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Abstract

Variable, intermittent renewable sources of energy are
being introduced into the national electric grid at scale.
However, the current grid paradigm of load-following
supplies is unable to utilize these sources without im-
practical deployments of backup generation and grid-
scale energy storage. Thus, it will be crucial to have
energy agile loads: electric loads that can dynamically
adapt their energy consumption. Data centers are prime
candidates for becoming energy agile because they are
large energy consumers and often have workloads that
can be shaped to vary their power consumption. In this
paper we present an energy agile cluster that is power
proportional (uses power proportional to its workload)
and exposes slack (the ability to temporarily delay or
degrade service to reduce power consumption). We de-
scribe a prototype cluster that consumes 60% less en-
ergy on typical workloads by being power proportional.
Then, using month-long traces from a 9572 node com-
puting cluster and a California wind farm, we show how
a grid-aware scheduler can use workload slack to reduces
dependence on non-renewable energy sources to 40% of
its original level. Our results show that achieving the
same wind penetration with energy storage alone would
require sufficient battery capacity to run a cluster for five
hours.

1 Introduction
Transitioning from fossil fuels to the use of sustainable
energy sources is one of the most pressing challenges to-
day. Use of variable renewable sources of electric power,
i.e., from the wind and the sun, is essential in address-
ing this challenge, because electricity constitutes 40% of
overall energy consumption [36].

The fluctuating nature of these sources fundamentally
limit their penetration in today’s electric grid. Aug-
menting variable renewable supplies with backup gen-
eration and grid-scale storage has been proposed, but
such backup generation can result in more greenhouse

gas emissions than with no renewables at all [8] because
backup plants must be left running, ready to makeup for
drops in renewable supply, and effective grid-scale elec-
tricity storage solutions remain elusive [18]. We seek to
substantially increase the renewable penetration limit by
introducing energy agile loads: loads on the electric grid
that provide mechanisms for controlling when they con-
sume power or how much power they consume according
to some policy.

Energy agile loads offer the opportunity to schedule
demand when renewable power supplies are available.
Designing the control algorithms and communication
protocols required to match the demand of energy agile
loads to the supply of renewable power sources is fun-
damentally a distributed systems scheduling problem, so
we apply techniques commonly found in computer sys-
tems research to this broader challenge. As a concrete
example and proof-of-concept, we design and evaluate a
prototype energy agile computing cluster.

Computing clusters are a promising candidate for pro-
totyping this cooperative grid management for several
reasons. They are large loads, consuming 61 billion
kilowatt-hours in the US in 2006 at a cost of about $4.5
billion [37] and controlled by a small number of adminis-
trative domains. Moreover, they exhibit a fair amount of
energy usage slack: the flexibility in the system to delay
or adjust the consumption associated with the service it
provides. Specifically, this slack comes from slightly de-
laying long running batch jobs and gracefully degrading
interactive services.

In this paper, we implement a cluster using current
hardware, running common batch and interactive work-
loads, that can adjust its power consumption. We then
use simulation, driven by real-world computing work-
loads and wind farm traces, to explore several general
policies for scheduling demand to enable using more in-
termittent renewable energy on the electric grid. Our re-
sults show that we can reduce dependence on traditional
generation sources by over 60%. For a modestly-sized



(one-thousand node) cluster, achieving the same with
energy storage alone would require 5 MWh of storage
or approximately 200 metric tons of lead-acid batteries
(four shipping containers worth).

We believe similar results may be achieved for non-
compute electric loads, as more such loads are connected
to the Internet for communication and control. The tech-
niques investigated here are relatively straightforward,
are in use in other aspects of computing, and have nat-
ural analogs in other domains (e.g., batch compute loads
are analogous to appliances, interactive compute loads to
lighting). A substantial portfolio of energy agile loads is
necessary for feasibly attaining high-levels of renewable
integration. Without energy agile loads, the maximum
level of variable renewable penetration is severely lim-
ited, as discussed in the next section. Thus, the computer
science techniques used here to design, implement, and
evaluate an energy agile computing cluster have the po-
tential for much broader impact. In this paper, we:
• Motivate energy agile loads as the most realistic

method of transitioning the electric grid to sustainable
energy sources.

• Formulate the problem of creating energy agile loads,
presenting the key components: mechanisms and poli-
cies.

• Design, implement and evaluate a power proportional
cluster running interactive and batch workloads with
the mechanisms for shaping power consumption.

• Simulate and evaluate policies for controlling this
cluster to maximize the use of renewable energy.

• Demonstrate an over 50% increase in the use of wind
energy through intelligent scheduling. Achieving the
same increase with storage alone would require 4 ship-
ping containers worth of lead-acid batteries.

2 Background
The modern electricity grid delivers a perishable com-
modity from producers to consumers in real-time, over
huge geographic distances with no intermediate storage
or buffering. Since electricity generation was deregu-
lated in the 1990s, various markets for trading electricity
was developed. In bilateral trading, a single buyer and
seller agree upon the price, quantity, and physical trans-
fer of electricity. In competitive electricity pools, many
buyers and sellers participate in a market operated by In-
dependent System Operators (ISOs). ISOs provide a va-
riety of functions, the most relevant being that of market
maker. ISOs coordinate between three types of market
participants: generators, transmission line operators, and
consumers.

In most cases consumers place no orders and simply
consume when they wish. System operators rely on sta-
tistical multiplexing of the individual demand of large
numbers of these consumers to make the aggregate de-

mand relatively predictable. Generators, under the di-
rection of system operators, modulate their output on a
variety of time-scales in response to changes in aggre-
gate demand. In other words, loads are oblivious and
non-dispatchable (uncontrollable), while supplies are re-
active and dispatchable [4].

