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Abstract

Consider the following problem in game manipulation. A tournament designer who has full knowledge of the
match outcomes between any possible pair of players would like to create a bracket for a balanced single-elimination
tournament so that their favorite player will win. Although this problem has been studied in the areas of voting and
tournament manipulation, it is still unknown whether it can be solved in polynomial time. We focus on identifying
several general cases for which the tournament can always be rigged efficiently so that the given player wins. We give
constructive proofs that, under some natural assumptions, if a player is ranked among the top K players, then one can
efficiently rig the tournament for the given player, even when K is as large as 19% of the players.

1 Introduction

As a natural way to select a leader, competition is at the heart of life. It is intriguing, both for its participants, and
its spectators. Society is riddled with organized competitions called fournaments with well-defined rules to select
a winner from a pool of candidate players. Sports tournaments such as the FIFA World Cup and Wimbledon are
immensely popular and generate huge amounts of revenue. Elections are another important type of tournaments: a
leading party is selected according to some rules using votes from the population.

Two of the most common tournament formats employed in both sports and voting are round-robin and single-
elimination. In the former, every pair of players are matched up, and a player’s score is how many matches they
won. If some player has beaten everyone else, then they are the clear (Condorcet) winner. Otherwise, the winner is
not well-defined. However, given the outcomes of a round-robin tournament, there are various methods of producing
rankings of the players. The most common definition of the optimal ranking is that it minimizes the number of
wins of a lower-ranked player over a higher-ranked player [18]. Although finding such a ranking for a round-robin
tournament is NP-hard [1], sorting the players according to their number of wins is a good approximation to the
optimum ranking [7].

Single-elimination (SE) tournaments are played as follows. First, a permutation of the players, called the bracket
or schedule is given. According to the bracket, the first two players are matched up, then the second pair of players
etc. The winners of the matches move on to the next round. The bracket for this round is obtained by pairing up
the remaining players according to the original bracket. If the number of players is a power of 2, the tournament is
balanced. Otherwise, it is unbalanced and some players advance to the next round without playing a match. In practice,
these byes are usually granted in the first round. Although the winner of an SE tournament is always well-defined, the
chance of a particular player winning the tournament can vary immensely depending on the bracket. Arguably, this
gives the tournament organizer a lot of power. The study of how much control an organizer has over the outcome of a
tournament is called agenda control [3].

The most studied agenda control problem for balanced SE tournaments is to find a bracket which maximizes the
probability that a given player will win the tournament. The tournament organizer is given the probability that ¢ will
beat j for every pair of players ¢, j. A major focus is to maximize the winning probability of the strongest player under
some assumptions1 (e.g., [2, 12,23, 22]). Without assumptions on the probabilities, the agenda control problem for an

' A common assumption is monotonicity: the probability of beating a weaker player is at least as high as that of beating a stronger one.



arbitrary given player is NP-hard [14, 11], even when the probabilities are in {0, 1, 1/2} [21]. Moreover, the maximum
probability that a given player wins cannot be approximated within any constant factor unless P=NP [21]. When the
probabilities are all either O or 1, the agenda control problem, then called the tournament fixing problem (TFP), is not
well understood. One of the interesting open problems in computational social choice is whether a tournament fixing
bracket can be efficiently found. Several variants of the problem are NP-hard — when some pairs of players cannot be
matched [20], when some players must appear in given rounds [21], or when the most “interesting” tournament is to
be computed [14].

Besides its natural connection to tournament manipulation, TFP studies the relationship between round-robin and
single-elimination tournaments. The decision version of TFP asks, given the results of a round-robin tournament and
a player A, is A also the winner of some SE tournament, given the same match outcomes? In the area of voting,
suppose all votes are in, can we simulate a win for a particular candidate, using single-elimination rules (binary cup)?
In this work, we investigate the following question: if we consider a round-robin tournament and a ranking produced
from it by sorting the players according to their number of wins, how many of the top players can actually win some
SE tournament, given the same match outcomes? What conditions on the round-robin tournament suffice so that one
can efficiently rig the SE tournament outcome for many of the top players?

Prior work has shown several intuitive results. For instance, if A is any player with the maximum number of wins
in a round-robin tournament, then one can efficiently construct a winning (balanced) SE bracket for A [20]. We extend
and strengthen many of the prior results.

Contributions. Let IT be an ordering of the players in nonincreasing order of their number of wins in the given
round-robin tournament. We consider conditions under which, for large K, the SE tournament can be fixed efficiently
for any of the first K players in II. We are interested in natural and not too restrictive conditions under which a
constant fraction of the players can be made to win. If the first player p; in II beats everyone else, then p; wins all SE
tournaments. We show that if any player can beat p;, then we can also fix the tournament for the second player po.

We show that for large enough tournaments, if there is a matching onto the top K — 1 players {p1,...,px—1} inII
from the rest of the players, then we can efficiently find a bracket for which py wins, where K is as large as 19% of
the players.

Graph representation. The outcome of a round-robin tournament has a natural graph representation as a fournament
graph: a directed graph in which for every pair of nodes a, b, there is an edge either from a to b, or from b to a. The
nodes of a tournament graph represent the players in a round-robin tournament, and an edge (a, b) represents a win of
a over b.

Notation and Definitions. Unless noted otherwise, all graphs in the paper are tournament graphs over n vertices,
where n is a power of 2, and all SE tournaments are balanced. In Table 2, we define the notation that will be used in
the rest of this paper. For the definitions, let A € V be any node, let X, Y C V be such that X N'Y = ().

Consider a tournament graph G = (V, E). We say that A € V is a king over another node =z € V if either
(A,z) € E or there exists y € V such that (A,y), (y,2) € E. A king in G is a node A which is a king over all
x € V\ {A}. We say that set S covers a set T'if for every ¢ € T there is some s € S so that (s, t) € E. Thus N°“'(A)
covers the graph if and only if A is a king.

If one can efficiently construct a winning SE tournament bracket for a player .4, we say that A is an SE winner.
We use the ranking II formed by sorting the players in nondecreasing order of their outdegree.

We will construct SE tournaments as a series of matchings where each successive one will be over the winners of
the previous one. A matching is defined as a set of pairs of vertices where each vertex appears in at most one pair.
In our setting, these pairs are directed, so a matching from X to Y will consist only of edges that are directed from
X to Y. If an edge is directed from z to y, then we refer to x as a source. Further, given a matching M from the
sets X to Y, we will use the notation X \ M to refer to the vertices in X that are not contained in the matching. A
perfect matching from X to Y is one where every vertex of X is matched with a vertex of Y and | X | = |Y'|. A perfect
matching in a set S is a perfect matching from some S’ C Sto S\ S'.

2 Motivation and Counterexamples

We will now discuss the motivation for our assumptions on the graph. We will look at some necessary and sufficient
conditions for the top K players to win an SE tournament. We begin with an example.



Table 1: Notation

Novt(A) = {v|(A,v) € E} N§(A) = NovH(A) N X
N (A) = {v|(v,A) € E} NZ(A) =N"(A)NX
out(A) = [N (A)] outx (A) = [N (A)
in(A) = [N (A)] inx (A) = [NY'(A)]
H™(A) = {v|v € N"(A), out(v) > out(A)} HoU(A) = {vjv € N (A), out(v) > out(A)}
H(A) = H™(A) UHH(A) EX,)Y)={(u,v)|(u,v) € E,ue X,veY}
M(X,Y) is a maximal matching from X to Y | CM(X,Y) is the canonical matching (Section 5.1.1)

Table 2: A summary of the notation used in this paper.

