
CrowdBrush: A Mobile Photo Editing Application with

a Crowd Inside

Yin-Chia Yeh

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-161

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-161.html

June 4, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We would like to thank Joel Brandt and Bjoern Hartmann for their
continuous supervision throughout this work. Additionally, Joel Brandt
provided us server access and funds to run experiments on Amazon
Mechanical Turk and Bjoern Hartmann provided us Android handsets
(Google Nexus One) to develop an android application and conduct user
studies. We would also like to acknowledge the creative common image
owners, whose images were used by us for this study. Also, I would like to
thank our fellow classmates at UC Berkeley who helped us in initial user
testing of our Android Application and gave us invaluable insights and
opinions about our UI design and application features.

CrowdBrush:

A Mobile Photo Editing Application with a Crowd Inside

Abstract

We present a mobile photo editing application— CrowdBrush, which uses Google

Android as front-end platform and Amazon Mechanical Turk as back-end platform. As

there are increasingly more images were captured by smart phone these days, providing

photo manipulation functions on the mobile phone directly become very important for

better user experience. This is because most users want to edit and share their images

directly after capturing, without having to copy them to PC. However, current photo

editing software on smart phone usually has limited functions due to the restricted input

methods on smart phone. Our system aims at providing more advanced photo

manipulation features by uploading a user’s image to our backend server, having workers

on the internet help to process the image, and then sending the processed result back to

the mobile phone. Specifically, we ask workers to perform a rotoscoping task on

uploaded images. Rotoscoping is an essential preprocessing step for many visual effects.

By having online workers label the objects and background in images, our system can

provide various photo editing features which cannot be supported by current mobile

photo editing applications. Our evaluation results show that our system can consistently

generate high quality rotoscoping results cannot be done by computer vision techniques.

The user study reveals important future working directions for users to adopt our system.

Introduction

Rotoscoping refers to the technique of creating a matte of a foreground element in image.

This object matte is essential for various visual effects such as compositing an object to a

different background or applying different visual effects on object and background. High

quality rotoscoping has long been a labor intensive and expert oriented task because it

requires marking the outline of object precisely. According to a discussion with engineers

working on Adobe AfterEffects, a mainstream visual effects editing software, an expert

rotoscope artist’s hourly pay can be more than 70 dollars and rotoscoping a complex 30

seconds video clip could take up to 15000 dollars and more than 200 working hours. This

fact results in applications require high quality rotoscoping inaccessible to low end

market, such as consumer applications. Therefore, we believe that there exists value in

discovering new solution for rotoscoping. Informational interviews with computer

scientists working on computer vision suggest that a fully automatic solution for

rotoscoping will not be there in the near future. This is mostly due to the difficulty of

recognizing object boundaries in difficult conditions, such as poor lighting, occlusion, or

complex shapes (e.g., fur). Therefore we conclude that human computer interaction is

still necessary for rotoscoping. However, can we change the way rotoscoping is done

now? As rotoscoping is a complicated expert oriented task now, one possible direction of

improvement is to break it into small pieces of works that are easy for untrained workers

be completed, which relates to the concept of crowdsourcing. If we can enable many

untrained people working on rotoscoping instead of hiring few rotoscoping artists, how

will it affect the labor cost and process speed of rotoscoping? In this project, we test the

feasibility of using crowdsourcing technique to replace a hired rotoscoping artist to create

a cheaper and faster rotoscoping solution.

To enable crowd workers to perform rotoscoping tasks, there are two main difficulties.

First, the task must be divided into small pieces that untrained people can easily learn and

perform well. Trained rotoscoping artists use professional software with some

complicated curve editing tools to mark the outline of object. Such tools require

significant expertise to use well. To enable untrained crowd workers to perform the same

task, we must design a simpler tool for them. The second difficulty is how to aggregate

pieces of work from crowd workers to an acceptable object matte. Quality control is

especially important because the quality of work of crowd workers varies a lot. This is

because either they do not understand the purpose of the task or they try to earn more

money by completing more tasks with poor quality. We develop a crowdsourced

rotoscoping pipeline for single image which first asks crowd workers to draw a matte for

the image with a simple and easy to use interface; then a different group of workers will

vote for the best working results in previous step. Finally, we combine those best results

to generate the matte for input image.

