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Part I

Frequency Agile Communications for

Wireless Sensor Networks

1 Introduction

Most wireless sensor networks (WSNs) need to operate on battery power. As such, overall power

consumption becomes a critical constraint for many deployments. Since radio transmissions con-

sume the vast majority of a motes of power use [1] (not including sensors), it is important to design

WSNs that will minimize radio up-time, while reducing the need for retransmissions due to exter-

nal or environmental interference. By optimizing use of radio resources, and thus ensuring low

power use, motes can be deployed to new or existing sensing infrastructure to provide real time

wireless data access, without noticeably affecting overall power consumption. Successful design

and operation of such a low-power field-deployed WSN hinges upon two rational rules:

• Keep the radio off whenever possible to conserve power, only turning on radio hardware

when actively transmitting or receiving packets

• Mitigate the effects of external interference inasmuch as possible to reduce the need for

packet retransmissions.

The implementation of these features will significantly improve network-wide reliability, while

reducing drain on energy resources.

Duty cycling mote radio resources depends fundamentally on the ability of WSN nodes to share

the same sense of time. If all nodes within a network are synchronized to the same clock, mote pairs

can then be scheduled to only wake up when data transmissions need to occur. In such a scenario,

motes can remain in a low power state while not actively transmitting data. Furthermore, the ability

to schedule communications removes intra-network interference by ensuring that no two mote pairs
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are scheduled to transmit packets at the same time. This manifests itself in tremendous energy

savings (radio on-time less than 1 percent) when compared to most current WSN architectures,

where the radio resources are liberally employed. As this thesis will lay out, this scheduling comes

at the price of a higher software overhead at the MAC layer, but has significant power consumption

benefits. A direct benefit of WSN synchronization relates to reliability, which not only stresses

that that packet delivery guarantees be provided, but that packets should arrive at their intended

destination with a minimal set of retransmissions.

Communication in WSNs is challenged by multipath radio propagation and narrow-band inter-

ference (e.g by other nearby radio sources) [2,3]. The IEEE802.15.4 standard divides the 2.4 GHz

band into 16 transmission channels (or, narrow-band sub-frequencies) that can be used to mitigate

communication challenges posed by external interference and multipath propagation. Improper

channel selection can cause data to be lost during transmission, leading to the need to retransmit

data, and manifesting itself in lower packet delivery and higher energy requirements. A common

approach to address this issue is to conduct an expert survey, which entails a physical visit to the

field to select the frequency channel on which the loss of transmitted packets will be minimized.

When a WSN deployment only uses one of the available channels for communication, multi-path

propagation or external radio sources can cancel out the original radio signal, effectively eliminat-

ing the ability of certain mote pairs to communicate. The adverse effects of multipath propagation

on radio communications are a time-varying function of the deployment environment, and it has

been shown that even slight changes in node-to-node distance (on the order of centimeters) can

have significant impact on this behavior [4]. An option to address this time-varying behavior in-

volves equipping WSNs with the ability to channel hop. In such deployments, motes within the

network select a different channel every time a transmission occurs, rather than persistently trans-

mitting information on a single channel. As will be shown, the ability to ”schedule” channels

naturally emerges from the tight time synchronization mentioned above.

The next sections will describe previous work and fundamental concepts behind time synchro-

nization and channel selection within WSNs. The rest of this thesis will investigate advanced

synchronization procedures, and adaptive channel selection algorithms, which aim to optimize re-

liability and power efficiency within low-throughput WSNs. The thesis will conclude by extending

these developments to high-throughput, mobile, multi-agent WSN applications.
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The specific contributions of this thesis can be summarized as follows:

