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Chapter 1 - Introduction 

In recent years, with the growth of smartphones, there has been exponential growth in mobile 

data usage. As seen in Figure 1.1, this trend is expected to continue for the foreseeable future as 

internet-connected mobile devices become ever more ubiquitous, and as consumers increasingly 

use these devices for streaming video and other data-intensive applications [1].   

 
Figure 1.1 – Projected mobile data traffic in North America [1]. 

Accompanying this growth is a problem of spectrum scarcity, as users crowd the existing cellular 

bands. Opening up new bands mitigates the problem somewhat – the Federal Communications 

Commission’s (FCC) recent re-allocation efforts have increased commercial spectrum threefold. 

However, re-allocation alone cannot keep up with the rate of growth in mobile data traffic, which 

requires at least an order of magnitude increase [2]. 

A potential solution to this problem is the concept of a cognitive radio, conceived by Joseph 

Mitola in 1999 [3]. The solution takes advantage of the fact that no band is being used 

everywhere at all times. For example, Figure 1.2 shows a sample spectrum from downtown 

Berkeley, where utilization is about 30% below 3 GHz and virtually nil above 3 GHz [4]. The 

proposed solution is to allow devices to communicate on bands that are licensed to others – 

primary users – but are currently idle. If every band can be filled to near capacity in this way, 

that effectively grants us the order of magnitude increase in spectrum. 
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Figure 1.2 - Spectrum utilization in downtown Berkeley [4]. 

How a cognitive radio would operate in time and frequency domain is shown in Figure 1.3. At 

fixed time intervals, shown in yellow, the cognitive radio would scan the spectrum and identify 

idle bands, shown in white. It would then operate on those bands, shown in blue, until the return 

of a primary user has been detected. When this happens, the cognitive radio would vacate the re-

occupied band for other bands that are now idle. 

 
Figure 1.3 – Cognitive radio operating in time and frequency domains [4]. 

There are two main aspects of a cognitive radio that differ from a conventional radio: its 

reconfigurability and its spectrum sensing capabilities. The former allows the cognitive radio to 

reconfigure itself to receive and transmit on a variety of frequencies with a variety of bandwidths 

and standards. The latter, the focus of this research, allows the cognitive radio to robustly sense 

and identify idle bands. Since cognitive radios are unlicensed devices operating in licensed bands, 

spectrum sensing is essential in guaranteeing non-interference with the activities of the bands’ 

primary users. 

In 2008, the FCC approved the operation of unlicensed cognitive radio devices in the TV bands, 

with unlicensed mobile devices approved in the UHF TV band [5]. In 2010, the FCC dropped the 

spectrum sensing requirement for unlicensed TV band devices (TVBDs) due to concerns over its 

viability, and instead ordered TVBDs to identify idle bands by accessing a geolocation database 

[6]. However, because spectrum sensing offers much greater flexibility and lower overhead than 
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the database method, it remains a relevant area of research, and is expected to play a role in the 

future of cognitive radio systems.   

1.1 – Scope of Research 

One major contribution to the FCC’s decision to drop spectrum sensing requirements for TVBDs 

is the failure thus far of any system to meet the detection specifications set by the FCC. During a 

demonstration of industry prototypes conducted in 2008, no system achieved the necessary 

detection sensitivity of -114 dBm in real world scenarios [7]. In academic research, while there 

has been much work done on theory topics like detection algorithms and cooperative sensing, 

there has been a lack of work on physical front-end designs for spectrum sensing applications. 

Some works may embed sensing functionality into receiver designs, but since the sensitivity 

required for sensing is much higher than that of conventional receivers, these works all fail to 

achieve the necessary detection sensitivity as well. Thus, a system targeted specifically for 

TVBD sensing – achieving the required -114 dBm detection sensitivity with good dynamic range 

and low power – remains elusive. 

The focus of this work, then, will be spectrum sensing receiver design in the UHF TV band for 

mobile applications. Specifically, this work seeks to produce a receiver front-end that is capable 

of meeting the FCC’s guidelines in [5] given realistic scenarios, and that does so with a low 

power overhead appropriate for mobile applications. This design is targeted solely for sensing 

functionality, and a fully-functional receiver design (i.e. capable of decoding data) is outside the 

scope of this work. Detection algorithms and other backend digital signal processing required for 

setting decision thresholds are also outside the scope of this work. 

1.2 – Organization of Report 

The rest of this report is organized as follows:  

Chapter 2 reviews the characteristics of the UHF TV band and the requirements for performing 

spectrum sensing in this band. An overview of existing state-of-the-art is then presented. 

Chapter 3 reviews known theoretical techniques for performing detection, and uses the 

theoretical background to propose our spectrum sensing system. We then describe how we 

simulated and evaluated the performance of the various detection modes in our proposed system.  

Chapter 4 expands on the spectrum sensing system proposed in Chapter 3 into a realizable 

system architecture. 

Chapter 5 describes the currently ongoing circuit implementation of the proposed spectrum 

sensing system. 

Chapter 6 concludes this report and proposes several potential areas for future research. 
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Chapter 2 – Spectrum Sensing in the TV Band 

In this chapter, we first look at the characteristic of the UHF TV band and its resident signals. 

Next, we discuss the requirements for spectrum sensing in the IEEE 802.22 standard and their 

challenges. Finally, we survey existing work that has been done on spectrum sensing for mobile 

applications. 

2.1 – Characteristics of the UHF TV band 

In the United States, the UHF TV band currently ranges from 470 MHz to 698 MHz, and it is 

composed of 38 6-MHz-wide channels. After the full transition to digital TV (DTV) was 

completed in 2009, all channels became purely digital, adhering to the Advanced Television 

Systems Committee (ATSC) standard. 

According to the ATSC standard, terrestrial DTV uses 8-level vestigial sideband (8VSB) 

modulation. Within each 6 MHz channel, data power is spread over the center 5.38 MHz 

bandwidth, giving a 10.76 MSymbol/s datarate. Each channel has two 610-kHz-wide transition 

regions, one on each edge, from the response of the root raised cosine filters [8]. 

In addition, each channel also has a pilot tone at the frequency of the buried carrier, 310 kHz 

away from the lower channel edge. The pilot, within its narrow 10 kHz bandwidth, has a power 

that is 11.3 dB lower than the total data power of the 6 MHz channel [8]. Figure 2.1 illustrates 

the ideal and measured spectrums of a DTV channel.  

 
Figure 2.1 - Spectrum of a DTV channel: (a) ideal (pilot not shown) [8], and (b) measured [9]. 

The minimum signal-to-noise ratio (SNR) required for decoding an ATSC signal is set at 15.2 

dB. With a maximum adjacent channel splatter of -46.5 dBc on the transmit side and a margin of 

about 4 dB, the adjacent channel blocker power is limited to a maximum of 27 dB higher than 

the wanted signal power in order to maintain sufficient SNR in the wanted channel. The 

maximum blocker power grows to 44 dB higher for the N+/-2 channel, and increases by 4 dB 
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with each additional channel spacing until the N+/-6 channel [8]. The overall ATSC blocker 

profile for weak signals is illustrated below in Figure 2.2.  

