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Abstract 

As integrated circuit manufacturing enters the nanometer regime, system performance 

variations are increasingly introduced through the growing complexity of the processing steps. 

Compact variability modeling has been widely studied for statistical circuit simulation to connect 

technology and design activities. Conventional statistical compact model parameter extraction 

methodology is not aware of the hybrid-hierarchical variation structure in the manufacturing 

processes. In this work we propose an efficient variability aware compact model characterization 

methodology based on variance linear propagation. Hierarchical spatial variability patterns of 

selected compact model parameters are directly calculated from transistor array test structure 

current/voltage measurements.  

In our implementation, spatial variability models of selected compact model parameters are 

created by linear regression on spatial pattern fitting coefficients with spatially modified 

sensitivity matrix. Good match is realized between our results and compact model parameter 

reference set obtained by full-wafer, direct model parameter extraction on a simple compact 

model and 65nm SOI industrial measurement data. Proper selection of both variability-aware 

model parameters and sensitive electrical measurements are also studied in this thesis work. 

Extensions on the proposed methodology can be applied to more complex compact models and 

more advanced hybrid-hierarchical variability models.  

 

  

 



 

iv 
 

List of Figures 

FIGURE 1-1 Compact Variability Model Characterization Flow .................................................. 2 

FIGURE 2-1 Compact Modeling for Statistical Circuit Design Scheme ....................................... 5 

FIGURE 2-2 A Generic Statistical Compact Modeling Characterization Flow ............................. 8 

FIGURE 2-3 Standard flowcharts for PAM variation characterization ........................................ 10 

FIGURE 2-4 Atomic Simulation Enabled Statistical Compact Model Parameter Extraction 

Scheme .................................................................................................................................. 11 

FIGURE 2-5 Variability Structure Aware Compact Model Parameter Extraction Procedure 

Example ................................................................................................................................. 12 

FIGURE 3-1 BPV Characterization Method Implemented with PSP Compact Model ............... 17 

FIGURE 3-2 Illustration of variability hierarchy  a) wafer-to-wafer b) across wafer c) die-to-die 

d) across die e) (within die) layout dependent f) (within die) device-to-device ................... 19 

FIGURE 3-3 Illustration of Spatial Variability Pattern Linear Propagation Method ................... 21 

FIGURE 3-4 Wafer Map and Summary of Data Structure........................................................... 23 

FIGURE 3-5 Wafer Maps of Linear BPV Calculated EKV Model Parameters ........................... 30 

FIGURE 3-6 Basic Statistics of "Golden" Extraction Set ............................................................ 31 

FIGURE 3-7 Comparison between BPV Calculated Results and Extracted Reference Results .. 32 

FIGURE 3-8 Comparison between Spatial Variability Linear Propagation Calculated Results  

and Extracted “Golden” Reference Results ........................................................................... 35 

FIGURE 3-9 Comparison between Spatial Variability Linear Propagation Calculated Results and 

Extracted “Golden” Reference Results, excluding hierarchical spatial variability model 

fitting errors ........................................................................................................................... 37 



 

v 
 

FIGURE 3-10 Fitted Spatial Patterns of Compact Model Parameters using calculated coefficients  

vs. Full-wafer Parabolic Spatial Variability Model Fitted Pattern on extracted reference set 

 ............................................................................................................................................... 38 

FIGURE 4-1 Statistically Extractable Compact Model Parameter Selection Scheme ................. 44 

FIGURE 4-2 Electrical Measurement Set Selection Flowchart ................................................... 46 

FIGURE 4-3 Wafermap of Electrical Measurements Nominal .................................................... 47 

FIGURE 4-4 Typical Ids~Vgs/Vds Curve of MOSFET DUT ..................................................... 48 

FIGURE 4-5 Sensitivities of Ids to EKV Compact Model Parameters @ different (Vgs, Vds) .. 49 

 

 

 



 

vi 
 

List of Tables 

TABLE 2-1 Statistical Variations Modeling Levels ....................................................................... 6 

TABLE 3-1 Transistor DUT Geometries ..................................................................................... 23 

TABLE 3-2 Main EKV Intrinsic Model Parameters  ................................................................... 25 

TABLE 3-3 Summary of Basic EKV Model Equations  .............................................................. 26 

TABLE 3-4 Electrical Performance Metrics Set e ....................................................................... 28 

TABLE 3-5 Computational Cost for Different Compact Model Characterization Methods ........ 40 

TABLE 4-1 BSIM and PSP Model Parameters for Statistical Compact Modeling  .................... 43 

TABLE 4-2 EKV Model Parameters Classified for Statistical Compact Modeling .................... 44 

 

 

 



 

1 
 

Chapter 1  

Introduction 

1.1   Motivation 

Reductions in cost-per-gate and improvements in overall integrated circuit performances have 

pushed the silicon manufacturing into the nanometer technology era. However, the benefits of 

aggressive scaling on transistor feature sizes are diminishing due to the variations introduced 

through the increasingly complicated processing steps. Though compact variability modeling has 

been studied ever since 1990s [1-1], the impact of both random [1-2] and systematic [1-3] 

variations has evolved dramatically with new manufacturing techniques and transistor structures.  

With restrictive layout design rules and limited transistor geometric diversity, simpler compact 

variability models for statistical circuit simulations establish a critical link between technology 

and design activities. Statistical circuit design requires concise and simple models capturing 

nominal, corner and distributional information of process variations. Conventional statistical 
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compact model characterization methodology, i.e. model parameter extraction, is not aware of 

the hybrid-hierarchical variation structure in the manufacturing processes. This motivated us to 

find a proper way of characterizing compact models used in statistical circuit simulation for 

accurate prediction on circuit performance deviations caused by process variations. 

