REGIS: A Tool for Building and Distributing
Personalized Practice Problems

Albert Segars
Dan Garcia, Ed.
Dawn Song, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-101
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-101.html

May 11, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

REGIS: A Tool for Building and Distributing Personalized Practice
Problems

by Albert Lucas Segars, III

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Lecturer SOE Daniel Garcia
Research Advisor

(Date)

% ok ok sk sk ok ok

Professor Dawn Song
Second Reader

(Date)

ACKNOWLEDGEMENTS

First and foremost I am thankful to Chris Cartland and Katrina Chang for their
work and vivid insights as co-developers of this project. The time they’ve
volunteered has significantly improved the direction of the project and made it
into far more than it would have been otherwise. Both Chris and Katrina put in
a tremendous number of hours brainstorming, mocking up, developing, and
debugging and I cannot thank them enough for their time and effort.

I’'m also extremely grateful for the mentorship and guidance from my advisor Dr.
Dan Garcia, who has been a tireless supporter, motivator and friend throughout
my entire graduate experience. He helped me understand how much of a
difference high-quality educators could make on student lives and has been one of
the key inspirations for my interest in improving the state-of-the-art in
education. He’s also helped me set high expectations for myself with my
teaching, which quickly became (and, until the end, remained) my favorite part
of my experience at Berkeley.

All of my coworkers and friends on the CS10 team deserve a huge thank you as
well. I have honestly never been on a team with so much passion, persistence
and enthusiasm for what they do and it’s been one of the greatest honors of my
life to work with them. Thanks for your feedback on this project as well as the
many lessons you’ve taught me along the way.

ABSTRACT

A wave of web technologies are emerging that allow students to receive
immediate feedback, discuss topics with instructors, and learn from their peers.
Many of these tools offer improvements over the traditional classroom experience,
but very few provide effective ways for students and instructors to connect with
each other over domain-specific knowledge as a means of engaging with the
material.

REGIS is a tool for developing and distributing customized problems to groups.
The system has been designed primarily for college-level students, but is intended
to be general enough to apply in a variety of other settings as well, e.g. K-12,
informal study groups, and online courses. Instructors and students are able to
create questions, submit answers, instantly provide feedback to students, and
receive measurable results about student learning and comprehension. The
system uses an interface based on a flash card analogy and is available online
under an open source license.

We have developed REGIS for use in our non-majors computing course at UC
Berkeley and launched the software to our students during the spring of 2012,
monitoring usage statistics and gathering student feedback at the end of the
semester. Initial feedback suggests that students are interested in using REGIS
to help them practice, but may need a more structured means of interacting with
the system than we provided in our trial.

TABLE OF CONTENTS

ABSTRACT ... 3
TABLE OF CONTENTS. ..., 4
INTRODUCTION. ...t 6
Target Audience and Design Requirements...........cccovvviiiiiiiiiiiiiiiiinn, 7
RELATED & PRIOR WORK ...t 9
Pedagogical Motivations...........uuuueiiiiiiiiiiiiiiiiii e 10
Development of Interest and Intuitionccooooeiiiiiiiiii s 10
Interactivity & AULONOMLY.....cooiiiiiiiiiiiii i, 11
Practice and Flash Cards............cccoooiiiiiiiiiiiiiiii 12
Digital flash cardsoooeiiiiiiiii e 12
Evolution of “SChool” 13
System & User EXPErienceoouuuuiiiiiiiiiiiiiiiiiiiiiec e 13
Curriculum & Activity Personalizationcooooiiiiiiiiiiiiiiniiiiiinee 15
MECHANICS AND MAJOR DESIGN DECISIONSccooiiiiiie 15
0T GOALS ... 15
What REGIS is NOt coooeeiei 16
Primary Design DeCiSIONScccouuuiiiiiiiiiiiiiiiiiiie e 17
Frontend: User Interface & EXPerienceoooovvveiiiiiiiiiiiiiiiiieiiiiiiieeeeiine, 22
DIECKS e 23
61) L PP P PP 24
ARCHITECTURE OVERVIEW ..., 25
Client Frontendueeiieiiiiiii 25
REGIS STV ...ttt 27
QUESEION & USET SEOTES ..oeiiiiiieeeiiiii ettt et eeeeaaens 28
Backend ServiCesuuuuiiiiiiiiiiiiiiiii 28
QUEStION GENETATION 1. .uttiiiiiiii ettt e e e e e e eeeaaens 29

Question Data Modeloooiiiiiiiii e 29

ParSer. ... 32
SOIVET e e 33
(QUESTIOTIS 1.ttt 33
(QUESTION COTIUS vttt ettt e et e e e e 34
User-submitted questionsooouuiiiiiiiiii e 35
QUESHION SEQUENICITIZ .. eeetii et 35
MODELS OF CLASSROOM INTEGRATION ..ot 38
Test Deploymentoiiiiiiee e 38
Alternative Modelsooooiiiiiii e 39
PRELIMINARY RESULTS ... 39
Initial engagement: account Creationcoooeeiiiiiieiiiiiiiie i 40
Medium-term engagement: usage statiSticscoocevvveriiiieiiiineiiiie e, 41
In-class performancecoovii i 43
Student Feedback ... 44
FUTURE WORK ... 46
Implementations in alternative social contexts..........ccoooeiiiiiiiiiiiiiin. 46
Question sharing mechaniSms. ..., 46
Inter-league SEqUENCINE.iiiiiiii e 47
Interest Predictiono i e 47
TEAIM SUPPOTT -ttt et 47
League-wide operating modesccouuuiiiiiiiiiiiei e 48
CONCLUSTON et 48
REFERENCES .. et 49
APPENDIX A: STUDENT SURVEY RESULTS.....coooiiiiiiiie e 53
APPENDIX B: TERMS LIST ..o 54
APPENDIX C: SOFTWARE AVAILABILITY oo 56

INTRODUCTION

Opportunities to apply knowledge can be critically important to developing
confidence, interest, and a clear mental model for a topic [1|. Despite its
importance, personalizing opportunities that develop an in-depth understanding
and appreciation of material is challenging for instructors in many-to-one
teaching scenarios to provide due to the time requirements of generation and
implementation. This bottleneck limits the effectiveness of the traditional
educational process as well as the learner’s ability to absorb the information
being presented to them. The recent rise of online learning threatens to
exacerbate this bottleneck due to drastically expanding student-to-faculty ratios.
The hope is that innovative new technologies can mitigate the problem.

REGIS (Random Exercise Generation and Inference System) is a web-based tool
for authoring and distributing customized problems or activities to groups of
individuals. We have developed a simple language that can be used to author
questions and variations on each question can be easily generated for arbitrarily
large pools of users (students, workshop attendees, study groups, etc). The
system presents these questions as a series of flash cards and can either evaluate
the correctness of responses automatically or through a manual instructor- or
peer-review interface. Figure 1 shows a screenshot from a live deployment of the
system.

codepath

Released Question [x|

reloased on 2012-04-26T00:20:24

Detormine whether the number 2234 can be reached by summing 0 P s. For
example, 43 can be reached by summing 21 + 22, and 42 can be reached by summing 13 + 14 + 15,

released on 2012-04

You want to bui
series of operatf
manipulations h|

if it can be d, find the llest ber greater than zero that appears in one of these
sequences. If it cannot be reached, provide the number 2234 itself.

Check

Start your scran

o Review Questions New Dock

All Roview Quostions
3) (0)

Figure 1: This screenshot shows REGIS’s primary user interface. The questions are presented
as flash card-like elements, and the users question collections, or decks, can be easily accessed
through the dock at the bottom of the screen.

We have developed the tool primarily for an introductory university-level
computing course at UC Berkeley [2]|, but the design is broad enough that it
should be generalizable to a variety of disciplines and contexts. After receiving
feedback suggesting that such a tool would be useful, we launched a deployment
of REGIS in our course and summarize the participation characteristics that we
observed and design choices that we made. The goals of the project are in line
with the goals for our course: to provide both a comprehensive understanding of
the power and complexities of programming while also developing an intrinsic
interest and appreciation for the applicability of computing to solve a wide range
of different problems.

In addition, we want REGIS to minimize the administrative time and effort
spent generating practice programming problems, distributing them to students,
keeping such lists up-to-date, and confirming the correctness of solutions. Our
system makes it possible to automate and simplify these tasks and
simultaneously increase the availability of practice resources for students. In
addition, comprehensive analytics can be gathered and presented to
administrators to gauge student understanding and interest for particular topics.

Target Audience and Design Requirements

This project was designed for a computing course for non-majors at UC Berkeley.
The course, titled CS10: The Beauty and Joy of Computing, involves a
significant amount of programming and is targeted at students with no previous
experience in the field. These are either non-majors or computing majors who
need to fulfill the programming prerequisite for our introductory computing
course. The course also covers an array of social issues related to technology in
addition to programming concepts.

In the fall of 2011 and spring of 2012 we surveyed our students in CS10 (n = 173,
168) during lecture in an attempt to determine what additional tools or support
could be added to the course to ease the learning curve and help further engage
students in the material. In addition, we asked about tools that could be useful
for an online version of the course, which we are currently in the process of
developing. The anonymous surveys contained five different choices for the
students, which are listed in full in Appendix A and summarized in the chart
below.

Outcome of Student Poll for Course Development Priorities

100
B Fall 2011 (n=173)
[Spring 2012 (n=168)
80 - .
2 60 .
c
[}
o
=1
i
N
o
40r i
20+ b
Mini-quizzes Programming Tree-structure 1080p HD videos of instructors
challenges lecture interface archived lectures doing labs
Poll item

Figure 2: The results from our polls of CS10 students during fall 2011 and spring 2012. They
had a clear preference for programming challenges and videos of instructors doing the labs,
homework assignments, and exams. REGIS was designed to provide the programming
challenges. Full tables are available in the appendix.

Both surveys produced very similar results; the top requests among students for
both semesters were for mini-programming exercises (which REGIS aims to
address) and instructional videos. In both cases, these two options received
significantly more votes than the other available options. We announced REGIS
several weeks into the spring 2012 semester of the same programming course. In
the Preliminary Results section we will discuss adoption and usage patterns for
REGIS in our course. We used REGIS as a supplemental tool that had no
impact on student grades because we were interested in seeing what usage
patterns would emerge when students were given the option of participating
voluntarily. This also gave us the opportunity to see if there was any correlation
in test scores among those who chose to use the tool and those who did not.