• Show that TDMA-based synchronization and channel hopping can be achieved without the

use of accurate crystal time sources

• Show the explicit benefits of an optimized channel hopping controller, which selects the best

possible single channel based on current state information

• Implement and compare two realistic channel hopping schemes on a commonly available

hardware platform

• Show how TDMA-based communications can be modified to support both low-throughput,

persistent sensing applications, while facilitating high-throughput traffic from mobile net-

work agents

2 Synchronization

The vast majority of communicating entities contain a clock source, which ticks at a frequency

governed by a given application. For two such entities, the process of synchronization involves

aligning the phase and the period of their clocks. Once this is achieved, the two devices effec-

tively share the same sense of time, and can thus more effectively coordinate future tasks between

each other. Environmental fluctuations, or imperfections in the clock construction, will cause one

of the clocks to tick faster than the other. Even if this difference in clock frequency is small, it will

eventually cause the two clocks to fall out of phase, widening the synchronization error,

and thus requiring re-synchronization. The acceptable error is governed by an application, from

seconds (e.g. a wrist watch) to nano-seconds (e.g. time-of-flight localization).

In the case of WSNs, network wide synchronization is often used for clock dissemination,

which builds a common time base upon which to time-stamp sensor data. Typical multi-hop im-

plementations use a Directed Acyclic Graph centered at a time master. As depicted in Fig. 1,

each node elects a time parent to which it synchronizes. This also means that, the more hops a

node is from the time master, the higher its overall synchronization error.

3



timeMaster

+/-30us

+/-30us

+/-30us

+/-30us

+/-30us

+/-60us

+/-60us

+/-60us

+/-60us
+/-60us

+/-60us

+/-60us

+/-60us

Figure 1: A Directed Acyclic Graph centered at a time master can be used to distribute tim-
ing information in a multi-hop topology. Every node elects a time parent to which it keeps
synchronization.

node B

T1T2

node A

{T1}

Figure 2: One-way synchronization.

The following sections detail the most common techniques used to synchronize two clocks:

one-way, two-way, and slot-based synchronization. In all cases, we assume the two entities wishing

to synchronization are able to send information to one another. These methods are different in

the overhead required for implementation, but can successfully be applied for purposes of WSN

synchronization.

2.1 One-way Synchronization

In most WSN deployments, a synchronization error of tens to hundreds of micro-seconds is ac-

ceptable. Such an error can be achieved via one-way synchronization (Fig. 2), a method

which relies on accurate time-stamping of transmitted packets.
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In Fig. 2, node B is desynchronized. Its clock is set to T2, and it is synchronizing off node A,

the time master, whose clock is set to T1. Node A periodically transmits synchronization packets

to its neighbors, thereby advertising its time to other nodes (here, node B). The last bytes of a

synchronization packet contain a time-stamp field, which, prior to the transmission of the packet

is set to an error code. Node A then sends that packet, including the error code, to its radio chip,

and instructs the radio to send the packet. As soon as the the first byte leaves the radio, an interrupt

line goes high, alerting node A’s micro-controller, which timestamps this instance as T1. While

the packet is still leaving the radio, the micro-controller replaces the error code by T1. As soon as

node B receives the packet, it timestamps T2 and uses equation 1 to determine its synchronization

error:

error = T2− T1 (1)

This technique relies on the fact that the packet is long enough to ensure the micro-controller

has enough time to overwrite the error code before the packet is completely transmitted. If, for

some reason, this is not the case, nodeB will receive the error code, thus instructing it not to ignore

the synchronization request. This one-way synchronization technique is used by the Flooding Time

Synchronization Protocol (FTSP) [5].

2.2 Two-way Synchronization

Traditional computer networks utilize the Network Time Protocol (NTP) [6] to synchronize system

clocks. NTP follows a generalized client-server architecture, where client computers contact time

servers to ask for the time. Clients typically re-contact the server at regular intervals. In the wired

Internet, round-trip delays of hundred of milliseconds are commonplace, so by the time the server’s

response reaches the client, time has passed and the time-stamp becomes inaccurate.

