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Abstract

Local photometric descriptors are a crucial low level component of numerous computer vision algorithms. In practice,
these descriptors are constructed to be invariant to a classof transformations. However, the development of a descriptor that
is simultaneously robust to noise and invariant under general deformation has proven difficult. In this paper, we introduce
the Topological-Attributed Relational Graph (T-ARG), a new local photometric descriptor constructed from homology that
is provably invariant to locally bounded deformation. Thisnew robust topological descriptor is backed by a formal mathe-
matical framework. We apply T-ARG to a set of benchmark images to evaluate its performance. Results indicate that T-ARG
significantly outperforms traditional descriptors for noisy, deforming images.

1. Introduction

Local photometric descriptors have found successful application in numerous areas such as object recognition [8], wide
baseline matching [13], and image retrieval [10]. Traditionally these descriptors have been constructed in order to be invariant
to a specific class of transformations while remaining robust to noise. In practice most have focused on the development of
descriptors that are invariant under affine transformations as this is what occurs when a viewpoint changes relative to a
rigid object with locally planar regions. Unfortunately, this class of transformations is unable to encapsulate the class of
continuous deformations that describe how non-rigid objects transform, such as an animal moving its body or a cloth being
folded. Observe that outside of occluding points, this model is able to describe the transformation between pairs of views of
the same scene or the evolution of a deforming object seen from the same view. Under deformation, it is well known that the
appropriate invariant is a topological one, i.e. the numberof connected components or holes. However, such invariantshave
two principal shortcomings: first, they are not resilient tothe presence of noise and second, they tend not to be distinct.

In this paper, we propose a novel framework for building a topological descriptor that is invariant under locally bounded
deformations and addresses these two shortcomings. First,we make the topological invariants robust to noise by defining
them in a local region over several inter-level sets of the intensity image. Second, we make the topological invariants distinct
by describing the relational structure of nearby topological invariants. In so doing, we define a robust, distinct descriptor
called the Topological- Attributed Relational Graph orT-ARG. Fig. 1 illustrates the performance of our descriptor on a
typical pair of scenes.

∗This research is supported by the National Science Foundation under Awards CCR-0325274, CNS-0953823, CRA-0937060, ECCS-0931437, IIS-
0703787, IIS-0724681, IIS-0840399, and IIS-0905344.
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Figure 1. Sample Results. The image on the right is constructed after deforming the left image by30% and the red circles connected by
red lines correspond to matches according to the algorithm presented in this paper.

1.1. Related Work

Due to space constraints, we refer the reader requiring an introduction to local descriptors to the comprehensive survey of
the field by Mikolajczyk et al. [11]. They also provide a useful performance evaluation of several local descriptors including
complex filters [12], gradient location and orientation histograms (GLOH) [11], shape context [1], scale invariant feature
transform (SIFT) [9], spin image [4], and steerable filters [2]. In particular, SIFT and GLOH outperform all other descriptors.
Our method can be loosely categorized with the so-called distribution based descriptors, like GLOH and SIFT, which use
histograms to capture local image information. Importantly our method differs from these aforementioned approaches since
it is invariant to all locally bounded deformations.

Others have attempted to develop local descriptors that aredeformation invariant. The most promising such descriptorwas
developed by Ling et al. [6] who treat an intensity image as a surface embedded in 3D space, with intensity weighted relative
to distance in thex, y plane. They show that as this weight increases, geodesic distances on the embedded surface are less
affected by image deformation. They use geodesic sampling to construct a descriptor called the geodesic-intensity histogram
(GIH). The method, though interesting, is not resilient to the presence of noise, since noise in either image does not scale
well with respect to the weighting parameter. Our method on the other hand is provably robust to the presence of noise since
it operates over several inter-level sets of the intensity image simultaneously. This paper is motivated by our recent work that
defines a topological description of occlusions during deformation [7].

1.2. Overview

Our principal contributions are two-fold. First, in Section 3 we develop a notion of topological invariance under the
assumption of locally bounded deformation. Second, in Section 4 we show how these topological invariants can be combined
locally to define a descriptor that is distinct. The rest of the paper is organized as follows: Section2 describes our imaging
model and describes the type of properties we wish our descriptor to satisfy; Section5 describes explicitly how to employ
T-ARG to compare descriptors; Section6 compares the performance of T-ARG to SIFT and GLOH using a precision versus
recall metric; and Section7 concludes the paper.