Our course has been designed around a lab-centric curriculum |3] and contains a
significant number of structured exercises that are designed to teach students
about fundamental programming concepts. We designed REGIS to distribute
challenging and unstructured exercises that provided opportunities for students
to apply their skills by exploring interesting problems.

A number of design decisions were influenced by our target audience, although
we aimed to make the tool general enough to apply to a range of circumstances
including K-12 classrooms, academic competitions, and exam review sessions, in
almost any topic of study. Some of the major design decisions are summarized
here, and more information is available in the Mechanics and Major Design
Decisions section below.

First and foremost, we wanted the tool to be straightforward and supportive
whenever possible; the question sequencing engine, responsible for determining
which students see which questions, will quickly drop a user’s estimated skill level
if they begin missing questions in order to provide them with an opportunity to
boost their confidence. It is also possible to provide customized feedback to
common mistakes that are made on particular problems. Students can
contribute their own problems to the corpus of available questions and share
them with other students. We have redesigned the interface several times in
order to remove distractions and focus on the user’s intended goal of creating and
answering questions.

Second, our course uses a graphical programming environment that has far slower
runtime performance than most modern languages. Questions were selected that
would be computable in reasonable amounts of time (< 30 minutes, often far less)
in our programming environment. Many common programming tools (iteration,
recursion, first-class functions, etc.) are available in the language and questions
were added that covered a broad range of techniques when possible. Often
students outgrow the graphical language by the end of the semester and want to
experiment with other languages, often including Python, Java, and PHP. We
chose to make REGIS language-agnostic in order to make the tool as broadly
useful as possible, both for our class and for other external use cases.

Finally, we wanted the tool to be flexible enough to be used for anything from a
single exam to a multi-year learning experience. The tool should work in both
formal (classroom) and informal learning environments. This means that we
avoided using structures and diction that might imply that the learning is taking
place in a classroom, and instead built on top of a flashcard analogy that allows
each question, or “card,” to be grouped in arbitrary ways with very little
administrative overhead. Groups of individuals, organized in REGIS as “leagues,”
can be constructed and destructed very quickly.

RELATED & PRIOR WORK

REGIS shares many ideas with several fields of preexisting work from educational
psychology, HCI and machine learning. We are unaware of other projects that
use the flash card metaphor to target higher level learning beyond memorization,
and that allow teachers and students to work together to build answerable sets of
questions for reviewing and learning new ideas. Several of these ideas have been
addressed individually and are outlined below.

Pedagogical Motivations

It is well-recognized that practicing a skill leads to an improvement in
performance. In ideal circumstances, individuals (teachers or other students)
would provide effective practice problems and students could practice with them
at a convenient time. Both the generation and solving of problems tend to be
relatively time-consuming activities, and REGIS aims to lessen the burden for
both activities and allow users to focus on the learning experience instead of the
configuration and administration of a complex system.

In addition to our goal of improving student comprehension and comfort with
programming and problem solving, we also wanted to help develop an intrinsic
interest in the field among users who may not be motivated or informed
otherwise. Developing interest is both a system-level user experience challenge
and a question selection challenge.

Development of Interest and Intuition

It is not surprising that having a high degree of interest in a topic often makes
learning about that topic more enjoyable and, in most cases, more effective.
Mechanisms that inspire both short- and long-term interest can fortify an
individual’s confidence and self-efficacy [4]. These mechanisms can also influence
an individual’s selective persistence, or willingness to focus on one option above
others due to a high interest level. Both the motivation of interest and selective
persistence will be discussed further in this section.

Deci and Ryan’s popular self-determination theory [5], [6] describes both intrinsic
and extrinsic motivational forces that impact human behavior. Extrinsic
motivators, which utilize evaluations, tests, extra credit, career talks, and other
forms of forces that involve “separable reinforcement,” are commonly used in
academic settings. Intrinsic motivators, which are those that occur in the
absence of external rewards, are harder to foster and implement but can lead to
higher levels of enjoyment and creative expression in the activity [5].
Interestingly, researchers have identified perceived control 7], competence [§],
and autonomy [9] as the three inherent psychological needs that are most closely
related to one’s level of intrinsic motivation. In an educational setting, both are
particularly important when learners are trying something that they consider to

10

be new, and it is important that one’s feelings of competence and autonomy not
be overrun in order to preserve the desire to learn. Providing rigid assignments
that are well beyond a student’s skill level is one common way that a student’s

motivation is often diminished.

Developing an interest in a topic can therefore motivate individuals to focus on
learning more about it. Selective persistence is a term that describes the
correlation between the intensity of one’s interest with both the persistence of
that interest over time and the likelihood that one will engage in the activity
without external contingencies (extrinsic motivational forces) [10]. As the
intensity of an individual’s interest in a particular object or idea increases, the
likelihood of developing a long-lasting intrinsic interest increases. The
development of interest is incredibly important in the realm of education;
motivating students’ intrinsic interests makes the education process far more
rewarding and productive.

Content personalization offers a means of customizing lessons to minimize the
loss of motivation due to feeling lost, confused or incapable of completing a task.

Interactivity € Autonomy

Traditional classrooms can easily become one-way pipelines where instructors
provide information to students and students hope they receive it in an
understandable format. Opportunities for practice and evaluation are notably
guilty of this; the majority of practice opportunities come from instructor-
provided homeworks, labs, tests, in-class activities, and other forms of
assignments. One of our goals with REGIS is to make it easy for users, in this
case formal students, to provide questions and to see each other’s responses as
well.

Our course attracts students from a wide variety of backgrounds with a range of
interests. Providing exercises that are interesting to all students is challenging
from an instructor’s perspective due to the wide range of domain knowledge that
is required in order to capture the curiosity of many students. Students or other
authorized contributors with knowledge in other domains, however, could likely
do this with very little effort. User engagement metrics can then be used to
determine which of the contributed questions are most interesting to users in
order to reduce noise and provide recommendations. All users therefore have the
ability to become both content producers and consumers, either of which
improves the experience for others.

Another notable advantage to hosting a diverse range of questions is that it
provides users with an opportunity to discover and share problems that they find

11

to be interesting or challenging. Students can then discover applications or
problems that they were previously unaware of and pursue them if they seem
interesting. Cross-disciplinary applications of knowledge, for example, could be
shared by those who pick up on them.

Practice and Flash Cards

Physical flash cards are often used for memorization tasks, but this is a
restriction of the format (the physical card), not the interaction. The flash card
metaphor, used occasionally in other digital systems like Apple’s once-popular
Hypercard product, provides a series of pedagogical benefits to the user when
used in an academic setting:

e The prompt and the answer itself are available in a very tight feedback
loop: the front and back of a single card.

e Flash cards can easily be arranged, grouped, and categorized by moving
and stacking them together. Cards can also be added or set aside as their
relevance varies.

e l[terating over problems presented in flash cards is trivial.

e Flash cards can be used effectively both as an individual and with a group.

As mentioned, the historic use case for flash cards has been primarily for
memorization tasks and has shown a tendency to improve short-term retention
significantly when used in memorization-based exercises [11]. REGIS is able to
support memorization-based tasks, but also aims to support higher-level learning
tasks as well; the methods for doing so will be the primary subject of the
remainder of this paper.

Digital flash cards

As mentioned previously, work at a variety of academic levels [11], [12]| suggests
that flash cards can be an effective method for learning due to the tight feedback
loop between providing an answer and receiving an assessment, particularly with
memorization-based tasks. Schmidmaier et al designed a set of digital flash cards
for medical students and found that short-term recall improved among students
who used flash cards for memorization tasks but long-term (>6 months) recall
was not impacted.

Several studies, including those from the work of Tan & Nicholson [12| and Stutz
[13] suggest that younger students report that flash cards can be an effective and
fun way to learn new information, in this case vocabulary words in a foreign
language. Stutz actually suggests having students create their own flash cards to
share with their peers in order to reduce the workload on the teaching staff and
provide the students with an opportunity to express their creativity.

12

It is important to note that these projects used flash cards in the context of fact
memorization as opposed to higher-level learning objects like application or
synthesis; REGIS aims to make it possible to do the latter as well.

Evolution of “school”

Individual access to information has increased significantly with the
popularization of the Internet and related technologies; many people are
beginning to rethink the idea of the traditional classroom and how it can best be
adapted to an age when almost all information is already available to the
students through other means. Many educators and companies are trying new
approaches like the “flipped classroom” [14], distance learning [15|, enquiry-based
learning [16], and “do-it-yourself” (DIY) learning [17] that significantly modifies
the dynamics and purpose of time spent in a formal learning environment.

In addition, several universities are beginning to offer courses online that have
attracted tens of thousands of students per offering [18]. This educational model
requires highly scalable tools to support content delivery as well as to evaluate
the level of comprehension of both individuals and the class as a whole.

System & User Experience

There are a number of projects and products that provide similar feature sets and
are being used at scale. Many of them provide practice problems to users, some
personalize their content based on historical user performance, and some others
use an interface similar to the one used by REGIS. Most of the well-known tools
provide a curated bank of questions and do not allow others (instructors, for
example) to organize or contribute questions.

Services

Project Euler [19] is a website that provides a large (> 375) database of
mathematical problems in a list-based interface. Finding solutions requires the
use of computation and solutions (text, not code) can be submitted and verified.
After submitting a correct answer, users get access to a forum where different
solutions can be discussed. Problems can only be added to the list by the site’s
administrators.

Coding Bat |20] provides a set of programming problems in a list-based interface
where code is actually submitted to the web server for execution and evaluation.
Java and Python are both supported. A number of test cases are then run on
the code to check for correctness. Again, questions can only be added by the
site’s administrators.

13

Google’s Code Jam [21] competition uses an online tool for submitting solutions
for review. Text-based solutions, not code, are submitted to the Code Jam
servers. These questions are presented individually through a series of
competitive rounds and again can only be added by the site’s administrators.

Memorize.com |22] provides a digital flash card service where users can create
simple flash cards for memorization-based tasks. Several assessment modes
(flashcard, matching, and multiple choice) are available for testing knowledge,
but all information must be entered manually. Pages can be shared with others
after they’ve been created.

