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Abstract 
 

Improving CMOS Speed and Switching Power with Air-Gap Structures 
 

By 
 

Je Min Park 
 

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences 
 

University of California, Berkeley 
 

Professor Chenming Hu, Chair 

 

     Scaling transistors is good for speed but scaling interconnect degrades it due to resistances 
and parasitic capacitances. Scaling of supply voltage VDD has significantly slowed down since 
the 130 nm node. As a result, integrated circuit (IC) power consumption has been on the rapid 
rise. Crosstalk noise problem has been also increased as scaling. Reducing capacitance is an 
excellent solution for these problems; the circuit delay, power consumption, and crosstalk noise. 
The future transistor and interconnect with lower capacitance should be considered to overcome 
these problems. An air-gap structure can be attractive solution for both transistor and 
interconnect. Novel air-gap structures are proposed in this research. In the transistors, the 
conventional spacer structure is replaced with air-gap spacer structure. This new structure leads 
for the fringing capacitance to be decreased much. Therefore, the speed and power consumption 
can be improved. This structure can be compatible with both the conventional gate-first and gate-
last process. Other designs involve use of self-aligned contact or linear contact processes to 
achieve a much more effect. The low-k spacer transistor which is included this air-gap spacer 
transistor degrades the current performance. Thus, the air-gap spacer technology is very helpful 
to the high performance devices but it is not much helpful to the low stand-by power devices. 
The corner spacer transistor with high-k inner spacer and low-k outer spacer is proposed to 
overcome the degradation of current performance. The high-k material can improve the current 
performance and the low-k material can improve the capacitance. In the interconnects, the 
proposed novel air-gap interconnects are compatible with both the subtractive etch interconnect 
and dual damascene interconnect. These air-gap structures can improve not only the effective 
dielectric constant but also crosstalk noise problem.  
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Chapter 1 

The Needs for Vacuum Gap Structures 
 

1.1 Scaling down is no longer the absolute solution for improving circuit 
speed 

     All the modern digital logic devices consist of two major elements: transistors and metal lines 
for interconnecting them. Scaling the transistor size improves the on-current and reduces the 
switching time and hence the logic delay. However, this scaling increases the resistance and 
capacitance of the metal lines, and therefore the overall interconnect delay is increased. Hence, 
scaling improves the logic delay but degrades the interconnection delay as shown in Figure 1.1. 

 

 
                      Figure 1.1: The gate delay is reduced but the interconnect delay is increased as scaling the  
                        transistor size. [1.1] 
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     Furthermore, scaling transistors is more and more difficult. Scaling gate oxide is hard to be 
achieved due to gate leakage current and scaling the gate length is also hard to be demonstrated 
because of short channel effect (SCE). And scaling source/drain contact induces high contact 
resistance which drops the voltage a lot so that current is degraded. Junction depths have not 
scaled at previous historical trends due to inability to increase active dopant concentrations as 
shown in Figure 1.2. This makes SCE improvements extremely difficult and limits threshold 
voltage scaling. Thus, the circuit speed cannot be improved much with scaling transistors. 
Therefore, scaling is no longer the absolute solution for the circuit speed due to the interconnect 
delay and the difficulty of scaling transistors. In order to improve the circuit speed, reducing 
capacitance is more and more important.   

 
                                Figure 1.2: The doping concentration cannot be increased due to the solid  
                                   solubility so that junction depth is hard to be reduced. [1.2] 
 

1.2 CMOS Power density has increased with scaling transistors 

     Figure 1.3 shows that the trends of the power-supply voltage (VDD) and the threshold voltage 
(VTH) with each generation. In order to scale VDD at the same drive current (ION), VTH should be 
reduced as following Eq. (1.1). However, decreasing VTH increases the off-current exponentially. 
Thus, VTH cannot be scaled down aggressively as shown in Figure 1.3. From this reason, scaling 
VDD is extremely difficult as the technology node gets small.   

                     

                          ION ∝ (VDD - VTH)α , where α =1-2                                  (1.1) 
 

     Reducing VDD is the most effective solution of power consumption in circuit devices. 
However, CMOS power density has increased with transistor scaling since VDD has not been 
scaled down in proportion to the transistor channel length. The active and passive powers are 
closely related by capacitance and VDD which are defined as Eq. (1.2). Figure 1.4 shows that 
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active and passive power densities are increased by 1.3 times /generation and 3 times 
/generation, respectively. This power crisis will become more severe with increasing device 
density. Thus, reducing capacitance is a good solution to reduce power consumption. 

 

                                          PACTIVE ∝ CVDD
2, PPASSIVE ∝ VDD                           (1.2) 

 

 
                                         Figure 1.3: The trends of VDD and VTH with each generation. [1.2] 
 

 
                                     Figure 1.4: The active and passive power densities are increased as the gate  
                                         length is decreased. [1.3] 
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1.3 Crosstalk noise is also a big problem 

     Crosstalk noise is defined as an undesired coupling from one circuit node to another. This 
noise is closely related the mutual capacitance which is the capacitance between the parallel 
metal lines as shown in Eq. (1.3). Figure 1.5 (a) illustrates mutual capacitance. As the technology 
node gets smaller, this crosstalk noise is extremely difficult to solve. James Meindl, director of 
the Microelectronics Research Center at the Georgia Institute of Technology, said that the 
tyranny of interconnects is threatening the timing, power, and cost of next-generation chips. For 
an example, interconnect switching energy is five times that of MOSFET switching energy at 
100nm technology but the interconnect energy becomes 30 times greater at 35nm technology 
[1.4]. Jay McDougal said that signal integrity was really an order of magnitude worse as shown 
in Figure 1.5 (b) [1.5]. Therefore, crosstalk noise is also a big problem with scaling down. 
Reducing capacitance is also very helpful to decrease crosstalk noises.  
 

                                          CROSSTALK NOISE ∝CMUTUAL                           (1.3) 
 

 

 
(a)                                                                                               (b) 

Figure 1.5: (a) Mutual capacitance is defined by figure . (b) Crosstalk noise becomes a big problem as the 
technology node gets smaller. [1.1] 
 

1.4 A possible solution 

     Reducing capacitance is good for speed, power, and crosstalk noise from Section 1.1, 1.2, and 
1.3. A lot of research about decreasing capacitance has been studied. Finding low-k material is 
one option. However, most of low-k materials have porous structure so that the poor structural 
stability induces reliability problem.  
     Another option is the combination of conventional material and vacuum. Vacuum is the 
lowest dielectric material but it cannot be demonstrated by itself. There were lots of patents and 
papers about this vacuum gap structure. However, most of the research have been focused on 
interconnect capacitance. The fringing capacitance of transistor is increased at the small gate 

Cm

Metal Lines
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length device. Therefore, the vacuum gap structure of transistor will be an attractive structure to 
overcome delay, power consumption, and crosstalk noise.   
 

1.5 Research outline 

     The overall focus of this research is to study novel device structures for the purpose of 
improving complementary metal-oxide semiconductor (CMOS) speed and power consumption. 
The scaling of CMOS technology has been the driving force for technology advancements in the 
semiconductor industry over the last few decades. Speed and power are the most important 
parameters in scaling CMOS devices. These two parameters are closely related to each other. 
Increasing current is good for speed but this higher current consumes a lot of energy and power. 
Decreasing drain voltage (VDD) leads low power consumption but it makes on-current slower and 
speed will be decreased. Reducing the device capacitance will be an increasingly important way 
to enhance the device speed and switching energy and power as the technology node is getting 
smaller and smaller. 
     The scope of this work is limited to simulation works of both transistors and interconnects. 
Chapter 2 reviews the general vacuum spacer transistor which is compared to the conventional 
spacer transistor. And self-aligned contact (SAC) process with vacuum spacer transistor is 
proposed for reducing capacitance as well as chip area. In Chapter 3, we propose the gate last 
process with vacuum gap spacer in both high performance and low stand-by power devices. The 
linear contact process will be used at the small feature size to overcome the contact resistance. 
Vacuum spacer transistor with linear contact process becomes more beneficial. In Chapter 4, 
corner spacer transistor is proposed. A small portion of high-k corner spacer improves the on-
current and a large portion of low-k outer spacer decreases the capacitance. Chapter 5 introduces 
novel subtractive etch interconnect and dual damascene interconnect with vacuum gap structures. 
Chapter 6 summarizes all the works and shows considerable future directions.   
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Chapter 2 

Vacuum Spacer Transistors  
 

2.1 Introduction 

Speed and power consumption are the most important considerations for developing new 
transistors. These two parameters are closely related to each other. Increasing on current and 
decreasing total capacitance should be extremely helpful to develop a high performance 
transistor. However, higher on current consumes a lot of power. Decreasing VDD leads to low 
power consumption but it makes on current lower and speed will be decreased. Thus, designers 
focus on only one parameter, either speed or power. Higher on current and lower total 
capacitance are important in high performance technology and VDD scaling and low on and off 
current are essential in low power technology.   

Capacitance reduction is remarkably useful to both speed and power. As the technology node 
gets smaller, starting material, gate stack, well/channel doping profile, extension junction, and 
contact to source/drain (S/D) process have been changed [2.1]. Thus, capacitance has been 
increased sharply. 

In starting material and gate stack aspects, the end of planar bulk complementary metal-
oxide-semiconductor (CMOS) is becoming visible within the next several years. As a 
consequence, new technologies that use planar fully depleted silicon on insulator (FDSOI) 
devices [2.2] and dual- or multi-gate devices [2.3] [2.4] either in a planar or vertical geometry 
because of the robustness of short channel effect (SCE) [2.5]. The capacitance of these structures 
is much increased since junction/diffusion and fringing capacitances are increased [2.6]. 
Moreover, a new gate dielectric material having a higher dielectric constant than SiO2 is needed 
due to improving device performance and reducing gate leakage current so that the capacitance is 
much increased [2.7]. 

In well/channel and extension junction doping profiles aspects, scaled devices are expected 
to have very shallow well/channel and extension junction doping profile [2.8] with highly 
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activated junctions [2.9] because of SCE. The capacitances of these scaled devices are also 
increased since gate channel, overlap, and junction/diffusion capacitances are increased. 
Furthermore, super steep retrograded body doping [2.10] and halo doping make the capacitance 
worse. 

The contact to S/D process makes the capacitance worse. Raised S/D process due to 
improving resistance increases the capacitance between gate and contact is increased [2.11]. 
According to the general scaling theory [2.12], the height of gate stack should be reduced with 
scaling gate length. However, the height of gate stack is hard to be reduced due to the gate 
resistance problem in real fabrication. There are some gate profiles with several generations from 
170nm to 45nm as shown in Figure 2.1[2.13] [2.14] [2.15] [2.16]. The gate profiles have been 
changed from square to high aspect ratio of rectangular. Thus, this higher aspect ratio gate 
profile makes the gate-to-contact capacitance worse. 

 

 
Figure 2.1: Vertical scale down of gate stack is difficult because of gate resistance problem. There is big difference 
between general scale down theory and real scale down in fabrication. 

 
Decreasing capacitance always leads to higher speed and lower power consumption. 

Research on decreasing capacitance continues mostly in the field of device implementations, as it 
is the preferred technology for both speed and power. Capacitance consists of three factors, 
dielectric constant, area and distance. As we have to scale all the size, area and distance is fixed 
with design rule. The only changeable parameter is dielectric constant.  

In order to reduce dielectric constant, low dielectric constant (k) material is used for inter 
layer dielectric (ILD) [2.17]. Another approach is to replace ILD with vacuum (air) gap since the 
associated ILD k value is very low even if only small portions of ILD are changed to vacuum 
gaps. Different vacuum gap integration approaches are being developed to fabricate novel 
MOSFETs. All approaches can be classified into one of three categories: (1) vacuum gap 
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At very small gate lengths, the gate-to-contact/plug capacitance becomes the dominant 
capacitance component in the transistor because of higher aspect ratio of gate profile and raised 
S/D process. This capacitance is even larger in dense memory devices because self-aligned 
contact (SAC) technology places the contact plug closer to the gate and the spacer material is 
silicon nitride having nearly twice the k of SiO2. Giving up the SAC technology will of course 
improve the gate capacitance but the sacrifice in density would be unacceptable. It will be critical 
to reduce the gate to SAC capacitance in order to reduce the device, bit-line, and world-line 
capacitances for better speed and power. 

Two types of vacuum spacer technologies are proposed. One is for Non-SAC and the other is 
for SAC processes. These two processes are very simple and do not need unconformable 
material. Especially, a novel vacuum spacer transistor with SAC process that does not sacrifice 
the SAC density reduces the gate capacitance, power, and delay to levels even lower than 
conventional non-SAC transistor. With this combination of density and performance, vacuum 
spacer transistor with SAC process could be attractive to not only Dynamic Random Access 
Memory (DRAM), but also Static Random Access Memory (SRAM), embedded SRAM, and 
perhaps even other applications. 

  

2.3 Process Integration 

     We propose two different types of vacuum spacer transistor. One is a conventional gate first 
transistor with vacuum spacers which is used for logic devices or peripheral circuits. Usually, 
these transistors have silicon oxide or silicon nitride spacers. The other is a vacuum spacer 
transistor with SAC process which is used for high density memory devices or cell transistors. 
SAC process needs silicon nitride hard mask and spacers so that gate capacitance is much 
increased due to high k material such as silicon nitride. 
 
2.3.1 A vacuum spacer transistor with conventional contact process 
 
2.3.1.1 The comparison structures with simulation 
 
     Two different types of transistors with non-SAC process using a commercial process 
simulator [2.20] are compared as shown in Figure 2.3. Besides the vacuum spacer MOSFET, we 
simulated MOSFETs with silicon oxide spacer as the one of the conventional MOSFET. The 
vacuum spacer is only 10nm thick. Except for the spacer design, the three types of transistors 
have identical design parameters such as S/D and channel doping, TOX, and LGATE. 

2.3.1.2 Structure and Process Concept 

     The proposed process flow for the vacuum spacer technology is illustrated in Figure 2.4. 
Channel implant is formed and gate oxidation is grown. Gate material and mask oxide are 
deposited, sequentially. Mask oxide and gate material and gate oxide are patterned. A thin oxide 
liner is deposited to protect the gate structure. Sidewall oxidation can be used for this thin liner. 
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2.3.2 A vacuum spacer transistor with SAC process 
 
2.3.2.1 The comparison structures with simulation 
 
     3D Computer simulations were performed. First we constructed the transistors using 2D 
TSUPREM-4 [2.20]. From that, we constructed 3D structures with contacts using the Sentaurus 
structure editor [2.23]. We compared three devices: conventional non-SAC device in Figure 2.5 
(a), conventional SAC device in Figure 2.5 (b), and the novel vacuum spacer transistor with SAC 
process in Figure 2.5 (c). Except for the spacer and contact, the three transistors have identical 
design parameters such as S/D and channel doping, TOX, and LGATE. In the case of the non-SAC 
device, the space between gate and contact is 30nm. 
 