 
Figure 2.2 - ATSC blocker profile. 

The thermal noise in a 6 MHz channel is about -105 dBm. Given the required decode SNR of 

15.2 dB and a margin for receiver noise figure, the minimum sensitivity for DTV receivers, or 

the minimum input energy of a decodable signal, is set at -83 dBm [10]. However, since the 

sensitivity requirement must be met under worst case test conditions, many TV tuners in practice 

have higher sensitivity under common, realistic operating conditions. 

In addition to DTV itself, wireless microphones also operate in the UHF band in vacant TV 

channels. There is no homogenized standard for wireless microphones, but they are usually 

narrowband, frequency-modulated (FM) signals with a bandwidth of 200 kHz [9]. Although 

wireless microphones are also unlicensed devices, they have priority over TVBDs and are 

considered primary users.  

2.2 – IEEE 802.22 Requirements 

The IEEE 802.22 standard governs Wireless Regional Area Networks (WRAN), which were 

developed to operate cognitively in the TV bands. The 802.22 work group, tasked with 

developing the standard, studied the geographical characteristics of base stations and primary 

receivers, and the interference and fading characteristics of wireless TV signals. The group then 

set sensing requirements for TVBDs to ensure an acceptably low level of interference with 

primary receivers. 

In its preliminary standard published in 2008, the 802.22 work group set required sensing 

sensitivity level to -114 dBm for DTV in its 6 MHz channel bandwidth, for analog TV in its 100 

kHz carrier bandwidth, and for wireless microphone in a 200 kHz bandwidth [5]. The sensitivity 

levels assume 0 dBi antenna gain, and that the receiver antenna is outside and at least 10 m 



[6] 

 

above ground, relatively free of obstructions. Since analog TV transmissions no longer exist in 

the U.S. and wireless microphones are under consideration to be moved into its own dedicated 

channels, we will focus only on DTV sensing in this work.  

The challenge of spectrum sensing arises mainly from the -114 dBm sensitivity requirement, 

which is much lower than that of a standard receiver and is significantly below the -105 dBm 

thermal noise floor in a 6 MHz channel. Furthermore, sensing must occur with a low power 

overhead for mobile applications, and within a reasonably short sensing time. IEEE 802.22 set 

the sensing time at 2 seconds [11]; while this is a lengthy period, the actual sensing time should 

only be a small fraction since any time spent sensing cannot be spent transmitting and receiving 

on the detected idle channels. Additionally, IEEE 802.22 set both the probabilities of missed 

detection and false alarm to 0.1 [11]. Again, while these are relatively lax standards, it is in the 

interest of a cognitive radio system to minimize these probabilities for operational efficiency. 

2.3 – State of the Art and Related Works 

During the development of its WRAN policy, the FCC solicited TVBD prototypes for laboratory 

and field testing. Five such devices, submitted by Adaptrum, Institute for Infocomm Research, 

Microsoft, Motorola, and Philips Electronics, were tested in 2008. All prototypes reliably 

detected -114 dBm clean DTV signals in laboratory conditions; however, the sensitivities of the 

prototypes severely degraded, some up to 60-70 dB and others to the point of malfunction, when 

given real world conditions and the presence of interference [7]. The failure of the prototypes 

contributed to the FCC’s ultimate decision to drop spectrum sensing requirements for TVBDs. 

Aside from their less than desirable performance, the prototypes were designed as bulky and 

high-powered stationary devices analogous to traditional TV tuners. Detection was performed 

with power-hungry and time-consuming digital signal processing that put the shortest detection 

time at 0.1 seconds per channel, and the longer ones at tens of seconds per channel [7]. All of 

these factors make it evident that alternative approaches are necessary. 

In the space of spectrum sensing for mobile devices, the first major work eliminated the need for 

complex digital signal processing as well as the preceding high-bandwidth, high-resolution 

analog-to-digital converter (ADC) by using analog correlation [12]. The work cross-correlated 

the downconverted receive signal with a window waveform, which effectively acted as an easily-

tunable narrowband filter in the analog domain. However, since only energy detection was 

performed on the filtered signal, the sensitivity was limited by the noise floor to -74 dBm, which 

is no better than the sensitivity of standard TV band receivers. Furthermore, the receiver in [12] 

consumed 180 mW during both sensing and receive modes, whereas ideally, the sensing 

overhead should be much less than the power used for standard receiver operations. 

The receiver front-end in a more recent work [13] was able to improve upon the performance of 

[12], achieving -84 dBm detection sensitivity while consuming only 30-44 mW. However, while 

[13] had a state-of-the-art, well-designed RF front-end that achieved good linearity, noise figure, 
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and harmonic rejection with low power, nothing separate or different was dedicated to spectrum 

sensing functionality save the design of the received signal strength indicator (RSSI) block itself. 

Thus, the detection sensitivity, while an improvement, was still constrained by the noise floor 

and no better than that of standard receivers. 

The work in [14] proposed an architecture that cross-correlates the received signal from two 

identical, parallel front-end paths. This results in uncorrelated front-end electronic noise that 

could ideally average out to zero, effectively lowering the receiver noise figure without harming 

linearity or dynamic range. The receiver achieved a 4 dB noise figure (corresponding to an 

estimated detection sensitivity of -110 dBm) and 89 dB of spurious-free dynamic range (SFDR) 

in a 1 MHz bandwidth. This performance, however, came at the cost of high power, due to the 

use of two full analog front-ends as well as complex digital signal processing performing fast 

Fourier transforms (FFTs) and correlation. Not even including the power of two 14-bit ADCs, 

the receiver consumed 191 mW, which is much too high for mobile applications. 

The work in [15], on the other hand, sought to demonstrate that spectrum sensing using digital 

signal processing could be performed in a fast and low power manner. The digital baseband 

processor in [15] achieved a detection sensitivity of -115 dBm with a detection period of 50 ms 

while consuming only 7.4 mW. However, in order to obtain this sensitivity, the processor 

required digital inputs with 20 bits of precision. Thus, while the processing power itself is low, 

the power that would be consumed by the RF front-end to provide this 20-bit high dynamic range 

input would certainly be prohibitively high.  
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Chapter 3 –Detection Modes 

To construct a spectrum sensing system, we must first choose the method of detection – the 

method by which we evaluate the receiver input and make a decision on whether a signal is 

present. In this chapter, we review existing methods for signal detection, and evaluate their 

feasibility in our application of mobile spectrum sensing. Then, we propose a sensing system to 

implement the chosen detection modes. Finally, the theoretical performance of the proposed 

system and its various detection modes are evaluated using a Matlab simulation platform.  

3.1 – Detection Techniques 

There have been several proposed techniques to detect the presence of a signal or lack thereof. 