Academic prototypes or projects

Course Sharing [23| is a project in development at UC Berkeley that can host
curricula for online courses including videos, lecture materials, and a variety of
different types of questions. Questions can be customized for each student. This
project is still very young but is designed to be administered by the course
creator (a professor, for example) and distributed to students and does not allow
students to contribute their own questions at this point.

edX [24] is a joint effort from MIT and Harvard that recently announced and is
functionally similar to Course Sharing. The platform supports discussion groups,
lecture content, wiki-based tools, assessments, and online labs. This project is
also very new but aims to host entire courses (similar to Course Sharing) that are
delivered from instructors to students, which varies significantly from REGIS’s
question-centric and democratized content creation approach.

Commercial products

Khan Academy [25] is a well-known non-profit company based around using
online video for communicating knowledge and has designed an assessment
platform that personalizes content for each user. Instructors can contribute their
own problem sets and solvers using Javascript. This platform has improved
significantly in the past year and has added features that bring it close to our
tool’s offering in many ways, although it lacks the functionality to allow students
to create questions to share with their peers.

Programr.com [26] is a company that has designed a series of tutorials and
programming challenges that can be used to practice programming skills. Like
many of the other tools, the problems are defined by the site administrators and
are not customized for each user.

MasteringPhysics |27] is a product from Pearson that provides simulation-based
tools for a number of academic subjects. Instructors can add their own problems,

14

but the problems are not customized for each student. Student performance
analytics are also readily available for instructors.

Turing’s Craft |28 is an interactive programming product that provides
personalized feedback to introductory-level programmers working in Python,
Java, C, C++ and several other languages. Instructors can now add their own
exercises, but students cannot. The exercises are presented as a series of
challenges and each challenge must be completed in order for the student to
move on to the next exercise.

Curriculum & Activity Personalization

The order that a learner receives information can significantly impact their
ability to comprehend the material being presented to them; in fact, information
sequencing is one of the more important skills of an effective educator [29]. Even
in the case of reviewing known information, certain problems will likely be easier
to decompose than others; in computer science, for example, two problems that
are phrased differently can vary significantly in difficulty, even if the underlying
algorithm is the same.

Item Response Theory (IRT) [30] is one of the most widely recognized
assessment-oriented approaches for ordering content delivery and provides
mechanisms for evaluating the effectiveness of particular assessment items as well
as the assessment as a whole. IRT methods evaluate the “ability” of an
individual against several parameters of the assessment item, including difficulty,
separability, and the likelihood of guessing the item by chance. REGIS uses a
variation of the standard unidimensional IRT assessment function to perform its
sequencing.

MECHANICS AND MAJOR DESIGN
DECISIONS

Core Goals

There are three primary goals that have guided our design as the project has
developed.

Goal #1: Simple and straightforward interactions

A number of digital alternatives exist for distributing practice questions to
others, from general solutions like text documents and email to domain-specific
tools like Project Euler and Coding Bat. These tools, while often simple, are not

15

optimized for the dynamic and inherently social nature of learning and don’t
allow for content customization and personalization.

One of the primary objectives of REGIS is to provide a tool that makes
collaboration and review both easy and effective. No tutorial should be necessary
to use REGIS effectively, and interactions should be self-descriptive whenever
possible. The goal of the user is to create and answer questions, and the user
interface aims to support those goals before all others.

Goal #2: Engaging and effective motivational tool

The ideal tool for our course would improve student understanding and interest
in computing topics without adding significantly to student workload. Students
could push themselves as hard as they wanted to, and students at all levels could
find useful resources to improve their understanding.

Developing both cognitive aptitude and interest simultaneously requires both an
effective tool and a selection of appropriate challenges. REGIS aims to provide a
very clear set of interactions that are intuitive and non-intrusive; in addition, it
makes it very easy for our teaching team to add new questions and determine
which questions are being answered frequently as a proxy for measuring quality
and interest.

Goal #3: Customizable and personalizable per-user experience

Personalized web-based learning has been the subject of a significant body of
research, but tools that are both affordable and flexible to make this a reality are
in relatively short supply.

REGIS provides a free solution that can be deployed in a variety of contexts and
subject areas. The tool can generate a recommended question ordering for each
user based on their historical performance and allows both students and
instructors to create their own questions and share them with others.

What REGIS is Not

It is important to bound the expectation of scope for REGIS in order to
disambiguate its purpose from preexisting tools.

REGIS is a tool for developing and distributing customized problems to groups of
people. We have designed it primarily as a tool to supplement other mechanisms
(classroom time, textbooks, online videos, testing systems, etc), not to replace
them or duplicate their functionality. REGIS, therefore, is not:
A learning management system (LMS) or course management system
(CMS). It would be more appropriate to think of REGIS as a possible

16

subcomponent or extension to other LMS / CMS systems (Blackboard
[31], Sakai [32], Moodle [33]); REGIS was designed to be able to connect
to question providers that could potentially be run with any of these
systems, but does not aim to replicate the majority of the functionality of
a traditional LMS / CMS.

A QA tool. Several tools, most notably Piazza [34|, exist that are
designed for general question-and-answer exchanges between individuals
(“when and where are the final exam for this course?”). REGIS is not
designed to handle this type of question and would be a relatively poor
choice for this level of functionality since users are given separate instances
of questions and answers from others are not immediately revealed, even
after they have been submitted.

Primary Design Decisions

Throughout the development process we have been continuously striving to keep
intended user interactions both simple and self-descriptive in order to make the
tool widely accessible and easy to learn. A number of important design decisions
have been made in order to make the tool both easy to use and powerful, the
most significant of which are defined below.

Language agnosticism. A number of tools are now available that allow learners
to write and then submit or execute code directly in the browser'. Tools
currently exist for common languages like Javascript, Java, and Python. While
these tools have received a significant amount of well-deserved publicity, they
each only support a subset of all popular languages and require considerable
attention be paid to the security model when the user’s submission is executed on
the server in order to properly account for the risks of arbitrary code execution.
Insufficient preparation can have significant negative side effects if malicious
users choose to attack the system.

A far simpler approach from an administrative standpoint is to allow users to
submit their answers, not the code used to generate the answer. This approach
is also taken by Project Euler and Google’s Code Jam.

In addition to the significant gains in system-level simplicity, the introductory
computing course that REGIS was designed for uses a language [35] that
currently has no automatic execution mechanism (such as a command-line
interpreter). Programs therefore cannot be automatically executed and evaluated
on the server-side unless such a tool is first built, which is a significant
undertaking of its own.

! CodeAcademy [47], CodingBat, and Turing’s Craft, for example.
17

Language agnosticism also makes REGIS immediately usable in any context,
including those that have nothing to do with programming. The entire category
of free response questions as well as knowledge domains like history and art, for
example, are usually not affected by the system’s dependence on a particular
programming language. This was important for our goal of expanding the
usefulness and applicability of the tool.

Simple Ul and all interactions based on well-known flash card analogy. REGIS
has a simple user interface that is entirely focused on questions and their
solutions. We have iterated several times to reduce the number of distracting Ul
elements and make the tool more question-oriented. We have also had a goal of
making the UI modern, fast, and fun to use without distracting the user.

In addition, it is possible for a user to solve the same question any number of
times. Like traditional flash cards, it can be helpful to be able to go over

questions that you’ve successfully answered in the past in order to review at a
later time. This is the default behavior in REGIS.

“League™based hierarchical organization with privacy settings. Questions are
shared among members of a “league,” which can be used to represent a single
event, course, academic topic, or other group of users. A user can be a member
of any number of leagues at the same time. Leagues are very easy to create and
destroy for individuals with appropriate permissions and questions can be
duplicated across leagues if desired. This makes it possible to create new leagues
that inherit a set of questions but function independently.

Our course uses a single league for all students. Students could, however, be
enrolled in other leagues simultaneously that represent other courses or even
informal groups of students who are generating their own problems. Leagues can
also be used for different sections of the same class if a distinct set of questions is
desired for each section.

Primarily non-competitive. REGIS intentionally avoids framing questions
competitively. Although competitions can be effective for motivating
participation, they can also be discouraging (particularly for those new to the
topic, such as the students in our introductory course) and can underemphasize
collaboration. Our course aims to be highly inclusive and strongly encourages
collaboration; the core REGIS system therefore does not use competitive
mechanics like leaderboards, time trials / races, or explicit ranking aside from a
small number of anonymous statistical comparisons to other students. Future
work could include competitive modules that allow students to build teams and
challenge each other to competitions.

18

Cognitive noise reduction. Questions are only answerable when there is a single
question visible on the screen; it is possible to view multiple questions at a time
for navigational purposes but the user must focus on a single question before
being allowed to answer it.

In addition, it is possible to release questions slowly in order to reduce the
perceived burden of having “too much left to do;” instead of overwhelming
students with a large number of questions, some of which may be too difficult for
particular students, REGIS can be configured to release targeted questions at a
configurable frequency (or all at once).

Question groups, or “decks.” Question groups, called “decks,” allow users to
organize questions into named collections. Questions can exist in multiple decks
simultaneously and users can create their own decks and decide to keep them
private or share them with others.

We’ve tried to keep the design of decks very general to cover a wide range of use
cases, keeping exam review sessions, study groups, and exam administration as
primary models.

Ezxam mode. Exam mode allows instructors to hide all questions except for those
present in a particular deck. We added this feature based on feedback collected
during informal surveys administered to high school teachers; the goal is to
include all necessary features required to make it easy to administer tests at
scale. The teachers who were surveyed believed that REGIS could provide a
natural framework for administering tests if certain parameters could be tweaked
when exams were in session.

Exam mode can be toggled on a per-league basis. Entering exam mode currently
modifies four operational mechanics for the target league:
¢ Anonymous members cannot answer questions and each logged-in member
can only provide a single submission per question.
e All questions in the exam deck become visible to all users in the league
who can see the deck.
e All non-exam decks are hidden for the duration of the exam.
e New users cannot join the league while it is in exam mode.

Custom fields in shared question templates. Questions can be static or dynamic;
dynamic questions include fields that can be customized on a per-user basis. The
core of the question usually stays the same in dynamic questions, although the
particular problem that the user is trying to solve will be different than those of

19

their peers; for example, the specific values that appear in a word problem may
be different for each users but the body of the word problem would be the same.

The benefits of the template-based question approach are twofold: first, we
hypothesize that the model will promote appropriate collaboration by
encouraging students to discuss approaches and algorithms instead of exchanging
answers. Secondly, the modification of inputs makes it significantly more
difficult for users to copy answers from their peers (during assessments, for
example) and provides an easy way to generate an arbitrary number of different
version of a particular exercise.