 
                (a)                                                             (b)                                                             (c) 

Figure 2.5: NMOSFETs constructed with 3D simulator. In (b) (c) part of ILD is removed to show the outlines of 
SAC. LGATE = 20nm, nitride/oxide/vacuum spacer thickness = 12nm. (a) Silicon oxide spacer with conventional 
contact process (b) Silicon nitride spacer with SAC process (c) Vacuum spacer with SAC process  

 

2.3.2.2 Structure and Process Concept 

     The proposed vacuum spacer process flow is as follows. In Figure 2.6 (a), channel implant is 
formed and gate oxidation is grown. Gate material, mask oxide and mask nitride are deposited, 
sequentially. Mask nitride, mask oxide, gate material and gate oxide are patterned. A thin oxide 
liner is deposited to protect the gate structure. Silicon nitride spacer and S/D are formed, ILD is 
deposited, and oxide CMP carried out. Figure 2.6 (b) shows that SAC has been formed by high-
selectivity contact hole etch and contact plug filling. The contact plug is formed before making 
the vacuum spacer. Excess plug material over the surface is not shown. Figure 2.6 (c) shows the 
novel results of using CMP to expose the top of the mask nitride and selective etch of the nitride 
mask/spacer without etching the oxide to create a vacuum gap. The etch chemistry can be hot 
phosphoric acid. Generally, the ratio of nitride and oxide etch rates is 100:1. The contact height 
is 120nm. If the etch target is 200nm considering over etch, 2nm of oxide will be removed. Thus 
4nm sidewall oxidation can protect the gate stack. A very thin oxide liner is deposited 
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underneath the nitride spacer to protect the gate dielectric from this etch step. The plug material 
should be resistant to the etchant, for example poly-silicon that is used in today’s SAC processes, 
or be protected by thin etch-resistant spacer. Figure 2.6 (d) shows non-conformal ILD2 
deposition has sealed the top openings and completed the making of the vacuum spacers.                 
 

                
                                         (a)                                                                            (b)  

        
                                 (c)                                                                        (d) 

                   Figure 2.6: The proposed process flow of the novel vacuum spacer transistor with SAC  
                   process. (a) After ILD deposition (b) SAC and contact plug formation (c) CMP and  
                   silicon nitride removal (d) ILD2 deposition  
 

2.3.2.3 Self-aligned contact Technology 

     Contact to the S/D of MOSFETs is necessary to incorporate them into functioning circuits. 
Contact will normally be made through an overlying layer of dielectric. If the contact holes are 
misaligned with respect to the gate, a short will result. The problem is depicted schematically in 
Figure 2.7 (a). In order to avoid this problem lithographically, we need to impose design rules 
keeping the contact holes at least a couple of alignment standard deviations from the gate edges; 
this forces the circuit layout to be bigger than strictly necessary as shown in Figure 2.7 (b). 
Covering the gate with an insulating layer does not help by itself, because the oxide layer will be 
etched away during the contact etch, but the gate is exposed before the contact etch is done so 
that high selectivity is needed. The silicon nitride protects the gate insulation: no contact to the 
gate is made despite the patterned hole overlying the gate edge [2.24]. Thus, the spacing between 
the gates can be decreased because the bottom area of SAC is same as the area of conventional 
contact technology as shown in the top view of Figure 2.7. These SAC technology cannot be 
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used in most devices in spite of reducing the layout size because of high capacitance due to 
higher dielectric k of silicon nitride which is needed for high selectivity etching process. Thus, 
high density memory such as DRAM uses this SAC technology. Figure 2.7 shows that silicon 
oxide gate mask and spacer are used in conventional contact process and silicon nitride gate 
mask and spacer are used in SAC process.   
 

 
   (a)                                                                                                  (b) 

Figure 2.7: (a) conventional contact process of layout, top view of contacts, and vertical view of contacts, 
respectively.  (b) SAC process of layout, top view of contacts, and vertical view of contacts, respectively.  
 

2.4 Analytical Frameworks  

2.4.1 Gate Capacitances 
 
     Generally, we use capacitance model parameters with all MOSFET model statements. Model 
charge storage is used by fixed and nonlinear gate capacitances and junction capacitances. Gate-
to-drain, gate-to-source, and gate-to-bulk overlap capacitances are represented by three fixed-
capacitance parameters: CGDO, CGSO, and CGBO. The algorithm used for calculating 
nonlinear, voltage-dependent MOS gate capacitance depends on the value of model parameter 
CAPOP. In MOS capacitances, Cij determines the current transferred out of node i from a 
voltage change on node j. The arrows, representing direction of influence, point from node j to 
node i. These capacitances include gate-drain, gate-source, and gate-bulk overlap capacitance, 
and drain-bulk and source-bulk diode capacitance as shown in Figure 2.8. Six capacitances are 
reported in the operating point printout as shown in Table 2.1.  
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     Besides these capacitances, there are other capacitances which are called fringing and gate-to-
contact capacitances. As the technology node gets small, these parasitic capacitances are more 
and more important since these parasitic capacitances are increased up to other capacitances. It is 
very hard to reduce gate channel, overlap, and junction capacitances because all the parameters 
such as VDD, ION, IOFF, and TOX are fixed. Thus minimizing parasitic capacitance is a key issue 
for realizing high-speed and low-power technologies.  

 

 
                                                     Figure 2.8: MOS capacitance parameters 
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                           Table 2.1: Six capacitances are represented by differential charge over voltage.   
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                                               Figure 2.10: Gate capacitances are extracted. The shadow  
                                                   area is gate switching charge. Black and red lines are the  
                                                   capacitances of oxide and vacuum spacer. (VDS=0V) 
 
2.4.3 Miller Effect 
 
     A capacitor experiencing identical but opposite voltage swing at both terminals can be 
replaced by a capacitor to ground, whose value is two times the original value. During a low-
high or high-low transition, the terminals of the gate-drain capacitor are moving in opposite 
direction as shown in Figure 2.11. In this study, it is very important to extract how much delay 
time is changed by this Miller Effect. Especially, the fringing capacitance of SAC process is 
bigger than that of non-SAC process. Thus, the Miller capacitance is one of the most important 
parasitic capacitances.   

 

 
Figure 2.11: The Miller effect accounts for the increase in the equivalent input capacitance of an inverting voltage 
amplifier due to amplification of the capacitance between the input and output terminals. 
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2.5 Simulation Results 

2.5.1 A vacuum spacer transistor with conventional contact process 
simulations  
 
     Computer simulations with 2D TSUPREM-4 and MEDICI were performed [2.20] [2.25]. In 
order to suppress the short channel effect, retrograde body doping was used. The first high 
doping (2e18/cm3) and the second low doping (1e17/cm3) epitaxial layers are 500 Å and 210 Å 
respectively. The gate oxide thickness is 1.5nm. The gate poly-Si is 600 Å thick and the distance 
between gate and contact is 50nm. There are conventional oxide spacer transistor and novel 
vacuum spacer transistor. The IDS-VGS characteristics of the two different types of transistors are 
substantially the same as shown in figure 2.14.  
      Figure 2.15 presents the gate (input) capacitances. Two curves are shown for each transistor: 
VDS=50mV and VDS=1V. At low VGS, before the channel is strongly turned on, the oxide spacer 
transistor has about twice the gate capacitance as the vacuum spacer transistor. This agrees well 
with simple estimates: the 10nm vacuum spacer in Figure 2.3 (b) roughly reduces the gate-plug 
capacitance by two and the gate to S/D diffusion fringing capacitance by more than two. At 
VGS>VT, we see the additional gate to channel capacitance, which is only a fraction of the gate to 
plug/diffusion capacitances. Gate charge, QGATE, shown in Figure 2.16 is the charge required to 
raise VGS. It can be seen (by extrapolating the low VGS line) that 77% of QGATE at VGS =1V in the 
oxide spacer device is due to the gate to plug/diffusion capacitance. QGATE is lower in vacuum 
spacer transistor by 39% than oxide spacer transistor.   

 

 
                    Figure 2.14: Simulated IDS-VGS characteristics of the three structures show identical results.  
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                              Figure 2.15: The gate capacitances are compared. Vacuum spacer shows the  

                                     lower capacitance than oxide spacer. 
 

 
                                 Figure 2.16: The total gate charge of vacuum spacer structure is decreased  
                                    about 39% compared with oxide spacer. 
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     The inverter in Figure 2.17 was simulated by mixed-mode simulation using MEDICI [2.25]. 
The inverter delay of the vacuum spacer inverter is 30% smaller than the oxide spacer inverters. 
This delay is calculated by the average of rising and falling time. All characteristics of transistor 
and inverter are shown in Table 2.2. The interesting results are shown in the last three rows of 
Table 2.2. Incidentally, comparing the last two rows leads to the conclusion that the junction-
capacitance contribution to the switching charge/energy is 32% of the gate-capacitance 
contribution in the oxide spacer cases and 56% in the vacuum spacer case.  
 

 
                       Figure 2.17: The mixed-mode simulation of inverter delay. The delay of vacuum spacer is  
                         decreased by 30% compared with that of oxide spacer.  
 

 
Oxide Spacer  Vacuum Spacer 

ION (mA/um) 1.06  1.06  

IOFF (nA/um) 3.6  4.23  

Max QGATE (Coul/um)  6.01e-16 3.69e-16 

Inverter Delay (ps) 4.64  3.28  

Inverter switching energy (fJ)  2.98  2.01  

Gate switching charge (fC)  2.3  1.3  
                  Table 2.2: The characteristics of oxide spacer transistors and inverters are compared with those of 
                    vacuum spacer transistors and inverters. The vacuum spacer inverter is better in speed and power. 
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2.16 and 2.17 is the gate channel width difference. In 2D simulation, gate channel width is fixed 
at 1µm. However, in 3D simulation, we can change the geometries. Our devices are all 70nm 
gate channel width. 
 

 
(a)                                                                                          (b)        

        Figure 2.19: The gate capacitances (a) and gate charge (b) are compared. Vacuum spacer with SAC process  
        has only 46% of capacitance and 52% of charge compared to nitride spacer with SAC process. 

 

 
                   Figure 2.20: Mixed-mode simulation shows that the delay of the SAC/vacuum spacer inverter is  
                   57% and 18% smaller than SAC/nitride spacer and non-SAC/oxide spacer inverters. 
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     Figure 2.20 shows inverter delay that was simulated with 3D mixed–mode simulator. The 
NMOSFETs have 70nm channel width and the PMOSFETs, 140nm channel width. The 
conventional non-SAC with oxide spacer have 22% longer delay than the SAC with vacuum 
spacer; the conventional SAC with nitride spacer, 135%. Similar benefits were observed for SAC 
with vacuum spacer transistor in terms of switching energy as shown in Table 2.3. The reason of 
different time delay in non-SAC with oxide spacer inverter between 2D and 3D simulation is that 
2D structure has line type contact thus the resistance is small. However, 3D structure has circular 
contact so the resistance is high. 
 

  Non-SAC 
Oxide Spacer  

SAC  
Nitride Spacer 

SAC  
Vacuum Spacer 

NMOS ION/IOFF  
(A/㎛) 

1.06e-3 / 
5.55e-9  

1.13e-3 / 
2.56e-9 

1.08e-3 / 
6.14e-9  

PMOS ION/IOFF  
(A/㎛) 

4.32e-4 / 
4.03e-9  

4.51e-4 / 
2.53e-9  

4.40e-4 / 
5.50e-9 

Inverter Delay (ps) 6.15  11.85  5.05  
Delay relative to  

SAC with vacuum spacer  1  1.93  0.82  

Switching Energy  
relative to non-SAC with 

oxide spacer  
1  1.85  0.78  

Area relative to  
non-SAC process  1  0.7  0.7  

Table 2.3: Characteristics of transistors and inverters between a conventional non-SAC with oxide spacer and SAC 
with nitride and vacuum spacer. The SAC with vacuum spacer inverter is better in speed and power. 
 
     Figure 2.21 illustrates the density advantage of SAC devices over non-SAC devices. 
Generally, most memory except DRAM does not use SAC process because of higher parasitic 
capacitance and longer delay. However, this vacuum spacer technology has about 18% shorter 
delay time than non-SAC with oxide spacer technology. This is a huge advantage in future 
memory. If SRAM or other memory devices use this SAC with vacuum spacer, the area can be 
reduced about 35%, furthermore the delay time is shorter. Figure 2.21 (a) shows that Intel 45nm 
SRAM cell layout. If design rule is F, cell width and height are 10F and 5F, respectively, so that 
the cell area is 50F2. Figure 2.21 (b) shows the imaginary SRAM cell layout with SAC process. 
Cell width and height are 10F and 3.5F, respectively, at the same design rule F. The cell area of 
this imaginary cell layout is 35F2.   
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(a)                                                                                           (b) 

Figure 2.21: Area comparison of non-SAC and SAC MOSFET and SRAM. (a) The layout of Intel 45nm SRAM cell. 
(b) The imaginary layout of SRAM cell with SAC process. 
  

2.6 Summary 

     In a 20nm-gate MOSFET with oxide spacer, 77% of the gate charge is due to the gate to 
plug/diffusion capacitances. Reducing these capacitances will be an increasingly important way 
to improve the device speed and switching energy/power at 20nm and beyond. Unlike the 
enhancement of ION, reduction of capacitance can reduce the transistor switching energy 
significantly in addition to the delay. Compared to a vacuum spacer inverter, a conventional 
pure-oxide-spacer inverter has 41% longer delay and 48% larger switching energy (power 
consumption) than the vacuum spacer inverter. These benefits of the vacuum spacer technology 
are very significant and can justify the cost of the additional mask-less steps of removing the 
sacrificial spacers and sealing the vacuum spacer top openings during ILD deposition. 
     High density memories employ the SAC technology that requires the use of nitride spacers. 
This significantly raises the gate to plug/diffusion capacitance and increases the delay and 
switching energy by about 93% and 85%. A novel SAC with vacuum spacer device can preserve 
the 35% area benefit of SAC device while reducing the delay and power by about 18% and 22% 
respectively, to levels even better than the non-SAC conventional device. It also reduces the bit-
line and word-line capacitances. The result is increased DRAM and SRAM speed, reduced 
power, and reduced chip size.  
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     Furthermore, the delay of vacuum spacer will be much decreased compared the delay of 
reference oxide spacer at the same gate length as the design rule is decreased. Thus, this vacuum 
spacer technology is promising key technology for 20nm generation and beyond. 
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Chapter 3  

Vacuum Spacer Transistors with Gate Last 
Process 

 

3.1 Introduction 

     Speed and power are more and more important parameters as the technology node is getting 
smaller and smaller. Reducing capacitance is remarkably useful for these two aspects. So lots of 
vacuum gap technologies were introduced in several papers and patents. Togo reported 6% 
inverter speed improvement at 0.25um gate length [3.1]. Jemin reported 30% inverter speed and 
33% switching energy improvements at 20nm gate length [3.2]. The on current of vacuum spacer 
transistor is slightly decreased compared to the oxide spacer or silicon nitride spacer transistors. 
The general understanding is that the higher permittivity the spacer material has, the greater 
control the gate fringing field has over the channel edge (hence the higher ION is) [3.2]. It is very 
difficult to meet the specifications both high on-current and low off-current. Thus, ITRS reported 
to several directions which are high performance, low standby power, and low operating power 
technologies [3.3]. 
     Metal gate and high dielectric constant (high-k) gate insulator will allow MOSFET gate 
length scaling to very small sizes. However, metal-gate/ high-k stack is easily degraded by high 
temperature processes such as the S/D activation annealing. The gate last process is attractive in 
this regards and has been put into production [3.4] [3.5]. Even without using metal-gate and/or 
high-k dielectric, the gate-last technology provides scaling benefits. In dense memory 
technologies, SAC is widely used for cell size reduction. However, SAC technology places the 
contact plug closer to the gate and the spacer material is silicon nitride having a large dielectric 
constant. The gate to contact-plug capacitance can be the largest contributor to the bit-line and 
word-line capacitances in scaled technologies with serious consequences to speed and power.  It 
will be critical to reduce the gate to SAC capacitance. Using the gate-first process technology,   a 
SAC with nitride spacer MOSFET has 134% longer delay and 138% higher switching energy 
than a SAC with vacuum spacer MOSFET [3.6].  



