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Abstract

Local photometric descriptors are a crucial low level compat of numerous computer vision algorithms. In practice,
these descriptors are constructed to be invariant to a ctd$sansformations. However, the development of a desartpat
is simultaneously robust to noise and invariant under gahéeformation has proven difficult. In this paper, we intuce
the Topological-Attributed Relational Graph (T-ARG), awlecal photometric descriptor constructed from homoldugtt
is provably invariant to locally bounded deformation. Thisw robust topological descriptor is backed by a formal reath
matical framework. We apply T-ARG to a set of benchmark isémevaluate its performance. Results indicate that T-ARG
significantly outperforms traditional descriptors for 8gj deforming images.

1. Introduction

Local photometric descriptors have found successful agfidin in numerous areas such as object recognitihwjide
baseline matchingl[3], and image retrievall[0]. Traditionally these descriptors have been constructedder to be invariant
to a specific class of transformations while remaining robasoise. In practice most have focused on the developnfent o
descriptors that are invariant under affine transformatias this is what occurs when a viewpoint changes relative to a
rigid object with locally planar regions. Unfortunateliig class of transformations is unable to encapsulate tss af
continuous deformations that describe how non-rigid dbjgensform, such as an animal moving its body or a clothgein
folded. Observe that outside of occluding points, this nhadable to describe the transformation between pairs ofvief
the same scene or the evolution of a deforming object seemtfie same view. Under deformation, it is well known that the
appropriate invariant is a topological one, i.e. the nundf@onnected components or holes. However, such invariavs
two principal shortcomings: first, they are not resilienttie presence of noise and second, they tend not to be distinct

In this paper, we propose a novel framework for building atogical descriptor that is invariant under locally boudde
deformations and addresses these two shortcomings. Wegtjake the topological invariants robust to noise by definin
them in a local region over several inter-level sets of therisity image. Second, we make the topological invariaistadt
by describing the relational structure of nearby topolabiovariants. In so doing, we define a robust, distinct dpsmr
called the Topological- Attributed Relational Graph ARG Fig. 1 illustrates the performance of our descriptor on a
typical pair of scenes.

*This research is supported by the National Science Fowrdatider Awards CCR-0325274, CNS-0953823, CRA-093706C%0931437, 1IS-
0703787, 11IS-0724681, 11S-0840399, and 11S-0905344.
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Figure 1. Sample Results. The image on the right is constuatter deforming the left image 39p% and the red circles connected by
red lines correspond to matches according to the algorittesemted in this paper.
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1.1. Related Work

Due to space constraints, we refer the reader requiringtesdinction to local descriptors to the comprehensive suofe
the field by Mikolajczyk et al. 71]. They also provide a useful performance evaluation of dVecal descriptors including
complex filters 7], gradient location and orientation histograms (GLOH)][ shape context]], scale invariant feature
transform (SIFT) §], spin image {], and steerable filter<’[. In particular, SIFT and GLOH outperform all other destoijs.

Our method can be loosely categorized with the so-callewilolision based descriptors, like GLOH and SIFT, which use
histograms to capture local image information. Importaatir method differs from these aforementioned approadhes s
it is invariant to all locally bounded deformations.

Others have attempted to develop local descriptors thateformation invariant. The most promising such descripias
developed by Ling et al.6] who treat an intensity image as a surface embedded in 32 sp4th intensity weighted relative
to distance in the:, y plane. They show that as this weight increases, geodesandes on the embedded surface are less
affected by image deformation. They use geodesic samplingristruct a descriptor called the geodesic-intensitpgiam
(GIH). The method, though interesting, is not resilienthie presence of noise, since noise in either image does ret sca
well with respect to the weighting parameter. Our methodh@ather hand is provably robust to the presence of noise sinc
it operates over several inter-level sets of the intengiyge simultaneously. This paper is motivated by our recernit that
defines a topological description of occlusions during deftion [7].

1.2. Overview

Our principal contributions are two-fold. First, in Secti@ we develop a notion of topological invariance under the
assumption of locally bounded deformation. Second, ini®edtwe show how these topological invariants can be combined
locally to define a descriptor that is distinct. The rest @& ffaper is organized as follows: Secti®describes our imaging
model and describes the type of properties we wish our geectio satisfy; Sectio® describes explicitly how to employ
T-ARG to compare descriptors; Sectibrcompares the performance of T-ARG to SIFT and GLOH using eigita versus
recall metric; and Section concludes the paper.