Figure 1. p; only loses to m; and p; for Figure 2: Example in which the

J < i. No matter how the other edges of two highest outdegree nodes, k1  Figure 3: Example where there is
the tournament graph are placed, since the p; and k,, have a matching into a matching from N°“(.A) onto the
beat everyone else and the m; lose to every-  them but A cannot win an SE  k highest degree nodes but A can’t

one else, all SE tournament winners are in .S.  tournament. win an SE tournament.
Consider the transitive tournament graph G' with nodes v, ..., v,, where v; beats all nodes v; for j > 7. Then vy
is the winner of all SE tournaments on G. Now, take any perfect matching from {vy,...,v,/2} to {vn 241, .-, vn}

and reverse these edges to create a back-matching. This gives each node from the weaker half of G a win against
some node from the stronger half. The new outdegree ranking only swaps v,/ and v,, /21, however now the top
n/2 — 1 players are SE winners: each of these nodes still beats at least n/2 other players, and the back-edges of the
matching also make each one also a king. Prior work showed that this condition is sufficient for these players to be an
SE tournament winner [20]. Thus, adding a back-matching to a transitive tournament can dramatically increase the set
of winners. Our goal is to understand the impact of such back-edge matchings in general tournaments. As a warm-up,
we consider the nodes of second and third highest outdegree. By case analysis, one can show the following theorem.
The full proof is contained in the Appendix.

Theorem 1. Let G be a tournament graph and let A be the node of second highest outdegree. Then A is an SE winner
if and only if there is no Condorcet winner in G. If there is a matching onto the top 2 nodes, then the third highest
outdegree node is also an SE winner.

This simple result leads to a larger question. What are the necessary and sufficient conditions for the k' ranked
node to win an SE tournament? A natural conjecture is that if there is a perfect matching from V' \ H(.A) to H(A),
then 4 should be able to win.

In Figure 1 we give an example of a tournament and a subset S consisting of the top r + 1 outdegree nodes such
that there is a matching of size r from a subset W = {mq,...,m,} of V'\ S into S, but no matching of size r + 1
from V' \ S into S. Figure 1 only shows some of the graph edges. The edges within V' \ (W U S) are arbitrary, all
nodes of S beat all nodes of V'\ (W U .S), and all nodes of W lose to all nodes of V'\ (W U S). We can show that any
node A ¢ S cannot be an SE winner. p; only loses to m; and m; loses to everyone else so p; must be matched with
m in the first round if it is to ever be eliminated. Similarly, for any ¢ < r, each p; must be matched with m; in the
first round. Since all of the nodes that could possibly beat p,; lose in the first round, no one is left to beat p,.;; and
A cannot win. Therefore, the only possible SE winners are contained in S. We have shown that for any r there exists



a graph in which there is no matching onto the top r outdegree nodes and the (r + 1)st outdegree node is not an SE
winner. From this, we can conclude that the existence of a perfect matching from V' \ H(.A) into H(.A) is, in a sense,
necessary, in order for a node A to be an SE winner.

Now suppose that there is a perfect matching in G from V' \ H(A) onto H(A). Can we conclude that the bracket
can be fixed for .A? This turns out not to be true. Consider Figure 2. Here 7{(.A) consists only of k; and ko. These
nodes are only beaten by b; and b5 respectively, who lose to every other player except A, so b; and k; must be matched
in round 1. The a; are symmetric, so without loss of generality we can match A to a; in round 1. The two remaining
nodes, as and a3, must also be matched. After round 1 the nodes that survive are A, as, b1, bo. However, A needs to
have outdegree at least 2 to survive the next two rounds. As it only has outdegree 1, A cannot win an SE tournament.

A similar problem can arise when the matching comes from N°“!(A) instead of N*"(A). Figure 3 gives an
example of a graph construction for any n > 8 for which the node ranked n/2 cannot win any SE tournament even
though there is a matching onto H(A) = U;_, h;. Each h; only loses to b; and Uj>:h;. Each b; only beats U~ ;b;,
except for b; who also beats c. The problem arises with who to match A to in the first round so that it can win the
match. By induction, one can argue that every h; for ¢ > 1 must be matched to b; in round 1. A must be matched to
some node in N°“¢(.A), but only by remains unmatched. This leaves h; and ¢ who must be matched as well. However,
in round 2, all nodes that beat h; have been eliminated and it is now a Condorcet winner in the induced subgraph.
Therefore, it must be the winner of any SE tournament.

A common issue in the above counterexamples is that 7(.A) is too large while out(A) is too small. Another
commonality is that H#(A) = H"(A). Hence a better condition to look for is a matching from V' \ H‘"(A) onto
H"(A), and not necessarily onto H(.A).

Finally, a natural question is, how reasonable is the assumption of the existence of a matching from lower ranked
players to higher ranked players? Consider the Braverman-Mossel model [4] for generating tournament graphs. In
this model, one assumes an underlying ranking v; - - - v,, of the players according to skill. The tournament is generated
by adding an edge (v;, v;) with probability pif j < iand 1 —pif j > i forp < % This model can be viewed as a
transitive tournament with each edge reversed with probability p. A classic result of [9] is that a bipartite graph with n
nodes on each side with 2n In n edges selected uniformly at random contains a perfect matching with high probability.
If a graph is generated by the Braverman-Mossel model with p > %, then we expect there to be n Inn back edges
from vy, /5 - - vy tO 1 - - - Uy 2 1. Therefore, in almost all such tournaments, a backedge matching exists.

3 Main Results

We are now ready to introduce our main result. As the proof is quite technical, we will first provide an intuitive sketch,
some of the necessary Lemmas, and a more detailed account of the key part of our proof. All full proofs are included
in the Appendix.

We present two main results. The first generalizes the idea of a king, and shows that if a node A is a king except
for some subset and A beats many nodes that beat a king of that subset, then .A is an SE winner.

Lemma 1 (Kings Except for a T subset). Let A be a node in a tournament G and let T be a subset of N (A) of
size |T| = 2F for some k. Suppose that A is a king in G \ T and |[N°“*(A)| > |N"(A)|. Lett be a king in T with
outdegree in T at least ||T|/2]. Suppose that IN“™(t) N N°“t(A)| > |T|. Then A is an SE winner.

The key observation in proving Lemma 1 is that ¢ can win an SE tournament over just the subgraph consisting of
T in log |T| rounds. At the same time, there are at least |T| nodes in N°“(.A) that beat ¢. In the worst case, these
cannot eliminate any other nodes in N"(.A) so they must be matched against each other for log |T'| rounds as well.
However, given the size, we are guaranteed that at least 1 will survive to eliminate ¢. At this point, .4 will be a king of
high outdegree over the induced subgraph. The technical details of the proof proceed by induction on the size of 7.
Lemma 1 is used in the proof of our main theorem below. We highlight its use in the intuitive sketch.

We now address the main question of this paper - what can we show when a matching from V \ H"(A) to H"(A)
exists?