Most conventional generation resources such as oil,
coal, natural gas, nuclear, and hydroelectric plants are
known as dispatchable generation resources because they
are controllable subject to restrictions on ramp rate.
Slow-ramp plants (nuclear, coal) service the base load
(minimum aggregate demand), with a portfolio of inter-
mittent and fast-ramping peaker plants scheduled accord-
ing to predicted variation. Increasingly, variable renew-
able sources such as wind and solar are coming onto the
grid, driven partly by aggressive policy targets [9]. Re-
newables challenge the traditional grid paradigm because
they are essentially oblivious and non-dispatchable sup-
plies, governed by intermittent and variable factors like
the wind and the sun, rather than a system operator.

The introduction of a large proportion of renewables
into the current system can lead to serious grid instability
unless considerable firming efforts are undertaken. Cur-
rently either natural gas-powered backup generation or
grid-scale energy storage is used to supplement renew-
able supplies and reduce instability. Large-scale stud-
ies show that both have serious flaws: A California
study found that using backup generation in a grid with
predominantly renewable sources would generate more
greenhouse emissions than one with no renewables [8],
and a European study found that the amount of energy
storage needed for full renewable penetration exceeded
all of the potential storage capacity in Europe by more
than an order of magnitude [18]. Published results of
studies concerning the maximum level of wind penetra-
tion vary widely, but generally range from around 20% to
50% or more, depending on assumptions [8]. However,
most studies to date have not seriously considered the
impact of technological innovation on demand-side re-
sponse, such as energy agile loads, on renewable power
availability, other than for rare critical peak curtailment.

In a future electric grid with energy agile loads, one
possible scenario is that such loads would interact with
the ISOs, exchanging relevant information about con-
sumption needs, electricity availability, price, and so on.
For instance, energy agile loads could potentially partic-
ipate in the real-time markets. How best to incorporate
energy agile loads into existing the regulatory and eco-
nomic frameworks in which electric grids operate is ex-
plored in work such as [6]. We later propose some rea-
sonable scenarios for the purpose of our evaluation, but
the regulatory and economic aspects of the problem are
beyond the scope of this paper; we focus on the technical
design aspects of designing such loads.
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Figure 1: System architecture. An energy policy based on electricity
prices and the available renewable energy governs the power consump-
tion of a traditional three-tier, master-worker cluster.

3 Problem Formulation

We define an energy agile load as one whose demand
profile, or power consumption over time, can be shaped
without overly negative impact on the service it provides.
We distinguish between mechanism: how a load scales
or shifts its power consumption, and scheduling policy:
when to scale or shift the power consumption. This no-
tion of how much can be scaled and shifted is more con-
cisely expressed as slack. Scheduling policies take ad-
vantage of the slack exposed through load-specific mech-
anisms.

3.1 Mechanism

For power consumption to be shaped by scheduling
work, the mechanism must ensure that the load’s power
consumption closely tracks the rate of underlying work
i.e.that the load is power proportional. A load which is
efficient over its entire operating range is power propor-
tional. However, many loads are inefficient at low levels
of utilization. This inefficiency in scaling down is of-
ten an artifact of the engineering design process, which
focuses on efficiency at high levels of utilization. Com-
puters, especially high-performance servers are generally
not power proportional loads. However, as shown in Sec-
tion 5, it is possible to construct power proportional ag-
gregate load out of non-power proportional components.

How a load scales or shifts its demand profile, (i.e.,
the kind of slack it offers) is particular to that load. In
computing, interactive loads can expose slack by reduc-
ing quality of service; for example, by reducing the com-
pleteness of search results or removing page elements.
These techniques are already used for managing flash
crowds, meeting SLAs, dealing with partial failures, and
providing differentiated services. In batch computing,
jobs often have deadlines; the temporal slack is corre-
lated with how distant and how flexible the deadline is.
The mechanism designer determines how much of the
tradeoff between service degradation or delay and energy
agility to expose, or it can be exposed by expressing the
performance penalty as a function of slack.

3.2 Scheduling Policy

While the purpose of the mechanism is to expose slack,
the purpose of the scheduling policy is to use this slack
to match a load’s demand profile to a supply profile.
The scheduling policy must account for the nature of the
slack. In the interactive case, slack is expressed as a level
of degradation. In the batch case, slack is expressed as
the time to a deadline. The policy must also account for
the nature of the outside control signal that is available.
This could be the amount of variable renewable power
available (e.g., in watts) or the real-time market price of
electricity. If the price of renewable energy is set to be
lower than that of less clean sources, an example pol-
icy could be “minimize the amount of money spent on
power.”

One subtle problem is that it is not clear what would
happen if very large numbers of energy agile loads on
the grid started responding to price or other signal in this
way. It may, for instance, induce oscillations in the sys-
tem. This suggests that some higher order controller,
which isolates such effects or coordinates across loads,
may be needed. Exploring this is ongoing and future
work, as it requires first creating energy agile loads, the
subject of this research.

There are practical limitations to evaluating load
scheduling policies on the electrical grid, as to our
knowledge, few, if any, large-scale grid testbeds exist
and there are regulatory, political and economic ques-
tions about how renewables will be allowed to function
on the grid. We use simulation with real traces from wind
farms and historical California energy market prices to
drive our policy evaluations. We make simple but justifi-
able assumptions about how renewables will be used and
avoid getting into regulatory and political factors where
there is often no clear right answer.

4 Energy Agile Computing Cluster
We designed and implemented a set of mechanisms and
policies both an interactive web service cluster and a
batch processing cluster. Figure 1 shows the architecture
of our system.

