
Reverse Execution With Constraint Solving

Raluca Sauciuc
George Necula

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-67

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-67.html

May 25, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Reverse Execution With Constraint Solving

Raluca Sauciuc
University of California, Berkeley

sauciuc@cs.berkeley.edu

George Necula
University of California, Berkeley

necula@cs.berkeley.edu

Abstract
The typical debugging experience is an iterative process of setting
breakpoints, running the program and inspecting the state until the
source of the bug is identified. When re-executing the program is
not guaranteed to reproduce the faulty execution path, the final state
and the system logs can be used to mentally construct a model of
the execution. By contrast, debugging by going backward in time,
i.e. the ability to reverse-execute the program, can be considered
the most intuitive and easy-to-use alternative.

We show an efficient approach to reverse execution, which sac-
rifices the full replay ability in favor of portability and a lighter
memory footprint. We treat the execution trace as a set of con-
straints, and use an SMT solver to navigate the trace and restore
data values. Depending on how the solver performs on constraint
sets corresponding to multiple test runs, we decide where to instru-
ment the code to save intermediate values, for a faster replay.

1. Introduction
Consider the classic scenario of running into an exception and gen-
erating a crash report. The contents of the stack trace are somewhat
informative with respect to the program path leading to the excep-
tion, but there is no information about the methods whose execu-
tion already finished. The problem is exacerbated in an event-driven
application, where the stack ends at the dispatcher method which
called the event handler; there is no information about the execution
of previous event handlers. The stack trace can be accompanied by
a partial or full heap dump, providing the values that some of the
program variables held when the crash occurred. If logging was en-
abled, the relevant system logs can also be attached. In a nutshell,
the crash report provides clues about the execution, in terms of both
control- and data-flow, leaving the developer to perform detective
work in order to identify the exact cause of the crash. In many cases,
this collection of clues is not sufficient to pinpoint the problem.

Ideally, we would like to perform a post-mortem analysis to
recreate the program state at the crash, and then to step through the
execution, move both backward and forward, insert breakpoints and
be able to inspect the data values at different points in the execu-
tion. Consequently, we need a systematic way to collect the clues,
and an automated technique to regenerate and navigate through that
particular execution. Both deterministic replay and reverse execu-
tion promise to deliver at least a subset of these goals, and provide a
very intuitive approach to debugging. Deterministic replay collects

[Copyright notice will appear here once ’preprint’ option is removed.]

program inputs as clues, while reverse execution collects many in-
termediate values and the exact control-flow information. Both al-
low navigating the execution trace, optimizing for one preferred
direction.

When we consider the current practice of debugging JavaScript
or mobile applications (for Android or the iPhone), we see that the
manual, detective work, is still the norm. Developers look at stack
traces, heap dumps, and insert a flurry of print statements through-
out the code to later analyze the logs. These long-running, event-
driven applications raise new challenges in the way of automated
techniques. Their interface is not the low-level OS syscall, but a
complex API such as the DOM, where objects can cross bound-
aries. They rely heavily on library code, most of which the de-
veloper has little knowledge about and cares less to trace through.
They run on a variety of platforms, both in terms of software (dif-
ferent browsers, different third-party libraries) and hardware. Most
replay systems are restricted to a subset of the system call inter-
face, or particularly tuned toward certain sets of libraries such as
MPI, or tied to a checkpointing library that works only on some
platforms. Long-running, interactive applications tend to generate
massive amounts of logged data, which makes reverse execution
as provided by gdb7 or UndoDB [3] unfeasible. Even the log of
the last two seconds of execution might only contain unuseful in-
formation, such as the repaints triggered by a timer function in the
GUI.

We advocate a lightweight application-level tracing and reverse
execution technique for Java. We currently target stand-alone ap-
plications, but we plan to extend the support to Android applica-
tions in the future. We do not promise faithful replay, but offer the
exact, maybe truncated, control-flow information and partial data-
flow information. The trace can be stepped through both backward
and forward. At each point in the trace, the developer can inspect
the object graph starting from the roots, and check the values cor-
responding to the program state at that particular moment in the
execution. For efficiency reasons, some of these values will be re-
generated on-the-fly with the help of an SMT solver, and we guar-
antee that our replay is path-deterministic, i.e. the computation will
end in the same final state. Our technique will log the necessary
data in the background. When an exception is being raised, or sim-
ply when the user chooses to report an incorrect execution, the trace
can be transmitted to the developer and analyzed offline.

To summarize, our contributions are as follows:

• we show how to use an SMT solver to efficiently regenerate the
intermediate values on-the-fly, based on the final state; unlike
other reverse execution methods, we can handle non-primitive
types such as arrays and objects.
• we provide insights into what types of analyses can be used

to identify which data values, if saved, can make replay more
faithful, i.e. how to automatically choose the clues.
• we assess the effectiveness of CVC3, Yices and STP for our

benchmarks and our approach in general; we show how an in-

1 2011/5/19

strumented SAT solver can be used to guide the developer to
insert state saving code, in a way that is amenable for automa-
tion.

2. Related Work
When summarizing the huge body of work related to reverse ex-
ecution, we will consider the following central question: how is a
destructive assignment statement x := e handled? The previous
value of x can be restored from the log, or it can be recomputed
either from earlier or future states. Checkpointing is an orthogonal
aspect that can be used to optimize the running time or the amount
of saved state.

State Saving The straightforward approach to reverse execution
is to save every bit of data that is overwritten. The GNU debugger
gdb [1] implements this technique for its Process Record target.
For each executed statement, gdb saves the program counter and
the previous values of the affected registers into an execution log,
which can be later saved to disk. The total size of the log is limited
by default at 200,000 instructions, after which it behaves like a
truncating log, but it can also be set to never truncate. Because
of its simplicity, this scheme works very well in practice, even
in the presence of multithreading. A reverse step is instantaneous
because the log provides the values to be restored. The developer
has some control over the size of the execution log, which can be
set to never grow too large (if, say, only the last million instructions
are to be reversed). Multithreading is handled by remembering the
thread switches inside the execution log; when reverse stepping, it
is enough to observe that a thread switch happened and to switch
the thread context and proceed with restoring older values inside
this context.

In a similar vein, there have been many attempts at providing
application-level reverse execution via state saving [10, 11, 13,
25]. Some of them recognize easily-invertible statements such as
increments and decrements and use them for restoring previous
values. The advantages of working at the source level include
being able to eliminate libraries from the tracing thus saving less
in the execution log. Also, a source-to-source translation can be
used to derive a "reverse" program that conceptually goes through
the statements backwards, by reading and restoring older values
from the log. This program can be used with a regular debugger
to provide the effect of reverse execution debugging. However,
targeting a higher-level language such as Java makes the problem
harder, since objects now have to be marshalled into the execution
log. Using reflection is not enough, as some of the fields may be
marked private, so hooks have to be inserted into the JVM to allow
full object inspection and restoration. Only by instrumenting the
JVM can thread switches be observed properly. In effect, if one
doesn’t want to record and replay at such a low level as gdb or the
JVM bytecode, no language-level solution is general enough.

The major drawback of state saving is the amount of memory
used for the execution log. A pure replay solution would save all
the inputs to make the computation forward-deterministic, whereas
state saving will save many more intermediate values along the
way and the trace, to make the computation also backward-
deterministic. The inefficiency stems from the fact that most pro-
grams are not reversible and it is not clear how much information
is needed to achieve backward-determinism.

