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Abstract

Making Computer Vision Computationally Efficient

by

Narayanan Sundaram

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kurt Keutzer, Chair

Computational requirements for computer vision algorithms have been increasing dra-
matically at a rate of several orders of magnitude per decade. In fact, the growth in the
size of datasets and computational demands for computer vision algorithms are outpacing
Moore’s law scaling. Meanwhile, parallelism has become the major driver of improvements
in hardware performance. Even in such a scenario, there has been a lack of interest in
parallelizing computer vision applications from vision domain experts whose main concern
has been productivity. We believe that ignoring parallelism is no longer an option. Numeri-
cal optimization and parallelization are essential for current and future generation of vision
applications to run on efficiently on parallel hardware.

In this thesis, we describe the computational characteristics of computer vision work-
loads using patterns. We show examples of how careful numerical optimization has led to
increased speedups on many computer vision and machine learning algorithms including
support vector machines, optical flow, point tracking, image contour detection and video
segmentation. Together, these application kernels appear in about 50% of computer vision
applications, making them excellent targets for focusing our attention. We focus our ef-
forts on GPUs, as they are the most parallel commodity hardware available today. GPUs
also have high memory bandwidth which is useful as most computer vision algorithms are
bandwidth bound. In conjunction with the advantages of GPUs for parallel processing,
our optimizations (both numeric and low-level) have made the above mentioned algorithms
practical to run on large data sets. We will also describe how these optimizations have
enabled new, more accurate algorithms that previously would have been considered imprac-
tical. In addition to implementing computer vision algorithms on parallel platforms (GPUs
and multicore CPUs), we propose tools to optimize the movement of data between the CPU
and GPU.

We have achieved speedups of 4 − 76× for support vector machine training, 4 − 372×
for SVM classification, 37× for large displacement optical flow and 130× for image contour
detection compared to serial implementations. A significant portion of the speedups in each
case was obtained from algorithmic changes and numerical optimization. Better algorithms
have improved performance not only on manycore platforms like GPUs, but also on multicore
CPUs. In addition to achieving speedups on existing applications, our tool for helping
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manage data movement between CPU and GPU has reduced runtime by a factor of 1.7−7.8×
and the amount of data transferred by over 100×. Taken together, these tools and techniques
serve as important guidelines for analyzing and parallelizing computer vision algorithms.
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Chapter 1

Introduction

Improvements to computing power of electronic devices have sustained our current tech-
nological progress and contributed to a marked improvement in the quality of our lives. The
massive increase in the computational power of processors has come through our sustained
ability to reduce the size of transistors and to pack more of them in a single die. The em-
pirical observation that the number of transistors in a single chip doubles every 18 months
is usually referred to as “Moore’s law”.

Computer industry has relied on Moore’s law to improve performance while keeping the
chip area constant by reducing the size of the transistors. Smaller transistors have smaller
capacitances, which can charge/discharge faster. The total dynamic power dissipation of the
chip varies as CV 2f where C is the total capacitance, V is the voltage and f is the frequency
of switching. f can be increased without increasing the power density (power dissipated
per unit area) even with increasing number of transistors by reducing the voltage V . All
this changed when the voltage could no longer scale down with decreasing transistor sizes
because of the increase in leakage power. This meant that improving performance within a
constant power density using only voltage and frequency scaling became impossible. This
is referred to as the “power wall” [10]. The power wall has forced us into the world of single
socket parallel computing. With clock frequency no longer increasing, the other practical
way to improve performance using increasing number of transistors was through parallelism.
However, this has meant that software developers must now write code to explicitly take
advantage of this parallelism. As the Berkeley View paper [10] said,

“This shift toward increasing parallelism is not a triumphant stride forward based on
breakthroughs in novel software and architectures for parallelism; instead, this plunge into
parallelism is actually a retreat from even greater challenges that thwart efficient silicon
implementation of traditional uniprocessor architectures”.

We entered the multi-core era in the mid-2000’s when single threaded processor perfor-
mance tapered off and dual core processors become the norm. Figure 1.1(a) shows that
the clock frequency scaling stopped around 2005. This data is obtained from Danowitz et
al [62] and includes processors from Intel, AMD, IBM, DEC, HP, Motorola, SGI, Sun etc.
The size of transistors, however has kept shrinking (Figure 1.1(b)). The number of cores
kept increasing every generation keeping up with Moore’s law. Graphics Processing Units
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Figure 1.1: Clock frequencies of processors and feature sizes of transistors from different
manufacturers from 1970 to 2010. Data obtained from Danowitz et al [62].
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(GPUs) became more general purpose programmable. We also saw a massive increase in the
amount of data and compute intensive applications from domains like computer vision and
machine learning. However, software developers are still reluctant to rewrite code to take
advantage of hardware parallelism and hence miss out on any performance improvements
from hardware scaling.

Computer vision has grown into a large and important area in research and industry.
Ever since multimedia (audio, images and video) started becoming digital, the amount of
such data generated has increased exponentially. Several factors have enabled this develop-
ment e.g. cheap storage, proliferation of media capture devices like digital cameras, smart
phones, CCTVs etc., ease of sharing the data driven by improved wired & wireless band-
width, and improvement in processing power in computing devices. It has been estimated
that the global machine vision and vision guided robotics market will be worth $15.3 billion
by 2015 [136]. Computer vision algorithms have been increasing in complexity and require
tremendous amounts of computing resources (around 100,000 floating point operations per
pixel for image segmentation or optical flow). This will be explained in more detail in
Chapter 2.

Exploiting the concurrency in applications has become critical for getting better perfor-
mance with time because computational requirements for computer vision are increasing and
processors are becoming increasingly parallel. Computer vision domain experts are focused
mostly on productivity i.e. they would like to get their algorithms running with the shortest
amount of programmer effort while simultaneously taking advantage of the improvements
in hardware to scale to future processors. This vision worked well during the era of serial
processors and voltage-frequency scaling. That goal, however, has been put in jeopardy due
to the parallelism in today’s processors. Without explicitly writing code to take advantage
of parallelism, it is neither possible to get good performance today nor is it possible to scale
to tomorrow’s even more parallel processors. Auto parallelizing compilers have not been
as successful in finding and exploiting concurrency as had been hoped earlier, and hence
domain experts have been forced to manually parallelize their applications. This has lead
to an “implementation gap”, a gap between application developer’s and an expert parallel
programmer’s view of computing resources. This is illustrated in Figure 1.2.

As mentioned earlier, application developers focus on application level trade-offs without
the knowledge of how this could affect parallelization opportunities in hardware. Expert
parallel programmers, on the other hand, have an good understanding of the trade-offs at the
hardware level, but have limited knowledge of the application domain. Work that bridges
this gap either through the use of tools that can automate parallelization of applications from
high-level specifications or through the demonstration of the trade-offs needed to achieve
good performance and scalability on parallel hardware are useful to advance the state-of-
the-art in the application domain by focusing the attention of application developers on the
key bottlenecks. Given that GPUs are the most parallel commodity processors one can buy
today, porting applications to GPUs has been of much interest lately. Interestingly, GPUs
are becoming more and more general purpose, while CPUs are becoming more and more
parallel, thus leading to convergence in how parallel programmers view these platforms.
However with either platform, application parallelization needs to be explicit in order to
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Figure 1.2: The implementation gap

achieve peak performance. While parallelizing existing serial algorithms is itself an enormous
task, it is more complicated by the need to explore different algorithms in order to find the
one that is most efficient on today’s hardware and is scalable in the future. In addition to the
need to parallelize applications, it is also important to note that there is an extra challenge.
GPUs have memory bandwidth that is many times more than DRAM-CPU bandwidth and
is helpful for bandwidth bound applications. However, GPUs have limited memory capacity
which severely restricts productivity when the amount of data being handled is larger than
the GPU memory capacity.

Parallelizing computer vision algorithms has been considered relatively easy due to the
abundance of independent computations in many algorithms. In particular, computations
that operate on every pixel independent of the others provide plenty of concurrency. This
purported ease of exploiting concurrency, along with the absence of parallel hardware at
their disposal earlier led to computer vision researchers not making special efforts to paral-
lelize their applications. Before the advent of single socket parallel machines, most of the
parallel hardware was distributed. The downside of distributed hardware is the high cost of
communication between the nodes. Given that not all computer vision algorithms are pixel-
parallel and many of them solve global optimization problems using iterative techniques,
high communication costs lead to poor performance and consequently a lack of interest in
parallelization. However, the arrival of multicore and manycore machines has occurred at
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a time when there has also been a huge increase in the complexity of computer vision algo-
rithms. The presence of single socket parallelism works in our favor here; communication
costs that used to be prohibitive become quite manageable when it is within a single die, and
iterative computations can be parallelized while still being scalable. Even though computer
vision deals with a large variety of problems conceptually, there are only a finite number
of computations that are recurrent in these problems. These computational patterns are
neatly categorized in a pattern language OPL [104].

It is not sufficient to just naively parallelize existing computer vision algorithms without
any changes in order to achieve performance and scalability. Some of the optimizations
performed for runtime improvements in computer vision lead to poor parallelizability. For
example, integral image [115] is a useful technique for reusing computations and improving
runtimes. Consider integral images in 1-dimension i.e. the computation involved in scanning
an array I(x) =

∑x
i=0 f(i). This computation, when performed serially would lead to an

implementation that cannot be parallelized directly (Figure 1.3). Every iteration of the
loop is dependent on the previous iteration. However, this computation can be parallelized
efficiently if we use a prefix scan [22] instead of serial summation. In fact, even though the
parallel version performs 3 times as many additions as the serial version, it runs faster on
parallel machines and is scalable. Both versions of the algorithm are shown in Figure 1.3.

Algorithm: Serial Scan
Input: f (Input Array)
Output: I (Output Array)
1 I[0]← f [0]
2 for i← 1, 2, . . . N − 1
3 I[i]← I[i− 1] + f [i]
4 end for

Algorithm: Parallel Scan
Input: f (Input Array)
Output: I (Output Array)
1 a← f
2 for d← 0, . . . log2(N)− 1
3 parallel for i← 0, 1, . . . N − 1 step 2d+1

4 a[i + 2d+1 − 1]← a[i + 2d − 1] + a[i + 2d+1 − 1]
5 end for
6 end for
7 a[N − 1]← 0
8 for d← log2(N)− 1, . . . 0
9 parallel for i← 0, 1, . . . N − 1 step 2d+1

10 t← a[i + 2d − 1]
11 a[i + 2d − 1]← a[i + 2d+1 − 1]
12 a[i + 2d+1 − 1]← t + a[i + 2d+1 − 1]
13 end for
14 end for
15 parallel for i← 0, 1, . . . N − 1
16 I[i]← f [i] + a[i]
17 end for

Figure 1.3: Serial vs parallel versions of prefix scan.
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Such inefficiencies are not just restricted to prefix scans. For many computer vision appli-
cations, the majority of runtime is spent on numerical algorithms. For example, eigensolvers
are used for image contour detection algorithms [119]. The space of different algorithms that
can be used in these cases is usually large and the right choice depends on the specifics of
the problem at hand. Even if there are sufficient parallelization opportunities in any of
these algorithms, choosing the right one can give us an order of magnitude improvement
compared to naive parallelization [47]. Sometimes, a reformulation of the problem can lead
to the use of algorithms that can run much closer to the machine’s peak throughput [48].
Picking the right algorithm is at least as important as performing all the low level optimiza-
tions in order to get good runtime performance. In such a scenario, parallelizing computer
vision algorithms is not just restricted to porting them to a parallel architecture, but also
developing innovative parallel algorithms or new applications of numerical algorithms for
the specific problems that we deal with.

The main contribution of the thesis is exploring how to make computer vision algorithms
run efficiently on modern parallel machines. In particular, we focusing on parallelizing
computer vision algorithms to run efficiently on GPUs. We look at the challenges in terms of
choosing the right algorithm, any reformulations to make the implementation more efficient,
low level optimizations that are necessary to get good performance and automating memory
management in CPU-GPU systems.

1.1 Contributions

This thesis makes the following main contributions -

• We propose numerical optimizations for improving the performance of algorithms in
computer vision & machine learning. These optimizations are tailored for single socket
parallel hardware, in particular GPUs. We perform algorithmic explorations and re-
formulations to improve performance of numerical algorithms for many applications
including support vector machine training & classification, optical flow & tracking and
image & video segmentation.

• We propose memory optimizations that need to be done for running large applications
on CPU-GPU systems. We formulate the problem of managing data and controlling
the transfers between CPU and GPU formally as a pseudo boolean optimization prob-
lem and propose heuristics that are shown to empirically perform well.

• We analyze computer vision workloads for computational patterns in order to quanti-
tatively analyze the importance of various computational patterns. We pick a subset
of research papers from recent literature in order to get a representative sample of
the kinds of algorithms currently in use in the computer vision community. This is
explained in Chapter 3.

In addition, we also produce efficient parallel implementations of multiple computer
vision and machine learning applications which are being used by the research community
in multiple application areas. The source code of these implementations is publicly available.



7

In the following section, we explain in more detail about the particular applications that
we looked at and how algorithmic exploration helps in those cases. We also discuss how
memory management in CPU-GPU systems can improve performance.

1.1.1 Numerical optimizations

Numerical algorithms are at the heart of computer vision, since most problems are
formulated as continuous optimization problems that are then solved either directly or ap-
proximated using relaxations or heuristics. In such a scenario, attention to the numerical
techniques employed becomes significantly important for improving performance.

We consider the following computer vision and machine learning algorithms in this dis-
sertation - support vector machines, optical flow & tracking, image & video segmentation.
Each of them have particular numerical properties that can be exploited for better perfor-
mance. We explain the details in the respective chapters, but we give an overview here.

Support vector machine is a machine learning algorithm used for classification and re-
gression. In the classic case, it is formulated as a two-class classification problem. Looking
at the training portion of the algorithm, most of the time is spent on a matrix-vector-
multiplication-like BLAS2 computation. GPUs have significantly higher memory bandwidth
compared to CPUs, and hence mapping this computation to a GPU provides a significant
speedup. In addition, we also map data structures and computations to take advantage of
the particular features of the GPU architecture. SVM classification can also be written as a
BLAS2 computation [48]. However, restructuring the computation gives us a way to imple-
ment it as a matrix-matrix-multiplication-like BLAS3 computation [48]. This reformulation
leads to improved performance on both multi-core CPU and GPU platforms compared to
the widely used LibSVM library [71]. Chapter 5 gives more details.

Optical flow is a video processing algorithm that analyzes consecutive frames of a video
sequence and produces a displacement map for every pixel in the frame. This computation
is important for performing motion analysis on video sequences and hence both accuracy
and speed are essential. Most accurate optical flow techniques such as the one by Brox et
al [36] require a significant amount of processing (about 100,000 floating point operations
per pixel as mentioned in Chapter 2). Parallelizing this computation has its challenges.
Algorithmic exploration in this case requires a careful evaluation of a number of linear
solvers tailored to the problem at hand. In addition, we prove that the linear system
being solved is positive-semidefinite even with non-convex penalty functions. Our use of the
preconditioned conjugate gradient solver and efficient parallelization produces a speedup of
over 37× compared to the original serial implementation of large displacement optical flow
[159]. Of this 37× speedup, about 10× is attributable to the difference in memory bandwidth
& hardware and the rest to algorithmic changes. Using this optical flow information to create
point tracks leads to vastly improved accuracy and density compared to other existing point
trackers. Details on the parallelization of optical flow and tracking are discussed in Chapter
6.

Segmentation is basic to image and video content analysis. Separating objects from
surroundings and other objects is essential to understanding the scene and reconstructing
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the model of the world where the picture/video was taken. We look at the parallelization
and optimization of gPb [119], the state-of-the-art algorithm for image contour detection.
In particular, we look at the complexities in mapping the eigensolver and local boundary
detection computations on GPUs with limited memory capacity. Using the image contour
detection as a driver, we propose a video segmentation algorithm that utilizes the same
underlying mathematical framework. We show that this algorithm produces results that are
comparable to or better than other video segmentation algorithms. Numerical optimization
leads us to solve computations that would have been considered infeasible earlier and brings
new algorithmic capabilities. Details on parallelizing segmentation problems are provided
in Chapter 7.

1.1.2 Memory management

In all the applications that we parallelize, there always exists the problem of mapping a
problem that does not fit in GPU memory to run on GPU hardware efficiently. Under such
a scenario, the amount of data transfers between the CPU and GPU memory can become a
bottleneck as this communication happens over PCI-Express which has limited bandwidth
(8 GB/s for PCI-e v2.0). We propose to solve this problem for a subset of computations. The
computations we consider are ones that can be expressed as operator graphs with statically
analyzable dependencies. The ability to run applications on GPUs to take advantage of their
high memory bandwidth is constrained by the limited memory capacity of modern GPUs.
In particular, most desktop GPUs available today have memory capacity of a few hundred
MB to 5GB. Frameworks that can help in simplifying and improving the productivity of
domain experts who have to deal with artifacts like these are important. Chapter 8 shows
how this problem is formulated and solved efficiently.

1.2 Outline of thesis

The thesis is organized as follows:

Chapter 2 describes the background of increasing computational demands from applica-
tions in computer vision and machine learning. It shows how the hardware is scaling
from the increase in the number of transistors from Moore’s law and how the gap
between the required and available computational power is widening.

Chapter 3 describes computational patterns in computer vision applications. By collecting
applications from research papers in computer vision, we have been able to analyze
the amount and type of computations needed.

Chapter 4 describes prior work in parallelizing computer vision applications. We look at
previous techniques for optimizing problems like image segmentation and optical flow,
and see discuss how our methods differ from them. We describe various methods for
helping computer vision domain experts take advantage of parallelism and how they
are deficient in terms of efficiency and portability.
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Chapter 5 discusses the parallelization of support vector machine training and classifica-
tion. We discuss the problem and show that parallelizing it on GPUs can give speedups
of an order of magnitude or more compared to the standard LibSVM library. We show
how transformations to convert BLAS2 to BLAS3 routines in SVM classification can
produce massive improvements in performance.

Chapter 6 describes the parallelization of optical flow and point tracking. We discuss the
algorithmic exploration of different linear solvers for solving large displacement optical
flow on GPUs and compare against a previously published serial implementation. We
describe how this efficient optical flow implementation can form the core of a point
tracking system that is denser and more accurate than other previously known point
trackers.

Chapter 7 discusses the parallelization of image and video segmentation using gPb. We
describe how local histograms can be calculated efficiently with no loss of accuracy,
how an eigensolver can be made to fit in limited GPU memory, how efficient image seg-
mentation can lead to scalable video segmentation on a cluster of GPUs and how such
a video segmentation technique is competitive with other state-of-the-art methods.

Chapter 8 describes how we can efficiently solve the problem of memory management in
CPU-GPU systems. We use a combination of pseudo-boolean (or equivalently MILP)
optimization problems and heuristics to minimize the amount of data transfers between
the CPU and GPU. We show that this technique can produce speedups of over 7×
compared to unoptimized parallel GPU code.

Chapter 9 concludes the dissertation and discusses possible future work and extensions.
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Chapter 2

Background and Motivation

Computer vision algorithms have been increasing their computational requirements over
time (like most other areas in computer science). We see that as an increase in both data
and computation. In general, the increase in data sizes has been due to the following reasons
-

1. Generalization performance of computer vision algorithms improves with increase in
training data. Therefore, in order to get good performance on tasks like people recog-
nition [27] or object recognition [70], large datasets for training are a necessity.

2. Data acquisition is getting cheaper. The explosion of image and video capturing
devices like digital cameras, mobile phones etc. has led to a tremendous increase in
the amount of data generated.

3. Generated data is getting larger. The resolution of images that are being taken with
digital cameras and phones has reached the order of 10 megapixels in 2011 (up from
0.15 megapixels in 1990). It is common for mobile phones to record at 1920 × 1080
reesolution at 30 fps.

4. Generated data is more accessible. The growth of online social networking in re-
cent years has accelerated the generation and distribution of user-generated mul-
timedia content. Growth of popular image and video sharing websites like flickr
(http://flickr.com), youtube (http://youtube.com) and others has led to sharing (and
public availability) of the generated data.

5. Data annotation is getting cheaper. Ability to get cheap human annotated data
through tools like Amazon Mechanical Turk (https://www.mturk.com) has enabled
the creation of large annotated data sets (e.g. ImageNet [64]).

6. Development of large scale machine learning techniques (like linear time training for
SVMs [101]) has enabled us to learn from large amounts of training data.

We find that this increase in data is of the order of 1000× per decade.
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Computational requirements have always increased as researchers tend to more and more
sophisticated algorithms over time. In general, algorithmic complexity for solving particular
problems (like image contour detection or optical flow) has been increasing at a rate of about
10× per decade. Combined with increasing data set sizes and image data resolution, this
shows that the hardware requirements for computer vision algorithms are increasing at the
rate of 10, 000× per decade.

On the other hand, hardware performance has also been going up. Moore’s law dictates
that the number of transistors on chip roughly doubles every 18 months. Through voltage
and frequency scaling, we were able to get improved performance with more transistors. Un-
fortunately, voltage scaling has slowed down significantly by early 2000’s and power density
kept increasing until we could no longer cool the chip. With microprocessor architectures
hitting the power wall, parallelism seemed to be the way out for keeping in line with Moore’s
law. However increased transistor count means increased performance only if we can take
advantage of parallelism. This has meant that computer vision researchers and application
developers must worry about their algorithms being amenable to parallelism. When Moore’s
law translates directly to performance, we get a 100× benefit every decade from hardware
improvements. This has led to the use of clusters and datacenters for doing large scale
problems in computer vision. We claim that even with parallelism, hardware improvements
are barely keeping up with the pace of algorithmic development. Therefore, parallelism and
performance optimizations are not optional for scaling computer vision algorithms into the
future, but are necessities. Without efficient parallelization, there is no hope of hardware
improvements catching up to application requirements.

In the rest of the chapter, we will look at all of the factors driving computational re-
quirements for computer vision in detail, and describe their scaling with specific examples.

2.1 Trends in Computer vision

This section discusses the scaling of computational requirements in computer vision
algorithms. We look at the rise of computational requirements as the result of scaling in
three distinct, but complementary axes - size of unit data (image or video), data set sizes
and algorithmic complexity.

2.1.1 Size of unit data

The size of a single image is dependent on its resolution and content. Since storage has
become extremely cheap and image sensors have become large, it is possible to take images
of extremely high resolutions even on consumer grade digital cameras. Figure 2.1 shows the
evolution of image resolution in consumer grade cameras. With the increasing presence of
cameras in mobile phones, similar resolution improvements have been observed there.

From Figure 2.1, it is clear that the amount of data generated per image has been
increasing at the rate of 1.29× per year or approximately 12× every decade.
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2.1.2 Dataset sizes

Computer Vision uses larger and larger data sets and it is already at the point where
it is impossible to run credible experiments on real data without access to a small/medium
cluster. For example, the sizes of face data sets over the years is shown in Figure 2.2. The
figure clearly shows the accelerating trend.
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Figure 2.2: Increase in size of popular face recognition data sets from 1997 to 2006.

Let us assume that for this problem, training time scales linearly i.e. as O(n). Since
the dataset has been growing at more than 100× a decade, training times also scale at
least as much. If training time grows super linearly (e.g. as O(nlogn)), then the compute
requirement grows an order of magnitude faster than the dataset size. Other problems like
segmentation, object recognition, 3D reconstruction etc. also have similar growth in dataset
sizes.

2.1.3 Algorithmic complexity

It is not just that image resolution and dataset sizes are growing; the complexity of the
algorithms being performed on this data is also growing significantly. We define complex-
ity in this context as the amount of floating point operations performed per pixel (thus
normalizing for resolution and dataset sizes) by the algorithm. We look at two important
categories of computer vision algorithms - image contour detection and optical flow. Figure
2.3 and 2.4 show the growth of complexity of the algorithms over the years.
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Figure 2.3: Increase in algorithmic complexity of image contour detection algorithms. Num-
bers shown are estimates based on the amount of computation performed.
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Figure 2.4: Increase in the algorithmic complexity of optical flow algorithms. Numbers
shown are estimates based on the amount of computation performed.

From the figures, it can be seen that the complexity is increasing roughly at the rate of
about 10× per decade i.e. every 10 years, we do an order of magnitude more floating point
operations per pixel.

It is also to be noted that data scaling and computational scaling are multiplicative i.e.
data gets larger and larger and we do more processing per unit of data. This means for future
hardware to scale with the application requirements, the rate of growth of raw hardware
performance must keep pace or be higher than the growth of application requirements. From
the previous sections, this growth in computational requirement is of the order of 10, 000×
per decade.

2.2 Hardware parallelism

Hardware scaling has long been dictated by Moore’s law, which says that transistor
density doubles every 18 months. This growth has been possible due to improvements in
semiconductor devices, materials, software for designing and modeling chips, manufacturing
improvements etc. This growth has led to a tremendous increase in the number of transistors
in microprocessors. For example, the Intel 8086 had 29,000 transistors in 1978, and the Intel
Sandybridge Core i7 Extreme has 2,270,000,000 transistors in 2011.

Until about 2004, the increased transistor count had led to improved performance
through a combination of voltage and frequency scaling at the device level and Out-of-
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Order execution/VLIW/SIMD superscalar designs at the microprocessor architecture level.
Around 2004, newer chip designs had reached their limits on voltage-frequency scaling so
that chip frequencies could no longer increase without overheating the chip. Parallelism
turned to be the way out of this morass. Replicating more processors on a chip turned out
to be a cheap and efficient way to leverage increasing transistor counts without increasing
the power density.

Also important to note is the fact that parallelism is happening at all hardware form
factors. We have mobile clients (phones, tablets, laptops), non-mobile clients (desktops,
workstations) and servers (data centers, cloud computing), all of which are getting more
parallel.

GPUs started as special purpose dedicated functional units devoted to 3D graphics pro-
cessing in the 1990’s. However, because of the architectural features they provided (massive
parallelism, high bandwidth to DRAM etc.), they began to be used for general purpose
computing. GPUs have been getting more and more parallel and hence take advantage of
Moore’s law quite easily through increasing the number of cores/FPUs. Since their per-
formance comes from parallelism, they perform well on throughput-oriented workloads (as
opposed to latency-oriented workloads). Figure 2.5 shows how much the performance of
GPU and CPU hardware has increased in the last 7 years.

The figure shows that peak throughput capabilities of GPUs are increasing at the rate
of 1.8× every year or more than 100× every decade. Bandwidth, however, is increasing
linearly about 24 GB/s every year.

2.3 Summary

The hardware scaling (even with parallelism) is improving about 100× a decade, whereas
computer vision algorithms scale much faster (about 10, 000× a decade). Without paral-
lelism, hardware improvements have more or less stalled. This means that computer vision
researchers and application developers can no longer assume that their software will run
faster just by moving to a newer generation processor unless it takes advantage of par-
allelism. Computer vision researchers need to focus not just on parallelization, but also
numerical optimizations in their algorithms.

The move to parallelize and port a lot of computer vision applications to GPUs benefitted
from the high memory bandwidth in GPU hardware (compared to CPUs). Even with
parallelism exploited, there is almost a 100× gap between the application requirements
and hardware scaling. We believe that a large part of this gap will be closed through
better numerical optimizations. If done, we can get closer to exploiting every last flop of
performance from the hardware in order to scale efficiently.
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Figure 2.5: Hardware scaling - (a) Improvement in peak theoretical floating point operations
per second for CPUs and GPUs from 2003 to 2010. (b) Improvement in memory bandwidth
for CPUs and GPUs from 2003 to 2010.
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Chapter 3

Understanding Computer Vision
Workloads

This chapter discusses the major computational trends in computer vision in terms of
algorithms, data structures, approaches to parallelization etc. There has been a lot of
research about making processors more amenable to computer vision applications which is
discussed in Chapter 4. However, there are not enough rigorous measurements and studies on
what kernels constitute computer vision applications. Questions such as what are the main
data structures and algorithms used, how they are used and what are the computational
requirements etc. have not been satisfactorily answered. We have tried to quantify as
much as possible the kinds of computations that characterize computer vision and the
computational patterns that they encompass.

Computer vision algorithms are increasingly becoming more and more important work-
loads. With the advent of smartphones and tablets with powerful cameras, it has become
easier to capture high resolution images & videos of the world around us. With increas-
ing data set sizes and computational requirements, future processors have to be good at
processing computer vision applications. However, workload analyses of computer vision
applications have remained inadequate.

Chen et al [51] and [52] present some workload analyses on computer vision applications.
However, they have been constrained in their choice of applications, which are restricted to
body tracking and video surveillance respectively. While they argue that parallelization on
multicore CPUs is important, it is not clear how many applications are parallelizable or have
already been parallelized, what patterns of parallelism are exploited, and what workloads are
common in computer vision applications in general. The need to recognize which workloads
are essential for computer vision is important if future hardware is required to meet the
computational demands of computer vision algorithms. We need to move from the analysis
of a single application to looking at a collection of different applications to improve our
understanding of what constitutes computer vision computations.
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3.1 Patterns and OPL

Patterns are a well understood way to analyze and categorize computational kernels.
The Berkeley View paper [10] showed how categorizing computations is key to making
them more efficient and to help design better hardware. Kurt Keutzer and Tim Mattson
[104] describe a pattern language at multiple levels of abstraction from the application
software structure and computations through algorithmic strategy, implementation strategy
and hardware. We intend to use this pattern language (Our Pattern Language or OPL) to
categorize and analyze computer vision applications. We believe this can help us not only
identify key computations used in computer vision algorithms, but also get quantitative
information on how prevalent they are in the domain. Figure 3.1 shows the structure of the
pattern language.

The primary purposes of OPL are software design and pedagogy. Having a consistent
vocabulary for describing computations and strategies for parallelization is crucial to under-
stand and analyze parallel implementations. OPL is a layered, hierarchical pattern language.
Each level in the hierarchy addresses a portion of the design problem. Structural patterns
describe the overall organization of the application and the way different elements of the
application interact with each other. Computational patterns describe the classes of com-
putations that make up the applications. Concurrent algorithmic strategy patterns define
high-level strategies used to exploit concurrency in a computation for execution on a parallel
computer. Implementation strategy patterns are structures that are realized in source code
to support the program and data structure organization. Parallel execution patterns are
approaches used to support execution of a parallel algorithm in hardware.

The structural and computational patterns are not restricted to parallel applications,
hence are useful in the analysis of workloads in general. Computational patterns are the
main layer at which we will be analyzing our applications. Computer vision problems are
usually written as constrained optimization problems (continuous or discrete). Out of all
the computational patterns, we expect computer vision to consist of dense and sparse linear
algebra, graphical models and graph algorithms, Monte Carlo and spectral methods. Of
these, we focus on linear algebra and graph algorithms as they seem to be the most relevant
and widely used.

Readers are advised to refer to [104] for more details about the pattern language.