2. Image Model

In this section we introduce our imaging model and formatieeobjectives of our work. Our analysis is done on grayscale
images, but can be generalized to a multi-channel imaginggiity in a straightforward manner. Suppose we are given two
grayscale imageg), I; : Q — R defined over an image domahc R? and related by:

Ii(z) = Io o f(x) + p(x), )



wherep : Q — R is a scalar-valued function arnfd: Q2 — € is a homeomorphism that satisfies:

p(x)] < Kp,
ho(lle —a'|) < [[f(z) — f(2)]], and @)
1f(z) = f@)] < hu(llz =)
for all z, 2" € Q, wherehy,hy : Rt — R™ are monotonic increasing functions with, (p) < hy(p) for all p € R,
and|| - || is the Euclidean norm. The functiopsand f can be thought of as a bounded perturbation and a locallydesiin

deformation, respectively. The constdfi is a perturbation bound, and the functidnsandhy bound the amount of local
deformation. Observe that outside of points of occlusibis, inodel is able to describe the transformation betweens péi
views of the same scene or the evolution of a deforming obfetexample of such deformation functions are:

hr(p)=(1—Ka)p and hy(p) = (1+ Ka)p 3)

which corresponds to kipschitz deformation model with deformation constank’;. This bounding function requires that
deformations are bounded linearly with respect to the déstdoetween points in an image. Throughout the rest of therpap
we assume that the imagésand/; satisfy the deformation model specified in Equatiahsafid @), where the perturbation
bound, and the bounding deformation functiofs, h;; are known. However, the actual perturbatigém) and deformation
f(x) functions are unknown.

Next, we describe explicitly the two problems we attemptddrass using our descriptor.

Problem 1. Given an arbitrary pointrg € €2 and a set of pointd;  Q, find the pointr; € A; such that:
||f*1(a:0)—x1||:;r€n§1 1f 7 (o) — . (4)

The solution to this problem has direct implications for igaseline matching and image retrieval. Whanis taken as
uniform grid of paints, we call the solution to Probleina grid matching point. Denoting the area of the sétby |E| and
defining B(z,r) = {y € Q| ||z — y|| < r}, our second problem is related to the first but attempts tdicthp identify
neighborhoods rather than points with sufficient overlap:

Problem 2. Given a threshold- € [0, 1], called theoverlap threshold, neighborhood®3(x, Ry) € Q andB(z', Ry) C
for somer, 2’ € Q and Ry, Ry > 0, is
|f 1 (B(z, Ro)) N B(a', Ry)|
|f=1(B(x, Ro)) U B(z', Ry )|
Note that the above quantity corresponds to the ratio betwrezarea in the intersection and the union of the pair ofiieig

borhood after mapping to the domain Bf This quantity is directly related to determining regionrespondences which
has important applications for object recognition andstgtion.

7?7 (5)

3. Set Filtrations

In this section, we introduce the results necessary to thbeisaracterize a neighborhood of a point in terms of togglo
We begin by describing several results from algebraic gyl most importantly the homology group of a set. We then
describe how our deformation model dictates the allowedsfamations of the homologies for the pair of images. We
conclude the section by strengthening the results on theftvtemation of homologies to local neighborhoods of thegma

3.1. Background

The objective of this section is to give a brief overview @etbraic topology. A comprehensive introduction to thesadl
can be found in Chaptérof [3]. Algebraic topology explicitly characterizes the prajes of spaces that are preserved under
continuous deformation in terms of algebraic objects. Hig theory in particular transforms the study of topolagic
invariants into the study of groups. If, for example, one t8dn determine whether a pair of spaces are homeomorplac, on
can transform the problem into determining whether a pagrotips are equivalent. In fact, by comparing the rank of the
pair of groups, which is equal to the number of basis elemenpsired to generate the group, one can effectively determi
whether the pair of spaces are homeomorphic.

Naively comparing pairs of homology is generally insuéfitito perform matching between pairs of images transfamin
under a homeomorphism for two reasons. First, though péairsages maybe transforming under a homeomorphism the



effect of digitization (especially along edges) can ruia #pplicability of homology. To address this deficiency, vedirte
conditions on the homology over processed images. Seconahlogy is too coarse a construct. This is due to the fact that
comparison between the homologies of different spacesris dia a counting argument and because homology is generally
defined over entire spaces. We address homologies coasdsniegsalizing homology over intensity and space.

