
Algorithms for Next-Generation High-Throughput

Sequencing Technologies

Wei-Chun Kao

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-99

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-99.html

September 2, 2011



Copyright © 2011, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Algorithms for Next-Generation High-Throughput Sequencing
Technologies

by

Wei-Chun Kao

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science
and the Designated Emphasis

in
Computational and Genomic Biology

and
Communication, Computation, and Statistics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Yun S. Song, Chair

Professor Sandrine Dudoit
Professor Kannan Ramchandran

Fall 2011



Algorithms for Next-Generation High-Throughput Sequencing

Technologies

Copyright 2011

by

Wei-Chun Kao



1

Abstract

Algorithms for Next-Generation High-Throughput Sequencing Technologies
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Computational and Genomic Biology

and

Communication, Computation, and Statistics

University of California, Berkeley

Professor Yun S. Song, Chair

Recent advances of DNA sequencing technologies are allowing researchers to generate

immense amounts of data in a fast and cost effective fashion, enabling genome-wide

association study and population genetic research which could not be done a decade

ago. There are quite numerous computational challenges arising from this advance-

ment, however. Examples include efficient algorithms for processing raw data gener-

ated by sequencing instruments, algorithms for detecting and correcting sequencing

errors, algorithms for detecting genome variations from sequence data, just to name a

few. Because different sequencing technologies can have drastically different charac-

teristics, these algorithms often need to be adapted in order to produce most accurate

results.

In this thesis, I will address a few of the aforementioned problems. First, I will

describe two model-based basecalling algorithms for the Illumina sequencing plat-

forms: BayesCall and naiveBayesCall. The novelty of BayesCall algorithm is that

it is fully unsupervised, requiring no training data with known labels, and therefore

it is applicable to data without a reference sequence. It also dramatically improves

sequencing accuracies. Built upon BayesCall algorithm, naiveBayesCall dramatically

improves computational efficiency by approximating the original model without sac-

rificing accuracy. We will also show that improved basecall can have positive effects

on the downstream sequence analysis, such as the detection of single nucleotide poly-

morphism and the assembly of novel genomes.
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In the third chapter, an algorithm, called ECHO, for correcting short-read se-

quencing errors will be described. The correction algorithm efficiently computes all

overlaps between sequencing reads and corrects errors by using statistical models.

Since it does not rely on reference genomes, ECHO can also be applied to de novo

sequencing. Most other error correction algorithms require users to specify key pa-

rameters, but the optimal values for these parameters are unknown to users and can

be hard to specify. Without key parameters being optimized, the effectiveness of

error correction algorithm could sometimes be dramatically reduced. Based on sta-

tistical models, ECHO optimizes these parameters accordingly. We will show that

ECHO can significantly reduce sequence error rates and also facilitate downstream

sequence analysis. It is also demonstrated that ECHO can be extended to detect

heterozygousity from sequencing data.

These algorithms are developed in hopes to make downstream analysis of sequence

data easier and ultimately facilitate genome researches.
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Chapter 1

Introduction

One goal of the genetic studies is to understand the relationship between genetic

materials and the phenotypical variances. Pioneered by numerous scientists, such as

Frederick Griffith[17], Oswald Theodore Avery, Colin McLeod, Maclyn McCarty[1],

Alfred Hershey and Martha Chase[21], it has been discovered that DNA is the genetic

material for most of the life forms. Since then, scientists have been eager to uncover

the location and function of each gene in the DNA. The understanding of genes is

not only of scientific interest but also of great importance in developing personalized

disease preventions and treatments. To fully understand gene and their respective

functions, the first step is to decode the nucleotide sequence from DNA, a step called

DNA sequencing.

The sequencing of the whole human genome was not possible before the invention

of Sanger sequencing[43]. Sanger sequencing uses chain termination method, which

consists of a DNA polymerization step and a capillary electrophoresis step. It can

generate DNA reads with length as long as one kilo-bases(kb) with error rates as low

as one error in 10,000 bases[14]. Together with the fact that it can be automated,

Sanger sequencing became the method of choice for DNA sequencing in the last

decade. In fact, the first human genome was sequenced with the Sanger sequencing

method in the Human Genome Project(HGP) 1. However, because Sanger sequencing

requires a capillary electrophoresis step, the per-base cost and the lengthy preparation

time can still be prohibitive. In the case of HGP, it took more than 13 years and

over 3 billion dollars to complete the sequencing. Unfortunately, to identify common

gene variations and unveil the connection between genes and their associated traits,

hundreds if not thousands of individual’s genome must be sequenced. It is obvious

that population scale genome study is next to impossible with Sanger sequencing.

Currently, thanks to recent advances in high-throughput sequencing technology[3,

1http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml



2

36, 37], the generation of immense amounts of raw, unassembled sequence data in

fast and cost-effective way has become possible. Most of these new technologies

exploit massive parallelization of the DNA polymerization step and eliminate the

capillary electrophoresis step. This results in the generation of millions of DNA reads

in a matter of a few days. As a consequence, obtaining whole-genome sequence

information will become routine soon. This remarkable technological advancement

is opening up vast new opportunities for biological sciences and related fields, for

example, [22, 20]. The whole-genome description of DNA sequence variation will help

us understand the biological mechanisms through which genetic polymorphisms affect

phenotypes. However, to bring this promise of whole genome sequencing to fruition,

several immediate challenges must be overcome. In particular, the raw error rates

of the high-throughput sequencing technologies are several folds higher compared to

Sanger sequencing, and the read lengths are several folds shorter.

One immediate remedy for the shorter read lengths and higher error rates is to

use reference sequences. Reference sequences are known genomes that were possibly

obtained by Sanger sequencing. With a reference sequence from a different individual

of the same species or closely related species, high-throughput sequencing reads can

be mapped to a reference and have variations identified. This route is pursued by

[31, 30, 33, 4]. These methods are computationally very efficient and widely used.

Nevertheless, it has been shown that sequencing errors can still affect detection of

variations and bias can be introduced when using a reference genome [10, 19, 9, 18].

Moreover, the requirement of a reference genome is sometimes too costly. Therefore,

reducing the error rates and increasing the read lengths of high-throughput sequencing

reads are promising alternative approaches to using a reference genome. To address

these problems, it is necessary to develop scalable, accurate computational tools for

data acquisition, characterization, and analysis.

In this text, we will focus on data generated by Illumina sequencing platforms

(Illumina). It is broadly adopted because of its low per-base cost and extremely

high throughput. (More details on the Illumina sequencing platforms can be found

in Chapter 2.) To summarize its capabilities, tens of millions of DNA fragments

can be sequenced in a run, and the error rates are usually well below 1% at the

beginning of the reads but gradually increase to more than 2% toward the end of

the reads. Generally, the read lengths range from 36bp to 100bp, and are limited by

the aforementioned increasing error rates. Based on the characteristics of Illumina,

there are mainly two approaches to address the short read lengths and the high error

rates. One is to develop improved basecall algorithms, and the other is to correct

sequencing errors produced by Illumina. By reducing the error rates, one can also

increase the read length in each run. In the following, we will briefly describe these
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two approaches.

1.1 Developing improved basecall algorithms

The first approach is to develop improved image analysis and base-calling algo-

rithms. In Illumina, each type of base is labeled with fluorescent dyes with different

colors, and the fluorescent signals are recorded for each base in each of the DNA frag-

ment. In the ideal case, the identity of the bases can be extracted by transforming

signals from color space into base space and choosing the base that has the high-

est response. However, several types of non-stationary noises largely complicate the

basecall process. (More detail on these noises can be found in Chapter 2.) These

non-stationary noises include prephasing and phasing effects, death effects, residual

effects, and other stochastic noises. Most of these effects are due to incomplete chem-

ical reaction, and the strength of these effects can vary even from read to read in the

same run. Because the noise is intrinsic to the chemical process, a basecaller must be

able to decouple the noise from actual signals in order to accurately call bases.

There are several studies[50, 12, 41, 28] that try to develop improved basecall

algorithms by addressing some of the aforementioned noises. Indeed, by employing

more sophisticated statistical methods, it has been demonstrated that it is possible

to deliver significant improvements over the tools developed by the manufacturers of

the sequencing platforms. Nonetheless, most of these algorithms require a labeled

training data set and assume that the noise in the training data set can be directly

translated to testing data set. In Chapter 2, we will derive model based basecallers,

named BayesCall[26] and naiveBayesCall[24, 25], that do not require a training data

set and achieve better accuracy.

The BayesCall algorithm has several novelties. First, it is the first algorithm that

addresses all the aforementioned noises. In fact, BayesCall is the first model to reveal

the importance of the residual effect. In addition, BayesCall is based on unsupervised

machine learning. It uses a fully parameterized probabilistic model to capture all the

known non-stationary noises. Therefore, unlike most of other basecall algorithms, it

does not require labeled training data. That is, it does not require a known genome

to be sequenced as a reference dataset. Additionally, model parameters can be fit

to each run without using a reference run. By detailed modeling of the underlying

chemical process, the sequencing accuracy is drastically improved, and the sequencing

cost is therefore reduced. Empirical studies show that BayesCall remarkably improves

the basecall accuracy and also reduces false positives in gene variation detection.

One drawback of the BayesCall algorithm is that it requires a simulated annealing

step[29] to extract the most probable bases and thus is computationally expensive.
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To tackle this problem, we augment the original inference algorithm by utilizing nu-

merical approximations. The resulting algorithm, called naiveBayesCall, runs orders

of magnitude faster than the original BayesCall algorithm. With naiveBayesCall,

basecall can be done in hours with accuracy comparable to the orignal BayesCall al-

gorithm. We then show that the improvement in basecallers can translate to improved

performance in de novo assembly [38, 46, 7, 35, 54, 48, 31, 30, 5].

1.2 Correcting sequencing errors

An alternative approach to reduce error rates is to correct for potential errors

after base-calling has been performed by leveraging on the fact that each position

in the genome on average is sequenced multiple times. Several methods have been

developed for this approach; e.g., see [15, 7, 44, 45, 8, 42, 40, 51, 52]. There are

usually two steps that is common in these methods: a neighbor finding step and a

correction step. The neighbor finding step attempts to group reads that cover the

same region in the original genome. These reads are regarded as “neighbors” to each

other. After neighboring reads are identified, one can aggregate information from

neighboring reads and correct for potential sequencing errors.

When there is a reference genome, identifying reads that cover the same region can

be done via “read mapping” [31, 30], which involves aligning reads against the refer-

ence genome. Reads that are mapped to the same region of the reference genome are

regarded as neighbors. Subsequently, correction can be done by assessing disagree-

ments of reads that cover the same region. When the reference genome is unavailable,

it is harder to find reads that cover the same region. One common approximation to

the neighbor finding step is to only consider k-mers instead of the reads. k-mers are

nucleic acid sequences with length k, i.e. sub-reads that are of length k. In this ap-

proximation, k-mers that are similar to each other is regarded as potential neighbors,

and the correction is done in the k-mer level instead of read level.

This approximation is popular for several reasons. First, it leads to very efficient

algorithms. Both the memory and computational requirements are minimum since

only k-mer information needs to be kept. In addition, many popular de novo assem-

blers are based on de Bruijn graphs which use k-mers as building blocks. Therefore,

it is very natural to have a preprocessing step that corrects for potential errors in k-

mers. However, reads can sometimes provide key information in recognizing potential

errors and resolving them. In Chapter 3, we will develop a read-overlap based error

algorithm called ECHO[23].

ECHO does not rely on the k-mer approximation and attempts to use as much

read information as possible. Furthermore, ECHO has a few novelties. First, it does
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not require users to specify some of the key parameters. The optimal values for these

parameters can sometimes be hard for a user to specify, and suboptimal parameters

usually yield unfavorable results. Having that in mind, ECHO was designed to search

optimal parameters automatically and estimate error characteristics specific to each

dataset. The other novelty is that ECHO corrects sequencing errors based on prob-

abilistic models. It can take non-uniform error rates of each postion in each reads

into account. It is also easy to generalize it to handle diploid genomes. We then

show that ECHO drastically improves the sequencing error rates in both simulated

and real datasets. It is worth noting that, in a study of a Saccharomyces cerevisiae

whole-genome sequencing dataset, we discover that ECHO outperforms other meth-

ods on this more complex genome by being more conservative on regions that have

abnormal coverages.
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Chapter 2

Basecall Algorithms for Illumina

Genome Analyzer

2.1 Introduction

There now exist several competing ultra high-throughput sequencing platforms,

including the ones from Illumina (Solexa), Roche (454), and Applied Biosystems

(SOLiD). While the discussion in this chapter applies specifically to Illumina’s Solexa

technology (hereafter Illumina), the high-level framework we propose—namely, using

graphical models to devise model-based basecalling algorithms—should be applicable

to other high-throughput sequencing platforms.

The best known basecallers for the Illumina platforms include Bustard (developed

by Illumina themselves), Alta-Cyclic [12], BayesCall[26], naiveBayesCall[24, 25] (de-

veloped by ourselves), and lately, Swift[50] and Ibis[28]. We will elaborate on Bustard

in Chapter 2.3. Alta-Cyclic is a method based on the support vector machine (SVM)

and requires “supervised learning using a rich DNA library with a known reference

genome” [12]. Specifically, it requires using a control lane containing a sample with

a known reference genome. It then relies on Bustard and alignment to create a rich

training set for supervised learning. Note that using a control lane in every sequencing

run to create a rich training library can be burdensome, since it incurs cost and takes

up space on the flow cell (defined later) that could otherwise be used to sequence

a sample of interest to the biologist. Further, Alta-Cyclic’s software architecture is

designed to run only in a clustered computing environment, thus limiting its utility.

In this chapter, we introduce a novel model-based approach to basecalling, founded

on the tools of statistical learning. Our main goal is to model the sequencing process

to the best of our knowledge, by taking stochasticity into account and by explicitly



7

modeling how errors may arise. In contrast to Alta-Cyclic’s SVM approach, our

method, called BayesCall, does not require supervised training and hence does not

require using a control lane. Furthermore, BayesCall is flexible enough to incorporate

various features of the sequencing process. To illustrate this point, we explicitly

model residual effects and incorporate time-dependent parameters into our method.

We show that our method significantly improves the accuracy of basecalls, particularly

in the later cycles of a sequencing run. For 76-cycle data on a standard viral sample

PhiX174, BayesCall achieves about 51% improvement over Bustard in the average

per-base error rate, and about 21% improvement over Alta-Cyclic. A detailed study

of BayesCall’s performance is presented in this chapter.

In our approach, we obtain basecalls by maximizing a posterior distribution of

sequences given observed data (i.e., fluorescence intensities) and assuming a uniform

prior on sequences. One of the advantages of this approach is that we can readily com-

pute the probability of observing each base, and this probability can be transformed

into a useful base-specific quality score. We show that BayesCall not only reduces the

error rate substantially, but also produces quality scores with a high discrimination

ability [13] that consistently outperforms both Bustard’s and Alta-Cyclic’s.

Unfortunately, however, this improvement in accuracy came at the price of sub-

stantial increase in running time. BayesCall is based on a generative model and per-

forms base-calls by maximizing the posterior distribution of sequences given observed

data (i.e., fluorescence intensities). This step involves using the Metropolis-Hastings

algorithm with simulated annealing, which is computationally expensive; it would

take several days to base-call a single lane using a desktop computer. This slow

running time seriously restricts the practicality of BayesCall.

To overcome the difficulty, we develop another algorithm called naiveBayesCall. It

is based on the same generative model as in BayesCall and employs the same param-

eter estimation method. However, in contrast to BayesCall, our alternative algorithm

avoids doing Markov chain Monte Carlo sampling in the base-calling part of the al-

gorithm. Instead, naiveBayesCall utilizes approximation and optimization methods

to achieve scalability. To test the performance of our method, we use a standard re-

sequencing data of PhiX174 virus, obtained from a 76-cycle run on Illumina’s GA II

platform. Then, we demonstrate how improved base-calling accuracy may facilitate

de novo assembly.

We remark that the main novelty of our work is the explicit mathematical de-

scription of the sequencing process. Its flexibility should allow one to incorporate

additional features which might later be found to be important. Moreover, being a

fully parametric model, our approach provides information on the relative importance

of various factors that contribute to the observed intensities; such information may
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become useful for designing an improved sequencing technology. Lastly, we believe

that the framework introduced here provides a basis for designing a more efficient,

accurate algorithm in the future.

2.2 Illumina Genome Analyzer

In what follows, we provide a brief overview of the Illumina sequencing platform.

2.2.1 Sequencing-By-Synthesis

In sequencing-by-synthesis (SBS), a large number of random DNA fragments are

clonally amplified and used as templates for sequencing in a highly parallel fashion.

See [3, 36] for an accessible introduction to currently available SBS platforms and

whole-genome resequencing. The Illumina sequencing platform in particular works

as follows.

1. A DNA sample from an individual is obtained. The sample contains many

copies of the same genomic DNA at full length.

2. Randomly fragment the genomes in the sample and then create a DNA library

according to a chosen fragment size.

3. A small amount of single-stranded fragments from the DNA library is placed

on a glass surface (called the flow cell). Each single-stranded DNA fragment

gets covalently attached to the surface and gets amplified in the neighborhood

of the initial attachment, resulting in a cluster of about 1000 identical copies

of the fragment. The flow cell has eight lanes, and the process just described

can generate several million clusters of DNA fragments on each lane. (Remark:

Errors in the amplification step may be a significant source of error in basecalls,

but quantifying this effect would require a detailed model of the amplification

process. In our work, we assume for simplicity that the amplification step is

error-free.)

4. Each single-stranded fragment in a given cluster serves as a template, and SBS

is carried out by sequentially building up complementary bases as described

below. The sequencing platform uses four distinct fluorescently-labeled termi-

nating bases, essentially A, C, G, T nucleotides with respective fluorophores

and reversible terminators attached. The role of the terminator is to prevent

continuation of the complementary strand synthesis.
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(a) Add a mixture of DNA polymerase and all four terminating base types to

the flow cell. Ideally, the goal of this process is to add exactly a single com-

plementary terminating base to each template, but as we describe later,

this process is not perfect and some templates may jump ahead (prephas-

ing) or lag behind (phasing) in building up complementary strands. This

is a major source of complication for basecalling.

(b) The clusters are then excited by lasers and CCD images of fluorescence

emission are taken four times in optimal wavelengths for the four fluo-

rophores. Many non-overlapping CCD images need to be taken to cover

the entire flow cell. Each lane of the flow cell is divided into 330 (re-

spectively, 100) non-overlapping tiles in Genome Analyzer I (respectively,

II).

(c) Fluorophores and reversible terminators are then chemically removed, and

the mixture of polymerase and terminating bases is then added to the flow

cell to start the next cycle. Repeating this process for L cycles produces

short-reads of length L.

2.2.2 Extracting sequence information

Obtaining actual DNA sequences from the Illumina platform involves two prob-

lems: image analysis and basecalling. These steps are described below.

Image Analysis

One of the primary functions of image analysis is to correct for the imperfect

repositioning of the CCD camera between cycles and for chromatic aberration of its

lens. Currently this correction is done by aligning the images from subsequent cycles

to a reference image from the initial cycle.

Another important function of image analysis is to identify clusters from their

surrounding background, where each cluster contains identical copies of DNA tem-

plates (see step 3 in the above description of SBS). At present, this is done using

thresholding and segmentation, which are standard image analysis techniques.

The signal for each cluster is characterized as a time series data of fluorescence in-

tensities and noise. The intensities for each cluster are obtained by summing the pixel

values within the cluster and subtracting out its neighborhood background signal.
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Basecalling

For each cluster isolated by image analysis, the basecalling step converts the flu-

orescence signals into actual sequence data with quality scores. A primary challenge

in basecalling for this sequencing technology is that the data between cycles are not

independent. As explained in step 4(a) of the previous section, some templates in

each cluster may undergo imperfect synthesis and jump ahead or fall behind each

cycle. These effects become more pronounced in later cycles, thus putting a serious

limitation on the read length. There are other stochastic effects in the sequencing

process that we need to model to obtain accurate sequence data.

2.3 The Bustard Algorithm

The objective of basecalling is to transform observed intensities into sequences.

Bustard achieves this goal by performing the three steps described below.

2.3.1 From intensities to concentrations

We use I t,k = (IAt,k, I
C
t,k, I

G
t,k, I

T
t,k)
′ ∈ R4×1 to denote the fluorescence intensities of A,

C, G, T channels at cycle t in cluster k, after subtracting out the background signals.

Define Z t,k = (ZAt,k,ZCt,k,ZGt,k,ZTt,k)′ ∈ R4×1, where ZAt,k denotes the concentration

(or number) of templates in cluster k with A-terminators at cycle t; the variables

ZCt,k,ZGt,k,ZTt,k are similarly defined. The spectra of the four fluorophores usually

overlap [53], and this effect can be modeled as

I t,k = XZ t,k, (2.1)

where X = (Xij) ∈ R4×4 is a 16 parameter matrix called the crosstalk matrix, with

Xij capturing the response in channel i due to fluorescence of a unit concentration

of base j. The Bustard basecaller assumes that X is the same for all clusters within

a given tile. While some physical properties (such as overlapping dye spectra) mod-

eled by this matrix should remain constant over time, others are not. For instance

the relative intensities of dyes to concentration are affected by variations in focus,

temperature, and fluorescent illumination. Because the crosstalk matrix X is the un-

observed basis for the intensity space, the problem of estimating the crosstalk matrix

in multivariate statistics can be generalized as a factor analysis. [32] suggested a spe-

cialized iterative method for estimating X and that method is employed in Bustard.

