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Abstract: 

 Big data has taken the tech industry by storm as storage costs go down and analytics 

tools improve to enable businesses to make better decisions faster. NetApp is one such 

company that collects customer machine configurations through NetApp Autosupport to help 

customers troubleshoot errors. This project leverages the Autosupport data to gain insights into 

the production environment as well as the QA environment in terms of their relationships to 

each other. Using the K-Means algorithm and direct matching method, we have identified eight 

common customer configuration groups, top customer configurations not tested by any QA 

machines, and top QA machines not testing any customer configurations. The methodology is 

still maturing, and requires input from both developers and subject area experts. The results we 

found can be used to enhance the test environment for QA, target development of features for 

developers, and increase confidence in product and services for customers. 

I. Introduction: 

 The success of web 2.0 era is partially attributed to the appropriate use of data driven 

applications. User data is collected in structured format from the Internet before being 

analyzed and organized to enable a number of other applications. Data is used not only for 

transactional purposes, but also for tracking user behavior and making predictions before 

underlying trends become noticeable to the community at large. With the emerging era of 

ubiquitous computing, enabled by mobile smart phones in everyone's pocket and cloud 

computing in big data centers, more data has been collected in unimaginable ways. However, 

as we collect more data, the need for structured data has become restrictive rather than 



empowering because data is evolving at a rate that structured database can no longer keep up. 

As a result, much of the unstructured data were stored in flat file format, waiting to be 

analyzed and make sense of. 

 Within the myriad of data collected embeds useful information that reflects behaviors 

of its source and the world at large. Data mining is “the science of extracting useful knowledge 

from [unprecedented quantities of digital data] repositories”, and it is quickly gaining popularity 

as many believe that it “can bring real value”. [1] Businesses can take advantage of the 

information extracted from data to gain insights into their business operations and take 

necessary actions to meet new demands. 

 NetApp is a storage vendor that sells configurable storage filers to technology 

companies, financial institutions, government agencies, etc. NetApp Autosupport is “an 

integrated and efficient monitoring and reporting feature that constantly checks the health of 

[the filer] system”. For each of the customer machines, Autosupport constantly sends the user 

configuration information back to NetApp, where the information is analyzed and stored to 

keep a history of the systems health record. Within the company, NetApp has many similar 

machines set up internally for the purpose of quality assurance (QA), both to test new features 

and to replicate reported customer problems. In this paper, we use the customer data collected 

by Autosupport and the data about QA machines to answer the question of whether the 

current NetApp internal testing machines represent a good coverage of the customer machines 

in production. Our methodology has taken two data mining approaches, one through a simple 



direct matching of data attributes, and one through the statistical K-Means algorithm. We have 

identified: 

• Eight common customer configuration groups 

• Top customer configurations not tested by any QA machines.  

• Top QA machines not testing any customer configurations. 

 Given the above knowledge, NetApp can develop features targeted at each customer 

group, and enhance their QA testing environment by adding QA machines to cover untested 

customer configurations and retiring unnecessary QA machines to optimize resource efficiency. 

In the rest of this paper, we present our analysis in detail by researching existing approaches to 

similar problems (section II) before defining our problem set up (section III). For our 

methodology, we first propose a simple yet intuitive approach using direct matching analysis 

and present its results (section IV). After we identify some shortcomings of the first approach, 

we investigate further by applying the K-Means algorithm to analyze the dataset further 

(section V). We then validate the second approach by presenting our analysis results and 

discuss their implications (section VI), demonstrating the insights they reveal about the QA 

environment in relation to the systems in production. Lastly, we discuss opportunities and 

challenges for future work (section VII). 



II. Literature Review/Related Work 

 Similar researches have been done in the past where large data set has been analyzed 

for clustering pattern. Finding out the clustering pattern helps to gain a summarized overview 

of the entire data set, as well as how different types of data distribute within the entire set. 

Classification of MapReduce Workloads 

Hadoop is a popular MapReduce framework used by many large internet companies. 

The software framework is used to batch process large amounts of unstructured data such as 

server logs and sensor measurements in a distributed manner that also has fault-tolerance 

built-in. The typical set up is many compute nodes interconnected together to become a 

distributed file system managed by Hadoop, and the data nodes and master node together 

forms a Hadoop cluster. A MapReduce job is a program that is applied to files on different 

compute nodes and can range from small to large depending on the type of operation and the 

input size of the file. [2] 

However, despite its widespread adoption, there are still many aspects of Hadoop that 

are not optimized for the production work it is give. For example, if there are a series of small 

jobs to be run after a big job, the big job would often become the bottleneck of the entire 

Hadoop cluster. Studies have been done on the type of jobs that are given to the Hadoop 

clusters as different scheduling schemes would accommodate different Hadoop job types. 