To understand these various extensions of homology, we bagih by describing homology more explicitly. The
homology, denotedH, (E), is a group whose rank is equal to the number of connectedeoemts in the spacE. Whereas,
the 1-homology, denotedH; (E), is a group whose rank is equal to the number of distinct syicl¢he spacé” that cannot
be shrunk via continuous deformation to a single point. Gaizng this notion let each of the-homologygroups of the
spaceF be denotedd;(F). Suppose that one is given a map E; — FE, between two spaces, we can in fact determine
how topological properties transform undeby considering the homomorphism (this generalizes thendaf a linear map
to groups) induced by denotedr« : Hy(E,) — Hy(E>). The case whett; C F> ando is theinclusion mapis called a
filtration and is particularly important. To illustrate its utility msider the following result:

Lemma 1. Given the filtrationt; C E» C E3 C E4 and inclusion maps; ; : E; — E; wherei < j, then

rank (M) < rank (M) . Vk >0, (6)

ker o1 4% ker oo 3%
whereker computes the kernel of its argument.

Proof. We split the proof into three steps:

Step I:
Let Gy, G2 andG3 be free abelian groups with finite rank, anddet : G; — G for i < j be homomorphisms such that
1,3 = ¢2,30 @12 (7)
By the first isomorphism theoremf.§1.3 in [5], we can define isomorphisms:
G1
L R 13 — ¢13(G1) C G3 (8)
and
GG (©)
2,3 : ker a3 2,3(G2 3
whereg, 5(G1) C ¢2,3(G2) by assumption. Then,
G G
-1 ) 1 2
a2 1= 7T2,3 OT1,3: er Q/)LS — er ¢273 (10)
is a 1-1 homomorphism, which implies that
Gl GQ
< < )
rank (ker ¢173> < rank <ke7‘ ¢2,3) < rank (G3) (12)
Therefore,
rank ( G > < rank (Gz) . (12)
er ¢1,3

Step II: LetG1, G2, Gz andG4 be free abelian groups with finite rank, andgdet; : G; — G fori < j be homomorphisms
such that

$1,3 = 2,30 P12 (13)
and
1,4 = P340 P1 3. (14)
We can then define the following sequence of maps betweepgrou
CTYl 1.2 G2

o B 0 Gy (15)

! ker ¢13 ker ¢a 3




and
Go

ker ¢273
|s the natural surjective mag; := a2 0 8, 2 := ¢34 0 m2 3, @anday 2 andms 3 are defined as in

G, 3 B Gy (16)

wheref : G1 — kem
the previous step. By construct|0n we have that := wzé o3, SO

Y2071 = ¢340m1 308 = 0340013 = P14 (17)
Hence, by applying the results from Step | to the sequencegirafion16, we have that
Gl G2
< .
rank (ker ¢1,4) < rank (k:er ¢273> (18)
Step 1l
From algebraic topology.f.52.1 in [3], we know that
oijx : Hy(E;) — Hyp(Ej), (19)
for i < j are homomorphisms such that
01,3% = 02,3 * 00 2% (20)
and
01,4% = 03,4 %0071 3 % . (21)

The sequence of homeomorphisms satisfy the assumptioresforatie groupss; in Step Il. Hence, we obtain the desired
result. O

This result gives a straightforward method to quantify thigological structure that must by carried frda to E5 by
analyzing the structure carried frofy to E,4. Importantly, notice that neither of the mappings frémto F> or from E3
to F, are needed in this result. In the next few subsections, weritbeshow this result can be used to extend homology to
address its aforementioned deficiencies.

3.2. Global Filtration
Let us begin by defining a set of pre-processed images.

Definition 1. Let thepre-processed imagebe defined as:

——(z) = infyep(g(p) Li(y)
Il (.CC) - nnyB(m,p) Z(y) (22)
IZ (.CC) SUPyeB(x, p)I( )
++(2) = SUPyep(a,g,(p) 1i(Y)
fori € {0,1}, wherep > 0 and
oy hu(p) ifi=0
gz(p) - { h;l(p) ifi=1 (23)
We define the followingter-level sets
Ei— =1I7"[a+ K,,00) NI " (—00,b— K]
Ei_ =1I"[a,00) NI (—00,b]

E;y = ;l[a,oo)ﬁlil(—oo,b] (24)

Eipy =1,
for constants: andb such that) — a > 2K,.