29 
 

     As the transistor size gets smaller, the contact resistance becomes a serious problem due to 
small contact area. In order to reduce the contact resistance, line-shaped contacts (linear contacts) 
have been introduced to replace the long popular circular contacts. Intel reported that the linear 
contact technology lowered the contact resistance by >50% [3.7]. However, linear contact 
technology increases the gate-to-contact capacitance relative to the conventional circular contact 
technology. At 20nm gate length, there is more gate capacitance from the gate to contact 
(contact-plug and source/drain diffusion) than to body and channel [3.2]. At very small gate 
lengths, the gate-to-contact capacitance becomes a critical factor in device optimization.  
     Vacuum spacer technologies can be applied to these technologies: high performance devices, 
low standby power devices, gate last process, SAC process, and linear contact process. Firstly, a 
vacuum spacer transistor is compared with a conventional oxide spacer transistor in both high 
performance and low standby power technologies. Secondly, we propose a novel vacuum spacer 
gate last transistor that does not sacrifice the SAC density and reduces the gate capacitance, 
power, and delay to levels much lower than with the conventional SAC transistor with nitride 
spacers. With this combination of density and performance, vacuum spacer SAC transistor could 
be attractive to not only DRAM, but also SRAM, embedded SRAM, and perhaps even other 
applications. And finally, four different transistor structures, oxide spacer transistors with 
circular contact and linear contact and vacuum spacer transistors with circular and linear contact, 
are compared.   

 

3.2 Process Integration 

3.2.1 Vacuum spacer transistors of high performance and low standby power 
devices 
 
3.2.1.1 The comparison structures with simulation 
 

In order to meet the ITRS specifications, we use super steep retrograde body doping 
profile and mobility increasing technology. All the geometries of the transistors are followed by 
ITRS 2009 specifications [3.3]. Table 3.1 shows that 16nm gate length high performance device 
and 22nm gate length low standby power device. The gate height, spacer thickness, contact size, 
and the distance between gate and contact are fixed for this simulation in Table 3.1. 

3D computer simulation was used to build these transistors [3.9]. Figure 3.1 (a) shows 
that the simulation structures of high performance NMOSFETs with 16nm gate length and figure 
3.1 (b) shows that the structures of low standby power NMOSFETs with 22nm gate length. The 
PMOSFETs have the same structures as the NMOSFETs except for the dopants. 
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                         Table 3.1: ITRS specifications and simulation parameters for high performance and  
                            low standby power devices. 

 

 
                                                                                           (a) 

 
                                                                                          (b)                                                 
                                         Figure 3.1: The final structures of NMOSFETs using Sentaurus.  
                                         (a) High performance NMOSFETs. TPOLY = 540Å, LGATE = 16nm,  
                                         contact size = 24nm, gate to contact distance = 20nm.  
                                         (b) Low standby power NMOSFETs. TPOLY = 600Å, LGATE = 22nm,  
                                         contact size = 30nm, gate to contact distance = 24nm   

High performance Low standby power

Gate length 16nm 22nm

VDD 0.78V 0.95V

GOX 0.5nm 1.0nm

Gate height 54nm 60nm

Spacer thickness 14nm 18nm

Contact size 24nm 30nm

The distance 
between gate 
and contact

20nm 24nm
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3.2.1.2 Structure and Process Concept 

     The proposed vacuum spacer gate last process flow is as follows. Figure 3.2 (a) shows that 
the sacrificial gate is patterned and source, drain and nitride spacer are formed as shown in 
Figure 3.2 (b). A very thin oxide liner (not shown) is deposited underneath the nitride spacer to 
protect the gate dielectric. ILD is deposited and oxide CMP carried out as shown in Figure 3.2 
(c). Figure 3.2 (d) shows that after the sacrificial gate is removed, gate dielectric is deposited and 
the gate material is deposited and metal CMP carried out (or etch-back process). Figure 3.2 (e) 
shows that ILD is etched back some amount to expose the nitride spacer which is a sacrificial 
material. After that, the selective etch of the nitride spacer without damaging the gate dielectric 
to create a vacuum gap as shown in Figure 3.2 (f). Figure 3.2 (g) shows that non-conformal ILD2 
deposition has sealed the top openings and sealed the vacuum spacers. And then the conventional 
contact process is followed. In this process, there are only 2 additional processes to make 
vacuum spacers: ILD etch back process and removing the nitride spacers. This process needs 2 
different sacrificial materials, one is for sacrificial gate and the other is for sacrificial spacers. 
SiGe has higher selectivity over silicon oxide (300:1) [3.8]. Thus, our sacrificial gate is SiGe and 
sacrificial spacer is silicon nitride. 

 
 

 
               (a)                                           (b)                                            (c)                                             (d) 

 

 
         (e)                                           (f)                                             (g) 

 
Figure 3.2: A proposed process flow of the vacuum spacer transistor with gate last process. (a) After gate sacrificial 
material is deposited, gate photolithography carries out. Sacrificial gate is etched using reactive ion etch (RIE) 
process. (b) Shallow S/D, sacrificial spacer, and deep S/D are formed, sequentially. (c) After ILD is deposited, oxide 
CMP carried out to expose top of the sacrificial gate. (d) After removing sacrificial gate material, gate oxide and real 
gate material are deposited, sequentially. And then metal CMP carried out to pattern the real gate. (e) ILD is etched 
back to expose top of the sacrificial spacer. (f) Sacrificial spacers are removed. (g) Non-conformal ILD is deposited 
to seal the vacuum gaps.  

 

Vacuum Spacer
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3.2.2 A vacuum spacer transistor with gate last and SAC process 
 
3.2.2.1 The comparison of structures by simulation 
 
     3D structures with SAC are constructed using the Sentaurus structure editor [3.9]. We 
compare two devices: SAC devices with vacuum spacers and silicon nitride spacers. In order to 
study the effect of scaling on the benefits of the vacuum spacer, we also compare 65, 45, 32 and 
20nm gate length structures as shown in Figure 3.3. In each generation, two transistors having 
identical design parameters such as S/D and channel doping, equivalent oxide thickness, and 
LGATE. Retrograde body doping is created with a 500 Å, 2e18/cm3 doped region and a 210 Å, 
1e16/cm3 doped epitaxial layer to suppress the short channel effect at 20nm gate length. We 
optimized the doping profiles at each generation. We assume the thickness of the gate is 600 Å at 
all generations. Some other parameters of each generation are shown in Table 3.2. The 
PMOSFETs have same structures as the NMOSFETs except for the dopants. 

 

 
                                                  (a)                                         (b)                                (c)                          (d) 

Figure 3.3: NMOSFETs with SAC process which is constructed with 3D simulator. Every generation has different 
parameters such as gate length, gate oxide thickness, spacer thickness, and VDD. Nitride and vacuum spacer 
transistor at (a) 65nm, (b) 45nm, (c) 32nm, and (d) 20nm. ILD is removed to show the SAC process at 20nm gate 
length.   
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3.2.2.2 Structure and Process Concept 

The proposed vacuum spacer gate last process flow is as follows. Figure 3.4 (a) shows that 
the sacrificial gate is patterned and source, drain and nitride spacer (sacrificial spacer) are 
formed. A very thin oxide liner (not shown) is deposited underneath the nitride spacer to protect 
the gate dielectric. ILD is deposited and oxide CMP carried out. Figure 3.4 (b) shows that after 
the sacrificial gate is removed, gate oxide and gate material are deposited, sequentially. And then 
the gate material is etched back. Figure 3.4 (c) shows that another nitride spacer is formed on top 
of the gate to increase the vacuum spacer size. Figure 3.4 (d) shows that after ILD is deposited, 
oxide CMP carried out. After that, SAC is formed by high-selectivity contact hole etch and 
contact plug filling. A novel step of CMP to expose the top of the nitride spacer is performed. 
Figure 3.4 (e) shows the selective etch of the nitride spacer without damaging the gate dielectric 
to create vacuum gaps. Figure 3.4 (f) shows that non-conformal ILD2 deposition has sealed the 
top openings and sealed the air spacers.    
 
 

 
(a)                                                       (b) 

 

 
                                                               (c)                                                        (d) 
                                   Figure 3.5: NMOSFETs are constructed with 3D simulator. LGATE=14nm. 
                                  (a) Oxide spacer transistor with circular contact. (b) Vacuum spacer transistor  
                                  with linear contact (c) Oxide spacer transistor with linear contact (d) Vacuum  
                                   spacer transistor with linear contact 
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3.2.3 A vacuum spacer transistor with gate last and linear contact process 
 
     A process of fabricating the vacuum spacers was previously described for circular-contact 
transistors as shown in Figure 3.2. 3D computer simulations were employed in this study. 3D 
contact structures with circular and linear contacts are made by the Sentaurus structure editor 
[3.9]. We compared four devices: conventional oxide spacer transistors with circular and linear 
contacts shown in Figure 3.5 (a) and (b), and vacuum spacer transistors with circular and linear 
contacts in Figure 3.5 (c) and (d).  
     Except for the spacer material and contact shape, these four transistors have identical design 
parameters such as S/D and channel doping, gate oxide thickness, and gate length. Gate 
equivalent oxide thickness (EOT) and the gate length are 0.45nm and 14nm, respectively in 
accordance with International Technology Roadmap for Semiconductors (ITRS) 2009 [3.3]. The 
height of the gate is 52nm. The contact diameter/width is 20nm and the height of the contact is 
86nm. The aspect ratio of the contact is 4.3. The thickness of the spacer and the distance between 
gate and contact are 12nm and 18nm, respectively. The PMOSFETs are identical to the 
NMOSFETs except for the dopants employed in the simulations. 
      

3.3 Simulation Results 

3.3.1 Vacuum spacer transistors of high performance and low standby power 
devices 
 
     The characteristics of transistors and inverters are simulated with Sentaurus 3D device 
simulator [3.9]. Figure 3.6 shows that IDS-VGS characteristics of both 16nm high performance 
NMOSFET and 22nm low standby power NMOSFET. Figure 3.6 (a) shows that the on-current is 
1.7mA/um (ITRS: 1.7mA/um) and the off-current is below 10nA/um (ITRS: <100nA/um). The 
difference of on-current is only 3.4% between oxide spacer and vacuum spacer. However, the 
difference of on-current in low standby power devices is 14.2% as shown in Figure 3.6 (b). The 
on-current of oxide and vacuum spacers is 0.749mA/um (ITRS: 0.506mA/um) and 0.649mA/um 
and the off-current is below 30pA/um (ITRS: < 50pA/um), respectively. The general 
understanding is that the high performance transistors have S/D overlapped profile and thicker 
S/D extension region so that the on-current degrade of the poor controllability of gate channel 
edge due to the lower permittivity of the spacer material is no problem. However, in the low 
standby power devices, the structures have S/D underlapped profile and shallow S/D extension 
region so that there is a big on-current difference. 
     The delay time of vacuum spacer structure is decreased about 6.6% compared to oxide spacer 
structure in high performance device as shown in Figure 3.7 (a). However, the delay time of 
vacuum spacer structure is increased about 10% compared to oxide spacer structure in low 
standby power device because the on-current degradation is much bigger than the reduction of 
gate capacitance due to using vacuum spacer as shown in Figure 3.7 (b). 
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(a)                                                                                             (b) 

Figure 3.6: The simulated IDS-VGS characteristics of NMOSFETs (a) 16nm gate length in high performance device. 
(VDS=0.78V) (b) 22nm gate length in low standby power device. (VDS=0.95V) 
 
 
     Figure 3.8 (a) shows the calculated switching charge per area. The switching charges of 
vacuum spacer structures in the high performance and low standby power devices are decreased 
by 15.6% and 10.1%, respectively, compared to those of oxide spacer structures. Figure 3.8 (b) 
shows the calculated switching energy per area. The switching energies of vacuum spacer 
structures are also smaller than those of oxide spacer structure. The energies of vacuum spacer 
structure of high performance and low standby power devices are decreased by 19.1% and 9.3%, 
respectively.    
     All characteristics of transistors and inverters are shown in Table 3.3. The vacuum spacer 
technology is a promising solution for very small gate length devices for speed, switching charge, 
switching energy, and power consumption aspects. However, in the very shallow junction device, 
the degradation of on-current due to small controllability of gate channel edge should be 
considered when the vacuum spacer technology is used. 
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    (a) 
 

 
                                                                                                   (b) 
                                     Figure 3.7: The 3D mixed-mode simulation results (a) the vacuum spacer transistor  
                                     is faster than the oxide spacer in high performance device. (b) the vacuum spacer is  
                                     slower than the oxide spacer in low standby power device. 
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                                                                                  (a) 
 

 
                                                                           (b)     

                   Figure 3.8: (a) Switching charges are compared between oxide and vacuum spacer structures 
                   in both high performance and low standby power devices. (b) Switching energies are compared 
                   between oxide and vacuum spacer structures in both high performance and low standby power 
                   devices. 
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                      Table 3.3: Comparison between vacuum spacer and oxide spacer structures at both 16nm  
                      high performance and 22nm low standby power devices. 
 

 
3.3.2 A vacuum spacer transistor with gate last and SAC process 
 
     The characteristics of transistors and inverters are simulated with Sentaurus 3D device 
simulator [3.9]. Figure 3.9 shows that the IDS-VGS characteristics of the two transistors are little 
changed by the spacer/contact designs at each generation. Generally, on-current is increased as 
the gate length is decreased. However, in this simulation, on-current is decreased as the gate 
length is decreased because VDD is also decreased as technology node gets small. The differences 
of the NMOS off-current between vacuum and nitride spacers at the gate length 65nm, 45nm, 
32nm, and 20nm are 18%, 55%, 64%, and 125%, respectively. The general understanding is that 
the higher permittivity the spacer material has, the greater control the gate fringing field has over 
the channel edge (hence the lower IOFF is). Thus IOFF (nitride spacer) is lower than that of vacuum 
spacer. As the gate length is decreased, the portion of this controllability of the gate fringing field 
is much increased so that the differences are increased.  
     Figure 3.10 shows the delay time of vacuum spacer structure is decreased about 25% 
compared to nitride spacer structure at 45nm gate length (VDD = 1.1V). Generally, the delay time 
is decreased as the gate length is decreased. However, figure 3.11 shows that delay time is 
increased since the portion of gate capacitance is increased due to the SAC technology. Thus, the 
benefit of vacuum spacer over nitride spacer is more and more significant as the gate length is 
decreased.  

High performance Low standby power

Gate spacer Vacuum Oxide Vacuum Oxide

NMOS ION/IOFF
(A/um)

1.63m
9.42n

1.69m
8.4n

0.649m
23.1p 

0.749m
19.9p

PMOS ION/IOFF
(A/um)

0.834m
13.1n

0.854m
10.7n

0.359m
55.7p

0.376m
48.1p

Inverter Delay
(ps) 2.99 3.2 9.82 8.93

Switching 
Charge
(fC/um2)

58.6 69.4 110 122

Switching 
Energy
(fJ/um2)

51.2 62.5 104 114



40 
 

 

 
          (a) 

      
                                                (b) 

                               Figure 3.9: Simulated IDS-VGS characteristics of the MOSFETs are basically the same.  
                               (VDS = 1.2, 1.1, 1.0, and 1.0V at 65, 45, 32, and 20nm, respectively). (a) NMOS (b) PMOS 
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                             Figure 3.10: The 3D mixed-mode simulation results at 45nm gate length. 
                               (tPLH_vacuum =5.7ps, tPLH_nitride = 7.6ps, tPHL_vacuum = 5.9ps,  
                               tPHL_nitride = 7.9ps, tP = (tPHL + tPLH)/2, tP_vacuum = 5.8ps, tP_nitride = 7.75ps).  
                               The delay of vacuum spacer is decreased by 25% compared with nitride spacer. 
 

 
                                 Figure 3.11: The Delay time is increased as the gate length is decreased. 
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                                         Figure 3.12: Switching charge is compared between nitride and  
                                         vacuum spacer structures. 
 