3.2 Workload collection & Analysis

For our purposes of analyzing computer vision applications, we need to pick a suitable
source of computer vision applications. For that purpose, we pick research papers from
Computer Vision and Pattern Recognition (CVPR), International Conference on Computer
Vision (ICCV) and European Conference on Computer Vision (ECCV) since 2007. We look
at a subset of papers available on-line at cvpapers.com. These are not biased along any
particular dimension, and hence we think they provide a fair comparison. The decision to
use research papers was made for the following reasons:
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Conference Number of papers % of papers
CVPR 2007 4 4.2%
CVPR 2008 4 3.2%
CVPR 2009 4 2.5%
ICCV 2009 14 6.2%
CVPR 2010 13 7.9%
ECCV 2010 22 10.0%
CVPR 2011 21 6.6%
ICCV 2011 20 9.0%

Table 3.1: Papers referring to parallelism.

1. The algorithms are public unlike proprietary software products made by different
companies, so they can be analyzed.

2. They indicate the cutting edge of research in omputer vision, so are likely to indicate
the algorithms that will become commonplace in a few years.

3. It is possible to ascertain any emergent trends in algorithms and computations.

3.2.1 Parallelism

First, we look at trends in parallelizing applications in computer vision literature. The
simplest way to look at the prevalence of any concept in a body of literature is to see how
many times the said concept is referred to in the literature. Hence, we perform our tests on
how many references there are to the word “paralleli” (referring to parallelize, parallelism,
parallelization etc.) in papers from CVPR 2007 till ICCV 2011. Results are summarized in
Table 3.2.1.

In addition to this simple check, we did an analysis on the papers that appeared in ICCV
2011 that included the word “parallel” in order to understand how the algorithms were
parallelized and the patterns that were present in the implementation. Out of the 20 papers
that talked about parallelized implementations, 9 had used parallel implementations for
their experiments while the others only describe their algorithm’s potential for parallelization
(without a parallel implementation). Interestingly, all the parallelized implementations were
done using GPUs except one which was parallelized on clusters. GPUs have become an
important computational accelerator for computer vision applications. While the authors
of all the 20 papers seemed to understand the importance of parallelism, less than half of
them have taken the effort to actually parallelize their code. This proportion must increase
if all computer vision computations are to be parallelized so that they can take advantage
of Moore’s law.

Among the 8 papers that used parallel implementations on GPUs, the predominant
algorithmic pattern of choice is data parallelism. Some of the problems were embarrassingly
parallel (training independent problems, pixel-parallel computations etc.), but some were
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Category Number of papers
Quadratic Programming/Support Vector Machine 10

BLAS2 (Matrix-vector) operations 9
Linear solver 8

Other continuous optimization 7
Conditional Random Fields 4

BLAS3 (Matrix-matrix) operations 3
Eigenvalue Decomposition 2

Singular Value Decomposition 2
Fast Fourier Transform 2

Table 3.2: Papers referring to linear algebra (out of 50 randomly chosen papers in ICCV
2011).

more complicated (sparse linear algebra). All of the applications are bandwidth bound,
which also explains why the performance improvement from GPUs has been significant as
GPUs have much higher bandwidth to memory compared to CPUs.

Let us now look at all the applications (not just parallel implementations) to see what
computations are most common among them.

3.2.2 Linear Algebra

It is no surprise that numerical linear algebra is important for computer vision applica-
tions. Most problems in computer vision are modeled as continuous/discrete optimization
problems and require at least some linear algebra in their solutions. We look at a random
set of 50 papers from ICCV 2011 and categorize them according to the specific linear algebra
problems they solve. A breakdown of linear algebra categorization in the papers is provided
in Table 3.2.2.

Most of the linear algebra problems are sparse. Only a few singular value decomposition
(SVD), support vector machines (SVM), BLAS2 and BLAS3 problems involve dense linear
algebra. It is clear that SVMs and its variants are quite popular machine learning tools in
use in computer vision. We look at the computations more closely.

Linear solver

Linear solvers are commonly used in many different computer vision applications. In
particular, they are commonly used in solving non-linear optimization problems which are
solved iteratively. Each iteration usually involves a linear solve (e.g. Newton’s method).
They are also useful for implicitly solving differential equations after discretization. They
appear in object recognition, compression, pose recognition, 3D reconstruction and machine
learning problems [20, 187, 54].
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Eigensolvers

Eigensolvers are predominantly found in segmentation problems. The 2 papers that use
eigensolvers are related to (a) segmentation and (b) object recognition that is performed
after segmentation [120, 8].

SVD

Singular Value Decomposition is used in object recognition, computational geometry and
3D geometry problems [82].

Quadratic Programming/SVM

Support vector machines and its variants are very popular in solving many learning
problems in computer vision. Linear SVMs are particularly useful for learning from large
datasets. They are useful in object & image recognition, attribute learning and identification
of parts of objects [65, 8].

Conditional Random Fields

Conditional random fields are useful for structured prediction and are used in object
recognition, image segmentation and learning problems in computer vision [53, 142]. CRFs
are undirected probabilistic graphical models. [137] shows how CRFs can be used for object
recognition. Parameter learning in CRFs is usually solved through convex optimization ap-
proaches such as the Quasi-Newton L-BFGS [42] method. Inference and parameter learning
computations utilize BLAS operations for tractable distributions such as the ones belonging
to the exponential family.

BLAS2/BLAS3 Computations

BLAS2 computations are similar to dense matrix-vector multiplication and are used in
solving optimization problems with gradient descent-like approaches in object recognition,
3D reconstruction, computational photography etc. BLAS3 computations (dense matrix-
matrix multiplication) are also part of many algorithms. Distance calculations between sets
of vectors, iterative optimization problems etc. invoke BLAS3 routines [107, 171].

Fast Fourier Transform

FFTs are used in computational photography, compression and image matching appli-
cations [186].

3.2.3 Graph algorithms

Graphs are another important data structures in computer vision algorithms. They are
used to describe relationships between pixels, objects, images etc. Large graph data struc-
tures can be structured or unstructured. Some of the graph manipulations like partitioning
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Category Number of papers
K nearest neighbors 4

Shortest path 1
K shortest paths 1

Tree/graph traversal 1
Minimum spanning tree 1

Table 3.3: Papers referring to graphs/trees (out of 50 randomly chosen papers in ICCV
2011).

can be done using linear algebra techniques like eigensolvers. However, there are purely
graph-specific techniques like minimum spanning trees, max flow min cut, breadth first
search etc. that are specific to these data structures. We list the most common operations
on graphs as seen among ICCV 2011 papers [187, 29] in Table 3.2.3.

While we do not consider graph algorithms specifically in the rest of this thesis, this
data is presented here in order to provide a view of an important subsection of computer
vision algorithms and as a reference to future workload analysts.

3.3 Summary

Linear algebra is at the core of most computer vision applications. Parallel and GPU
implementations are becoming more and more important and there is a need to parallelize
all computer vision algorithms.

In the rest of the dissertation, we will look at quadratic programming, linear solvers,
eigensolvers which together occur in about 50% of computer vision algorithms. We will
look at these important kernels that cover a significant part of the computational spectrum.
Our approach to algorithmic exploration and productivity improvements will help computer
vision application writers by showing that choosing the right algorithm is just as important
as performing low level optimization for mapping applications to GPUs.

The next chapter will look at existing approaches to parallelizing computer vision ap-
plications and how they are insufficient for solving the productivity and efficiency problems
for computer vision domain experts.
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Chapter 4

Parallelizing Computer Vision

From Chapter 3, it is clear that many computer vision workloads involve large linear
algebra problems with matrix sizes proportional to the number of pixels in an image (matrix
sizes of several hundred thousand rows are common), and that parallelization is increasingly
becoming common. In this chapter, we will describe how researchers have tried to optimize
computer vision algorithms in order to improve their performance. We will examine specific
problem domains in computer vision and look at how computational bottlenecks have been
overcome by researchers.

There are two aspects to improving the performance of computer vision applications on
parallel machines. One is to rethink the numerical algorithms involved in the applications,
thereby improving performance on all architectures. This may be done through reformula-
tion of the problem, using different numerical techniques, and changing the problem model.
Numerical optimization is, in general, dependent on the particular algorithm that is being
optimized and hence is application-specific. We will discuss numerical optimizations in two
application domains - image contour detection and optical flow and show how our optimiza-
tions were superior to prior work. We will also quantify the performance improvements
obtained through such algorithmic exploration. Details of the algorithms and optimizations
will be presented in Chapters 5, 6 and 7.

The second way to improve the performance of computer vision algorithms is to tailor
the implementation to a particular hardware platform such as GPUs or multicore CPUs,
thereby improving running time on that platform. This approach is applicable to a variety
of different algorithms and applications. However, these optimizations are usually tied to a
particular hardware platform. We will discuss in this chapter different tools and techniques
that have been used to parallelize computer vision algorithms and how our optimizations for
memory management in CPU-GPU systems and efficient mapping of algorithms to hardware
are advantageous. Details of these techniques will be explained in Chapter 8.

We will show how both of these approaches have helped accelerate the performance of
computer vision applications like image contour detection and optical flow. We present
the numerical optimizations in image contour detection and optical flow followed by the
discussion on tools for parallelization.
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4.1 Numerical optimizations for image contour detec-

tion

Image contour detection involves finding the most important object boundaries (con-
tours) in an image. The difficulties in identifying accurate boundaries in images or videos
are due to the fact that there is no precise mathematical definition of “object”, objects are
not always distinct from the background, identification depends on scale e.g. small objects
are often perceived as texture or background rather than as separate entities. Chapter 2
showed the computational evolution of image contour detection algorithms. Starting with
simple edge detection techniques, there have been several algorithms for accurate image
segmentation. The aim of these techniques have been to try and match human performance
on this task. We describe normalized cuts [151] and its modifications, which are among the
state of the art today for image contour detection and segmentation.

4.1.1 Background

An image can be modeled as an undirected graph whose vertex set is the set of all
pixels. Edges exist between every pixel and its neighbors within a radius of size r. The
weight of an edge w(i, j) is a function of the similarity of pixels i and j. In this model,
image segmentation is equivalent to graph partitioning. A partition (or cut) of a graph G
is a division of the vertex set V into two disjoint sets A and B.

Normalized cut is a way of measuring the amount of dissimilarity between the vertex
sets A and B of a partition. For an undirected graph G with vertex set V , the normalized
cut cost for a division into two sets of vertices A and B is given by

NormalizedCut(A,B) =
Cut(A,B)

Assoc(A, V )
+

Cut(A,B)

Assoc(B, V )
(4.1)

where Cut(A,B) denotes the total weight of edges between A & B, i.e. Cut(A,B) =∑
u∈A,v∈B w(u, v) and Assoc(A, V ) =

∑
u∈A,t∈V w(u, t) denotes the total weight of connec-

tion between A and all the nodes in the graph.
Shi and Malik showed that minimizing the normalized cut of a graph is related to an

eigenvalue problem [151]. If we describe the graph G as an adjacency matrix W , then the
graph cut with the smallest normalized cut is obtained from

y∗ = min
y,y∈{1,−b},yTD1=0

yT (D −W )y

yTDy
. (4.2)

The normalized cut x∗ is given by x∗ = y−1+b
1+b

where D is a diagonal matrix whose elements
correspond to the sum of all affinities in a row, i.e. D = W · 1, 1 is a vector of ones and

b =
∑

xi>0Dii∑
xi≤0Dii

. W is also called the affinity matrix in the context of image segmentation

because it represents the affinities between pixels. For images, affinity between two pixels
i and j can be modeled simply as being proportional to the e−α||Ii−Ij ||

2
where Ii and Ij are
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Figure 4.1: Illustration of normalized cut. For the graph cut denoted by the black dotted
line, the normalized cut is given by Sum of black edges

Sum of red and black edges
+ Sum of black edges

Sum of blue and black edges

the respective intensity values [151]. This affinity metric has been improved later by Maire
et al [119] and can be calculated as the maximum value of local image gradients along a
straight line drawn between the two pixels.

This problem of minimizing normalized cuts is NP-Hard. If the discrete solution is
relaxed to take real values, then the solution is given by the eigenvectors of an eigensystem
described below:

D−
1
2 (D −W )D−

1
2 z = λz (4.3)

z = D
1
2y. (4.4)

Restricting the generalized eigenvector y to two values only (through the selection of a good
splitting point) gives us a two-way segmentation.

Eigenvectors corresponding to the smallest eigenvalues of this matrix represent segmen-
tations. Note that the smallest eigenvalue is zero and the corresponding eigenvector is
ignored. Figure 4.2 shows the first 2 eigenvectors corresponding to the affinity matrix for
the image shown. Affinity values have been calculated between each pixel and its neighbors
in a 5-pixel radius. It is easy to see that the eigenvectors correspond to segmentations of
the image.

4.1.2 Problem description

The dominant portion of the runtime of the gPb detector [119] is the eigensolver. For
images in the Berkeley Segmentation Dataset (BSDS), the resolution is typically 481× 321
(0.15 megapixels). Performing image segmentation on one such image takes more than 4
minutes on a serial machine [47]. This is clearly unacceptably slow for running on a large
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Figure 4.2: Example image from the Berkeley Segmentation Dataset and its first 2 eigen-
vectors for the affinity matrix derived as in [119].

dataset (1000’s of images). Also, no interactive applications can run with such long latencies.
Hence effective ways to improve the runtime of the algorithm need to be found.

Given the large amount of parallelism in linear algebra problems, there have been signif-
icant efforts to optimize and parallelize normalized cuts and its variations. Most numerical
optimizations have tried to increase the convergence of the eigensolver through better ini-
tialization from coarse image resolutions or reformulation into non-eigenvalue problems.

4.1.3 Related work

A few of the best known techniques to improve performance and efficiency of normalized
cuts/gPb are as follows:

Algorithmic reformulation Since the eigensolver is a substantial computational load for
solving image segmentation, reformulation of the normalized cuts problem into non-
eigensolver based problems could, in theory, lead to better performance. Dhillon et al
[66] reformulated normalized cuts as a form of a weighted kernel k-means algorithm
that can be solved efficiently. In particular, it was shown that minimizing the normal-
ized cut is equivalent to a trace maximization problem which in turn can be solved
as a weighted kernel k-means algorithm. However, improvements to normalized cuts
algorithm like gPb [119, 9] use the eigenvectors themselves for segmentation. Kernel
k-means only provides us the graph cut information, which is insufficient. Since gPb
has been shown to perform better than normalized cuts for image segmentation, these
reformulations have not remained popular for image segmentation problems where the
eigenvectors themselves are needed. However, these reformulations are useful in other
contexts like clustering data or partitioning general graphs where only the cuts (and
not the eigenvectors) are needed.

Numerical optimizations Existing numerical optimizations try to accelerate the conver-
gence of the eigensolver through improved initialization or speed up the sparse matrix
vector multiplication through approximations. Tolliver et al [165] use a multigrid
method on an image pyramid. The eigenproblem is solved fully at coarse levels and
the eigenvectors from the coarse levels are used to initialize solutions at finer levels.
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These are then refined using inverse iterations. Other techniques like [59] approximate
the affinity matrix using low-rank approximations. This provides better speedups for
larger graphs with a large connectivity radius, but is not necessarily more accurate in
terms of the final segmentation produced.

Other models Image segmentation algorithms not based on normalized cuts have also
been recently proposed by Felzenszwalb et al [74]. Their algorithm uses minimum
spanning tree on graphs and agglomerative clustering to produce image segmentations.
However, [74] faces two problems - the algorithm is sequential and the accuracy trails
behind normalized cuts based approaches like gPb [119]. The algorithms may be
parallelizable with some relaxations, however this is yet to be explored.

4.1.4 Our approach

In contrast to the approaches mentioned here, our numerical optimizations are based on
the properties of the affinity matrix and the problem context. Given that the eigenvectors
correspond to segmentations of the image and the eigenvalues correspond to the relative
weights of these segmentations, we assume that the segmentations are uniquely weighted
for natural images. Mathematically, we can assume that the eigenvalues of the matrix are
distinct. Numerical implementations of Krylov subspace methods like Lanczos for eigen-
value problems accumulate errors in their eigenvectors as iterations proceed. These errors
are due to the limitations of floating point arithmetic, which if not corrected can lead to the
eigenvectors becoming non-orthogonal. Correcting these errors is very expensive computa-
tionally and not very parallelizable. However, if the eigenvalues of the matrix are unique,
then these errors can be allowed to accumulate and can be corrected later through the
Cullum-Willoughby test [60]. We show how this has been exploited for better performance
in Chapter 7.

4.1.5 Results

Using the Cullum-Willoughby test and avoiding reorthogonalization of eigenvectors led
to a 20× speedup in the runtime of the eigensolver on the Nvidia GTX 280 GPU. In
conjunction with the parallelization of the gPb image contour detector on the GPU, the
runtime of our implementation was less than 2 seconds compared to greater than 4 minutes
earlier. More details on the algorithmic exploration and the results of parallelization on
multiple platforms are discussed in Chapter 7.

We now look at numerical optimizations in another application domain - optical flow
and see how our approach outperforms earlier ones.

4.2 Numerical optimizations in Optical flow

Optical Flow involves calculating the displacement map or flow field between two con-
secutive frames of a video sequence with no constraints on camera or object motion. Figure
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4.3 shows an example of an optical flow field given two frames from a video. Optical flow is
a required intermediate step for many computer vision algorithms on video sequences.

(a) (b) (c)

Figure 4.3: Two consecutive frames (a) and (b) from the Middlebury dataset [14] and the
calculated optical flow using [159] (c).

4.2.1 Background

In order to find the displacements of pixels from one frame to another, it is necessary to
assume that the properties of points do not change between the two frames i.e. corresponding
points in the two frames are likely to have similar brightness, colors, gradients etc. The
key principle in optical flow algorithms is this idea of constancy. For example, assume
that the brightness values on the points on an object do not change as the object and/or
camera moves. Let the video be represented as a 3 dimensional brightness signal I(x, y, t).
Mathematically, brightness constancy is expressed as I(x, y, t) = I(x+u, y+ v, t+ 1) where
u and v are the displacement vectors for the point (x, y, t). Assuming linear variations of I
in time and space, this gives us one constraint that we can use for estimating optical flow:

Ixu+ Iyv + It = 0 (4.5)

where Ix denotes the partial derivative of I with respect to x, Iy denotes the partial derivative
of I with respect to y, and It denotes the partial derivative of I with respect to t. Since we
have two variables and only one constraint, we use other constraints such as regularization
to make the problem wellposed.

In local methods such as Lucas-Kanade [118], one assumes that neighboring points have
very similar optical flow vectors, and hence the optical flow at any point can be recovered
by solving a system of linear equations. The system of equations is overconstrained, hence
one solves it to minimize the sum of squared error. In global methods like Horn-Schunck
[94], one performs an energy minimization of the form

E(~u) =

∫

Ω

M(I, ~u)dx+ α

∫

Ω

R(∇~u)dx (4.6)

where Ω ⊂ <2 is the image domain, ~u = [u, v]T , M is a data term signifying the brightness
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constancy assumption and R is a regularization term signifying smoothness of the flow
field. Horn and Schunck, for instance, use M = ||I(x + u, y + v, t + 1) − I(x, y, t)||2 and
R = ||∇~u||2. Most modern variational techniques are derived from Horn and Schunck’s
formulation. Horn and Schunck’s technique is solved through linearization and discretization
of this continuous formulation. The remaining linear system is solved through Jacobi or
Gauss-Seidel iterations. The matrix being solved has as twice as many rows as there are
pixels in the frame, as one variable indicates the x-displacement and one indicates the y-
displacement per pixel.

More sophisticated variational formulations have since been shown to be better at solving
optical flow accurately. Shown below is Thomas Brox’s formulation of variational optical
flow [34].

E(~u) =

∫

Ω

Ψ(||I(~x+ ~u, t+ 1)− I(~x, t)||2)dx+

α

∫

Ω

Ψ(||∇I(~x+ ~u, t+ 1)−∇I(~x, t)||2)dx+

γ

∫

Ω

Ψ(||∇~u||2)dx (4.7)

In addition to the brightness constancy assumption, this formulation also uses brightness
gradient constancy. Instead of using the L2 norm, the formulation uses a smooth L1-like
norm through the penalty function Ψ(s2) =

√
s2 + ε2. This formulation has been shown to

be quite accurate in computing optical flow compared to earlier techniques [34].
We use the large displacement optical flow technique which performs both feature match-

ing using histogram of oriented gradients (HOG) and variational optical flow in a single
mathematical setting [36]. The formulation is similar to the one shown earlier with added
terms of large displacement tracking using HOG features.

Unfortunately for almost all the variational techniques, the minimization problem is non-
linear and non-convex, making the search for the global optimum difficult. This problem is
overcome using a coarse-to-fine refinement strategy in order to avoid getting stuck in local
minima. At each scale, the non-linear problem is solved through fixed-point iterations in
order to remove the non-linearities. The innermost (linear) problem is solved using a linear
solver.

4.2.2 Problem description

The runtime of the large displacement optical flow algorithm before parallelization is
unacceptably high. It takes roughly 68 seconds per pair of 640 × 480 sized frames. Since
most video is captured at a rate of 30 frames/second, this processing represents a slowdown
of 2040× compared to data acquisition. In addition, optical flow by itself is not directly
useful; it is useful for other video processing algorithms that need motion information.

The challenges in parallelization are two fold - Since the most important part of the
problem is the numerical non-linear, non-convex solver, significant performance improve-
ment can be obtained through numerical optimizations. The numerical linear solver, in
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particular is a major computational bottleneck and needs to be accelerated for optical flow
to be practical. Interestingly, any improvements to the linear solver not just benefits large
displacement optical flow, but can be used to improve the efficiency of a large class of optical
flow algorithms.

4.2.3 Related work

There is plenty of pixel-level parallelism in the problem, and there are a variety of
methods to optimize the problem and improve performance and/or accuracy. A few of
these techniques are given below:

Algorithmic reformulations Different optical flow formulations other than the ones shown
earlier have been used to varying degrees of success. For instance, [109] uses a convex
formulation that is guaranteed to find the global minimum irrespective of initialization.
However, the accuracy of these techniques in practice have been inferior to non-convex
formulations. Other formulations use L1 norm as a regularizer instead of L2 and a
total variation based approach [177]. It has been proven that these methods can be
solved efficiently through their dual formulations [50] and have similar accuracy to our
techniques [14].

Numerical optimizations Since the linear solver is a predominant portion of the com-
putation, many techniques have been tried to improve and optimize this aspect of
the problem. For instance, Bruhn et al [40] use different discretizations of the Euler-
Lagrange equations that derive from the variational formulation and use a multigrid
solver in order to run small optical flow problems in real time. [88] uses a red-black
solver instead of a serial Gauss-Seidel solver in order to run on parallel hardware such
as the IBM Cell processor.

Parallelization on different hardware There have also been efforts to improve the per-
formance of optical flow algorithms through the use of parallel hardware such as FPGA
[176], GPU [85], Cell processor [88] etc. These techniques are useful, but are limited
to particular hardware and are usually not portable.

4.2.4 Our approach

In contrast to the above mentioned approaches, we perform an algorithmic exploration of
different linear solvers for solving optical flow. The linear solver at the core of the numerical
optimization is the most compute intensive portion of the optical flow calculation. Most
of the previous work relaxed the serial Gauss-Seidel solver into doing red-black iterations.
However, further improvements are possible through better algorithmic exploration. Better
solvers are possible if we can exploit the specific properties of the system being solved. In
particular, solvers like conjugate gradient require the linear system to be positive definite.
In Chapter 6, we prove this and use this fact to construct an efficient preconditioner for the
conjugate gradient solver. This improves performance on all hardware including multicore
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CPUs and GPUs. Compared to existing serial Gauss-Seidel solvers, parallel preconditioned
conjugate gradient solvers are about 4× faster on the CPU. Compared to parallel red-black
solvers, parallel preconditioned conjugate gradient is about 40% faster on the GPU.

4.2.5 Results

As a result of our algorithmic exploration and parallelization, we were able to reduce
the runtime of the large displacement optical flow algorithm by 37× from over 68 seconds
to less than 2 seconds. Of the 37× speedup, about 10× is attributable to the difference in
memory bandwidth & hardware from GPUs and the rest to algorithmic improvements. The
linear solver alone has had its performance improved by a factor of 53× overall. At this
level of performance, we can run LDOF on long video sequences and use it for applications
like video segmentation. Details are discussed in Chapter 6.

We now focus on the implementation details and how we can parallelize computer vision
applications for running on specific hardware platforms.

4.3 Implementation issues

The performance of the final parallelization depends on how the algorithm is imple-
mented using the parallel programming model of choice for the particular hardware. We
will discuss prior work on parallelizing computer vision in general through hardware and
software improvements. We will focus in particular on the parallelization of computer vision
algorithms on GPUs and multicore CPUs.

4.3.1 Background

Before going into the challenges associated with mapping computer vision algorithms on
parallel processors, we briefly delve into the details of current parallel programming models
on desktop machines. We look at both GPU and CPU style parallelism and how concurrency
in algorithms must be expressed in order to exploit the parallelism.

Nvidia provides a programming environment for its GPUs called the Compute Unified
Device Architecture (CUDA) [130]. The user codes in annotated C++, accelerating compute
intensive portions of the application by executing them on the GPU.

Figure 4.4 illustrates how the GPU appears to the programmer. The programmer orga-
nizes the computation into grids, which are organized as a set of thread blocks. The grids
run sequentially on the GPU, meaning that all computation in the grid must finish before
another grid is invoked. Grids may be run concurrently if the programmer guarantees that
their computations are independent (CUDA streams). As mentioned, grids contain thread
blocks, which are batches of threads that execute together, sharing local memories and syn-
chronizing at programmer specified barriers. A maximum of 1024 threads can comprise a
thread block, which puts a limit on the scope of synchronization and communication in the
computation [130]. However, an enormous number of blocks can be launched in parallel in
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Figure 4.4: Logical organization of Nvidia GPUs

the grid. In practice, we need a large number of thread blocks to ensure that the compute
power of the GPU is efficiently utilized.

Multicore CPUs like Intel and AMD’s microprocessors have a different programming
model. One could think of them logically as a group of cache-coherent processors with vector
lanes for performing floating point arithmetic. They are also programmed by instantiating
a number of threads typically equal to the number of processors, each of which is capable of
running vectorized code. Also, CPUs have typically much larger cache memory compared
to GPUs. Exploiting caches is important while mapping to CPUs as memory bandwidth
to cache is much higher than bandwidth to DRAM. Figure 4.5 shows how multicore CPU
architectures are logically arranged.

Even though CPUs and GPUs have very different models, there are some strong simi-
larities. Both architectures organize hardware parallelism in a hierarchical manner. Both
of them have parallelism at the fine-grained level (SIMD) and coarse-grained level (multiple
processors). There are however, differences in how threads get scheduled, multi-tasking and
preemption, memory latencies and bandwidth etc., and those differences will be highlighted
where necessary.

The important question is how computer vision applications map to this programming
model. Computer vision applications usually have a lot of parallelism, especially at the pixel
level. Given sufficient regularity and locality, this maps well to multicore architectures with
each SIMD lane performing computations for a single pixel. There are however, challenges
to be overcome which are explained in the next section.
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Figure 4.5: Logical organization of multicore CPUs

4.3.2 Problem Description

The challenge in parallelizing computer vision algorithms is not in finding concurrency in
the application but in mapping the concurrency efficiently onto the parallel hardware. Most
of the tools available today have not been very successful in this regard. As mentioned in
Section 4.3.1, multicore CPUs and GPUs have a hierarchy of parallel hardware from SIMD
lanes to multiple independent cores. Improving the performance of computer vision algo-
rithms on these parallel platforms remains a challenge. For example, Vision and Cognition
were recognized as “Grand Challenge” problems that needed high performance computing
involvement in 1992 [2]. The report estimated that by 2000, large computer vision applica-
tions would require a floating point performance of over one Teraflops (1012 floating point
operations) per second. Today we can have several teraflops of performance on a desktop
by exploiting GPUs and CPUs. Parallelism is a way to get sufficient performance to run
such applications.

One of the major problems in performing an efficient GPU implementation of computer
vision algorithms is the disjoint memory space between CPUs and GPUs. For historic rea-
sons, we have been forced into a corner where GPUs have only been able to communicate
with the CPUs through a low bandwidth, high latency PCI-e connection. Memory manage-
ment is a critical aspect of the implementation. For applications that move large amounts
of data, the cost of moving data between the CPU and GPU can be very significant. For
example, for image convolutions with a 3× 3 kernel, CPU-GPU memory transfers take up
to 70% of the total runtime. This is a problem that is only bound to get more important in
scope as data sizes have been increasing exponentially and DRAM size grows much slower.
This problem is not just restricted to GPUs, but to any accelerator model where the accel-
erator communicates with the CPU using a high latency, low bandwidth connection. Also,
every call to the GPU has a latency of a few microseconds. This problem also manifests in
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other applications. The eigensolver in image contour detection requires a large amount of
memory in order to store the temporary data structures in the computation. Since GPUs
only have limited memory, this becomes a problem for smaller GPUs.

4.3.3 Related work

Researchers have been parallelizing a variety of computer vision algorithms on a range
of parallel computer hardware. They have tried to achieve performance through parallelism
by either creating new parallel hardware architecture well-suited for computer vision or by
trying to exploit existing parallel hardware.

Most of the previous efforts at parallelizing computer vision can be classified into one of
the following categories -

Hardware synthesis The more difficult (and arguably less successful) option to exploit
parallelism for computer vision is to create new hardware capable of handling vision
workloads well. The earliest attempt to make a special purpose processor for ac-
celerating computer vision applications is the Image Understanding Architecture by
Weems et al [175]. The Image Understanding Architecture differed from other general
purpose parallel computers through the use of heterogeneous processors specifically
tailored towards different levels of image processing (low, mid and high level). Their
claim was that since computer vision computations are very regular at low level and
get progressively irregular at higher levels, their architecture was meaningful from an
application perspective. Weems et al were able to build prototypes of the proposed ar-
chitecture; however, the evolution of computer vision algorithms and the improvement
in performance of general purpose processors have left such efforts largely unsuccessful
in the long run.

Another option to exploit custom hardware for accelerating specific vision tasks is
through the use of programmable hardware like Field Programmable Gate Arrays
(FPGA). For example, Ratha et al [140] parallelized image convolutions using a custom
hardware architecture - the Splash-2, which was based on Xilinx 4010 FPGAs. FPGAs
have been used for accelerating compter vision applications because of the inherent
parallelism and scalability of these applications. Another reason for the use of FPGAs
is their ability to be very efficient at fixed tasks. Some examples of the use of FPGAs
in computer vision include [140, 176]. However, difficulty in programming FPGAs
and emergence of better programmability in GPUs have made FPGAs less popular
for accelerating vision applications [23].