The inter-level sets are the objects upon which we performdiogy computation and help us localize homology over
each image’s intensity space. FRjillustrates these pre-processed images. Their corregmpimder-level sets are drawn in
Fig. 3. The inter-level sets satisfy certain properties:



Figure 2. Pre-processed Images. Original imafe@eft) and I (nght) lllustration of several pre-processed imagesdig). These
pre-processed images are defined to compensate for diigitiztfects along edges.

Lemma 2. The inter-level sets for anyandb such that — a > 2K, satisfy:

Eo—— C f(E1-) C f(Er+) C Eott

. 25
f(Br_)'C By C Eoy C f(Br__) (29)
Proof. Note that given our deformation model we have that
Io——(2) = Kp < Limo f7H(z) < Ly o f(x) < Togy (2) + Ky, (26)
which implies
I _la+ Ky, 00) C f (I a,00)) € f (I} ]a,00)) € Ig) [a — K, 00) (27)
and
I (00,0 = K] C f (I (=00,8]) C f (12 (=00,b]) C Iy~ (=00,b + k). (28)
Hence,
Fy__ C f(El_) C f(E1+) C Foyt. (29)
The other inclusions can be proven similarly. O

The result of the previous lemma ensures our choice of pregaised images allows us to define a filtration between sets
inimaged) and1. As a result of Lemma, we obtain the following result:

,‘1

Figure 3. Inter-level sets for imagésand1 from Fig. 2. The left panel shows the séy__ in white, and the sef,+ in gray. The other

plots follow the same labeling convention. As stated by Taeul, mnk(%) = 3 (i.e. the number of connected components
Ho(Eg-) 7

kerog_ o4 * ) =5

(Eo- €, E.,) €, E

0++) 1+)

that persist fron¥;__ to E14 ) which is less thamank(



Theorem 1. Given imaged, and [, and constants, b such thath — a > 2K, then

rank (M> < rank <M> (30)

ker oj—_ iy ker oj_ jix*
wherei, j € {0,1} suchthatj # ¢, ando;—_ ;++ : B, — E;yy ando,_ ;4 : E;_ — E; are the inclusion maps.

Proof. By combining the set inclusion result from Lemmand the rank results from Lemniave have that

Eo—— C f(E1-) C f(E14) C Eogt (31)
implies that
Hy(Eo——) Hy(f(E1-))
rank (ker 00,0++*) S rank (ker Ol— 1+ * ofl*) ' (32)

By noting thatH(f(E1-)) = Hi(E1-) andHy(f(E1+)) = Hi(F14) sincef is a homeomorphism then we obtain the
desired result fof = 1 and;j = 0. The other result can be proven similarly. O

This theorem gives a computable condition in terms of th&sari homologies that must be satisfied by the corresponding

inter-level sets defined by imageand1. To understand this result, observe that the rank'géf@ is equal to the number
i—,i4 ¥

of connected components if;; that have a non-empty intersection witf}_. This can be understood as the number of

components that persist frof}_ to E;. Hence, this theorem tells us that the number of connecteghonents that persist

from Fy__ to F14 . is less than the number of components that persist flgmto Ey . If this condition is violated for a

pair of corresponding inter-level sets, then the pair ofgesthat were used to construct these inter-level sets deatisty

our image model. Observe that by defining the inter-leval setpre-processed images, we avoid the problem of digdizat

effects along edges. An example illustrating an applicatitthis theorem can be found in Fig.

3.3. Spatially Localized Filtrations

The previous subsection gave a topological method to rgbdistermine whether entire images satisfied our deformatio
model. In this subsection, we define a spatial localizatiothis result. In order to obtain a localized charactermatf an
image, we begin by letting; = {x1,;} C © denote a uniform grid of points spaced units apart. Our objective in this
subsection is to construct a local set of conditions sintdahose described in Theorehthat must be satisfied by a pointin
A that is a solution to Problery i.e. a grid matching point.

First, we obtain neighborhoods around a painand its grid matching point; € A; that satisfy a sequence of inclusions.