The flow of compact variability model characterization is shown below. Implied in this flow is 

the need for efficient test structures to capture key elements of process variability; and reliable 

characterization methods to extract variability-aware compact model parameters [1-4]; we will 

finally integrate these advanced compact variability models into the existing statistical circuit 

design flows. Therefore, in this thesis work, we propose and implement a linear propagation 

based method for compact model variability characterizations. Hierarchical spatial variability 

patterns of selected compact model parameters are directly calculated from transistor 

current/voltage measurements. Effectiveness and efficiency of our methodology are evaluated, 

while possible improvements are also discussed. 

 

 

Figure 1-1 Compact Variability Model Characterization Flow 
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1.2   Thesis Organization 

The remainder of this thesis is organized as follows. A review of the statistical compact 

modeling and recent work on compact variability model parameter extraction will be presented 

in Chapter 2. A spatial variability pattern linear propagation method is proposed in Chapter 3 for 

compact variability model characterization. Test bench implementation along with simulation 

results and verifications are also presented in Chapter 3. Next, selection of extractable compact 

model parameters and measurement data points used in our proposed methodology are discussed 

in Chapter 4. Finally, Chapter 5 will present a summary of the work and give conclusions, along 

with possible directions for future work.  
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Chapter 2  

Statistical Compact Modeling 

2.1   Compact Modeling for Statistical Circuit Design 

    With the aggressive scaling in the manufacturing society, circuit designers rely more on the 

statistical design methodology for overall yield guarantee. Most analog and digital circuit 

designers working on the cutting-edge technology employ SPICE-based simulators to perform 

complete statistical verification on the nominal design. Monte Carlo analyses on primitive cells 

combined with statistical static timing analysis are widely used in digital IC designs, while 

worst-case corner analysis leads the statistical simulation in analog/mixed signal designs. For 

both circuit designers and technology developers, compact models establish a critical link 

between the two societies [2-1].  

    Development of a truly physical and predictive compact model equation that covers geometry, 

bias, temperature, DC, AC, RF, and noise characteristics becomes a major challenge when 
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technology goes into the nanometer regime. Moreover, as for statistical circuit simulation 

accuracy and efficiency, compact model developers are required to provide proper corner model 

parameter files as well as model parameter variability distribution files [2-2]. This imposes more 

challenges onto the model characterization and parameter extraction procedures.  

 

Figure 2-1 Compact Modeling for Statistical Circuit Design Scheme [2-3] 

 

2.2   Statistical Compact Model Characterization 

    Several statistical compact modeling techniques are reviewed in this section with more focus 

on the compact model parameter characterizations. For better conceptualization of the statistical 
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variations in the IC manufacturing, a four-level scheme is used to demonstrate different 

statistical modeling levels [2-4]. Modeling at the SPICE compact model parameters s is the most 

common way; while with physics-based predictive compact models, statistical compact 

modeling is more preferably done at the physical process parameters p level, which has fewer 

variables and simpler variability correlation structure. We will discuss more on this topic in the 

next chapter.  

Table 2-1 Statistical Variations Modeling Levels 

 

 

2.2.1 Generic Compact Variability Model Equation 

Most commonly used statistical compact models fall into the following two categories: 1) 

corner models for circuit worst-case analysis and 2) variability distributional models for Monte 

Carlo circuit simulation. Industrial standard compact models [2-5], including BSIM, PSP, HiSIM 
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and EKV, ACM, are extended to generate statistical compact sub-models or parameter files in 

either category for statistical circuit design. 

A generic compact variability model equation can be used for statistical compact modeling 

with any specific nominal compact models [2-6]. 
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    (2.2) 

    In this generic compact model variability model, xi is an independent random variable of 

standard normal distribution. Δpi is the deviation from nominal value of the i
th

 compact model 

parameter, while Δyi is the deviation from global average of the i
th

 specific measurable electrical 

quantity of interest. Here, the G matrix represents the Gaussian variances in the parameters.   

Though variations are more strictly described with hierarchy, e.g. global systematic effects due 

to manufacturing, plus local effects intrinsic to device structure [2-7], the simplified assumption 

in the model above is efficient-effective for single device statistical compact modeling. 

Moreover, different nominal compact models will generate different R sensitivity matrixes, 

which establish the basic equations for further statistical model characterization. The 

linearization in the model sensitivity calculation is valid for small process variation, i.e. small xi, 

which is common in mature or near-mature technology. 

Though various nominal compact models are developed with different emphasis on device 

physics description and circuit performance prediction, the statistical extensions on model 
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equations are similar to the ones above. It is indeed the model characterization or parameter 

extraction methodology that distinguishes different statistical compact models. 

2.2.2 Compact Variability Model Parameter Extraction 

    In addition to a generic compact variability model equation, we need to develop statistical 

model parameter characterization methodology [2-8] and a generic flow is shown below. 

 

Figure 2-2 A Generic Statistical Compact Modeling Characterization Flow 

As standard worst-case models first proposed in 1986 [2-9], researchers have developed 

optimized statistical compact corner models for statistical circuit design [2-10]. Variability 

distributional models proper for Monte-Carlo simulations are also developed with the help of 
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first principle, atomistic-level device simulations [2-11]. We will briefly review the pros and 

cons of several compact variability model characterization methods. This section establishes a 

good background for further discussion in the next chapter. 

A Performance-Aware Model (PAM) [2-10] was recently proposed to generate accurate and 

application-specific, i.e. speed, power, gain, etc., model cards at any yield levels for both corner 

analysis and Monte Carlo simulation. PAM presents an improved methodology for determining 

the variations of the SPICE model parameters from both physical parameter variations and 

electrical-test data variations, as shown below.  

