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Abstract
Search and rescue is often a slow process, which puts people at risk of being trapped,
stranded or even worse, killed during natural disasters, such as earthquakes, floods and
hurricanes. In order to provide better rescue assistance and to achieve high survival rates, we
need efficient, cost effective and small crawling robots to execute search and rescue
operations during disaster situations, especially in reaching spaces that are inaccessible for
larger robots or are harmful to rescuers. Thus, | worked on improving the walking speed and
autonomous behaviour of OctoROACH, an inexpensive and robust palm-sized eight legged
robot developed by the Biomimetic Millisystems Lab, together with my capstone project
members and advisors at UC Berkeley. Our results show that reinforcement learning
algorithms is useful to improve the walking speed of existing search and rescue robots across

different terrains and save more lives during disaster situations.



Introduction
The world population reached 7 billion in October 2011, with the majority
concentrated in underdeveloped countries. This means that a huge amount of people are

vulnerable to natural disasters, such as earthquakes, floods and hurricanes.
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Source: “Factors determining human casualty levels in earthquakes: Mortality prediction in building collapse”[16]

Fig. 11. % of the injured that subsequently die before they can be rescued. [16]

During disaster situations, the goal of search and rescue operations is to rescue the
greatest number of people within the shortest time possible, while reduce potential risks to
the rescuers. As implied in the graph above, the more efficient search and rescue operations
are executed, the less time victims spend trapped in rubble and the higher their chances of
survival are. Unfortunately, search and rescue is often a slow process, which puts people at
risk of being trapped, stranded or even worse, killed. Some of the main reasons of the lack of
efficiency in the current search and rescue operations are the physical constraints of humans,
as well as the desire to maintain the safety of rescue personnel.

As such, in order to provide better rescue assistance and to achieve high survival rates,
we need efficient, cost effective and small crawling robots to execute search and rescue
operations during disaster situations. State of the art legged robots, such as the OctoRoOACH

which are developed by the Fearing lab at UC Berkeley, have been demonstrated to be



capable to locomote across a variety of challenging terrains. However, their efficiency of
locomotion can be significantly affected by the timing of the legs. Tuning the timing
parameters by hand can be time-consuming and the best setting for the parameters can vary
with wear of the robot and when terrain properties change.

Therefore, to provide solutions for the challenges stated above, my teammates and |
am currently working on OctoROACH, an inexpensive, light and robust palm-sized eight
legged robot developed by the Biomimetic Millisystems Lab at UC Berkeley, in collaboration
with my capstone project team members, teacher advisors at UC Berkeley. This self-
contained robot is also developed for Micro Autonomous Systems and Technology (MAST)
for reconnaissance missions. Our objective is

to study reinforcement learning methods to

/

parameters. This will enable legged robots,
such as OctoRoOACH to more efficiently
traverse wide varieties of terrains, such as
wood, carpet, gravel, grass, sand, and etc.
Throughout this report, we will provide you with better understanding of our study
and present you our detailed results. present results and conclusions of our findings. Firstly,
we will establish the context of existing bio-inspired legged robots and study various existing
machine learning algorithms that improve the walking speeds of OctoROACH. Secondly, we
will describe the methodologies we used to implement and evaluate the different types of
reinforcement learning algorithms on both simulated and physical OctoRoACH. Thirdly, we
will discuss the results of our implementations and evaluations. Fourthly, we will provide
conclusions and recommendation of the different reinforcement learning algorithms that we

have tested and evaluated thus far. We will also discuss potential future work.



Context / Literature Review
It is time-consuming when hand tuning the timing parameters and that the best
parameters setting of each individual robot is dependent upon the robot condition and the
change in terrain properties. In order to overcome this challenge, this project requires the
study of reinforcement learning (RL) methods to enable automatic tuning of the control

policy parameters. This will enable these robots to traverse wide range of terrains more

efficiently. i
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DynaRoACH is a bio-inspired design, underactuated hexapedal robot prior to the
eight-legged OctoROACH. DynaRoACH is driven by a single actuator to produce a high
speed alternating tripod gait and run at 14 body lengths per second, whereas OctoROACH has
two actuators that are driven independently (see Fig. 11.). The maximum speed and stride
frequency for DynaRoACH is 1.4 m/s and 20 Hz respectively and for OctoROACH are 0.5