The language used to customize question variables was designed to be very
simple and extensible in order to make question writing possible for non-
programmers. Question variables, or “terms,” are based on an extensible pre-built
function library and can be included in the question with a minimal amount of
syntax. This makes it relatively easy for non-Python programmers to write
questions quickly without having to program, and also makes it very quick for
those comfortable with programming to produce questions using the shared
library. Some examples of terms that are currently implemented include:
num min max - generates a random number between min and max.
mixset filename (set-length) - this term operates on a particular file
that should be a collection of values, one per line, partitioned into sets. A
set is divided by placing an empty line between it and another set. mixset
selects a random set (one of the appropriate size when provided) and
scrambles all of the elements in the set randomly.
link data - this term produces a URL that links to a text file and drops
data in as the text body. This will produce a link titled “View link” in the
question body. Each question can currently have at most one link in its
body due to the way that URLs to the linked files are generated.

A list of all available terms, including usage examples, is included in the
appendix; new terms can be added easily by building a Python class that
produces the desired output given the parameters. The term definition
framework has been designed to be highly modular so that they can be shared
easily among REGIS deployments. A sample dynamic question template that
made use of these terms could be written like this:

How many Friday the 13th's will occur between Jan 1, 2011 and
[date str]?

day: num 1 28

month: num 1 12

year: num 2015 2020

date str: formatdate month day year

Ne Ne e N

20

day, month, year, and date str are all question variables, although date str is
the only one that actually appears in the question body. num and formatdate are
both terms, and the parameters after each are arguments for the term. Based on
the current term definitions, one possible permutation of this question might be:

How many Friday the 13th's will occur between Jan 1, 2011 and May
24, 20187

In this example, day = 24, month = 5, year = 2018,and_date_str = “May 24,
2018".

Democratic question submission. Questions can be submitted by any user in a
league. Doing so will automatically generate new instances of the question (see
next section) and bind an instance to each user in the league. Users should see
the question appear in their “All” deck shortly after the question is created.

Users can create customizable fields in the questions that they submit. However,
due to security concerns, questions may not be automatically graded because
doing so would require the execution of a solver script. Since this script cannot
be blindly trusted from all users, user-submitted questions must be manually
graded (see below). It is possible, of course, for instructors to automate user
questions by providing the solver script themselves.

In order to prevent undesired behavior (spam, low quality questions), a user’s
name is displayed with each question that they submit. Particular questions can
also be flagged; if enough of a particular user’s questions are flagged then their
ability to create questions will be suspended.

Peer grading. In addition to being automatically graded, answers to questions
can also be reviewed and scored by peers after the peer has answered the
question themselves. This is presented as a simple Ul component under the
question itself, and users can grade and number of responses that they want to.
The grading task is presented as a five-point Likert scale widget with brief
descriptions for each point. The solution is also displayed to simplify the grading
task and reduce errors.

21

COdepath 4 new question 4 profile L logout

Solved Question X
released on 2012-04-08T712:20.46 released on 20120

What is the largest sum you can get from adding five consecutive digits in the number Determine whet|
932425846760101001786911355034954137899578100782787 example, 43 ca

Check

If it can be reacl
sequences. If it

[14

rade answers from other students.
orrect: 38

Peer response: 3
0 1

Figure 3: Peer responses appear below a question after a user has answered it correctly. The
correct answer is also displayed to simplify the evaluation task.

This was included as a method for supporting both democratic question
submission and additional question types that are challenging to automatically
evaluate (free response, for example). It also provides a means for instructors to
crowdsource the distribution of feedback and provides an opportunity for
students to see how their peers respond to questions that they’ve already
answered. Peer grading has been evaluated in similar contexts recently and
found to be relatively dependable [36].

Frontend: User Interface & Experience

The REGIS frontend is modeled after the analogy of flash cards used in a
number of academic environments but most commonly for studying and
reviewing content. Flash cards are an incredibly simple tool and REGIS
attempts to emulate the simplicity of flash cards while also improving on the
standard physical objects, which are limited in scope by their static nature.

When users first access the site, they are asked to log in using either their
Facebook or Google account®. After a user logs in, all further interactions are
handled using asynchronous calls to the server using the Javascript frontend,
meaning that no full page refreshes occur and very little pausing takes place in
the interface as a whole.

? REGIS also supports local authentication but it is disabled by default.

22

codepath

Welcome How Regis

Regis releasos
you're able 1o sq

Codepath is here for one reason: to help you practice your algorithmic thinking skills. We provide you
with a single programming problem to focus on at a time and learn your strengths and weaknesses as
you work.

The question da|
question that yol
oenough that it sH

Codepath is language-agnostic. Use it to practice a language you already know or even to learn one
that you've never used before,

= ow Regis L¢
2 Log in with Google f Log in with Facebook

Regis records a4
to get a general
are also able to
onough quostior|
significant role i

The learning sy

Figure 4: The landing page uses a layout that is very similar to the project’s core user interface.
Users have the option of logging in to the service using either Google or Facebook credentials, or
they can flip between some of the other introductory cards to learn about how the tool works.

Once a user logs in they are presented with their profile card, which contains user
statistics and links to questions, in the center of the user interface. Each card
displays the question text and provides a place for the user to submit their
answer, as shown in Figure 1. In addition, cards can display a number of
possible “scraps” (described below) to supplement the question content.

The user can then switch to other cards in the current deck using either the
mouse (by clicking on buttons on either side of the active card) or the keyboard
(using the left and right arrow keys). This allows users to move linearly through
the deck. In order to view all questions in the deck at once, users can “stack” all
of the cards (again, using the mouse or keyboard) in a column and select the
question that they want to focus on.

Decks

A deck is a simply a user-specified collection of questions. Users can create and
name their own decks and add any number of questions to each one. Decks can
be private or shared with the league. A single question can exist in any number
of decks; the REGIS server actually stores the relationships between decks and
question templates, not the question instances that users actually interact with.
This means that users will still receive their permutation of a particular question
if someone else adds the question to a public deck.

Decks have been designed as a general organizational mechanism that can be
used in a variety of settings. Some possible use cases include:

23

Purpose-driven decks, such as creating decks of review questions. These
can include questions from the user, other members of the league, and the
instructors.
Progress-driven decks that keep track of known concepts and unknown
concepts (similar to how standard flashcards are often used).
Organizational decks that group questions into topics or into visibility
categories.
League instructors can also launch exam mode by selecting a deck or decks that
should be visible during an exam. These decks then become visible to the league
and all other decks are hidden for the duration of the exam.

The lower portion of the REGIS user interface contains a collapsible “deck dock”
(see Figure 1) that provides a simple way for users to interact with their
available decks. Clicking on a deck or pressing the corresponding number key (1
for the first deck, 2 for the second deck, etc) activates the deck and refreshes the
visible card list to contain only questions that exist in that deck. Users can also
create new decks, drag cards onto decks to add them to the deck, and “close”
cards in order to remove them from the current deck.

Scraps

Scraps are small Ul elements that appear below questions in order to share
specific information about the question and offer additional interactions. Scraps
are intended to be extensible and pluggable so that different deployments of
REGIS can use different scraps.

Scraps appear as small cards that are connected to the primary question card
that they refer to (see Figure 3). Two types of scraps that have currently been
implemented are hint scraps and feedback scraps.

A hint scrap is used to either (a) request a new hint, (b) display a hint that’s
been requested or (c¢) leave a hint after successfully answering the question. If
the question is unanswered then the user can see the hints they’ve requested and
request new ones (if available). If the question has already been answered
correctly then the user has an opportunity to leave a hint for others. Hints also
receive feedback scores by users who view them, and these scores probabilistically
influence the likelihood that the hint will show up when a user requests a hint.

A feedback scrap is used to collect feedback about the user’s opinions on the
question, both in terms of general quality and difficulty. Both are presented with
a five-point Likert scale, and leaving feedback is optional for all questions. This
data is currently only being recorded, although it would be possible to
incorporate it into REGIS in the future.

24

ARCHITECTURE OVERVIEW

REGIS has been designed to be a modular system whenever possible in order to
support a variety of different use cases. The system architecture is similar in
many ways to those of modern web applications and can easily be deployed on a
single system or multiple systems.

At a high level, REGIS is structured as depicted below.

User Store
@ Data
Question Store =l
@ REGIS Server
Permissions Filter
@ Sequencer
Backend
Template Parser T
@ Template Solver

Figure 5: the REGIS server is relatively lightweight and can support a large number of
concurrent users. The majority of the processing work is offloaded to the backend services, which
can be run at off-peak times or on separate machines if needed.

It is possible for all server-side processes to take place on the same physical
machine unless a very high level of participation is achieved or new question
instances are being generated with high frequency. The majority of server-side
operations are very lightweight with the exception of the backend services that
handle the solving of questions. Each of the permutations of a question must be
solved when the question is first introduced into the system; if a large number of
permutations for a computationally challenging question are required then CPU
utilization will peak until the answers have all been generated. In this relatively
unusual case (such as with high-enrollment online courses), the computationally-
intensive portions of REGIS can easily be run at off-peak times or shifted to
other nodes if required.

Client Frontend

The frontend is presented to users in a web browser and has been built using two
popular Javascript libraries, jQuery [37] and Backbone.js [38|. The client makes

25

a request to pull all necessary information from the REGIS server when the user
logs in -- this includes all available questions, decks, and user profile information.
The majority of a user’s question-related data, however, is stored locally in the
client, which allows for fast interface response times and no full-page refreshes to
transition between client-side actions.

Solutions are not sent to the client in order to prevent the users from reading
them before the problem has been solved; checking answers, as well as submitting
new questions and modifying deck memberships, require communication with the
server backend. The client sends asynchronous requests as needed in order to
keep client and server state in sync. For example, when users add a card to a
deck or create a new deck, an asynchronous message is sent to the REGIS server
in order to make the change persistent across sessions.

The frontend has been through several design iterations, but is now relatively
simple and is based around the metaphor of flash cards. Users are able to
interact with the cards in natural ways, including dragging them into decks to
add them to a deck, dragging decks onto the stage to reveal all questions in the
deck, stacking cards to view many at the same time, and so on.

codepath s g L

Solved Question
released on 2012-04-08712:20:46

s il g L YO

Released Question

released on 2012-04-26700:20:24
Determine whether the number 2234 can be reached by summing consecutive positive numbers. For

Released Question [X |
released on 2012-04-26T01:12:26

You want to build a phrase scrambler. Your scrambler will start with a single phrase and apply a
series of operations to it that manipulate the phrase. Provide the output phrase after ali of the
manipulations have been applied. The following three commands are available;

reverse: reverses all of the letters in the phrase

frontback: takes the first letter off of the front and adds it to the end of the phrase

duplicate: duplicates the second letter of the phrase and adds it as the third letter

Figure 6: Cards can be stacked in order to simplify navigation. The deck dock has been
collapsed in this view.