2. Image Model

In this section we introduce our imaging model and formalizethe objectives of our work. Our analysis is done on grayscale
images, but can be generalized to a multi-channel imaging modality in a straightforward manner. Suppose we are given two
grayscale imagesI0, I1 : Ω → R defined over an image domainΩ ⊂ R

2 and related by:

I1(x) = I0 ◦ f(x) + p(x), (1)



wherep : Ω → R is a scalar-valued function andf : Ω → Ω is a homeomorphism that satisfies:

|p(x)| ≤ Kp,
hL(||x− x′||) ≤ ||f(x)− f(x′)||, and

||f(x)− f(x′)|| ≤ hU (||x− x′||)
(2)

for all x, x′ ∈ Ω, wherehL, hU : R+ → R
+ are monotonic increasing functions withhL(ρ) ≤ hU (ρ) for all ρ ∈ R

+,
and|| · || is the Euclidean norm. The functionsp andf can be thought of as a bounded perturbation and a locally bounded
deformation, respectively. The constantKp is a perturbation bound, and the functionshL andhU bound the amount of local
deformation. Observe that outside of points of occlusion, this model is able to describe the transformation between pairs of
views of the same scene or the evolution of a deforming object. An example of such deformation functions are:

hL(ρ) = (1−Kd)ρ and hU (ρ) = (1 +Kd)ρ (3)

which corresponds to aLipschitz deformation model with deformation constantKd. This bounding function requires that
deformations are bounded linearly with respect to the distance between points in an image. Throughout the rest of the paper,
we assume that the imagesI0 andI1 satisfy the deformation model specified in Equations (1) and (2), where the perturbation
boundKp and the bounding deformation functionshL, hU are known. However, the actual perturbationp(x) and deformation
f(x) functions are unknown.

Next, we describe explicitly the two problems we attempt to address using our descriptor.

Problem 1. Given an arbitrary pointx0 ∈ Ω and a set of points̄Λ1 ⊂ Ω, find the pointx1 ∈ Λ̄1 such that:

||f−1(x0)− x1|| = min
x∈Λ̄1

||f−1(x0)− x||. (4)

The solution to this problem has direct implications for wide baseline matching and image retrieval. WhenΛ̄1 is taken as
uniform grid of points, we call the solution to Problem1 a grid matching point . Denoting the area of the setE by |E| and
definingB(x, r) = {y ∈ Ω | ||x − y|| ≤ r}, our second problem is related to the first but attempts to explicitly identify
neighborhoods rather than points with sufficient overlap:

Problem 2. Given a thresholdτ ∈ [0, 1], called theoverlap threshold, neighborhoodsB(x,R0) ⊂ Ω andB(x′, R1) ⊂ Ω
for somex, x′ ∈ Ω andR0, R1 > 0, is

|f−1(B(x,R0)) ∩B(x′, R1)|
|f−1(B(x,R0)) ∪B(x′, R1)|

> τ? (5)

Note that the above quantity corresponds to the ratio between the area in the intersection and the union of the pair of neigh-
borhood after mapping to the domain ofI1. This quantity is directly related to determining region correspondences which
has important applications for object recognition and registration.

3. Set Filtrations

In this section, we introduce the results necessary to robustly characterize a neighborhood of a point in terms of topology.
We begin by describing several results from algebraic topology, most importantly the homology group of a set. We then
describe how our deformation model dictates the allowed transformations of the homologies for the pair of images. We
conclude the section by strengthening the results on the transformation of homologies to local neighborhoods of the image.

3.1. Background

The objective of this section is to give a brief overview of algebraic topology. A comprehensive introduction to these ideas
can be found in Chapter2 of [3]. Algebraic topology explicitly characterizes the properties of spaces that are preserved under
continuous deformation in terms of algebraic objects. Homology theory in particular transforms the study of topological
invariants into the study of groups. If, for example, one wants to determine whether a pair of spaces are homeomorphic, one
can transform the problem into determining whether a pair ofgroups are equivalent. In fact, by comparing the rank of the
pair of groups, which is equal to the number of basis elementsrequired to generate the group, one can effectively determine
whether the pair of spaces are homeomorphic.

Naı̈vely comparing pairs of homology is generally insufficient to perform matching between pairs of images transforming
under a homeomorphism for two reasons. First, though pairs of images maybe transforming under a homeomorphism the



effect of digitization (especially along edges) can ruin the applicability of homology. To address this deficiency, we define
conditions on the homology over processed images. Second, homology is too coarse a construct. This is due to the fact that
comparison between the homologies of different spaces is done via a counting argument and because homology is generally
defined over entire spaces. We address homologies coarseness by localizing homology over intensity and space.