Lemma 3. Given a pointz, € €2, a corresponding grid matching point,, radiusry > hy(s1/v/2), and radiusr; >
hit(ho(s1/v/2)), then
B(l‘o,?‘o_) Cf(B(.%‘l,Tl)) CB(xo,T‘0+) (33)

and
B(Il,’l’lf) C fﬁl(B(Io,’l’o)) C B($17T1+) (34)

where

ri— = hy'(ro — hu(s1/v2))
ro— = hr(r1) — hu(s1/V2) (35)
ro+ = hu(r1) + hu(s1/V2)
(

)
riy = hi'(ro + hu(si/V2))

Proof. We split this proof into four steps.
Step I
We show that givem; and only the deformation boundg, andh, the largest radius that we can choose such that

B(zg,r) C f(B(x1,71)) (36)

iIST =r710_.
First, we note that
B(f(x1),hr(r1)) C f(B(z1,71)) (37)



by our deformation model. In order to have

B(zo,r) C B(f(21), he(r1)), (38)
we must have
llzo — f@)|l + 7 < hi(r). (39)
Since||f(z0) — z1|| < s1/+v/2 which implies||zo — f(x1)]| < hy(s1/+/2), then the largest that we can choose is= r(_.
Step Il
Givenry, we note that
f(B(z1,m1)) C B(f(1), hu(r1)). (40)
In order to have
B(f(z1), hu(r1)) C B(zo,r) (41)
we need
I1f (z1) = zol| + hu(ri) <. (42)
Since||f(x1) — xo|| < hy(s1/v/2), then the smallest that we can choose such that
f(B(x1,7m1)) C B(xo,7) (43)
is given byr = ro_.
Step 1l
Givenrg, we note that
f(B(z1,7)) C B(f(z1), hu(r)). (44)
In order to guarantee that
B(f(21), hu(r)) C B(zo,70) (45)
we must have
|/ (z1) = zol[ 4 hu (r) < ro. (46)
Since||f(x1) — zo|| < hu(s1/v/2), then the largest that we can choose such that
f(B(z1,7)) C B(zg,r0) 47
is given byr = ry_.
Step IV
Givenrg, we note that
B(f(z1),hr(r)) C f(B(z1,7)). (48)
In order to guarantee that
B(zo,r0) C B(f(z1),he(r)) (49)
we must have
[1f(z1) = 2ol + 70 < hr(r). (50)
Since||f(z1) — xo|| < hy(s1/v/2), then the smallest that we can choose such that
B(zo,7m0) C f(B(z1,7)) (51)
is given byr = rq. O

As before, the inclusions in the previous lemma define afiittnain terms of inter-level sets.
Definition 2. Let the(rq, 1 )-localized inter-level setdbetween a point, € €2 and its grid matching point; be defined as
Ei,,(xi) = Ei,, n B(Ii,Ti,)
Ei, (xz) = Ei, n B(Il, Ti)
Ei-l— (.I'l) = Ei+ M B(.’L‘l, ’f‘i)
Eiry(2i) = Eipq N B(xi, rit)

(52)

fori € {0,1}, 70 > hy(s1/v/2), 11 > hy (ki (s1/v/2)). The radiir;— andr;. are given as in Lemma



Note that thgrg, m )-localized inter-level sets satisfy inclusion relatioimaitar to the ones stated in Lemn2aby construc-
tion. Hence, we have the following localized counterpaitheorem.:

Theorem 2. Given imaged, and I;, constantsa, b such thatb — a > 2K, and radiir, > hy(s1/v/2) andry >
hi ! (ho(s1/+/2)), then for anyr, €  and grid matching point; € A; we have that

rank <M) < rank (M) (53)

ker oi—_ jy4% ker oj_ jix*

wherei, j € {0,1} such thatj # ¢, ando;,—_ ;14 : Ei—_(z;) — Eiyy(z;) andoj_ ;4 : Ej_(x;) — Ej4(x;) are the
natural inclusion maps.

Proof. By combining the results from Lemmasand3 we obtain the filtrations

Eo——(20) C f(E1-(21)) C f(E14(21)) C Eoy+(20) (54)

and
f(E1-—(21)) C Eo—(20) C Eot(z0) C f(E1-—(21)). (55)
By following the same steps as in the proof for Theorewe obtain the desired results. O

This result gives a way to identify the existence of a locahkomorphism between neighborhoods arougp@nd ;.
That is, if these conditions are not satisfied, thertannot be a point that corresponds:tounder our image model.