Upon estimating X, its inverse is used in (2.1) to obtain an estimate of Z t,k.
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2.3.2 Renormalization of concentrations

After observed intensities I t,k are transformed into concentrations Z t,k, Bustard

tries to address the signal decay problem as follows. First, for each cycle t, compute

the average concentration Z̄t across a tile using

Z̄t :=
1

N

N∑
k=1

(ZAt,k + ZCt,k + ZGt,k + ZTt,k),

where N denotes the total number of identified clusters in a given tile. Then, for every

cycle t and cluster k, renormalize the concentration Z t,k by multiplying it with Z̄1/Z̄t.
Note that this renormalization leads to the same tile-wide average concentration for all

cycles. To avoid introducing more notation, in what follows we use the same symbol

Z t,k to denote renormalized concentrations. For a sequencing run with L cycles, we

use Zk = (Z1,k, . . . ,ZL,k) ∈ R4×L to denote the time series data of renormalized

concentrations for cluster k. The subsequent basecalling analysis is done on Zk.

2.3.3 From renormalized concentrations to sequences

The DNA synthesis process is modeled by the following Markov model:

• Phasing: With probability p, no new base is synthesized.

• Prephasing: With probability q, two bases are synthesized.

• Normal Incorporation: With probability 1 − p − q, exactly one new base is

synthesized.

At cycle 0, all templates start at position 0; i.e., no nucleotide has been synthesized.

In each subsequent cycle, the position of the terminator in a template changes from i

to j according to the following (L+ 1)-by-(L+ 1) transition matrix P = (Pij), where

0 ≤ i, j ≤ L:

Pij =


p, if j = i,

1− p− q, if j = i+ 1,

q, if j = i+ 2,

0, otherwise.

The estimation of p and q is done for each lane of the flow cell, and the same p and q

are used for all cycles. Note that the (i, j) entry of the matrix P t corresponds to the

probability that a terminator at position i moves to position j after t cycles.

Now, let Z◦k = (Z◦1,k, . . . ,Z◦L,k) ∈ R4×L denote the concentrations in the ideal

case in which there is no phasing or prephasing. Then, the observed concentrations
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Zk = (Z1,k, . . . ,ZL,k) in the presence of phasing and prephasing are assumed to be

related to Z◦k by Zk = Z◦kQ, whereQ = (Qjt) is an L-by-L matrix with Qjt = [P t]0,j,

the probability that a template terminates at position j after t cycles. More explicitly,

Z t,k =
∑L

j=1 Z◦j,k[P t]0,j. Hence, to invert the phasing and prephasing effects and to

infer Z◦k, Bustard computes ZkQ
−1 for each cluster k. Finally, basecalling for that

cluster k is done as follows: For j = 1, . . . , L, the jth base of the templates is chosen

to be the row index of the largest entry in column j of the 4-by-L matrix ZkQ
−1.

(Recall that the row indices 1, 2, 3, 4 correspond to A, C, G, T, respectively.)

2.4 The BayesCall Algorithm

Let s1,k, s2,k, . . . , sL,k denote the length-L prefix of the true complementary DNA

sequence in cluster k. Ideally, at cycle t we want each template in the cluster to be

synthesizing the base st,k. However, because of the stochastic effects described earlier,

at cycle t some templates might be synthesizing the base-pair at position t′ < t, while

others might be synthesizing at position t′ > t. The extent of this “getting out of

phase” phenomenon increases with t.

2.4.1 The underlying graphical model

Here, we introduce a flexible basecalling algorithm based on statistical learning.

This framework allows us to handle stochasticity in a more sophisticated way than

does Bustard. For example, as we elaborate later, it is possible to incorporate cycle-

dependent parameters into our model. For ease of notation, we present our algorithm

for the case in which parameters are cycle independent.

The Basic Model

Let ei denote a 4-component column unit vector with a 1 in the ith entry and

0s elsewhere. As before, we use the basis with A, C, G, T corresponding to indices

1, 2, 3, 4, respectively. Hence, st,k = A corresponds to the column vector St,k = eA,

etc. Whenever we modify the character st,k, we modify the corresponding vector St,k
accordingly, and vice versa. We use Sk = (S1,k, . . . ,SL,k) to denote the 4-by-L binary

sequence matrix corresponding to the complementary DNA sequence s1,k, s2,k, . . . , sL,k
in cluster k. The main goal of basecalling is to infer Sk, and hence the sequence

s1,k, s2,k, . . . , sL,k.

LetQt denote the column t of the L-by-L matrixQ defined above. Recall that the

jth component of Qt is [P t]0,j, where the matrix P t gives the probability distribution
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of the position of the terminator at cycle t in a given template. Therefore, the product

SkQt ∈ [0, 1]4×1 gives the probability distribution for a given template in cluster k

to end with an A-, C-, G-, or T-terminator.

We explicitly model the decay in intensities as follows. We use Λt,k to denote

the random variable corresponding to the per-cluster density of templates that are

“active” (i.e., able to synthesize further) at cycle t in cluster k. Our model for

stochastic changes in Λt,k is

Λt,k = (1− d)Λt−1,k + (1− d)Λt−1,kε, (2.2)

where ε is a 1-dimensional Gaussian noise with zero mean and variance σ2. Recall that,

in Bustard, ZAt,k,ZCt,k,ZGt,k, and ZTt,k denote the concentration of templates in cluster

k at cycle t with A-, C-, G-, and T-terminators, respectively. In our framework,

Λt,kSkQt is analogous to Bustard’s Z t,k = (ZAt,k,ZCt,k,ZGt,k,ZTt,k)′, and we use Zt,k =

(ZA
t,k, Z

C
t,k, Z

G
t,k, Z

T
t,k)
′ to denote Λt,kSkQt.

We also explicitly model the stochasticity associated with observing intensities as

multivariate Gaussian noise. Our basic model is given by the following formulation:

I t,k = XZt,k +
∑

b∈{A,C,G,T}

Zb
t,kη

b, (2.3)

where X is the previously described 4-by-4 crosstalk matrix, and ηA,ηC ,ηG,ηT ∈
R4×1 are independent and identically distributed 4-dimensional Gaussian noises each

with zero mean and covariance matrix Σ. In what follows, we simplify this basic

model to speed up the computation and enrich it to make it more accurate.

Simplification: In practice, the L-dimensional column vector Qt will have only a few

dominant components, with the rest being very small. More precisely, the dominant

components will be concentrated about the tth entry. Therefore, for each given t, we

can simplify the computation by considering only ` positions before t and r positions

after t. We refer to this simplification as looking at “a window of size `+r+1 about t”

and use Qw
t to denote the L-dimensional column vector obtained from Qt by setting

the entries outside the window to zero. Then, instead of Zt,k, we use

Zw
t,k := Λt,kSkQ

w
t , (2.4)

which being the concentration of templates with A-, C-, G-, T-terminators at cycle

t, including the contributions of phased and prephased templates in the window w

about position t. In our implementation, ` and r are free parameters that the user

may specify. We used ` = 5 and r = 5 in our experiment.
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Enrichment

In addition to phasing and prephasing effects, we have observed other residual

effects that propagate from one cycle to the next. We speculate that this is perhaps

due to incomplete washing of chemicals or an increase in nonspecific illumination.

Importantly, we found that modeling such extra residual effects improves the basecall

accuracy. In our model, we introduce a parameter α and assume that the observed

intensity I t,k at cycle t contains the residual contribution α(1 − d)I t−1,k from the

previous cycle.

Summary

To recapitulate, our model is

St,k ∼ Unif({eA, eC , eG, eT}), (2.5)

Λt,k|Λt−1,k ∼ N ((1− d)Λt−1,k, (1− d)2Λ2
t−1,kσ

2), (2.6)

I t,k|I t−1,k,Sk,Λt,k ∼ N (µt,k, ‖Zw
t,k‖2

2Σ), (2.7)

where ‖ · ‖2 denotes the 2-norm and

µt,k =

{
XZw

t,k, if t = 1,

XZw
t,k + α(1− d)I t−1,k, if t > 1.

(2.8)

We put a uniform (improper) prior on Λ1,k. A graphical representation of the under-

lying model is illustrated in Figure 2.1.

2.4.2 Basecalling

Let Θ = {p, q, d, α, σ2,X,Σ} denote the set of parameters in our model. We

first estimate these parameters for a given tile using the method described presently.

Then, our basecall for cluster k is given by Sk in the maximum a posteriori (MAP)

estimate of the pair (Sk,Λk).

In our implementation, we adopt simulated annealing to achieve a faster conver-

gence rate and more accurate MAP estimate. For a given cluster k, the unobserved

variables we sample are St,k and Λt,k for t ∈ {1, . . . , L}. This procedure is detailed

below.
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I3,kI2,kI1,k I4,k IL,kI5,k

S2,k S3,k S4,k

Λ4,k

SL,k

ΛL,kΛ2,k Λ3,k Λ5,k

S5,k

Λ1,k

S1,k

Figure 2.1: The graphical model for BayesCall. The observed random vari-
ables are the intensities I t,k. Base-calling is done by finding the maximum a
posteriori estimates of St,k. In this illustration, the window within which we consider
phasing and prephasing effects has size 5. In our implementation, we use a window
of size 11.

Initialization

For each cycle t ∈ {1, . . . , L} and cluster k, the initialization S◦t,k of St,k is obtained

by inferring its associated base using

st,k = argmax
b∈{A,C,G,T}

(X−1I t,k)b, (2.9)

where (X−1I t,k)b denotes the bth component of the matrix product X−1I t,k. The

initialization Λ◦t,k of Λt,k is given by

Λ◦t,k = argmin
λ

(λXS◦t,k − I t,k)TΣ−1(λXS◦t,k − I t,k). (2.10)

This is the maximum likelihood estimate of Λt,k if we assume I t,k ∼ N (Λt,kXS
◦
t,k,Σ),

which is an approximation of our full model.

Subsequent Iterations

For iteration i of the Metropolis-Hastings algorithm, let λk = (λ1,k, . . . , λL,k)

denote the value of Λk = (Λ1,k, . . . ,ΛL,k) from iteration i − 1. We first sample a

position x ∼ Unif{1, 2, . . . , L} to modify and update Sx,k according to

P(Sx,k = eb) ∝ (X−1Ix,k)b. (2.11)
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Then, we update Λx,k according to a proposal distribution that is an approximation

to the conditional distribution P(Λx,k | Ik,Sk,Dx(λk)), where Dx(λk) denotes λk
with the xth component λx,k deleted. More exactly, we update Λx,k according to the

proposal distribution

Λx,k|Sk, λx−1,k, λx,k, λx+1,k, Ix,k, Ix−1,k ∼ N (mx,k, v
2
x,k), (2.12)

where the mean mx,k and variance v2
x,k of the normal distribution are given by

v2
x,k =

[
1

(1− d)2λ2
x−1,kσ

2
+

(1− d)2

λ2
x+1,kσ

2
+

(XSkQ
w
x )′Σ−1(XSkQ

w
x )

‖zx,k‖2
2

]−1

,

mx,k = v2
x,k

[
1

(1− d)λx−1,kσ2
+

1− d
λx+1,kσ2

+
(XSkQ

w
x )′Σ−1(Ix,k − rx−1,k)

‖zwx,k‖2
2

]
,

with

zwx,k = λx,kSkQ
w
x ,

and

rx−1,k :=

{
0, if x = 1,

α(1− d)Ix−1,k, if x > 1.

A detailed derivation of the above distribution is provided in Chapter A.1. In com-

puting v2
x,k and mx,k, all terms involving x− 1 are set to zero if x ≤ 1 and all terms

involving x+ 1 are also set to zero if x ≥ L.

Simulated Annealing: Our target distribution is

P(Sk,Λk|Ik,Θ),

where Λk = (Λ1,k, . . . ,ΛL,k). To obtain the MAP estimate of (Sk,Λk) efficiently, we

adopt simulated annealing. In an execution with n total iterations, the temperature in

the ith iteration is taken as (n− i+1)/n. The main advantage of simulated annealing

over the straight Metropolis-Hastings algorithm is its enhanced ability to converge to

the maximum in fewer iterations, leading to a more accurate MAP estimate.

2.4.3 Parameter estimation

As above, let Θ denote the set of parameters in our model. The parameters are

assumed to be shared across all clusters within a given tile, so Θ will be estimated

only once per tile. Our estimation procedure uses the expectation-maximization (EM)

algorithm, viewing Sk and Λk as missing data. Let K denote the number of clusters
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used in parameter estimation. (In the empirical study discussed in Chapter 2.5, we

used K = 250.) The log joint probability over the K clusters can be written as

log
K∏
k=1

P(Ik,Λk,Sk | Θ) (2.13)

= log

{
K∏
k=1

[
P(Sk | Θ)P(Λ1,k)P(I1,k | Λ1,k,Sk,Θ)

×
L∏
t=2

P(I t,k | I t−1,k,Λt−1,k,Λt,k,Sk,Θ)P(Λt,k | Λt−1,k,Θ)

]}

= −1

2

K∑
k=1

L∑
t=1

[
log det(‖Zw

t,k‖2
2Σ) +

(I t,k − µt,k)′Σ−1(I t,k − µt,k)
‖Zw

t,k‖2
2

]

−1

2

K∑
k=1

L∑
t=2

[
2 log((1− d)Λt−1,kσ) +

(Λt,k − (1− d)Λt−1,k)
2

((1− d)Λt−1,kσ)2

]
+ constant, (2.14)

where µt,k is defined in (2.8), det(‖Zw
t,k‖2

2Σ) denotes the determinant of ‖Zw
t,k‖2

2Σ,

and the constant term in last line depends only on the total number L of cycles and

the number K of clusters. Let Θi denote the set of parameters in the ith EM iteration.

The estimate of Θi is given by

Θi = argmax
Θ

EΘi−1

[
log

K∏
k=1

P(Ik,Λk,Sk | Θ)

]
, (2.15)

where the expectation is taken with respect to P(Λk,Sk | Ik,Θi−1) and is computed

using Monte-Carlo integration with the Metropolis-Hastings algorithm.

In the maximization step, we optimize the expected log-likelihood with respect to

one parameter at a time, and iterate through all parameters. One can obtain analytic

solutions for updating α, σ2,X,Σ in the maximization step, but there is no analytic

solution for updating d, p and q. We therefore employ an interior point method to

maximize the expected log-likelihood function with respect to p and q directly and

approximate d with a simpler formulation. Details can be found in Chapter A.2.

2.4.4 Cycle-dependent parameters

Both Alta-Cyclic [12] and Bustard assume that parameters are cycle independent.

One novelty of our model is the ability to incorporate cycle-dependent parameters.
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We will see in Chapter 2.5 that the use of cycle-dependent parameters not only

increases the accuracy significantly but also helps us to understand the underlying

noise structure better. This may provide information on what can be improved in

the Illumina technology.

Although the algorithm described above is for cycle-independent parameters, it

is straightforward to incorporate cycle dependency into our probabilistic framework.

For concreteness, consider the decay parameter d in (2.2). Although in general the

total observed intensity tends to decay with cycles, it neither decays at a constant

rate nor is a monotonically decreasing function of time; various stochastic effects (e.g.,

temperature fluctuation) can lead to fluctuations in the total intensity as time passes.

Hence, to model the fluctuation in intensities more accurately, we modify (2.2) as

Λt,k = (1− dt)Λt−1,k + (1− dt)Λt−1,kεt, (2.16)

where the rate dt now depends on the cycle t, and the 1-dimensional Gaussian noise

εt with zero mean now has cycle-dependent variance σ2
t . We remark that dt may

take on a negative value for some cycle t. Hence, unlike in (2.2), it no longer admits

interpretation as a pure decay parameter.

More generally, we use the subscript t to denote cycle dependency. Our current im-

plementation can handle the following cycle-dependent parameters: dt, αt, σ
2
t ,X t,Σt.

To avoid over-fitting and to reduce the number of clusters required to estimate pa-

rameters, we divide the read length L into non-overlapping windows of size 5 and

assume that the parameters remain constant within each window. Cycle-dependent

parameters can be estimated using the EM algorithm. To reduce the fluctuation of

parameters between windows, we devised an estimation method that uses information

from adjacent windows. See Chapter A.2 for details.

We observed that dt is highly correlated with the average intensity and that the

contribution of residual effects tends to grow with t. Such observations may help us

to characterize the intrinsic properties of the Illumina platform.

2.5 Empirical Study of the Bayescall Algorithm

In this section, we compare the performance of our new algorithm BayesCall with

that of Bustard, Alta-Cyclic [12].
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2.5.1 Data and test setup

In our empirical study, we used a standard resequencing data of PhiX174 virus,

provided to us by the DPGP Sequencing Lab at UC Davis. The data were obtained

from a 76-cycle run on the Genome Analyzer II platform, with the viral sample in

a single lane of the flow cell. The lane consisted of 100 tiles, containing a total

of 14,820,478 clusters. Illumina’s base-calling pipeline, called Integrated Primary

Analysis and Reporting, was applied to the image data to generate intensity files.

The entire intensity data were used to train Alta-Cyclic and BayesCall. Further,

since Alta-Cyclic requires a labeled training set, the reads base-called by Bustard

and the PhiX174 reference genome were also provided to Alta-Cyclic. To estimate

parameters in BayesCall and naiveBayesCall, the intensity data for only 250 randomly

chosen clusters were used.

To create a classification data set for testing the accuracy of the four base-calling

algorithms, the sequences base-called by Bustard were aligned against the PhiX174

reference genome, and those reads containing more than 22 mismatches (i.e., with

more than 30% of difference) were discarded. This filtering step reduced the total

number of clusters to 6,855,280, and the true sequence associated with each cluster

was assumed to be the 76-bp string in the reference genome onto which the alignment

algorithm mapped the sequence base-called by Bustard. The same set of clusters was

used to test the accuracy of all four methods.

Note that since the classification data set was created by dropping those clusters

for which Bustard produced many errors, the above experiment setup slightly favored

Bustard. Also, it should be pointed out that since Alta-Cyclic was trained on the

entire lane, it actually had access to the entire testing data set during the training

phase.

2.5.2 Short-read data and experiment setup

To test the performance of our method, we used sequencing data on a standard

viral sample PhiX174, provided to us by Illumina and the DPGP Sequencing Lab

at UC Davis. The data from Illumina were obtained from a 36-cycle run on the

Genome Analyzer I (GA-I) platform, while the data from UC Davis were obtained

from a 76-cycle run on the Genome Analyzer II (GA-II) platform. PhiX174 has a

known assembled genome, which we assumed to be correct. The viral sample has two

outstanding features. First, in contrast to a typical diploid genomic sample, there is

only one unique underlying parent DNA molecule. Secondly, the parent DNA sample

is relatively short and complex, and thus has a well characterized sequence alignment.

To create a classification data set, sequences determined by the Bustard basecaller
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were aligned against the assembled reference sequence. Illumina’s ELAND alignment

algorithm allows only mismatches and is constrained to at most 2 of them in the first

32 bp, effectively removing some reads with very high error rates from the test. We

further discarded reads which could not be aligned to the reference genome with at

least 70% identity (out of the entire read length). In the remaining set of reads, we

then assumed that all mismatches in alignment are basecalling errors. The same set

of reads was used to test the accuracy of Alta-Cyclic and BayesCall, thus favoring

Bustard a bit. For each data set, we used 4 tiles for basecalling, resulting in 19,063

reads and 686,268 bases for the 36-cycle data, and 268,997 reads and 20,443,772 bases

for the 76-cycle data.

Recall that Alta-Cyclic requires supervised learning using a rich training set. We

ran Alta-Cyclic only on the 76-cycle data, since we did not have a sufficiently large

training set available to us for the 36-cycle data. The 76-cycle data from GA-II

consisted of 100 tiles in total. In constructing the training set for Alta-Cyclic, we

omitted the 4 test tiles mentioned above and used the remaining 96 tiles. Alta-Cyclic

used Bustard and alignment to create a training set containing about 100 000 reads.

2.5.3 Convergence of simulated annealing

Figure 2.2 shows the convergence of simulated annealing with 1000, 5000, 10 000,

and 20 000 total iterations. Recall that the temperature parameter in the ith iteration

of simulated annealing is taken as (n − i + 1)/n, where n denotes the total number

of iterations. We remark that the MAP estimate for n = 1000 has a lower likelihood.

However, although using a larger value of n maximizes the likelihood better, the

inferred MAP estimate of Sk does not change so much, if at all. We conclude that

the total number n of annealing iterations can be chosen to be less than 10 000.

2.5.4 Parameters in BayesCall

In contrast to Alta-Cyclic [12], our method does not require supervised learning.

In BayesCall, it is possible to estimate the parameters of the underlying model using

a small number of randomly chosen clusters. To estimate the cycle-dependent param-

eters dt, αt, σ
2
t ,X t,Σt for a given tile, we randomly chose a total of 250 clusters from

the tile and used the algorithm described in Chapter 2.4.3 to perform parameter esti-

mation. (We also tried using 150 and 500 clusters in the training set. The accuracy of

basecalls changed very little, while the running time of parameter estimation scaled

roughly linearly with the number of clusters. See Chapter A.2 for details.) Here, we

highlight the cycle dependency of the parameters in our model.
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Figure 2.2: Convergence of simulated annealing with 1000, 5000, 10000, and
20000 total iterations. The temperature parameter in the ith iteration of simu-
lated annealing is taken as (n− i+ 1)/n, with n being the total number of iterations.
Although using a larger value of n maximizes the likelihood slightly better, the in-
ferred MAP estimate of Sk does not change so much.