Theorem 2 (Not a King but Matching into ‘" (A)). There exists a constant ng such that for all n > ng the
Sollowing holds. Let G = (V, E) be a tournament graph on n nodes, A € V. Suppose there is a matching M from
V \ H"(A) onto H"(A) of size K. If K < (n — 6)/7, then A is an SE winner.



The key restriction in this Theorem concerns the number of higher ranked players who beat a player, not the actual
rank of that player. However, we are able to apply the fact that a player of rank & has outdegree at least (n — k — 1) /2
to obtain a nice corollary for large tournament graphs: Any one of the top 19% of the nodes are SE winners, provided
there is a matching onto the nodes of higher outdegree.

Corollary 1. There exists a constant ng so that for all tournaments G on n. > ng nodes the following holds. Let A be
among the top (6n + 7)/31 > .19n highest outdegree nodes. If there is a matching from V \ H"(A) onto H'"(A),
then A is an SE winner.

3.1 Intuition

We now give an intuitive sketch about how one might go about proving Theorem 2. The overall strategy of our proof
is to set up the first round of the SE tournament, so that all of the high outdegree nodes that beat A are eliminated, and
in the remaining tournament, .4 is a king over almost the entire graph, so that Lemma 1 can be applied.

At first glance, one might try to build the first round by using the existing matching, M, from V \ H"*(A) to
H"(A) and then finding some maximal matching M’ from N°“(A) \ M to N**(A) \ M. The matching M’ will
guarantee that as many elements as possible of N°“!(A) will survive to compete in the second round. To complete
round 1, the potentially remaining nodes in N°“¢(A) \ (M U M’) should be matched amongst themselves, and the
same for N (A) \ (M U M) in a matching called M".

A is initially a king in G over any node with no larger outdegree than it (i.e. V' \ H"(A)). However, if we do not
create the matching M above carefully .A may no longer be a king over the sources of M. Even worse, some source
of M may lose all of the nodes that can potentially beat, and might become a Condorcet winner in the graph induced
by the winners of round 1. This is demonstrated in Figure 4. In this example, we would like to fix the bracket for P,
the second strongest player. P; can beat P, but only P, _; and P, beat Ps. If we use any matching of N°“¢( ) that
does not match P,, with P,,_, P53 will be a Condorcet winner in round 2, and P, cannot win.

The failure of this example motivates our approach. We begin our construction of round 1 as before. We use the
perfect matching M from V' \ H""(A) to H"(A) and M’, a maximal matching M’ from N°“!(A)\ M to N*"*(A)\ M.
At this point, we want to guarantee that as many of the sources of M as possible are still covered by winners of round
1. We start by finding the set T of sources of M that are not currently beaten by some source in M’, or by A.
Because these nodes are all of lower outdegree than .4, we can argue that there is some subset S which is a subset of
Nowt(A)\ (M U M’) that covers T'. We use a greedy approach (Algorithm 1) to match up the nodes of S in round 1
so that the winners of this matching cover as many nodes of 1" as possible. We are able to show (in Lemma 2) that the
set U of nodes of T that are not covered by the first round winners from S is very small: it has size at most O(\/ﬁ ).
This will allow us to show that we can eliminate U in later rounds.

We design the next rounds using Lemma 1. To do this, we use the largest outdegree node ¢ in 7" and find a set P,
the size of which is a power of 2, that contains both ¢ and U. The final requirements of Lemma 1 are that A beats at
least as many first round winners outside P as it loses to (which we show using Theorem 3) and that the number of
nodes from N°“!(A) that beat ¢ and survive round 1 is at least |P|. To fulfill this last requirement, we add an extra
iteration (for ¢ = 1) in Algorithm 1 which constructs the first round matching of S so that enough nodes that beat ¢
survive round 1.

Summary. We create the first round of the tournament by using M, a maximal matching M’ from the remaining
nodes of N°“(A) to the remaining nodes of N*(A), and a greedily selected perfect matching M” on S. Many
sources of M" beat t, and almost all of T is covered by the sources of M". This does not fully specify the first round
matching. A few nodes may remain unmatched, specifically N (A) \ (M UM'), Nt (A)\ (M UM’ UM") and A
itself. The final details are included in the proof sketch at the end of this section. The goal of the first round matching
is to ensure that the requirements of Lemma 1 are met and the remaining rounds of the tournament can be completed
so that A wins.



Figure 4: An example where an arbitrary matching of Figure 5: The construction of the sets .S; and B; in Theo-
No“t(Py) is likely to fail. rem 3.

3.2 Technical details.

With the above overview of the proof technique, we now introduce the necessary lemmas. As an SE tournament is a
series of log n matchings, these lemmas are about the existence of matchings with desirable properties. The first is a
very general result that can be specifically applied to lower-bound how large a matching can be found from N°%(A)
to N (A) \ H™(A).

Theorem 3 (Large Matching). Let h € 7Z, possibly negative. Let S and B be disjoint sets such that VX C B,

|E(S, X)| > (‘)2(‘) — h|X|. Then there exists a matching between S and B of size at least IBF#.

Proof. Recall that M is a maximal matching from a set S to a set B if and only if there are no augmenting paths from
the unmatched elements of S to the unmatched element of B. Our proof will proceed by using the large number of
edges from S to any subset X of B to lower-bound the size of the matching.

Let M be a maximal matching from S to B. We refer to the sources of M as S’ and the sinks as B’. We iteratively
build up a family of sets S; and B; that consist of augmenting paths from the unmatched nodes in B.

Let S; be the subset of S’ which contains all nodes with edges to B \ B’. Let Bj be the nodes matched to S; by
M. Now, we inductively define S; as the nodes in " \ U/_|'S; that have edges to B; 1, where B;_; are the nodes
matched to S;_; by M.

This process can be repeated up to some index J + 1 such that there are no more nodes in S’ \ U;_, S; with edges
to By. Let S = UiSJSi and B = (B \ B/) U (UiSJBi).

First, note that there are no edges from S \ S’ to B since M is maximal. If there were, we would have an
augmenting path. Therefore, all edges into B come from S. The number of edges from S into B is at most | B||S| (the
number of edges in a complete bipartite graph) and at least | B|(| B| — 1 — 2h) /2 by the Theorem statement. Thus, we
can conclude that

M| =B\ B| +5]

(IBl—1-2h) _ (|B|—1-2h)
2

(1BI - |B)) + >

O

Theorem 3 is used in the proof of Theorem 2 to argue about a lower bound on the size of N°“!(A) after the first
round. An example application of this theorem is to set S to N°%'(A) and B to N*"(A) \ (M U H"™(A)). Here,
the conditions of the Theorem are met: we can show that for every subset X, E(S, X) > (‘)2( |) + | X| because every
vertex in B beats A and is of lower outdegree than A.

The other very important part of our proof is Algorithm 1. As mentioned earlier, it is a greedy way of creating a
matching in a set S such that the sources cover many elements in a set 7'. It iteratively finds the source in .S that covers
the most uncovered elements of 7" and matches it with a vertex that it beats. The first iteration of the loop deals with
an element ¢ that is a king over 7". This loop only considers the subset of S that beats ¢ and guarantees that at least half
of the nodes that beat ¢ in S are preserved as sources. At any time in the algorithm, U; is the set of the nodes that are



Algorithm 1 Greedy Matching
1: Input: G = (V, E) atournament and S,T' C V, ¢t € V; Output: Matching M
2: Let Ay = Ng”(t), Uy=T,i=1,Lyg=0,M = 0.
3: forqg=1,2do
while |A;| > 2 do
Let x;,y; € A; have larger outdegree to U; than all the other elements in A;; x; beats y;.
L+ Li—1 U{y}
Ui+1 +— U; \ Nout(fl,‘i)
Aip1 = UUEUiJrlNZZ (U) \ L;
10: 1+ 1+1
11:  end while
12: A; = UveUiNévn(Ui)
13: end for

e

R AN

currently not covered by the sources of the matching M, A; is the set of sources that beat any element in U;, and L, is
the set of nodes that lose in M and are excluded from A;.