These methods have been analyzed extensively in theoretical literature, but we now evaluate 

them for their feasibility and applicability to our specific goal of sensing in the TV band.   

3.1.1 – Energy Detection 

The fastest and simplest detection method is energy detection, where we merely measure the 

received power. This can be done non-coherently, with knowledge of only the center frequency 

and the bandwidth of the target signal, and without any complex algorithms or processing. 

Simple energy detection, however, is incapable of distinguishing signal power from noise power, 

and hence it fails to detect in highly negative SNR regimes where signal is buried far under noise. 

For example, [16] evaluated the effectiveness of energy detection on a 4-MHz-wide QPSK signal, 

and the results are show below in Figure 3.1. 

 
Figure 3.1 - Energy detection on a 4 MHz-wide QPSK signal [16]. 

The authors in [16] looked at sensing time versus input signal power with a constant false alarm 

rate of 5% and a detection rate of 60%. We see in Figure 3.1 that even using this extremely lax 

probability of detection, there exists an SNR wall below which detection is impossible given 

infinite sensing time. Furthermore, the sensing time remains prohibitively long for at least 10 dB 
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above the SNR wall. Thus, alternative detection methods are necessary if we seek to sense down 

to the -114 dBm level. 

3.1.2 – Pilot Detection 

Since we are targeting sensing specifically at ATSC signals, we can take advantage of certain 

characteristics specific to ATSC signals. One such characteristic is the sinusoidal pilot tone. As 

shown in Figure 3.2, the pilot in its narrow bandwidth has a higher SNR than the signal of the 

entire channel. Since the pilot is at a known position within the channel, we could simply narrow 

the bandwidth of detection to just that of the pilot, and gain higher sensitivity with energy 

detection. 

 
Figure 3.2 - ATSC pilot tone. 

However, while pilot energy detection can achieve a higher sensitivity, it still has the same 

fundamental noise-floor limitations as channel energy detection. In addition, when dealing with 

such a narrow bandwidth, frequency offsets can be problematic and sharp filtering that 

approximates a brick-wall response is difficult to realize. These issues will all degrade the 

sensitivity further from the theoretical limit, making other, more robust approaches necessary. 

3.1.3 – Feature Detection 

A more robust detection method, cyclostationary feature detection, takes advantage of the fact 

that man-made, modulated signals are fundamentally different from noise in that they usually 

exhibit some kind of periodic behavior, either from carrier tones, cyclic prefixes, or other 

features. This periodicity can be extracted using a spectral correlation function (SCF), which 

measures the density of correlation between all the spectral components in a signal [4]. The SCFs 

for white noise and for a QPSK signal are show below. 
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Figure 3.3 - SCF of (a) white noise, and (b) a QPSK signal [4]. 

 As shown in Figure 3.3, white noise is only correlated at identical frequencies, while the spectral 

components at different frequencies of a modulated signal are also correlated, creating a 

distinguishable pattern in its SCF. However, feature detection presents many implementation 

challenges, the foremost of which is the complex processing required to generate the two-

dimensional FFT and calculate the correlation functions. Complex processing indicates high 

power and long sensing time, both of which makes this technique unattractive for spectrum 

sensing in the mobile space. 

3.1.4 – Autocorrelation 

Another simpler approach that can be used to extract periodicity is to autocorrelate the signal. 

Autocorrelation – correlating a signal with a time-shifted version of itself – is a method that has 

long been used in spectrum analyzers, radio astronomy, and other applications that require high-

sensitivity signal detection. Equation (1) below presents the autocorrelation function     , where 

     is the signal being correlated, and   is the time shift. 

                     (1) 

Since white noise is a stationary process that is uncorrelated with itself at different points in time, 

     for white noise would be 0 everywhere except for when     . For modulated signals 

which are cyclostationary processes, the signal time-shifted by an integer number of periods 

should have the same statistical properties as the non-time-shifted version of the signal. 

Therefore,      should exhibit periodic behavior, with peaks occurring at   equaling 0 as well as 

each integer period. Figure 3.4 illustrates this property.  
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Figure 3.4 - Time-domain waveform and autocorrelation function of (a) a sinusoid, and (b) white noise. 

If we look at      with   equaling a non-zero integer period, the additive noise power would 

ideally average out to zero given enough time, and the resulting SNR of the autocorrelation 

function would be an improvement over the SNR of the signal itself. However, a digital 

implementation of autocorrelation still requires a relatively high amount of processing due to the 

multiplication operations needed to calculate the correlation function. As mentioned in Section 

2.3, [14] demonstrated the power inefficiency of this approach. On the other hand, [12] 

demonstrated that correlation can be done in a lower power manner in the analog domain. While 

the system in [12] was high powered, much of it was used for generating the window waveforms, 

and the actual correlation operation itself consumed only 8 mA. We thus see that autocorrelation 

in the analog domain could potentially be a low-power, high-sensitivity solution to spectrum 

sensing.  

3.2 – Proposed System 

We propose a spectrum sensing system using a combination of channel energy detection, pilot 

energy detection, and autocorrelation. The pilot tone, as a pure sinusoid, provides an ideal 

candidate to extract the periodicity from using autocorrelation. The channel energy detection 

mode would be used for a fast, coarse scan of all the channels to eliminate ones that have strong 

signals residing within. Pilot detection and autocorrelation, being more time consuming, would 

only be used on a few likely-vacant channels where the signal, if present, is too weak to be 

sensed with energy detection. 

The work in [17] proposed an efficient implementation of autocorrelation in the time domain 

using equivalent-time sampling. The input would be captured in parallel by two samplers, with 

the sampling clocks offset from each other by a time delay  . By correlating the two sampled 

signals, and by varying   in discrete steps, we effective capture the autocorrelation of the input as 

a function of  . Using this method, the resolution of the sampled signal is determined not by the 

actual sampling frequency but by the minimum   -step, with effective sampling frequency 
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equaling        . Thus, this method enables us to save power by using a sampling frequency 

below the Nyquist rate. 

Figure 3.5 below illustrates a high level block diagram of our proposed system. We adopt the 

method from [17] and sample the input signal, at frequency    , onto two parallel paths. To 

target low power, we use equivalent-time sampling with       . Since subsampling also acts as 

a mixer and downconverts our desired signal to baseband, the signal is then immediately 

channel-filtered following the sampler. In the first path, the filtered channel signal undergoes 

energy detection and pilot detection. If autocorrelation mode is required, then the signals from 

the two paths are multiplied together in the analog domain as we vary  , the time delay between 

the two paths. 

 
Figure 3.5 - High level block diagram of proposed system. 

3.3 – Simulation Setup 

We simulated our proposed system in Matlab in order to evaluate its different detection modes. 

In this section, we first describe the metric we used to evaluate the theoretical performance and 

sensitivity of each detection mode. Then, we look at how we modeled the DTV spectrum and the 

proposed receiver in order to test this metric. 