 

 
                                         Figure 3.13: The benefit of switching energy using vacuum 
                                             spacer is much increased below 30nm of gate length.  
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     Figure 3.12 shows that switching charge per area is increased as the gate length is decreased. 
The switching charge of vacuum spacer at 20nm is smaller than that of nitride spacer at 65nm. 
The improvement of switching charge using vacuum spacer is from 35% to 57% as the gate 
length is scaled from 65nm to 20nm. Figure 3.13 shows that switching energy per area is also 
increased when the gate length is reduced. In nitride spacer technology, the switching energy is 
changed from 32fJ/um2 to 58fJ/um2 as the gate length is changed from 65nm to 20nm. In 
vacuum spacer technology, the change of switching energy is only 4fJ from 65nm to 20nm gate 
length. This vacuum spacer technology is more and more important to lower not only delay time 
but also power consumption as the technology node is getting smaller and smaller. The summary 
of all data is shown in Table 3.4. The characteristics of vacuum spacer are excellent over all 
generations, especially at smaller size. 
 

Gate Length  65nm  45nm  32nm  20nm  

Spacer Type  Si3N4 Air  Si3N4 Air  Si3N4 Air  Si3N4 Air  

NMOS ION (A/um) 
NMOS IOFF (A/um)  

1.61m 
7.44p  

1.56m
8.76p  

1.46m
90.1p  

1.40m
0.14n  

1.39m 
0.53n  

1.32m 
0.87n  

1.35m 
1.01n  

1.26m
2.28n  

PMOS ION  (A/um) 
PMOS IOFF  (A/um)  

0.56m 
3.07p  

0.55m
3.64p  

0.54m
32.6p  

0.53m
51.3p  

0.48m 
87.5p  

0.47m 
0.15n  

0.53m 
0.83n  

0.51m
2.49n  

Delay (ps)  8.04  6.15  7.75  5.8  8.7  6.25  10.75  7.6  

Switching Charge 
(C/um2)  55.3f  38.1f  64.2f  38.7f  80.5f  41.6f  125.1f 54.7f  

Switching Energy 
(J/um2)  31.8f  20.8f  31.9f  18.9f  39.1f  18.6f  58.1f  22.8f  

Table 3.4: Characteristics of transistors and inverters between a conventional SAC with nitride spacer and SAC with 
vacuum spacer. The SAC with vacuum spacer inverter is better in speed and power. 
 
 
3.3.3 A vacuum spacer transistor with gate last and linear contact process 
 
     The characteristics of transistors and inverters are simulated with Sentaurus 3D device 
simulator [3.9]. Figure 3.14 shows the IDS-VGS characteristics of the four transistors. The off 
currents are basically the same but the on currents of the linear contact devices are increased by 
about 10% compared to the circular contact devices due to low contact resistance. The on 
currents of vacuum spacer devices are decreased by about 6% compared to the oxide spacer 
devices. A higher permittivity spacer material allows the gate to better reduce the S/D resistance 
through its fringing field, hence the higher ION.  
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                   Figure 3.14: Simulated IDS-VGS characteristics of the four types of NMOSFETs  
                    (VDD = 0.76V, VDS = 0.76V). Linear contacts increase ION by about 10% over  
                    circular contact. Vacuum spacers decrease ION by about 6% relative to oxide spacer. 
 

 
                        Figure 3.15: Mixed-mode simulation of the 4 stage inverter chains (Fan-out = 1).  
                        The delay of linear contact is faster than that of circular contact. The vacuum  
                        spacer technology significantly reduces the inverter delay, gate switching charge,  
                        and inverter switching energy relative to oxide spacer technology. 
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     Figure 3.15 shows the 4 stage inverter chains simulated with 3D mixed–mode simulator. 
Inverters using the linear contact transistor are faster than those using the conventional circular 
contact transistor. However, the improvement is only about 2% even though the on current of the 
linear contact is increased by about 10% compared to the circular contact. The reason is that the 
gate-to-contact capacitance of the linear contact is larger than that of the circular contact 
transistors. With vacuum spacer technology, the delay time is reduced by about 10% in Figure 
3.15 (even though the on-current of the vacuum spacer transistor is degraded by about 6% as 
shown in Figure 3.15). The gate switching charge and the switching energy are calculated. The 
vacuum spacer technology decreases the gate switching charge by 25% compared to the oxide 
spacer technology. It also decreases the inverter switching energy by 24%.  
 
 

 
           Figure 3.16: Simulated inverter delay and the switching energy at three VDD (0.76V, 0.70V, 0.66V)        

 
     Figure 3.16 shows the effect of VDD on inverter delay and switching energy. The vacuum 
spacer technology has an even greater switching energy advantage than the oxide spacer 
technology if the two are operated at the same speed. Vacuum spacer inverter with linear contact 
at 0.66V has the same delay as the oxide spacer inverter with linear contact at 0.76V. At these 
constant speed conditions, the vacuum and oxide spacer inverters have the switching energy of 
25.4 and 44.6 fJ/um, respectively. The switching energy improvement is 43%. Some key 
characteristics of these four transistors and inverters are shown in Table 3.5.    
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            Table 3.5: Comparison of four different transistors. The vacuum spacer transistor with linear contact 
             excels in speed and energy. 
 

3.4 Reasonable Expectation 

     With scaling of planar bulk MOSFETs, the channel doping will need to be increased to 
undesirably high levels in order to gain adequate control of short-channel effects and to set the 
threshold voltage properly. Another challenge for highly scaled MOSFETs is reducing the 
parasitic series S/D resistance to tolerable values with very shallow source and drain junction 
depth. Due to the challenges with scaling planar bulk MOSFETs, advanced devices such as ultra-
thin body fully depleted SOI MOSFETs and multiple-gate, particularly double-gate (DG) 
MOSFETs (e.g., FinFETs) are expected to be eventually implemented.  
     However, the parasitic capacitances of these processes are much increased. Even if current 
characteristics are improved by these processes, the performance such as speed and power 
consumption is not improved much because of this increased capacitance. Our vacuum spacer 
technology can be used in these processes to reduce parasitic capacitance. For example, two 
proposed processes are illustrated in Figure 3.17 and 3.18. Figure 3.17 shows that a vacuum 
spacer process can be compatible with SOI or raised S/D structures. This structure is very similar 
to SAC with vacuum spacer process. Thus, the simulation results were described in Chapter 2.5.2, 
a SAC with vacuum spacer and gate first processes and Chapter 3.2.2, a SAC with vacuum 
spacer and gate last processes. Figure 3.18 shows another vacuum spacer process that can be 
used for FinFET process. FinFET process has larger parasitic capacitance than MOSFET process. 
Thus, the effect of the vacuum spacer will be better than general MOSFET structure. 
 

Oxide Spacer Vacuum Spacer

Contact Circular Linear Circular Linear

NMOS (A/um)
ION / IOFF

1.43m
7.23n

1.56m
6.59n

1.35m
7.92n

1.47m
7.25n

PMOS (A/um)
ION / IOFF

0.703m
16.1n

0.84m
16.3n

0.684m
17.6n

0.815m
17.9n

Inverter Delay (ps)
(VDD = 0.76V)
(VDD = 0.66V)

3.047
3.426

2.998
3.37

2.794
3.075

2.723
2.971

(9.1%↑)
Switching Energy (fJ/um)

(VDD = 0.76V)
(VDD = 0.66V)

43.2
34.6

44.6
35.9

32.6
25.4

32.9
25.7

(22%↓)
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                         (a)                                                         (b)                                                        (c) 
 

 
                        (d)                                                         (e)                                                        (f) 
 

 
                        (g)                                                         (h)                                                          (i) 
Figure 3.18: The proposed process flow of the novel vacuum spacer transistor with FINFET and linear contact 
processes. (a) Silicon is etched on SOI wafer to make a fin. (b) Gate oxide and gate material are deposited, 
sequentially. And then CMP carried out. (c) After gate hard mask is deposited, the gate mask and gate material are 
etched, sequentially. (d) Sacrificial spacers are formed. In this process, the sacrificial spacers are formed only at the 
gate sides not at the fin side using controlling over etch time. (e) Raised S/D is formed. (f) Oxide spacers are formed 
to expose the top of the sacrificial spacer. (g) Sacrificial spacers are removed. (h) After non-conformal ILD is 
deposited to seal the vacuum gaps, CMP carried out. (i) After linear contact photo is done, ILD is etched using RIE 
etching process to connect the raised S/D region. After that, contact material is deposited to fill the contact plug 
which is not shown in this figure for simplicity. 
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     The proposed vacuum spacer with raised S/D process flow is as follows. Figure 3.17 (a) 
shows that the sacrificial gate is patterned and source, drain and nitride spacer (sacrificial spacer) 
are formed. A very thin oxide liner (not shown) is deposited underneath the nitride spacer to 
protect the gate dielectric. After that, raised S/D is formed to reduce S/D resistance. Figure 3.17 
(b) shows that ILD is deposited and oxide CMP carried out to expose top of the sacrificial gate. 
Figure 3.17 (c) shows that the sacrificial gate is removed. After gate oxide and gate material are 
deposited, sequentially. And then the gate material is etched back as shown in Figure 3.17 (d). 
Figure 3.17 (e) shows that ILD is etched back to expose top of the nitride spacer. Figure 3.17 (f) 
shows the selective etch of the nitride spacer without damaging the gate dielectric to create 
vacuum gaps. Non-conformal ILD deposition has sealed the top openings and sealed the vacuum 
spacers as shown in Figure 3.17 (g). Figure 3.17 (h) and (i) show linear contact process. This 
contact process can be changed easily to conventional circular contact process using change the 
contact mask.                 
     Another proposed vacuum spacer with FinFET process flow is as follows. Figure 3.18 (a) 
shows that silicon fin is etched on the SOI wafer. And then gate oxide and gate material are 
deposited, sequentially. CMP carried out to planarize the surface as shown in Figure 3.18 (b). 
After gate mask is deposited, gate mask and gate material are etched, sequentially as shown in 
Figure 3.18 (c). Figure 3.18 (d) shows that sacrificial (nitride) spacers are formed. A very thin 
oxide liner (not shown) is deposited underneath the nitride spacer to protect the gate dielectric. 
The fin height can be controlled by over etch time. Gate height is much taller than fin height. 
Thus, sacrificial spacers are formed at only gate sides not fin sides. Figure 3.18 (e) shows that 
raised S/D is formed to reduce the S/D resistance. Figure 3.18 (f) shows that oxide spacers are 
formed to expose top of the nitride spacers. Oxide spacer height can be controlled by over etch 
time. Figure 3.18 (g) shows the selective etch of the nitride spacer without damaging the gate 
dielectric to create vacuum gaps. Figure 3.18 (h) shows that non-conformal ILD deposition has 
sealed the top openings and sealed the vacuum spacers. Figure 3.18 (i) shows linear contact 
process.                  
 

3.5 Summary 

     In high performance device case, the vacuum spacer technology will be a promising solution 
in the speed, switching charge, switching energy, and power aspects because reducing the device 
capacitance will be an increasingly important way to improve the performances. In low standby 
power device case, the degradation of on-current should be carefully considered when the low-k 
spacer material is used. The partial spacer technology which the high-k material is located near 
surface and low-k material is located in the top of the high-k spacer will be very helpful to this 
low standby power device which is described in chapter 4. 
     Reducing the device capacitance will be an increasingly important way to improve the device 
speed and switching energy/power at smaller gate length. High density memories employ the 
SAC technology that requires the use of nitride spacer which significantly raises the delay and 
switching power. A novel SAC gate last vacuum spacer structure that yields small size, high 
speed and low switching energy is proposed. Compared to a vacuum spacer technology, a 
conventional nitride spacer transistor would have 41% longer delay and 129% larger switching 
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charge and 155% larger switching energy at 20nm gate length. These benefits are more and more 
significant for smaller dense memories. 
     Reducing contact resistance is an increasingly important approach to improving the device 
speed. Linear contact technology was recently introduced into production to increase the on 
current but it also increases the gate-to-contact capacitance. Vacuum spacer is a concept recently 
proposed for the conventional circular contact MOSFETs. Vacuum spacer is particularly 
attractive for future linear contact device, which has larger gate to contact capacitive coupling. 
Mixed-mode simulation shows that the delay of linear contact inverter can be improved with 
vacuum spacer technology by 10%. More significantly, the inverter switching energy (power 
consumption) can be reduced by about 25% using vacuum spacer technology at the fixed 
VDD=0.76V. The power consumption of vacuum spacer with linear contact inverter can be 
decreased by 43% at the same speed relative to circular-contact oxide spacer inverter. This is 
almost a factor of two improvement in switching energy. 
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Chapter 4 

Corner Spacer Transistor 
 

4.1 Introduction 

     Lowering the capacitance is increasingly important for improving not only speed but also 
power dissipation. Over 70% of the gate switching charge can be due to the gate to contact-plug 
and gate to source/drain (S/D) diffusion capacitances which is described in Chapter 2. In order to 
reduce these capacitance components without increasing the gate to contact distance, the material 
between gate and contact-plug should be a relatively low dielectric (low-k) material. However, 
the degradation of on and off current occurs. 
     In Chapter 2, the off current of nitride spacer transistor is lower than that of oxide or vacuum 
spacer transistors. The general understanding is that the higher permittivity the spacer material 
has, the greater control the gate fringing field has over the channel edge (hence the lower IOFF is). 
And the on current of nitride spacer transistor is higher than that of oxide or vacuum spacer 
transistors. It is known that high-k spacer increases the on-state current [4.1]. A higher 
permittivity spacer material allows the gate to better reduce the S/D resistance through its 
fringing field, hence the higher ION.  
     In Chapter 3, the high performance transistors have S/D overlapped profile and relatively 
thicker S/D extension region so that the on-current degradation of the controllability of gate 
channel edge due to the lower permittivity of the spacer material is not so much. However, in the 
low standby power devices, the structures have S/D underlapped profile and shallow S/D 
extension region so that there is big on-current degradation. 
     This degradation is more and more severe beyond the 18nm high performance technology 
node and 22nm low stand-by power technology node because the shallow junction region plays a 
greater role. Even though the low-k spacer can achieve low gate capacitance, it decreases on 
current so that the speed is not much improved, if at all.  
     A novel corner spacer technology is introduced in this Chapter. The small highly localized 
high-k spacers are present only at the gate-S/D edges where they are needed to improve on-
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current and off-current. The larger low-k spacer reduces the gate capacitance for improved speed 
and energy consumption. The high-k spacer material may be silicon nitride or HfO2 and the low-
k material may be silicon oxide or even vacuum. 
 

4.2 Historical Background 
 
     At the long channel transistor technology node, there was no need for gate spacers. However, 
as the gate length is scaled, lightly doped drain (LDD) technology [4.2] was needed to improve 
short channel effect (SCE) or hot carrier effect. Gate spacer was needed to make LDD structure. 
After gate patterning, gate spacer formation is followed by shallow ion implantation (IIP). After 
that, deep S/D is formed by deep IIP. The gate spacer material is usually SiO2. 
     As the gate length is more scaled, the gate spacer size is different to the LDD location and 
doping profile. In DRAM technology, dual spacer technology was introduced in order to reduce 
cell junction leakage current and use SAC technology. Dual spacer structure is that thin SiO2 
spacer is located besides gate pattern and thick Si3N4 spacer is outside the SiO2 spacer. The merit 
of gate dual spacer process is less silicon consumption in the cell array. For the conventional 
process, severe silicon recess occurs because the silicon surface is exposed twice to etching 
environments during Si3N4 spacer formation and SAC etching processes [4.3]. This dual-
sidewall spacer technology was used in metal gate process [4.4].  
     However, this dual spacer technology increases the gate capacitance because of higher-k of 
silicon nitride spacer. Figure 4.1 (a) shows that thin oxide and thick silicon nitride dual spacer 
transistor and Figure 4.1 (b) shows that this dual spacer technology could be applied to metal 
gate process. Thus, high density memory such as DRAM uses this dual spacer technology 
because this memory is important to the cell density and leakage current, not to the speed. In 
high speed device, this technology could not be used due to high gate capacitance.  
     Figure 4.1 (c) shows a different type of dual spacer technology. This offset spacer 
configuration and width can effectively increase the on-state driving current and reduce the off-
state leakage current off due to the high vertical fringing electric field effect arising from the side 
capacitor comprising of gate spacer extension structure. 
 