We want to lower-bound the size of the generated cover. The main idea of the proof is that we initially have many
edges from .S to T', and specifically at least (‘lel) to each X C T. If we consider the first pair (x1,y;) added to
M, then we can say x covers k elements of 7. Therefore, we now need to cover only a subset of size |T'| — k which
has at least (‘T‘Q_k) edges into it. However, this may include edges from y;. When we remove y;, we may lose up to
|T| edges. The key observation is that for the pair (z2, y2), y2’s outdegree is upper-bounded by z; so we are able to
bound the number of edges lost by the matching as the number of vertices currently covered plus |T'|. We then show
that there will always be enough edges and sources to increase the size of the matching until at most 2\/W + 1 nodes
remain uncovered.

Lemma 2. Let G = (V| E) be a tournament graph. Let S C'V and T C 'V be disjoint sets such that for all X C T,
the number of edges from S to X is at least (|X|2+1). Lett € V be given. Algorithm 1 generates a matching, M, in S

such that at least |T| — 1 — 2,/|T| nodes in T are beaten by at least one source in M and at least (ing(t) — 2)/2 of
the sources also beat t.

Proof. We need to define some additional concepts for the proof. The first is the set of covered nodes at iteration ¢,
C;, where C1 = (). C; is exactly T\ U; (so |T| = |Ci| + |U;|). Let d; = |Cy41| — |C;| be the number of new nodes
covered by iteration i. Our goal is to lower-bound the size of |C;| when the algorithm quits.

Consider the first execution of the WHILE loop. Let ¢y be the iteration at which the loop exits. This loop greedily
covered 7" but only used vertices that also beat . We will lower-bound the number of edges that remain from all

unmatched sources in S (the set 4;,) to U;,. At this point, |C;,| = Z;‘O:l d;. The number of edges from L;, to U;,
is at most |T'| — |C;, | + 220;11 d; < |T| since we picked the nodes so that outy, (y;) < outy, ,(xi—1) = d;—1, and
outy, (y1) < |Ui,|- Thus we can obtain a lower bound on the number of edges between A;, and U;,: |E(A;,, Ui, )| >

(|U7;02|+1) _ |T|
Let j > iy be any round in the second WHILE loop. As above, |C;| = |C;,| + Ei:io 41 di. and the number of
edges from L; to U is at most

j—1
Ujl + 1T+ Y di=2T| = |Cy] + |Cy| = |Cig| < 2|T.
k=i0+1

We can lower-bound the number of usable edges from A; to U; as

B0 = (P47 - a2



(TP + 1G5 = @T| + 1)|Cy] = 3|T1)/2.

The second WHILE loop exits when |A;| < 1. Therefore, when the algorithm finishes, |[4,| < 1 and |E(A4;,U;)| <
|U;| = |T| — |C;|. We have:

(TP + 1G5 = @T|+ D)|C5] = 3TN /2 < |T| - |Cj,
This can be simplified as follows.

|Cj1* = Q2IT| = D)ICj| = 5IT| + |T]* < 0.

|Cjl > T = 1/2 = V/IT]? = [T + 1/4 +5|T| - |T]? =

IT|—1/2 = A|IT|+1/4 > |T| —1-2+/|T|.
That is, the number of covered nodes is at least |T'| — 1 — 2\/m . After round ¢( we have at least i sources in M
covering ¢ and at least ing (t) — 2io — 1 nodes of N (t) that were not used in creating the rest of the matching because
they did not cover any element of U;,. Match these among themselves to obtain at least ig + | (ing(t) — 1 —2ig)/2| >
(ing(t) — 2)/2 sources of the matching that are inneighbors of ¢. Complete the matching M from S to S by matching
the rest of the nodes of S arbitrarily. [

The bounds on the greedy matching algorithm are only positive if |T'| > 5. We don’t want our bounds in The-
orem 2 to depend on the size of the matching into H*(.A). We now present a sketch of the proof that ignores this
difficulty. The full proof contained in the Appendix fixes this problem through the introduction of a technical Lemma,
Lemma 6. This lemma allows one to artificially boost the size of T to guarantee that the above process will always
work. Additionally, this proof sketch assumes that that the indegree of node .4 coming from the sources of M is large
enough. This assumption is also lifted in the Appendix.

Proof sketch of Theorem 2: This proof proceeds by constructing the first round matching in stages. First, we will use
M, the matching given by the theorem statement, and construct M’, a maximal matching. Next, we show how to
match A and construct the covering of the sources of M using Algorithm 1. Finally, we argue that the constructed first
round matching satisfies the requirements of Lemma 1.

For simplicity, let A = N°%'(A) and B = N*(A). We divide the sources of M onto H"(A) into two sets, Ar
and By, where A are the sources of M in A while By are the sources in B. We can also divide H‘"*(A) into two
sets, Hy and Hs, where H; are the nodes matched to A7 and H are matched to By by M. In order to later argue
about the size of matchings, let |Ar| = |H;| = h and |Br| = |Hz| = k. This means that K, the size of M is exactly
k+h.

Let Byt = B\ (Br U H™™(A)) be the nodes who beat A and are not part of M. Take M’ to be any maximal
matching from A \ Ap to Brey. We want to argue about the size of M’ by using Theorem 3. First, note that | Brest| =
| B|—k— K. Now, since we removed Ar, of size h, we can only say that every node b in B has at least out g (b)+1—h
inneighbors from A \ Ar. Therefore, by Theorem 3,

IM'| > (B — K —k—2h+2—1)/2=(|B| — 2K — h+1)/2.

We will use this fact later when arguing about the outdegree of A after the first round.

Finally, note that B consists only of lower ranked nodes than A, so every node in By has some source of M’
or Ar as an inneighbor.

(Matching A to some node.) Consider the currently unmatched portion of A. Call this A, = A\ (Ar U M').
If there is some a’ € Apeg, then match A to a'. If Ay is empty, then we can argue that |M'| > 1 since

A\ Ap| = |A|—h> (n—K)/3—h> (n—4K)/3 > 1.

Since M’ > 1, we can dislodge any edge (a’, V') from M’ and match A to a’. After removing a’, the lower bound for
|M’| goes down by 1: [M'| > (|B| — 2K — h —1)/2.



(Creating a matching of Ayeg \ {a'}).) We now use Algorithm 1 to cover Br. Let S = Ay \ {a'} and T be the
subset of B consisting of the nodes that do not have inneighbors among the sources of M’ and A. For simplicity in
this proof we assume that |T'| and hence | Br| is large enough.