 The K-means clustering analysis was used to find out the classifications of the different 

Hadoop job types, as part of a research conducted by Chen from UC Berkeley. [3] The study 

analyzed a trace, a history containing meta-data about the individual Hadoop jobs, with 



duration of one year from Facebook.  Seven different attributes, indicative of the input job 

type, were used to characterize Hadoop jobs in the Facebook trace, which are input size, shuffle 

size, output size, total execution time, map time, and reduce time. The parameters were 

linearly normalized such that all data dimensions have a range between 0 and 1 to account for 

the different units. The number of clusters, k, was incremented to show the quality of cluster 

assignment of points. The cluster centers are shown in table 1 in terms of the seven dimensions 

they have.  

Table 1 Cluster Centers for the Facebook Trace [3] 

 

Further analysis of the cluster centers by subject area experts revealed the 10 common 

classifications of the MapReduce jobs, and meaningful labels were attached to each class as 

shown in the last column. Now that one have identified the different MapReduce job types, 

optimization could be done that would differentiate the scheduling and resource allocations for 

the jobs, instead of treating all the jobs in the same way. The K-means algorithm has revealed 

important characteristics of the MapReduce workload for Facebook that will improve Hadoop 

operations in the future. [3] 



Summary of How They Informed Our Project 

 The case study of the MapReduce job classification has given us confirmation in the K-

means clustering analysis method. It has a similar aspect to our project in that we need to 

transform our dataset into meaningful dimensions that would reflect the most information 

about the clusters. In addition, we have discovered a parameter for measuring the quality of a 

clustering assignment, percent variance explained, which would help us decide what would be 

the natural grouping of the clustering points after running the algorithm with different given k.  

III. Background – Autosupport vs. QA Data 

Product testing at NetApp has many phases depending on the release life cycle of existing 

and new product. The phases include [4]: 

- Planning for the new product. 

- Development and unit testing before check-in. 

- Integration Acceptance Test: test to ensure parts of the product work with each other 

- Feature Function Test: feature testing, regression testing against current and previous 

issues, and performance testing to ensure product operates at defined state. 

- Regression and Reliability Test: full product tests after issue/fix phase to bring the 

release to release candidate state. 

The major testing phase is the feature function test, where the quality assurance (QA) 

team thoroughly tests the product according to the functional specifications and looks for any 

potential security vulnerabilities. [5] Because NetApp sells hardware as well as the software 

that runs on top of the hardware, the testing environment must include the two levels as well. 



For the particular set of features to be released into production, QA will configure specific 

parameters on physical hardware systems in addition to tuning the software parameters before 

feature testing could take place. The number of permutations of all the parameters is simply 

too large for QA to test exhaustively. [6] As a result, QA can only test a subset of all possible set 

of configuration parameters before the product is released into production. Since QA machines 

are set up based on the new products that are released and when particular customer 

problems are reported, NetApp has no knowledge whether their test environment is 

representative of the customer machine out in the real world. It is almost guaranteed that a 

customer of the product will be using the released features under a set of configurations not 

tested by QA. 

Because a storage filer has thousands of configuration parameters, it is infeasible and 

unnecessary to consider all of them. With help from industry experts, we have identified 21 

parameters that would provide the most insight to identify a system. Of these we picked eight 

parameters to analyze for similarities between the QA machines and customer machines. They 

are System Model, System Version, Total Volume Count, Total Aggregate Size (GB), Disk Total 

Size (GB), CIFS Licensed, NFS Licensed, and FCP Licensed. For our project, we received two data 

sets, one for customer machines and one for QA test machines, which contain configuration 

parameters for each machine. The customer configuration data comes from Autosupport 

messages sent by customer machines, and the test machine data comes from the QA team. The 

customer data contains information for 133,069 customer machines, and the QA data contains 

information for 1865 test machines. The project is to find out how well the test machines 

represent the customer machines, and the customer segments using NetApp products. 



IV. Methodology: Approach 1 – Direct Matching 

One simple approach to find out how well the QA data represents the customer data is 

through direct matching of the configuration parameters. Given the eight configuration 

parameters, we find out unique configuration types from the customer data in terms of the 

exact value of a parameter, and determine which of the QA machine configurations matches 

the unique configuration types exactly. 

Since direct matching may not be possible on continuous values such as storage size, 

binning is used where ranges of values have been used for matching. 

Using this method we have identified over 1400 unique customer configuration types 

and the QA machines with similar configurations. Figure 1 shows the cumulative percentage of 

all the configuration types. From the graph, we can see up to 75% of the customer 

configurations have been covered, represented by blue circles, and the red circles represent the 

untested customer configurations. 