To cancel the effect of non-negligible propagation delays, NTP uses a technique known as

two-way synchronization. The same method can be implemented in WSNs, and is illus-

trated in Fig. 3, in which node B is synchronizing its clock to node A’s. Two-way synchronization
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node B

T1

T2

T3

T4

node A

{T2,T3}

Figure 3: Two-way synchronization is used to evaluate the offset between two clocks when the
propagation delay is not negligible, see quation 2.

relies on the ability to accurately time-stamp transmission and reception of packets. Node B be-

gins by transmitting a packet to node A, noting at what time T1 it did. Node A time-stamps the

reception of this packet at T2, and replies with an acknowledgment packet containing T2, as well

as T3, the time the reply was transmitted. At reception, node B timestamps the arrival of the reply

as T4, and uses 2 to re-align its clock by computing the propagation delay and the synchronization

error between its clock and that of node A.

 delay = (T4−T1)−(T3−T2)
2

error = (T2−T1)+(T3−T4)
2

(2)

While NTP version 4 [6] can theoretically achieve micro-second accuracy, it is often limited

by potential software delays. This is mitigated by the IEEE1588 standard [7], which is based

on the same two-way synchronization method, but implemented in hardware. This causes any

delays introduced by network elements to be largely deterministic. [8] presents an implementation

of this standard, with experimental results indicating synchronization errors on the order to tens of

nano-seconds.

Very tight synchronization is also being used in low-power WSNs for Radio-Frequency Time-

of-Flight (ToF) ranging. [9] presents a prototype radio which uses the equivalent of two-way syn-

chronization to measure the time it takes for an wireless signal to travel between two radios. Be-

cause its takes that signal only 1ns to travel 30cm, extremely tight synchronization is required.
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2.3 Slot-based Synchronization

Since clock drift causes WSNs nodes to de-synchronize, it may appear that that network-wide

synchronization may not be energy-efficient, and that the overhead associated with synchronization

adds unnecessary complexity to the wireless node firmware. However, a robust synchronization

procedure, coupled with a well designed communication schedule, can play a significant role in

the reduction of the radio duty cycle, and thus directly facilitates lower energy consumption [10].

Unlike GPS techniques, a synchronization error of tens to hundreds of micro-seconds is acceptable

for use within WSNs [11]. Combined with the fact that propagation delays are almost negligible in

wireless systems, this implies that two-way synchronization is not required, and a simpler one-way

synchronization scheme can be employed.

Time-Division Multiple Access (TDMA) is a synchronization technique that relies on an agreed

upon transmission schedule between network nodes (Fig. 4). Time is sliced up into time slots

of equal length; a constant number of slots make up a slot frame which repeats indefinitely

over time. Once synchronized, network node pairs are scheduled to exchange communications at a

specified time slot, and channel offset (frequency channel) within the repeating slot frame.

Every slot has an absoluteslotnumber (ASN),which counts the number of slots that have expired

since the the network has been initiated. A major requirement stipulates that no two node pairs

can communicate during the same time slot and on the channel offset, thus ensuring collision-free

communication.

One-way synchronization can be significantly simplified if the network operates in such a time-

slotted manner. Instead of exchanging explicit timestamps, all nodes agree that during a sched-

uled transmission any packet will be transmitted exactly TX Offset after the beginning of a slot

(Fig. 4). Every packet is thereby implicitly timestamped as being sent TX Offset after the

beginning of the slot. In Fig. 4 node B is synchronizing to its time parent A, by time stamping

received packet and comparing this time stamp to the expected TX Offset. This allows the com-

putation of the synchronization error computed using equation 1. Node B then re-synchronizes

by offsetting the phase of its slot frame (Fig. 5) to match that of node A. Provided the schedule is

built correctly, TDMA can significantly increase the throughput of a WSN, while reducing energy

consumption and packet collision rate [12].
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3 Channel Hopping

As stressed previously, communication reliability in Wireless Sensor Networks (WSNs) is chal-

lenged by narrow-band interference (WiFi, Bluetooth, etc.) and persistent multi-channel fading.

Low reliability often manifests itself in needless packet retransmissions, and thus higher energy

consumption. This problem can be mitigated through diversity in the routing protocol, by intelli-

gently routing packets to mitigate areas of low connectivity [13]. This, however, may often not be

enough, and further methods to improve overall connectivity are desired. Another option to mit-

igate communication difficulties is offered through frequency diversity. This option, also known

as channel hopping, involves periodically changing the communication channel to cope with un-

expected losses in link quality. As the next sections will show, frequency diversity is essential to

deploying reliable, scalable, and low-power WSNs, and while current hardware platforms are up to

the task, the ability to channel hop does come at a greater, but worthwhile, software implementation

overhead.