Every subset X of the nodes of T has at least (|?2(|) +2|X|—|X| = (‘)2“) + | X | inneighbors in .S since each node
in X can have lost at most one inneighbor, a’. Lett € By be the node with highest outdegree in Br. Run Algorithm 1
on S, T,t. This outputs a matching M” on the nodes of .S that covers all of T except for a subset, U, of size at most
1+ 2,/|T|. There are also at least ing(t)/2 — 1 sources of M" that beat ¢. This completes the first round matching.
Let G’ be the graph induced by the surviving nodes.

(Handling U.) We will construct P, a subset of 7', such that P contains U, and ¢ is a king over P who beats at
least half of P.

We selected ¢ so that it is a king in T". Therefore, there is a subset of at most |U| nodes in its outneighborhood in
T that cover U. We can add these nodes together with enough other nodes of N2“!(¢) to P so that | P| is a power of 2
and ¢ is a king in P that beats at least half of P. This is possible since U is very small compared to 7.

We can assume that the size of P is 2¢ where 2¢ is the closest power of 2 greater than 3 + 4\/@ , as we may need
asmany as [U| <1+ 2\/@ extra nodes added to P to guarantee that ¢ is a king over P. We can further conclude
that | P| < 5 + 8,/]T| since we can at most double 3 + 4,/|T’| to make | P| be a power of 2.

From Algorithm 1 we know that at least

ins(t)/2—1> (|Br| - 1)/4 -1
inneighbors of ¢ from S are in G’. Since we assumed that By is large enough, we have
(1Br| = 1)/ —12 5+ 8 /1.

Hence there exists a subset of the surviving nodes of N (t) of size at least | P|. The requirements of Lemma 1 are
satisfied if outg/ (A) > ing/(A). We prove this below and thus show that A is an SE winner.
(Showing that outgs (A) > ing (A).) The number of nodes of N°“(A) that survive the first round is at least

LAl + [M'] + |Az| — 1)/2].
The number of nodes of N"*(A) that survive is at most [(|B| — |Az| — |[M’])/2]. It suffices to show that
[Al+ [M'| + |Ar| =1 > [B| — [Ag| — [ M].

Recall that |M'| > (|B] — 2K — h — 1)/2 so we must only show that |A| + |B| — 2K — h + 2h — 2 > |B|, or that
|A] — 2K + h —2 > 0. Since |A| > (n — K)/3 it suffices to show that (n — K) > 6K + 6, or that K < (n —6)/7,
which is true by assumption. O

4 Conclusions

In this paper, we have shown that the existence of back-matchings can allow for an SE tournament to be manipulated
in favor of any of the top 19% of players. The Braverman-Mossel model for tournament generation shows that back-
matchings exist even when the noise in each match is very low (O( loi )). The question of the computational difficulty
of manipulating SE tournaments in favor of a specific player remains open, but our result shows that many common
examples can be efficiently manipulated in polynomial time using any algorithm for maximum matching. The fastest
algorithms for matching run in O(m\/ﬁ) time ([15] reimplementing [8]) and in O(n2'376) time [16]. Possible future
work includes finding even more general conditions under which a winning bracket can be found for a player, as well

as trying to reduce the dependence our method has on the number of players.
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S Appendix
5.1 Additional Tools

For the full proofs of the main results, we rely on a few constructions and facts that were not mentioned in the main
part of the paper. The first of these is the canonical matching. This is a generic matching construction that maximizes
the surviving sources while minimizing the surviving sinks.

5.1.1 Canonical matching.

Let G be a tournament graph and let A, B C V such that |A| + |B| is even. A canonical matching, CM(A, B) is
formed as follows: create a maximal matching M’ from A to B. Match all of the nodes in A that are not in M’ against
each other, and all of the unmatched nodes in B against each other. If |M’| is odd, then match the leftover node in A
with the leftover node in B.

We now describe a canonical matching for a given king node .A. Let G be a tournament graph over an even
number of nodes and A be a king in G with out(.A) > in(A). In the following construction CM(.A) we include A by
modifying CM(N°t(A), N*"(A)). Since out(A) > in(A) and n is even, out(A) and in(A) have different parity,
and out(A) > 1+ in(A). Thus |[N°“*(A) \ M’| > 1 and we can pick any node a’ € N°“*(A)\ M’ to match with
A. Match the nodes of N°“*(A) \ M’ \ {a’} amongst themselves. At most one node a” is left over. Match the nodes
of N*"(A) \ M’ amongst themselves. At most one node b” is left over, and it is left over iff a”” is. Match a” and ",
completing CM (.A). The proof of the following lemma follows from the maximality of M’.

Lemma 3. Let A be a king such that out(A) > in(A). Let G' be the subtournament graph over the sources of
CM(A). Then

o Aisaking in G,

o outcr(A) = [(out(A) + M| — 1)/2],

o ing/(A) = [(in(A) — [M'[ +1)/2],

o outg(A) > ing (A).
Proof. 1) follows since M’ was maximal, and so any node in N**(a) that is not in M’ must have some source of
M’ as an inneighbor. 2) follows since |M’| of the nodes in N°“!(q) survive the matching M’, one node is removed,
and the rest are matched amongst themselves, possibly one losing to a node of N*"(a). Hence, outg/(a) = |M'| +
[(out(a) =1 — |M"])/2] = |(out(a) — 1+ |M'])/2.

3) follows since |M’| nodes of N**(a) are eliminated by M’, and the rest are matched amongst themselves,
possibly one beating a node of N°“!(qa). Hence

ingr(a) = [(in(a) — [M'])/2] = [(in(a) — [M'| + 1)/2].
4HIf [M'| > 1, ing/(a) < |in(a)/2] < outg(a). Otherwise, since a was a king and M’ was maximal,

N (a) = (). Then outg:(a) > 0 = ing:(a). O

5.1.2 Bounds on out(A).

We often need to argue about the size of a given set, given some constraints on the number of higher degree nodes that
exist, or that a player beats. The following are useful facts of this type.

Fact 1. For any tournament graph of size k, there exists a vertex with outdegree at least L%j
This follows directly from the fact that a tournament of size k has (’5) edges.

Lemma 4. Let A be a node in a tournament graph G = (V, E) with |H(A)| = k. Then out(A) > L@J

12



Proof. Let [H°"(a)| = k1, |H"(a)| = k2 = k — k1, and out(a) = d. Let R =V \ {a} \ H. Then |[RN N"*(a)| =
n—d—ky—1and |R| =n — k — 1. Since for every b € R, out(b) < out(a) = d, d is at least the average of the
outdegrees of R U {a} in G. The sum of these outdegrees is

d+ (") + (n—d—ky — 1) + outy(R)

> (nm—k—-1Dn-k-2)/24+(n—k)—1
= -1+ mh-k-1)/2-1)+1-1
n—k)(n—-k-1)/2
Since |[RU {a}| = n — k and d is integral, d > [(n — k)/2]. O

Lemma 5. Let A be a node in a tournament graph such that |H"(A)| = k. Then out(A) > (n — k) /3.

Proof. Let A = N°“!(a) and B = N (a). The number of edges from A to B \ H"(a) is at most |A|(|B| — k) and
least ("BL7%) +|B| — k = (|B| — k)(|B| — k +1)/2 since for every b € B\ H""(a), 1 + outp(b) < in.a(b). Hence,

Al > (1B|-k+1))2=n—-1—-|Al—k+1)/2 = |A| > (n—k)/3.
O

Fact 2. Let x and y be nodes in a tournament graph such that out(x) > out(y). Then the distance between x and y
is at most 2. If A'is a node such that for all v # A, out(A) > out(x), then A is a king.