The direct matching method, given its simple and quick solution, is not scalable for a 

large number of parameters. This is because as one increase the dimensions, the number of 

permutations will also increase significantly, making exact matches nearly impossible. This 

weakness could be addressed in the K-Means analysis, where all dimensions are taken into 

account for determining closeness between two machine configurations. 



 

Figure 1 Cumulative Percentage of QA Coverage 

V. Methodology: Approach 2 – K-Means Algorithm 

 The K-Means algorithm, as discussed earlier in literature review, is a statistical analysis 

method that finds the natural clustering of a data set. What the algorithm does is that it 

considers each data point to be a N-dimensional tuple, and determines the closeness between 

two points by their Euclidean distance in N-dimensional space. [7] This property suits well with 

our problem as the description of a machine configuration is a multi-dimension array where 

each dimension corresponds to a configuration parameter. 

 The K-Means algorithm is demonstrated in figure 2. It is a stochastic and recursive 

algorithm where n data points are clustered into k groups, where each data point is closest to 

the mean of the group is belongs to. The algorithm is stochastic in that initial values are being 

picked at random, as illustrated in step 1, and depending on the initial conditions, there could 



be different results. Therefore, the algorithm should be repeated many times to find the 

optimal solution. The algorithm is recursive in that cluster means are repeated updated until 

the solution converges, as illustrated in step 4. [8] 

 

Figure 2 Steps in the K-Means algorithm 

 Closeness in our case is determined by the Euclidean distance between the points 

where all dimensions of the data point are accounted for, which is: 
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where Si is the set of all data points x in cluster i, and �� is the cluster center.  Because distance 

is calculated this way, we require all data dimensions to be numerical and weighted according 

to their importance. 

A. Data Cleaning and Transformation 

Quantitative vs. Qualitative Data 

 Quantitative data such as disk counts and storage size can be directly fed into the K-

Means algorithm as their values exactly convey cardinal information. However using storage 



size directly might cause some unreasonable skew in the statistics. The distribution of storage 

sizes is not linear, as customers either use a filer for storing big data with terabytes of 

information or for storing small data with gigabytes of information, with few customers using 

the filers for data sizes in between. To address this phenomenon, we take the logarithmic value 

of storage sizes, and use only their order of magnitude for K-Means to calculate the euclidean 

distance. 

 Qualitative data such as System Model, on the other hand, requires a more careful 

treatment because one cannot tell immediately whether one model is more similar to another 

just by their values. For the System Model parameter, we propose two different solutions. 

One solution is to transform qualitative values into quantitative values based on their relative 

similarities. For example, Model FAS3210 and FAS3040 will be assigned close numerical values 

because they are functionally similar. The downside of this solution is that arithmetic 

operations would yield unreasonable results sometimes. For example, the average of two 

System Models might yield a numerical value that correspond to a third System Model, even 

though that third model might not be present at all.  Our second solution address that problem 

by exploding the data parameter into many more data parameters, where each new data 

parameter is a binary value indicating whether the data point has a particular System Model. As 

a result, the original parameter is split into 12 different parameters. 

Data Normalization and Weightings 

 The K-Means algorithm is designed to compress pairs of N-dimensional data into a one 

dimensional value represented as distance. In order to prevent any particular dimension to 

skew all N dimensions, normalization to the parameters is applied after the data transformation 



has taken place. All the parameters are normalized to one, through a process where each value 

is divided by the largest value in that parameter. 

 In addition to normalization, differential weights are also applied to the data 

parameters. This is to give more significance to data values that are important in terms of 

representing the data point, in our case, reflecting the characteristics of a filer machine. 

Weightings are also important to weigh down exploded parameters such as System Model, 

where it went from a one dimensional data to 12 dimensional data. This would significantly 

skew the results to reflect more importance in System Model if they were not scaled down 

accordingly. The actual weights to be used require subject area experts to determine. 

B. Implementation of the Algorithm 

 To implement the K-Means approach for our analysis, we are using a standard C library 

for the core K-Means algorithm. We then developed a program that makes use of the K-Means 

algorithm specific for the Autosupport analysis. The basic steps of the program are illustrated in 

figure 3. 

1. Parse out customer data, and apply appropriate data cleaning and transformation as 

described previously. 

2. Run K-Means clustering on customer data to find out k cluster centers, as well as their 

associated cluster variance. 

3. Parse out QA data, and apply appropriate data cleaning and transformation similar to 

step 1. 