To verify the feasibility of our crowdsource rotoscoping solution, we implement a mobile

image editing application — CrowdBrush, which integrates our solution as a backend to

extract foreground object from mobile phone images. This application enables some

image editing features we have not seen in current mobile phone application market.

Those features are cutting and pasting of objects into different background and applying

different visual effects on objects and background. The evaluation we conducted shows

that the rotoscoping quality of our crowdsource system outperforms benchmarking

computer vision techniques. Our user study shows that users are interested in those image

editing features we provided while there are still several aspects needed to be improved to

provide better user experience.

The rest of this paper is organized as follows: section 2 summarizes the related works;

section 3 describes our system and how it is implemented; section 4 shows how we

evaluate our system; section 5 describes evaluation results of our system and discussion;

section 6 is the future work.

Related Work

Crowdsourcing

The idea of crowdsourcing is to outsource tasks to group of people, such as internet

online workers in our system. Here we review several crowdsoucing applications that

inform our system design. Quinn et al [3] classify existing human computation systems

based on their similarities and also provide insights towards future research work in

human computation. Soylent [4] aims to utilize human intelligence from crowdsourcing

to improve writing efficiency and quality. The three useful features of Soylent: Shortn,

Crowdproof and The Human Macro illustrate different procedures which can be group-

sourced. They also propose a Find-Fix-Verify model to break complicated article editing

tasks into small chunks of tasks manageable by crowd worker, which informs our

crowdsourced pipeline design. Von Ahn et al introduce the concept of GWAP (Game-

With-A-Purpose) [5], which gives insight into the motivational power of games over

players who participate in human computation activities. Little et al. [6] systematically

analyze the performance and trade-off between iterative and parallel processes of human

computation. Spiro et al [7] designed a crowdsourcing application of gesture annotation

which performs video labeling. They identify the most important factor for success on the

crowdsourcing platform is the design of user interface for crowd workers. They also point

out that the design of the pipeline could consist of both human workers and computer,

which is adopted by our crowdsourced pipeline as well.

Image Selection Interfaces

Wang and Cohen [8] give an overview of current performance of computer vision

algorithms on image or video matting. They conclude that while computer vision

algorithms do a good job on a single image (such as Chung et al. [9] and Sun et al. [10])

current performance of video rotoscoping algorithms is still limited. Wang and Cohen

[11], Bai and Sapiro [12] present scribble-based interfaces which require users to simply

specify a few scribbles of foreground and background as input and the algorithm

generates the foreground mask for the input image. Interactive Video Cutout [13] offers a

novel approach to treat video as 3D volume and provides painting based UI to indicate

foreground object across space and time. However, it is still unclear if this kind of user

interface is good for online workers since they are mostly more familiar with traditional

frame based UI.

CrowdBrush System Design and Implementation

Pipeline Overview

Figure 1 shows the high level overview of our system. Users can upload images from

their Android mobile phone to our web backend, which is composed of PHP/MySql and

Python scripts. The backend system will post tasks on Amazon's Mechanical Turk

platform. Crowd workers can then use our Flash drawing application to draw an object

mask on the image. The object mask will be sent back to our web backend. The web

backend will combine workers’ result to generate final object mask, which will be

downloaded to Android device for user to perform various image editing operations. We

will explain our design and implementation of each of these components in the following

paragraphs.

Figure 1: The overall pipeline of CrowdBrush system. The image captured by Android
device is uploaded to the web server and being processed by crowdsource platform. Once
the object mask is created the Android device will download the mask for image editing.

Web Backend

Figure 2 illustrates our overall pipeline design for the web backend system. When the

input image uploaded to our web backend, we post a task on Amazon Mechanical Turk

platform. Since working results from crowd workers varies a lot, we ask for several

workers to draw the object mask of that image using our Flash web application. After

collecting those masks from different workers, our web backend will run a heuristic

pruning algorithm to filter out masks differ from the median of input image too much.