m/s and 25 Hz respectively. DynaRoACH achieves dynamic turning by modulating the front



or middle leg stiffness, while instead OctoROACH uses gyro feedback in a closed-loop
steering system to control its turning using PID (see Fig. 12). Both robots have real-time
measurements of the motor back EMF. The advantage of OctoRoOACH is that it can use leg
velocity control and rate-gyro-based heading control system to steer its direction or turning
rate efficiently. However, the disadvantage of OctoROACH is that it is an early design and
lacks stability due to inconsistencies with the mechanical tuning of leg and body compliance,
and is affected by terrain properties (i.e. surface friction, irregular height and hardness). In
conclusion, the use of differential steering and rate gyro are useful for searching the best
possible control policy parameters. [1][10]

The quadrupedal “LittleDog” robot uses a hierarchical control architecture to traverse
over challenging terrains. The controller consists of (i) high-level planner that plans a set of
footsteps across the terrain, (ii) low-level planner that plans trajectories for the robot’s
footsteps and center of gravity (COG), and (iii) low-level controller that tracks these desired
trajectories using a set of closed-loop recovery mechanisms to keep track of preferred
trajectories and improve system performance. This paper also discussed a motion capture
(MOCAP) system that estimates the position and orientation of the robot’s body and joint
angles by tracking reflective markers attached to the robot. The advantage of the hierarchical
control system is that it enables LittleDog to plan a sequence of joint angles and steadily
traverse rough terrains and climb over obstacles nearly as tall as the robot’s legs by applying
relevant control inputs to achieve the desired trajectory. However, the disadvantages of this
approach are (d.i) moving the COG more to achieve greater stability may increase the
likelihood of collision between LittleDog’s legs and the terrain and (d.ii) not applicable to
OctoROACH as it does not have a hierarchical control architecture. In conclusion, MOCAP is
useful in helping us collect data on OctoROACH and the process will be detailed in the

methodology section. [2]



The first controller capable of omnidirectional path following with parameters
optimized simultaneously for all directions of motion and turning rates on LittleDog is
presented in another paper. Although challenging, a simulator with a Reduced Rank
Regression (RRR) dimensional reduction algorithm can be used to identify a low-
dimensional subspace of policies that spans the variations in model dynamics to optimize
controller parameters (i.e. omnidirectional path following and turning rates). MOCAP was
used to track reflective markers on LittleDog and obtain its state estimation (i.e. direction and
turning angles). This concept was applied to OctoROACH when timestamps, positional
trajectories and rotational matrices were obtained to calculate its traversing speed and
accuracy for a range of control policy parameters. The advantage of RRR is that it can be
implemented to OctoROACH, in which the control policy parameters can be reduced to
perturbation of left and right motor thrusts, travel time and PID controller values. However,
the disadvantage of RRR is that the reduced dimensional policies may exclude essential
parameters to represent the model of a robot. In conclusion, low-dimensional control policy
parameters can be defined for OctoROACH in search for the best possible gait parameters. [3]

A policy search method for a Markov decision process (MDP) or partially observable
MDP (POMDRP) is based on the observation that POMDP can be transformed into an
“equivalent” one and only POMDP with deterministic transitions needs to be considered and
further estimated. The search for a policy with the best possible estimated parameters can be
achieved with the optimized estimate from a policy search method initiated by user specified
criteria, provided these estimates will be uniformly good. The advantage of using POMDPs
for control is that broadly speaking they are quite robust to variations in the transition and
observation probabilities [12]. The disadvantage of policy search is that the convergence
property of the optimization procedure is affected each time the objective function changes

[13]. In conclusion, the policy search method can be implemented on the OctoROACH by



randomly perturbing a deterministic set of control policy parameters (i.e. left and right motor
thrusts) and optimize the estimated values to achieve the best possible parameters. [7][8]