Generating Reversible Code A radically different approach to
the central question is to eliminate destructive updates altogether.
Motivated by the seminal papers of Bennett [8, 9], reversible lan-
guages such as Janus [34, 35] have been designed. They guaran-
tee backward-determinism by construction and offer an efficient
inverse semantics, since all the assignments and control constructs
are purely reversible [36]. An if statement has an exit assertion,

which behaves just as a conditional when going backwards (to de-
termine which branch to take). A for loop has an assertion at the
beginning of the loop, which becomes the test to determine when
to exit the loop when reverse-executing. A procedure has to spec-
ify the values of its locals both on entry and exit, etc. It becomes
evident that the burden of reverse execution has been shifted to the
developer, who has to design the code to be reversible and provide
all the extra assertions. There is still one precious insight here: by
assuming that program inversion is a local property, syntax-driven
(i.e., the inverse program mostly has the inverse of the statements,
in reverse order), and by using a constraint solver or theorem prover
to fill in some of the extra assertions needed, program inversion can
be automated in simple cases [16, 17, 30].

Hybrid methods attempt to generate reverse code whenever
possible, and revert to state saving when the problem becomes too
hard. Generating the reverse code can be done either statically [4, 5]
or dynamically [21]. The static approach is intraprocedural, and
attempts a path-sensitive analysis to discover the data dependencies
and control dependencies. The value of a variable can be restored
by finding the nearest reaching definition, then recursively restoring
the values it depends on. Or, in some cases, an inverse function
can be used to restore values ahead of time: an assignment x
:= y + 1 can be used to restore the value of y by applying the
inverse function f(x) = x - 1 to the current value of x. These
assumptions only hold for simple sequential code, otherwise the
control flow graph has to include all the possible interleavings, and
the chances of finding the correct reaching definition are minimal.
It is also not clear how well this static analysis would perform in the
presence of arrays, objects and aliasing. The dynamic approach is
essentially applying the same techniques over the execution trace,
generating the reverse program on the fly. But keeping the reverse
program in memory when tracing is expensive, and as we will show,
unnecessary, since most of the work can be performed offline by a
constraint solver.

Replay Deterministic replay is arguably the most memory-efficient
technique: it only saves the inputs of the computation. When used
for reverse execution, it is very inefficient unless coupled with
checkpointing, because it has to re-execute the entire program. The
log can’t be truncated without resorting to checkpointing and losing
portability, especially for application-level replay.

Previous library-based tools such as liblog [15] and Jockey
[28] choose to interpose a uniform, low-level interface (syscalls),
which results in massive amounts of data being logged, but still
can’t guarantee faithful replay. Irrespective of the chosen interface,
replay can never be truly faithful due to the external world: file and
network I/O, connections to an X server, references to state kept
in other processes, etc. In fact, reverse debugging an OS requires
a time-traveling virtual machine [20]. R2 [18], operating at the
application level, lets developers choose the replay interface in the
hope of minimizing the amount of saved state and getting a more
faithful replay. Part of the burden is thus shifted into manually
annotating the replay interface. Mugshot [22] chooses a narrow
interface for JavaScript replay, but silently ignores the logging
overheads of rich AJAX applications.

We borrow ideas from recent work, which combines constraint
solving with a relaxed notion of replay [6, 24, 26] to explore equiv-
alent executions. Techniques such as ODR [6] only save "bread-
crumbs" of the state in the execution log and recover the rest of-
fline.

Checkpointing Traditionally, checkpointing has been taking ad-
vantage of copy-on-write semantics, whether for continuation ob-
jects as in the case of the ML debugger [31] or for virtual memory
pages as in the case of UndoDB [3]. Otherwise, smart incremen-
tal techniques can be applied to achieve the same effect [23, 29].

2 2011/5/19

/ / p o s i t i v e i n p u t s a , b
c = a + b ;
d = a − b ;
p = c ∗ d ;
s = c + d ;
i f (p == 19)

i f (s == 20)
ERROR(p , s) ;

Figure 1. Simple Arithmetic

One important observation from [29] is that only around 10% of
the executed instructions are STOREs, and knowing those values
allows all the other temporaries to be recalculated. Checkpointing
works well with replay, minimizing the execution time by leaving
an exponentially increasing series of intervals behind the current
location [12].

However, checkpoints are very brittle if performed at the OS
level as most systems expect. They are not portable across ma-
chines (imagine how you would replay from a checkpoint taken
on a mobile phone), so the basic, limiting assumption is that de-
bugging happens on the same machine as testing, at the same time.

3. Traces for Reverse Execution
This section attempts to summarize our proposed approach. We first
show how constraint solving can be used for reverse execution on
simple code examples in Section 3.1. We discuss the motivation
for using an SMT solver in Section 3.2, and how we can also use
the solver to guide the saving of intermediate values in Section
3.3. Techniques for compacting the execution trace are discussed
in Section 3.4.

3.1 Motivating Examples
We begin with the very simple code snippet in Figure 1. a and b are
inputs, and let’s assume their values are such that when we run the
program the ERROR is triggered. We further assume c and d are
temporaries, hence dead after the definitions of p and s, so that we
only have the values of p and s as clues to why we have reached the
error state. We want to recover the values of variables a, b, c and d
that led the computation on this particular path.

At first, it might seem impossible to recover all these values
without saving extra information, especially since there are no di-
rect ways to invert the assignments and infer the values backwards.
All previous reverse execution techniques would resort to state sav-
ing. There is however a way to recover these values, and we essen-
tially imitate the work of a constraint solver.

We collect the constraints following the execution path, each
conditional or assignment statement generating one constraint, and
we get the set c = a+ b, d = a− b, p = c ∗ d, s = c+ d, p = 19,
s = 20. Recovering the values of a, b, c and d amounts to solving
this set of constraints, and we try it by hand as follows. We start
by substituting p and s by their known values, so our working set
becomes c = a + b, d = a − b, 19 = c ∗ d, 20 = c + d. We pick
c and substitute all its occurrences by a + b and get d = a − b,
19 = (a + b) ∗ d, 20 = a + b + d, then pick d and substitute
all its occurrences by a − b and get 19 = (a + b) ∗ (a − b),
20 = a + b + a − b. Simplifying the last constraint, we have
20 = a + a from which we infer a = 10, so we can rewrite
the other constraint as 19 = (10 + b) ∗ (10 − b). We now find
b = 9 as a solution and finally substitute the values of a and b to
get c = 19 and d = 1. We have the values of all variables in the
trace, including the problematic inputs.

