, we first show that our learning algorithm can
recover model parameters used to generate artificial data. Some care must be exercised in
the choice of parameters to recover, because many choices belong to a class of equivalent or
near-equivalent solutions in the model parameters, making recovery impossible even when the
learning algorithm is working perfectly. To state this more precisely, the model parameters
are not identifiable, a fact that is true of almost every model that is sufficiently rich to
capture structure in natural images. For this reason we make the following choices: Φ = I,
the entries of Θ are drawn randomly from the Laplace distribution with scale parameter
1, and Ψ is set to have the following non-trivial, overlapping grouping structure: with half
as many d variables as c variables, we couple each d variable to three outputs of Θc by
activating three entries of each Ψ column, and setting the rest to zero. In rows with two
active elements, the active elements are set to 1/

√
2, otherwise they are set to 1, giving the

rows unit norm. The configurations used to generate data from the model are illustrated in
the first column of Figure 4.1. We set σ to 0.1, L, M and J to 16, and K to 8, then generate
2,000 samples using Equation 4.7.

Next, we estimate the model using our algorithm, starting from random initialization.
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Figure 4.1: Model recovery. 2,000 data samples were generated from the model by setting
the parameters as shown in the ‘True’ column, drawing from the priors for c, d, and n, then
generating x samples via Equation 4.7. The model parameters were then estimated by our E-
M algorithm, from random initial conditions. The ‘Estimated’ column shows the parameters
after 10,000 learning iterations. The ‘Difference’ column shows the difference between true and
estimated parameters.

The columns of Φ are set to random unit length vectors, Θ to I, and all the entries of Ψ are
set to 1/

√
K. Since there is a multiplicative degeneracy between the length of the columns

of Φ and the rows of Ψ and Θ, after every M-step we multiply by the appropriate factors
to maintain unit norm in the columns of Φ and the rows of Ψ. This does not affect our
algorithm in any way, but ensures that the estimated parameters will have comparable scales
to those used to generate the data. Figure 4.1 shows the parameters recovered after 10,000
iterations of E-M in the ‘Estimated’ column. (Most of the correct structure is apparent after
only 1,000 iterations.) Though imperfect, the estimation process does a remarkable job at
recovering the known parameters for this non-trivial example.
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4.1.4 Experiments on natural images

We train two bilinear models on 50,000 16x16 pixel image patches taken at random from 4,112
linearized images of natural scenes from the van Hateren dataset [van Hateren and van der
Schaaf, 1998]. The extracted image patches are first logged, and then mean subtracted.
They are then projected onto the top 128 PCA components, which retains 99.84% of the
variance of the original patches, and whitened by rescaling each dimension to unit norm. For
both models, L = 128 (the number of PCA components). The smaller model has J = 144,
K = 144, and M = 144; the larger has J = 256, K = 256, M = 256. We set σ to 0.1,
initialize Ψ and Θ to I, and Φ to random with unit norm columns, then run 40,000 iterations
of E-M using τ = 10, ε = 0.01, and 8 iterations of L-BFGS in the M-step, which takes about
two days on an 8-core machine. We use the same procedure to train a linear generative model
with a Laplace prior, for comparison. In this case, the only parameters are Φ ∈ RL×M and
we use M = 200.

The learned parameters for the large bilinear model are shown in Figures 4.2 and 4.3
(the smaller model learns something qualitatively similar). Each column of Figure 4.2(a)
shows 10 columns of Φ, organized into groups and sorted according to the strength of the
corresponding weight in a column of Ψ. The columns of Φ learn to be oriented, bandpass
functions. Interestingly, the spatial extent of each Φ basis element shrinks when the marginal
over a is allowed to be non-factorial. Since a single d variable can then control a whole
group of functions, the model learns to link together edges with similar orientation to form
elongated structures. This is evident in Figure 4.2(b), where the image component controlled
by several of the d variables is shown to produce an elongated structure, and one that is
significantly more complex than a Gabor. If Θc is set to be a vector of all ones, the averaged
group activations shown in Figure 4.2(b) are the image components contributed by a single
d variable. Notice there is significant variety among these groups, and that they capture
several properties of natural image patches, such as elongated structures across the entire
patch, and different types of oriented and non-oriented textures. These elongated structures
are less apparent in the samples from the bilinear model, which suggests that the exponential
prior activates too many d variables simultaneously. This could mean that a prior with more
mass at zero would yield a better model.