4.1 Architecture

The cluster is based on the common cluster three-tier ar-
chitecture: a tier of client-facing load balancing switches
in front of a pool of servers, backed by shared stor-
age [7]. we augment this design with a cluster man-
ager. The cluster manager orchestrates the cluster com-
ponents to provide slack. Sections 5.6 and 5.7 discuss
both quality and temporal slack-providing mechanisms.
There are two main challenges in designing such mech-
anisms. (1) In order to access the slack inherent in the
computing workloads, the cluster manager must enforce
power proportionality. (2) The mechanisms must pro-

3



vide a way to tradeoff between performance and energy
agility. Section 5 details the design choices we made
to retrofit power proportionality on a typical interactive
web service and batch computing architecture, but at a
high level, we capitalize on the fact that cluster services
typically utilize a master-worker pattern, where the mas-
ter is responsible for representing the ensemble, while
distributing a request load over a collection of workers.
We extend the master to manage the power state of the
collection of workers. The worker platform is extended
to support a mechanism to transition between active and
sleeping. The cluster manager uses these internal capa-
bilities to implement policy while interacting with an ex-
ternal signal.

The cluster manager also enforces energy policy to re-
act to pricing or renewable availability signals; the design
and evaluation of these policies is discussed in Section 6.

4.2 Methodology

The evaluation of our energy agile computing cluster de-
sign relies on both prototyping and simulation. We start
with an evaluation our prototype energy agile load, and
then modeling its interaction with large-scale wind farms
and the broader electric grid using simulation. The proto-
type evaluation focuses specifically power consumption-
shaping mechanisms. The simulation explores schedul-
ing policies.

We drive both the prototype and the simulation using
real-world traces; both for the load and the supply. For
the interactive load, we use traces from Wikipedia, a real-
world multi-tiered web application, so we implement an
energy agile Wikipedia-clone using the same software
used by the actual organization. For the batch load, we
use traces from two real large-scale scientific comput-
ing clusters. The first is a month-long trace from a 112
node, 576 core, natural language processing and machine
learning cluster used within our department. The second
is a month-long trace from the 9,572 node, 38,288 core,
Franklin cluster at the National Energy Research Scien-
tific Computing Center (NERSC) [25]. Thus, we also
implemented an energy agile version of Torque [32], a
widely used, open source resource manager providing
control over queues of batch jobs and distributed com-
pute nodes.

The pricing signal we use is a trace of the real-time
market price. It is determined by the electricity market
and varies every five minutes based on the availability of
renewable and traditional energy supplies. We use his-
toric price data from the California real-time market, de-
scribed in Section 2. Real-time market prices vary drasti-
cally, often ranging from $-20/MWh1 to over $60/MWh

1At certain times energy consumers are paid to draw power due
to unpredicted fluctuations in demand or intermittent supplies this can
cause negative prices.
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Figure 2: Wind power over 48 hours from Monterrey, CA wind farm.
Wind power varies drastically, changing by up to 11MW in 20 minutes.
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Figure 3: Wind variability over month long intervals at multiple wind
farms. Variation is high not only over short time scales, but over longer
time scales and across locations as well.

within a day as shown at the top of Figure 11.
We use wind speed and power data from the National

Renewable Energy Laboratory (NREL) Wind Integration
Dataset [24]. The dataset contains time series data in 10
minute intervals from wind farms located across the US.
Each location is modeled to have 10 Vestas V90 3MW
turbines and thus produces up to 30MW of power. We
use the data from locations in California for our experi-
ments. Figure 2 shows a 48 hour trace of wind power at
a single location in Monterrey County, California. Wind
power varies drastically, changing by up to 11MW in 20
minutes. Figure 3 shows the coefficient of variation –
the standard deviation divided by the mean – for month-
long intervals at different wind farms. The coefficient of
variation changes significantly throughout the year and
at different locations.

5 Cluster Mechanisms
Since the mechanisms must provide a way to scale and
shift demand for power by scaling and shifting work, the
first challenge to address is making sure that power con-
sumption tracks work rate. The second challenge is to
provide a way to actually scale and shift work with the
appropriate tradeoff between agility and performance.
These goals are accomplished by:
• Choosing efficient and agile hardware building blocks
• Closely monitoring work rate to maintain a margin of

capacity overhead, called the overprovisioning factor
• Sizing the overprovisioning factor to maintain perfor-
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mance guarantees while providing proportionality
• In the interactive case, using techniques for reducing

the amount of work required to service a request to
boost performance at a slight cost to quality

• For batch, using deadlines and run time monitoring
Note that each of these individual items are already com-
monly used in real computing systems for other pur-
poses. We show how to combine them to provide energy
agility. The following sections explain the importance of
each of these points.

5.1 Overview

To study interactive workloads involving web requests,
we implement a version of Wikipedia, a real-world
multi-tiered web application. At its core, Wikipedia
consists of a set of application servers running an open
source PHP application called MediaWiki [29] in front
of a set of MySQL back-end databases. Wikipedia makes
ample use of caching, using front-end Squid reverse web
cache servers, distributed memory cache memcached,
PHP bytecode caches, and database caches. Wikipedia
also uses several Linux Virtual Server (LVS) [41] servers
for load-balancing.

Batch jobs are scheduled by Torque [32], a widely
used, open source resource manager providing control
over queues of batch jobs and distributed compute nodes.
When submitting jobs to Torque, users specify the num-
ber of processors and amount of memory to be allocated,
as well as the maximum running time. During job execu-
tion, the scheduler keeps track of the remaining running
time of each job. We collect job execution traces using
Torque’s showq command to sample the cluster state at
1 minute intervals. We collected a one month trace of
128,914 jobs and extracted job start times, end times and
user-specified maximum running times. Deadlines are
defined as the start time plus the maximum running time.

The prototype runs on a 16-node cluster of dual-core
Intel Atom boards (Section 5.2); The simplest way of
achieving power proportionality would be to construct
a compute cluster from power proportional components.
Unfortunately, not even these relatively efficient Atom
processors are power proportional; in general, server
power draw varies only slightly with utilization. For ex-
ample, operating at 30% utilization consumes at least
75% of peak power on most servers. Thus, adjusting
utilization of the machines in a cluster does not provide
sufficient control of the cluster’s energy consumption.
However, we can modulate the power consumption of the
whole cluster by coarse grain control over the non-power
proportional nodes.