To understand these various extensions of homology, we mustbegin by describing homology more explicitly. The0-
homology, denotedH0(E), is a group whose rank is equal to the number of connected components in the spaceE. Whereas,
the1-homology, denotedH1(E), is a group whose rank is equal to the number of distinct cycles in the spaceE that cannot
be shrunk via continuous deformation to a single point. Generalizing this notion let each of thek-homologygroups of the
spaceE be denotedHk(E). Suppose that one is given a mapσ : E1 → E2 between two spaces, we can in fact determine
how topological properties transform underσ by considering the homomorphism (this generalizes the notion of a linear map
to groups) induced byσ denotedσ∗ : Hk(E1) → Hk(E2). The case whenE1 ⊂ E2 andσ is theinclusion map is called a
filtration and is particularly important. To illustrate its utility consider the following result:

Lemma 1. Given the filtrationE1 ⊂ E2 ⊂ E3 ⊂ E4 and inclusion mapsσi,j : Ei → Ej wherei < j, then

rank

(

Hk(E1)

ker σ1,4∗

)

≤ rank

(

Hk(E2)

ker σ2,3∗

)

, ∀k ≥ 0, (6)

whereker computes the kernel of its argument.

Proof. We split the proof into three steps:
Step I:

LetG1, G2 andG3 be free abelian groups with finite rank, and letφi,j : Gi → Gj for i < j be homomorphisms such that

φ1,3 = φ2,3 ◦ φ1,2. (7)

By the first isomorphism theoremc.f.§1.3 in [5], we can define isomorphisms:

π1,3 :
G1

ker φ1,3
→ φ1,3(G1) ⊂ G3 (8)

and

π2,3 :
G2

ker φ2,3
→ φ2,3(G2) ⊂ G3 (9)

whereφ1,3(G1) ⊂ φ2,3(G2) by assumption. Then,

α1,2 := π−1
2,3 ◦ π1,3 :

G1

ker φ1,3
→ G2

ker φ2,3
(10)

is a 1-1 homomorphism, which implies that

rank

(

G1

ker φ1,3

)

≤ rank

(

G2

ker φ2,3

)

≤ rank (G2) . (11)

Therefore,

rank

(

G1

ker φ1,3

)

≤ rank (G2) . (12)

Step II: LetG1, G2, G3 andG4 be free abelian groups with finite rank, and letφi,j : Gi → Gj for i < j be homomorphisms
such that

φ1,3 = φ2,3 ◦ φ1,2 (13)

and
φ1,4 = φ3,4 ◦ φ1,3. (14)

We can then define the following sequence of maps between groups

G1
β→ G1

ker φ1,3

α1,2→ G2

ker φ2,3

π2,3→ G3 (15)



and

G1
γ1→ G2

ker φ2,3

γ2→ G4 (16)

whereβ : G1 → G1

kerφ1,3
is the natural surjective map,γ1 := α1,2 ◦ β, γ2 := φ3,4 ◦ π2,3, andα1,2 andπ2,3 are defined as in

the previous step. By construction we have thatα1,2 := π−1
2,3 ◦ π1,3, so

γ2 ◦ γ1 = φ3,4 ◦ π1,3 ◦ β = φ3,4 ◦ φ1,3 = φ1,4. (17)

Hence, by applying the results from Step I to the sequence in Equation16, we have that

rank

(

G1

ker φ1,4

)

≤ rank

(

G2

ker φ2,3

)

. (18)

Step III:
From algebraic topologyc.f.§2.1 in [3], we know that

σi,j∗ : Hk(Ei) → Hk(Ej), (19)

for i < j are homomorphisms such that
σ1,3∗ = σ2,3 ∗ ◦σ1,2∗ (20)

and
σ1,4∗ = σ3,4 ∗ ◦σ1,3 ∗ . (21)

The sequence of homeomorphisms satisfy the assumptions made for the groupsGi in Step II. Hence, we obtain the desired
result.

This result gives a straightforward method to quantify the topological structure that must by carried fromE2 to E3 by
analyzing the structure carried fromE1 to E4. Importantly, notice that neither of the mappings fromE1 to E2 or fromE3

to E4 are needed in this result. In the next few subsections, we describe how this result can be used to extend homology to
address its aforementioned deficiencies.

3.2. Global Filtration

Let us begin by defining a set of pre-processed images.