5.1.3 Boosting set sizes

Our final additional tool is the technical lemma mentioned before the proof sketch of Theorem 2. Its application relies
heavily on the greedy matching algorithm, Algorithm 1.

The bounds on the greedy matching algorithm given by Lemma 2 are only positive if |T'| > 5. However, the way
we will apply Lemma 2 in Theorem 2 will require that 7" be significantly larger than 5. We don’t want our bounds in
Theorem 2 to depend on the size of the matching into H"(A), so we present the next lemma as a way of artificially
boosting the size of 7" in order to guarantee that the above process will always work.

The intuition for the following technical lemma is that it is a method of picking a subset of nodes in N°“!(A), T,
so that the requisite edges for the previous algorithm have no needed sources in 7', and that VX C T, |E(N°%“(A) \
T.X)| = (51) +21X].

Lemma 6. Let C be a given constant. Let S and T be disjoint node sets of a tournament graph such that for every
t €T, ing(t) > outr(t) + 2, and |T| < C. Let M C S such that |S \ M| > (5C? + 17C + 4)/2. Then there exists
a subset Z C S\ M such that | Z] = 2(C — |T|) and ¥Q C (ZUT), |E(S\ Z,Q)| > ('¢)) +2|q|.

Proof. Form a subset Y C S by including for every ¢t € T exactly outr(t) + 2 of its inneighbors from S. We can
lower bound the size of Y as Y] < (@) +2|T| < C(C + 3)/2. These are the sources needed to apply Lemma 2 to
theset 7. Let R =5\ (M UY). Hence

|R| > (5C% 4+ 17C +4)/2 — C(C +3)/2 = 2C* + 7C + 2.

Now we can create the set Z. While |Z| < 2(C — |T|): pick z € R of largest indegree and add z to Z while
removing it from R. Additionally, remove from R exactly C' + 2 of the inneighbors of z.
We now want to bound the number of edges removed from R. Notice that

IR| — (2C = 2|T| — 1)(C +3) > 20% +7C + 2+ 2|T|(C +3) — (2C* + 5C — 3) > 1+ 2(C +2).

Since we have removed at most (2C — 2|T'| — 1)(C + 3) nodes from R, at each step the indegree of z is at least
(IRl — (2C = 2|T| = 1)(C +3) —1)/2 > C + 2 by Fact 1.
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Figure 6: The three cases for the second strongest player, a where m is the strongest player.

Now consider T'U Z. We will prove that VQ) C T U Z, |[E(S\ Z,Q)| > (‘622‘) +2|Q] by induction on the number p
of elements of Z contained in the subset () C T'UZ. The statement is clearly true when p = 0. Suppose it is true for all
subsets with at most p — 1 elements of Z. Consider a subset ) with p elements of Z and let z € ) N Z. Then we know
by the induction hypothesis that | E(S \ Z,Q \ {z})] > (I9\=H) 4 2/Q\ {2}]. Since ing\z(2) > C +2 > |Q| +2,
we can conclude that

pe\ 2= (9 1) va0a- v +ier+2 = (1) 210

5.2 The top 3 players in a tournament
We now address the problem mentioned in the Motivations section.

Theorem 4. Let G = (V, E) be a tournament graph and let a be the node of second highest outdegree. Then a
single-elimination tournament bracket can be fixed for a if and only if there is no Condorcet winner in G.

Proof sketch. Let m be the node with the highest outdegree, a the second highest, and «x is a node that beats m. The
proof proceeds in 3 cases as demonstrated by Figure 6.

The first is that x = a. Here, a is a king that beats all nodes of higher outdegree. By [20], a can win a single-
elimination tournament. The second case is that a beats x. Here, a is also a king. It can be shown that there exists a
perfect matching that includes (z, m), a is among the sources of the matching and a has a maximal outdegree among
the sources. Again, by [20], a can win a single-elimination tournament. The final case is that = beats a. Here, we note
that since x’s outdegree is no greater than a and beats both m and a, it must be beaten by two nodes, v; and vs, that a
also beats. In this case, there always exists a matching such that v or v, is a source, a is a king over the sources, and
a beats at least n/4 of the sources. O

We can generalize this theorem into the following result that for the top 3 nodes in the graph.

Theorem 5. (Top first, second and third node) Let a be such that |H(a)| = K in a tournament G = (V, E). Suppose
there is a matching from V' \ H(a) onto H(a). If K < 1, then for all n, a can win a single-elimination tournament. If
K =2, then for alln > 16, a can win a single-elimination tournament.

The proof of this theorem is very similar to that of Theorem 4. The only change is that for the case of the third
largest node, the two largest, m; and my are beaten by some nodes a; and as. Since there is an edge between them
(assume ajaz without loss of generality), a; must be either in N°“!(a) or beaten by 3 nodes in that set. Similarly,
az must be in N°“!(a) or beaten by 2 not necessarily distinct nodes. Simple case analysis shows that no matter the
overlap of these extra nodes, there exists a matching that ensures a is a king over a; and a9 (and all other nodes) in
round 2 of the tournament.

Proof. The cases where K = 0 and K = 1 are covered by Theorem 4 so we will focus only on the case where K = 2,
ie. H(a) = {mi,ma}. If my € N°%“(a), or ma € N°“(a) then the proof when K = 1 works. Therefore, we will
assume that both m; and ms are in N (a). By the Theorem statement, let the matching be {(x1,m1), (z2,m2)}.
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Suppose first that 21, 25 € N°% (a). The obvious thing to do is to match x; to m; and 25 to my and then complete
the matching as in the canonical matching. This works provided out(a) > 2 so that a can be matched to some node
that isn’t &1 or zo. This case can be avoided if n > 8 and in(a) > 5. This guarantees that there are at least 3 nodes
other than my, mo in N*(a). The number of edges into those two nodes from {z1, z2} is at least 3 and so one of x;
or zo must have outdegree at least 3. 3 would be larger than out(a) which is a contradiction to x; and x2 not being
mq Or ma.

Now consider the case when 21 € N°%“(a) and 75 € N**(a). Since x5 is of lower outdegree than a, x> must
have indegree at least 2 since it beats a and ms. Let 21, 20 € N°%(a) both beat 5. Let M’ be a maximal matching
from N°“(a) \ {z1} into N**(a) \ {m1,z2, ma}. If M’ U {x1} contains either z; for one of i € {1,2}, then we can
pick any a’ # z;, z1 to match to a. Just as in the canonical matching, if we unmatch a’ from M’, then the number of
unmatched nodes from N"(a) is even. Therefore, the survivors both lose at most one inneighbor from N°%(a) and
at least one outneighbor from N*"(a). If neither z; € M’ U{x1}, nor 25 € M’ U{z;}, then match them to each other.
In this case there is a counterexample on 8 nodes:

® 4 :.T1,21,%2,

® T :M1,T2,Y,

® 21 :122,%T2,771,

® 2o 11,2,

® y:z1a,

® T2 !Y,Mmo,a,

® Myt Y,x2,21,%22,0,

® M2 :1M,Y,T1, 21,22, a.

In order for @ to win in this counterexample, x5 must be matched to some node of N°“!(a) but then msy cannot
lose.