The coupling structure encoded by Θ can be visualized by displaying the columns of Φ
that correspond to the largest entries in each column of Σ = ΘΘT, which gives the covariance
of the variable f = Θc – a useful way to interpret Θ. In Figure 4.3, each displayed column
corresponds to a column in Σ, with the upper squares holding the bases with the strongest
corresponding Σ entries.
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(a)

(b)

Figure 4.2: Dependencies between basis functions learned in Ψ from natural images. (a) The 10
most positively coupled columns in Φ are shown for 32 randomly selected columns in Ψ (out of
256). Bases are weighted by their corresponding coupling strength in Ψ. (b) The average value
of all weighted bases. Note that these averages look strikingly similar to a natural image patch.
The fact that these averages seem to look more like natural image patches than actual samples
from the model suggests that the exponential prior on the d variables is not sparse enough.

(a)

(b)

Figure 4.3: Dependencies between basis functions learned in Θ from natural images. (a) The 5
most strongly coupled columns in Φ are shown for 32 randomly selected columns in Σ (out of
256). Bases are weighted by their corresponding coupling strength in Σ. (b) The average value
of all weighted bases. Note that, unlike for Ψ, the bases combine constructively, suggesting that
Θ is enforcing consistency and sign agreement.
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(a)

(b)

(c)

Figure 4.4: A subset of the learned parameters for the mcRBM (256) model. (a) Each of the
16 columns shows the receptive fields given by columns of the C matrix, connected through a
column of P, with the contrast scaled to reflect the strength of the connection. (b) The average
of the receptive fields pooled by the columns of P. (c) A subset of the columns of W, the ‘mean’
units.

4.1.5 Comparison to mcRBM

The mean and covariance restricted Boltzmann machine (mcRBM) [Ranzato and Hinton,
2010] is an undirected analogue of our directed bilinear model. The high quality of the
samples produced by the mcRBM has motivated the exploration of similar models [Courville
et al., 2010], and for these reasons it is a particularly relevant comparison. We train the
mcRBM using the marginal energy function EmcRBM as it was implemented in the released
code:

EmcRBM(x) =−
∑
k

log

(
1 + exp(

1

2

∑
m

Pmk
(Cm x)2

||x||22 + 1
2

+ bck)

)
−
∑
j

log
(
1 + exp(Wj x + bmj )

)
+

1

2σ2
xTx− xT bv , (4.13)

with parameters: P ∈ RM×K , C ∈ RM×L, W ∈ RJ×L, bm ∈ RJ , bc ∈ RK , bv ∈ RK , σ ∈ R.
We train two mcRBM models, both with L = 128. For the smaller model we use J = 144,
K = 144, M = 144; for the larger, J = 256, K = 256, M = 256. The learned parameters
are shown in Figure 4.4. We follow the training protocol described in the paper exactly,
save for one detail: instead of using CD-1, with a 20 leap-frog step Hamiltonian Monte Carlo
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proposal distribution, we train using CD-5, with the same proposal distribution. Initially, we
followed the training protocol exactly, but found that the resulting model assigned extremely
high likelihoods to spurious ‘pot holes’ in the state space. In particular, low- to no-contrast
patches were given likelihoods 50 orders of magnitude higher than patches with contrast. A
symptom of this is that when trying to sample from the trained model at equilibrium, the
sampler gets stuck in low-contrast states. The use of CD-5 ameliorates this behavior, but
samples drawn from the models we learned using CD-5 do not match the contrast distribution
of natural images as well as those drawn from models we learned using CD-1.

4.1.6 Linear-exponential model

In our bilinear model, the scale variable d followed an exponential distribution. This choice
was made mainly for two reasons: it guarantees positivity, which ascribes some structure
to its symbolic meaning, and has a heavy tailed shape, which is better matched to the
statistics of natural scenes than a one-sided Gaussian or Chi distribution – we determined
this empirically, through likelihood measurements. Another distribution that satisfies these
properties is the log-Normal distribution. Such a variable can be obtained by exponentiating
a normally distributed variable. Thus, by substituting exp(d) for d in our forward model for
a, and changing the prior over d, this model is also easy to explore using our sampler. To
determine the appropriate scale for the exponent, we also learn an addition set of parameters,
Ω ∈ RK×K , in the following model:

c ∼ N (0, I) (4.14)

d ∼ N (0, I) (4.15)

x | c,d ∼ N (Φ a, σ2 I) , (4.16)

where
a = Θ c � Ψ exp(Ω d) . (4.17)