Recall that Bustard tries to address the signal decay problem by renormalizing

concentrations, whereas in our method, we explicitly model how the per-cluster den-

sity of active templates evolve according to 2.16. Figure 2.3(a) illustrates why the

rate dt should be modeled as a cycle-dependent parameter. It shows that dt varies

significantly over cycles. The parameter αt captures extra residual effects in addition

to phasing and prephasing that propagate from one cycle to the next. Our estimates

of αt for the 76-cycle data are shown in Figure 2.3(b). This plot illustrates that the

extra residual effects captured by αt grow with cycle t. We found that it is important

to model extra residual effects in later cycles to improve the basecall accuracy.

2.5.5 A detailed example

For a particular cluster k in the 76-cycle PhiX174 data, Figure 2.4(a) shows the

observed intensity I t,k for t = 1, . . . , 76. We can see that in later cycles, the observed

intensity of base T increases abnormally; we refer to this as “anomalous T” effect.

This was also noted as an anomaly in [12]. Because of this anomaly, Bustard pro-

duced many basecalling errors—14 errors, to be exact, with 13 of them incorrectly

called as T. Alta-Cyclic made 3 basecalling errors on this cluster, with all three being

incorrectly called as T. See Figure 2.5 for details; errors are indicated by “*” symbols.
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(a) (b)

Figure 2.3: Estimated cycle-dependent parameters for 4 different tiles of
the 76-cycle PhiX174 data set. These plots illustrate that parameters change
over time and that the residual effect associated with αt tends grow with time. (a)
dt. (b) αt.

In contrast, our method BayesCall was able to call all 76 bases correctly. We

can explain this as follows. The inferred mean µt,k of the distribution for I t,k can be

decomposed into Λt,kX tSkQ
w
t and αt(1−dt)I t−1,k, the latter capturing extra residual

effects. This decomposition is illustrated in Figure 2.4(b) and Figure 2.4(c). From

these figures, we see that the aforementioned anomaly can be attributed to growing

residual effects (illustrated in Figure 2.4(c)) in later cycles. Because of its ability

to decouple such residual effects from other stochastic effects, BayesCall was able to

call all bases correctly for this cluster. Clearly the presence of artifacts of this kind

supports the value of modeling residual effects.
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(a) (b)

(c)

Figure 2.4: Observed intensities and the decomposition of µt,k for a partic-
ular cluster k in the 76-cycle PhiX174 data. (a) Observed intensities I t,k. (b)
The contribution of Λt,kX tSkQ

w
t to µt,k. (c) The contribution of the residual effect

αt(1− dt)I t−1,k.
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True sequence : TTTTTCGTCCCCTTCGGGGCGGTGGTCTATAGTGTTATTAATATCAAGTTGGGGGAGCACATTGTAGCATTGTGCC

Bustard result : TTTTTCGTCCCCTTCGGGGCGGTGGTTTTTAGTTTTTTTAATATTAAGTTTGGGGGGCACATTTTTTTATTTTTTC

Errors * * * * * * * * *** * **

True sequence : TTTTTCGTCCCCTTCGGGGCGGTGGTCTATAGTGTTATTAATATCAAGTTGGGGGAGCACATTGTAGCATTGTGCC

Alta-Cyclic result: TTTTTCGTCCCCTTCGGGGCGGTGGTCTATAGTTTTATTAATATTAAGTTGGGGGAGCACATTGTAGCATTTTGCC

Errors * * *

Figure 2.5: Basecalling results for the particular cluster discussed in Figure 2.4. Our method BayesCall
called all 76 bases correctly for this particular cluster. In contrast, Bustard made 14 basecalling errors, with 13 of
them incorrectly called as T. Alta-Cyclic made 3 errors, with all of them incorrectly called as T. Basecalling errors are
indicated by “*”s. In general, both Bustard and Alta-Cyclic tend to suffer more from the “anomalous T” effect than
does our method. (See text for details.)
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Table 2.1: Comparison of error rates on PhiX174 data.

36-cycle data 76-cycle data
Method By Base By Read By Base By Read
(1) Bustard 0.01313 0.29806 0.01557 0.39484
(2) Alta-Cyclic n/a n/a 0.00969 0.31150
(3) BayesCall 0.00805 0.17757 0.00762 0.23188
Improvement of (3) over (1) 39% 40% 51% 41%
Improvement of (3) over (2) n/a n/a 21% 26%

Alta-Cyclic was run only on the 76-cycle data. The “by-base” error rate refers to the ratio

of the number of miscalled bases to the total number of basecalls made, while the “by-read”

error rate refers to the ratio of the number of reads each with at least one miscalled base

to the total number of reads considered.

2.5.6 Summary of basecall accuracy

Shown in Table 2.1 are the overall error rates of the three basecalling methods,

averaged over four tiles for each data set. In the table, “by-base” error rate refers

to the ratio of the number of miscalled bases to the total number of basecalls made,

while “by-read” error rate refers to the ratio of the number of reads each with at

least one miscalled base to the total number of reads considered. For both data

sets we considered, our new method BayesCall produced significantly more accurate

basecalls than did Bustard. For the 76-cycle PhiX174 data from GA-II, BayesCall

achieved an improvement of about 51% over Bustard in the by-base error rate, and

about 41% improvement in the by-read error rate. For the same data set, BayesCall

outperformed Alta-Cyclic as well, achieving an improvement of about 21% in the

by-base error rate, and about 26% improvement in the by-read error rate.

For a finer comparison of the methods, we examined the per-cycle error rates,

illustrated in the plots in the left column of Figure 2.6. Bustard and BayesCall

had comparable error rates in the first 25 or so cycles. However, BayesCall had

substantially lower error rates in later cycles compared to Bustard, and the difference

tended to increase with cycles. This observation suggests that it is feasible to run

the sequencing machine for longer cycles and obtain useful sequence information for

longer reads by using an improved basecalling algorithm such as ours. For the 76-

cycle data, BayesCall had a lower average error rate than that of Alta-Cyclic’s for

every cycle. Although Alta-Cyclic was considerably more accurate than Illumina’s

basecaller Bustard in later cycles, note that the opposite was true for earlier cycles.

Shown in the right column of Figure 2.6 are histograms for the number ne of errors

per read. As mentioned before, BayesCall produced substantially more perfect reads
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Table 2.2: Confusion matrices for the 76-cycle PhiX174 data on GA-II.

Base called by Bustard
True A C G T

A 0.98896 0.00337 0.00296 0.00470
C 0.00877 0.97716 0.00336 0.01071
G 0.00485 0.00252 0.98617 0.00646
T 0.00289 0.00517 0.00665 0.98529

Base called by Alta-Cyclic
True A C G T

A 0.99404 0.00235 0.00141 0.00220
C 0.00586 0.98678 0.00144 0.00591
G 0.00336 0.00091 0.99288 0.00285
T 0.00104 0.00273 0.00338 0.99285

Base called by BayesCall
True A C G T

A 0.99548 0.00179 0.00129 0.00144
C 0.00500 0.98908 0.00132 0.00460
G 0.00349 0.00090 0.99384 0.00176
T 0.00158 0.00339 0.00333 0.99170

The (x, y) entry in each table corresponds to the percentage of times that base x is called

as base y. These tables illustrate that BayesCall is in general less “confused”; that is,

the diagonal entries for BayesCall are higher than the corresponding entries for the other

methods, except for the (T,T) entry in Alta-Cyclic. Further, BayesCall suffers less from the

“anomalous T” effect than does Bustard or Alta-Cyclic; i.e., the (A,T), (C,T), and (G,T)

entries for BayesCall are less than the corresponding entries for Bustard or Alta-Cyclic.

(i.e., with ne = 0) than did either Bustard or Alta-Cyclic. Furthermore, for ne > 1,

the number of reads with ne errors was smaller in BayesCall than in either Bustard

or Alta-Cyclic.

A statistic that is of interest is the percentage c(x, y) of times that base x is called

as base y by a basecalling algorithm. This information can be summarized in what

we call a confusion matrix C, in which the (x, y) entry corresponds c(x, y). For the

76-cycle data on GA-II, the confusion matrices CBustard,CAlta-Cyclic, and CBayesCall of

Bustard, Alta-Cyclic, and BayesCall, respectively, are shown in Table 2.2. For this

data set, every diagonal entry (x, x) (i.e., the percentage of correct calls) in CBayesCall

is larger than that inCBustard, while every off-diagonal entry (x, y) (i.e., the percentage

of erroneous calls) in CBayesCall is smaller than that in CBustard. Also, BayesCall is

less “confused” than Alta-Cyclic, in that the diagonal entries in CBayesCall are higher
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(a)

(b)

Figure 2.6: Average per-cycle error rates and histograms for the number
of errors per read. BayesCall had substantially lower error rates in later cycles
compared to Bustard, and the difference tended to increase with cycles. Further,
BayesCall produced substantially more perfect reads than did Bustard. Alta-Cyclic
was run only on the 76-cycle PhiX174 data set. BayesCall had a lower average error
rate than that of Alta-Cyclic’s for all cycles. Note that although Alta-Cyclic is more
accurate than Bustard in later cycles, the opposite is true for earlier cycles. (a)
Results for the 36-cycle data set. (b) Results for the 76-cycle data set.
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Table 2.3: Joint errors in Bustard and BayesCall for the 76-cycle PhiX174 data on
GA-II.

# BayesCall Errors
# Bustard Errors 0 1 2 3 4 5 6 7 8

0 0.5979 0.0069 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1061 0.0672 0.0030 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000
2 0.0354 0.0245 0.0181 0.0015 0.0003 0.0001 0.0000 0.0000 0.0000
3 0.0148 0.0123 0.0085 0.0038 0.0011 0.0002 0.0001 0.0000 0.0000
4 0.0073 0.0065 0.0052 0.0033 0.0018 0.0006 0.0002 0.0000 0.0000
5 0.0037 0.0037 0.0033 0.0027 0.0019 0.0011 0.0004 0.0002 0.0001
6 0.0019 0.0022 0.0021 0.0019 0.0016 0.0011 0.0007 0.0003 0.0002
7 0.0012 0.0013 0.0015 0.0013 0.0011 0.0010 0.0007 0.0005 0.0002
8 0.0007 0.0008 0.0011 0.0009 0.0009 0.0008 0.0007 0.0005 0.0004

The (x, y) entry corresponds to the percentage of reads with x errors in Bustard and y errors

in BayesCall. For x < y, the upper diagonal entry (x, y) is generally much smaller than

the corresponding the lower diagonal entry (y, x), thus indicating that BayesCall generally

produces sequence reads with substantially fewer errors than does Bustard. See Figure 2.7

for a heat plot of joint error a larger range of x and y.

than the corresponding entries in CAlta-Cyclic, except for the (T,T) entry.

Recall that the “anomalous T” effect refers to calling abnormally high percentages

of other bases erroneously as T. In Table 2.2, the T column of CBustard is abnormally

high, suggesting that Bustard suffers from the “anomalous T” effect. BayesCall suffers

much less from this effect than does Bustard or Alta-Cyclic; i.e., the (A,T), (C,T),

and (G,T) entries of CBayesCall are significantly smaller than the corresponding entries

in CBustard or CAlta-Cyclic.

To compare further the performance of Bustard and BayesCall, we examined the

percentage of reads with x errors in Bustard and y errors in BayesCall. For x, y ≤ 8,

these numbers are summarized in the joint error matrix shown in Table 2.3. Figure 2.7

illustrates the overall pattern for a larger range of x and y. What is abundantly

clear is that the upper diagonal entries (x, y), for x < y, are much smaller than the

corresponding lower diagonal entries (y, x). This indicates that BayesCall generally

produces sequence reads with substantially fewer errors than does Bustard.

2.5.7 Gain in accuracy from modeling extra residual effects

In BayesCall, extra residual effects are captured by the parameter αt. To examine

the advantage of modeling residual effects, we considered the following three cases of

BayesCall: (1) No residual effect (i.e., impose αt = 0 for all t). (2) Constant residual
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Figure 2.7: Heat plot of joint errors in Bustard and BayesCall for the 76-
cycle PhiX174 data. This plot depicts the joint error matrix shown in Table 2.3.
The (x, y) entry in the plot corresponds to log2 of the number of reads with x errors
in Bustard and y errors in BayesCall. This plot clearly illustrates that BayesCall
generally produces sequence reads with substantially fewer errors than that produced
by Bustard.
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Table 2.4: Gain in accuracy from different levels of modeling extra residual effects.

Method By-Base Error Rate By-Read Error Rate
Bustard 0.01737 0.44431
BayesCall (αt = 0 for all t) 0.01076 0.31328
BayesCall (αt = some α for all t) 0.00965 0.28748
BayesCall (cycle-dependent αt) 0.00783 0.24398

In BayesCall, extra residual effects are captured by the parameter αt. We used cycle-

dependent parameters dt, σ
2
t ,Xt, and Σt in all three cases of BayesCall. Even without mod-

eling extra residual effects (i.e., with αt = 0 for all t), BayesCall achieved an improvement

of 38% over Bustard in the by-base error rate. When the full model with cycle-dependent

αt was used, the improvement over Bustard increased to 55%.

effect (i.e., assume αt is equal to some constant α for all t). (3) Cycle-dependent

residual effect (i.e., αt allowed to change over cycles). For this study, we considered

a single tile from the 76-cycle data set; the resulting test set contained 68, 272 reads

and 5, 188, 672 bases. Parameter estimation was performed for each case allowing

dt, σ
2
t ,X t, and Σt to be cycle-dependent.

Results from this study are shown in Table 2.4. Even without modeling extra

residual effects (i.e., with αt = 0 for all t), BayesCall achieved an improvement of

38% (respectively, 29%) over Bustard in the by-base (respectively, by-read) error

rate. This gain in accuracy illustrates the utility of using cycle-dependent parameters

dt, σ
2
t ,X t, and Σt. BayesCall’s improvement over Bustard increased slightly when

a model with a constant residual effect was used. When the full model with cycle-

dependent αt was used, the improvement over Bustard further increased to 55% in

the by-base error rate and 45% in the by-read error rate.

2.5.8 Discrimination ability of quality scores

To compare the utility of quality scores, we define the discrimination ability D(ε)

at error tolerance ε as follows: Sort the bases according to their quality scores, from

the highest to the lowest. Then, go down that sorted list until the error rate surpasses

ε. The number of correctly called bases up to that point corresponds to D(ε). This

notion is essentially the same as the discrimination ability defined in [13]. Shown

in Figure 2.8 are the plots of D(ε) for the data sets considered in this chapter. We

see that BayesCall not only reduces the error rate, but also produces base-specific

quality scores with a high discrimination ability that consistently outperforms both

Bustard’s and Alta-Cyclic’s.

An error tolerance ε implies a corresponding quality score cutoff for each basecaller;
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(a) (b)

Figure 2.8: Discrimination ability D(ε) of quality scores at error tolerance ε.
We define D(ε) as the number of correctly called bases at error tolerance ε. BayesCall
maintains a high discrimination ability which outperforms both Bustard’s and Alta-
Cyclic’s. (a) Results for the 36-cycle PhiX174 data set. (b) Results for the 76-cycle
PhiX174 data set.

bases with quality scores below the cutoff may be considered unreliable and get thrown

out. This means that for all reasonable error tolerances, BayesCall produces a much

larger number of bases and consequently a lower cost per base. This is a much stronger

result than simply having a lower error rate at a single cutoff.

2.5.9 Difference between GA-I and GA-II

The known upgrades between the GA-I and GA-II platforms include an imaging

system with a wider field of view, a larger flow cell, and a larger CCD. Additional

Peltier devices were employed to regulate the flow cell temperature better throughout

the sequencing process. Further, a slight modification to the flow cell design also

reduced the number of poorly imaged tiles caused by displaced fluid from the oil

immersion microscope.

The sequencing chemistry was improved, resulting in a noticeable decrease in the

phasing rate p. This change is illustrated in Table 2.5, which shows our estimates

of the phasing and prephasing rates for the PhiX174 data on GA-I and GA-II. As a

consequence of the chemistry improvement, the rate dt also decreased in magnitude

and in the amount of fluctuation. However, we still observed a marked residual effect

(parametrized by αt), as illustrated in Figure 2.3(b). Residual effects contribute

significantly to the cycle-to-cycle decrease in the platform’s signal-to-noise ratio. To
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Table 2.5: Average estimates of phasing and prephasing rates for the PhiX174 data
on GA-I and GA-II.

Platform Phasing rate p Prephasing rate q
GA-I 6.8× 10−4 3.4× 10−3

GA-II 3.0× 10−8 3.3× 10−3

Because of improvement in the sequencing chemistry, the phasing rate p for GA-II is sub-

stantially lower than that for GA-I. However, prephasing and residual effects seem to persist

in GA-II.

the extent we can better model it, we can obtain longer reads for a given error

tolerance.

2.6 The naiveBayesCall Algorithm

We now describe the naiveBayesCall algorithm. As mentioned in Chapter 2.1, it

is based on the same graphical model as in BayesCall, and we employ the method

detailed in Chapter 2.4.3 to estimate the parameters in the model. The main novelty

of naiveBayesCall is in the base-calling part of the method. We divide the presenta-

tion into two parts. First, we propose a hybrid algorithm that combines the model

described in Chapter 2.4 with the matrix inversion approach employed in Bustard

described in Chapter 2.3. Then, we use the hybrid algorithm to initialize an opti-

mization procedure that both improves the base-call accuracy and produces useful

per-base quality scores.

2.6.1 A hybrid base-calling algorithm

We present a new inference algorithm for the model described in Chapter 2.4. The

main strategy is to avoid direct inference of the continuous random variables Λt,k.

First, for each cycle t, we estimate the average concentration ct of templates within

each tile. In Chapter 2.5, we showed that the magnitude of the fluctuation rate dt
(c.f., (2.2)) is typically very small (less than 0.03) for all 1 ≤ t ≤ L. Hence, assuming

that dt is close to zero for all t, we estimate the tile-wide average concentration ct
using

ct =
1

K

K∑
k=1

4∑
b=1

max(0, [X−1
t (I t,k − αtI t−1,k)]b), (2.17)
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where K denotes the total number of clusters in the tile and [y]b denotes the bth

component of vector y. The above ct serves as our estimate of Λt,k for all clusters k

within the same tile. Using this estimate, we define

Ĩ t,k =

(
I t,k − αt

ct
ct−1

I t−1,k

)
+

, (2.18)

where (y)+ denotes the vector obtained from y by replacing all negative components

with zeros. Note that subtracting αt
ct
ct−1
I t−1,k from I t,k accounts for the residual

effect modeled in (2.8). The ratio ct
ct−1

rescales I t−1,k so that its norm is similar to

that of I t,k.

After determining Ĩ t,k, the rest of the hybrid base-calling algorithm resembles Bus-

tard. First, for each cycle t, we estimate the cluster-specific normalized concentration

of four different bases using

Z t,k = (ZAt,k,ZCt,k,ZGt,k,ZTt,k)′ =
1

ct
(X−1

t Ĩ t,k)+, (2.19)

where X t is the 4-by-4 crosstalk matrix at cycle t (see previous section). Normalizing

by the tile-wide average ct is to make the total concentration stay roughly the same

across all cycles. Note that Z t,k is an estimate of the concentration vector shown in

(2.4). Now, we let Zk = (Z1,k, . . . ,ZL,k) and use the following formula to correct for

phasing and prephasing effects:

Zk(Q
w)−1, (2.20)

where Qw = (Qw
1 , . . . ,Q

w
L) is the L-by-L phasing-prephasing matrix defined in Chap-

ter 2.4. Finally, for t = 1, . . . , L, the row index of the largest value in column t of

(2.20) is called as the tth base of the DNA templates in cluster k:

SHt,k = argmax
b∈{A,C,G,T}

[Zk(Q
w)−1]b,t. (2.21)

Algorithm 1 summarizes the hybrid base-calling algorithm just described.

The performance of the hybrid algorithm will be discussed in Chapter 2.5. We will

see that, with the parameters estimated in BayesCall, our simple hybrid algorithm

already outperforms Bustard.
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Algorithm 1 Hybrid Algorithm

for all tiles do
for all cycles 1 ≤ t ≤ L do

Estimate concentration ct for each cycle t according to (2.17).
end for
for all clusters 1 ≤ k ≤ K do

Compute residual-corrected intensities Ĩk using (2.18).
Compute concentration matrix Zk according to (2.19).
Correct for phasing and prephasing effect using (2.20).
Infer SH1,k, . . . ,S

H
L,k using (2.21) and output the associated sequence.

end for
end for

2.6.2 Estimating Λk via optimization and computing quality

scores

In this section, we devise a method to improve the hybrid algorithm described

above and to compute base-specific quality score. The Viterbi algorithm [49] has

been widely adopted as a dynamic programming algorithm to find the most probable

path of states in a hidden Markov Model. There are two source of difficulty in applying

the Viterbi algorithm to our problem:

1. Our model is a high order Markov model, so path tracing can be computationally

expensive. This complexity arises from modeling phasing and prephasing effects.

Recall that the observation probability at a given cycle t depends on all hidden

random variables Si,k with i within a window w about t. In [26], we used 11

for the window size.

2. In addition to the discrete random variables Sk = (S1,k, . . . ,SL,k) for the

DNA sequence, our model contains continuous hidden random variables Λk =

(Λ1,k, . . . ,ΛL,k), but the Viterbi algorithm cannot handle continuous variables.

One might try to address this problem by marginalizing out Λk, but it turns out

that the maximum a posteriori (MAP) estimate of Λk is useful for computing

quality scores.