For those masks passing the pruning stage, we post another task on Mechanical Turk

asking workers to vote for best three masks. Here again we ask multiple workers to vote

to eliminate the variance of workers’ output. The web backend will then combine those

top ranked masks to generate the final output mask.

Figure 2: The overall pipeline of web backend

My main contribution on the web backend is the Flash drawing application and the flow

control of the PHP/MySql part. For the Flash drawing application, the main design goal is

to provide untrained workers an interface that is easy to learn and use. We choose to

implement a classic painting program similar to the built-in painter program of windows

operating system, in which workers simply use mouse to control the brush to draw on the

uploaded image and the labeled pixels will be marked by transparent green color. To help

workers perform more efficiently, we provide options such as changing the brush size,

eraser brush, region filling, undo, redo and mask preview. The application is implemented

by Flash action script 3 with Graffiti action script3 bitmap drawing library [16]. The user

interface of the Flash drawing application is shown in figure 3 below.

 Figure 3: Painting UI with features and user submissions

For the PHP/MySql part, I worked on the interface between PHP and MySql database and

the interface between PHP and Python scripts. We use the MySql database to track the

work progress of each uploaded image in our pipeline. When an image is uploaded, we

create a database entry to track how many masks corresponding to this image has been

submitted. The Flash application also relies on this record to decide which image should

be shown to workers to work on. Once this number exceeds a predefined threshold, we

set a flag in database so the image will not be shown to workers. We then call the pruning

Python script to prune outlier input masks and post the voting task on Mechanical Turk.

When the voting is done we will call another python script to generate the final object

mask for input image.

Android Application

The Android application contains several functions: capture and upload image to web

backend; retrieve the output mask from web backend; perform image processing with the

downloaded mask, where the image processing functions are owned by me. We have

implemented three image processing functions that involves using the object masks. They

are switch background, color splash and sticker. See figure 4 below for an overview of

these features. The switch background feature allows user to load one image as

background and paste the object onto arbitrary position of that image, which is the

essential purpose of rotoscoping. The color splash feature demonstrates the other purpose

of rotoscoping, which is filtering the object and background with different image filters.

In our current implementation, the background is converted to gray scale while the object

remains the same. We also allow users to adjust the overall brightness of object and

background separately. Finally, the sticker feature is to draw a color bar on the boundary

between object and background. We also learned something through the implementation

of this Android application. First, due to the memory constraint of our testing Android

device, we limit the image size to be processed to 480x640. Second, seemly simple image

down-sample operation can actually be difficult. The bitmap scaling function provided by

Android SDK will generate a lot of aliasing noise when the down-sample ratio is large.

However, the down-sample routine built in the Android JPEG decoding function

performs pretty well no matter the down-sample ratio is large or not.

Figure 4: Overview of CrowdBrush image editing features. (a) Original Image (b) Switch
background (c) Color Splash (d) Sticker

Evaluation Design

Evaluation of Backend Pipeline

In the first half of our project, we developed the backend pipeline on Mechanical Turk

platform. The design goal of this backend pipeline is to achieve a balance between cost,

latency, and performance, which means we want to achieve a minimum cost and latency

while maintaining an acceptable performance of object marking. We have tested three

different pipeline settings as in figure 5. They are

1. Final mask is generated from merging the top ranked masks after the pruning step,

which is exactly the same pipeline as described in previous chapter and figure 2.

2. Similar to above method 1, but a region based iterative refinement step is

appended in the end of pipeline to obtain optimized boundary.

3. Similar to method 2, but only taking one initial mask and skipping the pruning

and voting step.

Figure 5: Three different pipeline settings we have evaluated in this report.

We applied these three different pipeline settings to a set of six test images categorized

into three categories according to difficulty to mark the object within the test image.