Definition 1. Let thepre-processed imagesbe defined as:

Ii−−(x) = infy∈B(x,gi(ρ)) Ii(y)
Ii−(x) = infy∈B(x,ρ) Ii(y)
Ii+(x) = supy∈B(x,ρ) Ii(y)

Ii++(x) = supy∈B(x,gi(ρ)) Ii(y)

(22)

for i ∈ {0, 1}, whereρ ≥ 0 and

gi(ρ) =

{

hU (ρ) if i = 0
h−1
L (ρ) if i = 1

(23)

We define the followinginter-level sets:

Ei−− = I−1
i−−

[a+Kp,∞) ∩ I−1
i++(−∞, b−Kp]

Ei− = I−1
i− [a,∞) ∩ I−1

i+ (−∞, b]

Ei+ = I−1
i+ [a,∞) ∩ I−1

i− (−∞, b]
Ei++ = I−1

i++[a−Kp,∞) ∩ I−1
i−−

(−∞, b+Kp]

(24)

for constantsa andb such thatb− a > 2Kp.

The inter-level sets are the objects upon which we perform homology computation and help us localize homology over
each image’s intensity space. Fig.2 illustrates these pre-processed images. Their corresponding inter-level sets are drawn in
Fig. 3. The inter-level sets satisfy certain properties:
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Figure 2. Pre-processed Images. Original imagesI0 (left) andI1 (right). Illustration of several pre-processed images (middle). These
pre-processed images are defined to compensate for digitization effects along edges.

Lemma 2. The inter-level sets for anya andb such thatb− a > 2Kp satisfy:

E0−− ⊂ f(E1−) ⊂ f(E1+) ⊂ E0++

f(E1−−) ⊂ E0− ⊂ E0+ ⊂ f(E1−−)
. (25)

Proof. Note that given our deformation model we have that

I0−−(x) −Kp ≤ I1− ◦ f−1(x) ≤ I1+ ◦ f(x) ≤ I0++(x) +Kp, (26)

which implies
I−1
0−−

[a+Kp,∞) ⊂ f
(

I−1
1− [a,∞)

)

⊂ f
(

I−1
1+ [a,∞)

)

⊂ I−1
0++[a−Kp,∞) (27)

and
I−1
0++(−∞, b−Kp] ⊂ f

(

I−1
1+ (−∞, b]

)

⊂ f
(

I−1
1− (−∞, b]

)

⊂ I−1
0−−

(−∞, b+Kp]. (28)

Hence,
E0−− ⊂ f(E1−) ⊂ f(E1+) ⊂ E0++. (29)

The other inclusions can be proven similarly.

The result of the previous lemma ensures our choice of pre-processed images allows us to define a filtration between sets
in images0 and1. As a result of Lemma1, we obtain the following result:

(E
0−−

,E
0++

) (E
0−

,E
0+

) (E
1−−

,E
1++

) (E
1−

,E
1+

)

Figure 3. Inter-level sets for images0 and1 from Fig. 2. The left panel shows the setE0−− in white, and the setE0++ in gray. The other
plots follow the same labeling convention. As stated by Theorem1, rank( H0(E1−−

)

kerσ1−−,1++∗
) = 3 (i.e. the number of connected components

that persist fromE1−− toE1++) which is less thanrank( H0(E0−)

kerσ0−,0+∗
) = 5.



Theorem 1. Given imagesI0 andI1, and constantsa, b such thatb− a > 2Kp, then

rank

(

Hk(Ei−−)

ker σi−−,i++∗

)

≤ rank

(

Hk(Ej−)

ker σj−,j+∗

)

(30)

wherei, j ∈ {0, 1} such thatj 6= i, andσi−−,i++ : Ei−− → Ei++ andσj−,j+ : Ej− → Ej+ are the inclusion maps.

Proof. By combining the set inclusion result from Lemma2 and the rank results from Lemma1 we have that

E0−− ⊂ f(E1−) ⊂ f(E1+) ⊂ E0++ (31)

implies that

rank

(

Hk(E0−−)

ker σ0−−,0++∗

)

≤ rank

(

Hk(f(E1−))

ker σ1−,1+ ∗ ◦f−1∗

)

. (32)

By noting thatHk(f(E1−)) = Hk(E1−) andHk(f(E1+)) = Hk(E1+) sincef is a homeomorphism then we obtain the
desired result fori = 1 andj = 0. The other result can be proven similarly.

This theorem gives a computable condition in terms of the ranks of homologies that must be satisfied by the corresponding
inter-level sets defined by image0 and1. To understand this result, observe that the rank ofH0(Ei−)

kerσi−,i+∗
is equal to the number

of connected components inEi+ that have a non-empty intersection withEi−. This can be understood as the number of
components that persist fromEi− toEi+. Hence, this theorem tells us that the number of connected components that persist
fromE1−− to E1++ is less than the number of components that persist fromE0− to E0+. If this condition is violated for a
pair of corresponding inter-level sets, then the pair of images that were used to construct these inter-level sets do notsatisfy
our image model. Observe that by defining the inter-level sets on pre-processed images, we avoid the problem of digitization
effects along edges. An example illustrating an application of this theorem can be found in Fig.3.