The user interface is divided into two primary regions: the stage and the deck
dock, as shown in Figure 1. The stage is the primary section of the page that
contains all of the cards in the active deck. The deck dock occupies the lower
portion of the interface and gives the user a simple method of switching between

26

decks, adding cards to decks, and creating new decks. The deck dock can be
collapsed when not in use.

REGIS Server

The REGIS server is primarily a content filtering and annotation pipeline that
exists between the question provider and the client-side user interface. The
server is responsible for responding to all client-side web requests, including
requests for questions and decks. In order to answer question requests, the server
forwards the request on to the question provider, which can either be stored
locally or remotely using a service like Course Sharing. The server is written
using the Django (Python) web framework and its responsibilities are limited to
generating responses to RESTful client-side HT'TP requests.

The REGIS server keeps track of viewing and editing user permissions for
questions or decks and filters the content that is returned appropriately. This
separation of responsibilities between the question provider and the server itself
makes it possible for REGIS to apply a wide range of rules about which
information is available to users at different times, such as a question-per-day
release policy.

Instance Are any

Get all . -
, status is Is exam containing
question
instances for released mode decks
or enabled? visible to

current user.

salvad? the user?

Figure 7: Before a question is displayed, the REGIS server passes it through a visibility pipeline
to determine whether the user should see it. The question is not displayed if it fails any of these
conditions.

The server maintains all deck-related information, including which question
templates are present in which decks, deck visibility, and ownership information.

In addition, the server also maintains information about annotations to questions
(hints, grades, comments, etc) that may not fit into a particular question
provider’s schema. This information can be added to each question as it is
requested from the client, again, depending on viewing permissions.

One notable task that the REGIS server is not responsible for is user
authentication. This responsibility is currently offloaded onto popular identity
providers like Google and Facebook through the use of their OAuth API’s in

27

order to lower the barrier to participation. A user table is still maintained locally
to allow accounts to persist between sessions but no passwords or other sensitive
data (except for the user’s email address and name) are stored in the system.
Django has an authentication system built-in and local accounts could be easily
implemented if desired for a particular application.

Question & User Stores

Questions are the core unit of data that is handled by REGIS and the system is
entirely capable of storing all question-related information locally. However, it's
not clear that this will be the best solution in all situations, especially due to the
recent proliferation of education-related technologies like learning management
systems and online quiz platforms. Because of this, REGIS makes it very simple
to connect with other third-party backends to fetch question data and store guess
data through the use of question provider modules. Two modules currently exist:
the LocalQuestionProvider and the CourseSharingQuestionProvider.

The local provider stores all information on the same system as the REGIS server
using the same database backend that is used for the Django deployment. This
results in relatively high performance since no remote queries take place, but the
database may suffer some performance degradation if query volume reaches levels
beyond what the server can handle in addition to its filtering and annotation
tasks. This circumstance should be very unusual unless a large number of users
tried to sign in simultaneously, such as for a test in a high-enrollment online
course.

The CourseSharing provider stores and retrieves questions and answers using the
online CourseSharing service being developed at UC Berkeley. Using this
provider allows questions to be shared among other CourseSharing services and
for user performance to be aggregated among those services as well.

Backend Services

There are three primary backend services that keep REGIS functioning properly:
the question parsing service (required unless a remote question provider with its
own generation mechanism is being used), the question solving service, and the
sequencing service. All of these can be run periodically and must have access to
the REGIS question store. A technical overview of all three services will be
provided in a later section.

The question parsing service creates new question instances that are assigned to
users as their accounts are created. Question instances are generated according
to the variable definitions specified in a template, and a pool of questions is

commonly generated for each template. A question instance is coupled with the

28

set of all significant answers® (assuming that the question is marked as
computable; the alternative is peer-reviewed).

The personalization service estimates the difficulty of each question and the “skill
level” of each user by retrieving aggregate performance data. The order that
questions will be released is then adjusted for each user; this field is used to
determine what question is released when needed. The ranking that a question
receives is based on the proximity of a user’s skill (both globally and for the
categories that the particular question falls in) and the question’s difficulty
(predicted based on attempts from other users and the categories that the
question is classified in by the question author). The precise formulas for how
the rankings are determined are described in the Questions section below.

Question Generation

REGIS has a simple and extensible question generation engine built in that
makes it relatively easy to write new questions. The parser process is responsible
for generating new question instances from question templates and storing this
information with the question provider. The solver process determines what the
correct (and in some cases, incorrect) answers are for each parsed question and
stores each with the question provider. In the case of the LocalQuestionProvider,
each question instance is stored as a row in the questions table and each answer
in a separate record in the answers table, which is linked to the question that it
answers, and inlcudes a flag indicating whether it represents a correct answer.

It is important to note that the components described in this section are only
used if the question generation tools that come with REGIS are used; if another
method for generating questions and answers is preferred, then the question
provider can be updated using those mechanisms instead with no further changes
to the REGIS infrastructure.

Question Data Model

The question data model was designed to be easy to customize, easy to share,
and easy to scale. Question templates consist of two components: the template
text (required) and the solver script (optional). The authors must provide a
solver script if the question is going to be evaluated automatically. These two
components can be shared among REGIS distributions in order to share
particular questions.

% A significant answer can be either correct or incorrect but is generated by a specific solver in
order to either (a) indicate a correct response or (b) provide customized feedback for an incorrect
response.

29

The template contains the body of each question and any number of variables
that can be generated on a per-instance basis; question instances are generated
from templates by the parser. The solver script, if available, is executed by the
solver and will generate unique entries for answers based on the values of the
variables chosen by the parser, which are stored with the question instance in the
question provider and passed as inputs to the solver script. Questions can have
any number of correct answers as long as the solver script defines how to
compute them. Questions can also have any number of incorrect answers that
receive customized responses; these are defined in a separate method in the same
solver.

Templates can also be tagged with certain “categories,” which are used by the
sequencing algorithm to identify questions that are topically similar. These
categories are not currently exposed in the user interface and are used solely for
personalization services.

Each question has a status associated with it that gets updated as it moves
through the pipeline. Users do not see a question until it is marked as released,
meaning that both the question text and the solution(s), if applicable, have been
generated and the question has been released to the intended user. A question
has one of the following statuses at all times:
pending - hidden; parsed but not solution not yet computed.
ready - hidden but parsed with a computed solution. This status is used
when questions are ready to be revealed but the league’s configuration
restricts their visibility (i.e. if the league operates under a periodic release
schedule); if the league’s policy states that questions are automatically
released then this state will not be used.
released - visible and answerable by the user
solved - visible but not answerable by the user
retired - was once visible but is no longer (should be considered “deleted”
from the user’s perspective)

00000

pending ready released solved retired
Figure 8: Questions move through a series of states that determine the visibility and
answerability of the question.

It is inevitable that question submitters will eventually need to be able to correct
the wording or variable definitions in their questions after the question has
already been revealed to users. Direct deletion of questions is never performed in

30

order to maintain the validity of the guess history; instead, the question can be
refreshed, which converts all old versions of questions to retired unless the
question has already been solved, in which case the question is left alone. A new
version of each question is generated for each instance that was retired using the
new template, and certain metadata is copied over as well (the most significant
being the release date of the original question for the target user) in order to
make the refresh operation transparent to the user.

The system’s original question model generated a set of new question
permutations for each user. This made it possible to increase the variation
between users by generating random outputs for each person, but came at the
cost of a question database whose size depended both on the number of templates
and the numbers of users. This was not problematic for our test deployment but
could quickly become prohibitive if launched as a public project (like Project
Euler) or used for a large online class (like Stanford’s recent offerings, several of
which had over one hundred thousand students enrolled).

REGIS’s current question model generates a pool of questions for each template;
the template pool size is customizable per deployment. Each user is paired with
a random selection from each pool when their account is first created, and
additional pairs are formed (in case new templates are added) each time a user
logs in. Any number of users can be paired with a single instance of a parsed
question template, meaning that the question database’s size is dependent only
on the number of templates. Templates that do not contain any variables only
generate a single instance by default, since all instances would be equivalent.

A user is matched with an instance from each active template as soon as the
user’s account is created; this may generate unused edges between users and
question instances (since many users may not see all questions), but provides
records for the personalization services to manipulate. These records are required
to guarantee that all questions are ordered correctly by the personalization
service.

31

Template #1

O
O

Template #2

Figure 9: Multiple users can be matched with the same question instance; this architecture
allows REGIS to maintain a bounded (and configurable) database size while also ensuring that
users have a high probability of receiving different question instances.

Parser

The parser is run to generate new question instances based on a question
template. It pulls templates from the REGIS database and generates a pool of
instances for all active templates that do not have full pools. It also scans
through any pre-existing question sets and replaces the questions that have been
retired but do not yet have a successor.

The parser for REGIS is designed to be able to handle variable definitions but
does not allow inline conditionals, function definitions, or other common language
features. These were excluded in an effort to keep the required knowledge
threshold as low as possible, and with the understanding that these operations
can be included in the term’s definition (which can be written using the full
Python language) if required.

Variables can also be passed into terms as parameters; this cannot be done
cyclically, however, as each variable must be defined before it is used as a
parameter. Variables can otherwise be defined at any point in the question
template.

The question template is written using the syntax described in Mechanics and
Magjor Design Decisions section above; note that a particular template may also

32

depend on the availability of certain terms, which must be transferred with the
template if the template is shared between distributions.

As described earlier, terms are the functions that define how values for variables
will be generated. The num term, for example, generates a number between the
value specified by its first parameter and its second parameter (inclusive; num 1
10 could generate any value between 1 and 10). Additional terms can be defined
by implementing a single method in an abstract Python class (the base Term
class). This method will receive all input parameters and can handle them in a
native Python environment.

Solver

Solvers receive the inputs for a particular instance and generate a set of all
significant answers. In addition to finding correct solutions, each solver can also
compute any number of specific incorrect answers and provide customized
feedback for the answer when a user enters it. For example, in a straightforward
addition problem like:

[numl] + [num2]

If numi = 5 and num2 = 2, the solver could specify common error conditions as
follows:
if answer = 3, say “check the operator...this isn’t a subtraction problem”
if answer = 10, say “check the operator...this isn’t a multiplication
problem”

More advanced questions can include full algorithms with single steps left out. If
the question has an intentionally tricky point in it then a hint could also be
provided using this interface.