3.1 Connectivity metrics and real-world traces

We call a link two motes that can communicate directly (i.e. an arrow in Fig. 6); links are direc-

tional. Health reports indicate how many transmissions (packets) where attempted, and how many

of these transmissions were successful. A link failure is detected when the transmitter senses an

occupied channel before a transmission, or when it does not receive an acknowledgment after

transmitting the data. The collection of failure statistics is useful both for real-time WSN health

reports and debugging, as well as for future research and post-analysis of network problems.

A measure of the goodness of a link between two motes can be given through the Packet

Delivery Ratio (P ∈ [0, 1]), i.e. the ratio between the number of successfully transmitted packets

and the number of transmission attempts. P = 0.5 would indicate that half transmitted packets on

a link are received, or, alternatively, that there is a 50 percent chance that a transmission will be

successful. The PDR will be a key indicator, which will guide the algorithms presented in the next

sections.
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Figure 6: The routing di-graph over which the connectivity data is collected in [14]. Directed
arrows represent active routing links (The network [12] assigns at least two routing parents to
each node). Node 17 is the sink node.

Simulations based on propagation models may not provide enough information regarding the

real-world behavior of WSN links. An alternative is offered by replaying communication algo-

rithms on connectivity traces gathered from real-world deployments. Since connectivity varies

over time, such approaches [13, 15, 16] use dense real-word data-sets to evaluate algorithms in the

same conditions. Fig. 7 depicts P for 16 available channels, for a number of links in a deployment

carried out by J. Ortiz and D. Culler in a UC Berkeley. Network wide PDR was calculated to be

around 80 percent, but as the figure shows a number links contain channels with low PDR values.

PDR can also fluctuate over time for any given channel, suggesting that no single channel may be

entirely adequate for transmission.

Another significant connectivity data set was collected by [14]. This is currently one of

the few comprehensive datasets which is both sufficiently dense in time, and collected over all

IEEE802.15.4 channels. To obtain that dataset, 44 nodes running the Time Synchronized Mesh

Protocol (TSMP) [12] were deployed in an indoor printing facility for 28 days. The routing mech-

anism assigned two parents to each node, creating the routing di-graph depicted in Fig. 6. Fig. 8

depicts the evolution of P with time for a given link, over all 16 channels. It indicates that activ-

10



Figure 7: PDR values for all 16 IEEE15.4 channels. IEEE802.11 Wifi interference can be noticed
in the gray areas.

ity inside the printing facility induced significant changes in Packet Delivery Ratio; this may also

explain why P is stable over week-ends.

Fig. 8 illustrates the challenges faced by a single channel technique. Overall, every chan-

nel undergoes deep fading periods, rendering single channel solutions inadequate1. Choosing the

methodology for utilizing all of the available channel space optimally is non-trivial. Radio hard-

ware must be able to change the transmission channel adequately fast, and an agreement must

exist between nodes to exchange information on a specific channel at a specific time. While not an

often utilized feature, current IEEE802.15.4 radios do support agile frequency channel selection.

A number of methods have also been proposed to standardize MAC layer enhancements to take

advantage of a wider channel set.

1Strictly speaking, channel 17 on link 24 → 17 features a constant high P . Nevertheless, a single channel MAC
protocol assigns the same channel to all links, and, as shown in Section 17, there is no channel which works well at all
times, for all links.
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3.2 Hardware support

Frequency-agile communication require nodes to change the frequency channel they transmit on

or listen to regularly. Luckily, radio chips have become very efficient at doing this. As an example,

all IEEE802.15.4-compliant [17] radio chips – the de facto standard for WSN hardware – switch

channels in less than 192µs. Such chips live in most popular platforms, such as TelosB, MICAz,

IRIS, SUNspot, IMote or EPIC. Moreover, non-IEEE802.15.4 chips such as Texas Instruments’

CC1100, CC1101 and CC2500 [18] feature low turn-around times of 88.4µs. Combined with

the fact that typical clocks drift by 10ppm or less, fast channel hopping capabilities have made

frequency-agile communication very feasible.