4.1.7 Evaluation

Separately, we have developed a practical, robust method for log likelihood estimation that
is based on Annealed Importance Sampling [Neal, 2001]. We use this technique to evalu-
ate the log likelihood of the bilinear model, the linear-exponential model, and a few other
relevant models. Table 4.1 gives this comparison, showing that our model is a significant
(> 10 nat) improvement over the mcRBM. These results were obtained using a Gaussian
proposal distribution in AIS, and 105 intermediate distributions in which the target and
proposal distributions were mixed linearly. The numbers reported favor the mcRBM some-
what, because experiments using 105.5 intermediate distributions in the smaller (144) models
result in slightly higher likelihoods for the directed models, but do not change the likelihoods

75



Chapter 4. Factoring with uncertainty

Model Avg. log likelihood

directed linear, Laplace prior −167.45± 8.19
mcRBM 144 −147.00± 8.44
mcRBM 256 −142.40± 8.31
directed bilinear 144 −136.12± 9.32
directed linear-exponential 144 −135.64± 9.68
directed bilinear 256 −132.02± 9.19

Table 4.1: Model quality comparison. Average log-likelihood is measured on a hold-out
set of 100 image patches. Although the standard deviation of the average log-likelihood is high,
the relative ordering is still significant because all models were evaluated on exactly the same
image patches. The labels 144 and 256 refer to specific model configurations described in the
main text.

significantly for the mcRBM. The reason for this asymmetry in the effect of a larger number
of intermediate distributions is because for the mcRBM, AIS is used to estimate a single
normalization constant, whereas in the directed models we use it to integrate out the latent
variables for each test image. Thus, in the former case all test images contribute to a single
estimate, and thus it becomes more accurate with fewer intermediate distributions; the latter
case effectively requires an independent estimate for each test image. However, because the
improvement is minor, does not change the relative ordering, and requires a significantly
greater amount of computation, we report all results using 105 intermediate distributions.

It is important to note that our training scheme for the mcRBM may not have been
optimal. While we have complete confidence in the accuracy of the results obtained using
CD-5, the quality of the model would likely improve if we were to use a method specifically
designed to eliminate the pot-holes we noticed, such as persistent contrastive-divergence
(PCD) [Tieleman, 2008]. For example, in the convolutional version of the mcRBM [Ranzato
et al., 2010b], the authors use an alternate training scheme with persistent samples from the
model [Tieleman and Hinton, 2009].

In Figure 4.5, we provide samples from our models for visual comparison. The most strik-
ing observation from the samples is that while the linear-exponential model is only slightly
more likely than our original bilinear model, achieving −135.64±9.68 nats, compared to the
bilinear model’s −136.12± 9.32, the samples generated from it look much more like natural
image patches than those generated from even a much larger bilinear model. Thus, we have
not sacrificed any measurable likelihood by making this change to the prior distribution over
the d variables, and the samples have clearly improved, which is encouraging. Additionally,
since all of the latent variables in the model now have Gaussian priors, it is easy to chain
them together causally through time.
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(a) Bilinear, factorial (b) Bilinear

(c) Linear-exponential (d) Natural image patches

Figure 4.5: A comparison of samples drawn from the learned models, shown in the original space
after projecting through an unwhitening transform. (a) Bilinear model (256) with Ψ and Θ
locked to I. Samples were drawn from the priors for c,d and n, then used to generate from
the model according to Equation 4.7. (b) Ψ and Θ were learned. (d) Linear-exponential model
(144) in which Φ,Ψ,Θ and Ω were learned. (c) Natural image patches from the data set. Note
that the samples from the linear-exponential model have many similar properties to the actual
image patches: the distribution of contrasts, and the existence of both elongated edge structures
and rich textures covering the entire patch.
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4.2 Factoring time-varying images with uncertainty

Having introduced a framework for preserving uncertainty in full posterior distributions over
our latent variables in a model of static natural images, we now return to the subject of time.
In Chapter 2, we achieved our goal of temporal stability by adding a term to our model’s
energy function of the form ||ȧ||22. In this final section, we describe a different approach,
which is to encode the goal of temporal stability in a way that maintains causality in time.
In some sense, the difference between these two approaches is a bit philosophical, because
both are valid ways of encoding probability distributions. However, going forward we prefer
the directed approach because in this case, inference under the model has the straight-
forward interpretation as the recovery of causes. The main reason this is our goal is because
we believe a representation that perfectly encodes the causes will be most parsimonious.