PAM methodology demonstrates good compatibility with current EDA tools and industrial-

standard nominal compact models. Pseudo electrical-test distribution data can be generated using 

predictive technology model to assist variation capturing in critical model parameters, e.g. Vth 

and mobility. However, as traditional corner model methodology, PAM only addresses the 

device intrinsic random variations but not systematic proximity-related variations. Statistical 

characterization and parameter extraction is also time-consuming due to the large number of 

application-specific model cards generated.  
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Figure 2-3 Standard flowchart for PAM variation characterization [2-10] 

Atomistic-level device simulations have been recently used to establish a two-stage statistical 

compact model parameter extraction strategy to capture the process variations [2-11]. The 

procedure is shown below. A set of compact model parameters are chosen to capture the 

combined statistical variability sources. The final outcome of this direct statistical parameter 

extraction strategy is a statistical set of compact models with particular parameters representing 

physical variations within the devices.  

By applying this strategy, the correlations established in the nominal compact model between 

key transistor figures of merit are well preserved. This leads to good correlation between 

simulated electrical performances and key statistical compact model parameters, which indicates 

that their physical meaning is maintained during statistical extraction. However, the lengthy 

simulation time of atomistic-level 3D device representation limits the application of this strategy. 
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Figure 2-4 Atomistic-level Simulation Enabled Compact Model Parameter Extraction Scheme [2-11] 

Process variability structure-aware compact model parameter statistical extraction procedure is 

newly developed by targeting general goodness of fit of all transistors across the wafers [2-12]. 

The proposed procedure, shown below, divides compact model parameters into groups and 

performs statistical extraction only on the group of compact model parameters which have first-

order effects on device electrical performance and have weak correlation to process control 

measurements.  

This method enables the hierarchical variability structure being preserved within the carefully 

selected set of compact model variability-aware parameters. Physical correlations between model 

parameters within the nominal compact model are also well preserved. However, the large 

number of needed individual device compact model parameter extractions increase the overall 

characterization time despite the small parameter subgroup size. 
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Figure 2-5 Variability Structure Aware Compact Model Parameter Extraction Procedure Example [2-12] 
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Chapter 3  

Linear Propagation in 

Compact Variability 

Modeling 

Statistical compact models properly characterized for process variability are important for the 

design of high-yield integrated circuits. Although it is important to understand the underlying 

physical mechanisms that cause variations in device performances, the ultimate goal of compact 

statistical modeling is to accurately represent variations of simulated circuit characteristics. This 

chapter includes a brief review of a statistical compact modeling method, namely Backward 

Propagation of Variance (BPV), and then proposes a spatial variability pattern linear propagation 

method based on BPV for fast statistical compact model characterization. Basic calculation 

results are presented here while further improvements will be discussed in the next chapter. 
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3.1   Backward Propagation of Variance 

    The Backward Propagation of Variance (BPV) method is a unified approach for physically 

based statistical compact modeling. The method was first proposed to better characterize BJT 

compact modeling [3-1][3-2], while recent extensions and enhancements [3-3][3-4][3-5] make it 

suitable for characterizing global and local statistical process variations via industrial-standard 

compact models. 

The BPV method formulates statistical models using a set of independent, normally distributed 

process parameters p. These parameters control the variations seen in the device electrical 

performances e through the behavior described in the SPICE nominal compact models. With 

hierarchically structured variations captured in electrical data, calculated compact parameters 

using BPV can maintain the hierarchical variation structure and thus support more accurate 

simulation results for statistical circuit design. Here backward propagation refers to estimating 

the model (or process) parameters (p) from electrical data (e) through sensitivity characterization. 

This should be distinguished from forward propagation (from p to e) through SPICE simulation.  

MOSFET electrical performances (i.e. Idsat) are collected from test wafer measurement 

data               ; while process related compact model parameters (i.e. Vth0) are selected 

among the characterization set               while avoiding including parameters that are 

strongly correlated with each other. With the typically small manufacturing variations at a stable 

technology node, it is acceptable to use a local linear approximation around the nominal values 

of                 : 

                      
 
         (3.1) 
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          (3.2) 

The respective sensitivities are then defined as 

           

   
 
    

      (3.3) 

For m electrical performance measurements              and n process related compact 

model parameters             , we have an     linear system 

                                                      
   (3.4) 

  
     

     
      

       
  

 
   

      
       

  
 
   (3.5) 

And the sensitivity matrix is  

     
      

   
 

 

 
    

 

                   

     (3.6) 

For a complete set of device performance electrical test measurements (large m) and carefully 

selected variation-aware compact model parameters (small n) so that m>n and Eq. (3.4) (3.5) are 

solved using multivariate least square fit or other linear regression methods.  

Note that scaling is needed for some variables (either e or p) to improve the condition number 

of the matrix; while this scaling is implied, it will not be explicitly shown in the following 

application example of BPV with PSP MOFET model [3-4]. 
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Figure 3-1 BPV Characterization Method Implemented with PSP Compact Model [3-4] 

Here Tox is obtained from process monitoring data and therefore TOX0 is calculated directly in advance; 

 

This application example also demonstrates the selection criteria of e in the BPV method. 

Electrical measurements of devices that strongly affect target circuit performances are selected as 

key quantities in e. Knowledge of circuit applications and device operations should guide this 

selection. From the above example, the saturated drain current (Idsat) of a short channel device 

(wide/short) is highly correlated with the switching speed of ring oscillators (td), and thus is 

chosen as one of the ei’s. Conversely, bias conditions or device geometries that are far removed 

from typical circuit applications are less likely to be chosen. Moreover, selection of e is also 

required to make p observable, and this requires that the sensitivity matrix S which is at the core 

of the BPV linear system is well-conditioned. 
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A comprehensive formulation of the BPV procedure [3-5] that handles quadratic nonlinearities 

in the e-p mappings is reviewed below. A second-order Taylor expansion of e around nominal p 

gives 

                  
 
                

 
                      (3.7) 

The second-order sensitivities are 

      
 

 
  

      

      
 
    

      (3.8) 

and the first two statistical moments of e are 

   
                 

  
         (3.9) 

   

       
    

  
           

    

    
  

         (3.10) 

From previous work on BPV, the linear version is often sufficient and the quadratic version is 

only necessary occasionally. We will show in later sections that linear BPV is suitable for our 

test-bench implementation. 