3.3 Standardization efforts and frequency-agile MAC Protocols

Critical applications require reliable solutions, and as the previous section showed, channel hop-

ping is one answer to this need. Various professional bodies have been working on on addressing

this need through the development of a number of standards.

3.3.1 Major standards

IEEE802.15.1 [19] is the technology used by the Bluetooth consortium. The physical layer fea-

tures 79 1-MHz channels in the 2.4GHz ISM band. Devices wishing to communicate group around

a leader and synchronize to that leader’s clock. Time is sliced up into 625µs-long slots, and a hash-

ing function translates the leader’s address into a channel hopping pattern. All nodes follow that

pattern blindly, changing channels roughly 1600 times per second.

The HART Communication Foundation standardizes embedded networking solutions for in-

dustrial applications. Their wireless extension, called WirelessHART [20], uses a central con-

troller to schedule communication. WirelessHART uses IEEE802.15.4 radios to blindly hop on

15 frequency channels in the 2.4GHz band. Reliability is increased by having each node maintain

connectivity to at least two parent nodes in the routing graph, enabling the network to resist link

failures.
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Another industrial wireless standardization body is the ISA100 Wireless Compliance Institute.

Their latest standard ISA100a [21] is similar in essence to TSMP or WirelessHART, and features

a uniquechannel hopping mechanisms. Successive channels in the hopping pattern are separated

by at least 15 MHz (three IEEE802.15.4 channels). When retransmissions occur, they will not

encounter or cause interference in the same IEEE802.11 – Wi-Fi – channel. The hopping pattern

is set manually during network ramp-up, and is not dynamic.

3.3.2 MAC Layer enhancements

Lightweight MAC [22] (LMAC) assigns slots to nodes in a distributed way. Multichannel LMAC [23]

proposes, when all slots are assigned, to pick a slot on another – randomly chosen – frequency. The

number of potential slots is roughly multiplied by the number of frequency channels, which allows

more nodes to communicate than LMAC. Omnet++ simulations show that the use of multiple

channels decreases the number of active nodes while reducing collisions.

Y-MAC [24] is primarily designed to decrease latency. Nodes are synchronized and reception

slots are assigned to each node on a common base channel. In case multiple packets need to be sent

between neighbor nodes, successive packets are sent on a different frequency. As a result, bursts of

messages ripple across channels, which reduces latency. Y-MAC was implemented in the RETOS

operating system on the TmoteSky motes and compared to LPL. With 8s resynchronization period

and 5 frequency channels, the idle duty cycle when sending one packet every 10s is around 7%.

The workgroup IEEE802.15.4E focuses on enhancing the MAC protocol proposed in IEEE802.15.4,

while keeping the same physical layer. In its current proposal [25], nodes can switch between dif-

ferent hopping sequences. Slots can be added/removed during the lifetime of the network. An

open-source implementation of this proposal is presented in [26]. This implementation has been

part of Berkeley’s open source OpenWSN project (opwnwsn.eecs.berkeley.edu). While beyond the

scope of this thesis, the OpenWSN stack features a full IPv6 stack with a hardware independent

IEEE802.15.4 MAC layer. Work on OpenWSN was a central guiding point for this thesis, and

motivated many of the resulting papers.
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4 Time synchronized channel hopping: lower power and relia-

bility through TDMA-based communications

As shown above, long-term persistent wireless sensing can greatly benefit from both time synchro-

nization and channel hopping. The two concepts complement each other, and can be combined

under the larger umbrella of Time Synchronized Channel Hopping (TSCH). Some notable studies

have explored the use of mulithop WSNs for purposes of long-term persistent sensing. A number

of such systems were Time Division Multiple Access (TDMA) based networks which support both

time and frequency division to facilitate robust communications while permitting for low battery

consumption [10, 27]. Successful applications have ranged from industrial control [28], military

applications [29], and habitat monitoring [30]. The majority of these studies was built upon the

IEEE802.15.4 stack [31], which specifies hardware and software requirements to be met to facili-

tate interoperability between low-power wireless devices.