Our system works by constantly monitoring incoming
load and adjusting the system capacity in response by
changing the number of machines kept in active and low-
power standby states. We first add the ability to place

the nodes into a sleep state (ACPI S3) when commanded
over the network; Wake-on-Lan (WoL) is used to awaken
a machine when necessary. Next, since a server should
not be put to sleep when running jobs, we modify the
load balancer/job scheduler to support placing jobs on a
subset of the entire cluster. This way a machine can be
shut down once all running jobs complete and it has been
taken out of the active pool. Since, servers take time to
transition from a standby or shutdown state to active (a
challenge for serving low-latency interactive workloads)
we maintain enough capacity to service the load and han-
dle surges and spikes within the time it takes to bring up
additional servers. We address this through rate predic-
tion and provisioning algorithms.
5.2 Hardware

We surveyed a large number of platforms, paying partic-
ular attention to three characteristics: (1) operating range
efficiency, (2) peak-to-idle power ratio, and (3) power
management functionality, such as ACPI sleep states.
To gauge operating range efficiency, we use an energy
goodput metric of Joules per units of work at maximum
throughput. The peak-to-idle power ratio directly relates
to how efficiently it scales down; since many systems
operate near peak power while performing little work.
Finally, power management capabilities vary widely be-
tween different platforms.

We explored three classes of machines: server, mo-
bile, and embedded Despite their wildly different perfor-
mance numbers, the three different types of nodes exhibit
comparable peak energy efficiency, consuming around
1J per response. Each node has an energy efficient op-
erating range at which it attains both low energy per re-
sponse and short response times. This range for the Atom
330 is shown in Figure 4. Although the Nehalem sys-
tem provides both the best peak efficiency and the most
overall capacity, its lack of fast ACPI sleep states means
that a full shutdown is required to reduce the idle en-
ergy consumption to zero. Due to these limitations of
the Nehalem and the low request-serving capacity of the
BeagleBoards, we chose to build the cluster with Atoms.
Specifically, we use the Atom 330 board which is inex-
pensive and was the only Atom system available at the
time of construction. At the time of construction these
systems were near best in energy efficiency. Since then,
newer servers have been released with peak-to-idle ra-
tios of up to 3, however, the idle power is still well over
100W [31].
5.3 Rate Prediction

The rate estimation component determines the amount
of headroom needed to hide system ramp up latency and
minimize the performance impact of power management.
By accurately predicting the request rate we can bring
up systems before they are needed and take them down
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Figure 5: Comparison of different request rate prediction algorithms
used to preemptively turn on servers, hiding the startup latency. Pre-
dictions should be accurate over typical 3-60 second startup times.

when not. We consider three types of rate predictors:
last arrival, moving window average, and exponentially
weighted average. Figure 5 shows that all averaging
algorithms perform well on the wiki trace, with errors
of less than 4% of the mean. Overall, the exponential
weighted average with an α value of 0.95 is found to
perform best for long prediction windows.

5.4 Capacity Provisioning

The critical factors are how much headroom needs to
be reserved and how frequently the resources need to
be provisioned. The cluster provisioning algorithm uses
a bin packing algorithm to choose a set of machines,
weighted by their efficiency, such that the sum of the sys-
tem operating points is above the predicted load. This
maximizes system utilization while preferring the most
efficient systems.

We evaluate our provisioning algorithm on two met-
rics: energy efficiency and number of violations. The
efficiency is a measure of how much energy the cluster
uses compared to an oblivious policy; it is measured in
Joules per request; lower numbers indicate more energy
savings. Violations occur when a sudden burst of re-
quests exceed the maximum capacity of the active cluster
nodes. There is a trade-off between the aggressiveness of
the power management and the number of violations that
occur. We tune the aggressiveness of our provisioning al-
gorithm by setting the operating point of each node to a
fraction of the maximum capacity. This overprovisioning
seeks to ensure that bursts can be absorbed without im-
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Figure 6: Cluster efficiency at different provisioning intervals. It is
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Wikipedia web request trace.

pacting performance. Whereas capacity planning on the
time scale of months typically targets the neighborhood
of twice the observed maximum hourly average, we find
that at short time scales it is sufficient to maintain about
10% excess capacity.

The provisioning algorithm is executed at regular in-
tervals to reconfigure the cluster. Figure 6 explores the
effects of running at different provisioning intervals at
10% headroom. We see that provisioning intervals un-
der 10 minutes all perform comparably and much better
than a once-an-hour provisioning rate. Overall, by using
a higher provisioning rate we can achieve low violations
with less overprovisioning than we would require at a
lower rate.

5.5 Power Proportionality

Taking the best combination of rate predictors and provi-
sioning schemes, we compare the efficiency of our power
proportional cluster to (1) a static provisioning scheme in
which the capacity is sized using the standard provision-
ing rule of taking twice the maximum hourly load seen
over the trace and (2) an oracle cluster manager which
examines the full trace and chooses the minimum num-
ber of systems needed to handle the load.

Figure 8(a) shows the instantaneous request rate from
the Wikipedia clients. Closely overlaid on this is the pre-
dicted rate 10 minutes ahead. The operating capacity
tracks the request rate closely, with the steps determined
by the node granularity. At all times, some headroom is
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(a) Workload tracking

(b) Efficiency
Figure 8: Power proportionality for a sampled two day Wikipedia trace.
The system accurately tracks the diurnal pattern of the trace with the
power consumption varying commensurably with the request rate.
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Figure 9: Workload and measured power consumption of a cluster
running our power proportional Torque scheduler. Cluster power con-
sumption varies with the workload. The system consumes 37% of the
energy of a statically provisioned system.

maintained, but is tightest around 700 seconds in. The jit-
tery graph above shows the measured power draw of the
cluster: the variations are due to processor power state
changes. Figure 8(b) normalizes the delivered perfor-
mance by energy consumption. This is nearly constant
at 0.9 requests per Joule, whereas standard Wikipedia on
the same hardware has varying, lower efficiency.