4. Topological Attributed Relational Graph

At this point, we in fact have a robust localized topologidakcriptor that could be used to perform matching. In this
section, we describe how to construct a graphical reprasentthat integrates the localized topological chardaéion
developed so far to render the constructed descriptor nmistiact.

Suppose as in the previous section, we have a grid of pdintplaceds; units apart, a set of radii and constants
{(r0,x, ax, bx) } rer that satisfy the conditions in Theorehwherel" is some indexing set, and let

ria = (hp'(rox) + byt (ro.0))/2. (56)

Let us also assume a uniform grid of points = {xo,} C Q spacedsy > 2h(s1/+/2) units apart, and lefz; ,} C Ay,
be the set of corresponding grid matching points. The fdligvtheorem gives a set of bounds between the distance afspoin
in Ag and grid matching points in:

Theorem 3. Given the pair of pointzo o, zo,3) € Ao x Ag and corresponding matching points; o, z1,3) € A1 x Ay,
then

hi' (20,0 — o8l = 2hu (51/V2)) < [[21,0 — 21| (57)

and
21,0 — 21,8/ < BL (20,0 — o,8]| + 2hu(s1/V2)). (58)

Proof. By using our deformation bounds, we get the following indiies

|z0.0 = 20.8l] < [[70,0 = f(@1.)ll +[1f(#1.0) = F(@1p)l] + (| (21,5) — T0,6l (59)
< 2hy(s1/V2) + hu(||zra — 21,81) (60)

which gives the desired lower bound figr1 o — 21 5|
We also have that

hr(|z1,0 — z16]]) < |f(z1,0) = f(21,8)]] (61)
< f(@1,0) = zo.all + |20, — ol + |20, — f(z1,8)]| (62)
< 2hy(s1/V2) + ||v0,0 — 20,4l (63)

which gives the desired upper bound. O



For each of the points, , and corresponding grid matching points.,, the conditions specified by Theoretrmust be
satisfied by all tuplegro x, r1,x, ax, by ). Additionally, for each paifz «, z0,5) € Ao x Ag and corresponding grid matching
pair (z1,4,21,8) € A1 x A; the distance bounds in Theoréhmust be satisfied.

To check the simultaneous satisfaction of all of these d@rdi, we can recast our problem by constructifigpological-
Attributed Relational Graph or T-ARG, G as follows: let the nodes of this graph represent the paigitsand label these
nodes with the rank conditions defined in Theor2ind let the edges of this graph represent the distance hefaeets
and be labeled using the distance bounds from The@te¥ve can construct a similar T-AR@;, using the points;; . In
fact, we can define a TXARG; using all the points in\;, the results of the Theorendsand3 give constraints to determine
a subgraph isomorphism frof to G; C G;. More explicitly a correspondence between the grépland a subgraph in
G, is defined by the satisfaction of Theorethand3. Hence, the identification @f; turns into the matching of Attributed
Relational Graphs for which the attributes are topologiaak conditions and distance bounds.

5. Implementation

In this section, we begin by explicitly describing how we catve the problems defined in Sectidmusing the T-ARG.

We also describe how we implement our algorithm. The exédesaised to perform this implementation can be found online
1

Solution 1. Given an arbitrary set of pointd, we can first construct a grid of points; placeds; units apart such that
A1 C A;. Then given a point € 2 and another point’ € Ay, we identifyz’ as a possible grid matching point if there is
a subgraph isomorphism from a gragh into a graphGs . G is constructed using the points iy N B(z, Ro), andg, uses
the points in\; N B(a', R1), whereR; = h; ' (Ro + 2hy(s1/+v/2)) and Ry > 0. Itis then straightforward to re-project the
solution inA; to the solution inA;.

Note thatR; is defined using Theore@and R, is set arbitrarily based on how large of a neighborhood atauwe are
interested in considering.

To solve Problen2, we are interested in determining the overlap ratio betveetsy ~!(B(z, Ry)) and B(2’, R;). Note
that if 21 is a grid matching point ta, then:

B(z1,Ri1_) C f~(B(z,Ry)) C B(z1,Riy) (64)

whereR,_ and R, are defined as in Lemnta Using Solutionl, we obtain a set of possible grid matching points:to
An upper bound to the overlap ratio betweBfw:, Ry) and B(2’, R;) can be computed by considering the maximum of the
bounds using all possible grid matches.