Locomotion of legged robots is a challenging multi-dimensional control problem as
the coordination of motions in all legs of the robots is needed while considering stability and
surface friction. Also, the lack of accurate simulators force researchers to perform the
learning entirely on actual robots, which is simpler but requires more human time and
intervention, and poses challenges (i.e. sparse training data, dynamical complexity, and
discrepancy between the ideal and real locus). Policy gradient RL algorithm, which was
implemented on actual quadrupedal Sony Aibo robots, automatically searches for an N-
dimensional parameterized walk while optimizing for both forward gait speed and stability,
using a multi-criteria objective function that includes acceleration, gait speed and stability.
Enabling a robot to autonomously learn to improve its own performance, RL automatically
estimates the gradient of an initial set of randomly perturbed parameters and reaches a local
optimum to search for parameters of the fastest possible walk. The advantages of this
approach over hand-tuned methods are (a.i) resulting gait is reasonably faster and steadier
than previous hand-tuned and learned solutions on the same robot platform, (a.ii) find a fast
gait efficiently, (a.iii) less human bias and intervention, (a.iv) easily applied to various
surfaces and robots, and (a.v) robot’s visual object recognition is greatly improved. However,
the disadvantages of this approach are (d.i) RL algorithms may generate some intermediate
exploratory gaits that cause physical damage to the robots over time and lead to
inconsistencies between them, which will need further fine-tuning to improve individual
robot performances, (d.ii) evaluations on actual robots are noisy and take a long time than
that in robot simulations, (d.iii) starting point for the search could affect final results, (d.iv)
gradient calculations cannot be precise and empirical estimation of the gradient by sampling

can be computationally expensive due to the large search space and the temporal cost of each



evaluation, (d.v) Aibos lack sensors that can be used during training to provide controller
closed loop feedback. But in our project, OctoRoOACH’s gyro sensor data and the use of
MOCAP can provide us with closed loop feedback. In conclusion, there is a need for the
policy gradient RL algorithm to be implemented on the robot to efficiently improve gait
locomotion efficiency. [4][5][6][8]

Likelihood ratio policy gradient RL methods can be derived from an importance
sampling perspective and have been some of the most successful RL algorithms, especially
on physical systems. A full estimation of the expected return function is provided and global
search over the importance sampled expected return gradient information can be used to
achieve faster learning. Likelihood ratio methods (i) use past experience to estimate only the
gradient of the expected return U at the current policy parameterization, rather than to obtain
a more complete estimate of U and (ii) use past experience under the current policy only,
rather than using all past experience to improve the estimates. The advantages of likelihood
ratio methods are (a.i) theoretically faster convergence rate, (a.ii) gradient estimation process
is no longer threatened by the complex control of these variables, since the generation of
policy parameter variations is not needed. (a.iii) produced the most real-world robotics results
and is guaranteed to obtain the fastest error convergence for a stochastic system. The
disadvantages of likelihood ratio methods are (d.i) when used with a deterministic policy, a
system model has to be maintained, which can be difficult to obtain for continuous states and
actions. In conclusion, importance sampling based methods will be tested on OctoROACH as
they outperform non-importance sampling based algorithms. [9] [11]

In general, the different RL algorithms will need to be implemented, compared and
evaluated before the optimal control policy parameters can be determined. The experiments

will initially be carried out manually before the automated RL process takes place.



Methodology / Approach

Reinforcement learning methods to enable automatic tuning of the control policy
parameters were studied to enable OctoROACH to traverse wide range of terrains more
efficiently. The team consists of three students who were from a varied specialized
educational background, such as robotics, software engineering and computer engineering.
Fortunately, all three had completed at least an undergraduate degree and all had basic
technical mastery that ranges from hardware to software. None of us have studied
reinforcement learning methods prior to this study.

As proof of concept, the team was required to simulate OctoRoACH to evaluate RL
methods that may potentially be used to optimize the gaits of an actual robot in the next
semester. The team chose Blender 3D that works on top of Bullet physics engine, but faced
too many technical difficulties, such as steep learning curve and immature physics

application features.

m vy Fig. M1. Two and eight-legged robot simulations. l

Eventually, an eight and two legged robot was simulated in a 2D physics simulation

environment using MATLAB, namely CapSim (see Fig. M1.). Algorithms that were

implemented were Monte Carlo, convex optimization, and policy gradient RL algorithms.