Multimedia processing has long been moved to hardware because of the need for real-
time performance. H.264 decoders and encoders (e.g. Intel Quick Sync Video in
2011), MP3 decoders, JPEG encoders for cameras etc. have been around for about a
decade now. Specific instructions now exist in almost all architectures for accelerating
multimedia functions. Sum of Absolute Difference (SAD) instruction has been present
in almost all architectures [155]. Intel introduced it in SSE2 (PSADBW) in 2001, ATI
Radeon HD 5870 has had it since 2009, ARM has had it since 2002 (ARM11).
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Specific hardware for computer vision have not appeared widely because almost all
hardware that supports data parallelism also helps vision applications in general. With
SIMD units present in all general purpose hardware (desktop/mobile CPUs, GPUs
etc.), vision applications get a sizeable boost in performance.

In general, creating custom hardware for computer vision has not been successful
because of low programmability, low productivity and changing algorithms.

Manual mapping In contrast to developing new hardware, efforts to exploit the concur-
rency in computer vision applications using existing parallel computers have been
more successful. Since parallelism is abundant in computer vision algorithms in gen-
eral, there have been no dearth of efforts to parallelize vision algorithms in order to
improve their run times. We cite a few of the relevant literature. Many computer
vision algorithms are data-parallel, and hence map well to a variety of different paral-
lel hardware architectures. Prasanna et al [135] parallelized low level computer vision
algorithms like edge detection and morphological operations on a parallel machine -
the Connection Machine (CM5). Wang et al [172] parallelized several low and mid
level vision algorithms including image segmentation, perceptual grouping and object
recognition using message passing libraries like MPI [126] on another parallel machine
- the IBM SP-2. Much of the work in the 1990’s on parallel computer vision focussed
on large distributed computing systems and were programmed using MPI.

With the availability of more powerful processors in the desktop and single node
multiprocessors (multicore CPUs and GPUs), the focus of parallelization has also
shifted to these architectures. Recently, there has been an explosion in the amount
of parallelized computer vision implementations for different platforms like GPUs,
multicore CPUs and clusters. Many computer vision algorithms have been parallelized
on desktop and laptop multicore processors using tools and libraries like OpenMP
[131], TBB [164] etc. Computer vision workloads have become part of computer
architecture oriented benchmarks like Parsec [17] (body tracking benchmark).

Starting with the use of graphics libraries like OpenGL for offloading compute inten-
sive data parallel kernels to the GPU, vision researchers have explored using GPUs
for speeding up their applications. With the development of more general purpose
frameworks like BrookGPU [41] and Stream [15], porting vision applications to GPUs
became easier. Even then, the GPU was restricted to only data parallel kernels and
some reductions (like sum). General purpose computing remained out of the bounds
of most vision practitioners until after the advent of Nvidia’s CUDA in 2006 [129, 130].
The applicability of GPUs to accelerate computer vision algorithms improved tremen-
dously because it was now possible to map several classes of irregular computations to
the GPU. Classes of vision algorithms parallelized on GPUs include feature detection
and description like SIFT [153, 178] and KLT [154], optical flow [159, 177, 183], 3D
reconstruction [76] and libraries like OpenCV [77, 6]. More recently, there have been
efforts to rent time on commodity clusters (i.e. cloud computing) like Amazon EC2
in order to scale to tens of thousands of cores [3].
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Compilers Since there is abundance of concurrency in computer vision applications, vec-
tor/SIMD parallelizing compilers have always been considered an important tool for
enabling parallelization. The main problem in parallelizing computer vision algorithms
is not the difficulty in finding concurrency but the difficulty in mapping the concur-
rency to parallel hardware. For example, with SSE-enabled single core processors,
fine-grained concurrency is easy to exploit (SIMD units in hardware). However on
modern multicore machines, concurrency must be mapped to both fine grained and
coarse-grained parallelism in hardware. GPUs have different memory structures and
code must be tuned to the particular memory hierarchy for achieving the best perfor-
mance. Optimizing compilers for one platform usually do not transfer well to different
hardware architectures.

Optimizing and vectorizing compilers work well for parallelizing computer vision code
for microprocessors with a single level of hardware parallelism(e.g. single core with
SIMD units like SSE). Vectorizing compiler improvements [5, 103] have led to improved
usage of SIMD processors in modern CPUs through efficient parallelization of data
parallel loops. Improvements like the polyhedral model has enabled compilers to
parallelize even non-data-parallel loops efficiently [25]. Data parallel languages like
APL [99] and NESL [92] with their corresponding compilers have also been used for
parallelizing computer vision algorithms on machines with vector processors or SIMD
units. However, as mentioned before, all these methods work much less efficiently when
there are multiple levels of parallelism in hardware (multiple sockets, each socket with
multiple cores, each core with SIMD units etc.).

In general, compilers alone have been unable to bridge the performance gap between
computer vision applications and parallel hardware with no additional help from pro-
grammers in the form of pragmas [131], intrinsics or special instructions [130, 129].

Most computer vision researchers use very high level languages like MATLAB. It is
very hard to directly compile such code efficiently as they are hard to analyze statically
(dynamic typing, interpreted). Hence, even though the productivity benefits provided
by high level languages are high, their performance is usually much inferior compared
to languages like C/C++ e.g., Catalytic (Matlab to C converter) [4].

We believe that parallelizing compilers, while useful, are not capable of parallelizing
and optimizing computer vision applications on modern hardware architectures with-
out any programmer effort. They are also incapable of performing any of the numerical
optimizations that are very crucial for improving performance.

Libraries and Frameworks Providing optimized, parallelized libraries is another way to
shield computer vision researchers from the details of parallelization while still provid-
ing the benefits. However, the main shortcoming is its inflexibility. That said, there
have been many useful libraries and packages for the vision community. We describe
a few here.

OpenCV [28] is a library of programming functions for real time computer vision.
However, it is not parallelized by default. Projects like OpenVidia [77] and GPUCV
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[6] have tried to exploit the existing GPUs in user’s workstation without having to
manually parallelize existing code based on OpenCV.

A significant portion of Computer vision algorithms utilizes linear algebra which con-
sumes a significant portion of their runtime. The use of optimized Basic Linear Algebra
Subroutines (BLAS) and Linear Algebra PACKage (LAPACK) [7] libraries for many
different hardware architectures solves a significant problem especially if the prob-
lem is dense. Since BLAS and LAPACK are parallelized and optimized (for shared
memory architectures), their use provides much better runtimes than rolling your own
code for functions like dot products, matrix multiplication, matrix factorization, dense
linear solver etc. This approach does not work well for sparse matrix problems, for
which specialized solutions are still significantly faster [16, 113]. Similar libraries ex-
ist for distributed memory architectures (ScaLAPACK [21]), multicore+GPU systems
(MAGMA [95]) etc.

All these libraries simplify the work of optimizing computer vision algorithms, but
are not always comprehensive. The efficiency on particular hardware platforms is not
portable, i.e. code optimized for one platform does not necessarily perform well on
others.

A framework is a software environment in which user customization may only be in
harmony with the underlying software architecture. This is a guarantee that as long as
application developers code under certain restrictions, the framework/toolchain will be
able to optimize it so that the output is scalable, optimized, parallel code. They have
had some successes (e.g. MATLAB is fast as long as code is “vectorized”). Failure
to follow the restrictions may lead to code that cannot be compiled or code that
runs much slower. If the algorithm fits the software architecture that the framework
supports, then it can provide a large productivity benefit.

MATLAB provides high productivity but low performance for user written code in
general. For some cases like performing matrix-matrix multiplication, solving a dense
linear system etc., MATLAB just calls the underlying BLAS/LAPACK libraries and
can be efficient. However, in order to get good performance on general user code,
it is necessary to write the code that contains data parallelism using arrays. MAT-
LAB is able to auto-vectorize code in these situations and is able to give acceptable
performance without sacrificing productivity. The difference in performance between
vectorized and non-vectorized MATLAB code can be an order of magnitude or even
higher. Specialized frameworks within MATLAB like Jacket or Parallel computing
toolkit allow users to run parallel programs on the GPU.

Keutzer et al have produced a pattern language categorizing software patterns present
in applications with a view to enable frameworks for parallel processing [104]. Since
computer vision algorithms heavily use specific patterns like data parallelism, frame-
works targeted towards writing efficient data parallel code are useful for parallelizing
many vision applications. Copperhead [45] is one such example, that utilizes an em-
bedded Just In Time (JIT) compiler in Python in order to compile a data parallel
subset of Python efficiently to GPUs. It has been successfully used to parallelize
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Technique Productivity Numerical Optimizations Memory management
in CPU-accelerator systems

Hardware - - ++
Compilers + - -

Libraries & frameworks + - -
Our techniques + ++ ++

Table 4.1: Different parallelization techniques and their relative performance on various
parameters.

linear solvers in optical flow problems and training machine learning algorithms like
Support Vector Machines.

In general, data parallel frameworks are helpful, but not sufficient for parallelizing
computer vision since it is impossible to find large computer vision workloads that do
not have any non-data-parallel components.

There is no single solution to efficiently parallelize computer vision algorithms. Many as-
pects still need to be done manually e.g. finding good mapping from algorithm to hardware,
managing the disjoint CPU-GPU memory space etc.

Table 4.1 shows each of the techniques discussed before in the context of productivity,
numerical optimizations and memory management.

4.3.4 Our approach

We use a strategy of performing manual mapping from algorithm to hardware, along with
a framework for memory management. Given that none of the previous attempts have solved
the problem of minimizing CPU-GPU memory transfers, we use an automated strategy
for mapping CPU-GPU problems that involve data parallel computations. Using pseudo-
boolean optimization, we solve the data transfer scheduling problem, leading to significant
performance gains [162]. This lets us solve large problems where the GPU memory is not
large enough to store all the data required for the application. The transfer of data between
the CPU and GPU is handled automatically and this lets the application scale from small,
mobile GPUs to large desktop GPUs. This is explained in detail in Chapter 8.

We use a slightly modified algorithm for the eigensolver in image contour detection. The
modified version does not allocate all of the temporary data structures in memory at the
start of the computation. It uses the fact that in any iteration, the algorithm only needs
a small working set even if the total working set is quite large. Through manual memory
management, we have been able to run the eigensolver even in cases where there is not
enough GPU memory. More details of the approach will be presented in Chapter 7.

In addition to efficient scheduling of memory, we also efficiently hand-coded the mapping
of nested concurrency to hierarchical parallelism in applications. Some of the cases where we
applied these include image downsampling in optical flow, eigensolver in video segmentation,
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scratchpad memory optimizations for support vector machines. All these components are
explained in the chapters 6, 7, and 5 respectively.

4.3.5 Results

Better scheduling of data transfers between CPU and GPU reduced the amount of data
moved by 1.7 − 7.8×, leading to improvements in runtime by a factor of 2. This can be
included as part of future compilers or frameworks and encompasses a solution for many
different hardware configurations. The eigensolver in the image contour detection algorithm
is fully portable across GPUs with different memory sizes. There is no performance penalty
when there is sufficient GPU memory. The eigensolver has to do 2 passes on the data if it
runs out of memory, which effectively doubles the runtime. However, we believe the ability
to run the application on a variety of platforms more than offsets the runtime disadvantage.
These aspects are explained in Chapters 7 and 8.

Manual mapping and parallelization alone have led to speedups of 10× for the range of
computer vision applications considered. More details on the speedups are explained in the
respective chapters.

4.4 Summary

In almost all computer vision applications, we have found that numerical optimizations
had huge positive impacts on performance. Our numerical optimizations take advantage
of the specific problem context and properties to accelerate applications. This has led to
speedups of over 20× in the case of image contour detection and 37× in the case of large
displacement optical flow. In order to be taken advantage of the hierarchical parallelism
that both CPUs and GPUs expose, we need a good mapping from the algorithmic layer
to hardware. In addition, our techniques for manual mapping and managing memory in
CPU-GPU systems have led to portability and performance improvements in a range of
applications.
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Chapter 5

Parallelizing Support Vector Machine

In this chapter, we will discuss the problem, parallelization approaches and optimizations
for a machine learning algorithm - Support Vector Machine (SVM). We discuss optimizations
for both SVM training and classification on GPU and CPU architectures. We compare our
solution against LIBSVM, a standard package for solving SVM problems and show that
our approach is much faster and more scalable. We will discuss the algorithmic and code
optimizations needed to achieve this performance.

5.1 SVM background

Support Vector Machine (SVM) is a classification and regression algorithm in machine
learning that has become widely popular in the last few decades [57]. Thanks to their robust
classification performance, SVMs have found use in diverse tasks, such as image recogni-
tion, bioinformatics, and text processing. SVMs belong to a class of classification algorithms
called “maximum margin classifiers” because they not only try to find a classification bound-
ary between the positive and negative examples, but try to do so with maximum separation
between the classes. Figure 5.1 shows an illustration of a separating hyperplane in 2 dimen-
sions and one with the maximum margin. It is clear that a maximum margin separating
hyperplane is a better classifier.

We consider the standard two-class soft-margin SVM classification problem (C-SVM),
which classifies a given data point x ∈ Rn by assigning a label y ∈ {−1, 1}. We discuss the
problem formulation for both SVM training and classification for the case of C-SVM.

5.1.1 SVM Training

Given a labeled training set consisting of a set of data points xi, i ∈ {1, ..., l} with their
accompanying labels yi, i ∈ {1, ..., l}, the problem of SVM training can be written as the



43

(a) Separating hyperplane with non-maximum
margin

(b) Separating hyperplane with maximum margin

Figure 5.1: Examples of separating hyperplanes in 2 dimensions.

following optimization problem:

min
w,ξ,b

G(w, ξ) =
1

2
wTw + C

l∑

i=1

ξi

subject to yi(w
Tφ(xi)− b) ≥ 1− ξi, ∀i ∈ 1 . . . l

ξi ≥ 0

(5.1)

where xi ∈ Rn is training data point i, yi ∈ {−1, 1} is the label attached to point xi. φ(x)
is a linear/non-linear mapping of x from Rn to Rm (where m can be infinity) and w is
the hyperplane with maximum margin given by wTφ(x) = b. ξ is an indicator variable
denoting separation from hyperplane with ξi = 0 for correctly classified points outside the
margins and ξi > 0 for all other points. C is a parameter which trades classifier generality
for accuracy on the training set. This is the primal form of the optimization problem.

The dual formulation of this optimization problem is a quadratic program (QP):

max
α

F (α) =
l∑

i=1

αi −
1

2
αTQα

subject to 0 ≤ αi ≤ C, ∀i ∈ 1 . . . l

yTα = 0

(5.2)

where αi is a set of weights, one for each training point, which are being optimized to
determine the SVM classifier. Q is the kernel matrix i.e. Qij = yiyjΦ(xi, xj), where Φ(xi, xj)
is a kernel function which implicitly calculates φ(xi)

Tφ(xj). The optimization problem is
usually solved in this dual space. We consider the standard kernel functions shown in table
5.1.

The advantage of using kernel functions is that it gives us the ability to construct very
complicated non-linear classification surfaces. These surfaces are hyperplanes in a higher
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Table 5.1: Common Kernel Functions for Support Vector Machines

Linear Φ(xi, xj) = xi · xj
Polynomial Φ(xi, xj; a, r, d) = (axi · xj + r)d

Gaussian Φ(xi, xj; γ) = exp {−γ||xi − xj||2}
Sigmoid Φ(xi, xj; a, r) = tanh(axi · xj + r)

dimensional space, but their projections on the original space are non-linear.

5.1.2 SVM Classification

The SVM classification problem is as follows: for each data point z which should be
classified, compute

ẑ = sgn

{
b+

l∑

i=1

yiαiΦ(xi, z)

}
(5.3)

where z ∈ Rn is a point which needs to be classified, sgn(x) is the sign function, and all
other variables remain as previously defined.

From the classification problem definition, it follows immediately that the decision sur-
face is defined by referencing a subset of the training data, or more specifically, those training
data points for which the corresponding αi > 0. Such points are called support vectors.

Generally, we classify not just one point, but a set of points. We exploit this for better
performance, as explained in the later sections.

5.2 Problem

Training Support Vector Machines and using them for classification remains very compu-
tationally intensive. Much algorithmic research has been done to accelerate training time,
such as Osuna’s decomposition approach [133], Platt’s Sequential Minimal Optimization
(SMO) algorithm [134], Joachims’ SVM light [100], which introduced shrinking and kernel
caching, and the working set selection heuristics used by LIBSVM [71]. Despite this re-
search, SVM training time is still significant for large datasets. In particular for non-linear
kernel functions, the training time for SVMs scales almost quadratically with the number
of training points [134]. Linear SVMs can solved much faster, as they scale linearly with
the problem size through techniques like [101]. However, training non-linear SVMs for large
datasets remains a challenge.

For linear SVMs, SVM classification reduces to a simple matrix-vector multiplication
problem. However, for non-linear SVMs, this is not possible in the general case. Classifica-
tion time is critical because it directly impacts the applicability of the approach. One trains
the classifier once, but usually uses it to classify a large number of points. Slow classification
time for kernels like the Gaussian kernel is one of the main obstacles to the use of SVM for
classification, even though such non-linear kernels can be very accurate.
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5.3 Related work

5.3.1 Training

Improving the performance of SVM training and classification has been an active area
of research. As mentioned earlier, Osuna et al’s decomposition approach [133] has been the
most important for solving the optimization problem for SVM training. Osuna et al proved
that the special structure of the SVM training problem in the dual form (equation 5.2) means
that one could solve a QP on a small, fixed subset of the variables and make progress towards
the optimal solution. The algorithm proceeds iteratively; it starts with a subset of variables,
optimizes the smaller problem, updates the Karush-Kuhn-Tucker (KKT) conditions for the
rest of the variables, chooses a “working set” which is a set of variables with at least one
variable whose KKT condition is not satisfied, and repeats the process until convergence.
This enables us to solve large SVM training problems using only a small scale QP solver.
Sequential Minimal Optimization (SMO) [134] uses the decomposition methodology at the
finest level, optimizing on a subset of just 2 variables in a given iteration. This makes the
small QP analytically solvable, thereby easing implementation. In addition, Platt showed
that it is also as fast as other SVM training implementations. However, none of these
approaches took explicit advantage of the parallelism in the problem.

There have been previous attempts to parallelize the SVM training problem. The one
most similar to ours is [44], which parallelizes the SMO algorithm on a cluster of comput-
ers using MPI. Both our approach and their approach exploit the concurrency inherent in
the KKT condition updates as the major source of parallelism. In general, parallelizing
highly iterative problems like SVM training using distributed computing is hard because
the synchronization costs in a distributed cluster are much higher than on single chip mul-
tiprocessors. Even with a 32-processor cluster, the parallel efficiency (= speedup/number
of processors) becomes less than 70% due to Amdahl’s law effects. Hence, SVM training
parallelization is best performed on a single node using parallel hardware like multicore
CPUs or GPUs.

Many other approaches for parallelizing SVM training have been presented earlier. The
cascade SVM [83] is another proposed method for parallelizing SVM training on clusters.
It uses a method of divide and conquer to solve large SVM problems. Cascade SVM was
implemented with distributed computing in mind, hence the communication was kept to a
minimum. The amount of parallelism is small (10’s of nodes) and the amount of concurrency
decreases as the problem converges. Zanni et al [185] parallelize the underlying QP solver
using parallel gradient projection technique. Work has been done on using a parallel interior
point method for solving the SVM training problem [179]. Collobert et al [56] proposes a
method where the several smaller SVMs are trained in a parallel fashion and their outputs
weighted using an artificial neural network. Ferreira et al [75] implement a gradient based
solution for SVM training, which relies on data parallelism in computing the gradient of
the objective function for an unconstrained QP optimization at its core. Some of these
techniques, for example the training set decomposition approaches like the Cascade SVM
are orthogonal to the work we describe, and could be applied to our solver. Bottou et al
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[26] give an extensive overview of parallel SVM implementations.
Most of the prior work has only looked at distributed computing (clusters) as the source

of parallelism, and not single chip multiprocessors. In terms of implementation, GPUs
present a completely different model than clusters, and hence the amount of parallelism
exploited, such as the number of threads, granularity of computation per thread, memory
access patterns, and data partitioning are very different. We also implement more sophisti-
cated working set selection heuristics.

5.3.2 Classification

SVM classification is also a compute-intensive problem. SVM classification has always
been considered embarrassingly parallel i.e. each point that needs to be classified can be
processed independent of other points, thus providing as much concurrency as there are
points to be classified. However, exploiting only this concurrency can be suboptimal as there
is also concurrency to be exploited in calculating the output for a single point. Exploiting
only the former concurrency leads to a BLAS2 (matrix-vector product) computation which
is limited by the memory bandwidth, whereas exploiting all the concurrency leads to a
much more efficient BLAS3 (matrix-matrix product) computation which is limited by the
floating point throughput of the hardware. We will show later how exploiting all levels of
concurrency improves performance significantly.

5.4 Our approach

5.4.1 Training

We chose Sequential Minimal Optimization as our SVM training algorithm because of
its relative simplicity, yet high performance and robust convergence characteristics. We
compare SMO against decomposition based algorithms that differ in the size of their working
set i.e. the number of variables in the QP optimized in a single iteration. Figure 5.2 shows
the results from the analysis. We used SVM light [100] in order to vary the working set
sizes. The implementation is based on Osuna’s decomposition algorithm [133]. On an Intel
Core2 Duo 2.66 GHz processor, the runtime variations with varying working set sizes were
recorded for the face dataset [143].

From the figure 5.2(a), it is clear that solving the SVM training optimization using
a large working set is slower than using smaller working sets on the CPU. Interestingly,
the runtime does not improve between a working set of size 2 and 64. In terms of the
components of the computation, most of the runtime is spent on KKT updates (Figure
5.2(b)). Given this profile, a working set of size 2 (SMO) provides the best tradeoff between
simplicity and efficiency of implementation. For a working set of size 2, the solution to the
optimization problem can be calculated analytically as we are only minimizing a convex
quadratic function in 2 dimensions subject to a simple set of constraints. A larger working
set size would require us to implement a more general quadratic optimization routine that,
while being much more complicated to implement, would not necessarily improve runtime
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significantly. Most of the runtime is spent in the KKT updates and these updates will be
parallelized in either case.

The SMO algorithm is a specialized optimization approach for the SVM quadratic pro-
gram. It takes advantage of the sparse nature of the support vector problem and the simple
nature of the constraints in the SVM QP to reduce each optimization step to its minimum
form: updating two αi weights. The bulk of the computation is then to update the Karush-
Kuhn-Tucker optimality conditions for the remaining set of weights and then find the next
two weights to update in the next iteration. This is repeated until convergence. We state
this algorithm briefly, for reference purposes.

Algorithm 1 Sequential Minimal Optimization

Input: training data xi, labels yi, ∀i ∈ {1..l}
Initialize: αi = 0, fi = −yi, ∀i ∈ {1..l},
Initialize: bhigh, blow, ihigh, ilow
Update αihigh and αilow
repeat

Update fi, ∀i ∈ {1..l}
Compute: bhigh, ihigh, blow, ilow
Update αihigh and αilow

until blow ≤ bhigh + 2τ

For the first iteration, we initialize bhigh = −1, ihigh = min{i : yi = 1}, blow = 1, and
ilow = min{i : yi = −1}.

During each iteration, once we have chosen ihigh and ilow, we take the optimization step:

α′ilow = αilow + yilow(bhigh − blow)/η (5.4)

α′ihigh = αihigh + yilowyihigh(αilow − α′ilow) (5.5)

where η = Φ(xihigh , xihigh) + Φ(xilow , xilow) − 2Φ(xihigh , xilow). To ensure that this update is
feasible, α′ilow and α′ihigh must be clipped to the valid range 0 ≤ αi ≤ C. This step is referred

to as “QP” in Figure 5.2(b).
The optimality conditions can be tracked through the vector fi =

∑l
j=1 αjyjΦ(xi, xj)−yi,

which is constructed iteratively as the algorithm progresses. After each α update, f is
updated for all points. This is one of the major computational steps of the algorithm, and
is done as follows:

f ′i = fi + (α′ihigh − αihigh)yihighΦ(xihigh , xi)

+ (α′ilow − αilow)yilowΦ(xilow , xi)
(5.6)

This step is referred to as “KKT update” in Figure 5.2(b).
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In order to evaluate the optimality conditions, we define index sets:

Ihigh = {i : 0 < αi < C} ∪ {i : yi > 0, αi = 0}
∪ {i : yi < 0, αi = C} (5.7)

Ilow = {i : 0 < αi < C} ∪ {i : yi > 0, αi = C}
∪ {i : yi < 0, αi = 0} (5.8)

Because of the approximate nature of the solution process, these index sets are computed
to within a tolerance ε, e.g. {i : 0 < α < C} becomes {i : ε < αi < (C − ε)}.

We can then measure the optimality of our current solution by checking the optimality
gap, which is the difference between bhigh = min{fi : i ∈ Ihigh}, and blow = max{fi : i ∈
Ilow}. When blow ≤ bhigh + 2τ , we terminate the algorithm.

Working Set Selection

During each iteration, we need to choose ihigh and ilow, which index the α weights which
will be changed in the following optimization step. The first order heuristic from [102]
chooses them as follows:

ihigh = arg min{fi : i ∈ Ihigh} (5.9)

ilow = arg max{fi : i ∈ Ilow} (5.10)

The second order heuristic from [71] chooses ihigh and ilow to optimize the unconstrained
SVM functional. An optimal approach to this problem would require examining

(
l
2

)
candi-

date pairs, which would be computationally intractable. To simplify the problem, ihigh is
instead chosen as in the first order heuristic, and then ilow is chosen to maximally improve
the objective function while still guaranteeing progress towards the constrained optimum
from problem (5.2). More explicitly:

ihigh = arg min{fi : i ∈ Ihigh} (5.11)

ilow = arg max{∆Fi(α) : i ∈ Ilow, fihigh < fi} (5.12)

After choosing ihigh, we compute for all i ∈ {1..l}

βi = fihigh − fi (5.13)

ηi = Φ(xihigh , xihigh) + Φ(xi, xi)− 2Φ(xihigh , xi) (5.14)

∆Fi(α) = β2
i /ηi (5.15)

We then find the maximum ∆Fi over all valid points (i ∈ Ilow) for which we are guaranteed
to progress towards the constrained optimum (fihigh < fi).

The second order heuristic utilizes more information from the SVM training problem,
and so it generally reduces the number of iterations necessary during the solution process.
However, it is more costly to compute. In our GPU implementation, the geometric mean
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of iteration time over our benchmark set using the second order heuristic increased by
1.9× compared to the first order heuristic. On some benchmarks, the total number of
iterations decreased sufficiently to provide a significant speedup overall, but on others, the
second order heuristic is counterproductive for our GPU implementation. [48] describes an
adaptive heuristic that can choose between the two selection heuristics dynamically in order
to achieve speedups on all benchmark problems.

Implementation

Since GPUs need a large number of threads to efficiently exploit parallelism, we create
one thread for every data point in the training set. For the first phase of the computation,
each thread computes f ′ from equation 5.6. We then apply a working set selection heuristic
to select the next points which will be optimized.

The SMO algorithm is a good fit for the GPU architecture for the following reasons:

1. From figure 5.2(b), it is clear that for small working set sizes, most of the time is
spent in updating the KKT conditions. This fits the GPU well because the individual
updates are independent and the memory accesses involved are regular.

2. The amount of shared state between the threads is small - only two points that are
involved in the QP have to be shared. This is important as the amount of shared
memory available is limited on the GPU.

3. By storing the data in both row major and column major formats, all memory accesses
can be coalesced, leading to good performance.

If we only stored the training data matrix (size is number of points × dimensions) in
column major format, then the memory loads for the 2 shared data points (for loading them
into shared memory) become uncoalesced. Uncoalesced access occurs with column major
format during the QP update step also where the dot product of two vectors is calculated.
To alleviate this, we store both the row major and column major versions of the data and
read from the appropriate version.

The Map Reduce pattern has been shown to be useful for many machine learning appli-
cations [55], and is a natural fit for our SVM training algorithm. Exploiting parallelism in a
map reduce pattern is relatively straightforward. The map stage is composed of independent
computations and can be directly parallelized. The reduce stage, by its very nature, requires
communication and synchronization. This makes implementation of the reduce stage com-
plicated and can lead to performance bottlenecks, especially on very parallel architectures
which have limited synchronization and communication abilities between threads, such as
the GPU. It can be shown that choosing a single reduction method a priori, that is optimal
for a particular data set size can yield performance that is up to 60× worse than the optimal
method for a different data set size [49]. We created a simple Map Reduce framework that
can help improve both productivity and efficiency while implementing the SVM training
application. Using autotuning [18], parameters such as the amount of local memory used,
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number of threads in a thread block, algorithm used for reduction etc. were optimized for
different data sizes.

For the first order heuristic, the computation of f ′i for all points is the map function,
and the search for blow, bhigh, ilow and ihigh is the reduction operation. For the second order
heuristic, there are two Map Reduce stages: one to compute f ′i , bhigh and ihigh, and another
where the map stage computes ∆Fi for all points, while the reduce stage computes blow and
ilow.

Because the CUDA programming model has strict limitations on synchronization and
communication between thread blocks, we organize the reductions in two phases. The first
phase does the map computation, as well as a local reduce within a thread block. The
second phase finishes the global reduction. Each phase of this process is implemented as a
separate call to the GPU.

In addition to parallelization, other optimizations for SVM training such as caching and
using local stores are performed. Caching rows of the kernel matrix Ki,j = Φ(xi, xj) reduces
the amount of computation needed if the row is already present in a precomputed form. This
is an optional optimization and does not change the correctness of the algorithm, for example
when the training data is large and there is no memory available for cache allocation. We
also use the local stores in the GPU to load the vectors corresponding to the two points
whose α’s were changed (if the corresponding rows do not exist in the cache). When the
vectors are too large to fit the GPU’s shared memory, this optimization gets disabled and
the algorithm proceeds without using the local store. Each thread is in charge of computing
two rows of the kernel matrix corresponding to the two points.

As mentioned in Chapter 4, GPUs have limited memory. In order to enable SVM training
to completely execute on the GPU, the only assumption we make is that the training data
is small enough to fit in GPU memory. If the data is too large to fit in GPU memory, then
techniques like Cascade SVM [83] can be used to solve smaller SVMs whose training set fits
in the memory and then combine the results.

5.4.2 Classification

As mentioned earlier, we look at the SVM classification as a BLAS3 computation in
order to exploit all the concurrency in the problem. We make use of vendor supplied
Basic Linear Algebra Subroutines - specifically, the matrix-matrix multiplication routine
(SGEMM), which calculates C = αAB + βC, for matrices A, B, and C and scalars α and
β. For the Linear, Polynomial, and Sigmoid kernels, calculating the classification value
involves finding the dot product between all test points and the support vectors, which is
done through SGEMM. For the Gaussian kernel, we use the simple identity ||x − y||2 =
x · x + y · y − 2x · y to recast the computation into a matrix-matrix multiplication where
x · y can be calculated using SGEMM. The Gaussian kernel requires computing Dij =
−γ||zi − xj||2 = 2γ(zi · xj)− γ(zi · zi + xj · xj), for a set of unknown points z and the set of
support vectors x. We then apply a map reduce computation to combine the computed D
values to get the final result of the SVM classifier.