After a question has been solved, it transitions from the pending state to the
ready state.

Questions

Questions are the core unit of interaction in REGIS. REGIS places questions
into two primary categories, each of which is handled slightly differently:

1. Automatic evaluation: questions that can be graded automatically are
evaluated online to provide users with immediate feedback. These
questions require solver scripts.

2. Manual evaluation: questions that should be graded by individual or peer
review.

REGIS is designed to allow any league member to submit manual evaluation
questions but limits the creation of automatic evaluation questions to instructors

33

due to the requirement of a solver script, which could contain malicious code and
therefore opens a security threat on the system.

Question corpus

Our test deployment contained 24 instructor-provided questions that were pulled
from a variety of sources or written by a member of our teaching staff. All of the
questions could be automatically evaluated due to reasons described in the Test
Deployment section below. The question templates were selected or designed
such that each problem would be hard to solve without writing a computer
program to do so, similar to the approach of Project Euler but with a lower
expectation of math fluency. In addition, the problems were significantly more
complex than traditional fill-in-the-blank style questions that appear on flash
cards; all of them would require stepping away from the question, solving the
problem for a targeted 5 - 120 minutes, and returning with the answer.

The particular questions we chose to include were selected because they involved
interesting algorithmic questions that weren’t immediately obvious from the way
the question was worded. A significant subset of the questions required
implementing algorithms that were more complex than those introduced in the
course and required independent research in order to determine how to accurately
solve the problem. These questions were included to explore whether students
would be willing to perform mild to moderate amounts of investigation in order
to determine how to solve a problem.

Some sample problems that were included in our initial launch set are included
below.

A McNugget number is a number that can be reached by adding some
combination of 6, 9, and 20 (these are the different sizes of McNuggets
that you can order at McDonalds) any number of times.

How many of the following numbers are McNugget numbers?
176, 270, 349, 403, 501, 667, 794, 884, 914, 953

Imagine that a ball is bouncing around a two dimensional grid and moving
one step right and one step upward each second. When the ball hits a
wall, the ball bounces off but maintains the same velocity. The direction,
however, is reversed on the axis where it met the wall. If the grid is 41 x
41, the ball starts at (30, 28) and is moving northeast at one cell per
second in each direction, what cell is the ball in after it two hundred
seconds?

Write the decimal number "18735" in binary.

34

How many ways can you make change in American currency for $0.747

Determine whether the number 1782 can be reached by summing
consecutive positive numbers. For example, 43 can be reached by
summing 21 + 22, and 42 can be reached by summing 13 + 14 + 15.
If it can be reached, provide the smallest number greater than zero that
appears in one of these sequences. If it cannot be reached, provide the
number 1782.

(credit to Project Euler for this question)

User-submitted questions

Any user in a league is allowed to submit questions to that league unless their
privileges have been suspended for abuse. When a user submits a question, the
question is stored as a template and is immediately parsed. The instances of
each question are then lazily bound to users as they make their next question
request.

Instructors have the ability to disable templates and the corresponding question
instances as needed.

Question sequencing

A number of different approaches have been used for curriculum sequencing in
online tools. REGIS currently uses a modified (and simplified) version of the
technique described by Chen et al [39], which is itself a modification of the
standard function from Item Response Theory [30].

Chen et al’s work broadens the metric for sequencing to include measures that
account for both estimations of the ability of the user and the difficulty of the
material. The default sequencer in REGIS attempts to perform a similar
operation by looking at implicit feedback received by the user’s peers, similar to
common collaborative filtering methods [40]. The sequencer accounts for four
different measures for ordering:

User global ability

This measure estimates the user’s general ability at answering questions in the
corpus. This value can be used to compare users but is context-free, meaning
that it does not weight questions differently based on their relative difficulty.

35

The variable C, = the number of questions that the current user has answered
correctly, V,, = the number of questions that are available to be answered by the
current user, and @ is the persistence modifier (described below).

User local ability

A user’s local ability adjusts the ability score based on the context of a particular
question. The local ability score is based on a particular user’s performance
within a category of questions.

A = eu*z%

The value of C, = the number of questions that the current user has answered
from within the category ¢, 6, is the persistence modifier, and V., = the number

of questions that are available to be answered by the current user from the
category c.

Question global difficulty

This component estimates the difficulty of the question among all others. This
quantity can be used to directly compare questions.

The value of C, = the number of correct responses, V, = the number of users
who have access to the question, and 6, is the persistence modifier.

Question local difficulty

The local difficulty of a question is computed based on the categories that it is
affiliated with.

D, = GU*Z%

The value of C., = the number of correct responses that the user u has issued to
questions in category ¢ and V, = the number of available questions available to

all users in the category c.

These four measures can be computed very quickly, and the distance between
each user’s ability score and the question’s difficulty score provides a method for
ordering available questions. A small bias is also applied in favor of positive

36

differences over negative ones in order to give a preference to questions that are
slightly above the user’s skill level instead of those slightly below it. The scores
should then be negated by subtracting the score from the maximum possible
score of 2.

Appropriateness of question for user u

Appropriateness is measured by finding the difference between the question’s
difficulty and the user’s ability level. Difficulty and ability level are measured
both holistically and modularly using question categories

2_|DG _AG|+(“DL_AL|)
Q= "

The value of A, = the global ability score for the user u, A,, = the local ability
score for the user u on category c, n = the number of categories that the question
is affiliated with.

Persistence modifier

The persistence modifier is intended to provide a confidence weight to each of the
scores that estimates how well a particular user understands the questions that
they answer correctly, or how well a particular question is understood by those
who answer it. There are two similar equations used to compute the persistence
modifier, depending on the score that’s being computed:

C

6 = u
LV V- X

0, = S
YA + Vo Xq|

The values of the variables in these equations are as follows:
C, = the number of correct responses that the user u has submitted
C, = the number of correct responses that have been submitted for
question @

V, = the number of attempts that the user v has submitted
V, = the number of attempts that have been submitted for question @)

X, = the average number of attempts submitted per user
X, = the average number of attempts submitted per question

37

When the output values of the above function are sorted in descending order, the
scores provide a recommended ranking for questions for each user. REGIS
currently interprets this as a probabilistic score; each question’s final score is
raised to a power 3, initially 3, and then all scores are normalized and questions
are selected randomly from the weighted range. This aims to prevent concept
stagnation where recommendations are only given for topics that users have
significant amounts of success with; instead, there is a higher probability that
users will receive these questions but will likely receive improbable questions
periodically, allowing the knowledge model to stay relatively fresh as the student
continues to improve. REGIS currently computes this ordering for all
unanswered questions and users once per day, but the frequency can be increased
or decreased as required.

In addition, it may be possible to perform sequencing across leagues if
correlations can be detected between a user’s ability in different leagues. This
has not been implemented or tested in REGIS but could be the subject of future
work.

MODELS OF CLASSROOM INTEGRATION

REGIS can be integrated into classrooms in any number of ways. We have used
REGIS for one semester and plan on using it in the future for both online and in-
person contexts using a variety of different classroom strategies. We report on
what we’ve done so far as well as some other strategies that we intend to try in
the future.

Test Deployment

We deployed REGIS publicly at http://codepath.co and used the service in our
introductory computing class starting on February 16, 2012. We initially started
with a small set of 10 questions but gradually grew the deck to 24 questions as
the semester progressed and we covered additional topics. The site was kept
online continuously throughout the semester with the standard REGIS system
rules, meaning that one new question unlocked if none were answered in 48
hours.

We decided to make involvement in Codepath (our deployment of REGIS)
voluntary based on both the students’ expressed desire to participate and the
rapid (and occasionally unstable) pace of development throughout the semester.
The existence of Codepath was announced after the students had their first
major evaluation and several updates and reminders were posted periodically

38

throughout the semester when new major features or questions were added. The
system was occasionally used during office hours and review sessions for
practicing.

We launched an early version of the project in our course and there was no
support for user-submitted questions or peer grading. This functionality has now
been added to the project but was not released to our students because the
features weren’t tested and ready until late in the semester. The flash card user
interface was also not available in the version that we tested with students in our
course.

Alternative Models

There are a variety of other methods that REGIS could be used in within the
context of classrooms.

The first and perhaps most obvious of these is mandatory involvement; REGIS
logs user actions and per-user statistics can be generated for users to incorporate
into student evaluations. Students could, for example, receive a set of questions
in a period of time and be required to solve one or more of the questions per
period (each day or week, for example). Similarly, students could also be
required to submit questions that would go into the pool for other students to
answer. Homework assignments could be presented through the interface and
automatically evaluated; tools like REGIS could also help confirm student
understanding in student-led learning arrangements like the flipped classroom.

An alternative approach would involve using REGIS as an informal review tool,
with questions generated by students, instructors, or both. Instructors could
build decks for review sessions, or the sessions could take place entirely online.
The tool could also be used simply for “review on-demand” since it is available at
all times, customized for each student, and updated automatically when new
questions are added or removed. This is comparable to the approach we took
while implementing REGIS in our classroom environment.

RESULTS

We maintained an active REGIS deployment for fifty days during a recent
semester. We launched the service approximately one month after the the course
began (immediately after one exam) and report on usage results that cover a
time period containing a single midterm exam:.

39

Our REGIS deployment had a total of 178 unique users after fifty days of
availability, including 99 who were identifiable as registered students in the
course, 20 who were affiliated with the teaching team for the course, and 60
whose affiliation could not be identified by their registration information.

Initial engagement: account creation

After fifty days of availability, Codepath had 178 registered users including 99
that could be identified as students enrolled in the course. The remainder of the
users were teaching assistants, local high school teachers, and a variety of users
with unknown origin. Codepath’s availability was not directly advertised beyond
members of the course and occasional informal conversation with others (such as
the high school teachers that we surveyed for early user feedback). Codepath did
not rank highly in search results on common search engines.

Cumulative Membership over Time

180 T T /'_’_/

160 |

140 -

120 |

Number of users
[
[+3] (=]
o =
T T

[*1]
[=]
T

B
o
T

20 Midterm (35 days
into trial period)

00 10 20 30 40 50 60

Days after launch

Figure 10: participation grew steadily for the first month after initial launch and spiked sharply
around the time of our course’s midterm exam.