Solution 2. Given neighborhoodB(z, Ry) andB(2’, Ry) wherex, 2’ € Q, we identify a possible matching set with overlap

greater thanr if
|.B(‘T17 R1+) N B(.%'/7 R1)|

|B(z1, Ri-) U B(2/, Ry))|
wherez; is the possible grid matching point tothat is closest ta’.

> T, (65)

In our implementation we construct our topological degdorip using the rank of the-homology group. Recall that
the 0-homology corresponds to the connected components. Fom@gathe rank 0% is equal to the number of
connected components iy, that have a non-empty intersection with_. In our implementation we assume the Lipschitz
deformation model defined in Equati@n All the parameters required for our method are outlinedahld@sl and2. Note
that the image model parameters are the only pieces of ifiiomrequired about the image. The algorithmic parameters

(i.e. Table2) on the other hand represent parameters in our algorithndamt affect the validity of the approach.

6. Results

In this section, we describe our performance on a datasetrumted from standard benchmark images. We analyze the
performance of our descriptor by computing its precisiot @tall as in {1]. To determine a ground truth, two regions are
said to match if their overlap ratio is greater than a speatifieesholdr. Precision and recall are defined as:

# of correct matches by algorithm

Precision= - -
# of total detections by algorithm

(66)
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Parameter | Description

K, Perturbation bound. A value &fis used.
Ky Deformation constant. A value of1 is
used unless otherwise specified.

Table 1. Image Model Parameters

and .
# of correct matches by algorithm

Recall=
# of total true matches

(67)

In contrast to other descriptors T-ARG does not employ aadist function to compare feature vectors. Rather, either
a feature satisfies the conditions of Theoretrend 3 in which case it matches or it does not satisfy those contitia
which case it does not match. However, as described in $estime construct bounds for the overlap given our choice of
parameters. By thresholding our estimated bounds on thiapvesing a parametet,,,, we can get a precision/recall curve
parameterized by the value of this parameter as other g¢sido with their appropriately defined distance functidhe
time required to construct a descriptor for a single reg®approximatel)20s on a2.2 Dual-Core i7 CPU with8 GB of
memory. For our method, we set the parameters as descrifedliesl and?2.

6.1. General Deformation Images

In order to analyze the performance of our approach in thegmee of deformations we construct two synthetic datasets:
Graffiti andBoat The Graffitiimages are of siz800 x 640 and theBoatimages ar&50 x 680. We consider a controlled
perturbation using the functiofi: 2 — 2 given by:

1 (21 _ [z +0.5¢ccos(0.022)

f ( 29 ) o ( 29+ 0.5 ¢ c0s(0.0227) ) ’ (68)
where the factor specifies a maximum deformation factor (ezg= 10 indicates a maximum deformation t9%). We also
study the effect of noise by adding a random uniform pertiimbdo the images with magnitude equallta Examples from
our dataset are illustrated in Fig.and4. A subset of regions from the images to be matched are chodestt We select
circular regions of radiu80 from both images centered around points from a uniform gfigoints spaced2 units from
each other while removing the points that &feunits from the boundary of the image. This gives aro25@D regions for
each image in the datasets.

Fig. 5 shows the comparison of our approach to SIFT and GLOH for argtdruth threshold of = 0.5. The first row

corresponds to comparing the base images fronGitagfiti andBoat datasets against an image wih’% deformation and
no noise. The second row corresponds to the base image bainbed to an image witb0% deformation and with uniform

Parameter | Description

p Radius of morphological operator for pre-
processing. Value set th

S0 Spacing for grid\. Value set t@.

81 Spacing for grid\;. Value set t@.

(ro,x,ax,by) | Radii and constant used to define the
topological rank descriptors. We use
all combination such thatrg, €
{2,3,4,6,9,14,19, 24,30}, and [ay, by]
corresponds to any of the intervals ob-
tained from partitioning the rangde, 255]
into 4, 8 and16 evenly spaced intervals.
Ry Radius of neighborhood aroung used

to construct grapl@, in Solutionl. A
value of30 is used.