A number of key factors, emerge when considering the needs imposed on wireless sensing

infrastructure:

• Reliability: Guarantees must be given to ensure reliable data packet data delivery, and the

network should have methods to mitigate the effects external radio interference.

• Low power consumption: Nodes have to meet long-term deployment goals while running

only on batteries.

• Scalability: The network should support an arbitrary number of nodes.

• Security: Communication should be encrypted to protect data integrity and mitigate mali-

cious attacks.

These requirements are all met by the comprehensive Time Synchronized Mesh Protocol (TSMP)

[10]. Versions of this protocol has also been standardized under the IEEE15.4E workgroup [32],

as well as the Wireless Hart Foundation [20], and ISA100 [21]. At its core, TSMP ensures reliable,

secure, and scalable wireless communications by combining very tight time synchronization, with

frequency channel hopping and routing diversity.
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Time Synchronized Mesh Protocol (TSMP) [12] was designed to improve reliability. TSMP

employs tight time synchronization as well as channel hopping: different links use different fre-

quency channels and the same link hops during its lifetime across different channels. This reduces

the impact of narrow-band interference and persistent multipath fading. [14] presents experimental

results in which 44 nodes run TSMP for 28 days in a printing facility. The authors show how

channel hopping, combined with a retransmission policy, yields an end-to-end delivery ratio of

99.999%. TSMP uses a central coordinator which retrieves the list of nodes, their neighbors and

their traffic requirements. This allows it to construct a schedule which is then communicated back

to the network.

At its core, TSMP is a time division multiple access (TDMA) architecture and relies on a

number of MAC-layer enhancements (and thus larger implementation overhead) to facilitate syn-

chronization and frequency channel diversity. TSMP relies on slot based synchronization (shown

previously) and an agreed upon transmission schedule between network nodes (Fig. 4). Time is

sliced up into time slots ( 10ms in most implementations) of equal length; a constant number

of slots make up a slot frame which repeats indefinitely over time. Once synchronized, net-

work node pairs are scheduled to exchange communications at a specified time slot, and channel

offset (frequency channel, 16 of which are stipulated by IEEE15.4E) within the repeating slot

frame. A major requirement stipulates that no two node pairs can communicate during the same

time slot and on the channel offset, thus ensuring collision-free communication. Since nodes only

communicate when scheduled, they keep their radios powered off most of the time. This low

duty cycle plays a significant role in keeping battery consumption to a minimum, theoretically

permitting a node to last years on a standard AA battery. Such a TDMA-based network can signif-

icantly increase the throughput of a WSN, while reducing energy consumption and packet collision

rate [10].

A TSMP network is centrally scheduled by a network manager. When a node first joins a

network, it leaves its radio on and listens for advertisements (ADV packets, see figure 4) from its

neighbors. Upon hearing an ADV packet, the node synchronizes to the network by the adjusting

its slotframe to reflect that of its time parent. The network manager than assigns this new node

a transmission schedule. The network manager may allocate more slots to a node to increase

throughput. Due to clock drift, nodes are also required to re-synchronize regularly. The joining

and synchronization process may take some time, depending on the size of the network, external
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interference, and the length of the slotframe. As such, a traditional TSMP network does not lend

itself readily to applications which require mobile agents and fast response times. The TSMP

routing table, and transmission schedule are updated at most once every slot-frame.

Aside from supporting scheduled communications between neighboring nodes, TSMP also

support multihop communications via the Routing Protocol for Low power and Lossy Networks

(RPL). RPL is a gradient-based routing algorithm which provides multiple data paths between

nodes. Data flows, one hop at a time from one node to another. This permits nodes that would

otherwise be out of range to communicate with each other. While TSMP architecture is designed

to facilitate low throughput communications, and we will now show how it can be augmented to

facilitate sporadic bursts of large data streams. A TSMP-type WSN architecture is assumed for the

remainder of this thesis. The following parts of this thesis will layout significant improvements to

the MAC layer of TDMA-based architectures, which can bed used to reduce synchronization cost,

and improve channel selection.
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Part II