Approximately 90.5% of users joined before the midterm, including 23.1% that

joined in the first week of availability and 48.3% that joined during the week
before the midterm.

40

Medium-term engagement: usage statistics

Despite the relatively high number of account creations, user involvement was
relatively low when viewed over time. Many users (38.9%) did not log in again
after they first created their account, and a significant portion of users (61.1%,
including those who did not log in after initial account creation) never submitted
a guess for a question. The top user, however, logged in 27 times and made 27
guesses. These usage patterns follow the same power law distribution for both
engagement metrics that is detectable in almost every online interactive resource
[41]. The “90/9/1 Principle” [42], states that the top 1% of users will be content
“producers” who are highly involved, approximately 9% will be “editors” who
contribute to the community in smaller ways, and 90% make very few
contributions at all. A similar pattern has been found in a number of online
communities and tools [43-45].

Of Log-ins over Launch Period 120 Participation Review: Guesses & Correct Answers per User

120] — Correct Guesses

100

100
80

of users
@
S
of users
@
<]

o
S

40
40

20 20

2 4 6 8 10 12 14 16 18 5 10 5 20 75 30
of times logged in # of guesses / correct answers

Participation Review: Guesses & Correct Answers per User

— Guesses
— Correct Guesses

Of Log-ins over Launch Period

10°

10°

of users
of users

10 1 10

10° 10° (\

10° 10" 10° 10° 10" 10
of times logged in # of guesses / correct answers

Figure 11: User login counts and guess counts follow similar power law distributions, as is often
seen in online communities. Ounly a small number of users logged in more than five times and
made more than ten guesses. The data is presented with linear axes on the top row and
logarithmic axes on the bottom.

2

41

As an additional note, we suspect that a number of user logins were not
registered by our logging system due to a bug that kept the event from being
recorded if a user returned to the site after being previously logged in. The login
events, therefore, only indicate occasions where users explicitly established a new
session identifier and do not reflect multiple accesses from the same session.

Overall, the number of users who created accounts was somewhat higher than
expected, with 42.1% of students in the course signing up for the service; active
participation metrics, however, were lower than expected with a mean of .75
guesses per student (stddev = 2.95). The low participation rates are likely due
to the fact that Codepath was presented as an optional exercise in a course that
maintains a relatively high workload throughout the semester; in future semesters
we will be testing alternative methods for integrating the tool into the course to
test this hypothesis.

90 Weekly Activity Distributions

v}
o
T
I

~l
o
T
|

|

i
o

o
o

Cumulative # of events

w
o

)
o

=
o

Bl Logins
1 Guesses

0 Mon Tues Wed Thurs Fri Sat sSun

Day of Week

Figure 12: users logged in most on Mondays, Wednesdays and Sundays. The most popular
days for active participation were Monday and Saturday with third closest day (Tuesday)
running 23% lower.

42

Users logged in to the system more frequently on Mondays, Wednesday and
Sundays. This pattern can likely be explained by the fact that our class held
lectures on Mondays and Wednesday afternoons. Homework deadlines for our
course commonly occurred on Fridays, when involvement with REGIS was at its
lowest.

Guesses peaked on Mondays and Saturdays. Participation rates drop
continuously as the week progresses until the weekend sets in; since student
workloads often increase as the week goes on and then decrease over weekends,
there appears to be a correlation between how often students make guesses on
Codepath and how much other work the students have at that time. This
hypothesis is somewhat intuitive -- students would logically put off using
Codepath during demanding periods given that our course doesn’t place any
participatory requirements on student involvement with the tool.

There seem to be two different behavioral cases that appear in the usage graph in
Figure 12. The first of these, present on Tuesday and Saturday, are the cases
with a high number of guesses per login. This suggests that highly active users
were participating on these days, and that there were likely fewer users who
logged in and left without answering any questions. The second behavioral case
is the opposite, most notably present on Wednesdays and Fridays, where
students cumulatively logged in more than they guessed, meaning that there was
an average of less than one guess per person.

In-class performance

We were also interested in seeing how students’ grades were affected after
becoming Codepath users. We administered two exams in the course that
impacted the student’s grades and contained no direct material from any of the
Codepath exercises. The first exam was administered before Codepath was
announced to the class and the second exam was given after Codepath was
available for approximately 50 days. The exams contained questions on both
course readings and programming, but the results reported below are based only
on the questions about programming-related topics.

The users who created accounts with Codepath were evenly distributed between
the top and bottom 50% of scores from the second test. Only three of the top
ten students and two of the bottom ten students had accounts on Codepath.
This suggests that Codepath did not appeal more to either underperforming or
high-performing students, but the distribution instead suggests that students
near the middle of the performance curve had the highest enrollment and guess
rates.

43

The students who created an account on Codepath improved an average of
12.667% between the first and second tests, compared to 8.906% for the class as
a whole. Many of these users, however, did not actively participate. The
students who provided at least one guess to a Codepath exercise showed an
improvement of 9.936%, which is only marginally better than the class average.
This suggests that a student’s willingness to join Codepath may be generally
indicative of the effort they’re willing to invest, but those students don’t
necessarily use Codepath as a means of studying or improving their
understanding of programming topics.

User Category Improvement between tests
Full class 8.906%
All Codepath users 12.667%
Codepath users w/ at least one guess 9.936%
Codepath users w/ at least one correct guess 9.412%

Table 1: Those who used Codepath and those who did not showed similar levels of improvement
between exams.

This result is not particularly surprising due to the low participation rate among
many users. The effect, if any, would likely be far more pronounced with more
higher levels of participation and may be more measurable in future semesters.
It is unclear, however, whether any improvement would be correlated with the
use of Codepath or simply an indicator of a more involved student, but we plan
to continue monitoring this metric in future work if participation rates improve.

Student Feedback

We administered an optional survey at the end of the semester open to all
students who logged in to Codepath at least once during the trial period and
received eight responses. Students reported spending 5 — 30 minutes per problem
that was answered, and everyone who responded claimed to have answered at
least one problem.

44

Figure 13: All of the eight respondents answered at least one Codepath question during the trial
period. This suggests that the sample was unrepresentative of the class as a whole but provides
potentially useful insights nonetheless.

We asked how students thought a tool like Codepath could best be integrated
into the course, and the most common recommendation (stated by two of the
eight respondents) was to somehow incorporate it into the grading structure of
the course. Other responses were scattered but often focused on question-specific

issues or comments on the user interface, which has since been replaced by the
flash card UI.

Out of the eight respondents, four of them explicitly indicated that they think it
would be beneficial to have Codepath exercises be a required part of the course;
one explicitly disagreed with this statement. Five of the eight respondents
indicated that they would have done more Codepath problems if they’d had more
time during the semester, and three responded with a “maybe.”

The evidence from this survey, though sparse, confirms our belief that integrating
Codepath as an open but required portion of the course is worth attempting, and
may lead to an improved student experience and higher degree of student
comprehension.

45

FUTURE WORK

REGIS is a proof-of-concept tool that builds a foundation for sharing problems
from many contributors. Many of the mechanisms are likely imperfect and could
be improved or replaced in the future. Some of the key areas for improvement
are listed below with some proposed directions for how each one might be
improved.

Implementations in alternative social contexts

The engagement results for our implementation of REGIS were relatively low,
but we suspect that this is a result of the social and pedagogical context that it
was presented in (optional with limited integration in classroom). The primary
limitation has likely been that students did not have enough time in their
schedules for optional activities. In future semesters we plan to experiment with
a number of different implementation styles now that the tool is relatively
mature and the existing question database has a workable number of problems in
it. Our next experiment will likely involve requiring students to answer a small
number of self-selected questions each week; submitting questions will likely be
left as an optional activity that may result in some small form of participation-
based extra credit.

Question sharing mechanisms

Questions currently need to be shared manually by transferring solver files and
question text between deployments; ideally it would be simple to discover new
questions and import / export questions from a deployment. This would
significantly decrease the workload for question generators and would facilitate
the simple sharing of high-quality questions among organizations and institutions.

We have designed our question provider module with CourseSharing in order to
enable the sharing of questions, but there’s still an open question of whether the
sharing of questions could take place in a straightforward way from within the
REGIS interface.

Some important issues arise in terms of securing deployments when arbitrary
code like solvers and term definitions are copied over from remote (and
potentially untrusted) sources. The design and facilitation of this process could
easily be a project within itself. However, it would likely lead to a significant
reduction in effort and a corresponding boost in quality of review materials
among leagues.

46

Inter-league sequencing

Effective sequencing requires a significant amount of data in order to properly
predict both the ability of users and the difficulty of questions and categories of
questions. If questions are shared among larger populations, either copied
between leagues or shared using the general mechanisms described directly above,
the sample size for an individual question or category could be increased
significantly.

In addition, if users join multiple leagues with high enough frequency then it may
be possible to predict the difficulty of certain questions based on the ability of
the same user in other leagues; it seems reasonable to expect that a user with
high performance in one league would have a greater-than-average chance of
having high performance in another league, especially if the leagues are topically
similar. It is currently unclear whether this hypothesis is true due to a shortage
of data but it would be an interesting avenue of exploration if REGIS or a similar
project could generate useful data.

Interest prediction

Since one of the primary features of REGIS is the ability for users to submit
questions that can be viewed by others, performing some sort of intelligent
content recommendation becomes important in order to help users navigate the
options that are available to them. The information gathered from the individual
question feedback could be used as one of the inputs to this predictor.

The body of academic literature around interest-based content recommendation
is vast, but very little work has been done specifically in the context of
educational content. It seems reasonable to expect that well-known predictive
techniques like collaborative filtering and regression would be effective in
predicting interest levels for educational content as well; if an effective method
could be applied then this could become an important component of REGIS’s
content sequencing algorithm, or a separate component of the system that could
provide customized problem recommendations in the user’s profile. Incorporating
interest measures as well as the current difficulty measures would likely provide a
more intriguing sequence and could help students explore topics in the contexts
of other disciplines.

Team support

Planned future work involves creating a module for Regis that would allow
participants to form teams of any size (including one) and challenge other teams
to competitions directly. This module could be activated or deactivated on a
per-league basis. Students could receive credit for their success based on the
relative skill level of their team and the opposing team using an appropriate

47

ranking mechanism like the Elo rating system, a method often applied to
competitive chess ladders [46].