Figure 7 summarizes the energy savings achievable at
different levels of headroom for a simulated cluster of
250 nodes running the full Wikipedia workload. The
power proportional cluster manager consistently saves
over 50% of the energy consumed with a static provi-
sioning scheme. Varying the overprovisioning amount,
we trade-off between energy savings and performance.
At 10% headroom, 0.15% of responses exceed our 300
ms response time requirement and we achieve over 70%
power savings compared to static provisioning. This is
within 10% of the optimal scheme.

Finally, we construct a power proportional batch sys-
tem by instrumenting Torque to wake servers on demand
and sleep idle machine after a timeout. Figure 9 shows
the measured power consumption of our power propor-

tional cluster running a scientific computing workload
overlaid on the number of jobs. Our system consumes
37% of the power of a statically provisioned system.
5.6 Quality Slack

Although specific service degradations are application
specific, there are a number of general techniques which
can be used to reduce the amount of work required to
service each request. They involve degrading service on
one of several possible axes: freshness, latency, or qual-
ity. These techniques are closely related to research in
load shedding for unloading a system when a particular
resource is oversubscribed.

The crudest form of service degradation in the face of
overloading is simply admission control, frequently per-
formed in networks and either be explicit as in RSVP and
SEDA or implicit as in RED. However, many interac-
tive workloads have the ability to degrade service with-
out merely refusing to service some requests. Modern
web applications make tens to hundreds of backend web
service calls when rendering a page or generating results.
Slow or non-functioning service calls can be ignored to
generate a slightly degraded result [1, 19, 23, 3, 12, 40].
Other options are to dynamically change which content
is cached [20], return a random subsample of the results
set [34], or remove low-value components of the result.
Yet another option is for the service to intentionally delay
the response to certain requests in order to cause clients
to back off and lower their request rate. As a concrete
example, in the case of an online shopping site, a de-
graded page containing cached versions of recommenda-
tions and less personalization, reviews or other dynamic
content could significantly reduce the load; the system
could also halt any expensive A-B tests in progress, and
increase client cache durations.

In our prototype Wikipedia-clone, the wiki servers be-
gin returning cached versions of pages instead of redraw-
ing the page to reflect the last modifications, change time
and new links to/from the page for each client request.
Many of these changes could be nearly imperceptible to
the user, and developing this type of flexibility will also
benefit the site since the lower-resource degraded mode
would also allow it to serve a large number of requests to
better deal with flash crowds.
5.7 Temporal Slack

When load must be shed, jobs are delayed as permit-
ted by available slack. An illustration of slack in batch
jobs is provided in Figure 10. Job durations must be
known ahead of time or predicted, as shown in prior
work[13, 14, 27]. In practice, job length mispredictions
are handled gracefully, the job simply completes past
the deadline. We also assume jobs can be paused and
resumed at 10 minute intervals. For parallel jobs we
ensure that all tasks are scheduled to run concurrently.
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Figure 10: Schematic representation of batch jobs with slack. Each job
arrives at a start time and runs for a fixed duration using a fixed number
of nodes. The job must complete by the deadline.

Since Torque requires users to specify maximum running
times, we use this number to infer an implicit deadline.
Job deadlines are set to the start time plus the maximum
running time. If the job duration is shorter than the max-
imum running time we assume the job can be postponed
– this is the slack in the system. In a production energy
agile system, users might explicitly specify deadlines.

6 Load Scheduling Policies
We evaluate two possible energy policies. Because the
policy depends on the nature of slack that is exposed by
the load, we must design the policy with the mechanism
in mind. The first policy uses price as a signal to con-
trol an energy agile web services cluster. The policy is to
minimize cost without increasing response latency or de-
grading the quality of responses by more than 50%. The
second policy uses renewable energy availability as a sig-
nal to control an energy agile batch computing load. The
policy is to maximize the use of variable renewable en-
ergy while avoiding missed deadlines. The four metrics
used in the evaluation are:
• Total energy cost
• Non-renewable, grid-supplied energy used
• Renewable (wind) energy used
• Amount of renewable energy which was wasted

(i.e., generated but unable to be used)
While it might seem natural to design sophisticated

prediction and scheduling algorithms to implement these
policies, in the subsequent sections we show that simple
algorithms perform quite well, approaching the theoreti-
cal maximum amount of wind energy use in the second
scenario.
6.1 Grid-Stabilizing Interactive Web Services

The policy is to maintain a constant electricity cost while
running the cluster. As real-time electricity prices vary
with the availability of supply, this policy sheds load in
proportion to the amount the current price exceeds the
long-term average. This policy aims to match supply and
demand on the electric grid by reducing price fluctua-
tions. The mechanism is that cluster power consumption
is reduced by degrading a fraction of incoming requests.