4. Associate each QA data point to its closest cluster center in terms of the Euclidean 

distance, and only if they are within two standard deviations of the cluster center 

 

Figure 3 Summary of K-Means Implementation 

 

The K-Means program implemented takes in a number of user specified parameter. Usage is 

detailed as the following: 

gcc -o clusters *.c -lm 

./clusters [in path] [out path] [columns to use] [column 

weightings] [number of elements] [number of data dimensions] 

[number of clusters] [number of repeats] [qa in path] 

[number of qa] 



 We specify a number of repeats to run the K-Means algorithm to obtain the optimal 

solution, since the algorithm is stochastic and depending on the initial values, and the 

convergence solution is not necessarily unique. 

 The program will output four files for a particular k: 

• output.csv – contains the cluster centers, the number of customer machines and the 

number of QA machines in each cluster, and the cluster variance associated with each 

cluster. 

• output_id.txt – cluster ID associated with each customer machine. 

• output_qa.csv – contains the QA machines that don't fit within two standard deviations 

of any cluster center. 

• output_summary – contains a summary of the program run, including input parameters, 

and the total cluster variance. 

VI. K-Means Algorithm Results 

A. Common Customer Machine Configurations 

 Because we have no prior knowledge as to what is the right number of clusters, k, to 

look for in the customer data set, we run the K-Means algorithm multiple times with different k 

value and use a parameter called percent variance explained to measure the clustering quality 

of a particular k. Percent variance explained is a variable that measures the cluster quality by 

calculating the relative variance of the data points to their cluster centers compared to the 

variance of the entire data set. It is calculated as, 
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 Figure 4 shows the results of percent variance explained as a function of k. Of course, 

we will have a higher percent variance explained for higher k, as in the extreme case when 

k=number of data points, we will have perfect clustering for all data points. However, with 

higher number of k, we would lose semantic insight into the cluster itself. As we can see from 

the graph, at k=8, about 80% of the customer configurations are described by the cluster 

centers. For k>8, there is a diminishing return for the percent variance explained value. We 

therefore gave labels to the cluster centers to have more semantic insight into the grouping. 

 

Figure 4 Percent Variance Explained 

B. QA Machines Not Testing Any Customer Configurations 

 To find the extra QA machines that do not test any customer configurations, we list 

“loners” the QA machines that falls outside of two standard deviations of its closest cluster 

center during the K-Means calculation. As we obtain a list of QA machines from each K-Means 



run, the set of QA machines that repeated appear in the list of loner machines will have a 

higher probability of not belonging to any cluster of customer machines. These QA machines 

are not very useful in testing the real world customer configurations. 

C. Customer Configurations Not Tested by Any QA Machine 

 To find out which group of customer configurations does have any QA machine testing 

it, we can increase the k value and look for clusters that have zero QA machines falling within 

two standard deviations of their cluster center. Such cluster does not seem to appear until k is 

increased beyond 100. These groups of customers would be prone to potential vulnerabilities 

as they do not have any similar QA machines testing them 

VII. Conclusion 

 Given the results of our analysis, there are many recommendations we can make to the 

NetApp Company. However, we need to precisely determine which configuration parameters 

are the most important instead of relying solely on human intuition. 

 From results of both the direct matching analysis and K-Means clustering analysis, we 

can find out the vulnerable customer groups with little QA test coverage, and increase the QA 

effort on those groups. The results have also identified the QA machines which do not test any 

real world configurations, and these loner machines could either be reconfigured to test a 

customer configuration or be reduced in number for resource efficiency. 

 The eight common customer configurations that we have identified using the K-Means 

analysis can also prove useful to the development team. NetApp could monitor each customer 

group separately, and find out their specific needs in order to develop features and 



improvements targeted at each one. This would help with customer segmentation and increase 

overall customer satisfaction. 

 The marketing and sales team can also use the results of our analysis when approaching 

existing and prospective customers. With existing customers, our analysis will have 

demonstrated to them that their products are well tested internally at NetApp, and they will 

have higher confidence and satisfaction using NetApp's product. With prospective customers, 

the sales team can take the results of our analysis to show that the customer's product 

requirements have been well tested and have success stories with similar existing customers. 

 The actual adoption cycle of the above recommendations would require an iterative 

process. First, the QA team needs to make adjustments to their test machines according to the 

results of our analysis. Then, a carefully designed metric, such as development time, number of 

bugs reported over time, need to be tracked to provide feedback on the accuracy of our results. 

After that, we can learn from results of the metrics, and use better parameters and more 

appropriate weightings to do clustering analysis, which would in turn yield more accurate 

results to be implemented. The K-Means algorithm is quite scalable in terms of the number of 

parameters it can take in, as well as its potential to be implemented in distributed manner. 

Eventually, the QA test environment will be more representative of that out in the real world, 

and feature testing will be more relevant to customers. 

 In conclusion, the outcome of our analysis encourages a robust QA test environment 

that will have lasting impact extended to development and marketing and sales team. The 

methodology of our analysis could also be extended into other areas of business, where 

customer segmentation would be useful. 
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