3.3. Spatially Localized Filtrations

The previous subsection gave a topological method to robustly determine whether entire images satisfied our deformation
model. In this subsection, we define a spatial localization of this result. In order to obtain a localized characterization of an
image, we begin by lettingΛ1 = {x1,ij} ⊂ Ω denote a uniform grid of points spaceds1 units apart. Our objective in this
subsection is to construct a local set of conditions similarto those described in Theorem1 that must be satisfied by a point in
Λ1 that is a solution to Problem1, i.e. a grid matching point.

First, we obtain neighborhoods around a pointx0 and its grid matching pointx1 ∈ Λ1 that satisfy a sequence of inclusions.

Lemma 3. Given a pointx0 ∈ Ω, a corresponding grid matching pointx1, radius r0 > hU (s1/
√
2), and radiusr1 >

h−1
L (hU (s1/

√
2)), then

B(x0, r0−) ⊂ f(B(x1, r1)) ⊂ B(x0, r0+) (33)

and
B(x1, r1−) ⊂ f−1(B(x0, r0)) ⊂ B(x1, r1+) (34)

where
r1− = h−1

U (r0 − hU (s1/
√
2))

r0− = hL(r1)− hU (s1/
√
2)

r0+ = hU (r1) + hU (s1/
√
2)

r1+ = h−1
L (r0 + hU (s1/

√
2))

. (35)

Proof. We split this proof into four steps.
Step I:

We show that givenr1 and only the deformation boundshL andhU , the largest radiusr that we can choose such that

B(x0, r) ⊂ f(B(x1, r1)) (36)

is r = r0−.
First, we note that

B(f(x1), hL(r1)) ⊂ f(B(x1, r1)) (37)



by our deformation model. In order to have

B(x0, r) ⊂ B(f(x1), hL(r1)), (38)

we must have
||x0 − f(x1)||+ r ≤ hL(r1). (39)

Since||f(x0)−x1|| ≤ s1/
√
2 which implies||x0− f(x1)|| ≤ hU (s1/

√
2), then the largestr that we can choose isr = r0−.

Step II:
Givenr1, we note that

f(B(x1, r1)) ⊂ B(f(x1), hU (r1)). (40)

In order to have
B(f(x1), hU (r1)) ⊂ B(x0, r) (41)

we need
||f(x1)− x0||+ hU (r1) ≤ r. (42)

Since||f(x1)− x0|| ≤ hU (s1/
√
2), then the smallestr that we can choose such that

f(B(x1, r1)) ⊂ B(x0, r) (43)

is given byr = r0−.
Step III:

Givenr0, we note that
f(B(x1, r)) ⊂ B(f(x1), hU (r)). (44)

In order to guarantee that
B(f(x1), hU (r)) ⊂ B(x0, r0) (45)

we must have
||f(x1)− x0||+ hU (r) ≤ r0. (46)

Since||f(x1)− x0|| ≤ hU (s1/
√
2), then the largestr that we can choose such that

f(B(x1, r)) ⊂ B(x0, r0) (47)

is given byr = r1−.
Step IV:

Givenr0, we note that
B(f(x1), hL(r)) ⊂ f(B(x1, r)). (48)

In order to guarantee that
B(x0, r0) ⊂ B(f(x1), hL(r)) (49)

we must have
||f(x1)− x0||+ r0 ≤ hL(r). (50)

Since||f(x1)− x0|| ≤ hU (s1/
√
2), then the smallestr that we can choose such that

B(x0, r0) ⊂ f(B(x1, r)) (51)

is given byr = r1+.

As before, the inclusions in the previous lemma define a filtration in terms of inter-level sets.

Definition 2. Let the(r0, r1)-localized inter-level setsbetween a pointx0 ∈ Ω and its grid matching pointx1 be defined as

Ei−−(xi) = Ei−− ∩B(xi, ri−)
Ei−(xi) = Ei− ∩B(xi, ri)
Ei+(xi) = Ei+ ∩B(xi, ri)

Ei++(xi) = Ei++ ∩B(xi, ri+)

(52)

for i ∈ {0, 1}, r0 > hU (s1/
√
2), r1 > h−1

L (hU (s1/
√
2)). The radiiri− andri+ are given as in Lemma3.