To address the first problem, we obtain a good initial guess of hidden variables Sk
and use it to break the high order dependency. To cope with the second problem, we

adopt a sequential approach. Algorithm 2 summarizes our naiveBayesCall algorithm

and a detailed description is provided below.

Our algorithm iteratively estimates Λt,k and updates St,k, starting with t = 1

and ending at t = L. Let S
(i)
k denote the sequence matrix after the ith iteration.
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Algorithm 2 naiveBayesCall Algorithm

for all clusters k do
Initialize S

(0)
k = (SH1,k, . . . ,S

H
L,k) using Algorithm 1.

for 1 ≤ t ≤ L do
for b ∈ {A,C,G, T} do

Find λbt,k = argmaxλ L
b
t,k(λ), where Lbt,k(λ) is defined as in (2.22).

Compute base-specific quality score Q(b) using (2.26) and (2.27).
end for
Set st,k = argmaxb∈{A,C,G,T} L

b
t,k(λ

b
t,k).

Update S
(t)
k = Rt,st,k(S

(t−1)
k ).

end for
Call s1,k, . . . , sL,k as the inferred sequence and output base-specific quality scores.

end for

We initialize S
(0)
k = SHk , where SHk = (SH1,k, . . . ,S

H
L,k) is obtained using the hybrid

algorithm described in Chapter 2.6.1. Let st,k denote the base (i.e., A, C, G, or T)

called by naiveBayesCall for position t of the DNA sequence in cluster k. At iteration

t, the first t− 1 bases s1,k, . . . , st−1,k have been called and the vectors S1,k, . . . ,St−1,k

have been updated accordingly. The following procedures are performed at iteration

t:

Optimization

Our inference of Λt,k depends on the base at position t, which has not been called

yet. We use λbt,k to denote the inferred value of Λt,k, given that the base at position

t is b. For a given base b ∈ {A,C,G, T}, we define the log-likelihood function

Lbt,k(λ) =

{
logP[I t,k|I t−1,k,Rt,b(S

(t−1)
k ), λ], if t = 1,

logP[λ|λst−1,k

t−1,k ] + logP[I t,k|I t−1,k,Rt,b(S
(t−1)
k ), λ], if t > 1,

(2.22)

where Rt,b(S
(t−1)
k ) denotes the sequence matrix obtained by replacing column t of

S
(t−1)
k with the unit column vector eb, the probability P[λ|λst−1,k

t−1,k ] is defined in (2.6),

and observation likelihood P[I t,k|I t−1,k,Rt,b(S
(t−1)
k ), λ] is defined by (2.5)–(2.7), More

exactly,

P[I t,k|I t−1,k,Rt,b(S
(t−1)
k ), λ] ≈ φ(I t,k;λX tz

w,b
t,k +αt(1−dt)I t−1,k, ‖λzw,bt,k ‖

2Σt), (2.23)

where zw,bt,k = Rt,b(S
(t−1)
k )Qw

t is an unscaled concentration vector and φ(·;µ,Σ) is the

probability density function of a multivariate normal distribution with mean vector
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µ and covariance matrix Σ. For each b ∈ {A,C,G, T}, we estimate λbt,k using the

following optimization:

λbt,k = argmax
λ

Lbt,k(λ). (2.24)

Our implementation of naiveBayesCall uses the golden section search method [27] to

solve the 1-dimension optimization problem in (2.24).

Base-calling

The nucleotide at position t is called as

st,k = argmax
b∈{A,C,G,T}

max
λ

Lbt,k(λ) = argmax
b∈{A,C,G,T}

Lbt,k(λ
b
t,k), (2.25)

and the sequence matrix is updated accordingly: S
(t)
k = Rt,st,k(S

(t−1)
k ).

Quality score

For position t, the probability of observing b is estimated by

P(b) =
φ(I t,k;λ

b
t,kX tz

w,b
t,k + αt(1− dt)I t−1,k, ‖λbt,kz

w,b
t,k ‖2Σt)∑

x∈{A,C,G,T} φ(I t,k;λxt,kX tz
w,x
t,k + αt(1− dt)I t−1,k, ‖λxt,kz

w,x
t,k ‖2Σt)

, (2.26)

and the quality score for base b is given by

Q(b) = 10 log10

[
P(b)

1− P(b)

]
. (2.27)

2.7 Empirical Studies of the naiveBayescall Algo-

rithm

2.7.1 Improvement in running time

The experiments were done on a Mac Pro with two quad-core 3.0GHz Intel Xeon

processors, utilizing all eight cores. Table 2.6(a) shows the training time and the

prediction time of Alta-Cyclic, BayesCall, and naiveBayesCall. The times reported

in Table 2.6(a) are for the full-lane of data. The training time of naiveBayesCall is

the same as that of BayesCall, since naiveBayesCall currently uses the same param-

eter estimation method as in BayesCall. Although the training time of BayesCall is

longer than that of Alta-Cyclic, we point out that, in principle, the cycle-dependent
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Table 2.6: Comparison of overall performance results (a) Running times (in hours).
(b) Base-call error rates.

(a)

Training Testing Time
Time for Full-Lane

Alta-Cyclic 10 4.4
BayesCall 19 362.5
naiveBayesCall 19 6

(b)

4 Tiles Full-Lane
By-base By-read By-base By-read

Bustard 0.0098 0.2656 0.0103 0.2705
Alta-Cyclic 0.0097 0.3115 0.0101 0.3150
BayesCall 0.0076 0.2319 NA NA
naiveBayesCall 0.0080 0.2348 0.0088 0.2499

BayesCall’s testing time was estimated from that for 4 tiles of data. The “by-base”
error rate refers to the ratio of the number of miscalled bases to the total number of
base-calls made, while the “by-read” error rate refers to the ratio of the number of
reads each with at least one miscalled base to the total number of reads considered.

parameters in BayesCall can be estimated progressively as the sequencing machine

runs (a run currently takes about 10 days). This advantage comes from the fact that

BayesCall can be trained without labeled training data. As Table 2.6(a) illustrates,

naiveBayesCall dramatically improves the base-calling time over BayesCall, delivering

about 60X speedup. This improvement makes our model-based base-calling approach

practical.

2.7.2 Summary of base-call accuracy

Table 2.6(b) shows the overall base-call accuracy of the four different methods.

The columns under the label “4 Tiles” show the results for only 4 out of the 100 tiles

in the lane. Since it would take more than 15 days for BayesCall to call bases for the

entire lane, it was not used in the full-lane study. Both Bustard and Alta-Cyclic were

trained on the full-lane data. To train BayesCall for the 4-tile data, we randomly

chose 250 clusters from each tile to estimate tile-specific parameters, and used the

same parameters in naiveBayesCall. To run naiveBayesCall on the full-lane data, we

randomly chose 250 clusters from the entire lane to estimate lane-wide parameters.

From Table 2.6(b), we see that the performance of naiveBayesCall is comparable
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Figure 2.9: Title-specific error rates. Our algorithm naiveBayesCall clearly out-
performs both Bustard and Alta-Cyclic for tiles 21 to 100, but has comparable error
rates for tiles 1 to 20. It is possible to improve naiveBayesCall’s base-call accuracy
for the first 20 tiles by using tile-specific parameter estimates. (a) By-base error rate
for each tile. (b) By-read error rate for each tile.

to that of BayesCall. Figure 2.9 shows the tile-specific average error rate for each

tile of the full-lane data. Note that naiveBayesCall clearly outperforms both Bustard

and Alta-Cyclic for tiles 21 to 100, but has comparable error rates for tiles 1 to

20. It is possible to improve naiveBayesCall’s accuracy for the first 20 tiles by using

tile-specific parameter estimates (see Discussion).

Figure 2.10(a) illustrates the cycle-specific average error rate. Note that naive-

BayesCall’s average accuracy dominates Alta-Cyclic’s for all cycles. Furthermore, the

improvement of naiveBayesCall over Bustard increases with cycles, as illustrated in

Figure 2.10(b). This suggests that it is possible to run the sequencing machine for

longer cycles and still obtain useful sequence information for longer reads by using

an improved base-calling algorithm such as ours. Furthermore, we believe that fewer

errors in later cycles may facilitate de novo assembly. We return to this point in

Chapter 2.7.4.

2.7.3 Discrimination ability of quality scores

To compare the utility of quality scores, we follow the idea in [13] and define

the discrimination ability D(ε) at error tolerance ε as follows. First sort the called

bases according to their quality scores in decreasing order. Then go down that sorted

list until the error rate surpasses ε. The number of correctly called bases up to this
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Figure 2.10: Comparison of average base-call accuracy for the full-lane data.
Note that naiveBayesCall’s average accuracy dominates Alta-Cyclic’s for all cycles.
Further, The improvement of naiveBayesCall over Bustard increases with cycles. (a)
Cycle-specific error rate. (b) Improvement of naiveBayesCall and Alta-Cyclic in cycle-
specific error rate over Bustard.

point is defined as D(ε). Hence, D(ε) corresponds to the number of bases that can be

correctly called at error tolerance ε, if we use quality scores to discriminate bases with

lower error probabilities from those with higher error probabilities. For any given ε,

a good quality score should have a high D(ε). Shown in Figure 2.11 is a plot of D(ε)

for naiveBayesCall, Alta-Cyclic, and Bustard. As the figure shows, naiveBayesCall’s

quality score consistently outperforms Alta-Cyclic’s. For ε < 0.0017 and ε > 0.0032,

naiveBayesCall’s quality score has a higher discrimination ability than Bustard’s,

while the opposite is true for the intermediate values 0.0017 < ε < 0.0032.

2.7.4 Effect of base-calling accuracy on the performance of

de novo assembly

Here, we demonstrate how improved base-calling accuracy may facilitate de novo

assembly. Because of the short read length and high sequencing error rate, de novo

assembly of the next-generation sequencing data is a challenging task. Recently, sev-

eral promising algorithms [7, 35, 54, 48, 5] have been proposed to tackle this problem.

In our study, we used the program Velvet [54] to perform de novo assembly of the

reads called by different base-calling algorithms. First, we randomly chose a set of

clusters from the 4-tile data without doing any filtering. Then, we base-called those

clusters using each of Bustard, Alta-Cyclic, BayesCall, and naiveBayesCall, produc-

ing four different sets of base-calls on the same data set. For each set of base-called
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Figure 2.11: Discrimination ability D(ε) of quality scores for the full-lane
data. Roughly, D(ε) corresponds to the number of correctly called bases at error
tolerance ε.

reads, Velvet was run with the k-mer length set to 55. For a given choice of coverage,

we repeated this experiment 100 times. The results are summarized in Table 2.7,

which shows the N50 length, the maximum contig length, and the total number of

contigs produced; these numbers were averaged over the 100 experiments. On aver-

age naiveBayesCall led to better de novo assemblies than did Bustard or Alta-Cyclic:

For 5X and 10X coverages, the performance of naiveBayesCall was similar to that of

Bustard’s in terms of the N50 and maximum contig lengths, but naiveBayesCall pro-

duced significantly more contigs than did Bustard. For 15X and 20X, naiveBayesCall

clearly outperformed Bustard in all measures, producing longer and more contigs.

The results for BayesCall and naiveBayesCall were comparable.

2.7.5 Effect of base-calling accuracy on SNP detection

In this section, we assess how the improvement in base-calling accuracy affects

the performance of single nucleotide polymorphism (SNP) detection. SNP detection

is usually achieved by mapping short-reads onto a reference genome and by noting

the difference between the reads and the reference. In the absence of sequencing

errors, all mismatches would correspond to SNPs. When there are sequencing errors,

however, SNP detection algorithms need to distinguish between sequencing errors

and SNPs. We show below that reducing base-calling errors can significantly improve

SNP detection quality.

In our experiment, we used a standard resequencing data of PhiX174 virus, pro-
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Table 2.7: Average contig lengths resulting from de novo assembly of the 76-cycle
PhiX174 data, when different base-calling algorithms are used to produce the input
short-reads.

Bustard Alta-Cyclic BayesCall naiveBayesCall
Cov N50 Max #Ctgs N50 Max #Ctgs N50 Max #Ctgs N50 Max #Ctgs
5X 145 153 277 140 146 251 146 156 358 146 158 349

10X 203 368 2315 200 353 2148 203 368 2435 203 365 2467
15X 352 685 4119 331 637 4047 368 712 4249 371 716 4263
20X 675 1162 4941 674 1119 4893 752 1246 5004 750 1259 5015

The length of the PhiX174 genome is 5386 bp. Velvet [54] was used to perform
de novo assembly for varying sequence coverage depths (denoted “Cov”). N50 is a
statistic commonly used to assess the quality of de novo assembly. It is computed
by sorting all contigs by their size in decreasing order and adding the length of these
contigs until the sum is greater than 50% of the total length of all contigs. The length
of the last added contig is reported as N50. A larger N50 indicates a better assembly.
Also shown are the maximum contig length (denoted “Max”) and the total number
of contigs (denoted “#Ctgs”).

vided to us by the DPGP Sequencing Lab at UC Davis. The data were obtained

from a 36-cycle run on the Genome Analyzer I platform. The same data set was also

used in [26]. We produced four different sets of base-calls using Bustard, Alta-Cyclic,

BayesCall, and naiveBayesCall.

We artificially introduced SNPs into the PhiX174 reference genome by using the

“fakemut” function of MAQ [31]. We tried using 0.001 and 0.01 for SNP rates. MAQ

was also used to perform read mapping and SNP-calling. We supplied MAQ with

the artificially mutated reference genome, the short-reads called by each base-calling

algorithm, and their associated quality scores. The detected SNP positions were then

compared to the positions of artificially generated SNPs. To evaluate the quality of

SNP detection, we considered precision and recall of the detected SNPs. Precisions

and recalls are widely used metrics in accessing the quality of information retrieval

tasks. In this context, precision is the portion of true SNPs in the set of all called

SNPs, and recall is the portion of called SNPs in the set of all true SNPs introduced

into the reference genome.

Table 2.8 summarizes the precision and recall of SNP detection with reads called by

the four base-calling algorithms. In the unfiltered case, the reads called by BayesCall

and naiveBayesCall led to significant improvements in precision, while generally lead-

ing to a similar level of recall as that for the reads called by Bustard. Precision could

be further improved by imposing a threshold on read mapping quality scores when
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using MAQ to call SNPs. Shown in Table 2.8 are precision and recall results under

the commonly-used quality threshold of 30. Overall, our results illustrate that, when

the sequence coverage depth is low (< 10), performing error correction prior to using

MAQ can significantly improve the quality of SNP detection.
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Table 2.8: SNP detection efficiency.

SNP rate = 0.001 SNP rate = 0.01
Unfiltered Quality ≥ 30 Unfiltered Quality ≥ 30

Cov Reads Prec. Recall Prec. Recall Prec. Recall Prec. Recall
2 Bustard 0.17 0.62 0.44 0.50 0.54 0.64 0.84 0.58

Alta-Cyclic 0.28 0.62 0.31 0.62 0.71 0.64 0.72 0.62
BayesCall 0.33 0.62 0.45 0.62 0.78 0.62 0.84 0.60
naiveBayesCall 0.31 0.62 0.33 0.62 0.76 0.62 0.77 0.60

4 Bustard 0.26 1.00 0.54 0.88 0.62 0.80 0.85 0.73
Alta-Cyclic 0.33 0.88 0.37 0.88 0.75 0.80 0.77 0.80
BayesCall 0.33 0.88 0.54 0.88 0.76 0.78 0.85 0.78
naiveBayesCall 0.35 0.88 0.39 0.88 0.76 0.78 0.80 0.78

6 Bustard 0.33 1.00 0.57 1.00 0.73 0.89 0.87 0.87
Alta-Cyclic 0.42 1.00 0.50 1.00 0.80 0.89 0.83 0.87
BayesCall 0.44 1.00 0.62 1.00 0.82 0.89 0.89 0.89
naiveBayesCall 0.42 1.00 0.50 1.00 0.80 0.89 0.85 0.89

8 Bustard 0.40 1.00 0.62 1.00 0.78 0.93 0.89 0.89
Alta-Cyclic 0.47 1.00 0.53 1.00 0.84 0.93 0.86 0.93
BayesCall 0.53 1.00 0.62 1.00 0.86 0.93 0.89 0.93
naiveBayesCall 0.50 1.00 0.57 1.00 0.84 0.93 0.88 0.93

10 Bustard 0.50 1.00 0.62 1.00 0.84 0.96 0.89 0.91
Alta-Cyclic 0.50 1.00 0.57 1.00 0.86 0.96 0.88 0.96
BayesCall 0.53 1.00 0.62 1.00 0.86 0.96 0.90 0.96
naiveBayesCall 0.53 1.00 0.57 1.00 0.86 0.96 0.88 0.96

15 Bustard 0.53 1.00 0.62 1.00 0.86 0.98 0.90 0.96
Alta-Cyclic 0.57 1.00 0.57 1.00 0.88 0.98 0.88 0.98
BayesCall 0.62 1.00 0.62 1.00 0.90 0.98 0.90 0.98
naiveBayesCall 0.62 1.00 0.62 1.00 0.90 0.98 0.90 0.98

MAQ [31] was used to carry out read mapping and SNP detection. Precision (denoted
“Prec.” in the table) is the portion of true SNPs in the set of all called SNPs, and
recall is the portion of called SNPs in the set of all true SNPs introduced to the
reference genome. “Quality ≥ 30” corresponds to the results obtained by imposing a
threshold of 30 on read mapping quality scores when using MAQ to call SNPs. These
results indicate that performing error correction prior to using MAQ can significantly
improve precision of SNP detection when the sequence coverage depth is low.
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Chapter 3

A Reference-Free Error Correction

Algorithm for Short Reads

3.1 Introduction

To improve data quality for next generation sequencing, it is well recognized that

development of accurate, scalable computational tools must parallel the rapid ad-

vancement in sequencing technology. As mentioned in Chapter 1, there are two main

approaches to addressing this challenge: 1) One approach is to develop improved

image analysis and base-calling algorithms. This line of work has been pursued by

several researchers in the past, including ourselves; see [50, 12, 41, 26, 24, 28]. Indeed,

by employing more sophisticated statistical methods, it has been demonstrated that

it is possible to deliver significant improvements over the tools developed by the man-

ufacturers of the sequencing platforms. 2) An alternative approach is to correct for

potential errors after base-calling has been performed by leveraging on the fact that

each position in the genome on average is sequenced multiple times. Several methods

have been developed for this approach; e.g., see [15, 7, 44, 45, 8, 42, 40, 51, 52].

The goal of the present chapter is to introduce a novel, efficient computational

method for the latter approach. Our error correction algorithm is called ECHO, and

it has the following notable features, most of which are unique to our method:

1. Whereas previous reference-free error correction algorithms [7, 44, 45, 42] typi-

cally rely on the user to specify some of the key parameters, of which optimal

values are typically unknown a priori, ECHO automatically finds the optimal

parameters and estimates error characteristics specific to each sequencing run.

2. ECHO is based on a probabilistic framework and can assign a quality score

to each corrected base. Quality scores are useful and sometimes necessary in
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downstream analysis.

3. Previous reference-free error correction algorithms [7, 44, 45, 42] are based on k-

mer or substring frequencies. ECHO instead relies on finding overlaps between

reads. Despite being more computationally intensive, this approach retains

more of the information contained in the reads without aggregating away po-

tentially useful relationships. Although read overlap error correction has been

done previously with Sanger reads [2], ECHO is specialized for high-throughput

short reads.

4. ECHO explicitly models heterozygosity in diploid genomes and allows one to

process diploid data in a novel way. Specifically, for each length-l haplotype

(or short-read) in the input data, ECHO can infer a likely length-l genotype

sequence from which the haplotype may have originated, and position-specific

quality scores can be assigned to each genotype. For each input short-read, this

approach provides a way, without the help of a reference genome, to detect the

bases that originated from heterozygous sites in the sequenced diploid genome

and to infer the corresponding genotypes.

ECHO performs error correction by first finding overlaps between reads. This

stage of the algorithm requires not only computational considerations to handle the

enormous number of reads typically generated by NGS platforms, but requires an

effective method to filter out false overlaps. ECHO achieves this by imposing a max-

imum error tolerance in the overlaps and a minimum overlap length. These stringent

requirements typically filter out many of the potential false overlaps, assuming the

genome is not repeat-rich. The optimal error tolerance and overlap requirement, how-

ever, are usually not known a priori. Whereas previous error correction algorithms

require the user to specify key parameters, which may greatly affect the performance

of the algorithm, ECHO automatically determines the optimal values for the error

tolerance and minimum overlap length by utilizing assumptions on the coverage dis-

tribution of the reads.

Once ECHO determines these parameters and finds the overlaps between reads, it

estimates the error characteristics of the data using an expectation maximization pro-

cedure. Statistically modeling the error behavior on a per-base basis more accurately

considers the error behavior of the sequencing platform. This is in contrast to other

error correction algorithms that typically use an error threshold or coverage cutoff,

which may not be statistically motivated. Furthermore, in ECHO, error modeling is

performed for each input data set to characterize the unique properties of different

sequencing runs more effectively. Finally, ECHO utilizes the read overlaps and the
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error characterization to perform error correction on the reads using a maximum a

posteriori procedure. Because the sequencing behavior is modeled statistically, this

leads directly to a method for assigning meaningful quality scores to the bases of the

corrected reads.