 

3.2   Spatial Variability Linear Propagation Method 

The Backward Propagation of Variance (BPV) method is highly extendable to incorporate 

hierarchical variation models [3-6], which accurately describe the variability structure in the 

electrical measurement data.  The superimposition property of linear systems makes linear BPV 

applicable to spatial variability characterization in compact models, as discussed in this section. 
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3.2.1 Hierarchical Variability Modeling 

Process variations usually have very different properties, and among them, spatial variations 

are of critical importance in linking design and manufacturing activities. Statistical spatial 

variations include both deterministic and random components. Certain types of deterministic 

variations are hierarchical in nature, while random variations can be modeled as white noise and 

added to the baseline, as depicted in the following figures. 

 

Figure 3-2 Illustration of variability hierarchy [3-6]:  

a) wafer-to-wafer [random shift] b) across wafer [systematic pattern]  

c) die-to-die [random shift] d) across die [systematic pattern]  

e) (within die) layout dependent [systematic] f) (within die) device-to-device [random white noise] 

 

For simplicity, and without loss of generality, the total variation can be expressed as 

                                               (3.11) 
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In the expression (3.11), P represents the actual parameter value while P0 is the nominal value. 

Wafer-to-wafer shift ΔPw2w and die-to-die shift ΔPd2d are typically random numbers. Across 

wafer ΔPa-w and across die ΔPa-d systematic spatial patterns are usually parabolic due to the 

circular wafer shape and approximate radial symmetry in most processing chambers, as shown 

below. 

                              (3.12) 

As for variations from devices within a single die, both layout dependent deterministic 

components ΔPlayout and pure random components εdevice exist. As the technology advances into 

the nanometer regime, local random variation sources for devices, such as line-edge roughness 

(LER) and random dopant fluctuation (RDF), play increasingly significant roles in final yield.  

 

3.2.2 Spatial Back Propagation of Variance 

Assuming a hierarchical variability structure, we apply a novel extension to the linear BPV 

statistical compact model characterization method. The proposed method will obtain hierarchical 

spatial pattern of assigned compact model parameters directly from test wafer electrical 

measurement data. This propagation method applies linear regression on the coefficients of the 

hierarchical spatial variability model, i.e. a - f in ΔPa-w. An illustration of this method is shown 

below. The compact model sensitivity analysis is done at the nominal value; and the spatial 

coefficients hierarchical variability model (rather than statistical moments, such as variance or 

mean value) in measured I-V data are linearly propagated to selected compact model parameters. 
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Figure 3-3 Illustration of Spatial Variability Pattern Linear Propagation Method 

 

For better application of our method, the hierarchical variability model is modified as (for 

single wafer data from transistor I-V test arrays) 

                                                 
     

   (3.13) 

The BPV method is extended for across-wafer component spatial pattern linear propagation. 

From now on we will use the term Spatial Back Propagation of Variance, or SBPV. 

                      
                                      

       
   

     

                                                       
            

      
 
     

                        
  

               (3.14) 
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The sensitivity analysis is done around the nominal value, i.e. wafer-mean 

                    

   
 
     

     (3.15) 

The SBPV linear regression equation is 

                 

                        
 
                         

 
  (3.16) 

The spatial coefficients and modified sensitivity matrix are 

                                                         (3.17) 

                      
 
          
         

   
      

   
 
     

 
     

                 
 
          
         

   (3.18) 

 

3.3   Test Bench Implementation 

To demonstrate the effectiveness, we tested the SBPV method on actual test wafer data 

(transistor array I-V measurements) and standard compact models (EPFL-EKV model). Test 

bench setup details, including measurement data structure and compact model selection, will be 

discussed in this section while simulation results, verifications and discussions are shown in the 

next section. 
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3.3.1 Electrical Measurement Data Structure 

A set of transistor I-V measurement data from a 65nm SOI technology test wafer is used in our 

test bench for illustration of our spatial variability linear propagation method. DC current/voltage 

measurement on transistors with 7 different W/L geometrical combinations is completed with 

one full test wafer containing 68 dies. There are 432 measured repetitions (48 rows, 9 columns) 

within one die for one particular transistor geometry. Each NMOS transistor device under test 

(DUT) has 100 measurement points on the Id~Vds/Vgs curve in the range from 0V to 1V. 

Table 3-1 Transistor DUT Geometries 

DUT 1 2 3 4 5 6 7 

L[nm] 60 60 60 60 70 100 150 

W[nm] 500 375 250 120 500 500 500 

 

 

Figure 3-4 Wafer Map and Summary of Data Structure 
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A wafer map summary of this data set structure is shown above. As seen, the wafer is 

intentionally separated into fast/slow stripes in addition to nominal region. The transistor 

geometrical combinations are also listed above. As will be discussed later, we apply our test only 

on the DUTs with the smallest channel length and width, which capture more sources of 

variations while providing acceptable accuracy in model parameter extraction and sensitivity 

analysis. This device selection will help us distinguish and evaluate different components in our 

spatial variability linear propagation method. Moreover, a global model card that could describe 

transistors of any size is not achievable and individual nominal model card should be generated 

for each transistor size. This can be explained that modern manufacturing processes are 

optimized for devices of different target dimensions, e.g. optical proximity correction (OPC), and 

that a significant departure from the optimal channel length will induce additional localized 

process variability. Therefore, initial nominal compact model parameters are independently 

extracted for transistors of different sizes. 