   
                          (a)                                                 (b)                                                        (c) 
Figure 4.1: (a) Vertical view of Jaegoo’s dual spacer transistor [4.3]. (6nm of SiO2 spacer and 30nm of Si3N4 spacer) 
(b) Vertical view of Jun-Wei’s dual spacer transistor with metal gate process [4.4]. Thin oxide layer covered all gate 
structure and thick silicon nitride covered the all gate structure and thin oxide layer. (c) Vertical view of Chun-Jen’s 
sidewall spacer transistor [4.5].   
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4.4.1.1 A simple corner spacer transistor with silicon nitride and oxide  
 
     The electrical characteristics of transistors are simulated with Sentaurus 3D device simulator 
[4.7]. Figure 4.5 shows that the IDS-VGS characteristics of the oxide spacer (control) device meet 
the ITRS 2009 specifications. The on-current is 1.58mA/µm (ITRS: 1.58mA/µm) and the off-
current is below 20nA/µm (ITRS: <100nA/µm). The corner spacer transistors are made by 
inserting corner spacers of varying size to this transistor. Except for the corner spacer size, all 
transistors have identical design parameters such as S/D and channel doping as the control device. 
The PMOSFETs have the same structures as the NMOSFETs except for the dopant types. 
 

 
                  Figure 4.5: Simulated IDS-VGS characteristics of the control transistor (oxide spacer only) 
                      in high performance devices (VDS = 0.84V, VDD=0.84V, LGATE=18nm) 
 
     The corner high-k material is Si3N4 (k=7.9) and the outer low-k material is SiO2 (k=3.9). The 
conventional transistor with oxide spacer only is compared with the corner spacers and nitride 
spacer transistors. The total outer spacer size is fixed at 16nm width and 58nm height. The corner 
spacer widths varies from 0nm (oxide spacer), 3, 6, 9, 12, 15, and 16nm and the heights varies 
from 3nm to 58nm.                 
     Figure 4.6 shows the on-current of the nitride spacer transistor is larger than oxide spacer 
transistor, also as expected, because of the stronger control of gate over the channel-S/D edge 
region. The on-current of the nitride spacer transistor is increased by 3.8% compared to that of 
the oxide spacer transistor. Surprisingly, the on-current of the corner spacer transistors, even with 
a modest width, is just as high as or even higher than that of the totally nitride spacer transistor. 
In the same corner spacer height, the on-current of 9nm corner spacer width is higher than that of 
16nm corner spacer width. We have found that the critical location in the shallow S/D that 
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requires good gate coupling is the gate edge region, where the doping concentration is lower and 
the current density is higher (being adjacent to the thin inversion layer) than the rest of the S/D 
region. A narrow high-k corner spacer increases the gate coupling (the gate-induced vertical 
electric field) in this critical region over the case of a full-width nitride spacer.  
     The off-current of the nitride spacer transistor is reduced by 7.7% compared to that of the 
oxide spacer transistor. The higher permittivity of the spacer material makes the gate fringing 
field over the channel edge much controllable so that it makes the off-current lower. The 
optimum corner spacer width is 6nm for off-current aspect. 
     Figure 4.7 shows the vertical field in the critical corner region of a 9nm corner spacer 
transistor is higher than that of full width transistor as shown in Figure 4.7 (a) and (b). The 
corner spacer heights are all 6nm. This yields a lower resistance in the corner spacer transistor 
than the full-width corner spacer transistor. Figure 4.7 (c) shows that the lower resistance at the 
gate edge of the source leads to a lower IR drop between x=-0.015um and x=-0.01um. Thus, the 
resistance of source side of 9nm width of the corner spacer is smaller than that of 16nm width 
(full width) of the corner spacer so that the current of the 9nm width is higher than that of 16nm 
width. 
 

 
         Figure 4.6: Simulated on and off-current of all the splits. X axis is the width of corner spacer from 0 to 16nm. 
         0nm indicates all oxide spacer and 16nm indicates the full width of the outer spacer width. Blank and blue 
         symbols represent oxide spacer only and nitride spacer only, respectively. The corner spacer heights are 
         separated by 4 regions: (3nm, 6nm, 30nm, and 58nm).  
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           Figure 4.8: Simulated gate capacitance and CV/I of all the splits. X axis is the width of corner spacer  
             from 0 to 16nm. 0nm indicates all oxide spacer and 16nm indicates the full width of the outer spacer  
             width. Blank and blue symbols represent oxide spacer only and nitride spacer only, respectively. The  
             corner spacer heights are separated by 4 regions (3nm, 6nm, 30nm, and 58nm).  
 
     In order to compare the device performance, 3D mixed-mode simulation is used to extract the 
accurate delay time. A four stage inverter is simulated with 3D Sentaurus simulator at 
VDD=0.84V. The NMOSFETs have 56nm channel width and the PMOSFETs, 112nm channel 
width. The inverter delay is defined as the average of the pull-up and pull-down delays measured 
from VIN=0.42V and VOUT=0.42V. Even though the highest on-current is for 9nm width of 
corner spacer, 6nm width of corner spacer inverter is faster than 9nm width of corner spacer in 
the 4 stage inverter delay simulation because of the gate capacitance of both NMOSFET and 
PMOSFET. In Figure 4.9, solid triangle, square, and circle represent oxide spacer only, nitride 
spacer only, and corner spacer, respectively. Red and black represent delay time and inverter 
switching energy, respectively. 58nm column shows conventional dual spacer structure which 
has 6nm width nitride spacer with full height and 10nm width oxide spacer with full height. The 
delay of the corner spacer inverter with 6nm width and 6nm height is improved by 9% and 18% 
compared with that of oxide and nitride spacer inverters, respectively as shown in Figure 4.9. 
The inverter switching energy of the nitride spacer and the oxide spacer are increased by 30% 
and 13%, respectively compared to that of the optimal corner spacer inverter. 
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              Figure 4.9: The 3D mixed-mode simulation results show the corner spacer device is faster than oxide 
               spacer or nitride spacer devices or oxide/nitride double spacers of the same height.   
 
 
4.4.1.2 Corner spacer transistors with other materials  
 
     High-k inner spacer and low-k outer spacer are changed. The combinations of these spacers 
are here: (Si3N4 and SiO2), (HfO2 and SiO2), (HfO2 and Si3N4), (SiO2 and vacuum), (Si3N4 and 
vacuum), and (HfO2 and vacuum). In Figure 4.10, the on-current is increased with increasing 
corner spacer width and height. The on-current of vacuum, oxide, nitride, and hafnium oxide 
spacer transistor are 1.53mA/µm, 1.61mA/µm, 1.67mA/µm, and 1.77mA/µm, respectively. 
Vacuum spacer transistor has low on-current but hafnium oxide spacer transistor has high on-
current. In the combination of HfO2 and vacuum spacers, only 3nm width and height corner 
spacer transistor has higher on-current than that of nitride spacer only transistor. The on-current 
is increased by 10% compared to that of vacuum spacer transistor. In the combination of HfO2 
and oxide spacers, small portion of corner spacer transistor has higher on-current than that of 
nitride spacer only transistor.  
     The off-current of vacuum, oxide, nitride, and hafnium oxide spacer transistor are 25nA/µm, 
22.7nA/µm, 20.9nA/µm, and 17.7nA/µm, respectively. Vacuum spacer transistor has high off-
current but hafnium oxide spacer transistor has low off-current. The small portion (3nm width 
and 3nm height of hafnium oxide) of corner spacer transistor can decrease the off-current by 19% 
compared to that of vacuum spacer transistor.  
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     In all the combination of inner and outer spacers, 9nm width of corner spacer transistor has 
higher on-current compared to other spacer widths at the same height of corner spacer but 6nm 
width of corner spacer transistor has lower off-current compared to other spacer with the same 
height of corner spacer. 
     Figure 4.11 shows the gate capacitance (at VDS=0V) of all the splits. The capacitances 
increase as the corner spacer width or height increases as expected. The capacitances of vacuum, 
oxide, nitride, and hafnium spacer transistors are 1.268fF/µm, 1.428fF/µm, 1.575fF/µm, and 
1.964fF/µm, respectively. The capacitance of the oxide, nitride, and hafnium oxide spacer 
transistors are increased by 12.6%, 24.2%, and 54.9%, respectively, compared to that of vacuum 
spacer transistor. When the portion of the corner spacer is increased, the on-current of the 
transistor is increased but the capacitances are also increased. Thus, the delay of each transistor 
is very complicated to be calculated. 

 
 

 
       Figure 4.10: Simulated on and off-current of all the splits. There are six combinations of corner spacers. The 
        column of the nitride and oxide is the same as Figure 4.6. X axis are the width of corner spacer from 0 to 16nm 
        and the height of corner spacer from 3 to 58nm. The left side of the each column represents lower dielectric 
        spacer only and the right side of the column indicates higher dielectric spacer only.  
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            Figure 4.11: Simulated gate capacitances of all the splits. X axis is the width of corner spacer from 0 to  
             16nm and the height from 3 to 58nm. The left side of the each column represents lower dielectric spacer 
             only and the right side of the column indicates higher dielectric spacer only.  
 
     In order to compare the device performance, 3D mixed-mode simulation is used to extract the 
accurate delay time and inverter switching energy. A four stage inverter is simulated with 3D 
Sentaurus simulator at VDD=0.84V. All the simulation parameters except material are exactly 
same as the parameters of Figure 4.9.  
     In the speed aspect, the delay times of vacuum, oxide, nitride, and hafnium oxide spacers are 
2.71ps, 2.87ps, 3.23ps, and 3.86ps, respectively as shown in Figure 4.12. Even if on-current of 
hafnium oxide spacer is higher than those of other spacers, vacuum spacer inverter is faster than 
other spacer inverters due to gate capacitances. If the difference of the dielectric constants 
between corner spacer material and outer spacer material is bigger, the effect of the corner spacer 
is smaller because the gate capacitance is much increased compared to the improvement of on-
current. The interesting results are here. The combination of silicon oxide and silicon nitride can 
be improved as much as the combination of vacuum and oxide (or nitride). Since vacuum corner 
spacer process is extremely difficult, the corner spacer with silicon oxide and nitride can be an 
attractive solution in order to enhance the speed.  
     In inverter switching energy aspect, the energy of vacuum, oxide, nitride, and hafnium oxide 
spacers are 48.6fJ, 58.2fJ, 67.1fJ, and 90.3fJ, respectively. When the dielectric constant is 
increased, the energy is also increased. The corner spacer inverter can be helpful to decrease the 
energy. However, the energy of vacuum spacer is the lowest energy of all the splits.  
     In high performance devices, we have some options to improve the performances. If we want 
to improve power consumption, the vacuum spacer may be an excellent solution. If we want fast 
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switching speed, we can choose the corner spacer structure. When we consider both high speed 
and low power consumption, we may choose the vacuum spacer transistor or the corner spacer 
transistor whose materials are vacuum and silicon oxide.     
. 
 

 
Figure 4.12: The 3D mixed-mode simulation results of all the splits. There are six combinations of corner spacers. 
Vacuum, oxide, nitride, and hafnium represent conventional spacer structure whose material is changed. Other 
notations are all corner spacer structures. For example, oxvac means corner spacer material is silicon oxide and outer 
spacer material is vacuum.   
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4.4.2 A corner spacer transistor for low stand-by power devices 
  

     The corner spacer effect in low stand-by power device is supposed to be much higher than 
that in high performance device because of the underlapped S/D profiles and very thin S/D 
thickness. We can increase the on-current more easily using the vertical field of the spacer 
materials. Thus, we made a reference transistor with oxide spacers only. The parameters of this 
transistor follow the low stand-by power devices of ITRS 2009 [4.6]. And then, high-k inner 
spacer and low-k outer spacer are changed. The combinations of these spacers are here: (Si3N4 
and SiO2), (HfO2 and SiO2), (HfO2 and Si3N4), (SiO2 and vacuum), (Si3N4 and vacuum), and 
(HfO2 and vacuum). In order to analyze these phenomenon easily, the corner spacer whose inner 
and outer spacers are Si3N4 and SiO2, respectively, is analyzed, firstly. The sequences of the low 
stand-by power devices are exactly same as those of the high performance devices.   
 

 
4.4.2.1 A simple corner spacer transistor with silicon nitride and oxide  
 
     The electrical characteristics of transistors are simulated with Sentaurus 3D device simulator 
[4.7]. Figure 4.13 shows that the IDS-VGS characteristics of the oxide spacer (control) device meet 
the ITRS 2009 specifications. The on-current is 605µA/µm (ITRS: 600µA/µm) and the off-
current is below 12.8pA/µm (ITRS: <50pA/µm). The corner spacer transistors are made by 
inserting corner spacers of varying size to this transistor. Except for the corner spacer size, all 
transistors have identical design parameters such as S/D and channel doping as the control device. 
The PMOSFETs have the same structures as the NMOSFETs except for the dopant types. 
     The corner high-k material is Si3N4 (k=7.9) and the outer low-k material is SiO2 (k=3.9). The 
conventional transistor with oxide spacer only is compared with the corner spacers and nitride 
spacer transistors. The total outer spacer size is fixed at 16nm width and 58nm height. The corner 
spacer widths varies from 0nm (oxide spacer), 3, 6, 9, 12, 15, and 16nm and the heights varies 
from 3nm to 58nm.                 
     Figure 4.14 shows the on-current of the nitride spacer transistor is larger than oxide spacer 
transistor, the same as for the high performance device. The on-current of the nitride spacer 
transistor is increased by 11% compared to that of the oxide spacer transistor. However, the 
improvement of the high performance device is only 3.8%. In the same corner spacer height, the 
on-current of 9nm corner spacer width is higher than that of 16nm corner spacer width. A narrow 
high-k corner spacer increases the gate coupling (the gate-induced vertical electric field) in this 
critical region over the case of a full-width nitride spacer which is the same as in high 
performance devices. But the improvement of corner spacer transistor of low stand-by power 
device is much higher than that of high performance device because of the underlapped and very 
thin S/D profiles. 
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                      Figure 4.13: Simulated IDS-VGS characteristics of the control transistor (oxide spacer  
                      only) in low stand-by power devices. (VDS = 0.95V, VDD=0.95V, LGATE=18nm) 

 

 
                   Figure 4.14: Simulated on and off-current of all the splits. X axis is the width of corner spacer  
                     from 0 to 16nm. 0nm indicates all oxide spacer and 16nm indicates the full width of the outer  
                     spacer width. Blank and blue symbols represent oxide spacer only and nitride spacer only,  
                     respectively. The corner spacer heights are separated by 4 regions: (3nm, 6nm, 30nm, and 58nm). 
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     The off-current of the nitride spacer transistor is reduced by 17.4% compared to that of the 
oxide spacer transistor. However, the improvement of the high performance device is only 7.7%. 
The static power consumption of the oxide spacer transistor is calculated by VDDILEAK 
(0.95Vx14.6pA/µm = 13.9pW/µm). When VDD can be reduced at the same on-current of the 
oxide spacer transistor, the static power consumption of the corner spacer transistor (6nm of 
width and height) is 0.924Vx12.15pA/µm = 11.23pW/µm. The power can be decreased by 
19.2%. When the work function is shifted, the off current of this corner spacer transistor is 
6.79pA/µm at the same on-current of the oxide spacer transistor. The power is 
0.95Vx6.79pA/µm = 6.44pW/µm. The power can be reduced by 53.7%. For the only static 
power aspect, the change of the work function is more useful, however, for the both static and 
dynamic power aspects, the reduction of VDD is more useful. 
 