1 p u b l i c s t a t i c i n t pow (i n t a , i n t b) {
2 i f (b == 0) re turn 1 ;
3 i f (a == 0) re turn 0 ;
4 i n t newa = a ∗ a ;
5 i n t newb = b / 2 ;
6 i f (b % 2 == 0)
7 re turn pow (newa , newb) ;
8 e l s e
9 re turn a ∗ pow (newa , newb) ;

10 }

Figure 2. Power Computation

(1) a1 = a0 (1) b1 = b0 (2) b1 6= 0
(3) a1 6= 0 (4) newa1 = a1 ∗ a1 (5) newb1 = b1/2
(6) b1%2 = 0 (1) a2 = newa1 (1) b2 = newb1
(2) b2 6= 0 (3) a2 6= 0 (4) newa2 = a2 ∗ a2
(5) newb2 = b2/2 (6) b2%2 6= 0 (1) a3 = newa2
(1) b3 = newb2 (2) b3 = 0 (2) pow1 = 1
(9) pow2 = a2 ∗ pow1 (7) pow3 = pow2 (∗) pow3 = 9

Figure 3. Power Constraints

We move to a slightly more involved example in Figure 2 com-
puting ab in logarithmic time. There are a few interesting aspects
in this example: the use of non-linear arithmetic (notice the squar-
ing of the first argument on both branches) and recursion. Static
approaches to generating the reverse code would save values at
method boundaries, effectively saving all temporary values in pow:
b%2, a*a, b/2. While this simple example would benefit from an
iterative implementation, generally it is very hard to motivate code
refactoring and inlining for static analysis to work. The non-linear
arithmetic cannot be avoided, and all existing techniques would
save temporary values. There is no inverse for b/2, since this oper-
ation loses one bit of information. But is that bit lost? Well, no, its
value can be recovered if we knew which branch on the conditional
we were on. This fact is however too deep for ad-hoc techniques to
discover.

Let’s assume we invoke the function with a = 3 and b = 2
and it returns the value 9. We will describe the algorithm for
generating the constraints in a later section, so for now we can
look at Figure 3 and visually inspect how they follow the execution
path for pow(3,2). For each assignment statement we generate a
"fresh" name for the left-hand variable. We use subscripts to keep
a single-assignment property for the constraint set, and to index
through the re-definitions. The original inputs are hence denoted
by a0 and b0. powi denotes the return value for each invocation of
the method pow. The number next to each constraint indicates the
corresponding line number in the source code. The final constraint
pow3 = 9 asserts the return value is the one observed, and this is
the only constraint generated from data values. Suppose we now
want to inspect the execution in reverse.

We start backwards: from pow3 = 9 we can infer that pow2 =
pow3 = 9 by chaining the corresponding constraints, and substi-
tuting pow1 = 1 we also get that 9 = 1 ∗ a2. But a2 = newa1 =
a1 ∗ a1, and a1 = a0, so finally 9 = a0 ∗ a0.

On the other hand, we know that b3 = 0, and b3 = newb2 =
b2/2 so b2/2 = 0. Also, b2%2 6= 0, so we can recover that b2 = 1
. Substituting this value, b2 = newb1 = b1/2 so b1/2 = 1. And
b1%2 = 0 thus b1 = 2. Finally b0 = b1 = 2. We are able to
recover the value of b by going mostly backwards in the trace.

3 2011/5/19

i n t d a t a [] = new i n t [n] ;
/ / . . . i n i t i a l i z e da ta

f o r (i n t i = 0 ; i < d a t a . l e n g t h ; i ++)
f o r (i n t j = 0 ; j < i ; j ++)

i f (d a t a [i] < d a t a [j]) {
i n t tmp = d a t a [i] ;
d a t a [i] = d a t a [j] ;
d a t a [j] = tmp ;

}

Figure 4. Bubble Sort

The constraint 9 = a0 ∗ a0 can be solved by bit-blasting, i.e.
modeling each integer as a 32-bit vector. Most constraint solvers
would then find a0 = 3 hence successfully regenerating all the val-
ues on the trace. The developer can back-step through the execution
and observe the correct values.

If, however, we were to save the value of a0, by adding the
constraint a0 = 3 to the set, the constraint solver would have had a
much easier job of simulating the execution forward: a1 = a0 = 3,
then a2 = newa1 = a1 ∗ a1 = 9, then pow2 = a2 ∗ 1 = 9. This
would have simply required round after round of simplifications.
In effect, this is what we aim for: an effective combination of
forward and backward execution, namely the simplifications and
substitutions performed by the constraint solver. Some values can
be easily recovered just by going backwards, while others are best
recomputed from initial values.

Let’s consider a final example in Figure 4, of a simple bubble-
sort implementation. Intuitively, every operation performed is re-
versible, even the swap in the inner for loop. So if we know the
final sorted array and the full trace, we should be able to determine
the original, un-sorted array. Again, static or dynamic methods for
generating reverse code will run into a host of problems: modeling
arrays, indexing and updating their elements, and also three appar-
ently destructive updates in the inner for loop. Of course, we can
alleviate the latter by introducing a special swap function – and this
is exactly what reversible languages have to provide, in order for
this kind of programs to be possible to write. Nevertheless, bubble-
sort would require saving a lot of intermediate values.

With our approach, there is no need to save any such values.
The constraint solver will be able to forward-execute through the
increments of the i’s and j’s (since their initial values are always
0), such that all array indexing will be made with constant values.
Swaps can then be simplified away since the indices are all known,
so by going backwards in the trace, we can restore the previous
versions of the data array, one swap at a time.

The examples we looked at are all deterministic computations,
and classical replay would only save their inputs and restore every-
thing else. Conveniently enough, the inputs are all integers, and re-
play would definitely perform best. On the other hand, we would re-
quire saving enough information to reconstruct the trace, and some
final values, which is clearly more. This clear distinction in effi-
ciency is blurred in the context of long-running, event-driven ap-
plications, where saving all the sources of non-determinism is still
very inefficient, where inputs are much larger than simple integers
and sometimes only parts of them are processed directly by the
application code. Replay needs all these values to be able to repro-
duce the trace; we attempt to augment the trace with values that
may or may not be those observed during the execution, but which
are definitely taking the execution down the same path.

3.2 Relational Semantics
Semantically, the inversion of a destructive assignment statement
can be modeled with angelic non-determinism (the refinement cal-
culus of [32]):

(x := e)−1 =
∨
v

({x = e[v/x]};< x := v >)

based on the strongest postcondition formulation:

sp(x := e,Q) = ∃v.x = e[v/x] ∧Q[v/x]

The value of x before the assignment is a non-deterministic
choice over all possible values v (note the corresponding existential
quantifier in sp). The inverse statement is composed of an assump-
tion, which terminates all executions in which the equality between
the new value of x and the value of expression e when substituting
x with v doesn’t hold, followed by the restoration of value v in x.
The state-saving method has to restore every value v from the log.
The reverse-code generation looks at e and tries to determine its
inverse: if it exists, then v can be inferred from x, otherwise restore
v from the log just as before.

Our first insight is that the constraint x = e[v/x], which appears
in both formulations, doesn’t specify a direction. A theorem prover
or constraint solver may be able to infer v if given x, or vice-versa.
Instead of choosing a fixed evaluation direction ahead-of-time, we
can let the constraint solver figure out the evaluation order and the
missing values. For example, given the constraint x = y + z ,
every value can be uniquely inferred given the other two. Instead of
saving the old value of x before the assignment, or looking for its
previous definition, we have many more options for reconstruction
as the old value of x can even be inferred from one of its uses.

In a more formal setting, our technique can be described as op-
erating over a relational semantics, which is obtained from the op-
erational semantics (after the trace is reconstructed, the constraint
generation algorithm acts as an interpreter, "executing" each state-
ment in the trace by converting it to a constraint). As a consequence
of this directionless technique, we could perform replay, i.e. regu-
lar, forward execution, if provided with just the input values. We
could also compute the weakest preconditions over the trace, with
respect to the final state. These can be used to generate tests. Our
focus however is on how close we can get to faithful replay by sav-
ing a combination of input, intermediate and final values, and on
obtaining an empirical understanding of the requirements.