Monte Carlo Method CVX using Collocation
* Algorithm: * Algorithm:
Initialize ©,.., Iterate for = 1,_2, 3,
While (!done) [A, By ¢ = linearize_system()

maximize(speed)

subjectto
X1 = A + Bt ¢,
maximum torque
smooth forward motion

@' =0, +random(d)

Run Simulation(open_loop | closed_loop)
if current_time < best_time

ebest =@

end end

Fig. M2. Monte Carlo Algorithm Fig. M3. CVX Collocation Method



= Inatial Policy
while ldone do
{H1. Ra,. .. R} =t random perturbations of =
evaluate| {Ry, Ra, ..., 1)
for n=1to N do
Avgpe n = average score for all i that have
a positive perturbation in dimension n
Avgpnn = average score for all /% that have a zero
perturbation in dimension n
Avrgae n ~— average score for all By that have a
negative perturbation in dimension n
if Avggon > Avgpen and Avgeon > Avgecn then
An =0
else
-'1n e -'1i'§+f.n — .-’lu'y-;.n
end if
end for
A = ﬁ ® 1)
o= 4 A
end while

Pseudocode for the
N-dimensional policy
gradient algorithm.

During each iteration
of the main loop t
policies are sampled
near w to estimate the
gradient around
then  is moved by

an amount of 1 in the
most favorable
direction.

Fig. M4. Pseudocode for N-dimensional policy gradient algorithm[4]

The team implemented these methods and modeled a virtual robot as close as possible

to the specifications of the actual OctoROACH. The algorithms were evaluated and the results

show that policy gradient RL method enables the simulated robot to walk at a higher speed as

compared to the other methods, as shown in the plot below:
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Fig. M5. Reinforcement Learning Methods, i.e. Monte Carlo, Policy Gradient & CVX.
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The disadvantages of these simulations are (i) difficult to apply to actual robots,
because they are quite inaccurate as it is only in two dimensions. (ii) not realistic to simulate
real-life physical constraints such as gravity, friction, collision, rotation, etc.

The actual OctoROACH comes with electronic boards that provide differential
velocity steering controls, which allows us to tweak left and right motor thrusts to steer its
movements. In order to show that RL methods are necessary, experiments such as the open-
loop and closed-loop steering control were applied on the OctoROACH. For open-loop
system, several terrains such as wood, carpet and gravel were selected. For each terrain, we
used Euclidean distance to obtain the initial positions (x_i, y_i) and final positions (x_f, y_f).
Then, open-loop policies were hand-tuned (i) on intended surfaces, (ii) on different surfaces,
(iii) for the same surface, compare policies across robots (iv) over time to determine if the
physical wear of robot affects policies. The metric used for measuring the performance of the

robots are normalized speed and accuracy. The mathematical formulation is shown as follows:

Speed =

Gerrvp) : 2
Eﬁ] \/(xf —x) + (v - )
t

/ =v)°
. Accuracy = 5
2
(xf - xl) + (yf_yl)

Fig. M6. Initial & Final Position & Trajectories.  Fig. M7. Normalized Speed & Accuracy
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For closed-loop steering control, the team had to analyze and use readings from the on
board rate gyro feedback data (see Fig. M8) and perform some hand-tuning to allow the robot
to increase or decrease right motor thrust and steer its way back to a straight path, if it
deviates from its original path caused by the left motor thrust (see Fig. M9). The closed-loop
policies were then implemented on intended and different surfaces. Results and plots can be
seen in the discussion section. Although less tedious and time-consuming than that of open-
loop policy, the team still had to spend time carrying out experiments, such as manually hand
tune the closed-loop control policy parameters and tuning the parameters using the on board
proportional-integral-derivative (PID) controller. It is shown that reinforcement learning
algorithms are needed to improve the gait efficiency and effectiveness.

Closed-loop Steering: Carpet Policy on Carpet
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Fig. M9. Plot of Sample Closed-Loop Steering With Varied Motor Thrusts.
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RL method is performed with a combination of differential velocity steering, rate gyro
feedback, Vicon motion capture (MoCap) feedback, and back EMF (see Fig. M10.). In
achieving this goal, reflective markers were - e A Sy £
placed on OctoROACH to enable MoCap to
detect and save the open-loop trajectories
and time stamps of the OctoRoACH for

both carpet and wood. Results and plots are

presented in the discussion section (see Fig.
D8. and Fig. D9.) Fig. M11. OctoROACH with Reflective Markers.