3.2.1 – Detected SNR 

To establish a metric to evaluate the performance of each detection strategy, we look at the two 

scenarios in Figure 3.6. In the first scenario, when no signal is present, the receiver will detect 

only the power of the noise from the environment; we denote this quantity     . For simplicity, 

we assume pure thermal noise and ignore non-white interference at this junction. In the second 

scenario, when a signal is present, the receiver picks up that signal along with the environmental 

noise, and we denote the total detected power under this condition     . 
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Figure 3.6 - Equivalent block diagram when (a) only noise is present, and (b) signal and noise are present. 

If we denote the power of the input signal    , power of the environmental thermal noise       , 

power of the receiver electronic noise at its output         , and the total gain through the 

receiver    , then for naïve energy detection: 

                         (2) 

                               (3) 

Given a receiver noise figure, we can define         in terms of the input thermal noise and the 

noise factor    :  

                            
(4) 

The SNR of an input signal is the ratio of the signal power to the thermal noise power. We can 

similarly define a term detected SNR to be the ratio of      to     , or the ratio of power detected 

when a signal is present to power detected when only noise is present. Using Equations (2)-(4), 

we find: 

 
             

    
    

 
              

   
 
             

   
 (5) 

From Equation (5), we see that when the receiver adds infinite noise, the detected SNR reaches 

its lower bound of 1, or 0 dB. This indicates that inputs with the signal present and without the 

signal present are indistinguishable from each other at the point of detection. Conversely, when 

the receiver noise figure is very small, the detected SNR tracks with the input SNR. 

3.2.2 – Signal Modeling 

Figure 3.7 illustrates how transmit signals are modeled in simulation. We first generate a random 

stream of 8-level symbols in baseband. This data is then filtered to obtain the VSB frequency 

response, and a pilot is added as a DC level. Next, for every channel where we desire a signal to 

exist, we scale the signal power as desired and up-mix it to its appropriate RF channel position. 

Finally, additive white Gaussian noise (AWGN) is applied to model environmental thermal noise. 
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Figure 3.7 - Transmit signal generation in simulation. 

For example, a simulated model of the worst case sensing scenario is shown below in Figure 3.8. 

The signal power (with additive thermal noise) is shown in blue and pure noise is shown in green. 

Figure 3.8(b) shows a 7-channel worst case blocker profile with a weak -114 dBm signal in the 

center channel. On the other hand, when a channel is idle like the center channel of Figure 3.8(a) 

is, the power of its surrounding channels can be arbitrarily high. We seek to differentiate 

between the two scenarios by detecting the presence or lack thereof of the weak signal in the 

center channel.  

 
Figure 3.8 - Worst case sensing scenario, when target channel is (a) idle, and (b) occupied. 

Figure 3.9 illustrates how the receiver is modeled in simulation for the measurement of detected 

power. First, a coarse bandpass filter is applied to the entire UHF band to attenuate out-of-band 

noise and thus reduce noise-folding during subsampling. We again ignore out-of-band 

interference and assume they have been sufficiently attenuated at this point in the receive path. 

We then subsample the signal at the desired channel with a sampling frequency equal to the 

channel frequency. The downconverted signal is filtered by either a channel filter or an ideal 

narrowband pilot filter, and the resulting power of the signal is measured using square law 

energy detection. For autocorrelation, we apply ideal mathematical autocorrelation to the filtered 

pilot, and then again apply square law energy detection to measure the power of the 

autocorrelated signal. 
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Figure 3.9 - Receiver modeling in simulation. 

3.4 – Energy and Pilot Detection 

Simulated energy and pilot detection are shown below in Figure 3.10, where the power spectrum 

densities of signal and noise are shown in blue and green, respectively. The red outlines illustrate 

example baseband filter responses.  

 
Figure 3.10 - Simulated (a) energy, and (b) pilot detection at baseband. 

In Figure 3.10 (a), where signal power is distinctively higher than noise power, we perform 

energy detection by filtering the entire channel and measuring the resultant power. On the other 

hand, in Figure 3.10 (b), we see that for weak inputs, the signal power is completely buried in 

noise and indistinguishable from it. However, the narrowband pilot tone still rises above the 

noise floor. In this case, we perform pilot detection by narrowing the filter response to just the 

bandwidth of the pilot, and then, again, measuring the resultant power. 

To evaluate the performance and limitations of energy and pilot detection, we first note that 

thermal noise power is given by 

               (6) 

where   is Boltzmann’s constant equaling 1.38 x 10
-23

 JK
-1

, T is temperature in Kelvin, and    is 

the noise bandwidth under consideration. 
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At room temperature,     gives -203 dB, or -173 dBm, of noise power per Hertz. In a 6 MHz 

bandwidth, the noise power becomes -105 dBm, and an input signal at -114 dBm therefore has a 

-9 dB input SNR. In a 10 kHz bandwidth, the noise power lowers to -133 dBm. However, the 

power of the pilot in its narrow bandwidth is 11.3 dB below the total channel power. Thus, the 

minimum pilot power is -125.3 dBm, making the minimum input SNR of the pilot 7.7 dB. 

Using Equation (5), we can plot the detected SNR as a function of input SNR for various 

receiver noise figures. Shown below in Figure 3.11, for an input SNR of -9 dB for channel 

energy detection, the detected SNR in the ideal case (with no added receiver noise) is about 0.5 

dB. Similarly, the detected SNR in the ideal case for pilot energy detection is about 8.4 dB. 

 
Figure 3.11 - Detected SNR as a function of input SNR for energy detection. 

Although decision statistics and algorithms are outside the scope of this report, we will briefly 

discuss at this juncture the factors that determine the detected SNR threshold for sensing and 

their implications on system design. In theory, the probabilities of false alarm (   ) and detection 

(  ) are functions of where the decision threshold is set and how many samples are used. More 

samples allow more averaging, resulting in a more accurate measurement that is less sensitive to 

instantaneous variances in noise and signal power. To find     and    , we can model the 

probability density function (PDF) of noise with a Gaussian distribution and use Neyman-

Pearson hypothesis testing, shown in Figure 3.12 below [16]. 

 
Figure 3.12 - Probability density functions for signal and noise. 
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In Figure 3.12, the green shows the PDF for pure noise, and the blue shows the PDF for signal 

with noise, where the mean power has shifted but the shape remains Gaussian. The decision 

threshold should be set somewhere between the two means, and anything above threshold in the 

noise distribution results in a false alarm, while anything above threshold in the signal 

distribution indicates a correct, desired detection. The shaded areas of     and     can be 

quantified as: 

 
      

                

             
 
  

(7) 

 
     

                     

                 
 
  

(8) 

where         is the decision threshold power,   is the number of samples, and      is the tail 

function for a normal distribution. For an ideal channel detection scenario, where the detected 

SNR is about 0.5 dB, we gain the following     and    as a function of   shown in Figure 3.13. 