Continuing the Gaussian example, we then exponentiate Dij element wise and multiply
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each column of the resulting matrix by the appropriate yjαj. We then sum the rows of the
matrix and add b to obtain the final classification for each data point as given by equation
(5.3). Other kernels require similar Map Reduce calculations to finish the classification.

We also discuss the optimizations that were performed on the CPU-based SVM classifier.
LIBSVM classifies data points serially. This effectively precludes data locality optimizations
and produces significant slowdown. It also represents data in a sparse format, which can
cause overhead as well.

To optimize the CPU classifier, we performed the following:

1. We changed the data structure used for storing the support vectors and test vectors
from a sparse indexed set to a dense matrix.

2. To maximize performance, we used BLAS routines from the Intel Math Kernel Library
to perform operations similar to those mentioned earlier.

3. Wherever possible, loops were parallelized (4-way for the quad-core machine) using
OpenMP.

The disadvantage of using SGEMM instead of performing SVM classification one-at-a-
time is increased memory footprint. If classification is performed one point at a time, then
we only need to store the kernels Φ(z, xi) with respect to all the support vectors xi. However,
SGEMM requires storing a matrix of size p × l where p is the number of test vectors and
l is the number of support vectors. If the number of test vectors is large, this matrix can
exceed the amount of GPU memory present in the system. The solution is to partition the
test vectors so that we process only as many as can fit the GPU memory.

5.5 Results

The SMO implementation on the GPU is compared with LIBSVM, as LIBSVM uses
Sequential Minimal Optimization for SVM training. We used the Gaussian kernel in all of
our experiments, since it is widely employed. The CPU used for measurement is an Intel
Nehalem Core i7 920 (quad core). The GPU used is an Nvidia Tesla C2050.

5.5.1 Training

We tested the performance of our GPU implementation versus LIBSVM on the datasets
detailed in tables 5.2 and 5.3.

The sizes of the datasets are given in table 5.3. References for the datasets used and the
(C, γ) values used for SVM training are provided in table 5.2.

We ran LIBSVM on an Intel Core i7 920 Nehalem processor, and gave LIBSVM a cache
size of 1 GB, which is larger than our GPU implementation was allowed. CPU-GPU com-
munication overhead was included in the solver runtime, but file I/O time was excluded for
both our solver and LIBSVM. Table 5.4 shows results from our solver. File I/O varies from
1.2 seconds for USPS to about 12 seconds for Forest dataset. The CPU - GPU data transfer
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Table 5.2: SVM Datasets - References and training parameters

Dataset C γ

Adult [12] 100 0.5
Web [134] 64 7.8125
MNIST [110] 10 0.125
USPS [97] 10 2−8

Forest [12] 10 0.125
Face [143] 10 0.125

Table 5.3: Dataset Sizes

Dataset # Points # Dimensions

Adult 32,561 123
Web 49,749 300

MNIST 60,000 784
USPS 7,291 256
Forest 581,012 54
Face 6,977 381

overhead was also very low. The time taken to transfer the training data to the GPU and
copy the results back was less than 0.6 seconds, even for our largest dataset (Forest).

Since any two solvers give slightly different answers on the same optimization problem,
due to the inexact nature of the optimization process, we show the number of support
vectors returned by the two solvers as well as how close the final values of b were for the
GPU solver and LIBSVM, which were both run with the same tolerance value τ = 0.001. As
shown in the table, the deviation in number of support vectors between the two solvers is
less than 2%, and the deviation in the offset b is always less than 0.1%. Our solver provides
equivalent accuracy to the LIBSVM solver, which will be shown again in the classification
results section.

Table 5.4: SVM Training Convergence Comparison

Dataset Number of SVs Difference
GPU LIBSVM in b (%)

Adaptive

Adult 18,674 19,058 -0.004
Web 35,220 35,232 -0.01
MNIST 43,730 43,756 -0.04
USPS 684 684 0.07
Forest 270,351 270,311 0.07
Face 3,313 3,322 0.01
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Table 5.5: SVM Training Results

Dataset GPU 1st Order GPU 2nd Order LIBSVM Speedup (×)
Iter. Time (s) Iter. Time (s) Iter. Time (s) 1st Order 2nd Order

Adult 116211 10.42 39994 8.06 43735 448.29 43.0 55.6
Web 82232 62.96 81498 125.91 85299 4557.96 72.4 36.2
MNIST 67932 172.28 67812 310.28 76385 13146.58 76.3 42.4
USPS 6356 0.464 3715 0.495 4614 2.175 4.7 4.4
Forest 2055409 1618.41 235046 652.85 277353 22122.74 13.7 33.9
Faces 6009 0.906 4844 1.16 5342 11.59 12.8 10.0

Table 5.5 contains performance results for the two solvers. We see speedups in all cases
from 4.4× to 76.3×. For reference, we have shown results for the solvers using both heuristics
statically.

5.5.2 Classification

Results for our classifier are presented in table 5.7. We achieve 4 − 372× speedup over
LIBSVM on the datasets shown. As with the solver, file I/O times were excluded from overall
runtime. File I/O times vary from 0.3 seconds for USPS dataset to about 17 seconds for
MNIST dataset.

For some insight into the CPU-based classifier results, we note that the optimized CPU
classifier performs best on problems with a large number of input dimensions, which helps
make the SVM classification process compute bound. For problems with a small number of
input dimensions, the SVM classification process is memory bound, meaning it is limited
by memory bandwidth. Since the GPU has much higher memory bandwidth, as noted in
Chapter 4, it is even more attractive for such problems.

These optimizations improved the classification speed on the CPU by a factor of 9−47×.
The speedup numbers for the different datasets are shown in table 5.7. It should be noted
that the GPU version is better than the optimized CPU versions by a factor of 0.4− 11×.
For very small problems like USPS, GPUSVM shows a slight slowdown compared to the
optimized CPU version. This is because of overheads involved in moving data over to
the GPU compared to the amount of computation needed for this problem. On all other
problems, GPUSVM has a significant performance improvement compared to the CPU
version.

We tested the combined SVM training and classification process for accuracy by using the
SVM classifier produced by the GPU solver with the GPU classification routine, and used the
SVM classifier provided by LIBSVM’s solver to perform classification with LIBSVM. Thus,
the accuracy of the classification results presented in table 5.6 reflect the overall accuracy
of the GPU solver and GPU classifier system. The results are identical, which shows that
our GPU based SVM system is as accurate as traditional CPU based methods.
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Table 5.6: Accuracy of GPU SVM classification vs. LIBSVM

GPU LIBSVM
Dataset Accuracy Accuracy

Adult 6619/8000 6619/8000
Web 3920/4000 3920/4000
MNIST 2365/2500 2365/2500
USPS 1948/2007 1948/2007
Face 23665/24045 23665/24045

Table 5.7: Performance of GPU SVM classifier compared to LIBSVM and Optimized CPU
classifier

LIBSVM CPU Optimized classifier GPU Classifier
Dataset Time (s) Time (s) Speedup (×) Time (s) Speedup (×) Speedup (×)

compared to compared to compared to
LIBSVM LIBSVM CPU optimized code

Adult 57.45 2.06 27.3 0.3435 163.5 6
Web 105.55 4.94 27.3 0.4370 241.5 11.3
MNIST 211.63 4.43 21.3 0.5676 372.9 7.8
USPS 0.77 0.080 9.7 0.1884 4.1 0.4
Face 74.13 2.21 33.47 0.3470 213.6 6.4

5.6 Summary

We discussed how support vector machine training and classification algorithms can be
parallelized and optimized on GPUs and multicore CPUs. The runtime improvement of
Support Vector Machines has been possible because of numerical optimizations, efficient
implementations and good memory management. Our contributions are as follows:

1. Showing that Sequential Minimal Optimization is the right SVM training algorithm
for GPUs because of its inherent concurrency and ease of implementation.

2. Performing reformulations to change SVM classification from a BLAS2 computation
to a BLAS3 computation, thereby increasing the compute efficiency on all parallel
platforms.

3. Performing memory management optimizations to fit data structures used for SVM
training and classification in local stores and in GPU memory respectively without
affecting the accuracy.

The transformation of the SVM classification from a BLAS2 to a BLAS3 problem im-
proved the speed by a factor of 9 − 47× on CPUs and 4 − 372× on GPUs compared to
LIBSVM. Improving the SVM training implementation using multiple copies of data in dif-
ferent formats, kernel caching using local memories on the GPU, proper address alignment,
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using dense instead of sparse data structures etc. lead to a highly competitive and scalable
implementation with a 4 − 76× speedup. Optimizations to make large SVM classification
problems fit in GPU memory have made the implementation more portable by adapting to
different GPUs and problem sizes.

The overall contribution is showing that computationally heavy algorithms in machine
learning can be run on GPUs without compromising accuracy even with restrictions in
programming model and memory capacity (DRAM and local store). Mapping these com-
putations to hardware using frameworks based on patterns (such as Map Reduce) is the one
of the main ways to improve productivity and efficiency while moving to parallel platforms.
Data parallel frameworks built on these concepts such as Copperhead [45] have been shown
to improve productivity for the SVM training problem.

Chapter 6 describes the parallelization and algorithmic exploration for mapping optical
flow & point tracking to GPUs.
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Chapter 6

Optical Flow and Point Tracking

In this chapter we discuss optical flow and tracking, techniques that are needed for
motion analysis in video sequences. When analyzing video data, motion is probably the most
important cue, and the most common techniques to exploit this information are difference
images, optical flow, and point tracking. Difference images are useful when the camera is
static, most of the scene is stationary and there is limited motion. In that case, taking the
difference of two images directly gives us the location and magnitude of motion. Optical
flow calculates a displacement map or flow field for every pixel in every frame of the video.
There are no restrictions on camera or scene motion and is usually calculated between
successive frames of a video sequence. Hence, it is extremely localized in time i.e. optical
flow is dense spatially, but sparse temporally. Point tracking tries to track points over
several frames, thus is temporally denser compared to optical flow. It is usually sparse
spatially i.e. only a few pixels are tracked in each frame. We will focus on only optical
flow and point tracking as they allow us to extract rich information that is not restricted
to static cameras. The goal here is to enable accurate motion tracking for a large set of
points in the video in as close to real time as possible. The quality of the estimated flow
field or a set of point trajectories is very important as small differences in the quality of the
input features can make a high level approach succeed or fail. To ensure accuracy, many
methods only track a sparse set of points; however, dense motion tracking enables us to
extract information at a much finer granularity compared to sparse feature correspondences.
Hence, one wants to use the most recent motion estimation technique providing the most
reliable motion features for a specific task. For dense and accurate tracking there are
usually computational restrictions. Video data processing requires far more resources than
the analysis of static images, as the amount of raw input data is significantly larger. For
example, video captured at 1080p resolution at 30 frames/sec produces about 11 GB of raw
data per minute.This often hinders the use of high-quality motion estimation methods, which
are usually quite slow [147] and require expensive computer clusters to run experiments
efficiently. For this reason, ways to significantly speedup such methods on commodity
hardware are an important contribution as they enable more efficient research in fields that
build upon motion features. Fast implementations of the KLT tracker and optical flow
[184, 183] are examples that have certainly pushed research.
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In this chapter, we present a fast parallel implementation of large displacement optical
flow (LDOF) [36], a recent variational optical flow method that can deal with faster motion
than previous optical flow techniques. The numerical schemes used in [36] and most vari-
ational methods are based on a coarse-to-fine warping scheme, where each level provides
an update by solving a nonlinear system given by the Euler-Lagrange equations followed
by fixed point iterations and a linear solver, as described in [34]. However, the relaxation
techniques used in the linear solver that work best for serial processors are not efficient on
parallel processors. We investigate alternative solvers that run well on parallel hardware,
in particular red-black relaxations and the conjugate gradient method. We show that the
conjugate gradient method is faster than red-black relaxations, especially on larger images.
We also prove that the fixed point matrix is positive definite, thus guaranteeing the con-
vergence of the conjugate gradient algorithm. We obtain a speedup of about 37×, which
allows us to compute high quality LDOF for 640×480 images in 1.8 seconds compared to
a sequential C++ implementation. Extrapolating the current progress in technology, the
same code will even run in real-time in only a few years. While additional speedup can often
be obtained at the cost of lower quality, we ensured in our implementation that the quality
of the original method is preserved.

We also propose a method for dense point tracking by building upon the fast implementa-
tion of large displacement optical flow. Point trajectories are needed whenever an approach
builds on long term motion analysis. The dominant method used for this task is the KLT
tracker [150], which is a sparse technique that only tracks a very small number of designated
feature points. While for many tasks like camera calibration such sparse point trajectories
are fully sufficient, other tasks like motion segmentation or structure-from-motion would
potentially benefit from higher densities. In [147] and [146], a method for point tracking
based on dense variational optical flow has been suggested. The method proposed in [147]
is computationally very expensive and impractical to use on large datasets without accel-
eration. The point tracking we propose uses a similar technique, as points are propagated
by means of the optical flow field; however, we do not build upon another energy minimiza-
tion procedure that detects occluded points mainly by appearance, but do the occlusion
reasoning by a forward-backward consistency check of the optical flow. In a quantitative
comparison on some sequences from [117], where close to ground truth optical flow has been
established by manually annotating the objects in the scene, we show that we can establish
much denser point trajectories with better quality than the KLT tracker. At the same time,
our method is more accurate and runs an order of magnitude faster than the technique in
[146].

6.1 Background

As mentioned in Chapter 4, optical flow computations rely on a brightness constancy
assumption along with a constraint on flow smoothness. Most of the commonly used optical
flow techniques lack the ability to handle large displacements of small objects like limbs or
balls in sports videos. This is due to the fact that they rely on coarse-to-fine refinement in
order to solve the optimization problem and avoid getting stuck in a local minimum. This
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is based on the assumption that the motion is small at all scales. However, this is not valid
for fast moving small objects. Under this refinement the objects are too small to be seen
at the scale in which their motion is small, whereas at the scale at which the objects are
visible, the small motion assumption is not valid.

Large displacement optical flow (LDOF) is a variational technique that integrates dis-
crete point matches, namely the midpoints of regions, into the continuous energy formulation
and optimizes this energy by a coarse-to-fine scheme to estimate large displacements also
for small scale structures [32]. As pointed out in [36], region matching can be replaced with
matching other features like densely sampled histograms of oriented gradients (HOG) [61].
These simpler features allow us to implement both the variational solver and the discrete
matching efficiently on the GPU.

The considered energy functional that is minimized reads:

E(w) =

∫

Ω

Ψ1

(
|I2(x + w(x))− I1(x)|2

)
dx (6.1)

+γ

∫

Ω

Ψ2

(
|∇I2(x + w(x))−∇I1(x)|2

)
dx + α

∫

Ω

ΨS

(
|∇u(x)|2 + |∇v(x)|2

)
dx

+β

∫

Ω

δ(x) ρ(x) Ψ3(|w(x)−w1(x)|2)dx +

∫

Ω

δ(x) |f2(x + w1(x))− f1(x)|2dx

where w = (u v)T and Ψ∗(s
2) is a general penalizer function with its derivative Ψ′∗(s

2) > 0.
A popular choice in the literature is Ψ∗(s

2) =
√
s2 + ε2 [36]. The first term in the energy

functional is the brightness constancy term. The second is brightness gradient constancy
which is used to avoid problems with global illumination changes. The third term is the
regularization for keeping the flow smoothly varying. The last two terms correspond to large
displacement matching. ρ(x) corresponds to the confidence of a feature match and f1(x)
& f2(x) are the feature vectors at x in the two frames. w1(x) is the matching position in
frame 2 for the point x in frame 1.

We minimize (6.1) by writing the Euler-Lagrange equations and solving them through a
coarse-to-fine scheme with fixed point iterations. This results in a sequence of linear systems
to be solved, where each pixel corresponds to two coupled equations in the linear system:
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k
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For details on the derivation of these equation we refer to [36]. The overall structure of the
solver is shown in Figure 6.1.
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Figure 6.1: High level structure of the large displacement optical flow solver.

6.2 Problem

Optical flow is a much needed computation for performing a variety of video content
analysis applications. However, its running time on even 640 × 480 sized frames is unac-
ceptably high. Given the amount of video data that is being generated, faster than real
time optical flow is critical for performing large scale video analysis. For example, youtube
has more than 83 million videos (average 3 minutes long) and adds more than 24 hours
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of video data every minute [182]. Performing optical flow on this database on a cluster of
36000 nodes with current serial optical flow implementations will take about 6 years, which
is clearly not practical. In addition, optical flow is only a feature that is used by other
algorithms downstream in the processing pipeline. In this scenario, techniques that improve
the runtime of optical flow algorithms are an important contribution.

Dense point tracking is important for long term video motion analysis. Point tracks have
been used for camera calibration, video object segmentation, creating video annotations [80]
etc. The biggest bottleneck in many of these algorithms is computing these point tracks.
Techniques that try to extract high quality point tracks like [147] take an inordinate amount
of time in processing (more than 100 seconds per frame, excluding optical flow). Speeding
up this computation is critical for wide applicability of point tracking in video applications.
At the algorithmic level, point tracking requires integrating optical flow over a sequence of
frames. Our hypothesis is that high quality point tracking just needs better optical flow,
and not better integration techniques. Thus a large amount of computation that goes into
clever integration techniques such as [147] can be eliminated and point tracking performed
efficiently.

6.3 Related work

Finding efficient solutions to variational optical flow problems has been an active area of
research. On serial hardware, multi-grid solvers based on Gauss-Seidel have been proposed
in [39]. A GPU implementation of the formulation in [39] has been proposed using Jacobi
solvers [85]. Compared to [85], our implementation handles large displacements through
dense descriptor matching. The descriptor matching in large displacement optical flow
induces high additional costs apart from the linear solver. Such extensions enable us to
handle fast motion well [32], [36]. A multi-grid red-black relaxation has been suggested in
a parallel implementation of the linear CLG (Combined Local-Global) method [88]. Very
efficient parallel GPU implementations of other variational optical flow models have been
proposed in [183, 174, 177]. These approaches follow a different numerical scheme by directly
solving the nonlinear system based on dual formulations of the original problem rather than
running fixed point iterations with a linear solver.

The conjugate gradient algorithm is a popular solver for convex problems and has been
used for optical flow problems with convex quadratic optimization [109]. In order to theo-
retically justify the use of conjugate gradients, we prove that the system matrix of general
variational optical flow methods is positive semi-definite (and non-singular) and thus the
conjugate gradient solver is guaranteed to converge. It was previously proven that the Horn-
Schunck matrix is positive definite [125]. Our proof is more general and applicable to most
variational formulations such as [39], [34], [40] and [32].

The most popular point tracker is the Kanade-Lucas-Tomasi (KLT) tracker [150], which
constructs an image pyramid, chooses points that have sufficient structure and tracks them
across frames. New features are periodically detected to make up for the loss of features
because of occlusions and tracking errors. This is generally considered to be fast and ac-
curate, but it tracks only a few points. Efficient GPU implementations of the KLT tracker
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have been released in [154] and [184]. While the KLT algorithm itself is quite old, the im-
plementation in [184] compensates for changes in camera exposure to make it more robust.
Non-local point trackers that use global information have also been proposed [19].

The more advanced point tracker in [147] and [146] tracks points by building on top of
a variational technique. This comes with high computational costs. It takes more than 100
seconds to track points between a pair of 720×480 frames. Moreover, this technique cannot
deal with large displacements of small structures like limbs, and it has never been shown
whether tracking based on variational flow actually performs better than the classic KLT
tracker.

6.4 Our approach

The biggest challenges in parallelizing optical flow involve optimizing the numerical
schemes used in the energy minimization problem. In addition to efficient parallelization of
all the computations in the optical flow solver, better numerical techniques are essential for
good performance. Section 6.5 shows the results of using better numerical techniques on
both CPUs and GPUs.

A parallel implementation of the descriptor matching is relatively straightforward since
several points are being searched for in parallel without any dependencies between them. It is
important, however, to take advantage of coalesced memory accesses (vector loads/stores) in
order to maximize the performance of the GPU. In the rest of the section, we will focus on the
parallel implementation of the variational solver that considers these point correspondences.

As shown in Section 6.1, we have to solve a linear system of equations in the inner loop
of the optical flow solver. From symmetry considerations, the problem discretization usually
produces a symmetric block pentadiagonal matrix with 2×2 blocks (for a 5-point Laplacian
stencil). From equation (6.2), it is clear that only the diagonal blocks are dense, while the
off-diagonal blocks are diagonal matrices. In fact, for the isotropic functionals we consider
here, they are scaled identity matrices.

6.4.1 Positive semi-definiteness of the fixed point matrix.

We prove that the fixed point matrix is symmetric positive semi-definite because (a) the
diagonal blocks are positive definite and (b) the matrix is block diagonally dominant [73].
An interesting takeaway from the proof is that it is not restricted to convex penalty functions
Ψ∗. The only restriction on Ψ∗ is that it should be increasing. Moreover, the proof technique
generalizes to most variational optical flow methods, e.g. [34], [39],[32] and [40]. Details of
the proof are provided below.

Proof of positive definiteness

The sparsity structure of the matrix derived from the system of equations (6.2) is shown
in Figure 6.2. The connectivity looks similar to a 2D Laplacian stencil matrix.
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Figure 6.2: Sparse matrix showing the decomposition into dense 2 × 2 blocks. Filled dots
represent non-zeroes and hollow dots & unspecified elements represent zeroes.

We present a brief introduction to the necessary mathematical background. We refer
the readers to [73] for more details. Throughout the following discussion, we consider only
real matrices.
||A|| denotes the norm of the matrix and is defined as follows:

||A|| = sup
x6=0

||Ax||
||x|| (6.3)

where ||x|| refers to the L2 norm of the vector. If A is a symmetric square matrix, then
||A|| = |λmax(A)|.

A is a block diagonally dominant matrix with blocks {Ai,j : 1 ≤ i, j ≤ N} if

||A−1
i,i ||−1 ≥

N∑

j=1,j 6=i

||Ai,j|| 1 ≤ i ≤ N (6.4)

A =




A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N
...

...
. . .

...
AN,1 AN,2 . . . AN,N




If all {Ai,j} are symmetric square matrices, then the condition for block diagonal domi-
nance becomes,

λmin(Ai,i) ≥
N∑

j=1,j 6=i

|λmax(Ai,j)| (6.5)

Accordingly, the matrix is positive semi-definite if the diagonal blocks are positive semi-
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Figure 6.3: Diagonal blocks for pixel i. Ψ′1,Ψ
′
2 and Ψ′S are defined as follows: Ψ′1 :=
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k + Iky dv
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k + Ikxz)
2 + (Ikxydu
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2)),
Ψ′3 = Ψ′((uk + duk − u1)2 + (vk + dvk − v1)2) Ψ′S := Ψ′(|∇(uk + duk)|2 + |∇(vk + dvk)|2).
N(i) denotes the neighborhood of pixel i.

definite and the matrix is block diagonally dominant [73].

Lemma 6.4.1 The diagonal blocks of the matrix in the system of equations (6.2) are positive
definite.

Proof Consider a 2× 2 matrix (
x y
y z

)

This matrix is positive semi definite iff

x+ z ≥ 0 and y2 ≤ xz. (6.6)

Construction of the 2× 2 diagonal block matrix in the fixed point matrix [36] is shown
in Figure 6.3. For convenience, we drop the pixel reference i from now on. All assignments
are assumed to be made for a pixel i.

Let

s = α(
∑

j∈N(i)

Ψ′S(j)) (6.7)

p = Ψ′1I
2
x + γΨ′2(I2

xx + I2
xy) + βρΨ′3 (6.8)

q = Ψ′1I
2
y + γΨ′2(I2

yy + I2
xy) + βρΨ′3 (6.9)

r = Ψ′1IxIy + γΨ′2(IxxIxy + IxyIyy) (6.10)

It is obvious that p, q ≥ 0 and s > 0. If the gradients are not zero, we have p, q > 0.
The 2× 2 matrix becomes (

p+ s r
r q + s

)

From relation (6.6), the necessary and sufficient conditions for positive definiteness be-
come

r2 < (p+ s)(q + s) (6.11)

(as p+ q + 2s > 0)

⇒ r2 < pq + s(p+ q) + s2 (6.12)
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It is sufficient to prove that r2 ≤ pq as the rest of the terms on the right hand side are
non-negative.

pq − r2 = [Ψ′1I
2
x + γΨ′2(I2

xx + I2
xy) + βρΨ′3]

×[Ψ′1I
2
y + γΨ′2(I2

yy + I2
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−[Ψ′1IxIy + γΨ′2Ixy(Ixx + Iyy)]
2 (6.13)
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xy)]

+γ2Ψ′22 (I2
xxI
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xy
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xy)]

= Ψ′1Ψ′2γ[(IxIyy − IyIxy)2

+(IyIxx − IxIxy)2]
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xy)

2

+βρΨ′3Ψ′1(I2
x + I2

y )

+βγρΨ′3Ψ′2(I2
xx + I2

yy + 2I2
xy) (6.14)

≥ 0 (6.15)

⇒ r2 ≤ pq (6.16)

⇒ r2 < pq + s(p+ q) + s2 (as s > 0) (6.17)

Lemma 6.4.2 The matrix from the system of equations (6.2) is block diagonally dominant

Proof Let a = max(p, q) and b = min(p, q). The eigenvalues of this matrix are a + s + δ
and b+ s− δ where

δ =
1

2
[
√

(a− b)2 + 4r2 − (a− b)] (6.18)

Note that δ ≥ 0. The smallest eigenvalue (λmin) is b+ s− δ.
The off-diagonal matrices are diagonal. In fact, due to the equivalence between the x

and y dimensions, they are identity matrices scaled by a constant (αΨ′S). Therefore the sum
of the maximum eigenvalues of the off-diagonal matrices becomes,

N∑

j=1,j 6=i

|λmax(Ai,j)| = α(
∑

j∈N(i)

Ψ′S(j)) (6.19)

= s (6.20)

(from equation (6.7))
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For block diagonal dominance, we require

b+ s− δ ≥ s (6.21)

b ≥ δ (6.22)

⇒ 2b ≥
√

(a− b)2 + 4r2 − (a− b) (6.23)

(a+ b)2 ≥ (a− b)2 + 4r2 (6.24)

4ab ≥ 4r2 (6.25)

pq ≥ r2 (6.26)

which is true from equation (6.16).
Hence, the matrix is block diagonally dominant.

Theorem 6.4.3 The matrix from the system of equations (6.2) is symmetric positive semi-
definite.

Proof From Lemmas 6.4.1 and 6.4.2, the inner point matrix has positive definite diagonal
blocks and is block diagonally dominant. It is also irreducible (as the connectivity extends
to another element in the same row and column - usually true for any discrete Laplacian
stencil). Due to symmetry in the Laplacian stencil, the matrix is also symmetric.

Therefore, the matrix is symmetric positive semi-definite. If the gradient is not the same
everywhere, i.e., the matrix is not singular, it is even positive definite [73]. We will assume
that the matrix is non-singular for our application.

Linear solvers involving positive (semi-)definite matrices can be much more efficient than
those involving indefinite matrices. We will discuss how this property can be exploited for
improving the performance of the linear solver and consequently the optical flow solver.

6.4.2 Linear solvers.

On the CPU, the linear system is usually solved using Gauss-Seidel relaxations, which
have been empirically shown to be very efficient in this setting [37]. The Gauss-Seidel method
is guaranteed to converge if the matrix is symmetric positive definite. Unfortunately, the
Gauss-Seidel technique is inherently sequential as it updates the points in a serial fashion.
It is hard to parallelize it efficiently on multi-core machines and even harder on GPUs.

It is possible to choose relaxation methods that have slightly worse convergence charac-
teristics, but are easy to parallelize, such as red-black relaxation [157]. A single red-black
relaxation consists of two half iterations - each half iteration updates every alternate point
(called red and black points). The updates to all the red points are inherently parallel
as all the dependencies for updating a red point are the neighboring black pixels and vice
versa. Usually, this method is used with successive overrelaxation. Since we have a set of
coupled equations, each relaxation will update (ui, vi) using a 2× 2 matrix solve. Red-black
relaxations have been used in a previous parallel optical flow solver [88].

Besides red-black relaxation, we consider the conjugate gradient method. This requires
symmetric positive definiteness as a necessary and sufficient condition for convergence. The
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convergence of the conjugate gradient technique depends heavily on the condition number
of the matrix κ = λmax

λmin
. The condition numbers of the matrices obtained in the optical flow

problems are very large and hence, convergence is usually slow.
A standard technique for improving convergence for ill-conditioned matrices is precon-

ditioning to reduce the condition number of the system matrix. The pre-conditioner must
be symmetric and positive definite. The special structure of the matrix allows for several
regular pre-conditioners that work well in practice. In particular, we know that the diag-
onal blocks of the matrix are positive definite. Hence, a block diagonal matrix with only
the diagonal blocks of the matrix is symmetric and positive definite and forms a good pre-
conditioner. This pre-conditioner is usually referred to as a block Jacobi preconditioner.
From now on, unless specified, we use the term conjugate gradient solver to refer to the
preconditioned conjugate gradient solver with a block Jacobi preconditioner.

Performing this algorithmic exploration is important as choosing the right algorithm for
the right platform is essential for getting the best speed-accuracy tradeoff. This fast LDOF
implementation can now be used to track points in video.

6.4.3 Point tracking with large displacement optical flow

We demonstrate the utility of our LDOF implementation by suggesting a point tracker.
In contrast to traditional local point trackers like KLT [150], variational optical flow takes
global smoothness constraints into account. This allows the tracking of far more points as
the flow field is dense and tracking is not restricted to a few feature points. Moreover, large
displacement optical flow enables tracking limbs or other fast objects more reliably than
conventional trackers.

Our tracking algorithm works as follows: a set of points is initialized in the first frame of
a video. In principle, we can initialize with every pixel, as the flow field is dense. However,
areas without any structure are problematic for tracking with variational optical flow as
well. For this reason, we remove points that do not show any structure in their vicinity as
measured by the second eigenvalue λ2 of the structure tensor

Jρ = Kρ ∗
3∑

k=1

∇Ik∇I>k , (6.27)

where Kρ is a Gaussian kernel with standard deviation ρ = 1. We ignore all points where
λ2 is smaller than a certain portion of the average λ2 in the image.

Depending on the application, one may actually be interested in fewer tracks that uni-
formly cover the image domain. This can be achieved by spatially subsampling the initial
points. Fig. 6.4 shows a subsampling by factor 8. The coverage of the image is still much
denser than with usual keypoint trackers.