 

3.3.2 Compact Model Selection 

Transistor compact models consist of complex equations covering a wide range of operating 

regions, from saturation to cut-off where the drain current changes by many orders of magnitude. 

The geometric diversity of the transistors also demands additional fitting parameters to the 

compact models for good overall performance curve fitting. Therefore, hundreds of model 

parameters are needed to be extracted before real application in SPICE circuit simulation. Many 

of these parameters carry vague or no physical meaning, and thus cannot be easily used in order 

to capture the actual variability of the manufacturing process.  



 

25 
 

As discussed above, the transistor array I-V measurements mainly describe the DC 

characteristics of the device compact model. Due to the lack of accurate off-current 

measurements, a full-scale industrial standard transistor compact model, such as BSIM or PSP 

model, is not necessary for our data set. Furthermore, limited transistor sizes will not support the 

extraction of the large numbers of parameters typical in “complex” models, which is critical for 

sensitivity analysis and S matrix creation. This makes these “complex” models unsuitable for 

testing SBPV on this particular dataset. 

The EPFL-EKV model [3-7] is a scalable SPICE simulation compact model built on 

fundamental physical properties of MOSFET. The EKV model is also introduced within a 

complete, statistically efficient and simple characterization methodology [3-8]. 

Table 3-2 Main EKV Intrinsic Model Parameters [3-7] 
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Table 3-3 Summary of Basic EKV Model Equations [3-7] 

 

In our test bench implementation, a nonlinear-least-square-optimizer based EKV model 

parameter extractor, provided by IBM Austin Research, is used to obtain the nominal compact 

model. We also perform direct model parameter extraction using this extractor on each transistor 
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as a reference set for result verification. This extractor is capable of extracting all the main 

intrinsic model parameters listed in Table 3-2 Main EKV Intrinsic Model Parametersand provides 

fitting error (SSE) of each extraction executed. It can also be tuned to extract partial set of model 

parameters with other parameter values set to nominal, which is important since we will perform 

various verification runs for our linear propagation method calculation. 

 

3.4   Results and Discussions 

    In this section, we will present the calculation results using our proposed spatial variability 

linear propagation method. We will first apply the basic linear BPV on our data set as a reference 

and validation of our implemented algorithm as well as sensitivity matrix calculation. Then the 

spatial variability model is fitted on electrical measurement and linearly propagated backwards to 

selected EKV model parameters. We establish a “golden” verification set from time-consuming 

simulations, i.e. performing model parameter extractions on every individual transistor all over 

the wafer. Discussion on the effectiveness of our method is based on comparisons to this 

verification set. 

 

3.4.1 Sensitivity Matrix Simulation and Verification 

The sensitivity matrix in (3.3) and (3.18) is critical to linear BPV method and our proposed 

spatial variability pattern linear propagation method. In this section, we will simulate the 

sensitivity matrix at nominal EKV model parameter values (obtained from the wafer 

manufacturer’s initial model) with HSPICE using finite normalized difference method (±5% 



 

28 
 

perturbation around nominal values). This sensitivity matrix is then applied in the 

characterization procedure using basic linear BPV for verification and validation.  

As from previous work [3-10], we select 5 points on the measured Id~Vds/Vgs curve for our 

electrical performance e set, as shown below. From [3-9], four EKV first-order intrinsic model 

parameters are chosen as our model parameter p set, including VTO (long channel threshold 

voltage), KP (transconductance parameter), UCRIT (longitudinal critical field for mobility) and 

LAMBDA (junction depletion length coefficient). An improvement on the choice of both e and p 

set will be discussed in the next chapter. Here, we just establish the 5×4 linear system based on 

the chosen p and e sets. 

Table 3-4 Electrical Performance Metrics Set e 

I-V Points I1 I2 I3 I4 I5 

Vgs [V] 0.5 0.5 1.0 1.0 1.0 

Vds [V] 0.1 1.0 0.2 1.0 0.1 
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    The calculated sensitivity matrix for our linear system for the DUT (L=60nm, W=120nm) is 

    
      

   
 
     

 
          
         

 

 
 
 
 

                          
                           
                            
                            
                             

 
 
 

  (3.19) 

We also have built the linear system for basic linear SBPV. Here, all the figures of merit are pre-

processed with centering and normalization in order to condition the above sensitivity matrix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
       

    
 

       
    

 

       
    

 

       
    

 

       
    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
    

    

    

    
 
 

 
       

    

    

       
 
 

   
    

    

    

    
 
 

 
       

    

    

       
 
  
 
 
 

 

 
 
 
 
 
 
 
 
 
 

       
    

 

      
   

 

         
      

 

          
       

 
 
 
 
 
 
 
 
 
 
 

   (3.20) 

Here, Ii,a-w stands for a particular die mean value of the electrical performance metric i, which 

averages over 432 identical transistor DUT replications within one die and only leave the across-

wafer deterministic variability component unattended. The above linear system is solved using 

the least square fit algorithm embedded in MATLAB and repeated for all 68 dies. The derived 

compact model parameter sets are shown in the figure below, with the across-wafer variations 

clearly shown on the wafer map. The absolute values of the compact models have physical 

meaning and can be directly input to HSPICE simulator for statistical circuit simulations. 
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Figure 3-5 Wafer Maps of Linear SBPV Calculated EKV Model Parameters 

VTO, KP, UCRIT and LAMBDA across-wafer variability  

is clearly shown on the DUT (L=60nm, W=120nm) of the data set 

 

    We have generated a reference EKV model parameter across-wafer data set by performing 

compact model parameter extractions, i.e. by fixing all the other parameters at nominal values 

while leaving the 4 selected parameters for optimization by the extractor, on every individual 
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transistor across the entire wafer (for a particular geometry, total of 68×432=29376 DUTs are 

simulated). Statistical analysis, as shown below, is done on the voluminous extraction results in 

order to generate die mean values of the selected EKV model parameters. 