 

 
                Figure 4.15: Simulated gate capacitance of all the splits. X axis is the width of corner spacer from  
                  0 to 16nm. 0nm indicates all oxide spacer and 16nm indicates the full width of the outer spacer  
                  width. Blank and blue symbols represent oxide spacer only and nitride spacer only, respectively.  
 
     Figure 4.15 shows the gate capacitance (at VDS=0V) increases as the corner spacer width or 
height increases as expected. The gate capacitance of 16nm corner spacer width are increased by 
2%, 6.9%, 18.6%, and 27.6% compared to that of 0nm corner spacer width (oxide spacer only) at 
each corner spacer height: (3nm, 6nm, 30nm, and 58nm, respectively). The effect of increasing 
the gate capacitance in the low stand-by power device is much higher than that in the high 
performance device.  
     In order to compare the device performance, 3D mixed-mode simulation is used to extract the 
accurate delay time. A four stage inverter is simulated with 3D Sentaurus simulator at 
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VDD=0.95V. The NMOSFETs have 56nm channel width and the PMOSFETs, 112nm channel 
width. The inverter delay is defined as the average of the pull-up and pull-down delays measured 
from VIN=0.475V and VOUT=0.475V. Figure 4.16 shows the delay and switching power of the 
oxide, nitride, and some corner spacer transistors. In the low stand-by power device, the oxide 
spacer transistor has low on-current and low gate capacitance but the nitride spacer transistor has 
high on-current and high gate capacitance, thus the delays are almost the same. The delay time of 
the corner spacer transistor with 6nm of height is improved by 15% compared to that of the 
oxide spacer transistor. In the high performance devices, the effect of the corner spacer transistor 
is only 10% for the speed aspect. The inverter switching energy of the corner spacer transistor 
with 3nm of height is improved by 7% compared to that of the oxide spacer transistor. In the 
high performance devices, the best performance can be achieved at 6nm width of the corner 
spacer. However, the best performance in the low stand-by power devices can be achieved at 
3nm, 6nm of corner spacer width.  
 
 

 
      Figure 4.16: The 3D mixed-mode simulation results show the corner spacer device is faster than oxide spacer  
       or nitride spacer devices.   
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4.4.2.2 Corner spacer transistors with other materials  
 
     High-k inner spacer and low-k outer spacer are changed. The combinations of these spacers 
are here: (Si3N4 and SiO2), (HfO2 and SiO2), (HfO2 and Si3N4), (SiO2 and vacuum), (Si3N4 and 
vacuum), and (HfO2 and vacuum). In Figure 4.17, the on-current is increased with increasing 
corner spacer width and height. The on-current of vacuum, oxide, nitride, and hafnium oxide 
spacer transistor are 0.5mA/µm, 0.613mA/µm, 0.679mA/µm, and 0.797mA/µm, respectively. 
Vacuum spacer transistor has low on-current but hafnium oxide spacer transistor has high on-
current. In the combination of hafnium oxide and vacuum spacers, only 3nm width and height 
corner spacer transistor has higher on-current than that of nitride spacer only transistor. The on-
current is increased by 40% compared to that of vacuum spacer transistor. In the combination of 
hafnium oxide and oxide spacers, small portion of corner spacer transistor has higher on-current 
than that of nitride spacer only transistor.  
     The off-current of vacuum, oxide, nitride, and hafnium oxide spacer transistor are 16.1pA/µm, 
14.6pA/µm, 12.1pA/µm, and 7.33pA/µm, respectively. Vacuum spacer transistor has high off-
current but hafnium oxide spacer transistor has low off-current. The small portion (3nm width 
and 3nm height) of corner spacer transistor with hafnium oxide and vacuum can decrease the off-
current by 34% compared to that of vacuum spacer transistor.  
 

 
                Figure 4.17: Simulated on and off-current of all the splits. There are six combinations of corner 
                  spacers. The column of the nitride and oxide is the same as Figure 4.14. X axis are the width of  
                  corner spacer from 0 to 16nm and the height of corner spacer from 3 to 58nm. The left side of the 
                  each column represents lower dielectric spacer only and the right side of the column indicates  
                  higher dielectric spacer only. 
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     In all the combination of inner and outer spacers, 3-9nm widths of corner spacer transistor has 
higher on-current compared to other spacer widths at the same height of corner spacer but 3-9nm 
widths of corner spacer transistor has lower off-current compared to other spacer with at the 
same height of corner spacer. 
     Figure 4.18 shows the gate capacitance (at VDS=0V) of all the splits. The capacitances 
increase as the corner spacer width or height increases as expected. The capacitances of vacuum, 
oxide, nitride, and hafnium oxide spacer transistors are 0.786fF/µm, 0.91fF/µm, 1.07fF/µm, and 
1.375fF/µm, respectively. The capacitance of the oxide, nitride, and hafnium oxide spacer 
transistors are increased by 28.5%, 51.1%, and 74.9%, respectively, compared to that of vacuum 
spacer transistor. However, the gate capacitance of low stand-by power device is much lower 
than that of the high performance device because of thicker gate oxide thickness. And the change 
of the gate capacitance with increasing the portion of corner spacer is much higher than that of 
high performance device. 
 

 
              Figure 4.18: Simulated gate capacitances of all the splits. X axis is the width of corner spacer from  
               0 to 16nm and the height from 3 to 58nm. The left side of the each column represents lower dielectric 
               spacer only and the right side of the column indicates higher dielectric spacer only. 
 
     In order to compare the device performance, 3D mixed-mode simulation is used to extract the 
accurate delay time and inverter switching energy. A four stage inverter is simulated with 3D 
Sentaurus simulator at VDD=0.95V. All the simulation parameters except material are exactly 
same as the parameters of Figure 4.16.  
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    Figure 4.19: The 3D mixed-mode simulation results of all the splits. There are six combinations of corner spacers. 
    Vacuum, oxide, nitride, and hafnium represent conventional spacer structure whose material is changed. Other 
     notations are all corner spacer structures. For example, oxvac means corner spacer material is silicon oxide and 
     outer spacer material is vacuum.   
 
     In the speed aspect, the delay times of vacuum, oxide, nitride, and hafnium oxide spacers are 
14.28ps, 11.90ps, 11.92ps, and 10.82ps, respectively as shown in Figure 4.19. In low stand-by 
power devices, vacuum spacer inverter is slower than other spacer inverters. The results are 
totally different from the results in high performance devices. The reasons are that the 
improvement of on-current is much higher than the degradation of increasing capacitance. 
However, the corner spacer devices are faster than conventional spacer devices. The corner 
spacer inverters with the combination of hafnium oxide/vacuum, hafnium oxide/oxide, and 
hafnium oxide/nitride are faster than other corner spacer inverters and other conventional spacer 
inverters. 
     In inverter switching energy aspect, the energy of vacuum, oxide, nitride, and hafnium oxide 
spacers are 121.33fJ, 132.94fJ, 133.27fJ, and 165.67fJ, respectively. When the dielectric constant 
is increased, the energy is also increased. The corner spacer inverter can be helpful to decrease 
the energy but not much. However, the energy of vacuum spacer is the lowest energy of all the 
splits.  
     In low stand-by power devices, we also have some options to improve the performances. If 
we want to improve power consumption, the vacuum spacer may be an excellent solution just 
same as the results in high performance devices. If we want fast switching speed, we can choose 

110

135

160

185

210

235

0

3

6

9

12

15

Va
cu
um

ox
va
c

ox
va
c

ox
va
c

ox
va
c

O
xi
de

Va
cu
um

ni
tv
ac

ni
tv
ac

ni
tv
ac

N
itr
id
e

Va
cu
um

hf
ov
ac

hf
ov
ac

Ha
fn
iu
m

O
xi
de

ni
to
x

ni
to
x

ni
to
x

N
itr
id
e

O
xi
de

hf
oo

x
hf
oo

x
hf
oo

x
Ha

fn
iu
m

N
itr
id
e

hf
on

it
hf
on

it
Ha

fn
iu
m

delay
Energy

D
el
ay
 T
im

e 
[p
s]
 

Sw
itc
hi
ng

 E
ne

rg
y 
(f
J/
um

2 )



72 
 

the corner spacer structure. When we consider both high speed and low power consumption, we 
may choose the corner spacer transistor whose materials are vacuum and silicon nitride.     
 

4.5 Summary 

     In high performance device case, the high-k spacer material increases gate capacitance much 
more than on-current. Thus, vacuum spacer device is the best option for speed aspect. However, 
the corner spacer device is faster than this vacuum spacer device due to increasing on-current 
and almost same gate capacitance. For speed aspect, the corner spacer can be the best option but 
this corner spacer device has a little bit larger power consumption. For power consumption 
aspect, the vacuum spacer device is a good solution. If we consider both speed and power, the 
corner spacer or conventional spacer device with vacuum spacer are attractive solutions. As 
speed is more important in this high performance device, the best structure is the corner spacer 
device with combination of vacuum and silicon oxide. The speed of this device is improved by 
4%, 10%, 20%, and 32% compared to conventional spacer devices with vacuum, silicon oxide, 
silicon nitride, and hafnium oxide, respectively. The switching energy of this device is increased 
by 6% compared to the vacuum spacer device. However, except vacuum spacer, this energy is 
improved by 12%, 24%, and 43% compared to silicon oxide, silicon nitride, and hafnium oxide, 
respectively. 
     In low stand-by power device case, the high-k spacer material increases on-current much 
more than gate capacitance. Therefore, vacuum spacer device is slower than other high-k spacer 
devices. But the corner spacer device is also helpful. For speed aspect, the corner spacer can be 
the best option but this corner spacer device has high power consumption. For power 
consumption aspect, the vacuum spacer device is a good solution. But in this case, the speed is 
too slow. If we consider both speed and power, the corner spacer is an attractive solution. As 
power is more important in this low stand-by power device, the best option is the corner spacer 
device with combination of vacuum and silicon nitride. The speed of this device is improved by 
33%, 19%, 19%, and 11% compared to conventional spacer devices with vacuum, silicon oxide, 
silicon nitride, and hafnium oxide, respectively. The switching energy of this device is increased 
by 2% compared to the vacuum spacer device. However, except vacuum spacer, this energy is 
improved by 7%, 7%, and 25% compared to silicon oxide, silicon nitride, and hafnium oxide, 
respectively. Furthermore, we can reduce VDD in this case because the speed improvement is 
33%. Thus, this corner spacer device can be achieved much lower power consumption than 
vacuum spacer device using decreasing VDD. If VDD is scaled, the static power can be decreased 
as well as the dynamic power.  
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Chapter 5 

Vacuum-Gap Interconnect 
 

5.1 Introduction 

     Interconnects are metal wires that connect two or more points in a circuit. In older 
technologies, the distance between adjacent wires were much larger than metal-oxide-
semiconductor (MOS) transistor dimension and the lengths that these metal wires had to travel 
were relatively short. As a results, interconnect resistance and capacitance were not very large 
nor comparable to those of active devices such as MOS transistors. The only considerable 
parameter was reliability problem.  
     As the technology node gets smaller, the distance between adjacent wires are very close to 
MOS transistor dimension. Moreover, the thickness of metal wires is hard to be reduced due to 
resistance problem so that high aspect ratio metal and via occur. Interconnect resistance and 
capacitance can no longer be considered trivial. New chemical vapor deposition (CVD), physical 
vapor deposition (PVD), electrochemical deposition (ECD) techniques and metal planarization 
techniques using chemical mechanical polishing (CMP) as well as novel low dielectric constant 
(k) materials which have high structural stability and gap filling ability are required for the 
improved density and performance. 
     In conventional subtractive etch interconnect (aluminum metallization), aluminum reflow 
technique for enhanced step coverage into high aspect ratio contacts or vias and the subsequent 
introduction of CVD tungsten fill/etch-back to form contact/via plugs are needed for providing 
reliable metal fill of the high aspect ratio contact and via which are followed by lithographic 
scaling. Dielectric CMP technique is also required to improve the fidelity of high-resolution 
lithography by providing a more planar surface for imaging as depth of focus decreased with 
improved resolution. Planar dielectric surfaces also enhanced process margin and yield, since 
less over-etch was required to clear metal filaments in forming tungsten plugs and aluminum 
leads. However, aluminum has been used widely in the past and is still used since it has low 
resistivity, excellent adhesion to dielectric and ease of deposition. Aluminum can be etched using 
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dry etching technique and make ohmic contacts to silicon but problem with shallow junctions 
and does not contaminate silicon [5.1].  
     Aluminum has serious reliability problems. Electromigration is due to electron wind induced 
diffusion of aluminum through grain boundaries [5.2]. Electromigration induced hillocks which 
make short circuits and voids which make open circuits. Adding copper to aluminum which 
decreases its self diffusivity and using materials with higher activation energy are good solutions 
to increase resistance to electromigration [5.3]. Reducing grain boundary diffusion and stress are 
also helpful [5.4] [5.5]. Bamboo structure and layered structure reduce grain boundary diffusion 
[5.6] [5.7].      
     Although aluminum is still the most predominant interconnect material, there are serious 
resistance and reliability problems at small feature size. Copper is one of the excellent solutions. 
It has higher electromigration resistance and lower resistivity compared to aluminum [5.8].  
However, copper metallization has some problems. Copper atoms ionize, penetrate into the 
dielectric, and then accumulate in the dielectric as copper space charge so that there is fast 
diffusion of copper into dielectric. And copper has poor adhesion to dielectric and poor 
oxidation/corrosion resistance. Diffusion barrier and passivation are needed in order to overcome 
these problems. Furthermore, copper is hard to be etched by conventional dry etching technique. 
Thus damascene process is required. While current copper damascene processes utilize PVD Ta-
based barriers and Cu nucleation layers, continued scaling of feature size requires development 
of other materials and nucleation layer deposition solutions. Continuous improvement of tools 
and chemistries will extend electrochemically deposited (ECD) Cu to the end of the forecasted 
roadmap but small, high A/R features necessitate the simultaneous development and subsequent 
selection of alternative filling techniques. A thin barrier is also needed to maintain the effective 
conductor resistivity in these features.  
     Lowering dielectric constant (k) of insulator is also important to reduce interconnect 
capacitance. Reducing capacitance has a lot of significant benefits of reducing cross-talk noise, 
delay and power consumption. Fluorine doped silicon dioxide (κ = 3.7) was introduced at 180 
nm, however insulating materials with κ = 2.7–3.0 were not widely used until 90 nm [1]. The 
reliability and yield issues associated with integration of these materials with damascene copper 
processing proved to be more challenging than expected. The integration of porous low-κ 
materials is expected to be even more challenging due to low structural stability and reliability 
issue.  
     Since the associated inter metal dielectric (IMD) k value is close to 1, vacuum (air) gap 
appears as the ultimate hybrid architecture leading to dramatic interline capacitance reduction 
and very low effective κ values. Different air gap integration approaches are being developed to 
fabricate multi-level interconnects. All approaches can be classified into one of two categories: 
(1) partial or complete material removal between metal lines followed by non-conformal CVD 
deposition and (2) damascene integration of metal lines in a sacrificial material which can be 
selectively removed through a dielectric cap. Each of these methods has benefits and trade-offs. 
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5.2 Historical Background 
 
5.2.1 Vacuum gap integration in aluminum interconnect 
 
     Most vacuum gap integration techniques were already investigated in the 1990’s and use 
either: (1) non-conformal CVD process (2) sacrificial materials. In the aluminum era, IMD had 
to gap-fill the spaces between the metal lines. Vacuum gaps were unintentionally formed at the 
narrowest pitches. These vacuum gaps were undesired because their uncontrolled formation 
could lead to metal voids or electrical shorts during subsequent via formation. However, these 
vacuum gaps by non-conformal CVD became attractive due to the scale down of interconnect 
and high interline capacitance. Shieh reported a 40% reduction in capacitance at 0.3µm metal 
width [5.9]. The vacuum gaps of non-uniform size and shape were made by non-conformal CVD 
process as shown in Figure 5.1 (a). The vacuum gaps are located between same level metals so 
that there reduce interconnect capacitance between wires. Heat is carried mostly by vias. This 
vacuum gap structure has high electromigration resistance because of stress relaxation allowed 
by free space. 
     Another approach was the use of sacrificial layer. After formation of the aluminum lines, 
sacrificial materials are deposited and planarized. After IMD is deposited, the sacrificial 
materials can be decomposed and vacuum gaps are formed. These sacrificial materials may be 
photo resist or carbon [5.10]. A drawback is the dependence of material properties. Vacuum gap 
collapse occurs at wide spaces of more than 4µm. However, there was no problem at the narrow 
space where low capacitance is very important. Anand reported a process uses O2 gas diffused 
through a thin bridge layer (SiO2) to react with the underlying carbon layer at 450ºC as shown in 
Figure 5. 1 (b) [5.11].  
 