A related approach to relation semantics is taken by Ross [27].
The paper uses an iterative version of the power algorithm in
Figure 2 as an example to show how a Prolog-style inference can
be used to invert the computation. Arguably, Prolog itself is not
fixing the evaluation direction and the trace can be navigated in
any way. However, there is one error in the paper, in assuming that
x′ := x/2 is invertible when knowing the value of x′, aside from
the vagueness of inverting assignments with Prolog. Nevertheless,
an intriguing implication of the translation is that instead of using
an SMT solver over the execution trace, a theorem prover could
be used on the source code to prove that when instrumented to
save some of the values of its variables, the program code makes
it possible to properly reconstruct its inputs and obtain the reverse
execution trace for all executions. We leave such insights for future
work.

3.3 SMT and SAT Solvers
While manually solving the constraint sets in Section 3.1, we en-
countered a few hard, non-linear constraints. Naturally, a question
arises of whether our technique can work on large, realistic traces,
where such constraints might be frequent. To address it, we begin
by looking at how these solvers are implemented.

4 2011/5/19

Both SMT and SAT solvers can simulate the easily-invertible
operations naturally. For SAT solvers, this basic unit of inference
is called unit propagation: a clause becomes unit when all literals
except one are false, and thus the remaining literal must be set to
true. This can result in more unit clauses, and more literals being
set to true in an iterative process. Similarly, an SMT solver will
have specialized rules for each theory to discover such facts and
propagate them through rounds of simplifications and substitutions.
Essentially, this efficient process corresponds to a mix of forward
execution when the right-hand operands are known, and backward
execution when the left-hand value is known, and enough of the
right-hand operands are known to make the operation invertible.

When no such inference is possible, the solver has to search
by case-splitting and backtracking. At each step, an assumption is
made, and it is followed by a round of inference. If a conflict is dis-
covered, the assumption and all subsequent inferences are retracted,
and the backtracking process continues with another assumption.
Case-splitting by itself is not necessarily inefficient, if the solver is
able to "guess" the correct values without backtracking. This corre-
sponds to a value not being uniquely determined in our constraint
set, making the replay approximate – we have the choice of not
saving every such value in the log. However, if the solver is back-
tracking on a certain variable, saving its value in the log can provide
not only a more faithful replay, but valuable pruning of the solver’s
search space.

Therefore, our second insight is that saving some data values
along the execution trace helps the constraint solver in being more
efficient and also, when desired, in recovering the exact values of
the particular execution being debugged. We propose an iterative
process of observing the execution of the solver, and inserting state-
saving code to eliminate as much of the backtracking as possible.
The trade-off is between memory and an exponential solving time.
One extreme is to eagerly save all inputs, yielding a linear solving
time equivalent to deterministic replay. The other extreme is to only
save the final values, yielding an expensive weakest-precondition
computation with no guarantees on how close the computed values
are from the original ones. We attempt to find a more balanced
choice.

3.4 Compacting the Trace
Having a compact representation of the execution trace is vital,
yet orthogonal to our current focus. We plan to integrate the Ball-
Larus algorithm [7] for effective tracing. In a nutshell, based on the
control-flow graph of each method, a maximum spanning tree is
determined and witnesses are placed over all the un-covered edges.
Each method would have a separate set of witnesses. While this
may sound inefficient when compared to storing one bit per con-
ditional, it has the major advantage of being bi-directional: we can
truncate the beginning of the trace yet still be able to determine the
remaining part. We also hope that frequently-observed intraproce-
dural paths can enable some compression of the witnesses. Mul-
tithreading will introduce a complication, by saving each thread
switch into the log. We have to assume a concurrent setting, such
as many event-driven frameworks provide, with no full parallelism
between threads, otherwise the notion of execution trace has to be
redefined.

To summarize, we propose a more relaxed version of reverse
execution, which combines the benefits of earlier work. Our tech-
nique operates over the execution trace, which can be truncated if
running with limited memory or developer-specified constraints –
such as only keeping the last million instructions. We log enough
"breadcrumbs" to reconstruct the precise control flow (the execu-
tion path), and we log some data values. At replay time, we gener-
ate a set of constraints corresponding to the observed execution (or
fragment of), and we restore the values of the program variables at

each point in the trace. This costly operation is performed offline,
and only once; the results are then available for inspection and each
back-step through the trace is still instantaneous. The amount of
memory consumed by the log is far less than that of typical reverse
execution solutions that rely heavily on state-saving (either with or
without checkpointing). Since we operate on the trace, we do not
incur the imprecision of static analysis, thus being able to restore
objects in the presence of aliasing. We trade-off the goal of full re-
play, as most typical replay systems do, for increased efficiency. By
not relying on checkpointing, our solution is truly portable, as any
application-level debugging mechanism should be.

4. Implementation
Our prototype implementation currently targets Java code, and uses
the Soot framework [2] for instrumentation. In the first pass the
code is instrumented, adding hooks into a library which handles
the constraint generation. For simplicity, we currently generate
the constraints in tandem with code execution, but of course a
more efficient implementation would only save breadcrumbs for
the compacted trace and perform the latter task offline. The set
of constraints is then solved (we know it is satisfiable), and the
model obtained represents the valuation of all variables of interest.
We keep line number information in the set of constraints, so a
debugger-like tool can walk the trace and allow the user to inspect
the values at each line of code in the source.

Our technique works at the application level, leaving the devel-
oper in control over which classes are instrumented, i.e. delimiting
the interface to library code. A consequence of not instrumenting
a particular class is that the objects of that type will be treated as
"opaque", there won’t be any constraints on their fields in the trace,
and the trace will not include any of their executed methods. We
have observed in practice that many of the objects created by li-
brary code are not meant to be inspected by the caller: sockets, file
handles, GUI objects, etc. can all be inspected with a debugger such
as jdb, but their private fields rarely help pinpoint a problem in the
application code. Unless the developer has very good knowledge
of their internals, libraries can be omitted from tracing. We also
note that when running with memory constraints, omitting library
code is essential in keeping the trace compact and still useful. For
example, in a simple event-driven application, if we decide to only
recover the last million instructions, we might discover that most of
them are part of the refresh/repaint cycles triggered automatically
by the UI library, while the history of the useful event-handlers has
been lost! In such cases, we would probably want the trace to dis-
regard the UI library altogether.

4.1 Constraint Solvers
A major decision in the design process was the choice of an SMT
solver. We decided to target three of them, in order to see how well
they perform on our benchmarks. We didn’t want to fine-tune our
constraints to the heuristics of a particular solver right from the
start. Most solvers handle bitvector arithmetic, even the non-linear
cases (since precision is finite). We are not handling floating-point
arithmetic, and we currently don’t encode strings – although we
could integrate existing decision procedures such as [19] for STP.

CVC3 and Yices have a similar architecture, broadcasting
newly-discovered facts between the many built-in theories, sim-
plifying, backtracking and case-splitting as necessary. STP only
provides the theory of bitvectors and arrays, and its approach con-
sists of a first phase of simplifications and linear solving, followed
by bit-blasting and SAT solving. Even though CVC3 is not as
competitive as the others, since we didn’t have the source code of
Yices, in the cases when it timed out on simple examples we ran
CVC3 with logging enabled to figure out the source of non-linear
behavior.