Each of the points can be tracked to the next frame by using the optical flow field
w := (u, v)>:

(xt+1, yt+1)> = (xt, yt)
> + (ut(xt, yt), vt(xt, yt))

>. (6.28)

As the optical flow is subpixel accurate, x and y will usually end up between grid points.
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Figure 6.4: Left: (a) Initial points in the first frame using a fixed subsampling grid. Mid-
dle: (b) Frame number 15 Right: (c) Frame number 30 of the cameramotion sequence.
Figure best viewed in color.

We use bilinear interpolation to infer the flow at these points.
The tracking has to be stopped as soon as a point gets occluded. This is extremely

important, otherwise the point will share the motion of two differently moving objects.
Usually occlusion is detected by comparing the appearance of points over time. In contrast,
we detect occlusions by checking the consistency of the forward and the backward flow,
which we found to be much more reliable. In a non-occlusion case, the backward flow vector
points in the inverse direction as the forward flow vector: ut(xt, yt) = −ût(xt + ut, yt + vt)
and vt(xt, yt) = −v̂t(xt + ut, yt + vt), where ŵt := (ût, v̂t) denotes the flow from frame t+ 1
back to frame t. If this consistency requirement is not satisfied, the point is either getting
occluded at t + 1 or the flow was not correctly estimated. Both are good reasons to stop
tracking this point at t. Since there are always some small estimation errors in the optical
flow, we grant a tolerance interval that allows estimation errors to increase linearly with the
motion magnitude:

|w + ŵ|2 < 0.01
(
|w|2 + |ŵ|2

)
+ 0.5. (6.29)

We also stop tracking points on motion boundaries. The exact location of the motion
boundary, as estimated by the optical flow, fluctuates a little. This can lead to the same
effect as with occlusions: a tracked point drifts to the other side of the boundary and
partially shares the motion of two different objects. To avoid this effect we stop tracking a
point if

|∇u|2 + |∇v|2 > 0.01 |w|2 + 0.002. (6.30)

In order to fill the empty areas caused by disocclusion or scaling, in each new frame we
initialize new tracks in unoccupied areas using the same strategy as for the first frame.

6.5 Results

The implementation platform consists of an Intel Core i7 920 processor running at 2.67
GHz in conjunction with a Nvidia GTX 480 GPU. For the LDOF implementations, almost
all of the computation is done on the GPU and only minimal amount of data is transferred
between the CPU and the GPU. We use Nvidia CUDA tools (v3.0) for programming the
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GPU. The CPU code was vectorized using the Intel compiler with all the optimizations
enabled.

For the tracking experiments, the KLT tracker used also runs on GPUs. A description
of the exact algorithm is provided in [184]. The implementation in [184] also compensates
for changes in camera exposure and provides real-time performance on the GPU considered.
Default parameters were used unless otherwise specified.

6.5.1 Large displacement optical flow

Runtime for large displacement optical flow has come down from 68 seconds for the
previous serial implementation on CPU to 1.84 seconds for the parallel implementation on
GPU, a speedup of 37× for an image size of 640 × 480. This implementation searches for
Histogram of Gradients (HOG [61]) feature matches in a neighborhood of ±80 pixels, uses
η = 0.95, 5 fixed point iterations and 10 Conjugate gradient iterations to achieve the same
overall Average Angular Error (AAE) as the CPU version on the Middlebury dataset. It is
also possible to run the optical flow algorithm at a slightly reduced accuracy (AAE increase
of about 11%) at 1.1 seconds per frame. We look closely at the choice of the linear solver
that enabled this speedup.

Performance of linear solvers

Figure 6.5 shows the convergence of different solvers for the optical flow problem. We
measure convergence through the squared norm of the residual ||b−Axm||2. The rates of con-
vergence are derived from 8 different matrices from images in the Middlebury dataset [14].
Red-black and Gauss-Seidel solvers use successive overrelaxation with ω = 1.85. The matri-
ces considered were of the largest scale (smaller scales show very similar results). The initial
vector in all the methods was an all-zero vector. Using a better initialization procedure (the
result of a previous fixed point iteration, for instance) also shows similar results.

From Fig. 6.5, we can see why the Gauss-Seidel solver is the preferred choice for serial
platforms. It converges well and is relatively simple to implement. In the numerical scheme
at hand, however, we do not desire absolute convergence, as solving any one linear system
completely is not important to the solution of the nonlinear system. It is more important
to have a quick way of refining the solution and removing all the large errors. For a few
iterations (30 or less), it is clear that the preconditioned conjugate gradient solver con-
verges fastest. Non-preconditioned conjugate gradient is not as efficient because of the high
condition number of the matrix.

Although it is clear from Fig. 6.5 that conjugate gradient converges quickly in terms
of the number of iterations required, a single iteration of conjugate gradient requires more
computation than a Gauss-Seidel or a red-black iteration. Table 6.1 shows the runtimes of
the solvers. Even though red-black relaxations are also parallel, we can see from Fig. 6.5
that we require roughly 3× as many red-black iterations as conjugate gradient iterations to
achieve the same accuracy. Red-black iterations are 1.4× slower than CG overall. Gauss-
Seidel iterations, running on the CPU, are 53× slower compared to conjugate gradient on the
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Figure 6.5: Rates of convergence for different techniques considered. Y-axis shows the value
of the residual normalized to the initial residual value averaged over 8 different matrices.
Figure best viewed in color
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GPU. Note that the preconditioned conjugate gradient method is beneficial on multicore
CPUs as well with a speedup of 4.6× with 4 threads. This shows that the numerical
optimizations are independent of hardware and need to be optimized irrespective of the
target architecture.

Linear Solver Time taken
(in milliseconds)

Gauss-Seidel (Serial CPU) 445.93
Red-black (Parallel GPU) 11.97

Conjugate Gradient (Parallel GPU) 8.39
Conjugate Gradient (Parallel CPU) 96.93

Table 6.1: Average time taken by the linear solvers for achieving residual norm < 10−2 of
initial norm

The major bottleneck in the conjugate gradient solver is the sparse matrix-vector mul-
tiply (SpMV). Care has been taken to lay out the matrix in memory properly to enable
the data access patterns needed for the implementation. Since the matrix is block pen-
tadiagonal, we use the diagonal format (DIA)[16] for storage. This leads to very efficient
loads and stores from GPU memory. For parallelization, we perform a decomposition of the
image into 16× 16 segments, each of which is processed by a single thread block. There is
limited reuse in the vector in SpMV and this can be exploited using GPU’s local scratchpad
memory (shared memory). All these optimizations enable the SpMV to run at 53 GFlops
on the GPU. This is significant considering that the matrix is quite sparse (≤ 6 non-zeros
per row). Under such conditions, most of the time in the kernel is spent fetching data to
and from GPU main memory. Similar behavior is seen with the red-black relaxations, where
25% of the time is spent in floating point operations, while 75% of the time is spent in mem-
ory loads and stores. Red-black relaxations also have less computation to communication
ratio (all the points are read, but only half the points are updated), which reduces their
performance. The block Jacobi preconditioner is calculated on the fly every iteration. For
applying the preconditioner, each pixel requires a 2 × 2 matrix-vector multiplication that
can be performed independently.

Image Downsampling

Downsampling takes about 6% of the total runtime of large displacement optical flow.
Since we perform a coarse-to-fine refinement, we have to downsample the original images
to several different scales. For 640×480 sized frames at η = 0.95, there are 67 refinement
levels. For each of the levels, we downsample from the original full-size images to the
required resolution.

It is also to be noted that implementing such direct downsampling on a GPU is com-
plicated. In particular, depending on the size of the downsampled image, different ways
of parallelizing the computation can be more efficient. This is because of the fact that
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the amount of computation at different levels of the parallelism hierarchy vary smoothly
as we go from coarse to fine resolutions. Figure 6.6 shows two different strategies that can
be adopted for this computation to fit GPU’s 2-level hierarchy (multiprocessor vs SIMD).
Such a hierarchy exists in almost all parallel hardware today. In particular, one can map
downsampling to GPU in 2 ways:

Downsampling by thread: Each GPU thread (SIMD lane) calculates the value of a single
output pixel by performing the averaging serially.

Downsamping by block: Each GPU block calculates the value of a single output pixel
by parallelizing the averaging over its threads.

Algorithm: Downsampling
Input: In (Input image)

s (downsampling scale < 1)
Output: Out (Output image)
1 for each pixel (x,y) in Out
2 Out(x, y)←Average of pixels in In{

⌊
y
s

⌋
to
⌊
y+1
s

⌋
,
⌊
x
s

⌋
to
⌊
x+1
s

⌋
}

3 end for

(a) Downsampling Algorithm. Both lines 1 and 2 contain concurrency. The amount of
concurrency in each stage depends on the scale of downsampling.

(b) Graphical representation of downsampling strategies. Left Downsampling at 50% of original resolution.
There is more concurrency in line 1 of the algorithm above. Right Downsampling at 25% of original resolution.
There is more concurrency in line 2 of the algorithm above. In both figures, the red pixels on the left indicate
the pixels that need to be averaged over to get the value of the pixel on the right.

Figure 6.6: Concurrency in downsampling

Figure 6.7 shows the runtime variation for downsampling the input images as we down-
sample the 640× 480 images from 20× 15 (0.1% pixels) to 608× 466 (90% pixels). We see
that the crossover point is at a scale of 4.5% (0.2% pixels). For downsamping scales below
4.5%, downsampling by block is better, whereas for larger scales downsampling by thread
is better. This combination is the strategy we use for the rest of our computation.
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Figure 6.7: Comparison of different downsampling strategies. The crossover point is at a
scale of 4.5% (0.2% of pixels).

Runtime breakdown

Figure 6.8 shows the breakdown of the serial optical flow solver that uses Gauss-Seidel
and the parallel solver that uses conjugate gradient. The solvers were run with η = 0.95,
5 fixed point iterations and 25 Gauss-Seidel iterations/10 Conjugate gradient iterations to
achieve similar AAE on the Middlebury dataset. From both Figure 6.8(a) and 6.8(b), it
is clear that the HOG matching and the linear solver are the most computation intensive
components in the solvers. In both cases, they take more than 75% of the total runtime.

Accuracy

Table 6.2 shows the average angular error measured using our technique on the Middle-
bury dataset. These results have been achieved with the setting (γ = 4, β=30, α = 9, η
= 0.95, fixed point iterations = 5, Gauss-Seidel iterations = 25/CG iterations = 10). The
data shows that the method provides similar accuracy to the CPU version while running
fast on the GPU.

Data Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus Average
AAE(CPU) 1.84 2.67 6.35 2.44 3.96 2.55 4.79 6.46 3.88
AAE(GPU) 1.84 2.51 5.94 2.37 3.91 2.47 5.43 6.38 3.86

Table 6.2: Average Angular Error (in degrees) for images in the Middlebury dataset.

For faster computations, we use the parameter set (η = 0.75, 5 fixed point iterations, 10
linear solve iterations) to reduce the runtime by 38% with a degradation in AAE of 11%.
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Figure 6.8: Breakdown of execution times for serial and parallel variational optical flow
solvers. Both solvers are run at a scale factor of 0.95, with 5 fixed point iterations and
25 Gauss-Seidel iterations/10 CG iterations to achieve similar AAE. Figure best viewed in
color.

6.5.2 Tracking

We measure the accuracy of the tracking algorithms with the MIT sequences [117].
This dataset provides the ground truth optical flow for whole sequences and the sequences
are much longer. This allows us to evaluate the accuracy of tracking algorithms. After
obtaining the point trajectories from both KLT and LDOF, we track points using the given
ground truth to predict their final destination. Tracking error is measured as the mean
Euclidean distance between the final tracked position and the predicted position on the
final frame according to the ground truth for all the tracked points. LDOF is run with
η = 0.95, 5 fixed point iterations and 10 iterations for the linear solver in all the following
experiments. Since the default parameters for the KLT tracker failed in tracking points in
long sequences, we increased the threshold for positive identification of a feature from 1000
to 10000 (SSD threshold parameter).

Accuracy

For our first experiment, we compare the accuracy of the trackers for a short fixed time
(first 10 frames of all the sequences). Since tracking algorithms should ideally track points
over long times without losing points, we only consider those points that are tracked through
all the 10 frames. Table 6.3 shows the accuracy and density of the tracking algorithms.

Table 6.3 also shows the accuracy of all the tracked points and also of only the common
points. Even without this normalization of number of tracks using only common points,
LDOF outperforms KLT by 28%. When considering only those points that are tracked by
both techniques, LDOF outperforms KLT by 40%. This means that even if one is interested
in only sparse points, it makes sense to use the more accurate LDOF tracker.
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Table 6.3: Tracking accuracy of LDOF and KLT over 10 frames of the MIT sequences
All tracked points Common points only

Sequence LDOF KLT LDOF KLT
name Mean error Points Mean error Points Mean error Points Mean error Points

in pixels tracked in pixels tracked in pixels tracked in pixels tracked

table 1.57 135803 3.19 403 1.18 363 1.69 363
camera 0.46 149654 1.69 576 0.43 353 0.98 353

fish 0.98 234993 3.82 507 0.82 388 2.98 388
hand 5.84 176673 3.91 549 2.59 505 3.34 505
toy 1.43 414183 1.61 906 1.01 800 1.17 800

We also compare the accuracy of the trackers for the entire length of the sequences. The
real advantage of our approach comes in while tracking long sequences. Trackers like KLT
keep losing features and need to be constantly detecting new features every few frames to
track well. From Table 6.4, it is clear that LDOF tracks almost three orders of magnitude
more points than KLT with 46% improvement in overall accuracy. For tracking only the
common points, the LDOF tracker is 32% better than KLT. These numbers exclude the
fish sequence since it has transparent motion caused by dust particles moving in the water.
Although we were able to track this sequence well, performance on this sequence is sensitive
to parameter changes.

All tracked points Common points only
Sequence Number LDOF KLT LDOF KLT

name of frames Mean error Points Mean error Points Mean error Points Mean error Points
in pixels tracked in pixels tracked in pixels tracked in pixels tracked

table 13 1.48 114651 3.78 363 1.04 293 1.39 293
camera 37 1.41 101662 3.78 278 1.01 185 2.64 185

fish 75 3.39 75907 35.62 106 3.12 53 5.9 53
hand 48 2.14 151018 3.11 480 1.87 429 2.39 429
toy 18 2.24 376701 2.88 866 1.70 712 1.89 712

Table 6.4: Tracking accuracy of LDOF and KLT over all the frames of the MIT sequences

Compared to the Particle Video point tracker in [146], our tracker is 66% more accurate
for the common tracks. Since ground truth data does not exist for the sequences used
in [146], it is not possible to have objective comparisons on metrics other than the average
round trip error (The videos are mirrored temporally, so all unoccluded pixels should return
to their starting positions). For comparison, we use only the full-length particle trajectories
provided by the authors of [146] at http://rvsn.csail.mit.edu/pv/data/pv. Details of the
comparison are provided in Table 6.5.2.

Occlusion handling

We use the region annotation data from the MIT dataset to measure the occlusion
handling capabilities of the algorithms. The LDOF tracker has an occlusion error of 3%
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All tracked points Common points only
Sequence Number LDOF Particle Video LDOF Particle Video

name of frames Mean error Points Mean error Points Mean error Points Mean error Points
in pixels tracked in pixels tracked in pixels tracked in pixels tracked

Mouth 70 0.51 114643 7.62 6364 0.79 1232 2.88 1232
Hand 70 0.59 140726 3.15 7029 0.74 3998 3.00 3998
Cars 50 0.30 142052 1.09 10812 0.38 5612 0.84 5612

Branches 50 0.60 125086 5.49 2883 0.71 946 4.49 946
Hall 50 0.73 108641 2.01 7649 0.78 4205 1.57 4205

Person 50 0.47 114335 8.15 6342 0.48 4048 8.18 4048
Shelf 50 0.60 119881 5.98 9016 0.55 4723 5.90 4723

Treetrunk 50 0.40 204777 3.65 9002 0.49 7132 3.71 7132
Plant 70 0.50 170361 2.07 8078 0.84 3347 1.17 3347
Tree 70 0.27 168905 1.51 5529 0.29 2566 1.17 2566

RectFast 80 0.08 112992 0.78 10516 0.06 4558 0.10 4558
RectLight 80 0.11 112478 0.66 9277 0.08 3909 0.14 3909
RectSlow 80 0.12 119457 0.61 11046 0.09 4812 0.14 4812
CylFast 50 0.15 109939 1.90 10688 0.11 4069 0.27 4069
CylLight 50 0.19 120985 1.17 11789 0.14 4214 0.32 4214
CylSlow 50 0.15 126924 1.08 12208 0.11 4816 0.19 4816
ZoomIn 40 2.07 15908 3.17 8880 1.93 416 3.64 416

ZoomOut 40 2.45 14838 8.50 9334 2.43 253 8.59 253
RotateOrtho 90 3.34 28984 3.07 11934 3.03 800 2.66 800
RotatePersp 90 2.90 19660 2.11 10965 2.84 432 1.14 432

Average 61.5 0.83 109579 3.20 8967 0.84 3304 2.51 3304

Table 6.5: Tracking accuracy of LDOF and Sand-Teller tracker over the sequences used in
[146]
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(tracks that drift between regions/objects) while the KLT tracker has an occlusion error of
8%. Given that KLT tracker is already very sparse, this amounts to a significant number
of tracks that are not reliable (they do not reside on the same object for the entire time).
After excluding all the tracks that were known to have occlusion errors, LDOF outperforms
KLT by 44%. Since all the ground truth occlusions are known, we measure the tracking
density (% of unoccluded points that the tracker was successful in tracking through the
entire sequence without any occlusion errors). The LDOF tracker has an average tracking
density of 48%, i.e., it tracks roughly half of the points that are not occluded for the entire
length of the sequence, while KLT has a density of about 0.1%. Table 6.6 presents the data
on occlusion handling.

KLT LDOF
Sequence Number of Mean error Number of Mean error Tracking

occluded tracks with no occlusion occluded tracks with no occlusion Density (%)

table 11 2.73 853 1.41 39.6
camera 8 3.68 558 1.37 39.9

fish 30 31.79 8321 2.7 53.0
hand 10 2.90 2127 1.81 46.8
toy 31 2.58 5482 2.11 61.4

Table 6.6: Occlusion handling by KLT and LDOF trackers based on region annotation from
the MIT data set. Occluded tracks indicate tracks that are occluded according to the ground
truth data, but not identified as such by the trackers.

Large displacements

The MIT sequences still mostly contain small displacements and hence KLT is able to
track them well (if it does not lose the features). However, there are motion sequences
with large displacements that are difficult for a tracker like KLT to capture. In the tennis
sequence [32], there are frames where the tennis player moves very fast, producing motion
that is hard to capture through simple optical flow techniques. Since ground truth data
does not exist for this sequence, we manually labeled the correspondences for 39 points on
the player between frames 490, 495 and 500. These points were feature points identified by
KLT in frame 490. The results for the points tracked on the player are shown in Table 6.7
and Figure 6.9. It is clear that the LDOF tracker tracks more points with better accuracy,
while capturing the large displacement of the leg.

Runtime

The cameramotion sequence with 37 frames of size 640×480, requires 135 seconds. Out
of this, 125 seconds were spent on LDOF (both forward and backward flow). Such runtimes
allow for convenient processing of large video sequences on a single machine equipped with
cheap GPU hardware.
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LDOF KLT
Frames Mean error Points tracked Mean error Points tracked

in pixels on player in pixels on player

490-495 2.55 (22) 8157 3.21 (19) 21
490-500 2.62 (8) 3690 4.12 (4) 4

Table 6.7: Tracking accuracy of LDOF and KLT for large displacements in the tennis
sequence with manually marked correspondences. Numbers in parentheses indicate the
number of annotated points that were tracked.

Figure 6.9: (Top) Frame 490 of the tennis sequence with (left) actual image, (middle)
KLT points and (right) LDOF points. (Bottom) Frame 495 of the sequence with (left)
actual image, (middle) KLT points and (right) LDOF points. Only points on the player
are marked. KLT tracker points are marked larger for easy visual detection. Figure best
viewed in color.
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6.6 Summary

We described how large displacement optical flow can be efficiently parallelized and
implemented on GPUs. We saw that the most compute intensive component of the optical
flow solver is a linear solver. We proved that the linear system is positive definite, thus
justifying the use of the conjugate gradient solver. We described the tradeoffs between
runtime per iteration and number of iterations among different serial and parallel linear
solvers and showed why we decided on the preconditioned conjugate gradient solver as our
solver of choice. We discussed how our fast optical flow can be used as a base for a point
tracking system.

The main contributions are as follows -

1. Showing that the linear system of equations used in optical flow systems in positive
semi-definite even when the penalty function is non-convex, thus theoretically guar-
anteeing the convergence of all the solvers used (assuming non-singular matrix).

2. Showing that the preconditioned conjugate gradient solver is more efficient than red-
black relaxations and is more scalable on multicore processors and GPUs.

3. Showing that accurate optical flow is more important for point tracking than compli-
cated integration techniques and developing a point tracker that is denser and more
accurate than existing state-of-the-art point trackers while still tracking large displace-
ments.

We showed how specializing numerical algorithms to specific problems is essential when
parallelizing computer vision applications. Linear solvers that worked well in the serial case
are easily overtaken by other solvers on parallel hardware. Our experiments quantitatively
show for the first time that tracking with dense motion estimation techniques provides better
accuracy than KLT feature point tracking by 46% on long sequences and better occlusion
handling. We also achieve 66% better accuracy than the Particle Video tracker. Our point
tracker based on LDOF improves the density by up to three orders of magnitude compared
to KLT and handles large displacements well, thus making it practical for use in motion
analysis applications. The overall contribution, in addition to efficient implementations of
optical flow and point tracking, is showing how important algorithmic exploration is in the
context of computer vision algorithms, especially with the use of iterative algorithms where
the solution is only required to converge to a fixed numerical accuracy. Many linear algebra
problems in computer vision are iterative algorithms like linear solvers, eigensolvers, singular
value decomposition etc. In the next chapter, we will discuss image and video segmentation
algorithms that involve large eigensolvers.
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Chapter 7

Image and Video Segmentation

In this chapter, we discuss how image and video segmentation applications can be accel-
erated. We show how image segmentation problems can be speeded up significantly through
improvements to local gradient and eigensolver computations. By ensuring portability of
the eigensolver across different GPUs, in particular those with less memory, we have been
able to extend our approach to solve video segmentation problems. We also show that our
video segmentation approach is superior to other existing video segmentation techniques.

7.1 Background and Motivation

Segmentation of images and videos is required before analyzing either media for object
detection and recognition etc. However, the process of segmentation is not simple because
it mirrors a subjective human process. Textures, illumination variations, color differences,
depth discontinuities etc. create artificial boundaries within the same object while different
objects can look similar. Segmentation algorithms need to be aware of this problem and take
it into account. The original image segmentation algorithms were edge detection algorithms
based on spatial gradients in the image. Examples of such edge detection techniques include
Prewitt, Sobel and Canny [43] edge detectors etc. These detectors were mostly based on
calculating local gradients on brightness images. More accurate techniques for image contour
detection are based on spectral segmentation and normalized cuts as introduced by Shi and
Malik [151].

As discussed in Chapter 4, the normalized cuts approach requires solving an eigenvalue
problem on an image affinity graph. For our work, we perform image segmentation using
global Probability of boundary (gPb) [119], a technique that combines multiscale localized
boundary detectors and normalized cuts. The highest quality image contour detection
currently known, as measured on the Berkeley Segmentation Dataset [123], is the gPb
detector. Details of this detector are given in Section 7.2.

The normalized cuts approach can also be used for video segmentation. However, the
major constraining factors are the size of the affinity matrix and the computational require-
ments. There is also a need to extend the calculation of pixel affinities to pixels belonging to
different frames. This can be done only when we know the correspondence between pixels
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in both the frames as the camera or scene objects could have moved. This correspondence
problem is exactly the one solved by optical flow. Hence, optical flow is essential for extend-
ing the normalized cuts approach to video segmentation. More details on how we extend
the segmentation to video are given in Section 7.5.3.

We will look at the details of the gPb image contour detector in the next section.

7.2 The gPb Detector

The gPb detector consists of many modules, which can be grouped into two main compo-
nents: mPb, a detector based on local image analysis at multiple scales, and sPb, a detector
based on the Normalized Cuts criterion. An overview of the gPb detector is shown in figure
7.1.
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Figure 7.1: The gPb detector

The mPb detector is constructed from brightness, color and texture channels from the
image. The brightness and color channels are obtained from a RGB to CIELAB trans-
formation. The L channel measures brightness and the A,B channels measure the color.
Textons are calculated through k-means clustering from a multiscale filter bank [121]. For
each channel, we estimate the probability of boundary using the multiscale detector from
[122]. This probability of boundary PbC,σ(x, y, θ) is calculated at each pixel (x, y) and 8
orientations for each channel C at multiple scales. At each pixel, PbC,σ(x, y, θ) is calculated
as the χ2 distance between the histograms computed on channel C over the two halves of a
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disk centered at (x, y) with radius σ and dividing the disk at an angle θ. The mPb detector
is then constructed as a linear combination of the local cues, where the weights αij are
learned by training on an image database:

mPb(x, y, θ) =
4∑

i=1

3∑

j=1

αijPbCi,σj(x, y, θ) (7.1)

The mPb detector is then reduced to a pixel affinity matrix W , whose elements Wij

estimate the similarity between pixel i and pixel j by measuring the intervening contour
[112] between pixels i and j. Due to computational concerns, Wij is not computed between
all pixels i and j, but only for some pixels which are near each other. In this case, we use
Euclidean distance as the constraint, meaning that we only compute Wij ∀i, j s.t. ||(xi, yi)−
(xj, yj)|| ≤ r, otherwise we set Wij = 0. We set r = 5 for all our experiments.

This constraint, along with the symmetry of the intervening contour computation, en-
sures that W is a symmetric, sparse matrix, which guarantees that its eigenvalues are real,
significantly influencing the algorithms used to compute sPb. Once W has been constructed,
sPb follows the Normalized Cuts approach [151], which approximates the NP-hard normal-
ized cuts graph partitioning problem by solving a generalized eigensystem. To be more
specific, we must solve the generalized eigenproblem:

(D −W )v = λDv, (7.2)

where D is a diagonal matrix constructed from W : Dii =
∑

jWij. Only the k+ 1 eigenvec-
tors vj with smallest eigenvalues are useful in image segmentation and need to be extracted.
In this case, we use k = 16. The smallest eigenvalue of this system is known to be 0, and
its eigenvector is not used in image segmentation, which is why we extract k + 1 eigenvec-
tors. After computing the eigenvectors, we extract their contours using Gaussian directional
derivatives at multiple orientations θ, to create an oriented contour signal sPbvj(x, y, θ). We
combine the oriented contour signals together based on their corresponding eigenvalues:

sPb(x, y, θ) =
k+1∑

j=2

1√
λj
sPbvj(x, y, θ) (7.3)

The final gPb detector is then constructed by linear combination of the local cue infor-
mation and the sPb cue:

gPb(x, y, θ) = γ · sPb(x, y, θ) +
4∑

i=1

3∑

j=1

βijPbCi,σj(x, y, θ) (7.4)

where the weights γ and βij are also learned via training. To derive the final gPb(x, y)
signal, we maximize over θ, threshold to remove pixels with very low probability of being a
contour pixel, skeletonize, and then renormalize.

We will discuss how we make this computation efficient and how we can extend this
approach to videos.
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7.3 Problem

gPb computation requires more than 138, 000 floating point operations per pixel as
previously mentioned in Chapter 2. Given the rise in the computational requirements for
image contour detection algorithms over the years, it is necessary to find ways to execute
these algorithms efficiently through numerical optimizations and efficient implementations
that take advantage of the hardware.

Dense eigenproblems usually scale as O(N3), where N is the matrix dimension. How-
ever, since we need only few extreme (smallest in our case) eigenvalues and eigenvectors of
a real, symmetric positive semidefinite matrix, we use efficient techniques like Lanczos al-
gorithm. Unfortunately, not all steps of the Lanczos algorithm are efficiently parallelizable;
in particular, the reorthogonalization of Lanczos vectors is computationally very expensive.
Performing eigendecomposition on video affinity matrices takes much longer because of the
increase in the size of the matrix by a factor of O(m), where m is the number of frames in
the video.

The affinity matrices required for performing eigenvalue decomposition are large. For
example, for a 640×480 image, the matrix is of size 100 MB. Each iteration of the eigensolver
needs 1.2MB of memory. With a GPU with memory of 1 GB, the maximum number of
iterations that can be fit is only 750. This may not be sufficient as the the eigensolver usually
requires 500 - 1000 iterations for convergence. Hence, we need ways to efficiently solve the
eigenvalue problem within a finite amount of memory. In addition to this problem, many
of the GPUs in use are small ones, used primarily for graphics. These GPUs, commonly
used in laptops and low-end machines have less than 512 MB of graphics memory. In order
to enable portability to these machines, it is necessary to pay particular attention to this
memory problem.

This challenge is even more pronounced for video segmentation. For a video sequence
with a resolution of 640×480 and having 100 frames, the affinity matrix reaches a size
of about 30 GB. Adding the memory required to store the temporary values during the
computation, the total memory required for the computation reaches 150 GB. This is clearly
infeasible even with a small cluster of GPUs unless the algorithms are modified to use less
memory.

Even if we manage to calculate the eigenvectors for video affinity matrices, there are fur-
ther obstacles. It is well known that using spectral segmentation over long time scales leads
to smooth transitions and blending. Ideally, pixels belonging to the same cluster have simi-
lar values in the eigenvector space no matter how far they are (spatially or temporally). In
practice, smooth transitions occur over long time periods and the identity of pixels belong-
ing to a single object changes over time. Therefore in addition to making the computations
efficient, we also need to find a way to produce robust and accurate segmentations from the
eigenvector data.
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7.4 Related Work

7.4.1 Image segmentation

Image segmentation remains an active field of study for many reasons and in fact seg-
mentation and recognition are the main challenges in computer vision. Normalized cuts
[151] has become the most popular method for performing image contour detection even
though it is computationally very intensive. Prior to that, image contour detection was
mainly done through edge detection techniques such as Sobel, Prewitt and Canny [43]. In
the case of Sobel and Prewitt edge detectors, we apply 3 × 3 filters (which are similar to
differential operators) on the image. Canny edge detector detects edges at multiple ori-
entations and uses non-maximum suppression to pick an edge orientation for every pixel.
This edge magnitude gets thresholded and an edge map results. Apart from normalized
cuts, the other popular technique in use today is the one by Felzenszwalb et al [74]. This
technique uses minimum spanning tree as the basis for agglomerative clustering to produce
image segmentations. However, these other techniques have been shown to be inferior in
accuracy to techniques based on normalized cuts like gPb [119].

We also briefly summarize some of the prior work that have tried to improve the runtime
and accuracy of the normalized cuts technique. Techniques like [124] showed that using mul-
tiple cues like brightness, texture and color improves segmentation accuracy. [141] showed
that using multiscale techniques is essential for good segmentation. Improvements like gPb
[119] have combined both local and global segmentations in order to produce better image
contours. gPb has been shown to have the highest accuracy on the Berkeley Segmentation
Data Set [123]. However, it is still impractical to use on large datasets and video sequences
because of the high computational requirements. It takes more than 4 minutes to segment
a 481× 321 image using gPb [47]. Techniques to parallelize and improve on the runtime of
gPb and in particular, the eigensolver used, are an important contribution to the field.