Note that the(r0, r1)-localized inter-level sets satisfy inclusion relations similar to the ones stated in Lemma2 by construc-
tion. Hence, we have the following localized counterpart toTheorem1:

Theorem 2. Given imagesI0 and I1, constantsa, b such thatb − a > 2Kp, and radii r0 > hU (s1/
√
2) and r1 >

h−1
L (hU (s1/

√
2)), then for anyx0 ∈ Ω and grid matching pointx1 ∈ Λ1 we have that

rank

(

Hk(Ei−−(xi))

ker σi−−,i++∗

)

≤ rank

(

Hk(Ej−(xj))

ker σj−,j+∗

)

(53)

wherei, j ∈ {0, 1} such thatj 6= i, andσi−−,i++ : Ei−−(xi) → Ei++(xi) andσj−,j+ : Ej−(xj) → Ej+(xj) are the
natural inclusion maps.

Proof. By combining the results from Lemmas2 and3 we obtain the filtrations

E0−−(x0) ⊂ f(E1−(x1)) ⊂ f(E1+(x1)) ⊂ E0++(x0) (54)

and
f(E1−−(x1)) ⊂ E0−(x0) ⊂ E0+(x0) ⊂ f(E1−−(x1)). (55)

By following the same steps as in the proof for Theorem1 we obtain the desired results.

This result gives a way to identify the existence of a local homeomorphism between neighborhoods aroundx0 andx1.
That is, if these conditions are not satisfied, thenx1 cannot be a point that corresponds tox0 under our image model.

4. Topological Attributed Relational Graph

At this point, we in fact have a robust localized topologicaldescriptor that could be used to perform matching. In this
section, we describe how to construct a graphical representation that integrates the localized topological characterization
developed so far to render the constructed descriptor more distinct.

Suppose as in the previous section, we have a grid of pointsΛ1 placeds1 units apart, a set of radii and constants
{(r0,λ, aλ, bλ)}λ∈Γ that satisfy the conditions in Theorem2 whereΓ is some indexing set, and let

r1,λ = (h−1
L (r0,λ) + h−1

U (r0,λ))/2. (56)

Let us also assume a uniform grid of pointsΛ0 = {x0,γ} ⊂ Ω spaceds0 > 2hU (s1/
√
2) units apart, and let{x1,γ} ⊂ Λ1,

be the set of corresponding grid matching points. The following theorem gives a set of bounds between the distance of points
in Λ0 and grid matching points inΛ1:

Theorem 3. Given the pair of point(x0,α, x0,β) ∈ Λ0 × Λ0 and corresponding matching points(x1,α, x1,β) ∈ Λ1 × Λ1,
then

h−1
U (||x0,α − x0,β || − 2hU (s1/

√
2)) ≤ ||x1,α − x1,β || (57)

and
||x1,α − x1,β || ≤ h−1

L (||x0,α − x0,β ||+ 2hU(s1/
√
2)). (58)

Proof. By using our deformation bounds, we get the following inequalities

||x0,α − x0,β || ≤ ||x0,α − f(x1,α)||+ ||f(x1,α)− f(x1,β)||+ ||f(x1,β)− x0,β || (59)

≤ 2hU (s1/
√
2) + hU (||x1,α − x1,β ||) (60)

which gives the desired lower bound for||x1,α − x1,β ||.
We also have that

hL(||x1,α − x1,β ||) ≤ ||f(x1,α)− f(x1,β)|| (61)

≤ ||f(x1,α)− x0,α||+ ||x0,α − x0,β ||+ ||x0,β − f(x1,β)|| (62)

≤ 2hU(s1/
√
2) + ||x0,α − x0,β || (63)

which gives the desired upper bound.



For each of the pointsx0,γ and corresponding grid matching pointsx1,γ , the conditions specified by Theorem2 must be
satisfied by all tuples(r0,λ, r1,λ, aλ, bλ). Additionally, for each pair(x0,α, x0,β) ∈ Λ0×Λ0 and corresponding grid matching
pair (x1,α, x1,β) ∈ Λ1 × Λ1 the distance bounds in Theorem3 must be satisfied.

To check the simultaneous satisfaction of all of these conditions, we can recast our problem by constructing aTopological-
Attributed Relational Graph or T-ARG , G0 as follows: let the nodes of this graph represent the pointsx0,γ and label these
nodes with the rank conditions defined in Theorem2 and let the edges of this graph represent the distance between points
and be labeled using the distance bounds from Theorem3. We can construct a similar T-ARG,G1, using the pointsx1,γ . In
fact, we can define a T-ARĜG1 using all the points inΛ1, the results of the Theorems2 and3 give constraints to determine
a subgraph isomorphism fromG0 to G1 ⊂ Ĝ1. More explicitly a correspondence between the graphG0 and a subgraph in
Ĝ1 is defined by the satisfaction of Theorems2 and3. Hence, the identification ofG1 turns into the matching of Attributed
Relational Graphs for which the attributes are topologicalrank conditions and distance bounds.