5 2011/5/19

For STP, we instrumented the code to see exactly how the
backtracking worked and which bits of the input were chosen for
case-splitting. We also look at what the other choices were on each
level, since MiniSAT [14] uses heuristics to assign SAT variables
involved in recent conflicts a higher priority and its backtracking is
conflict-driven. This means eagerly saving the first bits chosen for
branching might not yield the best results, since the solver "learns"
at a later time a more profitable set of bits to explore.

We generate constraints for all three targets, following the same
algorithm. We take advantage of the typed world of Yices and
CVC3 and map objects to records, whereas for STP we erase types
and encode everything as arrays of bitvectors.

4.2 Generating Constraints
We first collect typing information from the instrumented classes.
Each class is mapped to a user-defined type, based on the fields
it declares. For each instrumented class C that declares instance
fields f1, f2, . . . , fn and static fields g1, g2, . . . , gm, we assign two
record types. First, the instance type has the following signature (in
CVC language):

C : TY PE = [#id : INT, class : INT, f1 :< Type(f1) >,

f2 :< Type(f2) >, . . . , fn :< Type(fn) > #]

Second, the class type has the following signature:

C_class : TY PE = [#id : INT, g1 :< Type(g1) >,

g2 :< Type(g2) >, . . . , gm :< Type(gm) > #]

The meaning of Type(fk) is the following. If fk is a primitive
type, such as integer or byte, then Type(fk) is the respective type;
otherwise, the signature uses INT to denote a reference to another
object. Primitive types are encoded as bitvectors based on their
length, so for instance an int in Java would be mapped to the
integer type:

integer : TY PE = BITV ECTOR(32);

Each object has a unique id, which is given when the object is
newly allocated. The fact that a field fk refers to another object is
therefore encoded as fk having the type INT and the associated
record referring to the id of that object. This allows the referred
object to be functionally updated without the referrer losing its
reference to it. Each class is also given a unique id, and an object
refers to its class through its class field. We must represent the
class instances due to static fields.

Arrays are also encoded as objects, meaning each instance has
its own id. The length field and indexes are represented as bitvec-
tors. For instance, an array of type C[] would have the following
signature, whatever the definition of C is:

C_V : TY PE = [#id : INT, length : integer,

data : (ARRAY integer OFC)#];

Uninstrumented classes give rise to opaque definitions, which only
have id and class fields.

Having collected the type information, we pass through the trace
and emit constraints. We act as an interpreter, keeping an internal
stack of symbol tables to be able to uniquely identify each lvalue.
This is because each assignment has to generate a "fresh" name for
its lvalue while also correctly referring to any rvalues. A fresh name
is obtained by appending the current value of the counter for that
name. The rvalues are looked for in the symbol table for the current
method. We also have to emit a type definition for each fresh lvalue.
For method calls, we model the parameter passing through a stack,
the caller pushing the actual arguments on the stack and the callee
popping them. Returns are handled similarly, the callee pushing the
returned value on the stack and the caller popping it. Library calls,

x = y x′ = y
x = y op z x′ = y op z

x = y.f

{
x′ = select(y, f) y.f primitive
select(x′, id) = select(y, f) otherwise

x.f = y

{
x′ = update(x, f, y) y primitive
x′ = update(x, f, select(y, id)) otherwise

x = y[i]

{
x′ = select(y, i) y[i] primitive
select(x′, id) = select(y, i) otherwise

x[i] = y

{
x′ = update(x, i, y) y primitive
x′ = update(x, i, select(y, id)) otherwise

Figure 5. Translation Rules for CVC

x = y x′ = y
x = y op z x′ = y op z
x = y.f x′ = select(MClass(y), y, f)
x.f = y M ′

Class(x)
= update(MClass(x), x

′, f, y)

x = y[i] x′ = select(MClass(y), y, i)
x[i] = y M ′

Class(x)
= update(MClass(x), x

′, i, y)

Figure 6. Translation Rules for STP

i.e. calls for which there is no corresponding callee, are treated as
uninterpreted functions with CVC3 and Yices.

Figure 5 provides an overview of the translation, with the most
interesting cases. For simplicity, instead of showing the full CVC
notation, we used the classic select/update functions from the theo-
ries of arrays and records. x′ denotes a fresh version of x. The type
information is used to determine whether we are writing a primi-
tive value or just a reference into an object field or array element.
To maintain soundness in the presence of aliasing, we add axioms
for each type:

FORALL(o1 : C, o2 : C) : o1.id = o2.id => o1 = o2;

Unlike Yices and CVC3, STP only offers arrays of bitvectors.
In this case, each object is denoted by a numerical identifier, and
for each type we represent the memory as a two-dimensional array
indexed first by the numerical identifier and then by the field f .
More specifically, for each type C:

MC : ARRAY BITV ECTOR(32) OF

BITV ECTOR(< Width(C) >);

where the object id’s are 32-bit integers and Width(C) denotes
the number of bits required to represent the type C, packed as a
concatenatation of its instance fields. We have to perform an extra
step of assigning each field to an integer range of bits, such that field
f of object o is denoted by the bit sequence bf ..bf+Width(f) of
MC [o]. Arrays are represented similarly. Figure 6 summarizes our
translation for STP; for clarity, we hide the details of bit extraction
and concatenation and use the two-dimensional array concept.

Example Let’s consider the code snippet in Figure 7. We con-
struct a linked list with two elements, o1 and o2, link them together,
then update the value in o2. Figure 8 shows the output of our proto-
type in CVC format. Notice that each assignment generates a fresh
name for o1 or o2, however the identity of the objects is not lost:
the object pointed to by o1 has id = 2, and the object pointed to
by o2 has id = 3, and there are only 2 Node objects throughout the
execution. If we ask for the satisfying model, the actual output is
tabulated in Figure 9. Suppose we want to go back just one step, re-
vert the last assignment, and inspect the state from o1. At that time
o1, in its latest revision as o1__2, was pointing to an object (with

6 2011/5/19

c l a s s Node {
p u b l i c i n t v a l u e ;
p u b l i c Node n e x t ;

}

Node o1 = new Node () ;
o1 . v a l u e = 5 ;
Node o2 = new Node () ;
o2 . v a l u e = 1 3 ;
o2 . n e x t = n u l l ;
o1 . n e x t = o2 ;

o2 . v a l u e = 1 4 ;

Figure 7. List Example

id = 2) having the value field of 5, and the next field pointing to
an object with id = 3. Looking at the most recent version of all the
records for id = 3, we find an old o2 which had the value field of
13.

In the general setting, the SMT solver’s output can be parsed
by a debugger tool which can reconstruct the history of all the
program states, similarly to the demonic memory concept from
[33]. The most useful part is the automatic reconstruction of the
object graphs, such that at each point in time the developer can
navigate any reachable objects and see the correct values. Also,
even though the SMT solvers can’t provide an estimate to the
number of models available, we can use a little trick to determine
whether each recovered value is unique or not: simply assert it can’t
be equal to the proposed value, check for satisfiability again, then
retract the assertion. The debugger can then mark which values are
identical to those from the original run, and which values might
be off (unconstrained). Moreover, a notion similar to coverage can
be defined, so that the developer can consider whether having the
exact copy of a variable is worth saving extra data in the trace, or it
can be left as a best-effort guess.