 

 
(a)                                                                                         (b) 

Figure 5.1: Some vacuum gap integration profiles in aluminum interconnect (a) using non-conformal CVD process 
(b) using sacrificial materials 
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5.2.2 Vacuum gap integration in copper interconnect 
 
     Copper cannot be easily etched anisotropically; the integration is done using damascene 
technology. The vacuum gap integration techniques in copper interconnect are almost same as 
those of aluminum interconnect. A vacuum gap interconnect using non-conformal CVD process 
flow is that after damascene process, the surrounding dielectric needs to be removed before 
applying the non-conformal CVD process to form the vacuum gaps. Gosseta reported a process 
using conventional dry etching technique to remove the surrounding dielectric at 0.14 µm [5.12]. 
Figure 5.2 (a) shows that vacuum gap profile in copper damascene interconnect looks like that in 
aluminum interconnect.  
     Another way is to use the sacrificial materials. Daamen reported vacuum gap interconnect 
scheme using the copper dual damascene process [5.8]. He used the sacrificial material as 
thermal degradable polymers (TDP) which is composed at 400°C easily. Figure 5.2 (b) shows 
that vacuum gap is located between two same level metals. Carbon CVD is one of the good 
sacrificial materials [5.10].  

 

                                              (a)                                                                            (b) 
             Figure 5.2: Some vacuum gap integration profiles in copper interconnect (a) using non-conformal  
             CVD process (b) using sacrificial materials 
 

5.3 Process Integration 

     As the technology node gets smaller, the conventional subtractive etch interconnect should be 
changed to the copper damascene interconnect due to better electro-migration resistance, low 
metal resistivity, and IMD gap-fill problem. However, the conventional subtractive etch 
interconnect process is still used for dense memory products such as dynamic random access 
memory (DRAM) or static random access memory (SRAM) or NAND and NOR flash memory. 
Thus, two types of interconnect with vacuum-gap structures are suggested. One is for the 
subtractive etch interconnect process for dense memories and the other is for the dual damascene 
interconnect process for high speed devices.  
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5.3.2.2 Structure and Process Concept 

     Figure 5.7 shows three views of the same block of the proposed interconnect and via 
structure. Figure 5.7 (a) shows that each metal line is supported by a 3-dimensinal system of two 
dielectric support beams. Figure 5.7 (b) shows that every metal line is surrounded by vacuum 
corridor except two support beams. Figure 5.7 (c) shows all the support beams are connected to 
both upper support beams and lower support beams. Vacuum exists on every metal cross over 
point and between the metals. The Vias are also surrounded by vacuum corridor. Figure 5.8 
shows the detailed process flow of the dielectric support beams. This process puts the support 
beams under every metal lines so that the metal lines are solidly built with the support beams. 
 

 
(a)                                                       (b)                                                             (c) 

Figure 5.7: 3D rendering of the proposed vacuum-corridor interconnect structure. (a) Tilted view of a block of the 
interconnect structure (b) Front view of the structure (c) Side view of the structure 
 
 

 
         (a)                                         (b)                                             (c)                                           (d)  
Figure 5.8: 3D process flow shows how to make the dielectric support beams. (a) After etching process (b) Cleaning 
process etches the dielectric under the metal (c) Spacer formation (d) After removing the dielectric, two support 
beams can support one metal line tightly 
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     Figure 5.9 illustrates the proposed process flow. Figure 5.9 (a) - (c) processes are same as the 
conventional dual damascene process [5.14]. The barrier metal and the alumina capped 
oxidation-free structure that has been proven to protect Cu from oxidation is not shown in these 
figures for simplicity [5.15]. In Figure 5.9 (d), the stopper nitride and IMD are etched by 
selective etching process. Copper would not be etched. Figure 5.9 (e) shows that oxide spacers 
are formed. These solid dielectric beams are supported by each metal line. In Figure 5.9 (f), the 
sacrificial layers are deposited and chemical mechanical polishing (CMP) is carried out. In 
Figure 5.9 (g) - (h), the Metal-2 and Metal-3 processes have been completed by repeating the 
processes shown in Figures 5.9 (a) through 5.9 (f). The only different point is that the dielectric 
material under the metals is replaced with the sacrificial material since all the sacrificial material 
should be connected to other sacrificial material. However, the dielectric material under Metal-1 
layers cannot be connected to other sacrificial layers so that that material under Metal-1 layers is 
same as the conventional material. In Figure 5.9 (i), all sacrificial layers are removed and a top 
non-conformal dielectric is deposited to seal the vacuum-corridor. Carbon chemical vapor 
deposited (CVD) oxide can be used as the sacrificial layer. One key requirement for the 
sacrificial layer material is the ease of removal.   
 

5.4 Modeling for Simulation 

5.4.1 General Modeling for Interconnect 
 

     Simulation-based approaches tended to rely on 3-D Maxwell equations (5.1 - 5.4) solvers to 
provide the most realistic results. The field solvers require a full specification of the interconnect 
structure. If the capacitance between two metal plates was to be simulated, the width, length, and 
height of each plate must be specified. In addition, the IMD thickness and dielectric constants for 
the insulator between the two plates as well as above the top plate need to be specified as shown 
in Figure 5.10. After all interconnect parameters have been specified, the 3-D field solver can be 
used to simulate the capacitance for various interconnect patterns and geometries. The total 
number of possible patterns and combinations is near infinite. The results of 3-D field solver are 
then stored in a database for latter use by a design tool. Design tools will try to match the 
patterns in the design to those within the database. If a match is found, it simply uses its 
capacitance value. Raphael 3D simulator is used for these simulations [5.16] [5.17]. 

 

                    Faraday’s law:          ∇×E= - (∂B) / ∂t                                                      (5.1) 
 

                    Ampere’s law:          ∇×H  = - (∂D) /∂t + J                                            (5.2) 
 

                    Gauss’ law:               ∇·B = 0                                                                          (5.3)                 
                                                       ∇·D = ρ                                                                         (5.4) 
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                Figure 5.10: Interconnect parameters must be specified for accurate 3-D field solver simulations. 
 

 

1.6.2 Capacitance Definitions of RAPHAEL Default Database 

 

                                    (a)                                                                                        (b) 

 
                                              (c)                                                                          (d)  
 
Figure 5.11: (a), (c) and (d) Capacitance terms for “array crossover between ground planes” generic structure. (b) 
Capacitance terms for “two parallel arrays between two ground planes” generic structure. 
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     There are two ground planes, top ground plane (top gp), bottom ground plane (bottom gp) as 
shown in Figure 5.11 (a). In bottom array, metal width and space represent wb and sb, 
respectively as shown in Figure 5.11 (c). Metal width and space in top array shows wt and st, 
respectively as shown in Figure 5.11 (d). Cttot is the total capacitance for a trace in the top array 
to all other electrodes in the dashed box in Figure 5.11 (c). Cttgp is the capacitance for a trace in 
the top array to top ground plane in the dashed box in Figure 5.11 (c). Cbtot is the total 
capacitance for a trace in the bottom array to all other electrodes in the dashed box in Figure 5.11 
(d). Array coupling capacitance is the capacitance between same level metals. Top and bottom 
array coupling capacitance show Ctcou and Cbcou, respectively in Figure 5.11 (b). There are some 
overlap capacitances: capacitance of bottom center conductor to bottom ground plane (Cbbgp), 
capacitance of top center conductor to bottom center conductor (Ctbmc), capacitance of top center 
conductor to top ground plane (Cttgp). There are two cross coupling capacitances: cross coupling 
capacitance between top center and bottom left conductors (Ctbcc), cross coupling capacitance 
between bottom center and top right conductors (Cbtcc). 
 

5.5 Simulation Results 

5.5.1 A subtractive etch interconnect with vacuum-sheath simulation  
 
5.5.1.1 Simulation implementation 
 
     3D Computer simulations were performed. The structure generated in the Raphael simulator 
[5.16] [5.17] is shown in Figure 5.12. Each metal is almost surrounded by Vacuum. This 
structure is totally different to previous vacuum gap interconnect which has vacuum gap only 
between the same level metals. CM is the mutual capacitance between two parallel metal lines 
which is the same as coupling capacitance. It is a key determinant of the cross talk noise [5.18]. 
CO and CF are the overlap and fringing capacitances (cross coupling capacitance), respectively. 
The total capacitance, the sum of CM, CO, and CF is the CTOT in the RC delay of interconnect. 
Table 5.1 shows the 2008 International Technology Roadmap for Semiconductors (ITRS) 
projections for interconnection [1]. ITRS shows the aspect ratio of metal so that metal thickness 
will be calculated. We assume that the IMD thickness is twice the metal thickness. These values 
are used in the simulations. We assume that the support beams of the vacuum-sheath structure 
have a dielectric constant of 3.3. The effective dielectric constants in Table 5.1 are used in the 
simulation of the ITRS capacitance requirement. Below 40nm metal width, the ITRS required 
effective dielectric constant decrease rapidly as shown in Table 5.1. However, ITRS states that 
the manufacturing solutions for these under 2.9 effective dielectric constants are not known [5.1]. 
The proposed vacuum-sheath interconnect structure is a potential solution.   
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5.5.1.2 Simulation Results 
 
     There are two interconnect structures: vacuum sheath interconnect and conventional 
interconnect as shown in Figure 5.3. Our simulation structure has 9 metals: 3 of metal-1, 3 of 
metal-2 and 3 of metal-3. Among these metal lines, the capacitance of the center of metal-2 line 
is higher than that of other metal lines because of fringing capacitance. So this capacitance is 
used for our simulation.  
      

 
 
                            Figure 5.13: Total and mutual capacitances are decreased as vacuum gap width is  
                               increased. Total capacitance of only 4nm vacuum gap width with higher k (k=3.3)  
                               is much less than that of conventional structure with lower k (k=3.0). Metal width  
                               is 40nm. 
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     The total and mutual capacitances of the center of metal-2 lines are extracted. All the specific 
parameters of each generation are followed by Table 5.1 in conventional structure. Vacuum 
sheath structure has the same geometry as the conventional structure except vacuum sheath parts. 
Metal space is divided into two vacuum gaps of equal width and one support dielectric beam. A 
thicker vacuum gap width leads to lower support dielectric beam width at the fixed metal space. 
Figure 5.13 shows total and mutual capacitances of several vacuum gap widths. X axis represents 
vacuum gap width from 0nm to 14nm at 40nm metal width and space. Conventional structure is 
0nm vacuum width with dielectric constant is 3.0 which are followed by Table 5.1. The dielectric 
constant of the support beam dielectric is 3.3. The dielectric (k=3.3) is known to high structural 
stability. The vacuum gap width is defined as one vacuum gap width. For example, 10nm 
vacuum gap width means that two 10nm vacuum gap widths and 20nm support beam. Even if 
4nm vacuum gap width is used in this simulation, total and mutual capacitances of vacuum 
sheath structure are lower than that of conventional structure (ITRS requirements) by 30% and 
22%, respectively. 14nm vacuum gap width leads to 50% lower total capacitance. A thicker 
vacuum gap width leads to lower capacitance but lower structural stability. Thus, only 8nm 
vacuum gap width is chosen to other simulations. 8nm is only 20% of the 40nm metal space. So 
20% vacuum width is used for all generations. For example, if metal space is 28nm, the space 
consists of two 5.6nm vacuum gap widths (20%) and 16.8nm support beam width (60%). 
     Figure 5.14 shows total and mutual capacitances at each generation. All the specific 
parameters are followed by Table 5.1 (ITRS specifications). From 175nm to 59nm of metal 
widths, the total and mutual capacitances of vacuum sheath structure are reduced by 44% and 
36%, respectively compared to those of conventional structure. From 40nm to 20nm of metal 
widths, dielectric constant of IMD should be reduced from 3.0 to 2.4 according to ITRS 
specifications. However, there is no solutions below effective k = 2.9. The total and mutual 
capacitances of vacuum sheath structure is slightly increased with scaling due to using the same 
dielectric support beam (k=3.3). Those capacitances of vacuum sheath structure are much lower 
than those of conventional structure even if a solution is found for implementing k=2.4. Total 
and mutual capacitances can be reduced by 20% and 13% at 20nm of metal width compared to 
those of conventional structure (k=2.6). That means current dielectric technique can be extended 
to below 20nm technology using vacuum sheath interconnect with high dielectric material 
(k=3.3).    
     Process variation is also important part of the interconnect process. Figure 5.15 shows IMD 
variations. All the simulation of Figure 5.13 and 5.14 assume that IMD thickness is twice the 
metal thickness. However, there are some variations in real process. Relative IMD thickness 
means IMD thickness over twice the metal thickness. For example, if relative IMD thickness is 
0.5, IMD thickness is half of the metal thickness and if it is 2, the thickness is 4 times thicker 
than the metal thickness. The structures of figure 5.15 (a) and (b) show the structures of relative 
IMD thickness is 0.5 and   2, respectively. As the IMD thickness is increased, total capacitance is 
decreased but mutual capacitance is increased. It is notable that both the total and mutual 
capacitances of the vacuum sheath structure are less sensitive to the IMD thickness than those of 
the conventional structure. Even if IMD thickness is changed a lot, the effects of the vacuum 
sheath interconnect are still same. Total and mutual capacitances can be reduced by 45% and 
34%, respectively at 40nm of metal width.  
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                                                                              (a) 

 
                                                                                    (b) 
                 Figure 5.14: Total (a) and mutual (b) capacitances should be increased as metal  
                 width is decreased without scaling dielectric constant.. Total and mutual capacitances  
                 of vacuum sheath interconnect using conventional dielectric (k=3.3) are still lower  
                 than those of conventional interconnect using ultra low dielectric (k=2.4).  
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(a)                                                                                   (b) 

Figure 5.15: (a) Total capacitance (speed) is decreased as the thicker IMD. (b) Mutual capacitance (cross-talk noise) 
is increased as the thicker IMD. Metal width is 40nm       
  

 
                               Figure 5.16: Relative delay is decreased as metal thickness is increased.  
                                  Metal width and space are 40nm 

 
     Figure 5.16 shows the Relative interconnect RC delay time versus the metal aspect ratio. 
Metal width and space are 40nm. If the ratio is higher (taller metal height), the delay is smaller 
due to reducing metal resistance but the vacuum sheath interconnect scheme always has 
approximately 45% of the delay of the conventional interconnect scheme.  
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5.5.2 A dual damascene interconnect with vacuum-corridor simulation 
 
5.5.2.1 Simulation implementation 
 
     Table 5.2 shows the 2007 International Technology Roadmap for Semiconductors (ITRS) 
projections for interconnection [5.19]. We assume that the thickness of stopper nitride is shown 
in Table 5.2 and IMD thickness is twice the metal thickness. Although ITRS shows effective k, 
we assume it to be the dielectric constant of IMD material as shown in Table 5.2. These values 
are used in the simulations of the conventional interconnect scheme. We also assume that the 
support beams of the vacuum-corridor structure have a dielectric constant of 2.9.   
     There are some differences between conventional dual-damascene structure and vacuum-
corridor structure as shown in Figure 5.6. Conventional structure has two nitride stoppers in each 
metal line. However, vacuum-corridor has only one nitride stopper in each metal line because the 
nitride stopper is etched as shown in Figure 5.9 (d). 3D Computer simulations were performed. 
The structure generated in the Raphael simulator is shown in Figure 5.17 [5.16] [5.17].  
 