Improvements to the eigensolver have been studied by a few researchers. Dhillon et al [66]
reformulated normalized cuts as a form of weighted kernel k-means clustering algorithm that
can be solved very efficiently. However, gPb requires the eigenvectors of the affinity matrix,
not just the graph partition corresponding to the smallest normalized cut. Techniques like
[165] use a multigrid strategy in order to improve runtime. The eigenproblem is solved
at a coarser scale and is used to initialize the problem at finer scales and refined using
inverse iterations. [59] approximate the affinity matrix using low-rank approximations that
theoretically improves accuracy by increasing the connectivity. All the above mentioned
techniques have been shown to increase accuracy or speed at the cost of the other i.e.
the techniques have not been able to increase speed without sacrificing accuracy. On the
other hand, our parallelization of gPb on GPUs and optimizations to the eigensolver have
resulted in speedups with no loss of accuracy. The improvements to the eigensolver have
been portable across many different applications such as video segmentation [161], point
trajectory classification [35] etc., which are all based on spectral segmentation.

As mentioned earlier, we use the Lanczos algorithm for solving the eigenproblem. Since
reorthogonalization of vectors turned to be a major bottleneck in this method, approaches
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like [60] have been used to remove the need for reorthogonalization. However, a straight-
forward application of this technique on GPUs will not be successful due to the limited
amount of memory that GPUs have. We need to be able to run large eigensolvers in limited
GPU memory, which will improve the portability of the technique while simultaneously
taking advantage of the improved memory bandwidth that GPUs provide.

7.4.2 Video segmentation

Dense video segmentation is being actively studied by the computer vision community.
We will discuss some of the more recent approaches to this problem. Some of the recent
techniques for doing video segmentation include Multiple Hypothesis Video Segmentation
(MHVS) [167], hypergraph segmentation [96], hierarchical graph based segmentation [86],
Circular Dynamic Time Warping (CDTW) [30] and [63]. MHVS [167] works by performing
2D superpixel segmentation of the frames at multiple scales and tries to find the best hy-
pothesis that connects the superpixels from one frame to another. In order to do this, MHVS
uses higher order potentials on a Conditional Random Field (CRF) and performs inference
on the resulting graphical model. Hierarchical graph based segmentation [86] (which builds
on [74]) proposes the creation of a hierarchical 3D super pixel (super voxel) representation
for videos. They achieve this by creating a region graph and combining adjacent nodes if
the “internal variation” of both the nodes is larger than the edge weight between the nodes.
Hypergraph segmentation [96] works by extending the classic normalized cuts approach
[151] to hypergraphs created from 2D superpixels produced from the oversegmentation of
individual frames. DeMenthon [63] uses a Hough transform-like approach with 3D volume
to identify objects in video. Brendel and Todorovic [30] use CDTW to temporally coalesce
2D superpixels obtained from image segmentation into 3D volumes. All of these approaches
are either based on 2D superpixels (in which case temporal coherency has been difficult to
maintain) or are not very robust (segmentation is noisy).

On the other hand, multi-body factorization and related methods are being used for
motion based classification in videos. These methods usually rely on point trajectories
extracted from the video. Some of the recent techniques that have been proposed for clas-
sifying point trajectories based on motion include [35, 139, 169, 181]. The technique in
[35] performs spectral clustering on point trajectories. It also introduces a data set of la-
beled images sampled densely in space and time. We use this data set (also referred to as
the motion segmentation data set) for obtaining quantitative results for video segmenta-
tion. Other methods for performing clustering of point trajectories are factorization based
approaches like Generalized Principal Component Analysis (GPCA) [169], Local Subspace
Analysis(LSA) [181] and Agglomerative Subspace Clustering (ALC) [139]. A major draw-
back of all these approaches is the difficulty in getting dense labels for videos. At best, these
techniques label only about 3 − 4% of the pixels in the video. This might be sufficient for
identifying large moving blobs like people or vehicles, but is not adequate for doing tasks
like editing videos by cutting/pasting objects or segmenting objects that are distinct in
appearance but are not moving independently.

Using Spectral clustering for segmentation was popularized by normalized cuts [151]. Shi
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and Malik [152] used a normalized cuts approach to do video segmentation. However, the
technique was constrained by the lack of computational power, limiting video segmentation
to only ∼10 frames. Also, image contour detection has since improved through the addition
of multiscale local information and an improved integration of spectral and multiscale local
information (gPb) [119]. These additions along with the improved reliability in extracting
optical flow from videos and tremendous improvements in computational power from GPUs
have brought back the viability of organizing video segmentation as a generalization of image
segmentation.

7.5 Our approach

In order to improve the performance of gPb and extend it to video, we made the following
contributions.

1. Showed that using integral images for calculating local cues does not reduce accuracy
while speeding up the computation

2. Engineered an eigensolver that is able to run even when there is only about 256MB of
memory, thus making it portable across a wide range of GPU hardware from laptops
to clusters

3. Extended the technique to long video sequences and showing that the accuracy of this
technique is comparable to or better than other existing techniques.

7.5.1 Calculating Local cues

First, we explain how we perform local cues computation in gPb. As mentioned in
Section 7.2, in globalPb [119], multiscale gradients are calculated for brightness, color and
texture channels. Brightness, texture and color gradients are calculated as χ2-distance
between the histograms of half-disks at every pixel at different orientations and scales on
the brightness, texture and color channels respectively. This computation requires a lot of
redundant computation. For example, local sums calculated at scale σ can be reused while
calculating histograms at scales > σ. This can be done using integral images [115]. Integral
image I(x, y) for an image f(x, y) is defined as follows:

I(x, y) =
x∑

i=1

y∑

j=1

f(i, j) (7.5)

Integral image has proved to be a very successful technique for reducing the runtime of
computing Haar-like features [115], histograms in rectangular regions [170] etc. With integral
images, the sum of f(x, y) over any rectangular region can be calculated in constant time
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by equation 7.6.

x2∑

i=x1

y2∑

j=y1

f(i, j) = I(x1 − 1, y1 − 1) + I(x2, y2)− I(x1 − 1, y2)− I(x2, y1 − 1) (7.6)

By having an integral image for every bin of computed histogram, we can accelerate
the local cues computation. However, the key challenge here is that the sums need to be
calculated at multiple orientations not just rectangles aligned with the x and y axes.

In order to use integral images, we approximate the half-disks over which histograms
are computed as rectangles. See [122] for more details. The rest of this section deals
with our technique for computing the rotated integral images and showing that their error
performance is better than that of nearest neighbour interpolation for rotation, while also
improving performance.

Computing rotated integral images

In order to produce rotated integral images, we first rotate the image using a method of
choice and then compute the integral image as is done for unrotated images. The problem
associated with computing rotated images is to maintain the same number of pixels with
a one-to-one correspondence between the original and rotated images. The usual solution
to this problem is to use nearest neighbor interpolation to fill in pixels that do not exactly
correspond to a pixel in the input image. Doing nearest neighbor interpolation produces
artifacts due to missing pixels (some pixels in the original image do not appear on the
rotated image) and multiple counting (some pixels in the original image appear many times
in the rotated image). Getting rid of this problem is essential because for some categories
(like texture channels using textons), interpolation does not make sense. For example, a
pixel that needs to be interpolated from pixels with textons 1 and 3 cannot be interpolated
to the mean value 2 as the categories are unordered. We propose using Bresenham lines to
do the rotation because it overcomes this problem and is more accurate. Bresenham lines
are widely known for producing lines of a given length and orientation on a discrete grid
[31].

Bresenham rotation introduces some computational inefficiencies due to the fact that
they increase the size of the image on which integral image should be computed. Using
Bresenham lines to maintain image integrity i.e. have a unique pixel for every pixel in
the original image, produces rotated images that are larger than the original images. This
is because a line of n pixels at an angle θ produced by Bresenham rotation is of actual
length n

cosθ
. This can be more easily seen in figure 7.2. Bresenham rotation produces

images that are atmost twice as large as the original image, the largest occurring at θ = π
4
.

Bresenham rotation is more accurate than nearest neighbor interpolation, since pixels are not
missed or multiply counted during the image integration, as occurs using nearest neighbor
interpolation. Therefore, we use it in our local cue detector.
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Figure 7.2: Bresenham rotation: Rotated image with θ = 18◦ clockwise, showing “empty
pixels” in the rotated image.

7.5.2 Memory management in eigensolver

As previously mentioned, the eigensolver in gPb is implemented using the Lanczos al-
gorithm. We use Lanczos because this algorithm is optimized for finding the extremal
eigenvalues and eigenvectors of symmetric positive semidefinite matrices. In our case, we
find the n smallest eigenvalues and the corresponding eigenvectors. Figure 7.3 shows the
pseudocode of the Lanczos algorithm.

Since the Lanczos algorithm is heavily bandwidth bound, running the algorithm on GPUs
can improve performance as GPUs have high memory bandwidth. However, the disadvan-
tage of using GPUs is their limited memory capacity. Lanczos algorithm is iterative, and
requires us to store a large amount of intermediate data (Vj in figure 7.3). We describe how
we overcome this shortcoming and manage to run the eigensolver on GPUs with insufficient
memory.

The Lanczos algorithm requires reorthogonalization of the Lanczos vectors because of
the loss of orthogonality caused by floating point round off errors as calculations are done
with finite precision. This process of reorthogonalizing the vectors is compute intensive.
However, we note an important property of the problem; since the eigenvectors of the
matrix correspond to segmentations, we expect the eigenvalues of the matrix to be unique.
In other words, different eigenvectors have distinct eigenvalues. This assumption lets us use
the Cullum-Willoughby method [60] and remove the need for reorthogonalization. Catanzaro
et al [47] showed how this optimization can produce speedups of over 20× compared to doing
full reorthogonalization at every iteration.

However, the problem with doing no reorthogonalization is that it requires many more
iterations than when performing reorthogonalization. In such a scenario, it is very easy to
run out of GPU memory to store the Lanczos vectors. We note that not all the Lanczos
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Algorithm: Lanczos
Input: A (Symmetric Matrix)

v (Initial Vector)
Output: Θ (Ritz Values)

X (Ritz Vectors)
1 Start with r ← v
2 β0 ← ‖r‖2

3 for j ← 1, 2, . . . , until convergence
4 (r, vj, αj) = LanczosIteration(r, βj−1, A, vj−1)
5 Reorthogonalize if necessary
6 βj ← ‖r‖2

7 Compute Ritz values Tj = SΘST

8 Test bounds for convergence
9 end for
10 Compute Ritz vectors X ← VjS

function LanczosIteration(rin, βj−1, A, vj−1)
1 vj ← rin/βj−1

2 r ← Avj
3 r ← r − vj−1βj−1

4 αj ← v∗j r
5 r ← r − vjαj
6 return (r, vj, αj)

Figure 7.3: The Lanczos algorithm.

vectors V are required to be stored as they are only needed for calculating X ← VjS.
If S is known, then this matrix multiplication can be split into several smaller matrix
multiplications e.g., X ← V 1

j S
1, followed by X ← X + V 2

j S
2 where Vj = [V 1

j V
2
j ] and

ST = [S1TS2T ]. This would let us avoid storing Vj and execute the computation without
overflowing GPU memory. However, we need to run the Lanczos algorithm to calculate S.
Since we do not need to store more than two vectors when calculating Tj, we can fit the
entire calculation on the GPU and run the Lanczos algorithm until line 9 in the algorithm
(Figure 7.3). Once S has been calculated, we rerun the algorithm again, but this time we
update X within the loop. We could technically update X using an outer product update
every iteration. However, we can improve the computational efficiency by doing an update
every k iterations, where k is calculated according to the amount of GPU memory available.
Figure 7.4 shows the pseudocode of the modified Lanczos algorithm.

This optimization, while allowing the eigensolver to run on small GPUs, has no effect
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Algorithm: Lanczos with no reorthogonalization modified to use less memory
Input: A (N ×N Symmetric Matrix)

v (Initial Vector)
n (Number of eigenvalues/eigenvectors needed)

Output: Θ (Ritz Values)
X (Ritz Vectors)

1 Start with r ← v
2 k ← (Amount of GPU memory available - N · n) / (N + n)
3 β0 ← ‖r‖2

4 for j ← 1, 2, . . . , until k
5 (r, vj, αj) = LanczosIteration(r, βj−1, A, vj−1)
10 βj ← ‖r‖2

11 Compute Ritz values Tj = SΘST

12 Test bounds for convergence using Cullum-Willoughby method
13 if (converged)
14 Compute Ritz vectors X ← VjS
15 return Θ, X
16 end if
17 end for
18 for j ← k + 1, k + 2, . . . until convergence
19 (r, vj, αj) = LanczosIteration(r, βj−1, A, vj−1)
24 βj ← ‖r‖2

25 Compute Ritz values Tj = SΘST

26 Test bounds for convergence using Cullum-Willoughby method
27 p← j
28 end for
29 for j ← 1, 2, . . . until p
30 (r, vj, αj) = LanczosIteration(r, βj−1, A, vj−1)
35 βj ← ‖r‖2

36 if (j mod k == 0)
37 X ← X + V k

j S
k

38 end if
39 end for
40 return Θ, X

Figure 7.4: The Lanczos algorithm modified to use less memory.
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on the performance on larger GPUs. When the GPU has sufficient memory to fit the
whole problem, the execution is exactly similar to the original Lanczos algorithm. However,
when the GPU memory is insufficient, we revert to the 2-pass algorithm in order to run
the eigensolver. In essence, we are able to achieve both efficiency and portability for this
computation.

Moving to video segmentation, this is all the more important because the number of
iterations required for convergence increases with the size of the matrix as O(ln N) [106].
For video segmentation, N is of the order of 107. In such cases, even with multiple GPUs,
there is no possibility of being able to fit all the vectors in memory. As we show later, the
eigensolver for the video case takes around 2000 iterations, while there is space in the GPUs
to store only about 160 vectors. Being able to accommodate the limited memory capacity
of GPUs has been critical for extending the technique to video segmentation.

7.5.3 Extension to video segmentation

Given the performance improvements achieved though our work on image segmentation
[47], we decided to apply similar techniques to solve the problem of video segmentation.
We demonstrate that video object segmentation can utilize techniques similar to image
segmentation techniques that are known to work like gPb [119]. In particular, this obviates
the need for extensive probabilistic reasoning and/or hyper graph creation that other video
segmentation algorithms utilize when dealing with 2D super pixels. In contrast to such
techniques, we perform spectral segmentation at the pixel level.

Our technique works as follows : We compute boundaries at the frame level indepen-
dently using intensity, color, texture and motion cues. We use these cues to create an affinity
matrix for the entire video. The generalized eigenvectors of the normalized affinity matrix
corresponding to the smallest eigenvalues are calculated. A clustering algorithm is run on
the eigenvectors and 3D superpixels are obtained. This initial boundary is refined using
ultrametric contour maps and a stable segmentation is produced.

Optical Flow

Optical flow is required for two reasons in video segmentation.

1. In order to differentiate pixels within a frame based on their motion.

2. In order to link corresponding pixels in different frames according to the motion.

We use Large displacement optical flow (LDOF) [36] for computing the motion vectors
between adjacent frames. LDOF has been shown to be accurate in tracking fast moving
objects compared to other trackers. We use the parallel optical flow technique described
in Chapter 6 for running on GPUs. LDOF works well in natural videos where fast motion
is common (e.g. fast moving hands, legs etc. of people). Fast and accurate optical flow
computation is a crucial component for the success of video segmentation.

In addition to computing the optical flow, we also calculate the confidence that the
computed flow is correct. If the forward (from frame i to i+ 1) and backward (from frame
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i + 1 to i) flow vectors do not match at any point, then it implies an error in the optical
flow calculation or occlusion, both of which are valid reasons to reduce our confidence. We
use the following function for forward-backward reliability check and scale the affinities
accordingly. The confidence factor is given by

C(w, ŵ) = 1− tanh

( |w + ŵ|2
α (|w|2 + |ŵ|2) + β

)
(7.7)

where where w := (u, v) denotes the flow from frame i to i+ 1 and ŵ := (û, v̂) denotes the
flow from frame i+ 1 back to frame i. We use α = 0.01 and β = 0.5.

Eigensolver for video segmentation

At the core of our video segmentation algorithm is spectral clustering. The video is
represented as a graph with pixels as nodes and interpixel affinities as edge weights. Affinities
are computed over a small radius around every pixel and a pixel affinity matrix is computed.
In our case, the affinities are calculated between pixels in the same frame and between
frames. This is essential for successful clustering of moving regions in different frames. In
the absence of inter-frame pixel affinities, the problem just decomposes into computing the
eigenvectors of different frames independently and no information is shared. The affinity
values computed between pixels in different frames provides the necessary linkage.

+  +  +  + 
P 

P’  Q’  Q 

Figure 7.5: Calculating inter frame pixel affinities. Frames 45 and 46 of the Tennis sequence
[35] are shown. In order to calculate the affinity between pixels P and Q, we calculate the
forward projection of P (Q′) and the backward projection of Q (P ′). Affinity between P &
Q is calculated using equation (7.8).

Figure 7.5 shows how we calculate inter-frame pixel affinities. Simply trying to extend
the concept of local gradients and intervening contours to 3 dimensions is problematic for
the following reason: While defining affinities based on the intervening contour is possible
in images in spite of the (relatively) large neighborhood sizes, it becomes impractical to do
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in 3D (2D space + time) because of the explosion in matrix size to impractical limits. We
limit this by only calculating affinities between pixels in adjacent frames.

After limiting the pixel affinities to just 2 frames at a time, we define the neighborhood
around which affinities are calculated based on optical flow. Figure 7.5 shows how this is
done. For a pixel P in frame i, we calculate affinities between P and pixels centered around
the point Q′ in frame i+ 1. We calculate the affinity between pixel P in frame i and point
Q in frame i+ 1 as follows:

f(P,Q) = min( fi(P, P
′), fi+1(Q′, Q) ) (7.8)

where Q′ is the projection of point P in frame i + 1 using forward flow, P ′ is the back
projection of point Q in frame i using backward flow and fi(a, b) refers to the single frame
affinity between pixels a and b in frame i. fi(a, b) is calculated using the intervening contour
technique that gPb uses. Intervening contour assigns affinities between pixels based on the
presence of edges along the line joining the two pixels (strong edge implies low affinity). This
affinity is scaled according to the confidence we have on the optical flow vectors (equation
7.7).

The overall affinity matrix W is a symmetric matrix of size = number of pixels in the
video. It has the following structure -

W =




W1,1 W1,2 0 0 · · · 0
W T

1,2 W2,2 W2,3 0 · · · 0
0 W T

2,3 W3,3 W3,4 · · · 0
...

...
...

. . .
...

0 0 0 0 · · · Wn,n




where Wi,i are intra frame pixel affinity matrices and Wi,j are inter frame affinity matrices.

We compute the normalized graph Laplacian of W i.e. A = D−
1
2 (D −W )D−

1
2 is cal-

culated from the pixel affinity matrix W . D is a diagonal matrix that equals diag(W · 1)
[151].

This matrix is then run through the eigensolver to get the eigenvectors corresponding to
the n smallest eigenvalues. By construction, the smallest eigenvalue is 0 and the eigenvector
corresponding to it is ignored. As noted by [47], the pixel affinity matrices derived from
natural images have properties that can be exploited to produce very efficient eigensolvers.
In particular, it was noticed that it is very unlikely for these matrices to have multiple
eigenvalues converging to the same number and that the eigenvalues are well separated.
These properties can be exploited for creating an efficient eigensolver as described in Section
7.5.2.

Parallelization & Implementation details

The video segmentation algorithm was implemented using CUDA for GPU programming
and Message Passing Interface (MPI) for cluster programming. As mentioned earlier, the
affinity matrix for the video is very large - about 20 GB for 100 frames of 640×480. Almost
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all of the optical flow, local gradient and eigensolver computations happen in the GPUs. It is
to be noted that the individual GPUs have limited memory (only 3 GB in our case). Hence,
we divide the video into smaller sets of frames and assign it to different GPUs. The affinity
matrix is partitioned row-wise among the different GPUs. Each GPU stores only a small
portion of the matrix and the eigenvectors (corresponding to a few frames each). Every
iteration of the Lanczos algorithm involves two forms of communication between the GPUs
- (1) all-to-all communication for computing vector dot products and (2) adjacent-node
communication for computing Sparse Matrix Vector Multiply (y = Ax).

We use a modified version of Sparse Matrix Vector Multiply (SpMV) routine developed
by [47] as part of our routine. Because of the way the inter frame pixel affinities are
calculated, Wi,i+1 is not a symmetric matrix. Hence, maximum computational efficiency
can be obtained only if we represent Wi,i+1 and W T

i,i+1 in different data strucutres. However,
in order to save storage space at the expense of computational efficiency, we use store only
Wi,i+1 and use a slower SpMV for W T

i,i+1 computations.
Since we have only one copy of the matrix Wi,i+1, we resort to using atomic operations

on the GPU while performing W T
i,i+1x. The downsides of using atomic operations are (1)

increase in runtime and (2) introduction of non-determinacy. Non-determinacy is also intro-
duced because of the use of reduction across multiple GPUs in a cluster. Non-determinacy
is not an issue if the GPU memory was large enough to hold all the data for the eigen-
solver iterations i.e. complete the Lanczos algorithm in a single pass. Since that is not
the case, non-determinacy can introduce divergence between the two runs of the Lanczos
iterations because of different roundoffs in floating point computations. This can be fatal
if, for example, at the end of the second run, the solver has not converged even though
we have performed as many iterations as the first run. Also, the use of the S matrix from
the first run is erroneous as it may not correspond to the new set of iterations. Since it is
impractical to remove all sources of non-determinism, we have adopted ways to reduce its
effects, in particular, the divergence of different runs. We found that this divergence can
be eliminated for all practical purposes by reusing the values of α and β from the first run
without recomputing them a second time. This ensured that the eigensolver converged in
all cases.

We run the application on a GPU cluster hosted at the National Energy Research Sci-
entific Computing Center (NERSC). Each node has a Nvidia Tesla C2050 having 3 GB of
onboard memory and 14 processors (448 Floating point units). Each processing node also
has a dual socket quad core Intel Nehalem processor with 24 GB of RAM. We allocated
2-6 frames per GPU depending on the size of the frame and used as many GPUs as needed
according to the length of the video processed. It is not necessary to run the program on
the cluster and the code could also be run on a single GPU taking proportionally more time
while storing the matrix in DRAM. Runtime results are discussed in Section 7.6.

7.5.4 Postprocessing

For globalPb, postprocessing after eigenvector calculation consists of calculating spectral
Pb and combining it linearly with local gradients, as shown in Section 7.2. The resulting
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oriented edge signal is then maximized over orientation, thresholded and skeletonized. The
gPb signal may also be used for computing image segments using oriented watershed and
UCM algorithms [9].

Video segmentation requires different postprocessing than image segmentation. We start
with the eigenvectors obtained from the eigensolver. There are some problems with using
the raw eigenvectors for video segmentation. The number of eigenvectors needed for effective
segmentation may increase with the length of the video (Objects entering/exiting, occlusions
etc.). In practice, we found that calculating 21 eigenvectors (including the information-less
eigenvector with eigenvalue = 0) was sufficient for all the sequences shown in this chapter.
Increasing or decreasing this number slightly does not alter the results significantly. Another
option is to threshold the number of eigenvectors calculated based on the eigenvalue e.g.
calculating all eigenvectors with eigenvalues ≤ 10−3.

There is also the known problem of leakage i.e. eigenvectors can have smooth transitions
leading to the break up of a single object into multiple objects at different time scales. This
is clearly illustrated in Figure 7.6. The figure shows how the identity of the person shifts
through the sequence as seen from an eigen-perspective. The values of the eigenvector on the
person varies between 0.07 and 0.9 (the eigenvector is normalized to be in [0, 1]), effectively
taking the full range of possible values. In order to avoid this problem, we use ultrametric
contour maps for segmentation as a post processing step. This step provides the benefit of
combining segment boundaries that are created artificially due to the smooth transitions.

Figure 7.6: Illustration of “leakage” in eigenvectors for long range video sequences. This
sequence is one of the sequences in the Motion Segmentation data set [35] and is a scene
from the movie “Miss Marple : Murder at the vicarage”. Top Frames 1, 65, 120, 200 from
the sequence. Bottom Corresponding portions of the second eigenvector. The vectors are
normalized independently for better visualization. However, note the scale difference in the
eigenvectors for each of the frames [0.899, 1.00], [0.430, 0.941] , [0.156, 0.293], [0.004, 0.066].

The eigenvectors are clustered into 500 clusters using k-means, giving us an over-segmentation
of the video in the form of 3D superpixels. It is essential to perform an oversegmentation at
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this stage so that we do not miss any significant boundaries. In order to avoid the k-means
algorithm getting stuck in a local optimum, we run k-means clustering 3 times and pick the
best clustering as one that has the maximum edge weight along the segment boundaries
(computed using the gPb signals of the individual frames). Ultrametric Contour Maps [9]
is applied to the resulting supervoxels to cluster them into a small number of regions. This
step removes unwanted boundaries created by the k-means clustering due to the smooth
transitions in the eigenvectors.

It is important to note that our segmentation algorithm does not rely only upon motion
information, but rather motion is just one of the many features used (along with intensity,
color and texture). In such a scenario, it is not expected that we will segment only those
regions that have different motions. Objects with distinct appearances are segmented even if
they do not have motion that is independent of the background or other objects. Depending
on the weights assigned to the multiple cues, different features may be emphasized. [119]
had performed training using the Berkeley Segmentation Data Set (BSDS) in order to get
optimal weights for finding boundaries in images. We use the same weights as [119], and
assign the motion features the same weights as the color features. We have seen that this
assignment produces good results while still being robust to errors in optical flow (especially
along motion boundaries).

It is possible to run a second level cluster processing algorithm along the lines of [35]
or [91] to identify affine motion parameters for the different clusters and combine them
based on the information. This will reduce the number of final segments obtained while
emphasizing differences in motion and de-emphasizing other differences.

7.6 Results

7.6.1 Image segmentation

We perform our accuracy experiments on the Berkeley Segmentation Dataset. The
original gPb algorithm achieves an F-score of 0.70 (maximum harmonic mean of precision
and recall) on this dataset.

First, we show that using Bresenham lines to perform rotation improves the accuracy of
integral image technique compared to using other methods of rotation like nearest neighbor.
Figure 7.7 shows that using Bresenham lines reduces the error consistently for computing
the χ2-distances over rectangles at varying angles and for varying areas. We computed the
error produced by the rotation by computing the χ2-distance between the two halves of a
square centered at a point and rotated clockwise by an angle of θ where 0 ≤ θ ≤ π

4
(Other

angles will produce similar results as they can be written as the sum of an angle between 0
and π

4
and a multiple of π

2
; the error for a rotation by nπ

2
is zero). The patches were obtained

from 10 randomly selected points from each of the images in the BSDS[123]. Figure 7.7(a)
shows the average relative error in the χ2-distances using both the rotation techniques
when performed over patches with varying sizes, by keeping the angle of rotation constant.
Figure 7.7(b) shows the average relative error in the χ2-distances, and is performed over
patches with varying angles keeping the area of the patch constant. For both the figures,
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the standard against which the values are compared against is produced by finding the χ2-
distance between the two halves of the rotated square centered around the point defined in
the original image.

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0  10  20  30  40  50 

Re
la
%
ve
 e
rr
or
 

Angle of rota%on (degrees) 

Error Vs Angle 

Error (Rota2on with 
nearest neighbor 
interpola2on) 

Error (Rota2on with 
Bresenham lines) 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0.18 

0.2 

0  100  200  300  400  500 

Re
la
%
ve
 e
rr
or
 

Area of the patch (pixels) 

Error vs area 

Error (Rota2on with 
nearest neighbor 
interpola2on) 

Error (Rota2on with 
Bresenham lines) 

Figure 7.7: Relative errors for computing χ2-distances over rotated rectangular patches
produced by Bresenham rotation vs nearest neighbor rotation (a) Relative error as a function
of the angle of rotation (b) Relative error as a function of the area of the patch.

The relative error is not zero even with Bresenham rotation because bresenham rotation
is also approximate i.e. its accuracy depends on the angle of rotation & the number of pixels
used to define the line.

• Bresenham rotation does not double-count or miss pixels and hence is necessarily
better than neartest neighbor interpolation. For other angles, the error is due to the
fact that a small segment of the bresenham rotated line does not necessarily have the
same angle with zero error. Hence, some error is expected, which should decrease as
the length of the side increases.

• For θ = π/4, the error due to Bresenham rotation goes to zero. This is because the
error caused doe to length truncation effect goes to zero for that angle i.e. a line
segment of any length models the angle accurately.

• With increasing window sizes, error in both techniques reduces. This is due to an
“area-vs-perimeter” effect - errors that occur in incorrectly counting boundary pixels
reduces relative to the number of pixels counted. In the case of using Bresenham
rotation, increased accuracy in modeling the angle with longer lines helps in addition
to the area-vs-perimeter effect.

Overall, we find that using Bresenham lines for rotation produces a reduction of 44% in
the relative error with respect to the nearest neighbor rotation.

Using integral images and Bresenham rotation also improves the runtime of the parallel
gPb algorithm. From table 7.1, it is clear that integral images give a 7× performance
improvement over the original implementation. In addition, the accuracy of the overall
segmentation remains completely unchanged [47].
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Local Explicit Integral
cues Method Images

Runtime (s) 4.0 0.569

Table 7.1: Local Cues Runtimes on GTX 280

Scalability

We ran our detector on a variety of commodity, single-socket graphics processors from
Nvidia, with widely varying degrees of parallelism [47]. These experiments were performed
to demonstrate that our approach scales to a wide variety of processors. The exact specifi-
cations of the processors we used can be found in Table 7.2.

Processor Cores FPUs Memory Clock Available
model (Multi per Bandwidth Frequency Memory

processors) core GB/s GHz MB

9400M 2 8 8.3 1.10 256
8600M GT 4 8 12.8 0.92 256
9800 GX2 16 8 64 1.51 512
GTX 280 30 8 141.7 1.30 1024
C1060 30 8 102 1.30 4096
C2050 14 32 144 1.15 3072

Table 7.2: GPU Processor Specifications

Figure 7.8 shows how the runtime of our detector scales with increasingly parallel proces-
sors. Each of the 6 processors we evaluated is represented on the plot of performance versus
the number of FPUs. We have two processors with the same number of cores, but different
amounts of memory bandwidth, which explain the different results at 240 FPUs. Of these,
the 9400M and 8600M are mobile GPUs with very limited memory. The eigensolver requires
500-1000 iterations which require 300-600 MB of space in GPU memory for the eigensolver.
Clearly, it would have been infeasible to run gPb on these machines if not for our memory
optimizations.