As expected, a higher threshold results in a longer detection time, but a lower false alarm rate. 

And when the decision threshold (in the form of detected SNR) is set to 0.7 dB > 0.5 dB, the 

system fails to detect completely. 

 
Figure 3.13 - (a) Pfa, and (b) Pd for ideal channel energy detection. 

While theory seems to have indicated that we can set a detection threshold that will sense the 0.5 

dB detected SNR with          and        , there are numerous problems in a realistic 

implementation that precludes this. The main limitation is the problem of noise uncertainty, 

where the actual noise power can differ greatly, more than several dB, from the expected, 

theoretical value due to process, temperature, and environmental variations. Periodically 

estimating noise using the detection system such as in Figure 3.6 (a) can alleviate the problem 

somewhat, ensuring that the system’s own noise figure variations as well as gradually changing 

environmental conditions are accounted for. However, there would always be some residual 

estimation error, and other factors, such as interference profiles, can be rapidly time-varying. 
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These variations in noise, and consequently in detected SNR, make pure energy detection 

impossible at -114 dBm. 

On the other hand, going back to Figure 3.11, we see for pilot detection’s 7.7 dB input SNR, the 

detected SNR is about 8.4 dB, which should provide enough margin for noise uncertainty. 

However, there are additional factors to take into account. Firstly, up to this point, we have only 

looked at the ideal case without added receiver noise. Furthermore, a real system has imperfect 

filtering, and all residual out-of-channel noise and signals become additive noise from the 

perspective of our sensing system. So for example, if we add in a standard receiver noise figure 

of 5 dB, and make the conservative estimate that effective noise bandwidth is 2 times the desired 

signal bandwidth, then the input SNR lowers to 4.4 dB and the detected SNR to 2.9 dB. The 

detection margin has now become severely eroded. With possible additional erosions from non-

linearities, interference, and wider effective noise bandwidths, a more robust detection method is 

necessary. 

3.5 – Autocorrelation 

When we autocorrelate thermal noise, since every value in the autocorrelation function is an 

average of numerous samples of noise, the variance of autocorrelated noise power should ideally 

be zero. This, in effect, makes the PDF of noise power approximate a Dirac delta function rather 

than a Gaussian. This behavior is shown below in Figure 3.14. 

 
Figure 3.14 – Normalized PDF of white noise and its autocorrelation with (a) 10

6
 samples, and (b) 10

3
 samples. 

When a signal is present, its additive thermal noise should also average out to zero when 

autocorrelated, while the signal itself retains its mean power as its periodicity is captured by and 

translates to the autocorrelated response. Thus, the PDF of the signal power should also 

approximate a delta function, but centered at the mean power of the signal. With two delta 

functions rather than two Gaussians, the      and     are obviously drastically decreased and 

increased, respectively, for the same threshold and mean power separation between      

and       . This indicates that more robust sensing could be achieved with lower detection 

margins. 
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In Figure 3.10 (b), with a more limited number of samples, the PDF of the autocorrelation 

deviates from its ideal behavior and widens. However, since each autocorrelation point is already 

the average of many noise samples, this creates a layer of buffering against instantaneous 

variances in noise power. Therefore, the difference in the autocorrelation PDF is slight while the 

PDF of pure energy detection differs much more drastically from its ideal distribution, and the 

relative robustness of autocorrelation is maintained as the number of samples scale. 

We simulated detection using autocorrelation through our model receiver, and the results are 

shown below. In Figure 3.15, the spectrum of the filtered pilot, where blue is signal and green is 

noise, is shown before and after autocorrelation. With pure energy detection, signal power is 

barely greater than noise and visually indistinguishable. With autocorrelation, an obvious 

improvement in detected SNR is demonstrated. 

 
Figure 3.15 - Spectrum of detected pilot and noise for (a) energy detection, and (b) autocorrelation detection. 

Next, we simulated detected SNR as a function of input power. Shown below in Figure 3.16, 

while the average detected SNR for pilot detection is acceptable for very weak signals, 

instantaneous variations can lower it to the undetectable region around 0 dB. Autocorrelation 

detection, on the other hand, maintains a robust margin. 

 
Figure 3.16 - Detected SNR vs. input power for pilot and autocorrelation detection. 
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3.6 – System Sensitivity 

Simulation results for the sensitivities of the three detection modes are shown below in Figure 

3.17. The receiver has been assumed to be ideal without additive electronic noise. However, 

noise-folding effects are included from simulation of subsampling behavior. 

 
Figure 3.17 - Detected SNR vs. input power for all detection modes. 

As expected, for channel energy detection, the detected SNR tracks input power until the noise 

floor is reached at around -105 dBm. Then, as signal power becomes much weaker than noise 

power, the detected SNR flattens to 0 dB since a signal buried in noise has approximately the 

same power as pure noise, and energy detection can no longer differentiate between the two 

scenarios. Pilot detection never reaches its own noise floor at -133 dBm, but at weak input 

signals, variations bring detected SNR very close to 0 dB. Finally, autocorrelation demonstrates 

improvements in detected SNR over the two other methods, and remain relatively robust at the 

weakest signal levels.  
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Chapter 4 – System Architecture 

In this chapter, we look at specific implementation options for our proposed system. We 

specifically concentrate on the two main innovations of our system with respect to spectrum 

sensing – subsampling and analog autocorrelation. We then propose a detailed system 

architecture to realistically implement the theoretical detection modes described in Chapter 3. 

4.1 – Subsampling  

Downconversion using subsampling is one of the primary areas of novelty in our spectrum 

sensing system. Subsampling creates power savings from the use of lower sampling frequencies 

(and the associate clock generation and distribution networks), while maintaining high signal 

fidelity. Furthermore, for our purposes, subsampling allows ease of autocorrelation 

implementation in the analog and time domains. The concept of subsampling is shown below in 

Figure 4.1. 

 
Figure 4.1 - Illustration of subsampling with (a) subsampling ratio of 1, and (b) subsampling ratio of 2. 

In traditional Nyquist sampling, the number of points per cycle that are sampled scales linearly 

with the ratio of sampling frequency to signal frequency. Thus if we want to sample many points 

per cycle in order to not lose signal fidelity through the sampling process, we must oversample 

the signal with a much high sampling frequency. If the input frequencies are in the hundreds of 

MHz range as ours are, oversampling becomes very power-inefficient and unattractive. 

Subsampling, on the other hand, uses a sampling frequency slightly below the signal frequency. 

As shown in Figure 4.1(a), the signal is consequently sampled only once per period, but each 

sample is of a different temporal location within the signal period. Given enough signal cycles, 

the entire characteristic of a periodic signal will be sampled, and we get a high-fidelity signal 

with numerous sampled points per cycle, albeit translated to a lower frequency. In Figure 4.1 (b), 

the same concept is demonstrated but with a subsampling ratio of 2, meaning that the signal is 

sampled once per every 2 cycles. 
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Based on the number of samples per cycle, the equivalent oversampling frequency of a 

subsampled signal is: 

 
     

      

        
                  (9) 

where    if the subsampling frequency,     is the signal frequency, and   is the subsampling 

ratio. According to Equation (9), we can get a high      with an extremely low    if we choose a 

high   . More importantly, the linear relationship between samples per cycle and sampling 

frequency has been broken. To achieve a higher      and therefore a higher number of samples 

per cycle, we would only need to place      closer to    .  