We derive our time-varying model by linking together chains of latent variables in time
using an AR(1) process. Because all of the latent variables in the linear-exponential model
are Gaussian, this is extremely straight-forward. The chain on the c(t) variables is given by:

c(0) ∼ N (0, λ2 I) (4.18)

c(t) | c(t− 1) ∼ N (λ c(t− 1), I (1− λ2)) . (4.19)

Likewise, the chain on the d(t) variables is given by:

d(0) ∼ N (0, γ2 I) (4.20)

d(t) |d(t− 1) ∼ N (γ d(t− 1), I (1− γ2)) . (4.21)

These AR(1) processes have been parameterized such that they have marginal covariance I.
The parameters λ and γ must be chosen such that |λ| < 1 and |γ| < 1. Values closer to one
encourage temporal stability in the posterior distributions over c and d. The observation
process is essentially as it was in the static image case:

x(t) | c(t),d(t) ∼ N (Φ a(t), σ2 I) , (4.22)

where
a(t) = Θ c(t) � Ψ exp(Ω d(t)) . (4.23)

Our goal in this model is to replace the undirected stability constraint from the previous
chapters with one that is causal in time, and we stop short of exploring this in combination
with a continuous transformation model – this will be a direction of future work.
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4.3 Discussion and concluding remarks

We have introduced a flexible, hierarchical bilinear model and a straight-forward Hamil-
tonian Monte Carlo algorithm for learning its parameters. In contrast to MAP-EM (used
throughout Chapters 2 and 3), which collapses posteriors to delta functions, this algorithm
allows us to preserve uncertainty in the posterior distributions over latent variables. Pre-
serving uncertainty in this way reflects the fact that we do not believe our forward models
for image formation are perfect, and so a given image should not necessarily induce a partic-
ular representation in the model, but rather a hedged bet over possible representations that
illuminates those that are most probable.

We have shown that when optimized, our bilinear model learns groupings of oriented,
localized, bandpass features. While the constituent members of each group are related in
these properties, there is considerable overlap between groups: many lower-level features
participate in several groups, in contrast to the structure prescribed by group sparse coding
(Section 3.2.1). Performing inference in this model factors an image into two distinct types
of causes: group activations, and phase relationships between the lower-level features in
each group. An important distinction between this type of factorization and that which
is described in Chapters 2 and 3 is that here we have not yet captured a description of
the time-varying transformation that maps between an underlying invariant and its visual
appearance in the scene.

Although it is achieved in a simplistic sense, without the benefit of learning parameterized
representations of frame to frame transformations, this type of two component factorization
is achieved in our subsequent linear-exponential model for time-varying images. The main
goal of this model is to achieve perceptual stability in the latent representation, in combi-
nation with causality in time and the preservation of uncertainty, and it succeeds in that
regard. Adding learned transformation representations to this framework, and measuring
their improvements to the log-likelihood of the model will be a direction of future work.

Appendix 4.A Hamiltonian Monte Carlo

In order to sample P (c,d|x,Λ), we use a variation on a Langevin dynamics sampler with
partial momentum refreshment. The underlying technique was introduced in [Horowitz,
1991], and is clearly presented in [Neal, 2010] (Sections 5.2 and 5.3). We combine the
variables we wish to sample from as q ≡ {c,d}, and refer to q as our ‘position’ variables.
We introduce auxiliary ‘momentum’ variables p ∼ N (0, I) – one for each q. The distribution
of interest can be recovered by sampling from the joint distribution over q and p,

P (q,p|x,Λ) = P (q|x,Λ)P (p) , (4.24)
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and then marginalizing over q,

P (q|x,Λ) =

∫
dpP (q,p|x,Λ) . (4.25)

We sample from the joint distribution P (q,p|x,Λ) by alternating between simple updates
for the momentum variables, and Metropolis updates in which a new state is proposed by
computing a trajectory according to Hamiltonian dynamics. The simple momentum update
is

p′ = −
√

1− β p +
√
β r, (4.26)

where r ∼ N (0, I), and β ∈ [0, 1] is a randomization rate. If p is a univariate Gaussian, then
p′ will also be a univariate Gaussian, as required. We set β so as to randomize half of the
momentum power per unit simulation time under the Hamiltonian dynamics, allowing the
samples to traverse extended paths before their momentum is replaced. If ε is the duration
of a single simulation step, the operation in Equation 4.26 is repeated T = 1