2007 ITRS specifications 

Metal Width / Space 59 / 59nm 40 / 40nm 28 / 28nm  20 / 20nm 

Metal A/R  1.8 1.8 1.9  2.0 

Assumption for simulation 

Metal Thickness  1062Å 720Å 532Å  400Å 

Stopper Nitride Thickness  10nm 10nm 5nm  5nm 

IMD Thickness 
(Metal + Via Thickness)  2124Å  1440Å  1064Å  800Å  
Dielectric Constant (k)  

for conventional structure  2.9  2.7  2.5  2.3  
Dielectric Constant (k)  
for Vacuum-Corridor  2.9  2.9  2.9  2.9  

Table 5.2: ITRS 2007 specifications for interconnect and the assumptions for the simulation. 
 
     Below 40nm metal width, the effective dielectric constant should be less than 2.9 according to 
ITRS. However, ITRS states that the manufacturing solutions for the under 2.9 effective 
dielectric constant are not known [5.19]. The proposed vacuum-corridor interconnect structure is 
a potential solution. In the conventional dual-damascene structure, we should use an IMD whose 
dielectric constant is 2.25 to meet effective k=2.9 because of high dielectric constant of nitride 
stopper material. For simplicity, we use some different dielectric constant at each generation as 
shown in Table 5.2.  
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chosen to other simulations. Total and mutual capacitances with vacuum gap (= 24nm) can be 
decreased by 53% and 55%, respectively compared to those of conventional structure. 
 

   

 
                      Figure 5.18: Total capacitance versus each metal layer. The ratio is the total capacitance  
                        of vacuum-corridor over that of conventional dual damascene structure. Metal width = 40nm 
 
 

 
Figure 5.19: Total and mutual capacitances are decreased as vacuum gap width is increased. Total capacitance of 
only 20% of vacuum gap width (8nm) with higher k (k=2.9) is much less than that of conventional structure with 
lower k (k=2.7). Metal width is 40nm. 
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                                                                                 (a) 

 
                                                                               (b) 

                  Figure 5.20: Total (a) and mutual (b) capacitances should be increased as metal width is decreased 
                  without scaling dielectric constant. Total and mutual capacitances of vacuum corridor interconnect  
                  using conventional dielectric (k=2.9) are still lower than those of conventional interconnect using  
                  ultra low dielectric (k=2.3).  
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     Figure 5.20 shows total and mutual capacitances at each generation. All the specific 
parameters are followed by Table 5.2 (ITRS specifications). From 59nm to 20nm of metal widths, 
dielectric constant of IMD should be reduced from 2.9 to 2.3 according to ITRS specifications. 
However, there is no solutions below effective k = 2.9. The total and mutual capacitances of 
vacuum corridor structure is slightly increased with scaling due to using the same dielectric 
support beam (k=2.9). At 20nm metal width, both the total capacitance and the mutual 
capacitance of the vacuum-corridor structure (with IMD k=2.9) are superior to those of the 
conventional structure even if a solution is found for implementing oxide k=2.3. Total and 
mutual capacitances can be reduced by 48% and 50% at 20nm of metal width compared to those 
of conventional structure (k=2.3). That means current dielectric technique can be extended to 
below 10nm technology using vacuum sheath interconnect with high dielectric material (k=2.9).    
     All the simulation of Figure 5.18, 5.19 and 5.20 assume that via height is the same as the 
metal thickness. If via over metal thickness is 0.5, the height of via is half of the metal thickness 
and if it is 2, the height of via is twice of the metal thickness. The structures of figure 5.21 (a) 
and (b) show the structure of via over metal thickness is 0.5 and 2, respectively. As the height of 
via is increased, total capacitance is decreased but mutual capacitance is increased. It is notable 
that both the total and mutual capacitances of the vacuum corridor structure are less sensitive to 
the via height than those of the conventional structure. Even if the height of via is changed a lot, 
the effects of the vacuum corridor interconnect are still same. Total and mutual capacitances can 
be reduced by 56% and 57%, respectively at 40nm of metal width.  
     Figure 5.22 shows the RC delay time versus the metal thickness. Metal width and space are 
40nm. If the metal thickness is higher, the delay is smaller due to reducing metal resistance but 
the vacuum corridor interconnect scheme always has approximately 47% of the delay of the 
conventional interconnect scheme.  

 
.  

 
(a)                                                                                          (b) 

Figure 5.21: (a) Total capacitance (speed) is decreased as the thicker IMD. (b) Mutual capacitance (cross-talk noise) 
is increased as the thicker IMD. Metal width is 40nm       
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                  Figure 5.22: RC delay is decreased as metal thickness is increased. Metal width and space  
                    are 40nm. 
 

5.6 Reasonable Expectation 

     According to all the simulations, table 5.3 shows the effective dielectric constant of the 
vacuum sheath interconnect can be reduced to 1.9 and 1.76 using support beam having 3.3 and 
2.9 dielectric constant, respectively, for a 40% vacuum gap design (two of 20% vacuum gaps) in 
the subtractive etch interconnect. ITRS reported there were no solutions below effective k = 2.9 
so that total and mutual capacitance would be much increased as metal width is decreased below 
40nm. However, the proposed vacuum sheath interconnect scheme is extendable to 14nm of 
metal width without requiring a dielectric technology with k < 2.9. 
     Table 5.4 shows the effective dielectric constant of the vacuum corridor interconnect can be 
reduced to 1.65 and 1.49 using support having 2.9 and 2.25 dielectric constant, respectively, for a 
60% vacuum gap design in the dual damascene interconnect. ITRS reported the bulk dielectric 
constant should be reduced to below 1.74 to meet the requirements of 40nm metal width. At 
20nm metal width generation, we should use dielectric constant of IMD=1.35 because we have 
to meet ITRS specs (effective dielectric constant=2.3). It will be extremely difficult for 
developing ultra low dielectric constant. However, this novel vacuum corridor structure makes 
the effective dielectric constant much lower even if we use present dielectric constant material. 
The proposed vacuum corridor dual damascene interconnect is extendable to 11nm of metal 
width without requiring a dielectric technology with k<2.9.  
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Table 5.3: Effective dielectric constant of vacuum sheath interconnects with 40% vacuum gaps designs for the 
subtractive etch interconnect. 
 
 

Metal Width (nm)  59  40  28  20  

ITRS bulk dielectric k 2.25 1.74 1.81 1.35 

ITRS effective dielectric k  2.9  2.7  2.5  2.3  

The effective k of  
Vacuum-corridor structure 

(beam k: 2.9)  
1.62  1.66  1.62  1.65  

The effective k of  
Vacuum-corridor structure 

(beam k: 2.25)  
1.47  1.50  1.47  1.49  

          Table 5.4: Effective dielectric constant of vacuum corridor interconnects with 60% vacuum gaps  
          design for the dual damascene interconnect. 

ITRS specification

Metal Width 175nm 122nm 90nm 59nm 40nm 28nm 20nm

Metal Space 175nm 122nm 90nm 59nm 40nm 28nm 20nm

Metal A/R 1.6 1.6 1.7 1.8 1.8 1.9 2.0

Metal Thickness (Ǻ) 2800 1952 1530 1062 720 532 400

Effective k 2.9~3.3 2.9~3.3 2.9~3.3 2.9~3.3 2.6~2.9 2.4~2.8 2.1~2.5

Assumption IMD Thickness (Ǻ) 5600 3904 3060 2124 1440 1064 800

Simulation Results
(Vacuum sheath)

Effective k 
(kIMD : 3.3) . . 1.88 1.9 1.9 1.91 1.92

Effective k 
(kIMD : 2.9) . . 1.74 1.75 1.76 1.77 1.78
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            Figure 5.23: The effective dielectric constants are indicated with vacuum gap percentage and beam 
             dielectric constant. Metal width and space are 40nm. 
 
     At 40nm metal width, there are lots of solutions to achieve lower effective dielectric constant. 
Y axis shows the conventional dielectric technology and X axis shows vacuum percentage. If the 
effective dielectric constant 1.65 is required, 60% vacuum gap design and 2.9 beam dielectric are 
needed or 65% vacuum gap design and 3.3 beam dielectric are required which are shown in 
Figure 5.23 (two dots). For example, if the effective dielectric constant 2.0 is required, we can 
make it with 5 different beam dielectric constants: beam dielectric constants 3.9, 3.6, 3.3, 2.9, 
2.25 are required vacuum percentage 55%, 50%, 45%, 38%, 27%, respectively.  
 

5.7 Summary 

     Reducing the interconnection capacitance will be an increasingly important way to improve 
the circuit speed, switching energy/power, cross-talk noise and electromigration reliability. As 
the technology node gets smaller, the subtractive etch interconnect should be changed to the dual 
damascene copper interconnect. However, dense memory which has only 3 or 4 metal lines still 
uses the subtractive etch interconnect. Thus, we proposed two novel interconnect structures with 
vacuum gaps. 
     A novel subtractive etch interconnect with vacuum (air) gaps structure is proposed [5.20]. 
Every metal line is surrounded by a vacuum sheath on all sides and supported on the bottom by a 
series of solid dielectric beams. The vias are also surrounded by vacuum sheaths.  Computer 
simulation shows that the total capacitance of this interconnect scheme is reduced by about 45% 
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and the RC delay is decreased about 55%. The effective dielectric constant can be reduced to 
about 1.78 using existing dielectric with k=2.9.  
     Another novel dual damascene copper interconnect with vacuum gaps structure is proposed 
[5.21]. Every metal line which has two support beams is surrounded by vacuum corridor. The 
vacuum corridor structure has not only lower effective capacitance but also higher stability of 
structure. Raphael simulation shows that the total capacitance is reduced by about 56% and the 
RC delay is decreased about 53%. The effective dielectric constant can be reduced to about 1.65 
using existing dielectric with k=2.9. The proposed vacuum corridor scheme is easily extended to 
11nm of metal width without requiring a dielectric technology with k = 2.9. 
     Heat dissipation problem of these vacuum gap structures is not critical since all the dielectric 
beams are connected to each other and metal lines are contacted the dielectric beam material. 
This dielectric beam material is not porous material with low thermal conductivity but 
conventional material with relatively high thermal conductivity [5.22]. And the thermal 
conductivity of vacuum gap with helium (0.142W/(m∙k)) is six times higher than that of air 
(0.024 W/(m∙k)) [5.23]. Electromigration reliability of vacuum (air) gap structure is better than 
that of the conventional structure because of stress relaxation [5.24]. 
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Chapter 6 

Conclusions 
 
 
6.1 Summary of Work 
 
     This work has focused on improving CMOS speed and power with reducing capacitance. 
Vacuum gap structure is a good option to decrease capacitance without researching new low-k 
materials which have poor structure stability. This technology can be used for both FEOL and 
BEOL process.  
     In Chapter 2, novel vacuum spacer transistors were simulated using 2D and 3D process and 
device simulator. We proposed two types of vacuum spacer transistors: Vacuum spacer 
transistors in the gate first process with non-SAC and SAC processes. The gate capacitances 
were derived from analytical framework and Miller effect is shortly reviewed to use in 3D 
mixed-mode simulations. Even if the on current of vacuum spacer transistor was slightly lower 
than that of conventional spacer transistor, the speed and power consumption were much 
improved due to reducing the gate capacitance. The effect of vacuum spacer with SAC process 
was improved a lot because of lower k and short distance between gate and contacts. 
Surprisingly, the performance of the vacuum spacer with SAC process transistor was much 
higher than that of the conventional oxide spacer with non-SAC transistor for speed, power, and 
area aspects. 
     In Chapter 3, this vacuum spacer technology can be also used in gate last process or linear 
contact process. The linear contact process has been used to reduce the contact resistance but the 
capacitance between gate and contacts was increased due to increasing the area so that the speed 
was not improved much as we had expected. Thus, vacuum spacer is particularly attractive for 
future linear contact devices which has larger gate to contact capacitive coupling. In high 
performance devices, the effect of the vacuum spacer was also attractive for the speed and power. 
However, in low stand-by power devices, the degradation of on current should be carefully 
considered when the low-k spacer material is used. And this technology can be used for the 
raised S/D or FinFET processes which have a higher capacitance between gate and contacts.  
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     In Chapter 4, we proposed a novel corner spacer transistor which a small portion of high-k 
inner spacer material can improve the on and off current and a large portion of low-k outer 
spacer material can reduce the gate capacitance. The corner spacer transistor in high performance 
devices was improved for both speed and power. Especially, the effect of the corner spacer was 
much improved in low stand-by power device since this transistor have S/D underlapped profile 
and shallow S/D extension region.  
     In Chapter 5, we proposed novel vacuum gaps processes of both the subtractive etch 
interconnect and the dual damascene interconnect. Reducing the interconnection capacitance will 
be an increasingly important way to improve the circuit speed, switching energy/power, cross-
talk noise and electromigration reliability. Vacuum gap interconnect was more attractive than 
low-k material interconnect because of high structural stability and lower effective dielectric 
constant. 
 
 
6.2 Future Directions 
 
     It is the firm belief of this researcher that the vacuum spacer transistor and the vacuum gap 
interconnect can and will be experimentally demonstrated. Some novel processes will be needed 
to demonstrate this technology easily. Firstly, the below 16nm photolithography process is 
needed because the effect of the vacuum spacer transistor is more and more attractive below 
16nm gate length. Secondly, a new sacrificial material is also needed to remove more easily. 
Thirdly, new sealing materials and process conditions to make larger air-gap is developed.  
 
 

 
                                                      (a)                                                                          (b) 
                               Figure 6.1: Vertical view of bit line and storage node contact in DRAM cell  
                               structure. (a) An example of low-k material is located between bit-line and contact.  
                               (b) An imaginary vertical view of air gap. 
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                                 (a)                                                       (b)                                                       (c) 

 

 
                                                 (d)                                                                               (e) 
       Figure 6.2: Vertical view of NAND flash cell structure. (a) –(c) the coupling effect is increased as the space 
       between cell transistors is decreased. (d) the conventional cell structure (e) the cell structure with air-gaps. 
 
 
     In DRAM processes, this vacuum gap technology can be applied to the cell transistor, bit-line, 
and interconnect processes. The cell transistors usually have SAC process because of small 
density so that the vacuum spacer is very attractive. The capacitance of bit-line is important to 
bit-line sensing margin. If the vacuum gap technology is applied to the bit-line process, the bit-
line capacitance can be easily reduced as shown in Figure 6.1.  
     In NAND flash memory process, the capacitance of the cell transistor is important. If the 
vacuum spacer is used to the NAND cell transistor, we can decrease the neighboring cell 
coupling effect which is called the Yupin effect. Figure 6.2 shows that the Yupin effect is 
increased as the technology node gets smaller so that the vacuum spacer technology gets more 
and more important for future devices.    
 