Repeats in the genome are challenging to handle since they may lead to false over-

laps. In general, ECHO is less sensitive to repeats than are previous error correction

methods that rely on k-mer or substring frequencies. By retaining the relationships

among reads more explicitly, rather than computing aggregate statistics on substring

frequencies, ECHO is better able to handle repeat patterns in the genome. However,

the obstacles imposed by repeat regions are still significant, and more sophisticated

methods that incorporate additional information will be necessary to overcome these

challenges adequately.

To test the performance of our algorithm, we consider real short-read data gen-

erated by Illumina’s Genome Analyzer (GA) I and II, as well as synthetic short-read

data simulated to mimic GA’s error characteristics. For GA, most of the sequencing

errors are miscall errors (as opposed to indels), with the property that the error rate

generally increases toward the end of the read. We show that ECHO is able to im-

prove the accuracy of previous error correction methods by several folds to an order of

magnitude, depending on the sequence coverage depth and the position in the read.

In particular, provided that the sequence coverage depth is moderate to high (roughly,

15 or higher), ECHO remains effective throughout the entire read length, typically

reducing the error rate at the end of the read from over 5% to under 1%. ECHO

can process relatively small genomes such as that of yeasts or fungi on a desktop

computer. To demonstrate this point and to show that ECHO is capable of coping

with non-uniform coverage that may arise in real data, we apply our method on a

whole-genome yeast data set.

In addition to the improvement in data quality, we also examine here the effects of

error correction on de novo assembly. Assembly is particularly challenging when the

sequence coverage depth is low to moderate, and it may benefit considerably from

the improved data quality provided by error correction. In this chapter, we show

that performing error correction as a preprocessing step facilitates de novo assembly

significantly.

3.2 Notation

Throughout, we adopt the notational convention described below. Denote the

genome being sequenced by S and S, where the latter is the reverse complement of

the former. For ease of discussion, we assume that S and S are length-L strings over
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{A,C,G, T}; if there is more than one chromosome, then S and S correspond to the

strings obtained by concatenating the chromosomes.

We assume that all reads have the same length, denoted by l. We use N to

denote the total number of reads in the input data, and define the sequence coverage

depth as c = Nl
L

. The set of all reads obtained from a sequencing run is denoted by

R = {r1, . . . , rN}, with ri, for 1 ≤ i ≤ N , corresponding to a length-l string over

{A,C,G, T}. In general, two reads ri and rj in R may be identical, and therefore R

actually is a multiset. Note that a read ri may be have originated from either S or

S. With r̄i denoting the reverse complement of ri, we define R = {r̄1, . . . , r̄N} and

augment the set of reads as R = R
⋃
R. Given a read r ∈ R, let rm denote the mth

character of r and, for 1 ≤ m ≤ n ≤ l, let rm:n denote the substring of r starting

at the mth character and ending at the nth character, inclusive; similar notation is

used for S and S. By a k-mer, we mean a length-k string over {A,C,G, T}. Given a

k-mer K, for 1 ≤ k ≤ l, and a read r, we write K ⊂ r to denote that K is a substring

of r. Finally, we use {A,C,G, T} and {1, 2, 3, 4} interchangeably as indices.

3.3 The ECHO Algorithm

In this section, we describe our error-correction algorithm ECHO, which is divided

into two stages: “neighbor finding” and “maximum a posteriori error correction.”

Since we assume that the reference genome is not available, we first devise a clustering

algorithm to find “neighboring” reads that presumably cover the same region of the

genome. After the neighbors of each read are found, we then correct for sequencing

errors by employing a maximum a posteriori estimation procedure for each base of

the read.

3.3.1 Neighbor finding

In a sequencing run with a moderate to high coverage depth, each position in

the genome on average gets sequenced multiple times. The basic idea behind error

correction is to leverage on this redundant information. When there is a reference

genome, identifying the reads that cover the same region can be done via “read map-

ping” [31, 30], which involves aligning reads against the reference genome. However,

in the absence of a reference genome, the task of identifying neighbors becomes more

challenging. Below, we devise a neighbor-finding algorithm based on hashing. The

key observation we utilize is that, for a small enough k, given a pair of reads that

cover the same region of a reasonable size, the chance that they do not have any

common k-mer is small, even if the reads have a few sequencing errors.
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For a given positive integer k < l, let K denote the set of all distinct k-mers

present in R; i.e.,

K = {k-mer K | K ⊂ r for some r ∈ R}.

For each K ∈ K, let C(K) ⊂ R denote the set of reads that contain the k-mer K as

a substring. Then, given a read r ∈ C(K) that contains K, we define the starting

position of K as

xK(r) =

 min{m | rm:m+k−1 = K}, if r ∈ R,

max{m | rm:m+k−1 = K}, if r ∈ R.
(3.1)

The intuition behind (3.1) is that the quality of sequencing is usually better in the

early cycles of a sequencing run, and we want to utilize those good data. The maps

xK , for all K ∈ K, can be constructed in O(Nl) time by iterating through the reads

and using hashing.

Note that the reads in C(K) should have a good chance of covering the same

region in genome. To refine this idea further and select those reads which may have

originated from the same region, we perform pairwise alignments involving the reads

in C(K), for each K ∈ K. In the most general case, a pairwise alignment can be done

with the Smith-Waterman algorithm [47], resulting in the computational cost of O(l2)

per alignment. However, for a sufficiently large k, if indel errors are rare, as is true

in the case of the Illumina platform, it is possible to obtain a reasonable alignment

in O(1) time by using the position map xK . Further, the quality of that alignment

can be determined in O(l) time. We adopt this simplified approach in what follows.

Given two reads r, s ∈ C(K), we align K ⊂ r with K ⊂ s as shown in Figure 3.1,

so that position xK(r) in r is aligned with position xK(s) in s. In this alignment,

position m in r gets identified with position Ir→sK (m) in s, where

Ir→sK (m) =

{
m− xK(r) + xK(s), if 1 ≤ m− xK(r) + xK(s) ≤ l,

∅, otherwise.
(3.2)

The length ωK(r, s) of overlap between r and s is given by

ωK(r, s) = l −max(xK(r), xK(s)) + min(xK(r), xK(s)). (3.3)

Let ΩK(r, s) denote the set of position indices in r that overlap with s in the above

alignment. Note that |ΩK(r, s)| = ωK(r, s). The quality of alignment between r and
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l − xK(r) + xK(s)

K

K

mxK(r)

xK(s) Ir→sK (m)

r

s

(a)

K

K

mxK(r)

xK(s)

r

s

l − xK(s) + xK(r)

Ir→sK (m)

(b)

Figure 3.1: Illustration of aligning two length-l reads r and s by identifying
the common k-mer K. Position m of r in the overlapping region gets identified
with position Ir→sK (m) = m − xK(r) + xK(s) of s. (a) A case with xK(r) > xK(s).
(b) A case with xK(r) < xK(s).

s is measured by the Hamming distance

dK(r, s) =
∑

m∈ΩK(r,s)

1{rm 6= sIr→s
K (m)}, (3.4)

where 1{y} denotes the indicator variable taking value 1 if y holds and 0 otherwise.

For a given minimum overlap threshold δ and maximum error rate tolerance ε, we

say that two reads r, s are “neighbors” of each other if ωK(r, s) ≥ δ and dK(r, s) ≤
ε · ωK(r, s) for some K ∈ K; i.e., r and s overlap by a substantially large amount

and they do not differ by much in that overlapping region. We write r ∼ s to denote

that r and s are neighbors, and use Nr = {s ∈ R | s ∼ r} to denote the set of all

neighbors of r. Note that a neighbor s ∈ Nr may belong to either R or R. Further,

r ∼ r and r ∈ Nr by convention.

Note that if a pair of reads, r and s, contain more than one common k-mer,

then they may admit more than one alignment. In such a case, we use the alignment

associated with the k-mer K∗r,s that gives the minimum Hamming distance normalized

by the overlap length; i.e.,

K∗r,s = argmin
K∈K

{
dK(r, s)

ωK(r, s)

}
. (3.5)

Then, we use

Ω(r, s) = ΩK∗r,s(r, s) (3.6)

to denote the set of positions in r that overlap with s in the alignment associated
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Algorithm 3 Neighbor-Finding Algorithm

Given k, δ, ε.
Construct K0 by extracting all possible k-mers from R.
for all reads r ∈ R and K ∈ K0 do

Construct xK(r) according to (3.1).
end for
for all k-mer K ∈ K0 do

for all reads r, s ∈ C(K) do
if ωK(r, s) ≥ δ and dK(r, s) ≤ ε · ωK(r, s) then

Update Nr and Ns, and update Ir→s and Is→r according to (3.5) and (3.7).
end if

end for
end for
Output the neighbor sets (Nr)r∈R and the identification maps (Ir→s)r∈R,s∈Nr

with K∗r,s, and position m ∈ Ω(r, s) gets identified with the following position in s:

Ir→s(m) = Ir→sK∗r,s
(m), (3.7)

where the identification map Ir→sK∗r,s
is defined as in (3.2). Using the algorithm described

above, one can construct (Ir→s)r∈R,s∈Nr in O(Nl + |K| · l · maxK |C(K)|2) time. In

practice, the size |C(K)| can be very large for some K ∈ K, potentially increasing the

running time substantially; this usually happens when K is a substring of a repetitive

region in the genome being sequenced. Therefore, instead of considering all possible

k-mers, we consider only those k-mers with |C(K)| ≤ 50000, and define

K0 =
{
K ∈ K |C(K)| ≤ 50000

}
.

Our neighbor-finding algorithm is summarized in Algorithm 3.

3.3.2 Parameter selection

We now describe how the parameters k, δ and ε are selected. The choice of k

should consider the following two competing factors: 1) The length k should not be

too small, so that maxK |C(K)| is linear in the coverage depth c, independent of the

length L of the genome. Otherwise, our algorithm will take more than O(Nl+|K0|lc2)

time to construct the identification maps (Ir→s)r∈R,s∈Nr . 2) On the other hand, k

should not be too large, so that, even with sequencing errors, the reads that cover

the same region can still have a common k-mer and be grouped as neighbors by our

neighbor-finding algorithm. The number of distinct k-mers in a genome of size L is
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upper bounded by 2(L−k+1). However, sequencing errors may introduce additional

distinct k-mers. Hence, if the order of magnitude L of the genome size is known, we

suggest using

k = blog4 10Lc. (3.8)

If the genome size is completely unknown, then, assuming that the sequence coverage

depth ranges from tens to hundreds, we approximate (3.8) with

k = blog4Nlc. (3.9)

We show in Chapter 3.6 that the performance of our algorithm is robust with respect

to the choice of k.

The quality of the identification maps (Ir→s)r∈R,s∈Nr greatly depends on the choice

of δ and ε. If we use δ and ε that impose too strict constraints for the neighbor relation,

then the reads that cover the same region of the genome will not be grouped together,

and the subsequent error-correction algorithm (described later) will lose its power to

correct for sequencing errors. Furthermore, constraints that are too loose will lead

to incorrectly inferring reads as neighbors when they do not in fact cover the same

region of genome, and hence negatively affect the accuracy of our error-correction

algorithm.

To select (δ, ε) automatically, we randomly choose a subset Q ⊆ R and define

Q = Q∪Q, where Q contains the reverse complements of the reads in Q; we suggest

using a subset of size 100, 000 or |R|, whichever is smaller. Then, we construct the

neighbor sets Nr and the identification maps Ir→s for the reads r ∈ Q. We assume

that, for any position m in read r ∈ Q, the number Cr,m of neighbors of r that overlap

with the mth character rm is Poisson distributed. We further assume that Cr,m, for

r ∈ Q and 1 ≤ m ≤ l, are independent and identically distributed. Therefore, when

Algorithm 3 is used with parameters (δ, ε), the empirical probability mass function

for the distribution of Cr,m can be obtained by

f̂δ,ε(i) =
1

l|Q|
∑
r∈Q

∑
1≤m≤l

1{i = cr,m(δ, ε)}, (3.10)

where cr,m(δ, ε) is the empirical number of neighbors in Nr that overlap with the mth

character rm. Our goal is then to find the best (δ, ε) such that f̂δ,ε resembles a Poisson

probability mass function as closely as possible. The mean of the Poisson distribution

can be estimated by a maximum a posteriori estimator. However, we find that it is
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more robust to match the mode and use the following as the mean:

µ(δ, ε) = argmax
i>1

f̂δ,ε(i) + 1. (3.11)

Finally, we apply a grid search algorithm to obtain

(δ∗, ε∗) = argmin
δ,ε

dTV (f̂δ,ε, gµ(δ,ε)), (3.12)

where gµ(δ,ε) denotes the probability mass function of a Poisson distributed random

variable with mean µ(δ, ε), and dTV (f, g) denotes the total variation distance

dTV (f, g) =
1

2

∑
i

|f(i)− g(i)|. (3.13)

The above parameter selection method can be implemented efficiently by noting

that one can obtain the neighbor relationships under more restrict constraints from

that under looser constraints. More precisely, if we have already computed (Nr)r∈Q
and (Ir→s)r∈Q,s∈Nr for some δ and ε, then (Nr)r∈Q and (Ir→s)r∈Q,s∈Nr for δ′ ≥ δ and

ε′ ≤ ε can be obtained by re-examining the reads in (Nr)r∈Q for (δ, ε), instead of

re-running the entire algorithm for (δ′, ε′) from scratch.

3.3.3 Maximum a posteriori error correction for haploid

genomes

Maximum a posteriori error correction

We now describe our error-correction algorithm, which is applied to the neighbors

(Nr)r∈R and identification maps (Ir→s)r∈R,s∈Nr found using (δ, ε) = (δ∗, ε∗) in Algo-

rithm 3, where δ∗ and ε∗ are as shown in (3.12). The basic idea is to formulate a

maximum a posteriori estimation procedure for each base in each read and correct

for possible sequencing errors.

In the Illumina GA platform, most of the sequencing errors are miscall errors (as

opposed to indels), with the property that the error rate generally increases towards

the end of the read. For simplicity, we assume that miscall errors are made indepen-

dently within each read and across different reads. To be more precise, we assume

that each character in a given read is distributed as a multinomial distribution with

parameters that depend on the position of that character within the read and the true

corresponding nucleotide in the original genome. If the true nucleotide at position m

of a given read in R is b, the probability that it is called as b′ is denoted by Φ
(m)
b,b′ .
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Φ(l)

Sir,1 Sir,3

Φ(3)

Sir,l

Φ(1)

Sir,2

Φ(2)

r1 r3 rlr2

Figure 3.2: A graphical representation of our model (3.16)–(3.18) for gen-
erating a read r from the genome S. Open circles correspond to unobserved
random variables, while filled circles represent observed variables. The symbol Φ(m)

denotes the confusion matrix for position 1 ≤ m ≤ l; this matrix characterizes se-
quencing errors. See text for details.

Following [26, 24], we refer to Φ(m) = (Φ
(m)
b,b′ )b,b′∈{A,C,G,T} as the confusion matrix for

position 1 ≤ m ≤ l; this matrix characterizes sequencing errors. We later provide an

algorithm for estimating Φ(m) for 1 ≤ m ≤ l.

Now, given a read r ∈ R, suppose that the nucleotide at position m of r originated

from position ir,m of the genome. To be explicit, suppose that S, rather than S, is

the source. Then, in the absence of any sequencing error, read r will be identical to

the substring Sir,1:ir,l . For a read r ∈ R, the entry Φ
(m)
b,b′ in the confusion matrix Φ(m)

can be formally defined as

Φ
(m)
b,b′ = P(rm = b′ | Sir,m = b). (3.14)

For a read r ∈ R, since it is the reverse complement of a read in R, the error

characteristic at position m of r is captured by

Φ
(m)

b,b′ = Φ
(l−m+1)

b̄,b̄′
, (3.15)

where b̄ and b̄′ are the complementary bases of b and b′, respectively.

We use the following model for the distribution of observed reads:

Si ∼ Unif{A,C,G, T}, (3.16)

rm|Sir,m = b ∼ Mult(1; Φ
(m)
b,A ,Φ

(m)
b,C ,Φ

(m)
b,G ,Φ

(m)
b,T ), if r ∈ R, (3.17)

rm|Sir,m = b ∼ Mult(1; Φ
(m)

b,A ,Φ
(m)

b,C ,Φ
(m)

b,G ,Φ
(m)

b,T ), if r ∈ R. (3.18)
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A graphical representation of this model is shown in Figure 3.2 for the case r ∈ R.

Based on this model, we can express the posterior distribution P(Sir,m = b | rm = b′),

for b, b′ ∈ {A,C,G, T}, as

P(Sir,m = b | rm = b′) =



Φ
(m)
b,b′∑

a∈{A,C,G,T}Φ
(m)
a,b′

, if r ∈ R,

Φ
(m)

b,b′∑
a∈{A,C,G,T}Φ

(m)

a,b′

, if r ∈ R,

(3.19)

where Φ is as defined in (3.15). For a read r ∈ R, we assume that every neighbor

in Nr is distributed according to (3.16)–(3.18). Hence, assuming that the neighbor

reads in Nr cover the same region in the original genome, the posterior log likelihood

of Sir,m being base b is

`r,m(b) =
∑
s∈Nr

1{m ∈ Ω(r, s)} × logP(Sir,m = b | rm = sIr→s(m)) (3.20)

where recall that Ω(r, s) is the set of positions in r that overlap with s, and Ir→s(m)

is the position in s with which position m in r is identified. (Also recall that r itself

is in Nr, and that its neighbor s 6= r may belong to either R or R.) The maximum

a posteriori (MAP) estimate of Sir,m is

SMAP
ir,m = argmax

b∈{A,C,G,T}
`r,m(b). (3.21)

Coverage checks

An abnormally large set of overlapping reads usually indicates the reads are sam-

pled from a repetitive or repeat region, and suggests that our assumptions on overlap-

ping reads most likely do not hold. From the overlaps found in the neighbor finding

stage, we have an estimate of the expected coverage µ, as described in Chapter 3.3.2.

If the coverage at a position is greater than µ+ α
√
µ (α standard deviations greater

than the average coverage), we do not perform a correction. Our empirical study

suggests that the precise value of α does not generally affect the accuracy of the al-

gorithm; 4 ≤ α ≤ 6 is typically effective. This “filtering” allows ECHO to be robust

against parts of the genome that have repetitive structure or have highly non-uniform

coverage. We refer to this filtering as a “coverage check,” because it ensures that the

estimated coverage for a read looks reasonable before correction is attempted.
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Algorithm 4 Maximum A Posteriori Error-Correction Algorithm (Haploid Version)

Given (Nr)r∈R, (Ir→s)r∈R,s∈Nr , and Φ(m), for 1 ≤ m ≤ l.
for all reads r ∈ R do
`r,m(b)← 0,∀b ∈ {A,C,G, T} and ∀1 ≤ m ≤ l
for all 1 ≤ m ≤ l do

for all reads s ∈ Nr do
Update posterior log likelihood via (3.20)

end for
Correct for sequencing errors with MAP estimator via (3.21).
Update rECHO

m via (3.22).
end for
Output corrected read rECHO.

end for

Recall that, in (3.10), cr,m denotes the number of neighbor reads inNr that overlap

with the mth position in r. We want to check whether cr,m is consistent with the

expected value µ obtained using (3.11) and (3.12). If the difference cr,m − µ is too

large, it indicates a potential problem with neighbor-finding, and hence the MAP

error correction might be unreliable. Therefore, in such a case we output the original

base rm instead of the MAP estimate SMAP
ir,m . Following the same Poisson distribution

assumption as in Chapter 3.3.2 and choosing [1, µ+5
√
µ] as the region of acceptance,

the base output by our algorithm is

rECHO
m =

{
SMAP
ir,m , if cr,m ∈ [1, µ+ 5

√
µ],

rm, otherwise.
(3.22)

A summary of the MAP error-correction algorithm can be found in Algorithm 4.

3.3.4 Quality scores

Providing an accurate measure of per-base quality has practical importance. For

instance, MAQ [31], a widely-used read mapping algorithm, utilizes base-specific

quality scores to produce mapping quality scores and to call variants. A widely

adopted definition of quality score is that used in Phred [13]; it is a transformed error

probability of a base, defined more precisely as follows: Let er,m denote the probability

that the mth base rm of read r is erroneously called. Then, the Phred quality score

qr,m for rm is given by

qr,m = −10 log10 er,m. (3.23)
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Since ECHO provides an estimate of the posterior probability of each base, the error

probability er,m of base rECHO
m can be estimated by

er,m = 1− exp{`r,m(rECHO
m )}∑

b∈{A,C,G,T} exp{`r,m(b)}
, (3.24)

where `r,m(b) is defined in (3.20). The Phred quality score for rECHO
m is then obtained

by plugging (3.24) into (3.23). In Chapter 3.6, we show that, combined with this

quality score, our error correction method can significantly improve SNP detection.

3.4 Generalization to diploid genomes

In this section, we show how our approach can be generalized to handle short-

reads from diploid genomes, in which case the main challenge lies in distinguishing

heterozygotes from sequencing errors. We use the same neighbor-finding algorithm

as in the haploid case, but modify the maximum a posteriori error-correction step as

described below.

The unordered genotype at a given position in a diploid genome is either a homozy-

gote or a heterozygote. We use Hom = {{A,A}, {C,C}, {G,G}, {T, T}} to denote

the set of homozygous genotypes and Het = {{A,C}, {A,G}, {A, T}, {C,G}, {C, T},
{G, T}} to denote the set of heterozygous genotypes. The set of all possible genotypes

is denoted by G = Hom ∪ Het.