League-wide operating modes

Possible future work involves creating generic operating modes that can be easily
customized by the league administrator. The various system mechanics (question
release frequency, exam mode status, instructor / peer manual review mode flag,
etc) could be modified on a site-wide or league-wide basis in order to increase the
applicability of REGIS to other use cases.

CONCLUSION

Since its launch, Codepath has attracted a significant portion of the students in
our course and has confirmed that students are interested in using the tool.
Despite the fact that participation rates were low, we believe that REGIS is still
a valuable classroom tool that can be improved further with additional
investigation and development. Some of those improvements, outlined in the
previous section, could significantly impact its adoption rates among both
teachers and students. Alternative classroom integration strategies could also
help determine whether the tool was useful to students.

Further work is needed in order to make the tool widely distributable but REGIS
has come a long way towards addressing an identified classroom need. In
addition, feedback from students (users) and other teachers has helped identify
important future directions for the tool.

We plan to continue our work with REGIS to iterate on the tool with other
users, potentially in a high school setting. We would also like to launch the tool
so that leagues could be created easily, opening up availability to users in
informal learning settings. In addition, we will be using REGIS in both online
and in-person iterations of our current course in order to further develop the tool
and improve student learning and our course’s overall appeal.

48

1]

12|

13|

4]

5]

6]

7]

18]

19]

[10]

[11]

REFERENCES

D. Merrill, “First Principles of Instruction,” Educational Technology
Research and Development, vol. 50, no. 3, pp. 43-59, 2002.

D. Garcia and B. Harvey, “CS10: The Beauty and Joy of Computing,”
2012. |Online|. Available: http://inst.eecs.berkeley.edu/ ~cs10/.

M. Clancy, N. Titterton, C. Ryan, J. Slotta, and M. Linn, “New Roles for
Students, Instructors, and Computers in a Lab-based Introductory
Programming Course,” in SIGCSE, 2003.

A. Krapp, S. Hidi, and K. A. Renninger, “Interest, Learning, and
Development,” in The Role of Interest in Learning and Development, K. A.
Renninger, S. Hidi, and A. Krapp, Eds. Hillsdale, New Jersey: Lawrence
Erlbaum Associates, 1992, pp. 3-25.

E. Deci and R. Ryan, Intrinsic Motivation and self-determination in human
behavior. New York: Plenum Press, 1985.

E. Deci and R. Ryan, “The Support of Autonomy and the Control of
Behavior,” Journal of Personality and Social Psychology, vol. 53, pp. 1024-
1037, 1987.

J. Connell, “A New Multidimensional Measure of Children’s Perceptions of
Control,” Child Development, vol. 56, pp. 1018-1041, 1985.

S. Harter, “The Perceived Competence Scale for Children,” Child
Development, vol. 53, pp. 87-97, 1982.

R. Ryan and J. Connell, “Perceived Locus of Causality and Internalization:
Examining Reasons for Acting in Two Domains,” Journal of Personality
and Social Psychology, vol. 57, pp. 749-761, 1989.

M. Prenzel, “The Selective Persistence of Interest,” in The Role of Interest
in Learning and Development, K. Renninger, S. Hidi, and A. Krapp, Eds.
Hillsdale, New Jersey: Lawrence Erlbaum Associates, 1992, pp. 71-98.

R. Schmidmaier, R. Ebersbach, M. Schiller, I. Hege, M. Holzer, and M.
Fischer, “Using electronic flashcards to promote learning in medical

students: retesting versus restudying,” Med FEduc, vol. 45, no. 11, pp. 1101-
1110, 2011.

49

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]
[20]
[21]
[22]
23]
|24]

[25]

|26]

A. Tan and T. Nicholson, “Flashcards revised: Training poor readers to
read words faster improves their comprehension of text,” Journal of
Educational Psychology, vol. 89, pp. 276-288.

H. Stutz, “Flashcards: Fast and Fun,” American Association of Teachers of
Spanish and Portuguese, vol. 75, no. 5, pp. 1323-1325, 1992.

M. Houston and L. Lin, “Humanizing the Classroom by Flipping the
Homework versus Lecture Equation,” Proceedings of Society for
Information Technology € Teacher Education International Conference,
pp. 1177-1182, 2012.

D. Rowntree, Ezxploring Open and Distance Learning, 3rd ed. London:
RoutledgeFalmer, 1992, pp. 29-31.

P. Khan and K. O’Rourke, “Understanding Enquiry-Based Learning,” in
Handbook of Enquiry and Problem-based Learning Irish Case Studies and
International Perspectives, T. Barett, I. M. Labhrainn, and H. Fallon, Eds.
2005, pp. 1-12.

A. Kamenetz, DIY U: Edupunks, Edupreneurs, and the Coming
Transformation of Higher Education. White River Junction, VT: Chelsea
Green Publishing Company, 2010.

H. Finn, “Watching the Ivory Tower Topple,” Wall Street Journal, 23-Mar-
2012.

“Project Euler.” [Online|. Available: http://projecteuler.net.

N. Parlante, “Coding Bat.” [Online|. Available: http://codingbat.com.
Google, “Code Jam.” [Online|. Available: http://code.google.com/codejam.
“Memorize.com.” [Online|. Available: http://www.memorize.com.

“Course Sharing.” Berkeley, CA, 2012.

MIT and Harvard, “edX,” 2012. |Online|. Available:
http://www.edxonline.org/.

Khan Academy, “Khan Academy.” [Online|. Available:
http://www.khanacademy.org/.

Programr, “Programr.com.” [Online|. Available:
http://www.programr.com/.

50

27]

28]
29]

[30]

[31]

32|

[33]
[34]
[35]

[36]

37|

[38]

[39]

[40]

|41]

|42]

MasteringPhysics, “MasteringPhysics.” |Online|. Available:
http://www.masteringphysics.com/.

“Turing’s Craft.” |Online|. Available: http://www.turingscraft.com/.

P. Brusilovsky, “A Framework for Intelligent Knowledge Sequencing and
Task Sequencing,” Intelligent Tutoring Systems, vol. 608, pp. 499-506, 1992.

F. Lord, Applications of Item Response Theory to Practical Testing
Problems. Mahwah, NJ: Erlbaum, 1980.

Blackboard, “Blackboard.” [Online|. Available:
http://www.blackboard.com/.

Sakai Foundation, “Sakai CLE.” |Online|. Available:
http://www.sakaiproject.org/.

“Moodle.” |Online|. Available: http://www.moodle.org/.
“Piazza.” [Online|. Available: https://www.piazza.com/.

“Build Your Own Blocks (BYOB).” [Online|. Available:
http://byob.berkeley.edu/.

K. Heimerl, B. Gawalt, and K. Chen, “Communitysourcing: Engaging Local
Crowds to Perform Expert Work Via Physical Kiosks,” Proceedings of
SIGCHI, 2012.

“jQuery: Write Less, Do More.” [Online|. Available:
http://www.jquery.com/.

“Backbone.js.” [Online|. Available:
http://documentcloud.github.com/backbone/.

C.-M. Chen, H.-M. Lee, and Y.-H. Chen, “Personalized E-Learning System
Using Item Response Theory,” Computers € Education, vol. 44, pp. 237-
255, 2005.

J. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of Predictive
Algorithms for Collaborative Filtering.” Microsoft Corporation, Redmond,
WA, 1998.

L. Adamic and B. Huberman, “Zipf’s Law and the Internet,” Glottometrics,
vol. 3, pp. 143-150, 2002.

J. Nielsen, “Participation Inequality: Encouraging More Users to
Contribute.” 2006.

ol

[43]

|44]

|45]

|46]
|47]

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design Lessons from the Fastest Q&A Site in the West,” SIGCHI, 2011.

A. Kittur, E. Chi, B. Pendleton, B. Suh, and T. Mytkowicz, “Power of the
Few vs. Wisdom of the Crowd: Wikipedia and the Rise of the Bourgeoisie,’
World Wide Web, 2007.

Y

F. Fu, L. Liu, and L. Wang, “Empirical Analysis of Online Social Networks
in the Age of Web 2.0,” Statistical Mechanics and its Applications, 2008.

A. Elo, The Rating of Chess Players, Past and Present. Ishi Press, 1978.

“Code Academy.” [Online|. Available: http://www.codecademy.com/ .

52

APPENDIX A: STUDENT SURVEY RESULTS

The following table contains the numeric results of each poll, as well as the
precise wording for each of the elements on the poll.

Proposed content addition

Fall 2011 results

Spring 2012

(n=173) results (n=168)
“Test yourself” mini-quizzes 5 (3%) 17 (10%)
Mini-programming challenges 64 (37%) 73 (43%)
Tree-structure interface for lectures 7 (4%) 17 (10%)
1080p high definition archived lectures 5 (3%) 10 (6%)
“Instructor takes the class” videos of us 92 (53%) 51 (30%)

doing labs, HW, exams

53

APPENDIX B: TERMS LIST

Adding terms to REGIS is relatively straightforward but requires some
programming. The following terms have been implemented in order to generate
the required fields for our question corpus. Each term is written in bold and
followed by any parameters that the term accepts. Optional parameters will
appear in square brackets.

Several terms perform selections on items or sets of items stored in server-side
files. Individual items in a file are partitioned by newline characters. Sets are
partitioned by placing an empty line between the previous set and the successive
set.

caesar phrase shift amount
Performs a Caesar shift on phrase by shifting each character by the
shift amount spaces after it in the alphabet.

Example: casesar house 3 => krxvh

chooseset filename
Reads a file accessible by the REGIS server and extracts a set randomly
from the list of all available sets.

choosestr filename
Reads a file accessible by the REGIS server and extracts a single item
from the list.

even min max
Produces an even number between MIN and MAX.

formatdate month day year
Generates the text version of the numerical date provided as input.

Example: formatdate 1 22 1987 => “January 22, 1987”

link data
Stores DATA in a user-specific file and generates a URL for accessing the
file. This URL can appear in the question body and will open a text file
in the user’s browser when activated.

mixset filename

54

Reads a file accessible by the REGIS server and extracts a set randomly
from the list of all available sets. It then randomly scrambles that set
before returning it.

This term is like chooseset but randomly shuffles all of the items in the
chosen set.

numstring length
Generates a string of random numbers LENGTH digits long.

num min max
Generates a random number between MIN and MAX.

95

APPENDIX C: SOFTWARE AVAILABILITY

REGIS is freely available online under a GPL 2.0 license. The latest source code
is available from https://github.com/luke-segars/regis. Project updates and
patches will also be available from this URL.

56