 

Figure 3-6 Basic Statistics of "Golden" Extraction Set  

(generated by commercial software JMP) 

 

    Correlation analysis is then done on the linear SBPV calculated model parameter die mean 

values versus reference extraction set values. Correlation coefficients close to 1 are achieved for 

all 4 compact model parameters. Therefore, the sensitivity matrix S calculation is verified and 



 

32 
 

can be implemented in our proposed spatial variability linear propagation system, as discussed in 

the next section. 

 

 

Figure 3-7 Comparison between SBPV Calculated Results and Extracted Reference Results 

Correlation coefficients close to 1 are achieved for all model parameters (GOOD MATCH):  

ρVTO=0.9715,  ρKP=0.9660, ρUCRIT=0.8318, ρLAMBDA=0.9879 

 

 



 

33 
 

3.4.2 SBPV Results and Discussion 

As described in the previous section, our proposed method will be tested on previously defined 

5×4 linear system with electrical performance data (I1,,…, I5) and EKV model parameters (VTO, 

KP, UCRIT and LAMBDA).  

Similar to (3.12) and (3.13), we can rewrite the compact model parameter across wafer 

variability pattern as 

                                                                        (3.21) 

Here, spatial coordinate variables, x and y, are the corresponding die positions (vertical and 

horizontal, as shown in Figure 3-4 Wafer Map and Summary of Data Structure on the wafer. The 

parabolic pattern shows good but not perfect fit for the spatial variability model; we will discuss 

more about this later in this section.  

    Finally, we get the normal equation for spatial variability pattern coefficient linear regression 

procedure. 

 
 
 
 
 
 
 
 
 
 
 

                      

    

 
                        

    

 
 

                      

    

 
                      

     
 
 
 
 
 
 
 
 
 
 

          

 
 
 
 
 
 
 
 

      

 
      

 
 

         

 
          

 
 
 
 
 
 
 

    (3.22) 

Here, as shown in (3.18), we implement the Sspatial with our previously calculated/verified 

sensitivity matrix and then get the spatial sensitivity matrix. 
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   (3.23) 

 

 
 
 
 
 
 
                                    

                                                 
 

 
 
 

 
 

 

 
 
 

                                      
                                                   

 
 
 
 
 
 
 

 

 

The proposed SBPV method is applied on the DUTs of smallest DUTs (L=60nm W=500nm) 

all over the test wafer. The selected 4 EKV compact model parameter spatial variability models 

are then built with calculated coefficients from the linear regression system. For comparison with 

the reference set, we calculate the absolute mean values of the compact parameters of all the dies 

on the wafer from this spatial variability model. Correlation analysis similar to the one employed 

for linear BPV implementation verification is used and the results are shown below. 



 

35 
 

 

 

Figure 3-8 Comparison between Spatial Variability Linear Propagation Calculated Results  

and Extracted Reference Results 

Correlation coefficients for all model parameters:  

ρVTO,spatial=0.4754,  ρKP,spatial=0.6386, ρUCRIT,spatial=0.4028, ρLAMBDA,spatial=0.6301 

 

As seen from the comparison results and coefficient analyses, there is only moderate 

correlation (ρ around 0.5-0.6) between extracted reference values and model parameter values 

obtained from calculated coefficients in the spatial variability model.  
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The errors responsible for the errors in the moderate correlation structure come from two 

major sources: 1) calculation error in SBPV, i.e. linear regression on the coefficients; 2) 

modeling or fitting error in the simplified hierarchical spatial variability model, especially in the 

assumed whole wafer parabolic variability pattern. In order to decompose the errors shown here, 

we performed further analyses on the results. A full wafer parabolic spatial variability fitting on 

the reference set is done and the obtained coefficients are used to find the compact model 

parameter values under the assumptions of the hierarchical spatial variability model. Excluding 

the second error source, we performed a new correlation analysis on the model parameters; and 

for better illustration, fitted spatial patterns are also shown in the figures below. 

As shown in the figures, good correlations are achieved in the compact model parameters 

spatially fitted on the parabolic pattern between calculated coefficients and reference fitting 

coefficients. The spatial patterns of all the compact model parameters over the full wafer also 

show good similarity between results from our method and reference set. Therefore, the error 

from the second source, i.e. our linear propagation method, is very small compared to the spatial 

variability pattern modeling and fitting. If a more advanced or complete hierarchical spatial 

variability model is applied, it will likely lead to better compact model parameter calculation 

results. So improvement on total error reduction, especially error from first source, will be 

discussed in the next chapter, along with techniques for selecting the electrical measurements 

and the corresponding compact model parameters to be extracted. 
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Figure 3-9 Comparison between Spatial Variability Linear Propagation Calculated Results and Extracted 

Reference Results, excluding hierarchical spatial variability model fitting errors 

Correlation coefficients close to 1 are achieved for all model parameters (GOOD MATCH):  

ρVTO,spatial,fit=0.9842,  ρKP,spatial,fit=0.9699, ρUCRIT,spatial,fit=0.8288, ρLAMBDA,spatial,fit=0.9902 
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Figure 3-10 Fitted Spatial Patterns of Compact Model Parameters using calculated coefficients  

vs. Full-wafer Parabolic Spatial Variability Model Fitted Pattern on extracted reference set  

(up: VTO; down: KP) 
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Figure 3-10 Fitted Spatial Patterns of Compact Model Parameters using calculated coefficients  

vs. Full-wafer Parabolic Spatial Variability Model Fitted Pattern on extracted reference set 

(up: UCRIT; down: LAMBDA) 

 

Our SBPV method is not only effective for accurate statistical compact model characterization, 

but quite efficient in computational cost. As shown in the table below, significant reductions in 

total computational cost are achieved on the wafer level. The numbers shown in the table are 
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normalized to the unit operation, which is either one compact model parameter extraction per 

DUT or one linear propagation calculation step per parameter.  