5. Implementation

In this section, we begin by explicitly describing how we cansolve the problems defined in Section2 using the T-ARG.
We also describe how we implement our algorithm. The executables used to perform this implementation can be found online
1.

Solution 1. Given an arbitrary set of points̄Λ1, we can first construct a grid of pointsΛ1 placeds1 units apart such that
Λ̄1 ⊂ Λ1. Then given a pointx ∈ Ω and another pointx′ ∈ Λ1, we identifyx′ as a possible grid matching point if there is
a subgraph isomorphism from a graphG0 into a graphĜ1. G0 is constructed using the points inΛ0 ∩B(x,R0), andĜ1 uses
the points inΛ1 ∩B(x′, R1), whereR1 = h−1

L (R0 + 2hU (s1/
√
2)) andR0 > 0. It is then straightforward to re-project the

solution inΛ1 to the solution in̄Λ1.

Note thatR1 is defined using Theorem3 andR0 is set arbitrarily based on how large of a neighborhood around x we are
interested in considering.

To solve Problem2, we are interested in determining the overlap ratio betweensetsf−1(B(x,R0)) andB(x′, R1). Note
that if x1 is a grid matching point tox, then:

B(x1, R1−) ⊂ f−1(B(x,R0)) ⊂ B(x1, R1+) (64)

whereR1− andR1+ are defined as in Lemma3. Using Solution1, we obtain a set of possible grid matching points tox.
An upper bound to the overlap ratio betweenB(x,R0) andB(x′, R1) can be computed by considering the maximum of the
bounds using all possible grid matches.

Solution 2. Given neighborhoodsB(x,R0) andB(x′, R1) wherex, x′ ∈ Ω, we identify a possible matching set with overlap
greater thanτ if

|B(x1, R1+) ∩B(x′, R1)|
|B(x1, R1−) ∪B(x′, R1)|

> τ, (65)

wherex1 is the possible grid matching point tox that is closest tox′.

In our implementation we construct our topological descriptors using the rank of the0-homology group. Recall that
the0-homology corresponds to the connected components. For example, the rank of Hk(Ei−)

kerσi−,i+∗
is equal to the number of

connected components inEi+ that have a non-empty intersection withEi−. In our implementation we assume the Lipschitz
deformation model defined in Equation3. All the parameters required for our method are outlined in Tables1 and2. Note
that the image model parameters are the only pieces of information required about the image. The algorithmic parameters
(i.e. Table2) on the other hand represent parameters in our algorithm anddo not affect the validity of the approach.

6. Results

In this section, we describe our performance on a dataset constructed from standard benchmark images. We analyze the
performance of our descriptor by computing its precision and recall as in [11]. To determine a ground truth, two regions are
said to match if their overlap ratio is greater than a specified thresholdτ . Precision and recall are defined as:

Precision=
# of correct matches by algorithm
# of total detections by algorithm

(66)

1http://people.engr.ncsu.edu/ejlobato/Research/2011/FeatureMatching/

http://people.engr.ncsu.edu/ejlobato /Research/2011/FeatureMatching/


Parameter Description
Kp Perturbation bound. A value of5 is used.
Kd Deformation constant. A value of0.1 is

used unless otherwise specified.

Table 1. Image Model Parameters

and

Recall=
# of correct matches by algorithm

# of total true matches
. (67)

In contrast to other descriptors T-ARG does not employ a distance function to compare feature vectors. Rather, either
a feature satisfies the conditions of Theorems2 and3 in which case it matches or it does not satisfy those conditions in
which case it does not match. However, as described in Section 5, we construct bounds for the overlap given our choice of
parameters. By thresholding our estimated bounds on the overlap using a parameterτtop, we can get a precision/recall curve
parameterized by the value of this parameter as other descriptors do with their appropriately defined distance function. The
time required to construct a descriptor for a single region is approximately20s on a2.2 Dual-Core i7 CPU with8 GB of
memory. For our method, we set the parameters as described inTables1 and2.

6.1. General Deformation Images

In order to analyze the performance of our approach in the presence of deformations we construct two synthetic datasets:
Graffiti andBoat. TheGraffiti images are of size800 × 640 and theBoat images are850 × 680. We consider a controlled
perturbation using the functionf : Ω → Ω given by:

f−1

(

z1
z2

)

=

(

z1 + 0.5 c cos(0.02z2)
z2 + 0.5 c cos(0.02z1)

)

, (68)

where the factorc specifies a maximum deformation factor (e.g.c = 10 indicates a maximum deformation of10%). We also
study the effect of noise by adding a random uniform perturbation to the images with magnitude equal to10. Examples from
our dataset are illustrated in Fig.1 and4. A subset of regions from the images to be matched are chosen to test. We select
circular regions of radius30 from both images centered around points from a uniform grid of points spaced12 units from
each other while removing the points that are60 units from the boundary of the image. This gives around2500 regions for
each image in the datasets.