Figure 6 shows the six test images. The

difficulty level is easy, medium, and hard from

the top row to the bottom row respectively. The

experiment results and discussion will be

presented in the next chapter.

Evaluation of Android application

To evaluate our Android application design, we perform a user study to observe how

users interact with this application directly. Our test user group consists of 20 subjects.

All of their ages are between 18 and 25 and the average experience of using smart phone

is two years. 60% of them are iPhone users while the rest are Android users. During this

survey, we first ask them to fill in a background information survey, then take a picture

and upload the image to the server. From here we split subjects to 2 groups, the first

group’s image is processed by our full crowdsourced pipeline and the second group’s

images are processed by us behind the scene to speed up the process. This variable should

tell us how the users’ feedback changes according to processing speed of uploaded

image. Once the object mask is created, we ask users to try out those image features we

implemented and fill in the user study survey attached in appendix.

Figure 6: Test images of Mechanical Turk
backend pipeline.

Evaluation Results and Discussion

Evaluation Result of Backend pipeline

We report the spent time and money comparison with or without iterative refinement in

figure 7. In sum, iterative refinement step takes a lot more time and money to complete.

The cost with or without iterative refinement per image is 593 cents and 91 cents

respectively and the process time is 52.5 hours and 6 hours. These numbers are all done

with the settings of obtaining 10 initial masks and 7 voters. While iterative refinement

step takes much more time and money, the output of this step does not necessarily

improve. In figure 8, we can see that though there is little improvement in some parts of

the mask, there could also be some parts of mask get worsen. We also find that method 3

does not work well. This is not only because of the inefficiency of iterative refinement,

but also the instability issue caused by using only one initial mask. Iterative refinement

relies on a good initial mask to extract regions to be optimized. When the initial mask is

bad, the output of iterative refinement is always poor too. Therefore, we finally pick

method 1, which uses multiple input masks and does not adopt iterative refinement, as

our final backend implementation. Figure 9 is the sample output of method 1 pipeline.

Note that in our final implementation we change the pipeline settings to 7 initial masks

and 5 voters, which generates about the same quality level of object mask with lower cost

(40 cents) and process time (~4 hours).

Figure 7: Comparison of spent time and monetary cost between the pipeline with or
without iterative refinement.

Figure 8: Iterative refinement results. In the left image, the boundary of the fur is
slightly improved. In the right image, the boundary between the tire and car body is
slightly improved but the boundary above the front window is worsen.

Figure 9: Sample output mask from our crowdsourced pipeline

Comparison with Computer Vision Approach—Grabcut

As another validation of our crowdsourced pipeline, we also compare our output object

mask with one computer vision image matting approach—Grabcut [17]. The Grabcut

algorithm models foreground and background color distribution by a Gaussian mixture

model and models the image matting problem as binary classification of each pixel as

foreground or background. Figure 10 shows the result from our pipeline and Grabcut. In

(a), we see that in some simple scene both crowdsourced pipeline and Grabcut can

generate good object mask. (b) is an interesting case where there is no obvious

foreground object and Grabcut is confused. However our crowdsourced pipeline can still

generate mask making sense semantically. In (c), Grabcut fails to capture the white font

on the jacket because its color is similar to the white wall. Even though Grabcut does

provide an iterative refinement mechanism for users to specify where the algorithm errs

on the image, Grabcut still fails to capture the font after iterative refinement. One more

thing to note is that though Grabcut fails to capture the font, it does create a better

boundary of the person than crowdsourced pipeline, as we can see there are some white

pixels marked as foreground along the boundary of the person. In (d), the color of the

jeans and carpet is similar so Grabcut fails to distinguish them. Moreover, the result after

iterative refinement eliminate part of the jeans from the foreground, which shows that

iterative refinement does not necessarily converge to better result. In sum, we conclude

that while there does exist computer vision approach that can perform well in certain

scenes, it can still fail in more complex real world scenes. On the other hand, our

crowdsourced pipeline can generate reasonable results consistently.