Table 3-5 Computational Cost for Different Compact Model Characterization Methods 

Methods Sensitivity Analysis Extraction/Calculation 

Individual 

Extraction 
N/A  

Number of DUTs per die × Number of dies 

= 68×432=29376 parameter extractions  

Linear BPV Number of ei × Number of pj = 

4×5=20  

1 × Number of dies = 68 linear 

propagations 

SBPV Number of ei × Number of pj = 

4×5=20 

1 × Number of variability spatial  pattern 

coefficients  = 6 linear propagations 

 

 

References for Chapter 3 

[3-1] C. C. McAndrew, “Efficient Statistical Modeling for Circuit Simulation,” Chapter 4 of 

“Design of System on a Chip: Devices and Components,” pp. 97-122, 2004 

[3-2] C. C. McAndrew, “Statistical Modeling for Circuit Simulation,” Proc. IEEE ISQED, pp. 

357-362, 2003 

[3-3] C. C. McAndrew, X. Li, I. Stevanovic and G. Gildenblat, “Backward Propagation of 

Variance,” Workshop on Compact Variability Modeling (CVM), San Jose, CA, Nov. 2008 

[3-4] X. Li, C.C. McAndrew, W. Wu, S. Chaudhry, J. Victory and G. Gildenblat, “Statistical 

Modeling with the PSP MOSFET Model,” IEEE Trans on CAD of Integrated Circuits and 

Systems, vol. 29, no. 4, pp.599-606, Apr. 2010 

[3-5] C. C. McAndrew, I. Stevanovic, X. Li and G. Gildenblat, “Extensions to Backward 

Propagation of Variance for Statistical Modeling,” IEEE Design & Test of Computers, vol. 27, 

no. 2, pp. 36-43, Mar. 2010 

[3-6] K. Qian, C. J. Spanos, “A Comprehensive Model of Process Variability for Statistical 

Timing Optimization”, Proc. SPIE Int. Soc. Opt. Eng. 6925, 69251G, 2008 



 

41 
 

[3-7] M. Bucher, C. Lallement, C. C. Enz and F. Krummenacher, “Accurate MOS modeling 

for analog circuit simulation using the EKV model,” IEEE Intl Sym on Circuits and Systems 

(ISCAS), pp703-706, May 1996 

[3-8] M. Bucher, C. Lallement, C. C. Enz, “An efficient parameter extraction methodology for 

the EKV MOST model,” IEEE Intl Conf on Microelectronic Test Structures (ICMTS), pp145-

150, 1996 

[3-9] K. Qian, C. J. Spanos, “45nm Transistor Variability Study for Memory Characterization,” 

Proc. SPIE 7641, pp. 76410G-12, 2010 

[3-10] M. Chen, W. Zhao, F. Liu, Y. Cao, “Fast Statistical Circuit Analysis with Finite-Point 

Based Transistor Model,” Design, Automation & Test in Europe Conf, pp. 1-6 Apr. 2007 

 

 

 

 

 



 

42 
 

Chapter 4  

SBPV Parameter Selection   

Compact model parameter extraction is usually done by fitting model predictions to real 

transistor I-V/C-V measurements, often over several transistors of different sizes. For 

deterministic model fitting a large set of parameters must be extracted, with the possible 

exception for some pre-defined technology constants. However, statistical compact model 

characterization only focuses on those model parameters that have physical meaning and 

represent actual process variations sources. Not all model parameters are suitable or necessary to 

be included in the extractable parameter set [4-1].  
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Table 4-1 BSIM and PSP Model Parameters for Statistical Compact Modeling [4-1] 

Model Parameter Physical Meaning Accounted Variations 

BSIM 

VTH0 Long-channel threshold-voltage Traditional threshold variation 

U0 Low-field mobility Current-factor variation 

Nfactor, VOFF Sub-threshold 
Sub-threshold slope and off-current 

variation 

Minv Moderate-inversion 
Variations in moderate-inversion 

regime 

Rdsw Source/drain resistance Dopant variations in the source/drain 

Dsub Drain-induced barrier-lowering DIBL variation 

PSP 

VFB0 Flat-band voltage 
Traditional threshold-voltage 

variation 

NSub0 Substrate doping 
Random dopant fluctuations induced 

threshold-voltage variation 

CFL, ALPIL1 Short-channel effects Short-channel effects variation 

U0, CS0 Mobility Transport variation 

CT0 Interface state 
Sub-threshold-behavior variation 

(with NSub0) 

RSW1 Source/drain series resistance Variations at the source/drain region 

 

    As for the relatively simple EKV model in our test bench implementation, the small number of 

model parameters can still be classified into three groups based on their physical meaning and 

significance in device-behavior prediction [4-2][4-3]. The four parameters (VTO, KP, UCRIT, 

LAMBDA) used in our test bench implementation linear propagation fall basically into this group, 

with LAMBDA added into the set by a more advanced selection scheme shown below. 