Given a length-l haplotype sequence r ∈ {A,C,G, T}l, let Dir,1:ir,l denote the true

unphased genotype sequence in the diploid genome from which r originated. Our

goal is to transform r into a length-l unphased genotype sequence D(r) ∈ Gl, such

that D(r) is as close to Dir,1:ir,l as possible. For each position m in r ∈ R, we assume

that the two alleles in Dir,m are equally likely to be the source of the mth nucleotide

rm. Hence, sequencing errors at that position are characterized by the following

generalized confusion matrix Ψ(m) = (Ψ
(m)
g,b )g∈G,b∈{A,C,G,T}:

Ψ
(m)
{a,a′},b = P(rm = b | Dir,m = {a, a′}) =

1

2
(Φ

(m)
a,b + Φ

(m)
a′,b ),

where Φ is defined in (3.14). Similarly, for a read r ∈ R, the error characteristic at

position m of r is captured by

Ψ
(m)

{a,a′},b =
1

2
(Φ

(m)

a,b + Φ
(m)

a′,b ),
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where Φ
(m)

is defined in (3.15).

Now, we use h to denote the prior probability that a given site in the diploid

genome is heterozygous. Then, for a particular genotype g ∈ G, the prior is

P(g) =


1− h

4
, if g ∈ Hom,

h

6
, if g ∈ Het.

That is, given the zygosity, we assume the uniform distribution over all possible

genotypes. Analogous to (3.19), the posterior distribution is given by

P(Dir,m = g | rm = b) =



Ψ
(m)
g,b P(g)∑

g′∈G Ψ
(m)
g′,bP(g′)

, if r ∈ R,

Ψ
(m)

g,b P(g)∑
g′∈G Ψ

(m)

g′,bP(g′)
, if r ∈ R.

Further, analogous to (3.20), the posterior log likelihood of Dir,m being genotype g is

Lr,m(g) =
∑
s∈Nr

1{m ∈ Ω(r, s)} × logP(Dir,m = g | rm = sIr→s(m)),

and the maximum a posteriori estimate of Dir,m is

DMAP
ir,m = argmax

g∈G
Lr,m(g).

Finally, analogous to (3.22), our algorithm outputs the following genotype for the

mth position in r:

DECHO(rm) =

{
DMAP
ir,m , if cr,m ∈ [1, µ+ 5

√
µ],

{rm, rm}, otherwise.

Replacing the error probability (3.24) with

er,m = 1− exp{Lr,m(DECHO(rm))}∑
g∈G exp{Lr,m(g)}

,

the same formula (3.23) can be used for the quality score of DECHO(rm). Incidentally,

note that the above algorithm for the diploid case with h = 0 reduces to the algorithm
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described earlier for the haploid case.

3.5 Estimating position-specific confusion matri-

ces

If a reference genome is available, the confusion matrices Φ(m), for 1 ≤ m ≤ l, may

be estimated by first aligning reads to the reference genome, treating mismatches as

errors. However, this estimation can be biased, since mismatches may also originate

from single nucleotide polymorphism or other structural variations. Another method

of estimating the confusion matrices is to use a control lane that sequences a known

genome. This method avoids the potential biases caused by variations between the

sampled genome and the reference genome, but this solution is costly and error char-

acteristics can still differ between different lanes or runs.

Based on our probabilistic model (3.16)–(3.18), we adopt the expectation-

maximization (EM) algorithm to estimate confusion matrices. The advantage of the

EM algorithm is that estimation can be performed without a reference genome. To

start the estimation of Φ(m), for 1 ≤ m ≤ l, we first obtain (Nr)r∈R and (Ir→s)r∈R,s∈Nr ,

with k, δ, ε as described in Chapter 3.3.2. Then we fix the neighbor relationship and

apply the EM algorithm. For all 1 ≤ m ≤ l, we initialize the confusion matrix as

Φ
(m)
b,b′ =

{
0.99, if b = b′,

0.01/3, otherwise.
(3.25)

The EM algorithm typically terminates after a few iterations.

3.6 Results

In this section, we evaluate the performance of our algorithm ECHO and com-

pare it to previous error correction methods. In particular, we consider the Spectral

Alignment (SA) algorithm used in the preprocessing step of the de novo assembler

EULER-USR [7]. This error correction algorithm is based on examining the k-mer

spectrum of the input reads [39, 6]. Because SA is sensitive to the choice of k, for

each experiment, we ran SA over a range of k and selected the k that generated the

optimal results (this was typically around k = 15).

SHREC [44] is a recent error correction algorithm based on a generalized suffix trie

data structure and essentially considers the substring spectrum of the input reads,

i.e. a range of k-mers where k is over a given interval. It requires the user to specify
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the size of the genome, and we provided it with the true genome size for each data set

we considered. Further, SHREC has a parameter called “strictness,” with the default

value being 7. For coverage depths c < 40, SHREC failed to run with the default

parameter value, so we used the largest value less than 7 that the program accepted.

As discussed in Chapter 3.3, ECHO automatically chooses its parameters k, ω∗, and

ε∗.

In addition to the improvement in data quality, we also examine the effects of

error correction on de novo assembly.

3.6.1 Data and experiment setup

We tested the performance of our method on both real and simulated data, with

a range of sequence coverage depths. Specifically, the following data types were

considered:

D1 (PhiX174): We used standard resequencing data of PhiX174 virus, provided to

us by the DPGP Sequencing Lab at UC Davis. The data were obtained from

the Illumina GA-II platform, with the viral sample in a single lane of the flow

cell. The lane consisted of 100 tiles, containing a total of 14,820,478 reads,

each being 76 bp in length. The length of the PhiX174 genome is 5386 bp,

and the short-read data corresponds to a coverage depth of around 210,000.

Various coverage depths were obtained by sampling without replacement from

the actual data set. We used Illumina’s standard base-calling software, Bustard,

to produce base-calls. To create labeled test data, we aligned the reads against

the PhiX174 reference sequence and regarded every mismatch as a sequencing

error.

D2 (D. mel.): Another real data set we used is that of Drosophila melanogaster in-

bred line RAL-399, sequenced and assembled by the Drosophila Population Ge-

nomics Project (DPGP, http://www.dpgp.org/). The short-reads were down-

loaded from the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.

gov/Traces/sra/sra.cgi). The data consisted of 36 bp reads sequenced on

the Illumina GA-I platform and base-called by Bustard. The overall coverage

depth of this data set was roughly 13. To create a labeled test set, we aligned the

reads against the genome assembly (release 1.0) produced by DPGP. Then, we

selected those reads that mapped to chromosome 2L and regarded mismatches

as sequencing errors.

D3 (Simulated D. mel.): In the test described above in D2, errors in the assembled

genome (i.e., differences between the assembled genome and the true genome)
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may confound the assessment of the accuracy of error-correction algorithms.

To avoid this potential problem, we used the following procedure to simulate

a set of 76 bp reads from a known sequence: We took a 100 kbp region from

chromosome 2L of the RAL-399 inbred line mentioned above. Let S denote

that sequence and S its reverse complement. To simulate each 76 bp read, we

chose a strand (either S or S) and a starting position uniformly at random, and

introduced errors by selecting a random “error template” as follows: First, we

selected a read randomly from the PhiX174 data set D1 and aligned it to the

PhiX174 reference genome to determine the positions of errors. Then, we took

that error template and added errors to the simulated Drosophila read at the

corresponding locations. The miscalled base was determined according to the

position-specific empirical confusion matrices estimated from the PhiX174 data,

because the “error template” from the sampled PhiX174 read only provides the

positions of errors. This approach allowed us to simulate more realistic error

patterns; e.g., the correlation of errors in a read and the clustering of errors on

a subset of the reads. Our simulation method permitted miscall errors but no

indels.

D4 (Simulated human data with repeats and duplicated regions): To evaluate the

performance of ECHO on sequences with repeats and duplicated regions, we

generated 76 bp reads from a 250 kbp region of human chromosome 16 known

to have a duplicated gene [34]. More specifically, the region spans chromosomal

coordinates 20240000−20490000 of the GRCh37 reference assembly of chromo-

some 16, and was downloaded from the NCBI Genome database. We followed

the same procedure as in D3 to introduce errors into reads randomly selected

from the 250 kbp region.

D5 (Simulated diploid data): To generate a known diploid genome, we took the

100 kbp region mentioned in D3 and mutated each base with probability 0.001,

with the new base drawn uniformly at random from the alternative bases. To

simulate each 76 bp read, we first chose a strand uniformly at random from the

four possible strands. Then, we randomly chose a starting position and gener-

ated observed reads according to (3.17)–(3.18), using position-specific empirical

confusion matrices estimated from the PhiX174 data. For this diploid data set,

the sequence coverage depth is given by Nl
2L

, where N denotes the number of

reads, l = 76, and L = 100, 000.

D6 (Saccharomyces cerevisiae): This real data set consisted of 7.1 million reads

from the whole-genome sequencing of a laboratory-evolved yeast strain derived
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from DBY11331 [16], Accession Number SRR031259 in the NCBI Sequence

Read Archive. Because the yeast strain differed slightly from the S. cerevisiae

reference genome, we created a new reference sequence using MAQ and the

standard reference sequence. We used this modified reference genome to eval-

uate error-correction performance in our experiments. The data set contained

single-end 36 bp reads from the Illumina GA II platform, covering all 16 chro-

mosomes and the mitochondrial DNA of S. cerevisiae. The overall coverage

depth of the data set was roughly 21.

3.6.2 Error correction accuracy for haploid genomes

Here, we compare the error correction accuracy of SA [7], SHREC [44], and ECHO on

the data sets described in the previous section. The output of SHREC is partitioned

into “corrected” and “discarded” reads. We measured the performance of SHREC by

considering only the corrected reads.

In what follows, we use the term by-base error rate to refer to the ratio of the

total number of incorrect bases in the reads to the total combined length of the

reads. We also consider the by-read error rate, which corresponds to the ratio of the

number of reads each with at least one miscalled base to the total number of reads.

Table 3.1 shows the by-base and by-read error rates for haploid data sets D1–D4

before and after running the three error-correction algorithms. Table 3.2 shows the

numbers of corrected errors and introduced errors, as well as the gain, for the same

data sets after error correction. The gain is defined as the number of corrected errors

minus the number of introduced errors, divided by the number of actual errors, in

the same manner as in [52]. On all data sets, ECHO substantially outperformed both

SA and SHREC. In general, SA did not seem effective in reducing the by-base error

rate. SHREC was more effective than SA, while our algorithm outperformed SHREC

by several folds on real data and by up to two orders of magnitude on simulated

data. Even in the case of low coverage depth (e.g., 5), ECHO was quite effective

in reducing the sequencing error rate. Observe that all three algorithms generally

improved the by-read error rates noticeably, with ECHO outperforming both SA and

SHREC significantly. It is interesting that while SA only moderately improved the

by-base error rate, it was actually quite effective in improving the by-read error rate.

To compare the performance of the three error-correction algorithms in more de-

tail, we examined the position-specific by-base error rates; i.e., the by-base error rate

at position i is the ratio of the number of reads with an incorrect base at position

i to the total number of reads. For PhiX174 data D1 with sequence coverage depth

30, Figure 3.3 illustrates the position-specific by-base error rates before and after
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Figure 3.3: Position-specific by-base error rates for 76 bp PhiX174 data
D1 with sequence coverage depth 30. Error rates before and after applying
the three error-correction algorithms are shown. Spectral Alignment (or SA; see [7])
and SHREC [44] are able to improve the error rate in intermediate positions, but
they both become less effective for later positions. In contrast, our error-correction
algorithm ECHO remains quite effective throughout the entire read length, reducing
the error rate at the end of the read from about 5% to a small fraction of 1%.

applying the error-correction algorithms. It is well-known that the error rate of the

Illumina platform generally increases toward the end of the read, reaching as high as

5% in the example shown. Although SA and SHREC were able to reduce this effect

to a certain degree, they both became less effective for later positions. In contrast,

ECHO remained quite effective throughout the entire read length. In particular, the

error rate at the end of the read was reduced from about 5% to a small fraction of

1%.

We considered the effect of coverage depth on the performance of our algorithm.

Figure 3.4 shows the position-specific by-base error rates before and after applying

ECHO on PhiX174 data with varying sequence coverage depths. At a coverage depth

of 15, the error rate could be controlled throughout the entire read length, resulting

in only a slight increase in the error rate toward the end of the read.

Although ECHO outperformed the other error correction methods on the sim-

ulated human data set D4 (see Tables 3.1 and 3.2), the improvement was not as

pronounced as for the Drosophila and PhiX174 data sets. This demonstrates that

ECHO is most effective on genomes with limited repetitive structure. Although the

read overlap approach might be less susceptible to repeat regions than a k-mer spec-
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Figure 3.4: Position-specific by-base error rates before and after running our
error-correction algorithm ECHO on PhiX174 data with varying coverage
depths. The ability of our algorithm to correct sequencing errors improves as the
sequence coverage depth increases. A coverage depth of 15 seems sufficient to control
the error rate quite well throughout the entire read length.

trum method, it does not adequately overcome this obstacle. Further work is required

to handle repeat regions, which are common in more complex genomes, such as mam-

malian genomes.
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Table 3.1: Error rates for haploid data before and after running error-correction algorithms.

By-base error rate (%) By-read error rate (%)
Data Cov Uncorr SA SHREC ECHO Uncorr SA SHREC ECHO
(D1) PhiX174 5 1.00 0.72 0.81 0.45 31.27 21.13 25.36 15.49

10 0.99 0.83 0.64 0.38 29.48 18.48 21.27 10.16
15 1.01 0.72 0.65 0.27 28.85 17.48 19.75 8.55
20 1.00 0.81 0.66 0.25 28.00 17.35 18.53 7.97
25 1.08 0.96 0.64 0.30 28.33 18.23 18.35 8.75
30 1.02 1.00 0.56 0.25 28.02 17.82 17.86 8.18

(D2) D. mel. 13 2.93 2.93 2.57 1.15 48.85 48.85 25.68 16.99

(D3) Simulated
D. mel.

5 0.96 0.91 0.58 0.53 15.60 15.59 15.94 11.25
10 0.98 0.91 0.52 0.36 12.34 12.34 13.38 3.78
15 1.00 0.92 0.50 0.21 12.52 12.51 12.74 1.84
20 0.99 0.90 0.49 0.10 12.58 12.58 12.57 0.89
25 1.00 0.93 0.50 0.10 12.71 12.70 12.49 0.86
30 0.99 0.93 0.50 0.09 12.79 12.79 12.45 0.88

(D4) Simulated
Human

5 1.01 1.00 0.68 0.61 26.94 15.62 18.06 12.52
10 1.01 1.00 0.60 0.41 27.13 13.15 15.58 6.02
15 1.00 1.01 0.53 0.28 27.08 13.15 13.07 5.53
20 1.01 0.99 0.53 0.27 27.06 13.23 12.86 5.57
25 1.00 0.98 0.52 0.27 26.93 13.33 12.73 5.77
30 1.00 0.97 0.53 0.26 26.95 13.45 12.84 5.88

Cov: sequence coverage depth. Uncorr: uncorrected reads. SA: spectral alignment method used in EULER-USR [7].
SHREC: method introduced by [44]. ECHO: our error-correction method. “By-base” error rate refers to the ratio of
the total number of incorrect bases in the reads to the total length of the reads. “By-read” error rate corresponds to
the ratio of the number of reads each with at least one miscalled base to the total number of reads considered.
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Table 3.2: Numbers of corrected errors and introduced errors after running error correction.

# Corrected Errors # Introduced Errors Gain %
Data Cov SA SHREC ECHO SA SHREC ECHO SA SHREC ECHO
(D1) PhiX174 5 78 43 148 2 0 0 28.1 15.9 54.8

10 196 181 328 109 0 0 16.3 34.0 61.5
15 300 288 605 64 0 0 28.8 35.1 73.8
20 376 363 811 169 0 0 19.2 33.6 75.2
25 476 509 1043 320 1 0 10.8 35.1 72.0
30 558 618 1245 524 0 0 2.1 37.6 75.8

(D2) D. mel. 13 0 2931051 5098551 0 1919856 40684 0.0 12.2 61.1

(D3) Simulated
D. mel.

5 1682 1813 3226 1401 26 0 5.8 36.9 44.9
10 4083 4272 7701 3346 17 0 7.5 43.4 63.5
15 6304 7220 14235 4999 11 11 8.9 47.8 78.6
20 8317 9539 18395 6453 12 45 9.4 47.9 89.2
25 10304 11916 22355 8577 16 22 6.9 47.7 89.6
30 12195 14232 28012 10481 21 27 5.8 47.8 90.6

(D4) Simulated
Human

5 4082 4658 5419 3870 1047 365 1.7 28.5 39.9
10 10117 10805 15833 9834 1189 713 1.1 38.0 59.7
15 14950 17220 27881 15120 397 830 −0.5 44.8 72.1
20 19731 23190 37933 19013 444 886 1.4 45.1 73.4
25 24228 28954 46191 23169 585 714 1.7 45.5 72.9
30 29038 34912 55706 26758 722 491 3.1 45.7 73.9

Cov: sequence coverage depth. Uncorr: uncorrected reads. SA: spectral alignment method used in EULER-USR [7].
SHREC: method introduced by [44]. ECHO: our error correction method. “# Corrected Errors” is the number of errors
in the reads that were corrected. “# Introduced Errors” is the number of bases in the reads that were correct but were
miscorrected by the error correction. Gain is defined as (#Corrected Errors−#Introduced Errors)/(#Actual Errors).
The read length for D1, D3, and D4 was 76 bp. The read length for D2 was 36 bp.
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Figure 3.5: The gain of ECHO and the position-specific coverage for Chro-
mosome 1 of the yeast data D6. Each plot uses bins of 1000 bp. The top plot
shows the gain of ECHO, defined as the number of corrected errors minus the number
of introduced errors, divided by the number of actual errors. The bottom plot shows
the position-specific coverage.

3.6.3 Whole-Genome Error Correction

To evaluate the performance of ECHO on whole genome data, we ran an ex-

periment on yeast data D6 from the NCBI Sequence Read Archive. The data set

consisted of 7.1 million reads from a close variant of S. cerevisiae. Results from the

experiment are shown in Table 3.3 and Table 3.4. The performance of all evaluated

error correction algorithms was significantly worse for this data set than the others.

Closer examination of the data revealed that the mitochondrial DNA (mtDNA) had

much higher coverage than the other chromosomes, 210x compared to 19.5x. Because

ECHO compares a read’s estimated coverage to the estimated coverage over the entire

genome, nearly every read from the mtDNA was not corrected. This contrasts with

SHREC, which does not account for such drastic differences in coverage across the

genome.

This suggests that although ECHO assumes uniform coverage of the genome when

determining its parameters, when it encounters data with highly non-uniform cover-

age, it avoids confusion caused by the non-uniform coverage by requiring the reads to

pass the coverage checks described in Chapter 3.3.3. It should be noted that repet-

itive structure would also cause a read not to pass the coverage check, which would

cause ECHO to be more conservative around repeat regions.

In order to better quantify the performance of the error correction algorithms, we
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Table 3.3: Error rates for yeast data before and after running error correction on the
whole-genome yeast data.

By-base error rate (%) By-read error rate (%)
SHREC ECHO SHREC ECHO

Before After Before After Before After Before After
Entire D6 0.90 0.83 0.9 0.71 14.9 10.8 14.9 10.9

Conditional D6 0.89 0.79 1.28 0.83 14.8 10.6 17.3 8.4

SA results are not shown because it did not perform any error correction for this data
set. Conditional refers to the subset of data on which error correction was performed
by each algorithm. Specifically, for ECHO it refers to the reads that passed the
coverage checks. For SHREC, it refers to the reads that did not get discarded.

Table 3.4: Numbers of corrected errors and introduced errors after running error
correction on the whole-genome yeast data D6.

# Corrected Errors # Introduced Errors Gain %
Data SHREC ECHO SHREC ECHO SHREC ECHO
Entire D6 743434 out of 2302181 498588 out of 2302181 502726 12087 10.5 21.1
Conditional D6 743434 out of 2236313 498588 out of 1393181 502726 12087 10.8 35.8

SA results are not shown because it did not perform any error correction for this
data set. As explained in Table 3.3, Conditional refers to the subset of data
on which error correction was performed by each algorithm. Gain is defined as
(# Corrected Errors−#Introduced Errors)/(# Actual Errors). In general, ECHO is
more conservative than SHREC. See Figure 3.5 for position-specific gain information.

divided the data set into two groups: reads that passed the coverage checks and those

that did not. When we considered only those reads that passed the coverage checks,

the performance of ECHO improved significantly.

Figure 3.5 shows the gain for ECHO and the coverage along chromosome 1. As

mentioned before, the gain corresponds to the number of corrected errors minus the

number of introduced errors, divided by the number of actual errors. The plots

illustrate that when the coverage increases significantly, the gain tends to drop. This

is because the reads from these positions generally do not pass the coverage checks

ECHO imposes.

Table 3.4 illustrates that SHREC corrected about 1.5 times more bases than did

ECHO, but the number of errors introduced by SHREC was 41 times greater than

that introduced by ECHO. As a result, ECHO outperforms SHREC in terms of gain.
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Table 3.5: Robustness of our algorithm ECHO with respect to the choice of the
keyword length k.

k By-base error rate (%)
7 0.107
8 0.107
9 0.107

10 0.108
11 0.108
12 0.109
13 0.111
14 0.115
15 0.193

Our algorithm was run on simulated data D3 with sequence coverage depth 19. The
average by-base error rate in the simulated reads was around 1%. For the optimal
case (i.e., k = 13), ECHO reduced the error rate from 1% to 0.0061%. In comparison,
(3.9) suggests using k = 10, in which case the associated error rate was 0.0062%.