Figure 10: Comparison between crowdsource results with Grabcut result. The first
column is input image; the second column is the result mask of our crowdsource
pipeline; the third column is the result mask of Grabcut; the fourth column is the result
of iterative refined Grabcut

(a)

(b)

(c)

(d)

Input Image Crowdsource Result Grabcut Result

Grabcut Iterative
Refinement Result

Results of Android Application User Study

Among all 20 subjects, 80% of them used Facebook for sharing photos and on an average

use social media on their phone 1-2 days every week. Only 10% users do in-app

purchases but none of them is willing to pay for per image purchasing in CrowdBrush.

On a scale of -3 to +3, the average user experience rating was 1.5. Most of complaint

comes from the app is not responsive enough. This is due to the unstable network speed

and the touch interface of our testing platform is not as good as latest phones. Among the

three features we implemented, users are most interested in switch background, which

they can paste their friends into a different background. 50% of them do use this feature

more than once to create different images. Our users show a preference on instantly

generated masks than current Crowdsourced pipeline. The most wanted feature from

users is the ability to scale the object mask. Some other feedback suggest we should

provide more background images to play with and also some built-in mask so users can

play around it while their own image is still being processed.

Future Work

From the results of our evaluation, we conclude that there are two major directions of

future work to improve this application

1. Improve the processing latency of Mechanical Turk backend: this can be done by

maintaining a real-time worker pool as in [18] to make sure incoming tasks served

immediately.

2. Improve the boundary accuracy of object mask: it will be interesting to

incorporate some computer vision technique to help crowd workers to outline the

object. For example, using computer vision approach to generate an initial result

and let human work on it. However, it is debatable whether this will help human

work faster or not.

If above problems can be solved, we believe not only our photo editing application will

benefit, but also we can really build a video rotoscoping system based on crowdsource

engine. Of course, there will be other problems needed to be solved in order to pursue

this direction, for example, how to maintain the temporal coherency between frames and

how to interpolate object mask between frames so that we do not have to upload each

frame of a video clip on to Mechanical Turk.

Acknowledgements

We would like to thank Joel Brandt and Bjoern Hartmann for their continuous

supervision throughout this work. Additionally, Joel Brandt provided us server access

and funds to run experiments on Amazon Mechanical Turk and Bjoern Hartmann

provided us Android handsets (Google Nexus One) to develop an android application and

conduct user studies. We would also like to acknowledge the creative common image

owners, whose images were used by us for this study. Also, I would like to thank our

fellow classmates at UC Berkeley who helped us in initial user testing of our Android

Application and gave us invaluable insights and opinions about our UI design and

application features.