Given that n = 8 doesn’t necessarily work, assume n > 16. Now, out(a) > [(n — 3)/2] = (n —2)/2 > 7. We
can extend M’ U {(x1,m1), (x2,m2)} just as in the canonical matching - since the outdegree of « is high enough,
there is at least one node to match a’ to. If out(a) =1+ n/2 — 1, then

in(a) —3=n—-1-3-(I+n/2—-1)=n/2-1-3>5-1.

If 5 — 1 > 2, then |M'| > 1, and the number of nodes remaining after the first round is at least | ((n — 2)/2 — 1 +
2)/2] = n/4. Otherwise, I > 4, and out(a) > n/2 + 3. Then the number of nodes remaining after the first round is
atleast [(n/2+3 — 14 1)/2] > n/4. Since a is a king it can win the tournament.

The final case is when 1, 25 € N (a). Without loss of generality, also let 2; beat x5. Here there is a counterex-
ample for n = 8 as demonstrated in Figure 2.

Let n > 16, which implies that out(a) > (n — 2)/2 > (16 — 2)/2 = 7. There are at least 3 inneighbors of
x1 and at least two inneighbors of x5 in N°“!(a). We create a maximal matching M’ from N°%“(a) into N*(a) \
{x1,29,m1, ma}. If for either x; or x5 none of their inneighbors are sources of M’ then there is a matching on
their inneighbors in N°“!(a) so that the matching sources contain at least one inneighbor for each ;. One can finish
the matching just as in the canonical case. a can be matched since out(a) > 4. a will be a king in the remaining
tournament. It remains to show that it has outdegree at least n/4. Let out(a) =1+ (n — 2)/2 =n/2+ 1 — 1. Then

IN™(a) \ {21, 29, m1,ma}| =n—5—-n/2 -1+ 1=n/2—-4—1,
and
IM'| >n/4—2-1)2.
The number of surviving outneighbors of a is
[(n/24+1—-1—-14n/2—-2-1/2)/2] >n/2—-2>n/4
as desired. O
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5.3 Full Proofs of Main Results

Reminder of Lemma 1 [Kings Except for a 7" subset] Let A be a node in a tournament G and let 7" be a subset of
N (A) of size |T| = 2* for some k. Suppose that A is a king in G\ T and [N°“*(A)| > |[N"(A)|. Let t be a king
in T with outdegree in T at least ||7'|/2]. Suppose that |[N**(t) N N°“*(A)| > |T|. Then A is an SE winner.

Proof of Lemma 1: This proof will proceed by induction on the size of 7. As such, we establish the base case when
|T| = 1. Here, T = {t} and A is actually a king in G with outdegree at least half the graph. By [20] A can win a
single-elimination tournament.

Now consider when |T’| > 1. Our induction proceeds by assuming that .4 can win if |T'| < p for some p, provided
that [N°%(A)| > |[N™(A)|, t is aking of outdegree at least |T|/2in T, |T| is a power of 2 and |N*"(t) N N°%*(A)| >
|T'|. Now given a graph with |T'| = p, we will give a perfect matching M of the graph such that the following is true
of the tournament G’ induced by the sources of Mg:

1. if T, are the surviving nodes of T', then ¢ € T, and ¢ is a king in T,. of outdegree at least |T,.|/2 and |T}.| = |T|/2
is a power of 2,

2. if A, are the surviving nodes of N°“*(A), then in, (t) > |T,|,
3. Aisaking in G’ \ T}, and
4. if B, are the surviving nodes of N*(A), then |A,.| > | B,|.

In order to create the necessary matching Mg, first create a canonical matching CM(t) for ¢ in 7. Let T, be the
sources of CM(t). Then by Lemma 3, Condition 1 follows.

Now, let S be a subset of Ni%,.. 4 (t) of size |T'|. Create M(N"*(A), N"'(A) \ T). Since [N*“*(A) \ S| >
1+ [N (A)\ T, there exists an unmatched node a’ in N°“*(A) \ S. We can match A to a’.

Next, match any unmatched nodes of S, N°“(A) \ (M’ U S) or N**(A) amongst their respective sets. Call this
matching M"'. The number of nodes of S that survive is at least | (|S| + |[M" N S|)/2] > |S|/2 = |T;|. This satisfies
Condition 2. Since M" was maximal, all nodes of N*(A) \ T,. have surviving inneighbors in A,.. This shows that A
is aking in G’ \ T, or Condition 3.

It remains to show that | A,.| > | B,.|. We know that

[Ar| = [(IN"(A)] + [M"] = 1) /2]

and that
|B,| < [(IN"(A)| = |T| = [M"])/2] + |T|/2 = [(IN"(A)| + 1 = [M"])/2].

Now, since [N°“*(A)| > |N""(A)| by the induction hypothesis
Al > LN (A)] + M| = 1)/2].

If |[M"| > 1, we immediately get |A,| > |B,|. If M" = (), then N""(A) = T. But then both |[N*(A)| and
|N°ut(A)\ {a'}] are even. Furthermore, |[N°“(A)\ {a’'}| > |T| = |N*"(A)|. Hence, |A,| = |[N°“(A)\ {a’}|/2 >
|N“(A)|/2 = | B,|. This proves Condition 4 and concludes the proof of the lemma. O

Reminder of Theorem 2 [Not a King but Matching into 7" (A)] There exists a constant ng such that for all n > ng
the following holds. Let G = (V, E) be a tournament graph on n nodes, A € V. Suppose there is a matching M from
V \ H"(A) onto H™(A) of size K. If K < (n — 6)/7, then A is an SE winner.

Proof of Theorem 2: This proof fleshes out the details that were ignored by the proof sketch given previously in
the paper but follows the same structure. It will be useful to refer to Figures 7 and 8 as we proceed through the
construction.

For simplicity, let A = N°“(A) and B = N*(A). We divide the sources of M onto H"*(.A) into two sets, M
and M, where M, are the sources of M in A while M, are the sources in B. We can also divide H" (A) into two
sets, Hy and H,, where H; are the nodes matched to M7 and Hy are matched to My by M. In order to later argue
about the size of matchings, let |M;| = |H;| = h and |Ms| = |H3| = k. This means that K, the size of M is exactly
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Figure 7: Situation in Theorem 2 when Z = (). Figure 8: Situation in Theorem 2 when Z # ().

k + h. Further, let ng = 10 although we suspect the theorem is true for much smaller n with more careful analysis.
Let C' be the constant 529 and ¢ = max{C — k, 0}.

Let M be an arbitrary matching of B \ (M, U H) of size min{c, ||B \ (My U H)|/2]}. We will call the set of
sources of My and M Br. Let By = B\ (Br U H). Because By does not contain any nodes ranked higher than
A, for every b € By we have that outp, + 2 < in4(b). For our proof we will require that |Bp| > C. If |Br| < C,
then we will show how to use nodes from A to artificially boost the size of By, while still preserving the properties
we need.