5. Evaluation
We start by evaluating our prototype implementation against a
suite of micro-benchmarks, all of which require traditional reverse
execution implementations to save intermediate values in addition
to the execution trace. fact_10 represents the factorial computation
for n = 10. fib_30_iter computes the 30th Fibonacci number
iteratively and fib_10_rec computes the 10th Fibonacci number
recursively. list_5 is creating a sorted linked list of length 5 and
inserting another element into the list while maintaining the sorted
property. bubble_<n> represents a bubble sort for an array of length
n. Finally, pow_<x>_<y> computes xy as shown in the first code
example. All of these examples are invertible without requiring any
saved data. We provide the final values and check that the constraint
solvers are able to recover the inputs and all the intermediate values
appearing in the traces.

A final benchmark that we considered, snake, is more closely
related to the long-running, event-driven applications of today. We
implemented a simplified version of the Snake game available on
most mobile platforms. In a nutshell, the game is played on a grid,
the snake occupying a contiguous set of cells and having one end
designated as the "head" and an initial direction set to South. The
user can change the direction by pressing a key. At each time tick,
the snake advances in the current direction, by adding the adjacent
cell to its body and removing the cell corresponding to its tail.
The game is lost when the snake collides with itself or tries to go
out of the grid. In our version, all the events are stubbed out as
inputs, and we omitted the scoring. We tested the code on various

i n t e g e r : TYPE = BITVECTOR (3 2) ;
Node : TYPE = [# i d : INT , c l a s s : INT ,

v a l u e : i n t e g e r , n e x t : INT #] ;
N o d e _ c l a s s : TYPE = [# i d : INT #] ;

ASSERT FORALL (o1 : Node , o2 : Node) :
o1 . i d = o2 . i d => o1 = o2 ;

Node__c las s__0 : N o d e _ c l a s s ;
ASSERT Node__c las s__0 = (# i d := 1 #) ;
o1__0 : Node ;
ASSERT o1__0 . c l a s s = 1 ;
ASSERT o1__0 . i d = 2 ;
o1__1 : Node ;
ASSERT o1__1 = o1__0 WITH . v a l u e := 0 hex00000005 ;
o2__0 : Node ;
ASSERT o2__0 . c l a s s = 1 ;
ASSERT o2__0 . i d = 3 ;
o2__1 : Node ;
ASSERT o2__1 = o2__0 WITH . v a l u e := 0 hex0000000d ;
o2__2 : Node ;
ASSERT o2__2 = o2__1 WITH . n e x t := 0 ;
o1__2 : Node ;
ASSERT o1__2 = o1__1 WITH . n e x t := o2__2 . i d ;
o2__3 : Node ;
ASSERT o2__3 = o2__2 WITH . v a l u e := 0 hex0000000e ;

QUERY FALSE ;
COUNTERMODEL;

Figure 8. List Example Constraints

Name id class value next
o1__0 2 1 0 0
o1__1 2 1 5 0
o2__0 3 1 0 0
o2__2 3 1 13 0
o1__2 2 1 5 3
o2__3 3 1 14 0
Node__class 1 - - -

Figure 9. List Example Output

sequences of events, and the table shows three sample runs for
event sequences of length 6, 10 and 45. More interesting, we were
able to recover the intermediate values, as STP managed to simplify
away the formula even before invoking the SAT solver. Hence the
running times account for the linear solving phase and printing the
satisfying model. This is encouraging, as it confirms the importance
of the final state in recovering previous states, especially for long-
running applications such as games which "accumulate" the inputs.

All the tests were run on a 64-bit Intel Core 2 Quad machine
with 4Gb of RAM. We used Yices 1.0.29 and we checked out the
latest revisions of CVC3 and STP. With the exception of snake,
we ran the benchmarks on all three constraint solvers, in order
to assess their effectiveness with respect to our approach. Table
1 summarizes the results, with the running times for each solver,
averaged over three runs.

We show the approximate number of constraints generated in
each case (there are minor differences for each solver), and the
number of constraints corresponding to branches. Effectively the
first number represents the length of the trace, while the second
represents an estimate of the amount of memory required for the
log, using a compact yet naive representation which would take
1 bit of storage per branch. In our benchmarks the percentage of

7 2011/5/19

branches over all instructions varies between 20% and 40%, so
without compression, a rough estimate of the number of bytes
used to encode a trace of N statements would be N/20. We see
two opportunities to improve this result: using compression over
the Ball-Larus method of encoding the trace, as well as trying
to identify parts of the trace for which control-flow can be fully
determined from data values that are either saved or restored by the
constraint solver.

We made a distinction between the iterative and recursive imple-
mentations for Fibonacci as the latter stresses out the importance of
an interprocedural technique. The recursive implementation com-
putes a lot of redundant data which is saved naively by gdb, end-
ing up with 6070 instructions in its recording buffer and about 6Mb
of (unnecessarily) saved data. But as we can see from the table,
all the constraint solvers handle both cases with ease. We marked
the running time for CVC3 with an asterisk because in those par-
ticular runs, CVC3 had trouble generating the full model, and we
could only get a counterexample omitting some of the intermediate
values. We suspect this behavior is due to a bug in CVC3, since
it could handle bigger and more complex examples. The factorial
computation and the list insertion run smoothly as all the necessary
data is already in the trace and no case-splitting is required.

The pow benchmarks show that CVC3 is hopelessly ineffi-
cient with bitvector arithmetic, especially when case-splitting is
required. The bubble-sort benchmarks also take Yices out of the
competition, as it times out performing case-splitting when having
to invert 25 or 100 swaps of array elements. This is clearly an ineffi-
ciency stemming from not performing enough simplifications with
the theory of arrays. STP is so fast because it manages to simplify
away all the constraints in its first phase, such that the SAT solver
is always given the formula "TRUE". In effect, STP is the only rea-
sonable choice for us, since we rely so heavily on simplifying away
many operations on objects and arrays.

5.1 Case Study: Smoothing
Having checked that we are able to reverse-execute when all the
data values can be recovered from the trace and the final state, we
move to a more interesting example which requires some amount of
state saving. Our intuition is that the decision for saving a particular
value should be based on the behavior of the constraint solver, i.e.
we should probably save those values which entail case-splitting.

Let’s consider a simplified "smoothing" operation over an array,
such that at each iteration, the value of the current element is
computed as the average of its neighbors’ values (integer division).
This is of course an over-simplification of many image-processing
algorithms using convolution kernel masks, in which each output
pixel is altered by contributions from a number of adjoining input
pixels. At each iteration, data is lost as these operations are not fully
reversible.

Figure 10 shows the snippet of code that performs the smooth-
ing in m iterations over an array of size n. We ran the instrumented
code over a series of tests, varying both m and n, with random data
in the array. For each test, we looked at the bits picked by the SAT
solver. Figure 11 attempts to summarize these results, where a[i]
denotes an input and the subscripts denote the bits chosen.