Fig. 5 shows the comparison of our approach to SIFT and GLOH for a ground truth threshold ofτ = 0.5. The first row
corresponds to comparing the base images from theGraffiti andBoatdatasets against an image with30% deformation and
no noise. The second row corresponds to the base image being matched to an image with30% deformation and with uniform

Parameter Description
ρ Radius of morphological operator for pre-

processing. Value set to2.
s0 Spacing for gridΛ0. Value set to6.
s1 Spacing for gridΛ1. Value set to2.
(r0,λ, aλ, bλ) Radii and constant used to define the

topological rank descriptors. We use
all combination such thatr0,λ ∈
{2, 3, 4, 6, 9, 14, 19, 24, 30}, and [aλ, bλ]
corresponds to any of the intervals ob-
tained from partitioning the range[0, 255]
into 4, 8 and16 evenly spaced intervals.

R0 Radius of neighborhood aroundx0 used
to construct graphG0 in Solution 1. A
value of30 is used.

Table 2. Algorithmic Parameters



noise in the interval[−10, 10] added to each pixel. The final row corresponds to the base image being matched to an image
constructed with40% deformation and no noise. As expected from our method, we obtain a very high recall rate since our
derivations attempt to avoid false-negatives. Observe that these results are obtained using an estimated deformationvalue of
10% (i.e. Kd = 10) which is far less than the actual maximal deformation for the images. Note that adding uniform random
noise to an image (as shown in the middle row) and increasing the deformation (as shown in the bottom row) have little effect
on the performance of our approach.

Fig. 6 illustrates similar results for a ground truth threshold ofτ = 0.2. In terms of the overlap ratio, this corresponds
to treating pairs with less actual overlap as potential matches. In this case, the performance of our algorithm improves
even though the performance of the SIFT and GLOH descriptorsdecreases. Finally, Fig.7 illustrates the dependency of
our approach on the choice of parameterKd for the images with30% deformation. We choose a ground truth threshold
of τ = 0.5 and an overlap threshold for our algorithm ofτtop = τ/3. The plot illustrates the precision and recall for our
algorithm against SIFT and GLOH as we change the value ofKd from 0.05 to 0.20.

6.2. Homography Images

Next, we analyze the performance of our approach by constructing a new dataset, called theHomography Graffiti Dataset,
by applying a homography to the left image of Fig.1 corresponding to a change in viewing angle by10◦, 30◦, 50◦, and30◦

with uniform noise in the interval[−10, 10] added to each pixel.
In order to give SIFT and GLOH an advantage we select200 regions by using the Harris Affine Region Detector with a

threshold of80, 000 [11]. We determine the overlap estimate between two regions by first normalizing each detected region
into a circular region of radius 30 and then apply our algorithm. Fig. 8 shows the comparison for a ground truth threshold
of τ = 0.5. Notice that regardless of choosing regions specifically preferred by SIFT and GLOH upon which to compare the
performance of our matching approach on, our method still outperforms the traditional methods.

7. Conclusion

In this paper, we introduced T-ARG, a new local photometric descriptor that can effectively perform deformation invariant
image matching. T-ARG is a robust topological descriptor backed by a formal mathematical framework. We applied T-
ARG to a set of standard benchmark images with applied deformations and perturbations and demonstrated that T-ARG
significantly outperforms traditional descriptors.

The utility of our approach is that it generalizes in a straightforward manner the comparison of multidimensional datasets
undergoing bounded deformations. There is a deep relationship between the bounds on the rank of homology presented in
Section3 and the theory of Persistent Topology [14]. In the future we look forward to being able to employ the computational
tools available to compute persistence to speed up our implementation and help build an even more powerful topological
descriptor. Other potential extensions of this work include: (1) its generalization to account for larger lighting variations

Figure 4. Point Matching Samples: The base image from theBoatdataset (left) with corresponding neighborhoodsB(x,R0). Correspond-
ing matches found on an image showing a30% deformation, i.e.c = 30 in Equation68 (right).
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Figure 5. Precision and Recall (τ = 0.5): Results for theGraffiti (left) andBoat (right) datasets. Results for image with30% deformation
(top),30% deformation and uniform random noise in the interval[−10, 10] (middle), and40% deformation (bottom).

present in natural images, and (2) the development of a region detector to determine proper choice of scale for regions of
interest.
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