(Boosting |By| when |Br| < C.) 1If |Bp| < C, then M was maximal and | Breq| < 1. We now show that we can
apply Lemma 6.
If Brest = {brest} and some inneighbor ayes Of bregt is in A \ M7, then note that

|A\ (Ml U {arest})| >
(n—1) =2~ 2By -2 >
n—3—2h—-2k—-2C >
(5C% +17C +4)/2
since n > 105 > 7(10 + 21C + 5C?)/10 and K < n/7. Therefore,
n—2h—2k=n—-2K >5n/7 >

(5/7) - 7(10 4 21C + 5C?) /10
(5C? +17C +4)/24+2C +3

This satisfies the conditions so that we can apply Lemma 6 to the sets A, (A N M) U {ares }, and By with the value
C'. This will giveus aset Z C A\ (M7 U {agex}) of size 2(C' — |Br|) in Z. Let Z; — Z5 be a (perfect) matching of
size C — |Br|in Z. Add Z to B and Z; to Br. Now we can assume |Br| > C and that for every subset Q) C Br
there are at least (lgl) + 2|Q)| inedges of @ from A\ Z.

Let A=A\ Z,B=(B\H)UZUM;and By = B\ (M UM, U H). Since we are defining many sets, refer
to Figures 7 and 8 for clarity. The figures cover the cases where Z = () and Z # () separately.

(Covering some of Bye.) Let M’ be a maximal matching from A \ Mj to Bies. There are several cases for this
construction.

o If Z # (), M’ is either empty, or only consists Of (@est, brest). If & > C, then \M| =0, |Best| = |B| — k — K.
Furthermore, since every node bin B\ (H U M>) has at least out g (b) + 1 — h = outg(b) — (h — 1) inneighbors
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from A \ M, by Theorem 3 we have that
IM'| > (|B|-K—-k—2h+2-1)/2
= (IB|-2K —h+1)/2.
o If Z=0and k < C, then 2(C — k) nodes of B \ H \ M3 are matched to each other, and so by Theorem 3
IM'| > (|B|-2C+2k—K—k—2h+2-1)/2
(IB] —2C —3h+1)/2.

Every node in By has some source of M’ or M; as an inneighbor.

(Matching A to some node.) Consider A’ = A\ (M; U M").

e If Z # (), then

] > n—1-|B—|AnM|—1- 2|
n—2-—2h—-2C
n—2-—2(n—-6)/7—-2C
(5n—2—-14C)/7>1

(AVARAVARIY]

Hence when Z # (), there is some o’ € A\ (M; U M) that we can match A to.
e If Z = (. Then

A\ My| =
Al—h >
(n—K)/3—h >

(n—4K)/3 >1

If there is some o’ € A’, then match A to o’. Otherwise, |M’| > 1. Dislodge some edge (a’, ") from M’. Since
out(A) and in(A) have different parities and A’ = (), the number of leftover unmatched elements of B after
we add b’ to them is even. Hence any matching we use to complete the first round of the tournament would be
perfect on them. Even after removing a’ from M’ any surviving element b from the leftover B elements will
have at least out 5 (b) > 1 surviving inneighbors. The lower bounds we had computed for |M’| go down by 1:

- whenk < Cand Z =0, |M'| > (|B] —2C —3h —1)/2
- whenk > C,|M’'| > (|B| —2K —h—1)/2whenk > C

Now let S = A"\ {a’} and let T" be the subset of By consisting of the nodes that do not have inneighbors among
the sources of M’ and M. Every subset @ of the nodes of 7" has at least (lgl) +2|Q|—1Q| = (|C22|) +|@] inneighbors
in S since each node in @) can have lost at most one inneighbor, a’.

(Handling 77 and completing round 1.) Let ¢ € Br be the node with highest outdegree in Br. Running Algo-
rithm 1 on S, T, t produces a matching M on the nodes of S so that almost all nodes of T are covered by sources S’
of M except for a subset T C T with |T”| < 1+42+/|T. Further, there are at least ing(t)/2—1 > (|Br|—1)/4—1
sources of M that beat . The addition of M’ to the rest of our construction completes the first round matching. Call
the graph induced by the surviving nodes G’.

Let P be the closest power of 2 greater than 3 + 4\/@ . Then P < 5 + &/W . Suppose that |Br| > 5 +
8+y/|T]. This is true whenever |Br| > 81, and since |Br| > C = 529 > 81 the assumption is true. There exists a
subtournament 7} of By such that 77 U {¢} € T} and t is a king in 7} of outdegree at least |T;|/2 and |T;| = P, a
power of 2.
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If t € N°“'(A), then we will not need its surviving inneighbors from S. In the following we handle the more
complicated case when t € N"*(A), and so at least ing(t)/2 — 1 inneighbors of ¢ from S are in G’. We need that
(|Br| — 1)/4 —1 > 5+ 8y/|T|. This is true when |Br| > 529 = C. Then there exists a subset of the surviving
nodes of NZ*(t) of size at least P = |T3|. Now we can apply Lemma 1 to show that A can win a single-elimination
tournament, provided that outg: (A) > ing: (A).

(Showing outg/ (A) > ing/(A).) Recall that |[M’'| > (|B| — 2C — 3h — 1)/2 when k < C but Z = () and
|M'| > (|B| — 2K — h — 1)/2 when k > C. We have three cases.

1. k> C,and so Z = 0.

Here, the number of nodes of N°“!(qa) that survive is at least | (|A| + |M'| + |M1| — 1)/2]. Meanwhile, the
number of nodes of N*"(A) that survive is at most [(|B| — |[M;| — |M’|)/2]. It suffices to show that

|Al+ [M'| + [My| =1 > |B| — [My| — |M'].

This happens when |A| 4 2|M'|4+2h —1 > | B|. By the assumptions of this case |[M'| > (|B|—2K —h—1)/2,
so we must show that
|A|+|B| —2K —h+2h—2 > |B],

or that
|A| —2K +h—22>0.
By Lemma 5, we know that |A| > (n — K')/3 so we just need that (n — K') > 6K + 6. This simplifies exactly
to the assumption of the main theorem that K < (n — 6)/7.
2. k< Cand Z = 0.

In this situation, it still suffices to show that |A| + 2|M’| + 2h — 1 > |B|. However, now |M’| > (|B| —
2C — 3h — 1)/2. Combining these, we find we only need that |A| — 2C' — 3h + 2h — 2 > 0, or equivalently
that n — 6C — 6 > K + 3h. Simplifying this, we only need that X < (n — 6C — 6)/4, which is true since
(n—6C—6)/4> (n—6)/7.

3. Z#0.

If Z # D then |B| < h+ 2C, and at most C nodes of B U Z survive. The number of nodes of A\ Z that survive
is at least

LAl = |Z] + h+ [M'| - 1)/2]
(|A|-C-2+K-0C))2 =
(Al + K)/2—C —1.

Y

We need only that (|A| + K) — 2C' — 2 > 2C. After applying Lemma 5, this becomes that (n — K)/3 + K >
4C + 2,and n + 2K > 12C + 6. It is true that n > 12C + 6 since ng > 12C' + 6.

This covers all of the cases and concludes the proof. We have given the construction for a matching M U MU
MU M" such that the conditions for Lemma 1 apply to the node .4 in the subtournament induced over the sources of
our matching. O

We can state this result in terms of the size of #(.A) instead of H"(.A) by applying Lemma 4 to lower bound the
size of the initial set A.

Corollary 2. There exists a constant ng so that for all tournaments G on n > ng nodes the following holds. Let A be
among the top (6n + 7)/31 > .19n highest outdegree nodes. If there is a matching from V \ H"(A) onto H'"(A),
then A is an SE winner.
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