Table 2. Algorithmic Parameters



noise in the interval—10, 10] added to each pixel. The final row corresponds to the baseeiinaeigg matched to an image
constructed witht0% deformation and no noise. As expected from our method, waimbtvery high recall rate since our
derivations attempt to avoid false-negatives. Obserngtliese results are obtained using an estimated deformatioa of
10% (i.e. K4 = 10) which is far less than the actual maximal deformation ferithages. Note that adding uniform random
noise to an image (as shown in the middle row) and increabmdé¢formation (as shown in the bottom row) have little éffec
on the performance of our approach.

Fig. 6 illustrates similar results for a ground truth thresholdrof 0.2. In terms of the overlap ratio, this corresponds
to treating pairs with less actual overlap as potential hmegc In this case, the performance of our algorithm improves
even though the performance of the SIFT and GLOH descrigtecseases. Finally, Fig7 illustrates the dependency of
our approach on the choice of paramekéy for the images witt80% deformation. We choose a ground truth threshold
of 7 = 0.5 and an overlap threshold for our algorithmf, = 7/3. The plot illustrates the precision and recall for our
algorithm against SIFT and GLOH as we change the valug ofrom 0.05 to 0.20.

6.2. Homography Images

Next, we analyze the performance of our approach by consigia new dataset, called thlomography Graffiti Dataset
by applying a homography to the left image of Figcorresponding to a change in viewing anglelioy, 30°, 50°, and30°
with uniform noise in the intervgl-10, 10] added to each pixel.

In order to give SIFT and GLOH an advantage we se?@6tregions by using the Harris Affine Region Detector with a
threshold 080, 000 [11]. We determine the overlap estimate between two regiongstyformalizing each detected region
into a circular region of radius 30 and then apply our aldponit Fig. 8 shows the comparison for a ground truth threshold
of 7 = 0.5. Notice that regardless of choosing regions specificalyepred by SIFT and GLOH upon which to compare the
performance of our matching approach on, our method stifj@rfiorms the traditional methods.

7. Conclusion

In this paper, we introduced T-ARG, a new local photometeisatiptor that can effectively perform deformation inaai
image matching. T-ARG is a robust topological descriptazkea by a formal mathematical framework. We applied T-
ARG to a set of standard benchmark images with applied deftoms and perturbations and demonstrated that T-ARG
significantly outperforms traditional descriptors.

The utility of our approach is that it generalizes in a stnéfigrwvard manner the comparison of multidimensional detias
undergoing bounded deformations. There is a deep rel&ijphetween the bounds on the rank of homology presented in
Section3 and the theory of Persistent Topologyl. In the future we look forward to being able to employ the putational
tools available to compute persistence to speed up our mggléation and help build an even more powerful topological
descriptor. Other potential extensions of this work ineludl) its generalization to account for larger lightingistions

Figure 4. Point Matching Samples: The base image fronBthe dataset (left) with corresponding neighborhodgis:, R ). Correspond-
ing matches found on an image showing(& deformation, i.ec = 30 in Equation68 (right).



Graffiti Dataset Boat Dataset

1 1
0.8f S RS o et L N1 SRR
06 e g 06 gt T
0.4¢ , """ S e S 0.4¢ ,/ e T-ARG
o2 - 30%Def ... s 02"*  30% Def |~ * = SIFT |
1=05 | | 4 I=05 4 GLOH
. . ol | . .

0 s s L

0O 02 04 06 08 1 0O 02 04 06 08 1
1 T T T T ; 1 T T H §
0.8 ‘ 8t S

T 0.6
O

()] B S S S ]
D:O'4 \\\,\/‘ | | |
0.2 ‘ 2|T#  30% Def + Noise -]
1=05 ; f 1=05 | |
0 - - - 0 - -

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

1 1
0.8 ‘3 =% 0.87 ‘
0.6 : /
02| ¢  40%Def 02| 4w 40%Def
1=0.5 : : 4 1=0.5
of 1708 ] ¢ 1=0s
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

1-Precision
Figure 5. Precision and Recalt & 0.5): Results for theGraffiti (left) andBoat (right) datasets. Results for image with% deformation

(top), 30% deformation and uniform random noise in the intefval 0, 10] (middle), and40% deformation (bottom).

present in natural images, and (2) the development of ametgtector to determine proper choice of scale for regions of
interest.
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