In running the likelihood ratio policy gradient RL experiments, we chose to
run our tests on a single surface and for that we chose carpet. Using Python libraries made
available to our project on OctoROACH, we then proceeded to write the RL controller. A
common reward function, harmonic mean, R was chosen to optimize both speed and
accuracy metrics. The harmonic mean is used as the reward function, R such that

2* Speed * Accuracy
(Speed +Accuracy)

Reward function, R =

This decision was made so that a high speed was not chosen at the cost of a very low average,

and vice-versa. In order to minimize the impact of noise, six individual measurements for

GENERAL LIKELIHOOD RATIO POLICY GRADIENT ESTIMATOR “EPISODIC

each gradient calculation were taken, REINFORCE” WITH AN OPTIMAL BASELINE.

and estimated using the least _input: policy parameterization 6.
1 | repeat
. 2 perform a trial and obtain xq. g, Wy, g, 0. 5
squares method. However, this RL 3 for each gradient element gy,
E estimate optimal baseline

H 2 —H
(Zk:n Vay, log ma(ug|xg )) Y=o “1’{)

method may not be best suited for ot = .
((Z;{’;n Vi, logmg (uy |x, )) >
. 5 estimate the gradient element
an OctoRoACH policy controller, an = ((Z;i’:n Ve, logme (ug [xx }) (Zin arr = b*‘))
. 4 end for.
because (i) they do not properly _7 | until gradient estimate grp = [g1,. . .. gn] converged.
return: gradient estimate ggp = [g1.....gnl.

accommodate for mechanical failure or wear, and (ii) representation of physical system by

the cost function may be inadequate.
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Discussion
The results and plots that were obtained while experimenting with OctoRoACH will
be discussed below. Specifically, the open loop steering, closed loop steering with rate gyro

feedback system and policy gradient will be discussed.

Optimized Hand-Tuned Policies on their Intended Surfaces
10000 T4 .
50.00 L — &
80.00 * -t
70.00 e
= 6000
£
-g 50.00 m
3 [ |
-E 40.00
30.00
# CarpetPolicy/Carpet
20.00 B WoodPolicy/Wood
10.00 Gravel Policy/Gravel
DDD T T T T T T T T 1
0.000 0.020 0.040 0.060 0.0BO 0.100 0.120 0.140 0.160 0.180
speed (m/s)

Fig. D1. Optimized hand-tuned policies on intended surfaces, i.e. carpet policies on
carpet, wood policies on wood, and gravel policies on gravel.

Hand-tuned open-loop policies can be time consuming yet possibly produce high
speeds and accuracies on their intended surfaces. However, when optimal policies were
applied on a different surface that was not intended, the performance of robot decreases. Also,
since speed and accuracy are inversely related, there is a trade off between speed and

accuracy.
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Open Loop Policies on Different Surfaces
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Fig. D2. Open Loop Policies on Different Surfaces, i.e. carpet policies on
carpet, carpet policies on wood, wood policies on wood, and wood policies on carpet.

An optimal control policy on a surface does not work on a different surface. Thus, it is
obvious that hand tuned policies do not work well on different basic terrains, let alone

unpredictable and risky terrains during search and rescue operations in disaster situations.

Policy tuned for wood andtested on 3 different snrfes, . , grvel and carpet.

For example, a wood policy that allowed OctoROACH to walk straight was tuned on a
wood surface. However, as shown in the previous graph and the images above, the accuracy
and speed performances of OctoROACH will most probably perform worse than the optimal
wood policy. Depending on the mechanical structure of OctoROACH, the robot may deviate

from a straight line, and even worse walk in circles.
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Close Loop Policies on Different Surfaces
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Fig. D3. Closed Loop Policies on Different Surfaces, i.e. carpet policies on
carpet, carpet policies on wood, wood policies on wood, and wood policies on carpet.

Hand-tuned closed-loop policies performed well on surfaces they were intended for

tuning. As shown in the plot above, closed-loop policies did not improve speed, but increased

accuracies.