Because of the coverage checks it performs, ECHO was more conservative in correcting

reads coming from highly covered regions of the genome. We expect this to be an

advantageous feature of ECHO, as a high estimated coverage is often indicative of

repeat structure.

3.6.4 Robustness with respect to the choice of the keyword

length k

In Chapter 3.3.2, we provided a rough guideline for choosing the keyword length

k in the neighbor-finding algorithm. In particular, if the genome size is completely

unknown, we suggested using (3.9) to set k. Here, we show empirically that the

performance of ECHO with k chosen as in (3.9) is comparable to the performance of

the algorithm with the optimal k that maximizes the error correction ability.

For this study, we simulated a data set of type D3 consisting of 25,000 reads of

length 76 bp. This corresponds to a sequence coverage depth of 19. The average

by-base error rate in the simulated reads was around 1%. For each given k, we

used the method described in Chapter 3.3.2 to determine δ∗ and ε∗; see (3.12) and

the surrounding discussion. Then, Algorithm 3 was run with the chosen k and the

associated (δ, ε) = (δ∗, ε∗) to find the neighbor sets (Nr)r∈R and the identification

maps (Ir→s)r∈R,s∈Nr . Finally, Algorithm 4 was used to perform error correction.

Table 3.5 shows that the performance of ECHO is robust with respect to the choice
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of k. For the simulated data we considered, the value of k that led to the largest

improvement in the error rate was k = 7, in which case ECHO reduced the error rate

from 1% to 0.107%. In comparison, (3.9) suggests using k = 10; the associated error

rate for this case was 0.108%, which is comparable to the optimal case.

3.6.5 Error correction accuracy for diploid genomes

As described in Chapter 3.3, our algorithm ECHO can handle diploid data as

well as haploid data. Recall that ECHO explicitly models heterozygosity in diploid

genomes and has a parameter (denoted h) corresponding to the probability that a

given site is heterozygous. Setting h = 0 is equivalent to reducing the model to the

haploid case. Neither SA nor SHREC explicitly models diploidy, so they may be

compared with the case of h = 0 in our model.

We tested the methods on simulated diploid data D5. In simulating the diploid

genome, the probability of heterozygosity was set to 10−3 for each site. Table 3.6

and Table 3.7 show a summary of error correction results on diploid data D5. As

in the haploid case, SA was not effective in reducing the by-base error rate, though

it was able to reduce the by-read error rate reasonably well. SHREC significantly

outperformed SA on the by-base error rate, whereas their by-read error rates were

comparable. ECHO with h = 0 outperformed both SA and SHREC by several folds

for coverages 15 and higher. For these coverage depths, ECHO reduced the by-read

error rate from around 27% to about 2.3%. The improvement in the by-base error rate

was equally significant in proportion. For h > 0, ECHO displayed accuracy greater

than that for h = 0, demonstrating the utility of explicitly modeling the diploidy of

the genome.

Table 3.8 shows the detection accuracy of heterozygous sites in the diploid data.

The precision and recall are shown for varying levels of coverage and for both h = 10−3

and h = 10−4. Precision and recall are commonly-used performance measurements in

information retrieval tasks. In this context, precision is the number of correctly called

heterozygous sites divided by the number of all called heterozygous sites (including

incorrectly called heterozygous sites), and recall is the number of called heterozygous

sites divided by all true heterozygous sites.

By filtering the bases on quality, we can trade off recall for higher precision.

These results demonstrate that, with high enough coverage, ECHO provides a reliable

reference-free method of detecting bases that originated from heterozygous sites and

inferring the corresponding genotypes.
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Table 3.6: Error rates for diploid data D5 before and after error correction.
By-base error rate (%) By-read error rate (%)

Cov Uncorr SA SHREC ECHO with h = Uncorr SA SHREC ECHO with h =
0 10−4 10−3 0 10−4 10−3

10 1.02 1.22 0.58 0.40 0.35 0.34 27.58 13.15 15.45 5.47 5.30 4.83
20 1.02 1.12 0.54 0.21 0.16 0.16 27.22 12.83 13.27 2.84 2.02 1.88
30 1.01 1.10 0.52 0.10 0.08 0.08 27.17 13.02 13.01 2.04 1.06 1.10
40 1.00 1.01 0.50 0.10 0.07 0.08 27.12 13.21 12.76 1.99 1.16 1.17
50 1.00 1.09 0.52 0.10 0.07 0.07 26.97 13.34 13.19 2.12 1.18 1.21
60 1.00 1.09 0.52 0.10 0.08 0.08 26.99 13.63 13.00 2.43 1.41 1.43

h: prior probability of heterozygosity used in ECHO. See Table 3.1 for a full de-
scription of notation. In computing the error rate of ECHO for h > 0, we compared
the genotype assigned by ECHO to each short-read with the true genotype sequence
in the diploid genome from which the short-read originated. Errors in SA, SHREC,
and ECHO for h = 0 were computed in the usual way by comparing with the true
haplotype. The read length was 76 bp.

Table 3.7: Numbers of corrected errors and introduced errors for diploid data D5
after error correction.

# Corrected Errors # Introduced Errors
Cov SA SHREC ECHO with h = SA SHREC ECHO with h =

0 10−4 10−3 0 10−4 10−3

10 4152 4311 6357 7785 7865 6128 147 178 6 18
20 8140 9488 16490 19499 19539 10185 107 320 196 221
30 12169 14348 27740 31797 31797 15074 85 464 615 697
40 15914 19183 36884 42214 42215 19405 81 600 780 855
50 19493 23808 45769 52411 52408 24141 437 819 888 976
60 22934 28547 55458 63209 63208 28007 420 1125 996 1079

h: prior probability of heterozygosity used in ECHO. See Table 3.2 for a full de-
scription of notation. In computing the error rate of ECHO for h > 0, we compared
the genotype assigned by ECHO to each short-read with the true genotype sequence
in the diploid genome from which the short-read originated. Errors in SA, SHREC,
and ECHO for h = 0 were computed in the usual way by comparing with the true
haplotype. The read length was 76 bp.
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Table 3.8: Heterozygous allele detection efficiency for simulated diploid data D5.
Unfiltered Quality ≥ 20 Quality ≥ 30 Quality ≥ 40

h Cov Precision Recall Precision Recall Precision Recall Precision Recall
10−3 10 0.97 0.77 0.99 0.59 0.99 0.48 1.00 0.37

20 0.90 0.96 0.92 0.93 0.93 0.90 0.95 0.88
30 0.82 0.99 0.85 0.99 0.86 0.99 0.88 0.97
40 0.83 0.99 0.86 0.99 0.88 0.99 0.88 0.99
50 0.84 0.99 0.86 0.99 0.87 0.99 0.88 0.98
60 0.85 0.98 0.87 0.98 0.88 0.97 0.89 0.97

10−4 10 0.99 0.69 0.99 0.48 1.00 0.37 1.00 0.27
20 0.91 0.94 0.93 0.90 0.95 0.88 0.95 0.83
30 0.84 0.99 0.86 0.99 0.88 0.97 0.89 0.96
40 0.84 0.99 0.87 0.99 0.88 0.99 0.89 0.98
50 0.85 0.99 0.87 0.99 0.88 0.98 0.89 0.98
60 0.86 0.98 0.88 0.97 0.89 0.97 0.89 0.97

The precision and recall of the genotypes called by ECHO when modeling a diploid
genome are shown. Precision is the number of true positives over the sum of true
positives and false positives. Recall is the number of true positives divided by the
number of positives. A true positive is a correctly identified heterozygous site. A
false positive is a homozygous site mistakenly classified as a heterozygous site. The
number of positives is the number of actual heterozygous sites. Two cases are shown:
h = 10−3 and h = 10−4. Every genotype called by ECHO is given a quality score.
The “Unfiltered” column shows the results when all called genotypes are considered.
“Quality ≥ x” shows the results when only genotypes with quality scores greater than
x are considered.
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3.6.6 Effects on de novo assembly

The data sets we considered were real PhiX174 data D1 and simulated data D3

from a 100 kbp region of D. melanogaster ; these two experiments were repeated

20 times each. We also considered simulated data D3 from a 5 Mbp region of D.

melanogaster ; this experiment was repeated twice. For the PhiX174 data set, Velvet

was run on the following four sets of short-reads:

• Uncorrected reads, corresponding to the original simulated reads.

• Error-corrected reads processed by SA, SHREC, or ECHO.

For the simulated D. melanogaster data sets, Velvet was also run on the following set

of short-reads, in addition to the above four sets:

• Perfect reads, corresponding to the error-free reads from which the uncorrected

reads were simulated.

The results for PhiX174 are shown in Table 3.9, where “Max” denotes the maxi-

mum contig length, and “N50,” defined in the caption, is a statistic commonly used

to assess the quality of de novo assembly. Larger values of Max and N50 indicate

better assembly quality. For nearly all sequence coverage depths, note that using

ECHO-corrected reads led to the largest Max and N50 values.

The assembly results for simulated 100 kbp and 5 Mbp D. melanogaster data are

summarized in Table 3.10 and Table 3.11, respectively. There was a clear advantage

to performing error correction prior to assembly, and error correction produced an

appreciable improvement over uncorrected reads. In addition to Max and N50, we

assessed the assembly quality using the following two new measures:

• SeqCov1000 is the percentage of the genome covered by the contigs of length ≥
1000 bp.

• Error1000 is the percentage of the total number of assembly errors (measured by

edit distance from the true genome, with a penalty of 1 for mismatch, insertion,

or deletion) in those contigs with length ≥ 1000 bp, with respect to the total

length of those contigs.

For coverage depths ≥ 20, SeqCov1000 values for all three error correction methods

were comparable to that for perfect reads.

As Table 3.9 and Table 3.11 illustrate, the key advantage of ECHO is its consis-

tency; i.e., the performance of ECHO is consistently good for all coverage depths and

all data sets, while the other error correction methods seem more erratic (e.g., see

the performance of SHREC in Table 3.9, and the performance of SA in Table 3.11

for coverages ≥ 20).
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3.6.7 Running times

We ran the three error-correction algorithms on simulated data to compare their

running times. We first simulated a genome sequence by drawing each base uniformly

at random from {A,C,G, T}. Then, in simulating short-reads, the by-base error rate

was set to 1%, and errors were drawn uniformly at random from the alternative bases.

We varied the number of reads and the length of the genome, while fixing the sequence

coverage depth at 20. All experiments were done on a Mac Pro with two quad-core

3.0 GHz Intel Xeon processors and 14 GB of RAM.

Shown in Table 3.12 is a summary of running times. Since our algorithm needs

to determine the parameters δ∗ and ε∗ via (3.12), its running time is divided into two

parts: parameter selection time, shown inside parenthesis, and the running time for

neighbor finding and error correction. Although our algorithm is slower, note that its

running time is within the range of practical use. Also, we point out that SA and our

algorithm each used only a single core, while SHREC was allowed to use all 8 cores.

If one has enough memory to store the entire neighbor sets (Nr)r∈R and identifi-

cation maps (Ir→s)r∈R,s∈Nr , the running time of ECHO scales linearly in the number

N of reads, provided that k is chosen appropriately so that maxK |C(K)| is linear in

the coverage depth. This behavior is demonstrated in Table 3.12 for N ≤ 2.5× 106.

However, if the available amount of memory is not sufficient, our implementation

first partitions the read set R into smaller subsets R1, . . . ,Rn. Then, successively for

each i = 1, . . . , n, the neighbor sets (Nr)r∈Ri
and identification maps (Ir→s)r∈Ri,s∈Nr

are constructed, and error correction is performed for the reads in Ri. The current

(Nr)r∈Ri
and (Ir→s)r∈Ri,s∈Nr are discarded before moving onto the next i. In this

fashion, the running time of ECHO scales quadratically in the number of reads.
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Table 3.9: De novo assembly results for uncorrected and corrected PhiX174 data D1.

Coverage Reads N50 (bp) Max (bp)
5 Uncorrected 219.4 401.5

SA 238.0 422.4
SHREC 148.5 246.2
ECHO 261.2 475.7

10 Uncorrected 841.2 1452.4
SA 1005.7 1629.6
SHREC 608.6 1017.9
ECHO 1246.4 1833.7

15 Uncorrected 2561.4 2704.7
SA 3095.8 3126.9
SHREC 2014.5 2369.8
ECHO 3345.6 3386.7

20 Uncorrected 3725.9 3773.3
SA 4551.3 4569.5
SHREC 4179.2 4179.2
ECHO 4706.7 4706.7

25 Uncorrected 4747.5 4747.5
SA 5208.6 5208.6
SHREC 5215.6 5215.6
ECHO 5335.7 5335.7

30 Uncorrected 5224.1 5224.1
SA 5337.1 5337.1
SHREC 4855.5 4855.5
ECHO 5337.1 5337.1

The length of the PhiX174 genome is 5386 bp. Velvet was used to carry out the
assembly. Max: the maximum contig length. N50: a statistic commonly used to assess
the quality of de novo assembly. It is computed by sorting all contigs by their size in
decreasing order and adding the length of these contigs until the sum is greater than
50% of the total length of all contigs. The length of the last added contig corresponds
to N50. A larger N50 indicates a better assembly. For all sequence coverage depths,
the largest Max and N50 values were observed for the assembly carried out using our
error-corrected reads.
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Table 3.10: De novo assembly results for simulated data D3 from 100 kbp region of
D. melanogaster.

Cov Reads N50 (bp) Max (bp) # Contig1000 SeqCov1000 Error1000
10 Uncorrected 838.3 2708.3 28.2 41.0% 0.009%

SA 1402.3 4258.7 37.2 66.4% 0.003%
SHREC 984.7 2983.8 31.1 48.8% 0.060%
ECHO 1465.7 4235.7 38.2 69.3% 0.004%
Perfect 1816.6 4903.7 37.9 77.2% 0.000%

15 Uncorrected 4471.0 11811.3 26.7 94.7% 0.005%
SA 11222.6 19775.8 15.3 98.5% 0.001%
SHREC 8082.8 16511.9 18.5 97.3% 0.003%
ECHO 12260.2 22544.8 13.6 98.6% 0.004%
Perfect 14657.3 24826.0 11.6 99.1% 0.000%

20 Uncorrected 32259.8 38847.4 6.7 99.9% 0.001%
SA 64520.9 66720.6 2.7 99.9% 0.000%
SHREC 59463.2 62277.7 3.0 99.9% 0.000%
ECHO 69527.9 71245.0 2.8 99.9% 0.001%
Perfect 75614.0 76890.5 2.2 99.9% 0.000%

25 Uncorrected 67886.7 71308.3 2.4 99.9% 0.000%
SA 89654.5 89654.5 1.5 99.9% 0.000%
SHREC 86589.4 86589.4 1.6 99.9% 0.000%
ECHO 90380.1 90380.1 1.5 99.9% 0.000%
Perfect 94153.8 94153.8 1.3 100.0% 0.000%

30 Uncorrected 95056.9 95056.9 1.3 100.0% 0.000%
SA 99831.3 99831.3 1.1 100.0% 0.000%
SHREC 99954.7 99954.7 1.0 100.0% 0.000%
ECHO 99954.8 99954.8 1.0 100.0% 0.000%
Perfect 99955.6 99955.6 1.0 100.0% 0.000%

Assembly was performed using Velvet with k = 39 and automatic coverage cutoff. Un-
corrected reads are the original simulated reads. To correct for sequencing errors, we
used SA, SHREC, and ECHO prior to assembly; the preprocessed reads are denoted
by the corresponding error-correction algorithm employed. Perfect reads correspond
to the error-free reads from which uncorrected reads were simulated. Max and N50
are as explained in Table 3.9. SeqCov1000 is the percentage of the genome covered
by the contigs of length ≥ 1000 bp. Error1000 denotes the percentage of the total
number of assembly errors (measured by edit distance from the true genome, with
a penalty of 1 for mismatch, insertion, or deletion) in those contigs with length ≥
1000 bp, with respect to the total length of those contigs. The results shown above
are average values from 20 simulations.
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Table 3.11: De novo assembly results for simulated data D3 from 5 Mbp region of D.
melanogaster.

Cov Reads N50 (bp) Max (bp) # Contig1000 SeqCov1000 Error1000
10 Uncorrected 840.0 4796.0 1400.5 41.5% 0.009%

SA 1283.0 6514.5 1835.0 63.9% 0.005%
SHREC 996.0 5315.5 1625.0 50.8% 0.094%
ECHO 1194.5 7338.5 1798.0 60.8% 0.006%
Perfect 1721.5 10044.0 1871.5 75.4% 0.000%

15 Uncorrected 4476.0 20978.5 1293.5 95.0% 0.004%
SA 9732.0 40215.5 740.0 98.8% 0.001%
SHREC 7838.0 40424.0 866.0 98.2% 0.015%
ECHO 10698.0 40739.0 669.0 99.0% 0.001%
Perfect 13847.0 48053.5 532.5 99.4% 0.000%

20 Uncorrected 29377.0 96954.0 291.5 99.8% 0.001%
SA 80231.0 233239.0 107.0 100.0% 0.000%
SHREC 80847.5 225311.0 104.0 100.0% 0.001%
ECHO 95977.5 242397.0 81.0 100.0% 0.000%
Perfect 114364.0 312355.0 67.0 100.0% 0.000%

25 Uncorrected 158180.5 483918.5 53.0 100.0% 0.000%
SA 799798.5 1232231.5 13.0 100.0% 0.000%
SHREC 951499.0 1260863.5 11.5 100.0% 0.000%
ECHO 931249.0 1260863.5 10.5 100.0% 0.000%
Perfect 951499.0 1391995.0 8.5 100.0% 0.000%

30 Uncorrected 895733.5 1399461.5 8.0 100.0% 0.000%
SA 3598579.0 3598579.0 2.5 100.0% 0.000%
SHREC 4266643.0 4266643.0 1.5 100.0% 0.000%
ECHO 4266643.0 4266643.0 1.5 100.0% 0.000%
Perfect 4266643.0 4266643.0 1.5 100.0% 0.000%

Assembly was performed using Velvet with k = 39 and automatic coverage cutoff.
Uncorrected reads are the original simulated reads. To correct for sequencing errors,
we used SA, SHREC, and ECHO prior to assembly. Perfect reads correspond to
the error-free reads from which uncorrected reads were simulated. Max and N50 are
as explained in Table 3.9. SeqCov1000 is the percentage of the genome covered by
contigs of length ≥ 1000 bp. Error1000 denotes the percentage of the total number of
assembly errors (measured by edit distance from the true genome, with a penalty of
1 for mismatch, insertion, or deletion) in those contigs with length ≥ 1000 bp, with
respect to the total length of those contigs.
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Table 3.12: Comparison of running time, in minutes, for simulated data with 76 bp
reads.

N , Number of reads in the input data
Method 104 105 106 2.5× 106 5× 106

SA 0.03 0.36 4.59 12.44 26.69
SHREC 0.19 1.48 17.00 39.52 90.64
ECHO (1.52) 0.67 (7.48) 5.37 (19.97) 56.03 (42.55) 143.95 (78.2) 300.77

SA and ECHO each used only a single core, while SHREC was allowed to use all 8
cores, on a Mac Pro with two quad-core 3.0 GHz Intel Xeon processors and 14 GB
of RAM. For ECHO, the numbers shown inside the parentheses correspond to the
running times of parameter selection.
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Chapter 4

Conclusions

4.1 Summary

In this thesis, we addressed problems that are pertinent to the next-generation

short-read sequencing technologies: the shorter read lengths and the higher error

rates. We adopted two complementary approaches, namely, developing improved

basecallers and error correction algorithms.

In Chapter 2.4, we proposed a model based basecaller for Illumina Genome An-

alyzer, called BayesCall. BayesCall is the first model that considers all the known

non-stationary noises which include phasing and prephasing effects, death effects,

residual effects, and background noises. Because BayesCall is based on a generative

model, unsupervised learning can be achieved without labeled training data. There-

fore, it is applicable to de novo sequencing.

Empirical studies show that BayesCall improves by-base error rates by more than

39% and the improvement is more pronounced toward the end of reads. BayesCall

also improves by-read error rates by more than 40%. In other words, it produces

much more perfect reads without any erroneously called bases which, as shown later,

is important to de novo assembly. The errors produced by Bustard are usually non-

uniformly distributed over alternative bases. This bias violates what most of the

variant detection algorithm assume, and it can increase the number of false positives.

One of the most pronounced effet that researchers have discovered is the “anomalous

T” effect in which many of the bases are erroneously called as base “T” at the end of

reads. BayesCall also significantly reduces the biases by modeling the residual effect.

One additional benefit of the probabilistic modeling used in BayesCall is that it can

produce quality scores with high discriminating ability. In our experiment, filtering

bases with the quality scores produced by BayesCall can result in more accurately

called bases. It is also capable of producing base-specific quality scores.
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One drawback of the BayesCall algorithm is that it requires a simulated annealing

step for inferring the most probable base, and simulated annealing is computationally

expensive. To solve the problem, we devised an algorithm called naiveBayesCall in

Chapter 2.6. NaiveBayesCall uses optimization methods to approximate the MAP

estimate of the original BayesCall model. The result is an algorithm that runs sixty

times faster than the original BayesCall algorithm. Empirical studies show that while

naiveBayesCall largely reduces the running time, it also preserves the accuracy of

BayesCall. With this improvement, it is practicable to use naiveBayesCall on a desk-

top computer. We then perform a comprehensive study on the effect of an improved

basecall algorithm on downstream data analysis.