The translated lower frequency after subsampling is: 

                                        
(10) 

We can therefore easily choose   and    so that          will fall in the baseband, providing a 

convenient mixing step as well. This frequency aliasing effect, however, also provides the main 

problem of subsampling in the form of noise folding, illustrated below in Figure 4.2. 

 
Figure 4.2 – Noise folding from subsampling. 

The problem of noise folding arises from the subsampling ratio being a design decision that the 

system is blind to. For example, in Figure 4.2, we may intend to sample     with    , but 

everything around the frequencies     ,     , and    will be translated to baseband as well, 

because the system cannot know what we intended   to be. This causes the noise around each 

multiple of   , shown in green, to be folded to the same         , severely degrading SNR.  

Furthermore, in traditional Nyquist sampling, anti-alias filters can attenuate high frequency, out-

of-band signals and noise so that they do not get translated by harmonics of the sampling clock. 

No such method can be used here as filter bandwidths must accommodate the input signal, which 

is at a higher frequency than the clock signal and its harmonics. While bandpass anti-alias filters 

can be used, the noise generated from the sampler itself will still have a low-pass characteristic 

and will not be filtered. This folding of sampler noise has resulted in subsampling mixers 

generally having prohibitively high noise figures, making them unattractive for low noise 

systems [18]. 
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For the above reasons, we choose for our implementation the low subsampling ratio of 1, so that 

noise is folded only once. Furthermore, the folded noise is spread over the full spectrum up to the 

sampling frequency and is not concentrated purely in the baseband, which also improves noise 

figure. While the power benefits of subsampling are lessened with       , it is still a factor of 

2 improvement over the minimum Nyquist sampling frequency of      , and more critically, 

we still gain the benefit of a much higher     . 

Next, we consider the options in converting the signal to baseband. Standard receivers would set 

the mixing frequency to the carrier frequency, and use I and Q paths to reject aliased images. A 

Hilbert filter would then reconstruct the real baseband signal from the downconverted vestigial 

sideband in order to allow signal decoding [19]. However, since the pilot also falls on the carrier 

frequency, this provides several problems for our purposes. Firstly, the pilot power, as a DC 

component, becomes vulnerable to DC offset and low frequency flicker noise. Moreover, the 

pilot is in a 10 kHz bandwidth, indicating that a lengthy time will be required to collect enough 

samples for an accurate measurement.  

 
Figure 4.3 - Conversion to baseband with sampling frequency set to (a) carrier frequency, and (b) channel 

center frequency. 

A better solution, shown in Figure 4.3, is to sample at the center frequency of each channel 

instead of at the carrier. This would give us true direct conversion where image rejection and I 

and Q paths are no longer necessary, as no out-of-channel signals would fall in-band. Without 

image rejection and Hilbert filters, the signal would fold onto itself to create an un-decodable 3 

MHz baseband signal. However, since we only seek to detect the presence of a signal and not to 

receive it, a non-real signal is acceptable for our system.  

While the channel undergoes true direct conversion, the pilot, on the other hand, falls at the low 

IF frequency of 2.69 MHz. This alleviates the flicker noise problem and eliminates the DC offset 
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problem altogether. Furthermore, pilot power can now be measured much more rapidly, and the 

pilot retains its periodicity to allow autocorrelation detection. 

4.2 – Autocorrelation  

Autocorrelation detection of the pilot in the analog and time domains is the other primary 

novelty of our system. Using the two sampler technique described in [17] and Section 3.2, we 

step the time shift between the two samplers and get the autocorrelation as a function of  , shown 

in Figure 4.4. 

 
Figure 4.4 - Time-domain waveform of (a) a sinusoid, and (b) its autocorrelation. 

Figure 4.4 (a) shows a sinusoid signal, and Figure 4.4 (b) shows 5  -steps encompassing 1 cycle 

of its autocorrelation in time domain. In post-processing, the mean at each  -step would be 

calculated to recreate the sinusoidal behavior. This is shown in Figure 4.5 below, where we look 

at the effect of our autocorrelation technique on a moderately noisy sinusoid tone. While there is 

still some un-ideal behavior from residual noise in the autocorrelation in Figure 4.5 (b), we see 

that it is much cleaner than the original signal in Figure 4.5 (a), indicating an SNR improvement. 

 
Figure 4.5 - Simulated time-domain waveforms of (a) a noisy pilot, and (b) its autocorrelation. 

Stepping   through multiple autocorrelation cycles as in Figure 4.5 (b) is useful if we eventually 

want to extract frequency information through a FFT; however, it is unnecessary for our 

purposes. Since the pilot is a pure sinusoid, one autocorrelation cycle is adequate to gain its 

entire characteristic and to make a decision. There should be no difference (statistically) between 

the autocorrelated results of, for example,       and        , and thus, simulation has 

shown that performance could be better improved by simply averaging at each  -step for a longer 
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period of time rather than incorporating more  -steps and multiple autocorrelation cycles. This 

eliminates the need for long, variable delay lines. 

To create the time shift between the two receiver paths, we delay the second sampling clock by  , 

where all  -steps are less than one sampling clock period. Due to the properties of subsampling, 

a phase shift in the sampling clock translates directly to an identical phase shift in the 

subsampled baseband signal. This is illustrated in Figure 4.6 below, where the blue RF signal is 

sampled on 4 different phases of the subsampling clock.  

 
Figure 4.6 - Subsampled response to phase shifts in the sampling clock. 

4.2.1 - Single-Bit Autocorrelation 

To perform correlation, a multiplication circuit with high dynamic range, high linearity, and low 

noise would be required. Designing a traditional high-resolution analog multiplier to meet these 

specifications presents a challenging task. Alternately, a much easier method of performing 

multiplication is to first convert the high-resolution analog signals into low-resolution, single-bit 

digital signals using sigma-delta () modulators. Then, multiplication would simply be an XOR 

operation on the two bitstream outputs from the  modulators.  

The structure of a  modulator is shown below in Figure 4.7. 

 
Figure 4.7 - Block diagram of a sigma-delta converter. 

The  modulator feeds back each digital bit and integrates the error in order to estimate the next 

bit output, with the comparator frequency    much greater than the highest frequency content of 

the input. This results in an oversampled bitstream that approximates the input signal, as shown 
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below in Figure 4.8. The blue lines representing output bits are all high when the signal (in red) 

is at its highest points, and the opposite occurs when the signal is at its lowest points. When the 

signal nears 0, the bits alternate between 0 and 1.  