CL Wood Policy on Wood, Carpet, and Gravel
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Fig. D4. Closed Loop Wood Policies on Surfaces such as wood, carpet and gravel.
The closed loop wood policies were extended to gravel surface and the results

obtained matches our hypotheses closed-loop policies increases accuracies, but not speed.
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Policy Comparison Across Robots
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Fig. D5. Policies of one surface, i.e. wood and carpet, are compared across robots.
Hand tuned policies for one robot may not be applicable to another robot. This is most
likely caused by mechanical inconsistencies in various aspects, including the leg stiffness,

asynchronous leg motions that cause different friction applied on the ground, and etc.

Hand Tuned Policy on Carpet Over Time
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Fig. D6. Hand tuned policy on carpet deteriorates over time.
Due to the physical wear of several parts of the robot, control policy that worked at

some point in the past may not work well later. For example, an optimal control policy for
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carpet that allows the robot to walk on carpet in a straight line initially may result in the robot
moving in a circular fashion three hours later. These conditions deteriorate over time and

cause more severe mechanical inconsistencies.
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Fig. D7.

Due to lack of understanding of the RL method, open-loop experiments were done on
wood and carpet surfaces to obtain trajectories. MoCap was used to further characterize the
responses to different inputs. A total of 400 tests were run. 200 on each surface, evaluating
nearly 100 different thrust settings twice on each surface. Based on the collected data, the

forward distance travelled by the robot with several different thrust values were plotted:

Distance Traveled vs. Motor Thrust (Carpet)

1.5

250

100

left thrust

right thrust

Fig. D8. Distance travelled vs motor thrusts on carpet surface.
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Distance Traveled vs. Motor Thrusts (Wood)

200

left thrust 2
tight thrust 1

Fig. D9. Distance travelled vs motor thrusts on wood surface.

Based on the results above, there seems to be an interesting result in the relationship
between forward distance travelled and motor thrust inputs on each different surfaces. The
robot responded to the thrust inputs similarly on both surfaces, although with a slight
translation in the policy space.

Likelihood ratio policy gradient RL method gave us some interesting results. Given
an initial and final x, y positions, the speed, accuracy and reward function (harmonic mean, R)
as calculated in the methodology section, it turns out that the likelihood-ratio method returned
results comparable to those found through our hand-tuning experiments, with speeds of

0.1m/s and an accuracy of 99.5%.
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Fig. D10. Accuracy over time.
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Fig. D12. Reward over time.

Our project confirms previous work, in which the walking efficiency of the robot is
affected by many internal and external factors, such as mechanical inconsistencies, terrains
with different textures and frictions, and many others.

Our project can be applied in the broader context, in the sense that hand tuning
policies can be frustrating and tedious, especially when the number of robots increases. Thus,
it is advised to implement reinforcement learning algorithms to not only enable the robots to
autonomously walk across different terrains efficiently, but also reduce human intervention
and time spent on tuning the robots. This will definitely help in increasing search and rescue

operation efficiency and effectiveness.
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Conclusion / Impact

In conclusion, running the OctoROACH with (i) open loop system is tedious, time-
consuming, generates random trajectories, and may not work well over time, across terrains
and robots, and (ii) closed loop gyro feedback system is often better than that of the open
loop, but still tedious and time-consuming when tuning PID controller and may not work well
over time, across terrains and robots.

Thus, adaptive gait control is necessary to allow a legged robot to adapt itself to
different terrains and walk efficiently. Specifically, we believe that RL methods may be
effective to achieve these goals. Several RL methods, specifically the policy gradient
methods, have been studied to allow control policy parameters to be automatically tuned. The
best reinforcement learning algorithm that we have implemented on OctoROACH thus far is
the likelihood ratio policy gradient method. This method is dependent on the initial motor
thrusts and provides fast convergence rate to a local optimum and eventually global optimum
to enable robots to walk faster and straighter on different terrains. With RL implementation,
robots can potentially assist human rescuers to perform reconnaissance, or search and rescue
operations efficiently and ultimately save more lives during disaster situations.

In future, policy search methods can be developed based on characterized behaviours:
(i) behaviour of robots on a variety of terrains and (ii) behaviour of several robots. Robots
may be wirelessly connected to one another, provide real-time audiovisual feedback to the
base station and locomote in swarms to expand the search and rescue network effectively and
efficiently. Electronic and mechanical body parts of robots can be standardized with higher
quality materials, so that more time can be spent implementing useful advanced machine

learning algorithms instead of fixing and tuning the actual robot.
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