We considered two different scenarios. The first scenario we considered is de

novo assembly. In de novo assembly, the whole genome is to be assembled from

the reads without a reference sequence. Thus, any errors in the reads can largely

increase the difficulty of producing the assembly. Our study shows that with reads

output by naiveBayesCall, Velvet can construct an assembly with more and longer

contigs. The quality of the obtained assembly, measured by N50, is also improved.

This indicates that the improved basecall quality will be very useful in a de novo

sequencing project. The second scenario we considered is the detection of single

nucleotide polymorphism. In this setting, a reference genome is available and the goal

is to detect single nucleotide polymorphisms from the reads. As mentioned before, it

has been discovered that there exists systematic biases in reads produced by Bustard.

These biases can potentially confuse a SNP caller. BayesCall and naiveBayesCall

can significantly reduce the bias. In our study, MAQ called SNPs with much higher

precision and comparable recall with BayesCall and naiveBayesCall reads. Since

validation of these SNPs can be expensive and time consuming, higher precision in

SNP detection can be very helpful in genome researches.

In Chapter 3, we considered correcting reads as a preprocessing step before down-

stream sequence analysis. It is inevitable to have some errors in sequencing data even

with advanced basecall algorithms. However, since each region in the genome is cov-

ered by multiple reads, sequencing errors can potentially be corrected by aggregating

information in the reads. Based on this concept, we developed an algorithm called

ECHO. ECHO does not require a reference sequence and is applicable to de novo

sequencing projects. ECHO has several novelties. First, it tries to utilize as much

information from the reads as possible by using read overlaps. Instead of summarizing

reads with k-mer frequencies, it uses read overlaps to minimize the chance of mis-

alignment, and ultimately, mis-correction. In addition, it also uses reads to estimate

position specific substitution rates. These rates can increase the power of detecting

and correcting sequencing errors especially when the coverage is low to moderate.
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Last but not least, ECHO automatically estimates all the parameters without any

input from the user except for the reads. In most of the existing error correction algo-

rithms, some parameters that are crucial to the error correction must be specified by

the user. Specifying non-optimal parameters sometimes lead to dramatically worsen

performances. However, it can be hard for user to specify optimal parameters without

extensive knowledge and sometimes a reference sequence. ECHO solves this problem

by estimating parameters automatically from a probabilistic modeling of read over-

laps and sequencing errors. An additional benefit of the modeling is that ECHO

is able to correct diploid genomes which is unfeasible with k-mer based correction

algorithms.

In our experiments, ECHO can reduce both by-base and by-read error rates by

more than 50% even at a low coverage. Moreover, ECHO also has very few mis-

corrections. In an empirical study on a whole-genome yeast dataset, ECHO has 40

times less mis-corrections compared to the alternative algorithm. We also applied

ECHO to a simulated diploid dataset. ECHO is the only algorithm that can distin-

guish heterozygous site from sequencing errors. It consistently reduces error rates by

more than 50%. Heterozygous sites can also be detected simultaneously with high

recall and precision. Finally, we also tested how error correction can facilitate de novo

assembly. In general, applying error correction algorithms on the reads before run-

ning an assembly algorithm can lead to improved results. In particular, the assembled

genome output by Velvet on ECHO corrected reads is almost as good as Velvet on

perfect reads in terms of genome coverage, maximum contig length, and N50. Based

these observations, we conclude that ECHO can be very useful in many sequencing

projects.

4.2 Future Directions

In this section, I will propose several interesting and important problems that

can be addressed in the near future with the extensions of progress described in this

thesis.

4.2.1 Improved basecaller for Life Technologies Ion Torrent

and Pacific Biosciences SMRT

Recently, there have been several attempts to develop new sequencing technologies

that run faster and cheaper, and produce longer and more accurate reads. Among

these so-called “third generation” sequencing technologies, there is a great interest in

Pacific Biosciences’ SMRT sequencing technology. SMRT is the first single molecule
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real time sequencing technology. The first benefit of SMRT is that it only requires

a single DNA molecule, and thus the amplification step is not necessary. Therefore,

the bias that is introduced in amplification steps can be reduced. Furthermore, it

also avoids the phasing and prephasing problems that most of the sequencing by

synthesis technologies possess. All of the aforementioned improvements enable SMRT

to produce longer reads. Finally, since the polymerization process is recorded in real

time, there is much more information and potentially more statistical patterns that

are yet to be discovered and utilized. Once the SMRT platform is widely available to

researchers, it will be fascinating to uncover all the questions left unanswered in the

realm of biology due to limitations on the sequencing technologies.

In the past few months, Ion Torrent acquired by Life Technologies has introduced

a novel sequencing concept. Ion Torrent completes the entire sequencing with a spe-

cially designed disposable silicon chip. Though it has higher per-base cost and lower

throughput, it runs significantly faster with much lower starting costs. It is the first

technology that detects protons instead of photons. Hence, the measured signals can

be quite different from what other technologies produce. Since the underlying chem-

istry of Ion Torrent is similar to 454 sequencing technology, the main challenge for its

basecaller will be resolving long homopolymers with different lengths, and decoupling

of imperfect phasing and prephasing. In the 15th Annual International Conference

on Research in Computation Molecular Biology, Life Technologies announced that

they will have a grand challenge seeking for a better basecaller that will reduce the

error rates by one half. It will also be very interesting to see how improvements in

basecaller can boost Ion Torrent’s performance.

4.2.2 De novo assembly algorithm for reads from different se-

quencing technologies

As mentioned in the previous section, there are several emerging new sequencing

technologies. The reads produced by these emerging technologies and various existing

technologies all have very different characteristics. For example, Illumina platform

has very low indel error rates with read length up to 100bp while Pacific Biosciences

SMRT has higher error rates but much longer read lengths. In particular, it is possible

to produce gapped reads with various gap sizes in the SMRT technology. Since each

technology has its own strength and weakness, it is appealing to combine reads from

different sequencing technologies. More specifically, many de novo sequencing projects

have difficulty assemble genome regions that are repetitive such as telomere and

centromere region. It is important to have an assembler that can exploit Illumina’s

accurate reads and SMRT’s longer read lengths to produce a high quality assembly
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in these regions. In Chapter 3, we developed an error correction algorithm with

read overlap technique. The same technique can be applied to the aforementioned

assembly problem.

4.3 Discussion

Currently, a few large-scale resequencing projects are either underway or in near

inception. In early 2008, an international research consortium announced the 1000

Genomes Project[11] 1, which will resequence the genomes of at least 1000 humans

around the world. This effort will provide a comprehensive picture of human genomic

variation. A project called 1001 Genomes2 will resequence a large number of Ara-

bidopsis genomes, and the Drosophila Population Genomics Project (DPGP)3 will

resequence a similar quantity of Drosophila melanogaster genomes for population ge-

nomics analysis. Our studies showed that accurate reads has important implications

for assembly, polymorphism detection (especially rare ones), and downstream anal-

ysis. We conclude that the algorithms described in this thesis will have direct and

immediate impact on such resequencing projects.

1http://1000genomes.com/
2http://www.1001genomes.org/
3http://www.dpgp.org/
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Appendix A

Supplementary Material for
BayesCall Algorithm

A.1 Proposal Distribution in the

Metropolis-Hastings Algorithm

For iteration i of the Metropolis-Hastings algorithm, let λk = (λ1,k, . . . , λL,k)
denote the value of Λk = (Λ1,k, . . . ,ΛL,k) from iteration i − 1. We first sample a
position x ∼ Unif{1, 2, . . . , L} to modify and update Sx,k according to

P(Sx,k = eb) ∝ (X−1Ix,k)b, (A.1)

where X is the crosstalk matrix. We wish to update Λx,k according to a pro-
posal distribution that is an approximation to the conditional distribution P(Λx,k |
Ik,Sk,Dx(λk)), where Dx(λk) denotes λk with the xth component λx,k deleted. First
we note that

P(Λx,k | Ik,Sk,Dx(λk)) = P(Λx,k | Ix−1,k, Ix,k,Sk, λx−1,k, λx+1,k)

=
P(Λx,k, Ix−1,k, Ix,k,Sk, λx−1,k, λx+1,k)

P(Ix−1,k, Ix,k, Ix+1,k,Sk, λx−1,k, λx+1,k)
. (A.2)

The denominator in (A.2) will not contribute to the Metropolis-Hasting ratio, so we
only need to consider the numerator, which can be decomposed as

P(Λx,k, Ix−1,k, Ix,k,Sk, λx−1,k, λx+1,k) = P(Ix,k | Ix−1,k,Sk,Λx,k, λx−1,k)

×P(Ix−1,k | λx−1,k)

×P(λx+1,k | Λx,k)

×P(Λx,k | λx−1,k)

×P(λx−1,k). (A.3)
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The second and the last lines of (A.3) do not contribute to the Metropolis-Hastings
ratio, so the terms relevant to our proposal distribution are

P(Ix,k | Ix−1,k,Sk,Λx,k, λx−1,k)P(λx+1,k | Λx,k)P(Λx,k | λx−1,k) (A.4)

∝ exp

{
− 1

2‖Λx,kSkQw
x ‖2

2

(Ix,k − µx,k)′Σ−1(Ix,k − µx,k)
}

(A.5)

× exp

{
−(λx+1,k − (1− d)Λx,k)

2

2(1− d)2Λ2
x,kσ

2

}
exp

{
−(Λx,k − (1− d)λx−1,k)

2

2(1− d)2λ2
x−1,kσ

2

}
.(A.6)

Note that Λx,k appears in the denominator of several exponents in (A.6). To simplify
the problem, we approximate Λx,kSkQ

w
x with λx,kSkQ

w
x , and (1 − d)2Λ2

x,kσ
2 with

λ2
x+1,kσ

2. The second approximation follows from the defining recursion for Λx,k:

Λx+1,k = (1− d)Λx,k + (1− d)Λx,kε,

where ε is a 1-dimensional Gaussian noise with zero mean and variance σ2; the approx-
imation corresponds to ignoring the noise term. In summary, our proposal distribution
is approximately proportional to

exp

{
− 1

2‖zwx,k‖2
2

(Ix,k − µx,k)′Σ−1(Ix,k − µx,k)

}

× exp

{
− [λx+1,k − (1− d)Λx,k]

2

2λ2
x+1,kσ

2

}
exp

{
− [Λx,k − (1− d)λx−1,k]

2

2(1− d)2λ2
x−1,kσ

2

}

∝ exp

{
−

[
1

2(1− d)2λ2
x−1,kσ

2
+

(1− d)2

2λ2
x+1,kσ

2
+

(XSkQ
w
x )′Σ−1(XSkQ

w
x )

2‖zx,k‖2
2

]
Λ2
x,k

+

[
1

(1− d)λx−1,kσ2
+

(1− d)

λx+1,kσ2
+

(XSkQ
w
x )′Σ−1(Ix,k − rx−1,k)

‖zwx,k‖2
2

]
Λx,k

}
,

where zwx,k := λx,kSkQ
w
x and

rx−1,k :=

{
0, if x = 1,
α(1− d)Ix−1,k, if x > 1.
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This is a density for the normal distribution with mean mx,k and variance v2
x,k given

by

v2
x,k =

[
1

(1− d)2λ2
x−1,kσ

2
+

(1− d)2

λ2
x+1,kσ

2
+

(XSkQ
w
x )′Σ−1(XSkQ

w
x )

‖zx,k‖2
2

]−1

,

mx,k = v2
x,k

[
1

(1− d)λx−1,kσ2
+

1− d
λx+1,kσ2

+
(XSkQ

w
x )′Σ−1(Ix,k − rx−1,k)

‖zwx,k‖2
2

]
.

To recapitulate, our proposal distribution for Λx,k is

Λx,k|Sk, λx−1,k, λx,k, λx+1,k, Ix,k, Ix−1,k ∼ N (mx,k, v
2
x,k). (A.7)

A.2 Parameter Estimation

A.2.1 Details of the expectation-maximization algorithm

Recall that Θ denotes the set {p, q, d, α, σ2,X,Σ} of parameters in our model. To
estimate Θ, we use the EM algorithm with

Θi = argmax
Θ

EΘi−1

[
log

K∏
k=1

P(Ik,Λk,Sk | Θ)

]
,

where K denotes the number of clusters used in the parameter estimation, Θi de-
notes the set of parameters in the ith iteration, and the expectation is taken with
respect to P(Λk,Sk | Ik,Θi−1). Henceforward, we omit the dependence on Θi−1 when
writing expectations. In the maximization step, we want to optimize the expected
log-likelihood by solving the following equation:

∇ΘE

[
log

K∏
k=1

P(Ik,Λk,Sk | Θ)

]
= 0. (A.8)

By Lebesgue’s dominated convergence theorem, we can exchange the order of taking
expectation and taking derivatives, so (A.8) is equivalent to

E

[
∇Θ log

K∏
k=1

P(Ik,Λk,Sk | Θ)

]
= 0.

Unfortunately, we could not obtain an analytical solution to the above equation, so
we instead used the steepest ascent method, only updating one parameter at a time.
Fixing the other parameters in Θ, an analytic solution for X, Σ, σ, and α can be
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obtained as follows. First, for ease of notation, define L := log
∏K

k=1 P(Ik,Λk,Sk | Θ).
Then, note that its partial derivatives can be written as

E
[
∂L
∂Xb

]
= E

[
−

K∑
k=1

L∑
t=1

1

‖Zw
t,k‖2

∂µt,k
∂Xb

Σ−1(I t,k − µt,k)

]
, (A.9)

E
[
∂L
∂Σ

]
= E

[
K∑
k=1

L∑
t=1

(
Σ−1 − Σ−1(I t,k − µt,k)(I t,k − µt,k)′Σ−1

‖Zw
t,k‖2

)]
,(A.10)

E
[
∂L
∂σ

]
= E

[
K∑
k=1

L∑
t=2

(
−σ−1 +

(Λt,k − (1− d)Λt−1,k)
2

((1− d)Λt−1,kσ)3

)]
, (A.11)

E
[
∂L
∂α

]
= E

[
K∑
k=1

L∑
t=1

1− d
‖Zw

t,k‖2
I ′t−1,kΣ

−1(I t,k − µt,k)

]
, (A.12)

where Xb is the bth column of the crosstalk matrix X and µt,k is given by

µt,k = XZw
t,k + α(1− d)I t−1,k, (A.13)

thus yielding
∂µt,k
∂Xb

= (Zw
t,k)

b1, (A.14)

where 1 = (1, 1, 1, 1)′, (Zw
t,k)

b is the bth element of Zw
t,k, and Zw

t,k is defined as the
zero vector for t < 1. Now, set the partial derivatives in (A.9)–(A.12) to zero and
solve for Xb,Σ, σ

2, α, respectively, to obtain update rules. For example, the update
rule for Xb can be obtained by solving the following equation.

E

[
−

K∑
k=1

L∑
t=1

1

‖Zw
t,k‖2

∂µt,k
∂Xb

Σ−1(I t,k − µt,k)

]
= 0.

Now, using (A.13) and writing XZw
t,k as a linear combination of the columns Xx of

X, we obtain

E

 K∑
k=1

L∑
t=1

1

‖Zw
t,k‖2

∂µt,k
∂Xb

Σ−1

I t,k − α(1− d)I t−1,k −
∑

x∈{A,C,G,T}

(Zw
t,k)

xXx

 = 0,

(A.15)
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Upon moving the terms with Xb to the other side of the equality in (A.15), we obtain

E

[
K∑
k=1

L∑
t=1

1

‖Zw
t,k‖2

(Zw
t,k)

b∂µt,k
∂Xb

Σ−1Xb

]
=

E

 K∑
k=1

L∑
t=1

1

‖Zw
t,k‖2

∂µt,k
∂Xb

Σ−1

I t,k − α(1− d)I t−1,k −
∑

x∈{A,C,G,T}\{b}

(Zw
t,k)

xXx

 .
Finally, since both Σ and Xb are constant with respect to the expectation, we con-
clude

Xb =

∑K
k=1

∑L
t=1 E

[(
I t,k − α(1− d)I t−1,k −

∑
x∈{A,C,G,T}\{b}(Z

w
t,k)

xXx

)
(Zw

t,k)b

‖Zw
t,k‖2

]
∑K

k=1

∑L
t=1 E

[
((Zw

t,k)b)2

‖Zw
t,k‖2

]
.

(A.16)

The following update rules for the other parameters can be obtained in a similar
fashion:

Σ =
1

KL

K∑
k=1

L∑
t=1

E

[
(I t,k − µt,k)(I t,k − µt,k)′

‖Zw
t,k‖2

]
, (A.17)

σ2 =
1

K(L− 1)

K∑
k=1

L∑
t=2

E
[

(Λt,k − (1− d)Λt−1,k)
2

((1− d)Λt−1,k)3

]
, (A.18)

α =

∑K
k=1

∑L
t=1 E

[
1

‖Zw
t,k‖2

I ′t−1,kΣ
−1(I t,k −XZw

t,k)
]

(1− d)
∑K

k=1

∑L
t=1 E

[
1

‖Zw
t,k‖2

I ′t−1,kΣ
−1
t I t−1,k

] . (A.19)

(A.20)

The expectations are taken with respect to P(Λk,Sk | Ik,Θi−1) and are computed
using Monte-Carlo integration with the Metropolis-Hastings algorithm.

A.2.2 Estimation of d, p and q

To estimate d, we adopt a slightly simplified model. Recall that µt,k depends on d
and that the additive Gaussian noise of Λt,k scales with (1− d)Λt−1,k. For parameter
estimation, we assume that µt,k is independent of d and use

Λt,k|Λt−1,k ∼ N ((1− d)Λt−1,k,Λ
2
t−1,kσ

2). (A.21)
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Then, the update rule for d is given by

d = 1−
∑K

k=1

∑L
t=2 E [Λt−1,kΛt,k]∑K

k=1

∑L
t=2 E

[
Λ2
t,k

] . (A.22)

To estimate the phasing and prephasing parameters p and q, respectively, we adopt
an interior point method to optimize the expected log-likelihood directly.

A.2.3 Estimation of cycle-dependent parameters

The estimation of cycle-dependent parameters can be performed similarly. To
avoid over-fitting and to reduce the number of clusters required for parameter esti-
mation, we adopt a window-based approach, assuming that the parameters are con-
stant in each window. Specifically, we divide the read length L into non-overlapping
windows of size W . For simplicity, assume that L is divisible by W . Then, let
Ω = {[i×W + 1, (i + 1)×W ] | i = 0, . . . , L

W
− 1} be the set of windows and let Θω

denote the set of parameters for window ω ∈ Ω. To estimate parameters, we update
parameters for one window at a time and iterate through all windows, from left to
right. For a given window ω = [i, j], parameters are estimated using (A.16)-(A.19)
and (A.22) with the index t summed over from i −W to j + W . For example, rate
dω for window ω ∈ Ω is estimated by

dω = 1−
∑K

k=1

∑j+W
t=i−W E [Λt−1,kΛt,k]∑K

k=1

∑j+W
t=i−W E

[
Λ2
t,k

] .

Empirically, this method of using information from adjacent windows reduces the
fluctuation of parameters between windows.

A.3 Running Time Statistics

The running time of BayesCall depends on several factors, including the number
of samples used in the Monte-Carlo algorithms, the number K of read clusters used
in parameter estimation, and the number of EM iterations. We have not explored
these parameters extensively. A systematic study of the tradeoff between accuracy
and running time will be worthwhile. The results reported in this thesis are based on
using K = 250 and 50 EM iterations in parameter estimation, with the Monte-Carlo
algorithms using 10,000 samples for burn-in and 10,000 samples thinned by 10 for
estimation.

BayesCall was run on a Mac Pro with two quad-core 3.0 GHz Intel Xeon proces-
sors. Using K = 250, one iteration of EM took about 25 minutes for the 76-cycle
data. We remark that, in BayesCall, the estimation of cycle-dependent parameters
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Table A.1: Error rates of BayesCall when K clusters are used in the training set.

K By-base error rate By-read error rate
150 0.00790 0.24438
250 0.00783 0.24398
500 0.00783 0.24368

This table shows that the accuracy of basecalls made by BayesCall does not depend much

on the number of clusters used to estimate parameters.

can be performed progressively as the data for each cycle become available; that is,
we do not need to wait until a sequencing run terminates to estimate parameters for
earlier cycles. Since a typical run of the Illumina platform currently takes about 10
days to finish, BayesCall’s ability to perform progressive parameter estimation will
be of practical value.

We believe that the running time of BayesCall can be sped up considerably while
maintaining high accuracy. Since parameter estimation can be done progressively as
the sequencing machine runs, we believe that the bottleneck is in basecalling. Our
current implementation requires about 18 hours to call bases for 1 million reads of
length 76. This slow running time seriously restricts the practicality of BayesCall.
However, we remark that the model introduced here can be used to devise a more
efficient basecalling algorithm. We are currently investigating methods to achieve
faster parameter estimation and basecalling.

A.4 Effects of Using a Different Number K of Clus-

ters in the Training Set

As mentioned above, the results described in Chapter 2.5 are based on using
K = 250. We also tried using 150 and 500 clusters in the training set. For this
study, we considered a single tile from the 76-cycle PhiX174 data set; the resulting
test set contained 68, 272 reads and 5, 188, 672 bases. Table A.1 shows the error rate
of BayesCall when a different number of clusters is used in the training set. Note
that the accuracy results for K = 250 and K = 500 are very similar. Further, using
K = 150 also seems to produce very good results. The running time of parameter
estimation scaled roughly linearly with the number of clusters. These results justify
our usage of K = 250 in parameter estimation.