The policy returns the fraction of load that should be
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Figure 11: Load sculpting for a diurnal workload with a real energy
price control signal. In the highlighted band, the load sculpting algo-
rithm reacts to a price spike by degrading a fraction of requests which
reduced the cluster power consumption by 50%.
shed to maintain constant cost. In response, the cluster
manager instructs the load balancer to mark a fraction of
all incoming requests as degraded. This fraction is deter-
mined based on the amount of energy required to gener-
ate a degraded response compared to a normal response.
Specifically, fd = (1− L̂)/(1−Ed) where fd is the frac-
tion of requests to be degraded, L̂ is the desired load as
a fraction of old load and Ed is the work required to ser-
vice a degraded request as a fraction of the work required
for a normal request. Degraded requests are marked with
a custom HTTP header which is recognized by the web
server and generates a simplified response

Figure 11 shows the response of a simulated cluster to
pricing on the California ISO spot market against a typ-
ical diurnal load profile. The top graph shows real-time
energy prices over a day. These are highly variable, spik-
ing when energy is scarce, requiring that more expensive
plants be used, and dropping, occasionally below zero,
when excess energy is available due to unexpected sup-
ply or unpredicted drops in demand. The middle graph
shows the portion of the requests that are degraded. We
highlight in gray the system’s reaction to the first large
price spike. The cluster manager responds by degrading
some requests but maintaining the response rate. Here
again, all requests are serviced. The overall cluster power
consumption drops by 50% and the the cost of running
the cluster is reduced by 24%. The daily energy costs
are reduced by 6%, but more importantly, grid stability
is improved by shedding up to 50% of the load during
peak periods.
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(a) PSI scientific computing cluster. Aver-
age job duration 55 min, slack 68 min.
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(b) NERSC Franklin cluster. Average dura-
tion 98 min, slack 68 min.

Figure 12: CDF of job duration and slack for 112 node department
cluster and 9,572 node NERSC cluster.

6.2 Low-Carbon Batch Scientific Computing

The policy is to maximize use of renewable energy by
using slack in the workload to delay jobs when renew-
able energy is scarce while ensuring that job deadlines
are met. The mechanism is to delay jobs as permitted to
shed load.

Figure 12 shows CDFs of job durations and slack for
these workloads. The average job duration for the PSI
cluster was 55 minutes and the average slack was 17
hours. Many jobs have 24 hour deadlines resulting in a
high average slack. The NERSC cluster has more evenly
distributed job durations and slack. The average duration
is 98 minutes and the average slack is 68 minutes.

We begin by establishing the baseline performance of
grid-oblivious scheduling. This scheduler is equivalent
to the schedule of jobs on the original Torque cluster.
It never postpones jobs, running each task as resources
become available. However, we do assume the cluster
is power proportional, putting servers to sleep when it is
not fully utilized.

Figure 13(a) shows a 48 hour slice of the cluster power
consumption when running the PSI workload with run-
immediately scheduling. Overlaid on top is a plot of
the power output from the Monterey wind farm scaled
such that the average power of the wind trace is equal
to the average power consumed by the cluster running
the workload. This results in a wind trace whose peak
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(a) Run-immediately, oblivious scheduling
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(b) Greedy, grid-aware scheduling

Figure 13: Wind supply and cluster load overlaid. The grid-oblivious
schedule obtains 54% of its energy from the grid. The greedy, grid-
aware, schedule uses only 30% grid and 70% wind energy.

energy generation capacity is approximately 125% of
the peak energy usage of the cluster. Wind power is
shown in black, wind energy that is used by the cluster is
shaded light gray and energy from the grid is shaded dark
gray. The cluster power consumption is typically around
30kW. When wind output is high the cluster obtains all
of its energy from the wind, but during drops in output
the cluster relies entirely on outside, grid energy. Over
the whole trace only 46% of cluster energy comes from
wind, the remaining 54% is obtained from the grid. 54%
of total wind energy is wasted.

We construct a simple grid-aware scheduler that uses
slack in job scheduling to maximize the use of wind en-
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Figure 14: Fraction of cluster energy coming from wind for varying
sizes of wind farm. The grid-aware schedule always uses at least 75%
of the maximum usable wind energy. It typically performs 45% better
than grid-oblivious scheduling.
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Figure 15: Improvement of grid-aware over oblivious scheduling for
different wind traces.

ergy and minimize grid demand. The scheduler uses an
online algorithm, scheduling jobs for the next 10 minutes
in each interval. For each time interval, the list of incom-
plete jobs is sorted by slack. A power budget is set to
the current available wind power. Jobs that must run to
complete by the deadline, i.e., jobs with zero slack, are
scheduled first, irrespective of the available wind. If the
power budget is not exceeded then jobs with non-zero
slack are scheduled up to the power budget.

Figure 13(b) shows a 48 hour slice of the grid-aware
schedule. The scheduler runs fewer jobs in the “val-
leys” when wind output drops. It also utilizes the whole
cluster, using approximately 60 kW, when wind output
is high. Overall the grid-aware schedule uses 30% grid
energy and 70% wind energy; 30% of wind energy is
wasted.

We explore three key parameters that impact the per-
formance of the grid-aware scheduling: wind scale, wind
variability and workload slack. First we consider the size
of the wind farm and its peak output. Naturally, a larger
wind installation is able to supply a larger fraction of
cluster energy consumption. We model different avail-
able wind sources by scaling wind traces by a constant
factor chosen to yield a desired ratio of total wind energy
to total cluster energy. For example, at a scale of 1 the
total wind energy over the duration of the workload is
equal to the cluster energy need, as in Figure 13.

Figure 14 shows the fraction of cluster energy obtained
from the grid for different wind scales when running the
PSI workload with the Monterey wind farm trace. A
smaller grid dependence is better, since it results in more
wind energy use. The maximum usable wind energy is
computed by integrating the wind power trace below the
maximum power of the cluster. Since the cluster is of fi-
nite size, it cannot consume above a certain power limit.
The maximum usable energy is a loose upper-bound on
the performance of the scheduler since it does not con-
sider the workload characteristics. Grid-aware schedul-
ing is always within 75% of this bound and generally
uses 45% more of the wind energy than grid-oblivious

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Coefficient of variation in wind energy availability (σ/|µ|)
0

20

40

60

80

100

G
ri

d
 D

e
p
e
n
d
e
n
ce

 (
%

)

Grid Oblivious Scheduling
Grid Aware Scheduling

Figure 16: Performance of scheduling for increasing wind power vari-
ability. As coefficient of variation in the wind power increases, the
amount of wind energy used decreases. Gird-aware scheduling consis-
tently requires less grid energy than oblivious scheduling.
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Figure 17: Grid dependence for a cluster with wind farm and vary-
ing amounts of battery storage. Using grid-oblivious scheduling, five
hours of storage is required to match the performance of the grid-aware
algorithm with no storage.

scheduling. Figure 15 shows improvement of grid-aware
over oblivious scheduling for different wind traces and
wind scales. In all cases, as the availability of wind in-
creases, however, the grid-aware scheduler quickly out-
paces the grid-oblivious scheduler.