Interestingly enough, depending on how many iterations are
run, the last m bits of the initial values are usually chosen. This
corresponds to the intuition that at each iteration we lose the least
significant bit of each value due to the integer division. The table
also shows some higher-order bits; it may well be the case that the
SAT solver had to choose from a set of equally optimal splits. We
believe this is case because we manually added the last m bits of
the inputs to the traces, and verified that the solutions are identical
to the original inputs and no case-splitting is performed. If later
we run the code and observe weird final values, we can trace back

f o r (i n t k = 0 ; k < m; k ++) {
f o r (i n t i = 0 ; i < n ; i ++) {

i n t sum = 0 ;
i f (i > 0) sum += a [i −1];
i f (i < n−1) sum += a [i + 1] ;
b [i] = sum / 2 ;

}
f o r (i n t i = 0 ; i < n ; i ++)

a [i] = b [i] ;
}

Figure 10. Smoothing Kernel

m n bits
1 2 a[1]0
1 4 a[3]2, a[2]0, a[1]0
1 6 a[5]31:10,4:0, a[4]0, a[3]0, a[2]0, a[1]0
2 2 a[1]1:0, a[0]1:0
2 4 a[3]1:0, a[2]1:0, a[1]3,1
2 6 a[5], a[4]2:1, a[3]4, a[2]1, a[1]5:4, a[0]0
3 2 a[1]2:0, a[0]1:0
3 4 a[3]5,3,1:0, a[2]23:4,0

Figure 11. Chosen Bits

the computation and figure out a subtle overflow for the addition
operations on variable sum.

This example suggests a possible technique for optimizing the
amount of saved state, when we want to reconstruct as much of
the original values as possible. By saving more data, we are con-
straining the generated model to be closer to the original execution.
The developer can run the code against a test suite, and collect a
profile of the input bits which are most frequently chosen for case-
splitting. Then the code can be instrumented to save some of these
bits. This process might be iterative (as any optimization), since it
is not clear whether the profiling data is painting a complete picture
of what needs to be saved. But the results are encouraging. In our
example, any local analysis would save the lost bit in each division
and one of the summands, to make the operations fully reversible.
Saving just the last m bits of the inputs is a very deep fact. Essen-
tially, no bit needs to be saved unless it is derived from an input bit,
and the SAT solver can answer this question.

5.2 Case Study: Hashing
For our next experiment, we implemented the Rabin-Karp rolling
hash function:

H = (a0 ∗ bk + . . .+ ak−1 ∗ b+ ak)%n

where a0, . . . , ak are input values, and b and n are prime. We chose
this type of computation to get more insights into the trade-offs
between saving more values for an accurate replay and minimizing
the constraint solving time. We consider a random set of four
integers a3, a2, a1, a0 as input, and iteratively compute the hash
H4, where Hi denotes the hash value after iteration i:

H0 = 0

Hi = (Hi−1 ∗ b+ ai)%n

First, we attempt to reverse-execute by using only the final
hash value. As expected, the solution we get is the trivial one,
setting all inputs to 0 except the final one which is set to H . The
behavior of the solver is almost linear, making 126 case splits but
not backtracking even once – because all the decisions were setting
input bits to 0. Unsatisfied with the solution, we now provide one of

8 2011/5/19

Benchmark Constraints Branches CVC3 Yices STP
fact_10 40 10 0.61s 0.015s 0.022s
fib_30_iter 157 32 1.76s* 0.04s 0.01s
fib_10_rec 681 322 1.50s 0.27s 0.03s
list_5 44 12 0.4s* 0.04s 0.09s
pow_3_3 17 7 2.79s 0.050s 0.11s
pow_5_13 30 13 19.58s 0.115s 0.28s
pow_2_30 37 16 20.55s 0.21s 0.34s
bubble_3 44 21 0.55s 0.55s 0.005s
bubble_5 177 43 1.44s Timeout 0.013s
bubble_10 457 133 4.63s Timeout 0.02s
snake_6 400 81 - - 0.021s
snake_10 563 145 - - 0.031s
snake_45 2354 979 - - 0.111s

Table 1. Benchmarks

Inputs Case Splits Input Splits Conflicts Time
- 126 126 0 0.053s
a3 265 96 38 0.054s
a2, a3 2757 84 701 0.123s
a1, a2, a3 5202 41 1292 0.207s
a0, . . . , a3 2 0 0 0.006s
H3 151 123 11 0.052s
H3, H2 967 115 73 0.063s
H3, H2, H1 160 97 13 0.048s
H3, H2, H1, a0 147 71 15 0.038s

Table 2. SAT Solver Stats

the input values to the solver, the first 32 bits used for case splitting
earlier, to further constrain the search space.

Table 2 summarizes this process. ’Inputs’ denotes what val-
ues (32-bit integers) we provide to the solver besides H , ’Case
Splits’ counts the total number of decisions while ’Input Splits’
only counts decisions made on bits belonging to the input values,
’Conflicts’ counts the number of times backtracking was involved
in the search. When varying the amount of saved input values from
a0, . . . , a3 we observe an exponential blow-up in solving time, cor-
responding to our constraints becoming harder and more backtrack-
ing being part of the search. However we were not able to recreate
the original set of inputs even when providing all-but-one of them,
which means that for a perfectly accurate replay in this case, we
would have to save all the inputs. The fifth line in the table cor-
responds to this instance of forward-execution, in which the solver
simplifies everything away by unit propagation. In effect, unless we
want this perfect replay, there is little value in saving one or more
of the input values, since we don’t get any closer to the original
inputs and only burden the solver. Our reasoning can be automated
by trying combinations of saved inputs and observing the solver’s
(degrading) performance, until finally choosing a local minimum,
such as not saving any input values.

We were intrigued by the fact that most of the case splits were
not performed on input bits. MiniSAT uses a clause learning strat-
egy in which for each detected conflict a new clause forbidding the
conflicting literal assignment is added to the set, and all the vari-
ables involved are promoted for case splits. This means bits hold-
ing intermediate values in the computation can be more useful than
input bits, especially to the solver’s performance. One problem is
that not all bits from the SAT solver have a corresponding name in
the execution trace. Currently STP does not propagate the neces-
sary mapping information to the SAT solver. However, we guessed
that the intermediate Hi’s would be good candidates, and sent their
values to the solver as well. As can be seen from the table, the per-
formance is much better, although we still can’t get the original in-

put values. In this example, no other 4-value set except a0, . . . , a3

can.
We tested this assumption also on the code in Figure 1. Without

providing any additional values, there are 1653 case splits and 313
conflicts. When providing the value of b we get 2 conflicts and 77
case splits – b is not that useful, the first 29 case splits are for a’s
bits. When providing the value of a we get 1 conflict and 31 case
splits corresponding to the bits of b. However, for either c or d no
conflicts occur and the solver exhibits a linear behavior. In this case,
the temporary values are worth more than the input values in terms
of savings, especially since a and b can be linearly solved from c
and d.

To summarize the findings of this study, we envision an auto-
mated technique to minimize the solver’s running time by itera-
tively trying combinations of values to save. Simply trying to elim-
inate backtracking as soon as possible might fail to converge, as
in the previous case study – the last m bits weren’t necessarily
picked first when case-splitting, however they were sufficient. An-
other obstacle is the loss of source-code information in the SAT
solver, which combined with heuristics such as MiniSAT’s dynamic
variable ordering (based on learned conflicts) can result in case-
splitting and backtracking that provides little guidance for our tech-
nique.