ε
times per unit

simulation time. We set the fraction of the original power remaining after T steps to 1
2
, and

solve for β,

β = 1− exp (ε log (1/2)) . (4.27)

The Hamiltonian for the system is the negative log likelihood of the joint distribution
over q and p,

H(q,p) = E(q) + pT p + logZ , (4.28)

where Z is a normalization constant. E(q) is the contribution from P (q|x,Λ),

E (q) =
1

2σ2
||n||22 +

1

2
||c||22 + 1Td , (4.29)

where the noise n is defined in Equation 4.7, d ≥ 0, and 1 is the vector of all ones. The
dynamics associated with the Hamiltonian are

q̇ =
∂H

∂p
ṗ = −∂H

∂q
. (4.30)

We numerically approximate these dynamics for a time ε using a single step of a leapfrog
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integrator (followed by negation of p so the update is reversible),

p(t+
ε

2
) = p(t)− ε

2

∂E

∂q
(q(t)) (4.31)

q(t+ ε) = q(t) + εp(t+
ε

2
) (4.32)

−p(t+ ε) = p(t
ε

2
)− ε

2

∂E

∂q
(q(t+ ε)) , (4.33)

which is particularly well suited to sampling scenarios since the update step is reversible and
symplectic. Typically, the new position q(t+ ε) and momenta p(t+ ε) are then accepted or
rejected based upon a standard Metropolis-Hastings criteria,

Paccept = min[1, exp (H(q(t),p(t))−H(q(t+ ε),p(t+ ε)))] .

If the state is rejected, the position and momentum are reset to their value at the beginning
of the trajectory. If the dynamics in Equation 4.30 are followed perfectly, Paccept = 1.
Rejection therefore compensates for discretization errors during integration. Sampling is
thus performed by repeating the following steps τ times:

1. Update the momentum p using Equation 4.26.

2. Update the position q and momentum p using Equations 4.31-4.33.

3. Use Equation 4.34 to either accept the update from step 2, or revert q and p to their
state after step 1.

Rather than sampling from the posterior repeatedly for each item, we load an entire batch
of data into memory, and evolve one particle for each data item simultaneously. This allows
us to avoid a significant number of burn-in steps that would be required if we initialized
particles with randomized positions and momenta on each iteration of E-M. The sampling
algorithm is initialized once, at the beginning of learning, by loading a large set of data
{xb}b=1..B, allocating space for one particle (represented by a position and momentum) per
data item, and initializing {q,p} by drawing from N (0, I). The sampling time-step ε and
the number of sampling iterations per learning step τ are chosen at the beginning of learning
and held fixed. In our experiments we set ε = 0.01 – which is small enough to cause only a
slight discretization error – and never check M-H or reject. Since we measure the likelihood
of the solutions we obtain, we know from experiments that this approximation does not
reduce their quality, and in fact decreases the number of EM iterations required.

Since the exponential distribution is defined only over the positive real interval, there
remains the practical matter of handling the constraint at zero, which we accomplish by
negating the position and momentum for d variables when their position becomes negative
after running a step in the dynamics, as described in [Neal, 2010] (Section 5.1 and Figure 8).
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Conclusion

The main idea put forth in this thesis is that invariances can be learned from the statistics
of the visual world by fitting a two-component model to natural movies. In the abstract,
the first component is a representation of an underlying invariant that serves to contain all
information about an object that is necessary to generate its visual appearance. The second
component represents the configuration of the object and its environment, and transforms
the first component to produce the object’s appearance according to natural viewing circum-
stances. An important difference from the way some other researchers have approached this
problem is that in my approach, both of these model components have latent variables that
explain each other away. That is, the latent variables cannot be inferred by a mechanism
that computes in two separate, independent processing streams. To emphasize this point,
consider the following visual question: “Is the appearance due to the illuminate or the shape
of the object?” Because the solution for one latent variable will change the solution for the
other, they must interact.