Of critical concern is the effect of wind variability
on the effectiveness of energy agility. Figure 16 shows
grid dependence versus the coefficient of variation of the
wind trace. We observe that the amount of grid energy
required increases as the wind power becomes more vari-
able. However, grid-aware scheduling uses consistently
more wind energy for all levels of variability. Moreover,
the improvement in wind use over the grid-oblivious
scheduler is more pronounced at larger variability.

We also consider a hybrid design with both a wind
farm and battery storage attached to the cluster. En-
ergy storage is commonly used to smooth out intermit-
tent wind power output, although it remains a techno-
logical challenge to do so cost-effectively and the en-
vironmental impact of the batteries is of concern. Fig-
ure 17 shows the percent of grid energy required versus
the battery storage capacity measured in minutes of run-
ning the cluster. The results are averaged over all months
of all wind traces. Using storage improves wind energy
use for both grid-oblivious and aware algorithms. But
over 5 hours of storage capacity is required for the grid-

10



10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

Avg. Slack (hrs)

G
ri
d
 D

e
p
e
n
d
e
n
c
e
 (

%
)

 

 

Grid Oblivious

Grid Aware

Figure 18: Grid dependence for varying amounts of slack.
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Figure 19: Cluster energy consumption and fraction of wind energy
used. Power proportionality (PP) significantly reduces energy con-
sumption. Grid-aware scheduling reduces grid dependence by between
44% and 60% and increases wind energy use by over 50%.

oblivious system to match the performance of the grid-
aware system without storage. For our NERSC cluster
this would mean 8MWh of storage. Using lead acid bat-
teries this would weigh approximately 200 metric tons
and occupy 4 shipping containers.

Figure 18 explores the impact of workload slack on
system performance. We use a wind trace scaled to
match the energy needs of the cluster. For the work-
loads, we generated traces parameterized by five char-
acteristics: average job interarrival rate, average job du-
ration, average job slack, average number of concurrent
jobs, and average cluster utilization. All parameters but
slack are held constant, with slack varying by powers
of 10. As slack increases, the grid dependence drops
drastically when using the grid-aware scheduler. Given
enough slack the system can make use of all usable wind
energy.

Finally, Figure 19 summarizes the energy consump-
tion and renewable energy use of the cluster for different
amounts of wind. “Med Wind” is scaled to have the same
amount of energy as used by the power proportional clus-
ter. “High Wind” is scaled to have two times the energy
of the power proportional cluster. In all cases, power
proportionality, labeled PP, significantly reduces the en-
ergy consumption of the cluster. For a fixed wind trace,
reducing consumption increases the fraction of energy

coming from wind because there are fewer times when
load exceeds available wind energy. Beyond power pro-
portionality, our grid-aware scheduling further reduces
grid dependence by 44% and 60%, depending on wind
scale. Overall, we reduce grid energy consumption from
42 MWh used by a typical non-power proportional clus-
ter without a wind farm to 2.8 MWh for a power propor-
tional system with gird-aware scheduling and wind.

7 Related Work
In this paper we described how a traditional computing
cluster can be made into a load that is energy agile. Such
loads offer mechanisms for scheduling their power con-
sumption and thus can be made to use renewable energy.
Energy agile loads must first be power proportional [5],
so that scheduling work will effect cluster power. Then
the load can be used to explore scheduling policies for
using renewable energy. Both power proportionality and
powering IT loads with renewables have been the subject
of much recent research. Below we describe some of this
work to highlight where our work differs.

7.1 Power Proportionality

Single node solutions: Many early solutions [17, 22, 39]
attempted to reduce platform energy usage by scaling
down the CPU using techniques such as Dynamic Volt-
age/Frequency Scaling (DVFS). However, the CPU is
only one of many components in the computer that con-
sumes energy.
Distributed system solutions: [10, 26] apply dynamic
provisioning strategies for web clusters, sometimes trad-
ing off user experience for energy usage [11]. Rab-
bit [2] and Sierra [35] are examples of distributed file sys-
tems that reduce the number of powered-up servers while
still providing guarantees on the number of data repli-
cas available. [38] modifies the Hadoop framework and
HDFS to enable applications written using the frame-
work to be power-aware. All of these techniques are
applicable to developing energy agile systems, since a
proportional system is the substrate for an energy agile
system.

7.2 Powering Data Centers with Renewable Energy

Multiple data centers: Geographical load balancing
across multiple data centers can be used to reduce elec-
tricity bills by exploiting regional differences in electric-
ity prices [28] or to increase the amount of renewable
energy used [33, 21]. Our work focuses on improving
renewable energy use within a single data center.
Power budgets: Power capping, blinking, and duty-
cycling servers between sleep and running states, have
been proposed as ways of imposing cluster power bud-
gets that could be set to the amount of currently available
renewable energy [30, 15]. Our approach differs from
these efforts because we consider both the slack available
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in the workload and the currently available renewable en-
ergy to construct a schedule ensuring that deadlines are
not missed.
Power scheduling: Similar to this work, [16] schedules
batch workloads to maximize the use of renewables. Our
work differs in considering a mix of batch and interactive
workloads running on a cluster using more variable and
less predictable wind instead of solar energy sources. We
also show results from a much larger, over 9,000 node
cluster at high utilization.