Our work efficiently capitalizes on parallel processors and we see benefits with increasing
scaling. We can, however, see that we are hitting the limits of Amdahl’s law with the Tesla
C2050. Also note that the bandwidth has not scaled significantly between the GTX280 and
C2050 and that the C2050 runs at a lower clock rate, which explains the slight performance
degradation of C2050 compared to the GTX280.

As shown in [47], our optimizations have not reduced the accuracy of segmentation. We
still achieve an F-measure of 0.70 on the Berkeley Segmentation Dataset.
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Figure 7.8: Performance scaling with parallelism (0.15 MP images)

7.6.2 Video Segmentation

To the best of our knowledge, there is currently no available literature that does a quan-
titative comparison between segmentation algorithms based on point trajectories and dense
video segmentation algorithms on the same data set. The motion segmentation dataset [35]
provides ground truth data for studying both sparse and dense labeling in videos. In partic-
ular, the data set has a good number of frames labeled densely in space and time. Although
point trajectory segmentation ostensibly does not use visual information but only motion
information, it should be noted that optical flow and tracking algorithms themselves utilize
visual information. With increasing density of coverage and ability to use incomplete tracks,
motion segmentation is getting closer to full video segmentation. We provide quantitative
comparison of sparse and dense video segmentation on a single data set. We also compare
against other recent video segmentation works like [96, 86].

Comparison to point trajectory based segmentation

We compare our technique against the motion segmentation results from [35] and [139]
on the data set from [35]. Comparisons to other sparse motion trajectory classifiers on this
data set can be found in [35]. Table 7.3 shows that our technique compares favorably to the
sparse trajectory classifier in [35]. The overall pixel error is the number of bad labels over
the total number of labels on a per-pixel basis. The overall accuracy is the total number
of correctly labeled pixels over the total number of pixels in the video. The average error
is computed similar to the overall error, but over regions (not pixels) after computing the
error for each region separately. Since the evaluation tool automatically combines segments
to avoid high penalties for oversegmentation, the average number of clusters combined is
also reported. The total number of objects extracted with ≤ 10% error is also reported.

We achieve comparable errors while labeling 100% of the pixels in the video as compared
to only about 3% by sparse segmentation algorithms such as [35, 139]. In absolute terms,
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Name Label density Overall (per pixel) Overall (per pixel) Average Over segmentation Extracted
density error accuracy (per region) error objects

10 frames (26 sequences)
Our technique 100% 6.97% 93.03% 19.72% 7.15 20

Brox and Malik 3.34% 7.75% 3.08% 25.01% 0.54 24
ALC incomplete 3.34% 11.20% 2.97% 26.73% 0.54 19

50 frames (15 sequences)
Our technique 100% 8.42% 91.58% 28.76% 13.0 5

Brox and Malik 3.27% 7.13% 3.04% 34.76% 0.53 9
ALC incomplete 3.27% 16.42% 2.73% 49.05% 6.07 2

200 frames (7 sequences)
Our technique 100% 15.46% 84.54% 45.05% 5.86 3

Brox and Malik 3.43% 7.64% 3.17% 31.14% 3.14 7
ALC incomplete 3.43% 19.33% 2.77% 50.98% 54.57 0

Hierarchical Graph Segmentation 100% 20.77% 79.23% 40.37% 10.42 0

Table 7.3: Comparison of our video segmentation with other approaches.

Original video 

Motion segmentation 
Brox & Malik 

Hierarchical graph 
Segmentation 

Our approach  
Final segmentation 

Figure 7.9: Comparison of our technique vs motion segmentation by [35] and [86] on one of
the sequences from [35]. From top to bottom Video frames(1, 50, 140, 200), Segmenta-
tion results from [35], Hierarchical graph segmentation [86], Our final segmentation result.
Each tracked point in [35] is shown as 9 pixels large for illustration purposes. Notice that
that boundary shifts identity in [35]. Hierarchical graph segmentation produces overseg-
mentation and non-smooth boundaries. Also note the confusion between the person and
the background in the later frames. Figure best viewed in color.
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we label far more pixels in the video accurately compared to the sparse techniques. Figure
7.9 shows the results of our approach on one of the sequences in the data set. The motion
segmentation results from [35] shifts the identity of the background during the sequence. It is
to be noted that the ground truth in this data set is limited to labeling based on motion only.
We believe that video segmentation is not limited to just segmentation based on motion,
but rather segmentation based on both motion and appearance. Hence, the segmentation
we produce almost always produces a certain degree of oversegmentation intentionally.

Comparison to video segmentation algorithms

Table 7.3 also shows that our technique compares favorably to hierarchical graph seg-
mentation [86] on sequences of 200 frames. Both techniques can reduce the per pixel error
through oversegmentation; however, from the table it is clear that our technique produces
far less oversegmentation (about a factor of 2) with slightly better accuracy. Oversegmen-
tation can be quite problematic for many algorithms that use video segmentation and post
processing cannot fix it in many cases. Hence, a technique that produces the same accuracy
with less oversegmentation is preferable.

From Figure 7.9, we can also see that hierarchical graph segmentation produces segmen-
tation edges that are not smooth. There is also a tendency to produce segments that are
unconnected spatially (even though they are connected in 3D). These artifacts make the
segmentation results hard to use for algorithms that require them for editing video or unsu-
pervised learning. Our results conform to the natural image contours and provides mostly
spatially connected components. The final segmentations shown are thresholded at 65% of
peak for our technique and 90% for hierarchical graph segmentation. Our technique is also
able to retrieve 3 objects with less than 10% error compared to 0 objects for hierarchical
object segmentation.

c© 2009 Universal Pictures

c© 2007 Miramax Films

Figure 8: Spatio-temporal segmentation. Shown are two frames each from video sequences with their corresponding segmentations. Same
color denotes the same spatio-temporal region. Region boundaries and identity are tracked reliably (note body and skin of the water-skier,
football player numbers and persons in bottom videos. 3rd row: from Public Enemies, c©2009 Universal Pictures, 4th row: from No country
for old men, c©2007 Miramax Films.

(a)

(b)

Figure 9: Flower garden sequence (∼ 30 frames apart). (a) From left to right: Original sequence, our segmentation, Wang et al.’s [20]
result, Khan and Shah’s [10] result, Brendel and Todorovic’s [3] results, Dementhons’ [6] result. Our segmentation result is coherent over
all 30 frames. Brendel and Todorovic’s [3] result (5th from left) changes region identity noticeably (sky, houses and flower field) while
Khan and Shah’s [10] result (4th from left) is inconsistent on the right hand side (houses identity changes). Our segmentation retains
important details like the houses in the background while Wang et al.’s [20] (3rd from left) as well as Dementhons’ [6] result (right-most)
do not show the same clear-cut boundaries (e.g. the roof of the houses). Dementhons’ [6] result (right-most) also exemplifies a typical
property when segmenting in feature space: Regions are not spatially connected and exhibit significant holes making them hard to use for
later analysis stages. (b) A finer granularity of our segmentation (left 2 frames), the consistent tooned result by averaging the color over the
spatio-temporal regions (middle two frames), and a time-slice from our segmentation (5th from left) compared to the time-slice of Wang
et al. [18] (last frame). Our time-slice is less fragmented indicating better temporal coherence.
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Figure 6. Comparison with [19] on Garden sequence: (top row)

original sequence; (middle row) results of [19]; (bottom row) re-

sults of our approach with the meanshift. The extracted subvol-

umes are marked with unique colors. While the approach of [19]

merges the right part of the tree with the background, and suffers

from unreliable (flickering) detection of the tree contours, we suc-

cessfully delineate the entire tree in each frame. We fail to track

the textured surface of flowers as a whole, because the meanshift

is very unstable in this area.

in comparison with the state of the art.
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Figure 7.10: Flowergarden sequence (30 frames). Far Left Frames 1 and 30 of the sequence.
Left Center Segmentation results from Hierarchical Graph segmentation [86]. Note the
noise in the tree edges and the flower bed. Right Center Results from [30]. Notice the
identity shift of the house and background. Far Right Our results. The segmentation edges
are smooth and tracking is consistent.
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We compare our technique to video segmentation techniques in [86, 30] on the flower
garden sequence in Figure 7.10. Note that we avoid the oversegmentation in the flower bed
that [86] and [30] produce due to its highly textured nature. Due to smooth illumination
changes on the tree, the segmentation edges from [86] are not smooth. Also notice the
presence of multiple “holes” in the segmentation. The result from [30] uses mean shift
clustering, and is unstable in noisy and textured regions. The identity shifts of the house
and background are other shortcomings of this method. Our result demonstrates the effect of
combining image contour detection with optical flow. The segmentation edges are smooth
and the noise in the flower bed is removed because of the use of gPb texture gradient
processing. Also note that we are able to identify each house as a separate segment.

(a) (b) (c) (d) (e)
Figure 6. Segmentation results for the 8th frame of the rocking-horse sequence. (a) The ground truth, (b) the result by the simple graph

based segmentation using optical flow, (c) the result by the simple graph based segmentation using motion profile, (d) the result by the

simple graph based segmentation using both motion cues, and (e) the result by the hypergraph cut.

(a) (b) (c) (d) (e)
Figure 7. Segmentation results for the 4th frame of the squirrel sequence. (a) The ground truth, (b) the result by the simple graph based

segmentation using optical flow, (c) the result by the simple graph based segmentation using motion profile, (d) the result by the simple

graph based segmentation using both motion cues, and (e) the result by the hypergraph cut.

algorithm. The effectiveness of the proposed method is

demonstrated by extensive experiments on nature scenes.

Since our algorithm is a open system, in the future work,

we will add more motion or appearance cues (such as tex-

ture information, the occlusions between frames) into our

framework to construct more hyperedges and further im-

prove the accuracy of these results.
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Figure 7.11: Rocking horse sequence (10 frames) [156] Far Left Center frame of the sequence
with ground truth superimposed. Left Center Results from [96]. This requires knowledge
of number of segments. Right Center Our segmentation results. Note that the ground
truth has open edges whereas our method only produces closed edges. Far Right Our
results with increased weights to motion features. Notice the absence of the edge along the
mane and the presence of the occlusion edge along the wall. Figure best viewed in color.

Figure 7.11 compares our segmentation with hypergraph segmentation [96] on the rocking
horse sequence from the occlusion data set [156]. This data set contains video sequences
of objects with little to no motion. Camera motion is predominant and the objective is to
identify occlusion boundaries. Hypergraph segmentation requires knowledge of the number
of segments in the video. Our technique does not have this problem. Our method is more
robust as we automatically choose our desired segmentation granularity after the processing
is complete. Another advantage of our technique is the ability to tailor our result to the
choice of segmentation. Since this dataset considers only occlusion boundaries, we doubled
the weights of the motion features for the local gradient computation in our method. This
emphasizes motion and de-emphasizes other features. The results from the new weights is
also shown in the figure. We see that some of the appearance-based edges are removed and
occlusion edges are identified.

Runtime analysis

The following runtime analysis is performed on 50 frames of the marple1 sequence on
10 nodes. The total runtime for this sequence on a cluster of 10 machines is 232 seconds.
About 50% of the runtime is spent on the eigensolver. The eigensolver takes 108 seconds
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for 2000 iterations. A runtime breakdown for the video segmentation problem is shown in
Figure 7.12.

Optical Flow 
Localcues 
EigenSolver 
Kmeans 
Postprocessing 
Other 

Figure 7.12: Breakdown of the video segmentation runtime.

Among the components of the eigensolver, the SpMV routine is the most compute in-
tensive, taking more than 95% of the eigensolver runtime. As mentioned earlier in Section
7.5.3, the SpMV is composed of both a regular Ax calculation and an irregular ATx calcu-
lation. The ATx calculation takes about 2.2× as much time as the Ax calculations. More
than 86% of the SpMV runtime is spent on the sparse matrix vector multiplication with
Wi,i and W T

i,i+1 in the individual GPUs. The rest of the time in spent on nearest neighbor
MPI communication in the cluster since a part of the vector has to be transferred to the
neighboring nodes. Figure 7.13 shows the breakdown of the sparse matrix vector multiply
computation. Potential future work includes the use of communication avoiding techniques
like [93] in order to improve the runtime of the eigensolver.

The total runtime does not change significantly when there are more frames as we scale
the number of GPUs along with the length of the video sequence (weak scaling).

7.7 Summary

We discussed how we can parallelize image and video segmentation algorithms. We de-
scribed how we are able to improve the performance of gPb through algorithmic exploration.
We saw how eigensolver improvements have made it portable and thus enabled us to apply it
to other problems like video segmentation. We discussed how scalable algorithms for image
segmentation and optical flow helped move high quality image segmentation algorithms to
video sequences. Our contributions are 4 fold -

1. Showing that using integral images for computing local cues for image segmentation
leads to no loss of accuracy while improving runtimes
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Figure 7.13: Breakdown of the runtime of the Sparse Matrix Vector Multiply routine.

2. Engineering an eigensolver to run with limited memory and making it portable across
a wide range of GPU hardware from laptops to clusters

3. A novel technique to combine image segmentation and optical flow in a single frame-
work running efficiently on a cluster of GPUs.

4. Quantitative results on an existing data set comparing the accuracy of our video
segmentation technique against existing point trajectory-based classifiers.

We showed how improved runtime capabilities can bring about new applications. For ex-
ample, we were able to revive video segmentation techniques based on spectral segmentation
and show that they can produce better or comparable results to existing techniques. This
has been possible only through the improvements to optical flow and image segmentation
techniques. Managing large linear algebra computations on a cluster brings about its own
set of challenges in terms of data management, non-deterministic behavior etc. Managing
these challenges effectively is the key to a successful implementation.

The overall contribution is an exploration of techniques to tradeoff memory with compu-
tation and vice versa. For both eigensolver and integral images, proving that we can run the
algorithm in two modes (performance or portability) without loss of accuracy was essential.
Such techniques are also essential for ensuring scalability. This is one of the biggest chal-
lenges of GPU-based programming and overcoming it in a clean way is important for better
productivity. For a subset of computations, we can manage GPU memory automatically in
an optimal way. This technique is discussed in Chapter 8.
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Chapter 8

Memory Management in CPU-GPU
systems

In this chapter, we discuss the problem of memory management caused by the limited
amount of memory in GPUs. The problem occurs because GPUs have a separate memory
hierarchy that is distinct from that of the CPU. This leads to manually managed data
transfers between the CPU and GPU, which can be a huge performance bottleneck if not
handled properly. We will show how this problem can be solved efficiently for a class
of problems that involve data parallel operators using pseudo-boolean optimization and
heuristic approaches. We achieve more than 100× reduction in the amount of data transfers
and the associated computations are consequently up to 7.8× faster.

8.1 Background and Motivation

In most CPU-GPU systems with discrete GPUs, the CPU and GPU memory systems
are distinct and connected through PCI express. The PCI-e bandwidth is typically several
times smaller than the internal core-to-memory bandwidth in either systems. For example,
on a machine with an Intel Nehalem core i7-920 and an Nvidia GTX 480, the peak memory
to core bandwidth for the CPU and GPU are 25.6 and 147.7 GB/s respectively. The peak
PCI-e v2.0 bandwidth, on the other hand, is only 8 GB/s. Hence it is preferable to keep
large data structures in GPU memory and not move them to CPU DRAM if not required.
GPUs include non-user-extensible GDDR5 in order to provide high memory bandwidth to
the cores. An unfortunate consequence of this is that the amount of memory is fixed and
cannot be increased by the end users even if they want more memory without buying a
complete system altogether with more memory. Figure 8.1 gives a schematic of a typical
CPU-GPU system.

The working set sizes of applications in use are increasing rapidly. As mentioned in
Chapter 2, the data set sizes are doubling in roughly 1.5 years. An important aspect of
our work is the focus on applications with data sizes that do not fit within GPU memory.
Many interesting applications have data sets that do not fit into the GPU memory. Such
applications pose a particular challenge to the programmer, who needs to explicitly break
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Figure 8.1: Schematic of a typical CPU-GPU system. Both CPU and GPU DRAM are
shaded.

down the computations and associated data structures so as to fit within the limited GPU
memory, specify the sequence of GPU operations and data transfers, and manage the allo-
cation of GPU memory and the explicit copying of data back-and-forth between the host
memory and the GPU memory to achieve correct and efficient execution.

GPU memory capacities vary widely across different platforms (256MB to 6GB). Writing
code so that it is portable across all the variants without loss of efficiency is a key challenge
that needs to be solved.

8.2 Problem

Many data parallel applications are well suited for acceleration using parallel hardware
like GPUs. Even for problems which are suited for GPUs, there is overhead in moving data
to and from the CPU. This extra overhead in transferring data can kill any performance
improvements from exploiting the parallelism in GPUs if care is not taken to minimize it.
In particular, this is apparent when certain portions of a large application are chosen for
accelerated performance. In such a scenario, the input and output data for that portion
must reside in CPU memory, while the computations happen on the GPU. Any temporary
data structures required for this computation need not reside on the CPU. Optimizing
this organization and scheduling of data transfers is hard to perform manually. We take
Convolutional Neural Networks on large medical images as a leading example for driving
the problem. Details of this application are provided in Section 8.5.1.

We describe the memory management challenge in GPUs in the rest of the section.
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8.2.1 Challenge 1: Scaling to data sizes larger than the GPU
memory

In order to demonstrate the need for scalability to large data sizes, we consider an
algorithm for edge detection from images. We apply this edge detection algorithm to extract
edges from a high-resolution image that represents a histological micrograph of a tissue
sample used for cancer diagnosis [58]. The original image and output edge map are shown
in Figure 8.2(a). The algorithm is depicted as a data-flow graph of parallel operators in
Figure 8.2(b), where the ellipses represent operators and rectangles represent the input,
output, and intermediate data structures used in the algorithm.

Suppose that we would like to execute the edge detection algorithm shown in Fig-
ure 8.2(b) on the NVIDIA Tesla C870 GPU computing platform that has 1.5 GB of memory.

Figure 8.2(c) presents the memory requirements for various operators in the the edge
detection algorithm as a function of the input image size. The max operator has the largest
memory footprint (roughly nine times the input image size), while the other operators
C1 − C4, R1 − R4 have a memory footprint of roughly twice the input image size. The
graph is divided up into regions for which different strategies must be used in order to
execute the edge detection algorithm within the limited memory of the C870 platform.
These regions are separated by the vertical dashed lines, and the corresponding strategies
used for executing the algorithm are indicated in the text above the graph.

• For image sizes of less than 150 MB, all the data structures associated with the edge
detection algorithm fit in the GPU memory.

• For image sizes between 150 MB and 166.67 MB, the algorithm’s memory footprint
exceeds the GPU memory. However, the algorithm can be split into two parts - one
executes the operators C1 − C4 and R1 − R4, and the second executes the max
operator.

• For image sizes between 166.67 MB and 750 MB, the max operator itself does not fit
in the GPU memory and therefore it needs to be split.

• For image sizes between 750 MB and 1500 MB, the operators C1− C4 and R1− R4
also need to be split in addition to the max operator.

• For image sizes larger than 1500 MB, the input image itself does not fit in the GPU
memory and therefore the entire algorithm needs to be divided to process the input
image in chunks.

Clearly, the task of manually writing a scalable GPU implementation of the simple edge
detection algorithm, i.e., one that can handle input images of various sizes, is quite chal-
lenging. The application programmer needs to separately consider all the cases described
above, determine the optimal execution strategy for each case, and combine the various
scenarios into a single implementation using a framework such as CUDA. Debugging and
maintaining such an implementation is likely to be quite a formidable task. In addition to
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Figure 8.2: Edge detection in histological micrograph images (a) input/output images, (b)
Algorithm used for edge detection, and (c) Memory requirements for the edge detection
algorithm as a function of the input image size
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that, problems arise when the code needs to be executed on another GPU platform that
has a different memory capacity. Lower-level frameworks such as CUDA do not address the
problem of automatically organizing computations so as to fit within limited GPU memory
- this task is left to the application programmer.

Figure 8.2(c) also indicates the typical range of sizes of histological micrograph images
that are encountered in the cancer diagnosis application. Clearly, the data sets are much
larger than the memory capacities of even high-end GPU computing platforms. Many other
applications in Recognition and Mining workloads [68] process large data sets, making this
challenge a common and important one to address.

Most of the GPU porting efforts to date typically assume that all the data fits within the
GPU memory. While GPU memory capacities are certainly increasing, the rate of increase
is much slower than the growth in many of the data sets that need to be processed. In order
to achieve high internal memory bandwidth, GPUs use non-expandable GDDR memory
that is packaged with the graphics processor in a single unit, and cannot be upgraded by
the end user. whereas CPU memory (DDR2 or DDR3) can be easily added to the system
by the end user (e.g. in the form of DIMM cards).

In summary, a critical need in GPU computing is to address the challenge of executing
workloads whose memory footprint exceeds the available GPU memory. A related challenge
is to ensure that programs written for today’s GPUs and data sets will work efficiently with
the data sets and GPU platforms of the future with minimal programmer effort. Finally,
it is also desirable that applications can be re-targeted to work on concurrently available
GPU platforms that have different memory capacities (e.g., high-end and low-end product
variants). This problem has not been addressed in prior work on GPU computing.

An observation that falls out of the above example is that, as data sizes increase, a given
computation needs to be divided up into smaller and smaller units in order to fit into the
GPU memory, leading to increased data transfers between the CPU and GPU. This leads
to the next challenge, namely minimizing the overheads of data transfer between the host
and GPU.

8.2.2 Challenge 2: Minimizing data transfers for efficient GPU
execution

One of the major performance limiting factors in GPU computing is the limited CPU
to GPU communication bandwidth. GPU cards using the PCIe bus achieve a host-to-GPU
bandwidth of around 4-5 GB/s, which is much smaller than the internal memory bandwidth
of GPU platforms which is over 100 GB/s. This limitation is especially significant for
applications that do not fit in the GPU memory and hence need to frequently transfer data
structures between the host and GPU memory.

Figure 8.3 presents the breakdown of the time required to perform edge detection on
an image of size 8000 × 8000 with kernel matrices of varying sizes on the NVIDIA Tesla
C870 platform. For various kernel matrix sizes ranging from 2 × 2 to 20 × 20, the figure
presents the breakdown of the total execution time into the time spent in data transfer to
and from the GPU memory, and the time spent in computation on the GPU. The data
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Figure 8.3: Execution time breakdown for executing image convolution operations with
varying kernel matrix sizes on a GPU

transfer time varies from 30% of the overall execution time (for large kernel sizes, where
more computation is performed per unit data) to 75% of the overall execution time for small
kernel sizes. From our experience with recognition applications such as edge detection and
convolutional neural networks, we found that operations executed on the GPU generally
spend up to 50% of the total runtime in data transfers between the CPU and GPU (where
the data starts and ends in CPU memory).

Current GPU programming models offer little help in managing data movement. The
programmer needs to explicitly write code to copy data structures between the CPU and
GPU, due to the fact that they have separate memory spaces. If all the data structures
needed do not fit in the GPU memory, it is essential to manage the allocation of GPU
memory over the duration of execution to store the most performance-critical data structures
at any given time, to achieve the best possible execution efficiency.

We observe that the data transfer overheads in GPU execution are significantly influenced
by the manner in which an application is broken down into computations that are atomically
executed on the GPU, and the sequence of execution of these computations. In the context
of domain-specific templates that are represented as graphs of parallel operators, operator
scheduling has a very significant impact on the total volume of data transferred between
the host and GPU.

To illustrate the large impact that scheduling has on data transfer overheads, we con-
sider two alternative schedules for the edge detection algorithm that are shown in Fig-
ures 8.4(a) and 8.4(b). For the sake of illustration, we assume that the input image Im
is of size 2 units. Note that the convolution, re-mapping, and max operators have been
split into two in order to reduce their memory footprints. Therefore, all other data struc-
tures E1′, E1′′, . . . , E ′, E ′′ are of size 1 unit each. We assume that the GPU memory ca-
pacity is 5 units. Consider the two different operator schedules shown in Figure 8.4(a)
and 8.4(b). The schedule shown in Figure 8.4(a) executes the operators on the GPU in the
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sequence C1 → C2 → R′1 → R′′1 → R′2 → R′′2 → max1 → max2. It can be shown that
this schedule requires 15 units of data transfer between the CPU and the GPU. On the
other hand, the schedule shown in Figure 8.4(b) that executes the operators in the order
C1 → C2 → R′1 → R′2 → max1 → R′′1 → R′′2 → max2 requires only 8 units of data transfer.
Since data transfers can take over 50% of the execution time, the schedule shown in Fig-
ure 8.4(b) will result in a GPU implementation that is much more efficient that the schedule
shown in Figure 8.4(a). In general, the optimal schedule depends on the application char-
acteristics (structure of the operator graph and sizes of data structures), and GPU memory
capacity. For large applications (we consider operator graphs with thousands of operators),
determining an efficient schedule of operators and data transfers is quite challenging for an
application programmer.

In summary, GPU execution frameworks should address the challenges of scalability to
data sizes that do not fit into the GPU memory and efficient offloading by minimizing the
data transfer overheads.

8.3 Related Work

A significant body of work has addressed the development of GPU programming frame-
works and tools. The framework that is closest to ours conceptually is Accelerator [163].
Accelerator uses a operation graph representation of programs to map them to GPUs. How-
ever, the concerns of Accelerator are very different - it assumes that GPUs are not general-
purpose, generates code in shader language, and tries to merge operations aggressively as
it assumes that the overhead for a GPU call is unacceptably high. Our framework, on the
other hand, does not try to generate low-level GPU code. It instead relies on frameworks
such as CUDA. We focus on executing computations that do not fit into the GPU memory,
and in managing the CPU-GPU memory transfers efficiently and in a scalable manner.

Recently, work has been done to enable high-level frameworks like Map Reduce on
GPUs [116, 49, 90, 149]. There have also been efforts to optimize code for GPUs using
source-to-source compilation and auto-tuners [145, 144, 111, 138]. Streaming programming
frameworks have been popular for GPUs and several of them have been proposed, notably
BrookGPU [41], Peakstream (acquired by Google), and Rapidmind (now, Array Building
Blocks [128]). Our framework differs in that it targets applications that do not necessarily
fit into the streaming model of computation. Dryad [98] works by creating a generic task
graph from the application and managing the scheduling and load balancing on a set of
machines. It has been created primarily for the case of managing machines in a cluster.
Also, none of the streaming frameworks address the issue of mapping computations to the
GPU when the data sizes are too large to fit the GPU memory.

Improving GPU programmability by presenting a unified memory space through hard-
ware techniques has also been proposed. EXOCHI [173] is an attempt to create a unified
view by trying to manage both CPU and GPU resources dynamically. CUBA [79] is an
attempt to avoid data management between CPU and GPU by letting the GPU access data
present in CPU memory directly and allowing it to cache them in GPU memory, thereby
providing better programmability through hardware modifications.
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Our work can also be viewed as an instance of understanding and exploiting the memory
hierarchy present in current systems. In that respect, our work is comparable to Sequoia
[105]. Sequoia is a programming language that directly deals with the memory hierarchy
problem that we are trying to address. By invoking “tasks” that execute entirely in one
level of memory hierarchy, Sequoia tries to optimize programs. However, Sequoia does not
provide the mechanisms for reducing the data movement, which is one of our main objectives
in our work.

Our framework is complementary to these efforts since we address the problem of orga-
nizing computations that do not fit into GPU memory such that data transfer between the
host and GPU is minimized.

The problem of minimizing data transfers is related to the problem of register allocation
in compilers. Under a fixed instruction schedule, finding the allocation of local variables
to hardware registers in order to minimize spillage to memory is similar to our problem of
minimizing data transfers under a fixed task schedule. The register allocation problem is
known to be NP-complete [72]. Since the data transfer minimization problem is at least as
hard as register allocation (register allocation is a special case of data transfer minimization
with a fixed operator schedule and similarly sized data structures) and any solution can
be verified to take ≤ N transfers in polynomial time, our problem is also NP-Complete.
Approximate solutions to the register allocation problem have been proposed [81, 72, 114].
The difference between register allocation and our problem is that our data structures have
different sizes, whereas registers are of uniform size. In that sense, register allocation is a
special case of our problem. Minimizing data transfers to scratchpad memory as studied
by [168] is similar to ours. However, that solution works only in the context of a fixed task
ordering. For our problem, both the task ordering and data transfer scheduling need to be
optimized.

The problem of finding optimal task orderings has been studied in the context of task
scheduling for multiprocessors [84, 24, 78, 108, 132]. Most of these approaches minimize
the makespan of the task graph for reducing the execution time, and do not minimize data
transfers. They primarily optimize for load balancing and do not consider fixed memory-size
constraints. Our problem, in contrast, is not to reduce the makespan or load balancing since
our task execution is sequential on the GPU. Our aim is to find the optimal task schedule
under which the amount of data transfers can be minimized under the fixed memory size
constraint on modern GPUs.

8.4 Our approach

8.4.1 Problem specific approaches

For some of the problems with memory management that we encountered before in
Chapters 5 and 7, we had to resort to manual solutions that were dependent on the problem
being solved. For example, for the SVM classification problem, we manually split the
test data so that each portion can be solved independent of the other sequentially, thus
minimizing the overhead for data transfers between the CPU and GPU. More details on
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this approach are presented in Section 5.4.2.
In the case of the eigensolver in image and video segmentation, the problem was more

complicated as the amount of memory required increases with the number of iterations
performed. In that case, we resorted to a modified algorithm (Figure 7.4) which performs
two passes if the GPU memory is insufficient. In both cases, the solutions were specific to
the problem being considered. In the next section, we show that we can solve the memory
management problem automatically for a class of problems involving graphs of data parallel
operators.

8.4.2 Operator splitting: Achieving scalability with data size

The first challenge is to ensure that the operations can be executed on the GPU regardless
of its memory limitation. We assume that the operators are split-able i.e., if the data needed
for an operation does not fit in the GPU memory, it can be split (executed on several small
portions of its input). Splitting enables us to execute arbitrary sized computations on the
GPU, providing scalability. Data parallel operators provide an easy target for splitting.
However, our framework can also handle other split-able, but not data parallel operators
(e.g, convolution and reduction).

The operator splitting algorithm can be summarized as follows:

1. Compute the memory requirements of all operators (sum of sizes of data structures as-
sociated with each operator). Note that any operator whose memory requirements are
larger than the available GPU memory cannot be executed without any modifications.

2. Split the operators whose memory requirements are greater than the GPU memory.
This step ensures feasibility for all operators. When an operator is split, other opera-
tors that produce/receive data from the split operator also need to be modified.