In Chapter 2, I gave a specific embodiment of this idea in the framework of probabilistic
bilinear models. From the footings of a forward model for image sequences that is based on
the solution to a linear ODE, I derived a two-component model that captures the idea of a
continuously transformed underlying image invariant. As a start, this continuous transfor-
mation model was approximated with a first order Taylor expansion, which I fit to natural
image sequences by learning model parameters that capture statistical regularities in how
these underlying invariants are transformed during natural viewing. From the learned solu-
tion, it is evident that a more compact representation would be attained were the first order
Taylor approximation forgone; this hypothesis is shown to be correct in Chapter 3. In Chap-
ter 4, I construct a learning framework wherein full posterior distributions over the causes
of an image sequence are maintained, and develop a new sequence model that is causal in
time.
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5.1 Summary of results

The main result from Chapters 2 and 3 is that expansions and contractions, rotations, and
other complicated distortions that occur in the dynamics of movies can be captured in
learned model parameters, and because they represent more precise motion priors than have
previously been proposed, these models have the potential to achieve gains in video coding
and optical flow estimation. They also succeed in providing stabilized, more symbolic rep-
resentations of movies that will likely be useful in further, higher-level vision computations.
In Chapter 4, my main result is image patches that the proposed linear-exponential model
of static images generate, which exhibit many of the structural properties of natural images.
Additionally, I provide empirical evidence – likelihood measurements – indicating that the
linear-exponential model of static images is a better model of natural image patches than
the previously most competitive contending model trained using contrastive divergence.

5.2 Future directions

Integrating a continuous transformation component into the hierarchical factorization model
described in Chapter 4, yielding a two-component model, is the next most logical extension
to pursue in the future. Because training transformation models on videos has always been
extremely computationally intensive, I would also like to investigate several approaches for
speeding it up:

1. Reduce the number of parameters in the basis tensor Ψj used in Chapters 2 and 3. One
obvious way to do this is as a factored decomposition using three matrices, as done in
the static image model described in Chapter 4. Since I can compare likelihoods, I will
know exactly how much is sacrificed by the factored approximation to the full tensor.
However, it would be better to use a representation that leverages the structure that
has been learned. One way to do this would be to generate each of the rows of each
Ψj matrix from a common basis.

2. Stop using E-M. Instead, simply treat all of the model parameters as latent variables,
and sample them. I have begun doing this in static image models and it seems to
result in significantly faster learning, especially at the beginning. Also, it simplifies the
learning algorithm considerably.

3. Reduce the number of particles the sampler is required to evolve. One way to do this
that I have been experimenting with recently in models of static images is to train using
image sequences from movies, and evolve in the sampler only a single particle per movie
patch sequence, instead of one particle per movie patch frame. Similar to learning with
‘mini-batches’ of data, where a partial M-step is computed from only a subset of all the
data each learning iteration, the premise of this idea is that the posterior distribution
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implied by a frame from a sequence is highly similar to the posterior implied by its
sequential neighbor. Thus, after exchanging a frame for its neighbor, the particle
representing a sample from the posterior can return to equilibrium after only a few
integration steps of the Hamiltonian.

Though they have not been included in this document because I wanted it to focus ex-
clusively on models of natural time-varying images, I have also applied many of these models
to classification tasks, with favorable results. Especially in the context of small numbers of
labelled training examples, learned parametric models that describe the transformation from
an underlying invariant to a particular exemplar show promise, and I would like to develop
these ideas further. One aspect that is currently lacking is a fully probabilistic classification
mechanism that outperforms the results I am currently able to obtain by inferring MAP es-
timates which are then used in a support vector machine. I would like to better understand
what is lacking from the forward model that prevents the same level of performance from
being attained by simply inverting it.

The existence of the software framework I developed over the course of my studies 1

makes it markedly easier to leverage the ideas I have presented in the context of specific
tasks that are typically used to measure progress in the field. Using my motion model to
estimate optical flow seems like a promising direction to pursue, and I would like to show that
the deformable motion models I have developed are able to characterize the distributions
of motions in natural movies more precisely, and over much larger spatial extents than
the smoothness priors built in to most optical flow methods. However, the most advanced
probabilistic models for optical flow incorporate other advantageous details that my model
lacks – such as a layered model of occlusion – and thus it might make more sense to integrate
my motion model into an existing method. Another idea is to go in the opposite direction,
and integrate a layered occlusion model into my own framework. Expressive power of the
model could then be freed to learn additional structure in the data. An occlusion model
would also implicitly provide a symbolic representation of depth, which is an important
grouping cue.

One last direction that I have wanted to pursue since the beginning, which has really
only now been made possible using the sampler described in Chapter 4, is to stack the
model and attempt to learn to factor (again) a factored representation like the one depicted
in Figure 2.9. Since factorization models are non-linear functions of their latent variables
even in forward (generative) mode, the representation learned by stacking two factorization
models on top of each other would likely capture richer, more interesting types of invariants.
However, there are many details to be worked out in terms of exactly how to structure such
a hierarchy.

1Available in my github repository.
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