8 Conclusion
We propose extensions to cluster hardware and software
which enable cluster management tools to control the
power state of managed machines to effect energy re-
lated goals. Much of the rest of our study is unconven-
tional by several measures. Instead of justifying archi-
tectural modifications on the basis of raw performance
improvements or even cost savings, we instead explore
a service that data centers are well-equipped to provide:
modulating power and scheduling work around a control
signal to improve the operation of the rest of the grid.
In particular, we demonstrate a reduction in dependence
on legacy grid generation by 50%, even when using the
most difficult and unpredictable renewable resource, and
an equivalence between having an agile cluster and five
hours of energy storage. Considering that an agile clus-
ter can be implemented only in software and potentially
scales well, while five hours of storage costs millions of
dollars for a modestly-sized data center, we feel that this
approach is promising.
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[5] BARROSO, L. A., AND HÖLZLE, U. The case for energy-proportional
computing. Computer 40, 12 (2007).

[6] BITAR, E. Y., RAJAGOPAL, R., KHARGONEKAR, P. P., POOLLA, K.,
AND VARAIYA, P. Bringing wind energy to market. submitted to IEEE
Transactions on Power Systems (2010).

[7] BREWER, E. A. Lessons from giant-scale services. IEEE Internet Com-
puting (2001).

[8] CALIFORNIA COUNCIL ON SCIENCE AND TECHNOLOGY. California’s
energy future – the view to 2050.

[9] CALIFORNIA ENERGY COMMISSION. California renewable energy
overview and programs.

[10] CHASE, J., ANDERSON, D., THAKAR, P., VAHDAT, A., AND DOYLE, R.
Managing energy and server resources in hosting centres. In SOSP (2001).

[11] CHEN, G., HE, W., LIU, J., NATH, S., RIGAS, L., XIAO, L., AND ZHAO,
F. Energy-aware server provisioning and load dispatching for connection-
intensive internet services. In NSDI (2008).

[12] FOX, A., AND BREWER, E. A. Reducing WWW latency and bandwidth
requirements by real-time distillation. In WWW (1996).

[13] GANAPATHI, A., KUNO, H., DAYAL, U., WIENER, J. L., FOX, O., AND
JORDAN, M. Predicting multiple metrics for queries: Better decisions en-
abled by machine learning. In ICDE (2009).

[14] GANAPATHI, A. S., CHEN, Y., FOX, A., KATZ, R. H., AND PATTERSON,
D. A. Statistics-driven workload modeling for the cloud. In SMDB (2010).

[15] GMACH, D., ROLIA, J., BASH, C., CHEN, Y., CHRISTIAN, T., SHAH,
A., SHARMA, R., AND WANG, Z. Capacity planning and power manage-
ment to exploit sustainable energy. In CNSM (2010).

[16] GOIRI, I., LE, K., HAQUE, M. E., BEAUCHEA, R., NGUYEN, T., GUI-
TART, J., TORRES, J., AND BIANCHINI, R. Greenslot: Scheduling energy
consumption in green datacenters. In SC11 (2011).

[17] GRUNWALD, D., LEVIS, P., FARKAS, K. I., III, C. B. M., AND
NEUFELD, M. Policies for dynamic clock scheduling. In OSDI (2000).

[18] HEIDE, D., GREINER, M., VON BREMEN, L., AND HOFFMANN, C. Re-
duced storage and balancing needs in a fully renewable european power
system with excess wind and solar power generation. Renewable Energy
(2011).

[19] HOELZLE, U., AND BARROSO, L. A. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool Publishers, 2009.

[20] IHM, S., PARK, K., AND PAI, V. S. Wide-area network acceleration for
the developing world. In USENIX ATC (2010).

[21] LIU, Z., LIN, M., WIERMAN, A., LOW, S. H., AND ANDREW, L. L.
Greening geographical load balancing. In SIGMETRICS (2011).

[22] LORCH, J. R., AND SMITH, A. J. Improving dynamic voltage scaling
algorithms with pace. In SIGMETRICS (2001).

[23] MELNIK, S., GUBAREV, A., LONG, J. J., ROMER, G., SHIVAKOMAR,
S., TOLTON, M., AND VASSILAKIS, T. Dremel: Interactive analysis of
web-scale datasets. In VLDB (September 2010), vol. 3.

[24] NATIONAL RENEWABLE ENERGY LABORATORY. Wind integration
datasets.

[25] National energy research scientific computing center. http://www.
nersc.gov.

[26] PINHEIRO, E., BIANCHINI, R., CARRERA, E. V., AND HEATH, T. Dy-
namic cluster reconfiguration for power and performance.

[27] POLO, J., CARRERA, D., BECERRA, Y., TORRES, J., AYGUAD, E.,
STEINDER, M., AND WHALLEY., I. Performance-driven task co-
scheduling for mapreduce environments. In NOMS2010 (2010).

[28] QURESHI, A., WEBER, R., BALAKRISHNAN, H., GUTTAG, J., AND
MAGGS, B. Cutting the electric bill for internet-scale systems. In SIG-
COMM (2009).

[29] RAHMAN, M. MediaWiki Administrators’ Tutorial Guide. Packt Publish-
ing, 2007.

[30] SHARMA, N., BARKER, S., IRWIN, D., AND SHENOY, P. Blink: Manag-
ing server clusters on intermittent power. In ASPLOS (2011).

[31] SPEC CORP. SPECpower ssj2008, 2011.

[32] STAPLES, G. Torque resource manager. In SC (2006).

[33] STEWART, C., AND SHEN, K. Some joules are more precious than others:
Managing renewable energy in the datacenter. In HotPower (2009).
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