3. Perform steps 1 & 2 until it is feasible to execute all operators on the GPU.

We consider convolutions, which are not strictly data parallel operations since they
depend on a local neighborhood of points. This results in a need for more intelligent splitting
that is dependent on the size of the convolution kernel. For example, a 100 × 100 matrix
convolved with a 5× 5 kernel matrix results in an output of size 96× 96(ignoring borders).
Splitting this operation into two must produce two 100×52 input matrices (not 100×50)and
two 96 × 48 output matrices. This size and offset computation can be done by traversing
the split graph from the leaves to the root and inferring the sizes and offsets from the kernel
and output sizes.

The ability to split operators can be taken for granted in the case of operators that
are data parallel. For other operators, one could provide splitting rules, or hints to the
framework to split the input/output data of an operator in specific ways. For example, a
large matrix-matrix multiply that does not fit in the GPU memory can be split by breaking
up one of the input matrices and the output matrix. In the case of image convolutions, only
the image matrix must be split. The convolution kernel matrix (which is also an input)
should not be split. Even if an operator is not splitable, our framework is usable as long as
this operator fits in the GPU memory.
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8.4.3 Operator and data transfer scheduling

Once the operators are split such that every individual operation can be run on the GPU,
they will have to be scheduled at a macro level to get the most efficient code. Finding the
optimal schedule (in terms of minimal data transfers) given a template whose operators are
individually schedulable is the key problem to be solved. We model the problem formally
as a pseudo-boolean optimization problem. We also propose a heuristic method to solve the
problem that uses a depth-first heuristic for scheduling the operators and a “latest time of
use” based data transfer scheduling heuristic. We discuss these methods in detail below.

Formulation as a Pseudo-Boolean Optimization Problem

The problem of optimizing CPU-GPU data transfers can be written as a constraint
satisfiability problem. In particular, it is possible to formulate it as a pseudo-boolean (PB)
optimization problem. The pseudo-boolean optimization problem is a generalization of the
satisfiability (SAT) problem. In a PB optimization problem, the variables are all boolean,
the constraints can be specified as linear equalities/inequalities and the objective function
to be optimized is a linear function of the variables.
The variables used in our formulation are as follows:
xi,t is 1 if operator i is executed at time step t
gj,t is 1 if data structure j is present in the GPU at time step t
cj,t is 1 if data structure j is present in the CPU at time step t
Copy to GPUj,t is 1 if data structure j has to be copied from the CPU to the GPU at time
step t
Copy to CPUj,t is 1 if data structure j has to be copied from the GPU to the CPU at time
step t
donei,t is 1 if operator i has been executed by time step t
deadj,t is 1 if data structure j is not needed after time step t

The following constants are specific to the GPU platform and the template:
Dj is the size of the data structure j
Total GPU Memory is the total amount of GPU memory present in the system
Output is the set of all the data structures that are outputs of the template (needed on the
CPU)
IAi,j is 1 if data structure j is an input to operator i
OAi,j is 1 if data structure j is an output of operator i

At a given time step t, the following sequence of events are assumed to happen. Any
data structure(s) that needs to be copied to the GPU from the CPU memory is copied over.
Then, the operator scheduled for execution at time t is executed on the GPU. After the
computation is over, any data structure that needs to be copied from GPU to CPU memory
is copied over. If any data structure is not needed after time t, it is deleted from GPU
memory.

Our PB formulation is given in Figure 8.5. Constraints (1-3) encode the precedence
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∑N
t=1(Copy to CPUj,t + Copy to GPUj,t) · Dj

∀t∑N
i=1 xi,t = 1

∀i∑N
t=1 xi,t = 1

∀i1 → i2, t1 > t2, xi1,t1 + xi2,t2 ≤ 1

∀t ∑J
j=1 gj,tDj ≤ Total GPU Memory

∀i, j, t [IAi,j ∨OAi,j ] ∧ xi,t ⇒ gj,t

∀i, j, t IAi,j ∧ xi,t ∧ ¬gj,t−1 ⇒ Copy to GPUj,t

∀j, t Copy to GPUj,t ⇒ gj,t

∀j, t gj,t ⇒ gj,t−1 ∨ Copy to GPUj,t ∨ [
∨N

i=1(OAi,j ∧ xi,t)]

∀i, j, t OAi,j ∧ xi,t ∧ ¬Copy to CPUj,t+1 ⇒ ¬cj,t+1

∀j, t ¬cj,t ∧ ¬Copy to CPUj,t+1 ⇒ ¬cj,t+1

∀j cj,0 = 1
∀j gj,0 = 0
∀j ∈ Output cj,N+1 = 1

∀i, t donei,t ⇔ xi,t ∨ donei,t−1

∀i donei,0 = 0
∀j ∈ Output, t deadj,t = 0

∀j )∈ Output, t deadj,t+1 ⇔ deadj,t ∨ [
∧N

i=1(¬IAi,j ∨ donei,t)]
∀j deadj,1 = 0
∀j, t ¬deadj,t ⇒ cj,t ∨ gj,t

Figure 8.5: Pseudo-Boolean Formulation of Offload and Data Transfer Scheduling
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and scheduling requirements. There must be only one operation executing on the GPU
at any given time. A task which is dependent on other tasks (data dependencies) can
only execute after its dependencies are met. Constraint (4) specifies that at any time, the
amount of data stored on the GPU cannot exceed the GPU memory. Constraints (5-8)
encode the data movement and persistence on the GPU. Specifically, the input and output
data required for an operation must exist on the GPU memory before it can be executed. If
they do not exist, then they have to be copied to the GPU. For output data, enough space
must be reserved before the execution of the operation. Constraints (9-10) specify similar
properties for data in the CPU memory. Data resident on the CPU has to be invalidated if
it is overwritten by a GPU operation. Data copied to the CPU or GPU remain there until
moved, deleted or invalidated. Constraints (11-12) specify the initial conditions (all data
resides on CPU, none on GPU). Constraint (13) gives the final condition (outputs must be
in CPU memory). Constraints (14-19) specify data liveness. Data that is required in the
future needs to be kept live (either in CPU or GPU memory). Otherwise, it can deleted
from the system.

We can solve this formulation using PB solvers like MiniSAT+ [69]. However, the number
of constraints in this formulation scale as O(N2M) where N is the number of operators
and M is the number of data structures. This method of solving it is feasible only for
relatively small problems (up to few tens of operators). For problems containing hundreds
or thousands of operators and data structures, solving the pesudo-boolean optimization is
practically infeasible. Heuristic approaches are scalable, though may be suboptimal. When
the operator schedule is known, the number of constraints in the data transfer scheduling
problem scale as O(NM). This problem is sufficiently large that it cannot be solved exactly
using pseudo-boolean solvers for large graphs.

Current GPUs have the ability to perform asynchronous data transfer and computation
at the same time (as long as they are independent). This can be included in the formulation
by changing the objective function to count only those transfers that involve data needed
for the current computation. We did not overlap computation and communication in our
experiments since it did not improve the performance more than synchronous data transfers.

The pseudo-boolean formulation ignores the fact that that GPU memory can get frag-
mented. In practice, the Total GPU Memory parameter in the formulation is set to a
value less than the actual amount of GPU memory present in the system to account for
fragmentation.

It has been shown since in [148] that of all the variables shown in the pseudo-boolean
optimization problem, xi,t and Copy to GPUj,t can be considered as primary optimization
variables. The other variables can be expressed as functions of the primary variables. [148]
proposes an MILP formulation of the problem that uses O(E) variables and O(E + N)
constraints where E is the total number of dependence edges between the operators and
data structures (number of edges in the task graph). However, even this formulation could
not be directly solved using commercial solvers like CPLEX. These observations motivate
taking a heuristic approach.
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Heuristic approaches

The data transfer optimization problem can be thought of as composed of two sub-
problems - find a good operator schedule, and then, find the optimal data transfer schedule
given this operator schedule.

Finding a good operator schedule is a difficult problem. This problem is similar to a
data-flow scheduling problem. Since the aim is to maximize data reuse so that we need not
transfer things back and forth between the CPU and GPU, we decided to adopt a depth-first
schedule for the operators. In a depth-first schedule we try to schedule the entire sub-tree
belonging to a child of a node before exploring its sibling. If a node cannot be scheduled
due to precedence constraints (all its inputs are not ready), we backtrack to its parent and
explore its other children. The drawback of the approach is that the operator schedule does
not take into account the GPU memory limitations at all. While this heuristic can lead to
reasonable results, there is scope for improvement by using information about the available
GPU memory.

After a schedule for the operators is obtained, the data transfers can be scheduled. The
only constraint to this problem is the amount of GPU memory available. This problem is
similar to a cache replacement policy as we have a limited amount of fast memory where
we would like to keep as much data as possible. We know that the optimal solution for the
cache replacement problem is to replace cache lines that are going to be accessed furthest
in the future. Based on this insight, we formulate a data transfer scheduling algorithm as
follows:

1. Calculate the “latest time of use” for each data structure (since the operator schedule
is known, this can be computed statically).

2. When a data structure needs to be brought into the GPU memory (i.e., it is the
input or output of the operator being executed at the current time step), and there is
insufficient space, move the data structures that have the furthest “latest time of use”
to the CPU until the new data structure can be accommodated.

3. Remove data eagerly from GPU memory i.e., delete them immediately after they
become unnecessary.

The solution generated by above algorithm will be optimal for a given operator schedule
provided all the data structures are of the same size and are consumed exactly once. If all
the data structures are of the same size but are consumed more than once, the problem
becomes equivalent to a register allocation problem which is proven to be NP-Complete.
Register allocation is the problem of mapping program variables to hardware registers in
order to minimize register spilling to memory. In our case, program variables correspond
to data structures, register space corresponds to GPU memory and memory corresponds to
CPU memory. Register allocation problem directly reduces to our data transfer scheduling
problem and hence our problem is NP-Hard. The data scheduling problem is in NP as
any solution that claims to take ≤ N transfers can be verified in polynomial time and so
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the problem is NP-complete. However, in spite of this complexity, we have found that our
heuristic works reasonably well in practice.

Better results can be obtained through better decomposition techniques like the one
proposed in [148]. It has been shown that once the operator schedule is fixed, solving the
data transfer scheduling problem is relatively easy. Commercial solvers like CPLEX can
solve the data transfer scheduling problem in less than a second for graphs with thousands
of nodes. The operator scheduling problem, on the other hand, is much harder to solve
optimally. Hence [148] adopt simulated annealing in order to solve it as opposed to a depth-
first heuristic. This can lead to a 44% reduction in the amount of data transfers at the
expense of more time spent in scheduling.

8.5 Results

We present the results of using our framework on two different applications that use the
templates we described earlier. We performed our experiments on two different systems.
One system had a dual socket Quad core (Intel Xeon 2.00 GHz) as our primary CPU with
8 GB of main memory and an NVIDIA Tesla C870 as the GPU. The second system had
an Intel Core 2 Duo 2.66 GHz with 8 GB of main memory and an NVIDIA GeForce 8800
GTX as the GPU. The Tesla C870 has 1.5 GB of memory while the GeForce 8800 GTX
has 768 MB of memory. Both the GPUs have the same clock frequency (1.35 GHz) and
degree of parallelism (128 FPUs) and differ only in the amount of memory. The two systems
were running Redhat Linux and Ubuntu Linux, respectively. CUDA 2.0 was used for GPU
programming.

For comparison purposes, we propose the following execution pattern as the baseline for
GPU execution. For each operator, transfer input data to the GPU, perform the operation
and copy the results back to the CPU immediately. There is no persistent storage in GPU
memory. It allows any operator to execute on the GPU without any interference from other
operators. However, this is suboptimal when all the temporary data structures fit the GPU
memory (the optimal solution would be to move only the overall inputs and outputs). Cur-
rently, most GPU porting efforts implicitly make the assumption that the GPU memory is
large enough to hold all the data. We are interested in large problems where the data does
not fit the GPU memory.

8.5.1 Description of Applications

Edge detection

Edge detection is one of the most important image processing operations that is per-
formed as a pre-processing/feature extraction step in many different applications. Com-
putationally, it involves convolving the input image with rotated versions of an edge filter
at different orientations and then combining the results by doing a reduction such as ad-
dition/max/max absolute value, etc. The general template for edge detection is given as
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follows :

edge map =find edges(Image,Kernel,

num orientations, Combine op)

This is similar to the template shown in Figure 8.2 where some convolutions are replaced by
“remap” (R) operators. We obtained this template from a cancer detection application [58].
Edge detection alone contributes to about 30% of the total runtime of the application.

We performed edge detection using a 16×16 sized edge filter at four different orientations
(2 convolutions and 2 remaps) and combined the results using a Max operation as in Figure
8.2. The edge detection template is reasonably small so we can apply the pseudo-Boolean
solver to find the optimal solution as described in Section 8.4.3.

We perform our experiments on both small (1000 × 1000) and large (10000 × 10000)
input images to the template. The results are also shown in Tables 8.1 and 8.2.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are used extensively in many machine learning
tasks like handwritten digit recognition, OCR, face detection, etc. We obtained our CNN
from an application that performs face and pose detection of the driver through a vehic-
ular sensor network. This application is a CNN with 11 layers (4 convolutional layers, 2
sub-sampling layers and 5 tanh layers). CNNs involve a huge amount of computations in
the form of data parallel operations. The structure of CNNs is usually very regular and
symmetric and allows many different permutations of operations to get to the same result.
We restrict ourselves to using simple non-separable 2D convolutions, data parallel additions
and tanh operations. In this context, it becomes necessary to order the operations in a
convolutional layer (restricting the freedom in scheduling the operations). The CNNs used
were constructed based on primitives in the torch5 library [1]. The operations involved in a
single convolutional layer (with 3 input planes and 2 output planes) and its transformation
are illustrated in Figure 8.6.
The operation that is performed in a single convolutional layer is given below:

output[i][j][k] = bias[k]+
∑

l

kW∑

s=1

kH∑

t=1

weight[s][t][l][k]∗input[dW ∗(i−1)+s)[dH∗(j−1)+t][l]

(8.1)
where input[∗][∗][l] is the lth input plane
output[∗][∗][k] is the kth output plane
bias[k] is the bias value for the kth output
weight[∗][∗][l][k] is the convolutional kernel used for the lth input and kth output plane
kW is the width of the kernel
kH is the height of the kernel
dW is the subsampling factor along the width
dH is the subsampling factor along the height
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Figure 8.6: Convolutional neural network - layer transformation

We applied our framework to two different CNNs (a small CNN with 11 layers, 1600 op-
erators, and 2434 data structures and a large CNN with 11 layers, 7500 operators, and 11334
data structures). These CNN templates are large enough that the operator scheduling and
data transfer optimizations were practically infeasible to solve optimally using the pesudo-
Boolean solver. These instances were solved using the heuristics mentioned in Section 8.4.3.
They were run on both GPUs with different input image sizes (640 × 480, 6400 × 480 and
6400× 4800). The baseline GPU execution times are also given in Table 8.2.

8.5.2 Performance improvement and data transfer reduction

Tables 8.1 and 8.2 present the results of optimizing for data transfers between the CPU
and GPU for the two different systems. From the results, it is clear that our framework helps
in reducing the amount of communication between the host and GPU and that this results
in superior performance. Entries in the table with “N/A” indicate infeasible configurations
(data exceeds GPU memory) or inconsistent results (due to thrashing).

The final 2 entries in Table 8.2 gave inconsistent results. The large CNN running on
GeForce 8800 GTX gives very erratic timing results. The amount of CPU-GPU memory
transferred under the optimization is close to the amount of main memory (8 GB) in this
case. It turns out that a significant amount of this data is active on the CPU and this leads
to thrashing effects in main memory, thereby making the execution time depend heavily on
OS effects (like paging and swapping). This was verified by looking at the times actually
spent inside the GPU device driver using the CUDA profiler. Execution using our framework
spends 51.33 seconds in the GPU driver (13.40 seconds in memcopy), whereas without our
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Table 8.1: Reduction in data transfers between the host and GPU memory

Template Input Total temporary Number of floats transferred between CPU and GPU
data size data needed I/O transfers only Baseline Optimized for Optimized for

(floats) (lower bound) implementation Tesla C870 GeForce 8800 GTX
Edge detection 1000x1000 6,000,512 2,000,512 13,000,512 2,000,512 2,000,512
Edge detection 10000x10000 600,000,512 200,000,512 N/A 400,000,512 400,000,512

Small CNN 640x480 59,308,709 4,870,082 157,022,568 4,870,082 4,870,082
Small CNN 6400x480 606,855,749 49,230,722 1,596,371,688 49,230,722 49,230,722
Small CNN 6400x4800 6,261,866,429 501,282,002 16,326,219,528 501,282,002 2,536,173,770
Large CNN 640x480 163,093,609 6,649,882 313,105,568 6,649,882 6,649,882
Large CNN 6400x480 1,686,960,649 67,282,522 3,212,182,688 67,282,522 67,282,522
Large CNN 6400x4800 17,664,611,329 691,377,802 33,262,586,528 760,262,830 7,877,915,800

Table 8.2: Improvements in execution time from optimized data transfer scheduling

Template Input Time (seconds)
data size Tesla C870 GeForce 8800 GTX

Baseline Optimized Baseline Optimized
implementation implementation implementation implementation

Edge detection 1000x1000 0.28 0.036 0.19 0.034
Edge detection 10000x10000 N/A 4.12 N/A 3.92

Small CNN 640x480 1.70 0.62 1.21 0.41
Small CNN 6400x480 6.96 2.06 5.95 1.76
Small CNN 6400x4800 54.00 16.66 47.76 20.95
Large CNN 640x480 4.29 2.57 2.94 1.60
Large CNN 6400x480 15.71 6.62 13.96 5.48
Large CNN 6400x4800 262.45 112.99 N/A N/A

framework it spends 80.20 seconds (52.92 seconds in memcopy). The rest of the time is
spent on the CPU.

8.5.3 Scalability

For scalability analysis, we performed experiments using the edge detection template.
Figure 8.7 shows the plot of the execution time versus the size of the input image on the
Tesla C870 platform. The edge template uses 16 × 16 kernels. We define the following
configuration as the “best possible” - Assume that the GPU has infinite memory and all the
operations can be combined into a single optimized GPU kernel call. For the edge template,
this corresponds to a single GPU kernel that takes in the input image and produces the
output edge map directly. This is the optimal implementation in terms of data transfers
(only input and output need to be transferred) and GPU call overhead (only one GPU kernel
call). From the figure, it is clear that our methodology provides scalability and produces
results that are within 20% of the best possible. Note that the baseline stops working (due
to insufficient GPU memory) before the input dimension reaches 8000.

As we can see, using our methodology gives excellent speedups (1.7× to 7.8×) compared
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Figure 8.7: Performance of the edge detection template for scaling input data size

to baseline GPU implementations. With GPUs being increasingly used in general purpose
computations, the need for software frameworks to hide their programming complexity has
increased. Frameworks like ours will be needed in the future to help manage the complexity
of heterogeneous computing platforms.

8.6 Summary

We have shown that we can solve the problem of scheduling and optimizing data transfers
between the GPU and CPU for graphs of data parallel operators efficiently. If not managed
properly, data transfers can have a huge impact on the performance of the application. Given
that GPU memory capacities can vary significantly, reducing programmer effort for ensuring
portability and efficiency is an important contribution. This is especially useful when adding
parallelism incrementally to existing applications using accelerators like GPUs as it is hard
to manage the memory manually and consider portability across multiple generations of
GPUs with the associated memory capacity limitations. Starting from ad-hoc approaches
for specific problems, we formulate and heuristically solve a pseudo-boolean optimization
problem that produces up to 7.8× better performance compared to the unoptimized versions.
We have shown that solving this problem optimally is possible for small graph sizes and
that heuristics can be used to scale to larger problems. Using problem decomposition and
simulated annealing, we can get even better results [148].

Looking at computer vision workloads in Chapter 3, it is clear that most applications are
highly data parallel. When incrementally parallelizing them, optimizing data transfers will
help scale to larger problems easily using existing GPU hardware. Most of the workloads
we have seen are heavy on numerical iterative procedures with large memory requirements.
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The need to exploit hardware parallelism efficiently without sacrificing productivity and
portability is the major reason for the difficulty in using GPUs and other parallel accelerators
and our work is a step towards addressing those concerns for helping computer vision domain
experts.
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Chapter 9

Conclusions

Parallelism in hardware has become inevitable. With increasing computational require-
ments, it behooves us to create better ways for computer vision experts to reason about
parallelism and create tools to make their lives easier. Given the preponderance of nu-
merical computations in computer vision, it is crucial to focus on ways to improve their
performance on modern parallel hardware. With CPU-GPU systems currently the major
focus of computer vision researchers for parallelism, improving the programmability of such
systems is essential.

We saw that parallelism has been the main driver for providing performance improve-
ments since ∼2005 by fitting in more cores with the increased number of transistors on
die. The major consequence, as mentioned previously in this dissertation, is that software
developers are now forced to be aware of the details of the hardware in order to get good
performance for their application. It is no longer the case that improvements in hardware
clock speeds would improve the performance of software automatically. Software developers
now need to be aware of the presence of hardware parallelism and make their algorithms
parallel and scalable, so that they can continue to take advantage of Moore’s law.

The main challenges for this to happen are: (1) computer vision researchers’ focus on
productivity, (2) the fact that efficient numerical algorithms are different for serial and
parallel systems, (3) the absence of algorithmic exploration for performance, and (4) GPU’s
ability to offer more memory bandwidth but with limited memory capacity.

9.1 Contributions

We reiterate and explain our contributions in the following section.

9.1.1 Pattern analysis of computer vision workloads

We have performed a quantitative analysis of patterns used in computer vision appli-
cations. Using a randomly chosen set of 50 papers from a recent conference (ICCV 2011),
we analyzed the presence of different computational kernels in computer vision workloads.
This is important as this has given us a quantitative measure of the relative importance of
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different kernels in linear algebra being used in these applications. Among the workloads
analyzed, we are able to show that our work on numerical algorithms, optimizations and
parallelism is relevant to about 50% of the applications. We have been able to show where
the existing gaps are and hence have shown framework developers the set of kernels that
need to be developed. These kernels can then help researchers and developers efficiently
and productively parallelize and optimize their applications. Unlike previous work, we do
not look at just individual applications, but rather at a varied set of different applications.
This gives us a “big picture view” of what computations are important for computer vision.
This analysis can help computer architects who would like to improve the microarchitecture
to better target computer vision, framework developers who can focus on relevant and im-
portant numerical computations and computer vision researchers who apply parallelism in
their applications.

9.1.2 Improvements to numerical algorithms

We showed numerical optimizations for parallelizing computer vision applications on
multi-core and manycore processors in the context of the following applications - support
vector machines, optical flow & tracking and image & video segmentation. Each of these
applications have unique computational requirements and challenges that needed to be
overcome for an efficient implementation on a manycore platform such as a GPU.

In the case of support vector machine training, most of the work was in making sure
that the data structures are well-aligned to achieve peak memory bandwidth (as the problem
is bandwidth bound). SVM classification, on the other hand, required a reformulation of
the distance computations in order to take advantage of high performance BLAS routines
that are optimized for the platform at hand. This reformulation was shown to improve
performance not just in GPUs, but also in multicore CPUs thus demonstrating that algo-
rithmic changes are essential for scaling and efficiency on all parallel platforms. We showed
a speedup of 4–76× for SVM training and 4–372× for SVM classification compared to
LIBSVM, a widely used serial implementation.

Optical flow and tracking provided different challenges. We showed how optimizing the
linear solver in the inner loop of the large displacement optical flow algorithm can have a sig-
nificant impact on the overall performance. Solvers used for serial platforms (Gauss-Seidel
solver) perform 53× worse compared to optimized solvers for parallel platforms (precondi-
tioned conjugate gradient). Again, we showed that this improvement is not just observed on
GPUs, but also multicore CPUs. We also proved that the linear system is positive definite,
thus justifying the use of conjugate gradient solvers. We demonstrated a speedup of 37×
compared to a serial implementation, which also formed the base of our point tracker. We
showed that our point tracker, which relied on accurate optical flow and not complicated
integration procedures, performed much better in terms of both accuracy (46-66% better)
and density (10-200×) compared to existing trackers. The speed benefits obtained from an
optimized parallel implementation of optical flow has meant that the tracker can be used in
many different applications.

Image and video segmentation rely on eigensolvers which are their main computational
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bottlenecks. While performing algorithmic exploration to improve the performance of image
contour detection as shown by [47], it is also essential to ensure that the overall application
level accuracy is maintained. This was shown for the optimizations done to local cues
computations that used integral images rotated using Bresenham lines and histograms over
squares instead of disks. The main bottleneck to the parallelization of the eigensolver on
GPUs is their limited memory capacity. Since the amount of intermediate data generated
(200-500MB) can far exceed the amount of DRAM on GPUs (as low as 256 MB), we modified
the eigensolver to enable it to run with limited memory while not restricting performance on
GPUs with more memory. This optimization not only helped us with image segmentation,
and enabled us to get a speedup of 130× compared to the original serial implementation, but
was also crucial for video segmentation. Given the increased size of the video segmentation
affinity matrices (∼20GB), it is essential to be able to run eigensolvers with limited memory
usage. Optical flow was used to extend the idea of an affinity matrix to videos. We have
shown that it is possible to run eigensolvers on matrices with ∼20 million rows on a cluster
of GPUs. Our video segmentation algorithm runs in about 5 minutes for 200 frames with
34 nodes. We demonstrated the feasibility of extending high quality image segmentation
techniques to video segmentation using the increased performance provided by parallelism
and numerical optimization. The video segmentation algorithm thus obtained has also been
shown to be better than other existing video segmentation algorithms.

We have shown that parallelization of existing algorithms brings new capabilities that
were not realizable earlier due to the computational burden of the algorithms. In general,
improvements to the runtime of algorithms can be utilized for further research in one of two
ways: (1) running the same algorithm on a much larger dataset e.g. being able to run large
displacement optical flow and tracking on long video sequences and (2) running even more
computationally demanding algorithms that build on top of current algorithms e.g. being
able to run video segmentation using principles from image segmentation. We have shown
that both of these possibilities can be exploited for our applications.

9.1.3 Memory management in CPU-GPU systems

In many of the applications considered, including support vector machines and image &
video segmentation, the limited memory capacity of GPUs had been a productivity bottle-
neck. Even when the details of parallelization are known, it takes a large amount of work
to manage the movement of data between CPU and GPU so that all the required computa-
tions can happen without exceeding the GPU memory capacity. We have shown that for a
limited class of applications that can be expressed as operator graphs, we can automate the
process of task and data transfer scheduling. We showed how we can describe this problem
as a pseudo-boolean optimization problem and how we can solve it using heuristics. Solving
this problem has enabled a speedup of 1.7-7.8× compared to a parallel implementation that
does not optimize the movement of data. We believe that this optimization is important for
making applications that use large data to be insensitive to changes in the memory capacity
of GPUs.



128

9.2 Future Work and Extensions

There are may open problems in trying to improve the performance and parallelizability
of computer vision algorithms. Some of the ways in which our work can be extended and
be made more broadly available are as follows -

9.2.1 Integration with frameworks

Memory management algorithms such as the one described in Chapter 8, while very use-
ful, are limited by how they fit in with existing software infrastructure. Here is where data
parallel frameworks like Copperhead [45] can help. The Copperhead framework, which is
built on a Selective Embedded Just In Time Specialization (SEJITS) principle [46], can be
helpful in providing large productivity benefits to software developers while hiding details
like memory management from the programmer. It is also much easier to get information
about task graphs and data structures when (1) the tasks are generated by the framework
and the dependences are known, (2) the sizes of the data structures are known at runtime to
the framework. Using heuristics that are fast is essential when the optimization procedure
has to be solved during the execution of the application. This would vastly improve the ap-
plicability of the memory management algorithms, as we can now use them for applications
whose task and data structure sizes are known only at runtime as opposed to compile time.

9.2.2 More coverage

Our optimizations and tools have only managed to cover a subset of the types of compu-
tations that computer vision entails. Chapter 3 showed a list of the important kernels that
occur commonly in computer vision applications. We have explored algorithmically a few of
the computations - linear solvers in optical flow, eigensolvers for image and video segmen-
tation, quadratic programming for support vector machine etc. While these computations
do correspond to a significantly large portion of the linear algebra computations that are
in use, there are others like solving Conditional Random Fields that are still open. While
some work has been done on parallelizing them, we believe there is much more to be done.

9.3 Summary

Since hardware parallelism has become an inescapable route in order to guarantee per-
formance improvments, it has become essential for all software developers to pay attention
to the parallelizability of their algorithms. In particular, computer vision software also needs
to adapt to a massively parallel world. This dissertation is a step in that direction. We have
looked at multiple computer vision applications to see how they can be adapted to multicore
and manycore parallelism. In addition to looking at computer vision workloads and char-
acterizing them in terms of patterns, our work demonstrates the utility and importance of
adapting numerical algorithms, reformulation for performance and tools for managing mem-
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ory in order to take advantage of massively parallel platforms and make computer vision
computationally more efficient.
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[106] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalues by the power
and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl., 13(4):1094–
1122, October 1992.

[107] Abhijit Kundu, K. Madhava Krishna, and C. V. Jawahar. Realtime multibody visual
slam with a smoothly moving monocular camera. In Proc. International Conference
on Computer Vision, pages 2080–2087, 2011.

[108] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors. ACM Computing Surveys, 31(4):406–471,
1999.



139

[109] Shang-Hong Lai and Baba C. Vemuri. Reliable and efficient computation of optical
flow. International Journal of Computer Vision, 29(2), 1998.

[110] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[111] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: A compiler
framework for automatic translation and optimization. In Proc. of the ACM Sympo-
sium on Principles and Practice of Parallel Programming (PPOPP’09). ACM Press,
February 2009.

[112] Thomas Leung and Jitendra Malik. Contour continuity in region based image segmen-
tation. In Proc. European Conference on Computer Vision, pages 544–559. Springer-
Verlag, 1998.

[113] Xiaoye S. Li. Direct solvers for sparse matrices, August 2011. http://crd-legacy.

lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf.

[114] Vincenzo Liberatore, Martin Farach-Colton, and Ulrich Kremer. Evaluation of Algo-
rithms for Local Register Allocation. In CC ’99: Proceedings of the 8th International
Conference on Compiler Construction, pages 137–152, 1999.

[115] R. Lienhart and J. Maydt. An extended set of Haar-like features for rapid object
detection. In Proc. International Conference on Image Processing, pages 155–162,
New York, USA, 2002.

[116] Michael Linderman, Jamison Collins, Hong Wang, and Teresa Meng. Merge: A pro-
gramming model for heterogeneous multi-core systems. In ASPLOS XIII: Proceedings
of the 13th international conference on Architectural support for programming lan-
guages and operating systems, Mar 2008.

[117] Ce Liu, William T. Freeman, Edward H. Adelson, and Yair Weiss. Human-assisted
motion annotation. Proc. International Conference on Computer Vision and Pattern
Recognition, 0:1–8, 2008.

[118] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an
application to stereo vision. In Seventh International Joint Conference on Artificial
Intelligence, pages 674–679, Vancouver, Canada, August 1981.
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