6. Conclusions and Future Work
We have described a lightweight and flexible technique for re-
verse execution. We operate at the application level, and only trace
through classes designated by the developer, ignoring libraries. We
generate a lot less data in the log, and are able to trace through more
user code, when having a hard limit on storage space. We are not
platform-dependent as we do not generate checkpoints, and we can
replay the code in isolation, without repeating the calls to problem-
atic, non-idempotent library functions. The precision of our method
can be increased by adding more data values to the trace; we have a
basic mechanism for marking which values are recovered exactly,
and a profiling session can inform the developer of how faithful
the replay is overall. A worst-case scenario is to save all the input
values, rendering our technique equivalent to deterministic replay.

Future work will explore how to automatically drive the code
instrumentation to perform more state saving, by closing a feedback
loop around the process we manually attempted in the case studies.
We plan to modify STP to keep detailed information about the
mapping between the variables in the trace and the bits on which
the SAT solver is backtracking. We also plan to implement the
trace minimization technique from [7] and to explore the interplay
between control-flow and data-flow information.

9 2011/5/19

References
[1] http://sourceware.org/gdb/wiki/ReverseDebug.
[2] http://www.sable.mcgill.ca/soot/.
[3] http://undo-software.com/.
[4] T. Akgul and V. J. Mooney III. Assembly instruction level reverse

execution for debugging. ACM Transactions on Software Engineering
and Methodology, 13:149–198, April 2004.

[5] T. Akgul, V. J. Mooney III, and S. Pande. A fast assembly level reverse
execution method via dynamic slicing. In Proceedings of the 26th
International Conference on Software Engineering, ICSE ’04, pages
522–531, 2004.

[6] G. Altekar and I. Stoica. Odr: output-deterministic replay for multi-
core debugging. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 193–206, 2009.
ISBN 978-1-60558-752-3.

[7] T. Ball and J. R. Larus. Optimally profiling and tracing programs.
ACM Trans. Program. Lang. Syst., 16:1319–1360, July 1994.

[8] C. H. Bennett. Logical reversibility of computation. Ibm Journal of
Research and Development, 17:525–532, 1973.

[9] C. H. Bennett. Time/space trade-offs for reversible computation. Siam
Journal on Computing, 18:766–776, 1989.

[10] B. Biswas and R. Mall. Reverse execution of programs. SIGPLAN
Not., 34:61–69, April 1999.

[11] S. P. Booth and S. B. Jones. Walk backwards to happiness - debugging
by time travel. In in Automated and Algorithmic Debugging, pages
171–183, 1997.

[12] B. Boothe. Efficient algorithms for bidirectional debugging. In
Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, PLDI ’00, pages 299–310, 2000.

[13] J. J. Cook. Reverse execution of java bytecode. The Computer Journal,
45:(6)608–619, 2002.

[14] N. Eén and N. Sörensson. An Extensible SAT-solver. In E. Giunchiglia
and A. Tacchella, editors, Theory and Applications of Satisfiability
Testing, volume 2919 of Lecture Notes in Computer Science, chap-
ter 37, pages 333–336. Springer Berlin / Heidelberg, Berlin, Heidel-
berg, 2004.

[15] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay debugging for
distributed applications. In Proceedings of the annual conference on
USENIX ’06 Annual Technical Conference, pages 27–27, 2006.

[16] R. Glück and M. Kawabe. A program inverter for a functional lan-
guage with equality and constructors. In APLAS ’03, pages 246–264,
2003.

[17] R. Glück and M. Kawabe. Revisiting an automatic program inverter
for lisp. SIGPLAN Not., 40:8–17, May 2005.

[18] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek,
and Z. Zhang. R2: an application-level kernel for record and replay.
In Proceedings of the 8th USENIX conference on Operating systems
design and implementation, OSDI’08, pages 193–208, 2008.

[19] A. Kiezun, V. Ganesh, P. J. Guo, M. D. Ernst, P. Hooimeijer,
V. Ganesh, P. J. Guo, and M. D. Ernst. Hampi: A solver for string
constraints. In In International Symposium on Software Testing and
Analysis, 2009.

[20] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. In Proceedings of the
annual conference on USENIX Annual Technical Conference, ATEC
’05, pages 1–1, 2005.

[21] J. Lee. Dynamic reverse code generation for backward execution.
Electronic Notes in Theoretical Computer Science (ENTCS), 174:37–
54, May 2007.

[22] J. Mickens, J. Elson, and J. Howell. Mugshot: deterministic cap-
ture and replay for javascript applications. In Proceedings of the 7th
USENIX conference on Networked systems design and implementa-
tion, NSDI’10, pages 11–11, 2010.

[23] R. H. B. Netzer and M. H. Weaver. Optimal tracing and incremental
reexecution for debugging long-running programs. In Proceedings

of the ACM SIGPLAN 1994 conference on Programming language
design and implementation, PLDI ’94, pages 313–325, 1994.

[24] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu.
Pres: probabilistic replay with execution sketching on multiprocessors.
In SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 177–192, 2009.

[25] K. S. Perumalla and R. M. Fujimoto. Source-code transformations
for efficient reversibility. Technical Report GIT-CC-99-21, College of
Computing, Georgia Tech, 1999.

[26] J. Pool, I. S. K. Wong, and D. Lie. Relaxed determinism: making
redundant execution on multiprocessors practical. In HOTOS’07:
Proceedings of the 11th USENIX workshop on Hot topics in operating
systems, pages 1–6, 2007.

[27] B. J. Ross. Running programs backwards: The logical inversion of
imperative computation. Formal Aspects of Computing, 9:331–348,
1998.

[28] Y. Saito. Jockey: a user-space library for record-replay debugging.
In Proceedings of the sixth international symposium on Automated
analysis-driven debugging, AADEBUG’05, pages 69–76, 2005. ISBN
1-59593-050-7.

[29] R. Sosič. History cache: hardware support for reverse execution.
SIGARCH Comput. Archit. News, 22:11–18, December 1994.

[30] S. Srivastava, S. Gulwani, J. S. Foster, and S. Chaudhuri. Path-based
Inductive Synthesis for Program Inversion. PLDI ’11: Proceedings
of the 2011 ACM SIGPLAN conference on Programming language
design and implementation, 2011.

[31] A. P. Tolmach and A. W. Appel. Debugging standard ml without
reverse engineering. In Proceedings of the 1990 ACM conference on
LISP and functional programming, LFP ’90, pages 1–12, 1990.

[32] J. von Wright. Program inversion in the refinement calculus. Informa-
tion Processing letters, 37, 1990.

[33] P. R. Wilson and T. G. Moher. Demonic memory for process histories.
In Proceedings of the ACM SIGPLAN 1989 Conference on Program-
ming language design and implementation, PLDI ’89, pages 330–343,
1989.

[34] T. Yokoyama. Reversible computation and reversible programming
languages. Electronic Notes in Theoretical Computer Science, 253(6):
71 – 81, 2010.

[35] T. Yokoyama, H. B. Axelsen, and R. Glück. Principles of a reversible
programming language. In Proceedings of the 5th conference on
Computing frontiers, CF ’08, pages 43–54, 2008.

[36] T. Yokoyama, H. B. Axelsen, and R. Glück. Reversible flowchart lan-
guages and the structured reversible program theorem. In Proceedings
of the 35th international colloquium on Automata, Languages and
Programming, Part II, ICALP ’08, pages 258–270. Springer-Verlag,
2008.

10 2011/5/19