 



 

44 
 

Table 4-2 EKV Model Parameters Classified for Statistical Compact Modeling [4-2][4-3] 

Group Parameter Description Note 

Process-

determined 

(technology 

constant) 

COX Gate oxide capacitance  

XJ Junction depth  

DL Channel length correction Leff=L+DL 

DW Channel width correction Weff=W+DW 

First-order 

effects 

(statistically 

extractable) 

VTO Long-Channel threshold voltage Threshold-voltage variations 

KP Transconductance parameter Current-factor or transport 

variations UCRIT Longitudinal critical field 

Second-order 

effects 

(performance 

insensitive) 

LAMBDA Depletion length coefficient  

THETA Mobility reduction coefficient  

GAMMA Body effect factor  

LETA Short channel effect coefficient  

WETA Narrow width effect coefficient  

 

 

Figure 4-1 Statistically Extractable Compact Model Parameter Selection Scheme [4-3] 
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4.1   Electrical Measurements Selection 

. As mentioned briefly when reviewing the BPV method in Section 3.1, the selection criteria 

for the electrical measurement set e, used in the linear BPV method as well as our proposed 

SBPV method, should meet two criteria. First, since the purpose of compact variability modeling 

is better statistical circuit simulation, measurements of transistor characteristics that have large 

impact on circuit performance should be included in the set. This requires knowledge of circuit 

applications and device operations. In addition, since our method is based on linear regression of 

the coefficients in the spatial variability model, the measurement set selection should ensure that 

the spatial sensitivity matrix Sspatial is well conditioned for calculation accuracy. A sensitivity 

analysis based selection scheme is proposed for this purpose. 

As shown in the flowchart in Figure 4-2, nominal compact model parameters are first 

determined by performing full extraction on nominal wafer data. The nominal data set is 

obtained by pre-processing full-wafer Ion measurements, as shown in figures below. Next, we fix 

all the compact model parameters to their nominal values except for those selected for extraction, 

as discussed in the previous section. Sensitivity matrix calculations are then performed on all the 

I-V measurement points (100 points per transistor) and the selected model parameters (4 EKV 

model parameters). We then examine the S100×4 matrix and perform e set selection based on two 

criteria: 1) extreme absolute values exclusion, i.e. keep only the rows with moderate sij values 

(each row corresponds to one ei), which ensures non-singularity in the matrix; and 2) relative 

rankings of importance, i.e. select the rows with highest sij values among all columns (each 

column stands for one pj), which selects electrical measurements that are highly sensitive to all 

model parameter variations. 
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For fast analysis or initial calibration, it is not wise to calculate the large sensitivity matrix by 

blindly performing simulations on all possible e set candidates. A rough estimation of the 

sensitivities can be done by analytical derivation on basic compact model equations or hand 

calculation with knowledge of MOSFET device physics, which is discussed in detail in [4-4].  

 

 

Figure 4-2 Electrical Measurement Set Selection Flowchart 
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Figure 4-3 Wafermap of Electrical Measurements 

The nominal dataset is chosen as measurements from the dies within the boxed area; 

[Note] Mean values are calculated at the transistor array level  

on the right plot in addition to ones at the die level on the left 

 

The five electrical measurement metrics (orange) found using our selection scheme are shown 

on a typical MOSFET DUT Id~Vds/Vgs curve. Their selection is based on the sensitivity matrix 

simulation results shown in the following plots. The surface plots illustrate the sensitivities of Ids 

measured at different voltage bias points (Vds, Vgs) to the compact model parameters. As we can 

see from the plots, our main selection decisions are made based on the relative rankings of sI,VTO 

and sI,UCRIT, since sI,KP and sI,LAMBDA show small changes over the entire plane. 

Also shown on the MOSFET DUT Id~Vds/Vgs curve are the metrics (purple) used in our test 

implementation, which is determined using the criteria suggested in [4-4]. This selection has 

wider current/voltage coverage; this is because saturation and sub-threshold performance plays a 

key role in digital circuit applications. 
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Figure 4-4 Typical Ids~Vgs/Vds Curve of MOSFET DUT 

Electrical metrics set selected by our proposed scheme (orange) [upper] vs. [4-4] (purple) [lower] 
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Figure 4-5 Sensitivities of Ids to EKV Compact Model Parameters @ different (Vgs, Vds)  
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Chapter 5  

Conclusions 

An efficient, variability-aware compact model characterization methodology is required to 

capture the hierarchical variability structure observed in modern IC manufacturing processes. 

Consequently, our goal was to develop a compact model variability characterization method 

based on statistical linear propagation, which directly transfers the hierarchical variability spatial 

pattern observed in electrical measurement data to specified compact model parameters. We call 

this method the Spatial Backward Variability Propagation method, or SBPV. This methodology 

has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact 

model. The model parameters that will capture the spatial variability are characterized using 

linear regression on spatial pattern coefficients, using with a spatially-tuned sensitivity matrix, 

which is first verified by the traditional linear BPV method. Calculation results are then 

compared with reference set obtained by full-wafer direct model parameter extractions. Good 

match is realized between the “calculated” and “extracted” compact model parameters. Further 
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studies are done on the proper selection of both compact model parameters and electrical 

measurement metrics used in the method. Results are shown in comparison to those reported in 

the relevant literature. 

The proposed spatial variability linear propagation method can be extended and applied on 

more complicated and complete compact models, such as the industrial standard BSIM or PSP 

models. More advanced hybrid-hierarchical variability models, including spatial / deterministic / 

random on and across device / die / field / wafer / lot levels, can be included in the SBPV 

procedure. Most importantly, well-designed variation-sensitive test structures fabricated using 

cutting-edge technology are need to build better statistical compact models and characterize with 

our methodology. 

In addition, these variability-aware characterized compact models may be integrated into the 

existing statistical circuit design flow for accurate prediction on circuit performance deviations 

caused by process variations. Our SBPV method will serve a good role in the statistical IC 

design flow by providing large numbers of physical-variation-aware compact model cards for 

Mote Carlo simulations or customized corner simulations. More than that, since the combination 

of random and spatial variability often yields non-Gaussian distributions, we believe that SBPV 

will more realistically capture the tails of those distributions and therefore be more suitable for 

generating proper corner models. Due to the high efficiency of our method, model cards for 

different design parameters, such as transistor length and width, can be generated specifically for 

each design. This will help increase both the speed and accuracy in statistical circuit simulation 

results. 
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