 
Figure 4.8 - Sigma-delta conversion of a sinusoid. 

 conversion also has a beneficial noise-shaping property, where the noise transfer function has 

a highpass characteristic, so that quantization noise is pushed to higher frequencies outside of 

baseband. This is illustrated below, where Figure 4.9 (a) shows the spectrum of the input signal 

and Figure 4.9 (b) shows the spectrum of the  output. In a standard  ADC, the noise at 

higher frequencies will eventually be filtered out through digital decimation, and thus noise-

shaping leaves a high resolution baseband signal.  

 
Figure 4.9 - Frequency spectrum of (a) sigma-delta input, and (b) sigma-delta output. 

Applying  conversion directly to correlation presents a fundamental problem due to this noise-

shaping behavior. If we correlate the two bitstreams directly, the much higher quantization noise 

at high frequencies will mix with each other back to baseband, drastically raising baseband noise 

and degrading SNR. If we decimate the bitstreams to filter out high frequency noise, we are left 

with two high-resolution digital signals, the multiplication of which then require the complex 

digital processing we sought to avoid. We thus lose the advantage of bitwise multiplication that 

using  modulators was originally intended to provide. 

An alternative to decimation is to correlate one  bitstream with the original analog signal, a 

technique proposed in [20]. Since the quantization noise in the  output is completely 
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uncorrelated with the analog thermal noise, it should ideally not affect the final correlated result. 

While multiplying a bitstream with an analog signal is more complicated than a mere XOR 

operation, it is still trivial compared to full analog or full digital multiplication. The bitstream 

would simply act as a sign bit that selects between the inverted and non-inverted forms of the 

analog signal. The performance of the various correlation methods were simulated and shown 

below in Figure 4.10. 

 
Figure 4.10 - Comparison of various autocorrelation implementations. 

We compared the detected SNR of subsampled signals after correlation. Blue shows the baseline 

performance with an ideal analog multiplier. When both signals are converted to  bitstreams 

and correlated, the detected SNR degrades severely, shown in green. The red shows the result of 

decimating before correlation, and we see that performance has been brought back up to around 

the analog baseline level. However, correlating a bitstream with analog signal, shown in cyan, 

can also achieve a performance comparable with and in fact a little bit better than the analog 

baseline, indicating that this hybrid correlation method would work well for our purposes. 

Finally, as expected, with more samples and more averaging, the detected SNR in all cases 

improve. 

4.3 – System Architecture 

The final system architecture is shown below in Figure 4.11. 
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Figure 4.11 – Block diagram of proposed system. 

After the antenna, we first need a fixed bandpass filter to attenuate potential out-of-band blockers, 

especially from the neighboring cellular band at around 800 MHz ~ 900 MHz. Next, the low 

noise amplifier (LNA) must provide wideband input impedance matching as well as high gain, 

which is critical for a low system noise figure. The total noise factor of a set of cascaded blocks 

is given by 

 
        

    

  
 
    

    
   (11) 

where         and         are respectively the noise factors and gains of each block. Since the 

sampler especially will be a high noise block due to folding, a high LNA gain is required to 

lessen its impact on overall system noise figure. However, we also expect a wide dynamic range 

in input signal power levels, from -114 dBm up to -8 dBm. In order to not saturate the 

subsequent blocks or even the LNA itself, the front-end must also have variable gain. 

Next, we consider that the sampler will fold not only noise, but also any interference around the 

harmonic frequencies of the sampling clock. Thus, another RF bandpass filter is needed before 

the sampler to provide additional interference attenuation. In fact, even if the first bandpass filter 

were ideal, there would still be harmonic distortion and intermodulation products generated by 

the LNA that would need to be attenuated prior to sampling. Since our target band of 400 MHz ~ 

800 MHz is relatively wide, the second bandpass filter will be implemented as a narrow RF 

tracking filter in order to provide sufficient attenuation at harmonic frequencies. 

After the second RF filter, the signal is split into two paths for our implementation of 

autocorrelation. The two-path method gives an additional benefit in that the additive noise of the 
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samplers as well as all the baseband blocks would be uncorrelated, which effectively decreases 

the system noise figure in autocorrelation  mode. Of course, path-splitting from the antenna and 

having two completely separate RF front-ends, as in [14], would decrease the noise figure further. 

However, the power overhead was determined to be too high for our target specifications. 

After the sampler, both paths are channel-filtered at baseband. Then, the first path goes through 

standard square-law energy and pilot detection. The second path goes through a  modulator, 

whose raw bitstream output is correlated with the analog signal from the first path for 

autocorrelation detection. 
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Chapter 5 – System Implementation 

Circuit implementation of the proposed system is currently ongoing. For the initial test-chip, we 

seek to implement the core of the system as a proof of concept for the subsampling 

autocorrelation technique. Many of the peripheral and support functions will therefore be 

generated off-chip. This includes clock generation, clock time-shift generation for 

autocorrelation, and back-end power measurements for energy detection. At the front-end, the 

first bandpass filter will also be implemented as an off-chip surface acoustic wave (SAW) filter. 

The SAW selects the UHF band and attenuates strong out-of-band blockers so they do not 

saturate the LNA. 

In this chapter, we will describe the design of a few of the completed blocks, namely the LNA 

and the RF bandpass filter. 

5.1 - LNA 

For our LNA design, we adopted a common-gate (CG) architecture for wideband impedance 

match to the antenna. Furthermore, the LNA is made fully-differential for good IIP2 

performance. The schematic of the LNA is shown below in Figure 5.1. 

 
Figure 5.1 - Schematic of LNA. 

An off-chip balun converts the incoming single-ended signal to differential. The cross-coupling 

capacitors act as gain-boosting amplifiers with a gain of 1, which effectively doubles the    of 
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the input devices. Resistive loads are used for lower noise, and the cascode devices provide a 

high output impedance to not degrade the load resistance. The set of switched load resistors     

have lower resistance than     and provide a low gain mode with improved linearity. 

The theoretical gain and noise figure of the LNA are: 

            (12) 

 
    

 

 
 

 

     
 (13) 

In practice, the gain and noise figure deviates from Equations (12) and (13) due to, of course, 

finite transistor output impedance, but also finite cross-coupling capacitance. The capacitors 

should ideally feedthrough the inverted signal un-changed, but in actuality, the feedthrough ratio 

is less than 1 due to the capacitive divider formed by    and the input device’s gate capacitance. 

The resulting effective   , rather than being twice   , is now:  

 
         

  

        
     (14) 

Thus,    must be made sufficiently large to not significantly degrade performance. 

The input impedance of a CG LNA is     , or in our case,        . The standard antenna 

impedance of 50 therefore limits    to 20 mS. (The factor of 2 gm-boost is cancelled out by a 

factor of 2 impedance transformation through the balun). As seen in Equation (13), noise figure 

depends solely on      . Since    is limited by the input impedance, and    is limited by 

headroom, there is a fundamental lower limit to the noise figure achievable in a CG LNA 

architecture. 