Reference

[1] Kulkarni, A., Can, M. and Hartmann, B. Turkomatic: Automatic Recursive Task and
Workflow Design for Mechanical Turk. CHI 2011.
[2] Dow, S., Kulkarni, A., Klemmer, S., Hartmann, B. Shepherding the Crowd Yields
Better Work. CSCW 2011.
[3] Quinn, A., Bederson, B. Human Computation: A Survey and Taxonomy of a
Growing Field. CHI 2011.
[4] Bernstein, M., Little, G., Miller, R.C., Hartmann, B., Ackerman, M., Karger, D.R.,
Crowell, D., and Panovich, K. Soylent: A Word Processor with a Crowd Inside. UIST
2010.
[5] Von Ahn, L., Dabbish, L. Designing games with a purpose. Communications of the
ACM 51, 8 (Aug. 2008), p. 58-67.
[6] Little, G., Chilton, L., Goldman, M., Miller, R.C. Exploring Iterative and Parallel
Human Computation Processes. HCOMP 2010.
[7] Spiro, I., Taylor, G., Williams, G., Bregler, C. Hands by hand: crowd-sourced motion
tracking for gesture annotation. CVPR Workshop on Automatic Vision with Humans in
the Loop, 2010.
[8] Wang, J., Cohen, M. Image and Video Matting: A Survey. Foundations and Trends in
Computer Graphics and Vision, Vol. 3, No.2, 2007.
[9] Chuang, Y., Curless, B., Salesin, D.H., Szeliski, R. A Bayesian Approach to Digital
Matting. SIGGRAPH 2001
[10] Sun, J., Jia, J., Tang, C., Shum, H. Poisson Matting. SIGGRAPH 04.
[11] Wang, J., Cohen, M. Optimized color sampling for robust matting, in Proc. of
IEEE CVPR, 2007.
[12] Bai, X., Sapiro, G. A geodesic framework for fast interactive image and video
segmentation and matting, in Proc. of IEEE ICCV, 2007.
[13] Wang, J., Bhat, P., Colburn, A., Agrawala, M., Cohen, M. Interactive Video
Cutout, in Proc. of ACM SIGGRAPH, 2005.
[14] Bai X., Wang J., Sapiro G.. Dynamic Color Flow: A Motion-Adaptive Color
Model for Object Segmentation in Video. Proc. ECCV 2010.
[15] Bai X., Wang J., Simons D., Sapiro G. 2009. Video SnapCut: Robust Video
Object Cutout Using Localized Classifiers. ACM Transactions on Graphics (Proc.
SIGGRAPH), 28(3)
[16] http://www.nocircleno.com/graffiti/
[17] Carsten Rother, Vladimir Kolmogorov and Andrew Blake. Grabcut: Interactive
Foreground Extraction Using Iterated Graph Cuts. SIGGRAPH 2004
[18] Michael Bernstein, Joel Brandt, Rob Miller, and David Karger. Crowds in Two
Seconds: Enabling Realtime Crowd-Powered Interfaces. UIST 2011.

http://www.nocircleno.com/graffiti/

Appendix

User Study template:
Survey 1 (In - Application testing)
1. Do the following:

Login, Take picture, Save picture, Submit the picture for mask generation, wait till mask comes back, change
background.

2. Select the mask,try the sticker feature, save the image.
3. Select the mask,try the color splash feature, save the image.
Survey 2
1. Sex : Male / Female / Prefer not to answer
2. Age group: 18-25 / 26-35 / 36+ / Prefer not to answer
3. Education background: High school / College Degree / Masters / PhD / Prefer not to answer
4. How long have you been using smartphones? ____ years and ____ months
5. Have you used both Android and iPhone? ____________________________
6. Which one are you using currently? _________________________________
7. How often do you use camera in your smartphone to take pictures?
Less than once a week /1-2 times a week/ Once a day/ More than 3 times a day
8. Do you use social media on your phone (ex: facebook, google+, twitter, tumblr etc)? Yes/ No

If yes, which ones do you frequently use?

9. Do you upload pictures to the social media websites from your phone? Yes / No
If yes, which ones (check all that apply) - facebook / twitter / tumblr / google+, __

10. How often do you upload to social media websites using your phone?
Less than once a week /1-2 times a week/ Once a day/ More than 3 times a day
11. Which photo uploading apps do you use, if any?

12. Any specific features you like about that application/ What made you choose that application?

13. Do you buy apps, or spend money on in-application purchases? Yes/No
 If yes, which apps do you spend money on? ____________________________________
Survey 3 (Post Application testing)
1. How was the experience? (-3: Hated it, 3: Loved it)
-3 -2 -1 0 1 2 3
2. Did you feel that the application did something unexpected during your navigation? Yes/No

If yes, explain __
3. Do you think if something like this was available for free, you would use it? Yes/No
4. If you were to pay for this application, how much would you be willing to pay? _______________
5. Please list the features (which you remember) this application has.
__
6. What feature interested you the most, why?

7. Is there something else you would have wanted to do with the mask?

8. How much did the amount of wait time influence your likability of the application?
-3 -2 -1 0 1 2 3
9. What kind of images do you think you would like to use this application for?
__
10. Anything else you would like to add /comment?
__

	CrowdBrush: A Mobile Photo Editing Application with a Crowd Inside
	Abstract
	Introduction
	Related Work
	CrowdBrush System Design and Implementation
	Evaluation Design
	Future Work
	Reference