However, Equation (13) assumes a perfectly impedance-matched condition. If we intentionally 

mismatch the LNA input impedance,    , with antenna impedance, the noise figure becomes: 
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where    is the 50 antenna impedance. Assuming       is sufficiently large so that     is 

the dominant term, a smaller     (corresponding to a larger   ) results in a smaller noise figure. 

On the other hand, an impedance mismatch causes more power to be reflected back to the 

antenna rather than delivered to the LNA. This reflection is measured with    , which is: 

 
     

      

      
  (16) 

A perfect match results in an     of 0, meaning all power is delivered and none reflected. 

However, an     of -10 dB has traditionally been considered acceptable, so some mismatch can 

be tolerated. Noise figure and     plotted as a function of     is shown below in Figure 5.2. 
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Figure 5.2 - (a) NF, and (b) S11 as a function of Rin. 

We see that at the cost of spending power to make    bigger, we can achieve a lower noise 

figure while still having sufficient matching. Our final design targets a    of 28 mS and a 

      of 9.5. The resulting frequency responses for gain and noise figure are shown below in 

Figure 5.3. 

 
Figure 5.3 – Frequency response of LNA (a) NF, and (b) voltage gain for high- and low-gain modes. 

The low frequency gain drop is a result of    becoming an open circuit, and the pole position is 

defined by    and      . Simulated post-layout gain is 24.5 dB and 15 dB for high and low gain 

modes. Noise figure is 2.15 dB and 3.25 dB for high and low gain modes, including the ~0.35 dB 

of degradation from layout parasitic resistances.     is below -15 dB across the entire band for 

both gain modes.      is about -16 dBm and -6 dBm for high and low gain modes. 

5.1.1 Bias 

We use a replica bias scheme for the LNA, shown below in Figure 5.4. 
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Figure 5.4 - Schematic of LNA bias. 

The rightmost branch is a replica of one single-ended branch of the LNA at 1/6 its size. The 

middle branch generates a reference voltage for the output common mode, and the feedback loop 

generates bias voltage     to keep the output common mode constant. The leftmost branch 

generates the cascode bias. 

The entire LNA block, including bias circuitry, consumes 6 mW. 

5.2 – RF Tracking Filter 

We adopt the Gm-C biquad architecture for our RF tracking filter. The biquad structure presents 

a high impedance to the previous stage LNA and does not have to be impedance matched, and 

the Gm-C implementation gives the lowest power. The structure of the biquad is shown below in 

Figure 5.5. 

 
Figure 5.5 - High level schematic of RF tracking filter. 

The transfer function of the biquad is given by: 
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From the transfer function, we can derive the following characteristics: 
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Varying    and    changes the center frequency of the bandpass filter, while varying     

changes the gain. We implement high and low gain modes by switching an extra     section as 

shown in Figure 5.5. For lower noise, we choose        , so that we are left with   

             . 

The diode-connected     effectively acts as a resistance; thus, any finite output resistance on 

the output node will result in a smaller effective       resistance, which translates to a larger 

effective    . This, in turn, degrades both Q and gain. This degradation can be significant since 

the output node sees the output impedances of 3 Gm-cells in parallel, with     being especially 

large if high gain is desired. Since there is not enough headroom for cascode devices, we boost 

the Gm-cell output impedances by using longer channel devices. We also add a Q-boosting 

negative-gm component to further compensate for the loss.  

The feedback loop involving     and     has two poles at the same frequency, and thus needs 

to be carefully designed for stability. The phase margin of the loop, however, also corresponds 

with Q, where a higher Q translates to a loop closer to instability. To have a safety margin where 

there is at least 30
o
 phase margin across all corners and process variations, we are limited to 

about 14 dB of rejection at the third harmonic frequency. Since more rejection is needed before 

the sampler, we cascade two Gm-C biquads to form a 4
th

 order bandpass filter.  

The schematic of a Gm-cell is shown below in Figure 5.6. 
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Figure 5.6 - Schematic of a Gm-cell. 

The Gm-cells employ a resistively-degenerated common source architecture, with       set to 

1 for balance between lower power and greater linearity. The output common mode is set by the 

common mode feedback (CMFB) loop controlling the load PMOS current sources. The 

additional cross-coupled PMOS pair forms a negative-gm cell that implements the Q-boost. 

While the CMFB and Q-boost are shown on an individual Gm-cell in Figure 5.6, they are 

implemented only once on each shared biquad node.  

The frequency responses for gain and noise figure for one biquad are shown below in Figure 5.7. 

 
Figure 5.7 - Frequency responses of filter (a) NF, and (b) voltage gain. 
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The peak gain of each biquad is about 10 dB and 0 dB respectively for high and low gain modes. 

Rejection at the 3
rd

 harmonic is 12 dB to 14 dB across all gain and frequency settings. The 

tunable capacitors of each biquad are implemented as binary-coded capacitor banks with 3-bit 

digital inputs and 8 frequency settings. A schematic of one capacitor bank is shown below in 

Figure 5.8. 

 
Figure 5.8 - Schematic of one filter capacitor bank. 

The frequency response of one biquad at all of its frequency settings is shown below in Figure 

5.9.  

 
Figure 5.9 - Frequency-tuned response of RF tracking filter. 

Since each biquad can contribute additional gain, we can tolerate a higher noise figure from the 

second biquad. The second biquad is thus designed to be half the size of the first one, consuming 

roughly half of the first’s power at a cost of higher noise. The two cascaded biquads, including 

bias and peripheral circuitry, consume 9 mW in total.   
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Chapter 6 – Conclusion and Future Work 

In this report, we reviewed the requirements and challenges of performing spectrum sensing in 

the TV band for mobile applications. We described the existing state of this area of research 

from both a technical and a policy perspective, and reviewed existing theoretical techniques for 

performing signal detection. We then proposed a novel physical implementation of a spectrum 

sensing system by using subsampling autocorrelation in the analog domain.  

The most immediate goal of this project is to finish circuit implementation and tape out a test-

chip. If the proof of concept is successful, there are many ways this system can be enhanced and 

expanded in future projects. For example, the off-chip peripheral and support components of this 

work could be moved on-chip, and doing so would generate a slew of challenges that would need 

to be addressed. Moving clock generation on-chip would make phase noise a concern, and the 

implementation of linear, high dynamic-range power detectors is also not trivial. Eliminating the 

front-end SAW filter would make the system vulnerable to strong out-of-band blockers, and we 

would need additional innovation in circuit and architecture design and/or detection algorithms 

to make the system resilient against out-of-band interference. In addition, this work is focused 

specifically on detection of DTV signals in the UHF band, and takes advantage of known 

characteristics of ATSC signals. When spectrum sensing eventually expands beyond the TV 

bands, signal detection in a signal agnostic regime will become necessary and a major area of 

possible future research.   
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