Crystal-free Time Synchronization

Motivated by the Smart Dust vision [33], the past decade has seen a significant reduction in

the size of wireless sensor network (WSN) nodes. While a number of compact platforms (incor-

porating sensing, computation, and communication) have been developed, the goal of the cubic-

millimeter sensor node [34] has yet to be realized. The System-on-Chip (SoC) WSN node

has been proposed [35] to address such a small form-factor while providing reliable, low-power

operations. Such a solution envisions the ability to print all the components of the sensor node

(including micro-processor, radio and sensors) on one die of silicon.

The means to fabricate such a SoC appears within reach. Advances in MEMS packaging [36,

37] allow sensors and other components to be bundled efficiently at small scales. On-chip anten-

nas [38] can be combined with square-millimeter radios [39] to facilitate communications, while

thin-film battery technology [40] can be employed to power the sensor node. A major last hurdle

to the cubic-millimeter SoC relates to reliable clock sources, and oscillator design.

WSN nodes often employ external quartz crystal oscillators as a time-keeping source (see Fig. 9).

The use of such crystals facilities node-to-node synchronization, network-wide time-stamping,

time division multiple access (TDMA) communications, and frequency hopping techniques. In-

cluding such a quartz oscillator in a cubic-millimeter SoC WSN mote is both complex and costly.

Alternatively, it is much easier to use a simple resistive-capacitive (RC) circuit as a clock source,

as they can be printed on-chip. Their output frequency, however, varies greatly due to manufac-

turing inaccuracy, as well as environmental factors such as fluctuations in temperature and supply

voltage. MEMS-based oscillators present yet another option [41,42]. Such oscillators can be fabri-

cated on-chip, but currently do not provide high enough frequencies to source radio transmissions,

while also suffering from high temperature drift, and long-term stability issues.

Rather than placing emphasis on the need for new physical components, this chapter shows

that a system-level approach can be employed to utilize ubiquitous low-power digital, RC-type

oscillators technology to conduct TDMA-based WSN synchronization. We outline a synchro-
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Figure 9: A system-on-chip WSN node demands the removal of typically employed oscillator
crystals: a high frequency crystal is used for radio transmissions, while a second, lower-power,
crystal is used to facilitate TDMA communications.

nization technique to compensate for the inherent drift and instabilities of RC-based oscillators.

This RC circuit thereby becomes an Ultra Low Power (ULP) timer, replacing the typically

employed quartz resonator (Fig. 9) for WSN synchronization. ULP timers are now capable of op-

erating in a sub-nW range [43], having the potential to significantly reduce power consumption

compared to even some of the most power efficient crystal-based solution. Recently, Mehta et al.

2011 [44] also laid the theoretical groundwork to facilitate the removal the higher-frequency crys-

tal typically sourced by a mote’s radio, thereby motivating the crystal-free radio. Though

future work is required to experimentally verify such methods, combined with our synchroniza-

tion approach, currently existing hardware could be used to create a truly single-chip, crystal-free,

cubic-millimeter sensor node.

In this chapter, we experimentally validate our proposed algorithms by operating a multi-

node WSN on a crystal-free TDMA schedule, while showing that time synchronization can read-

ily be implemented on low-end nodes. To the best of our knowledge, this work is the first to

demonstrate synchronization with nodes not equipped with a crystal oscillator. Through a tech-

nique we call adaptive synchronization, we achieve synchronization accuracies similar

to the ones obtained with a crystal time-source, while utilizing an on-chip digital oscillator which

has a drift four orders of magnitude higher. We introduce novel synchronization ideas such as

synchronization bootstrapping, all of which have been implemented on real-world

hardware, and which can be used directly along with existing TDMA synchronization protocols

and standards.
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Section 2 presented a review WSN synchronization techniques, with a particular emphasis

on TDMA-based methods. To motivate the problem, and to understand the limitations of the

clock sources at hand (in this case, digitally controlled oscillators internal to a micro-controller),

section 5.2 analyzes measurements of inter-device variability, and carries out a study of oscillator

clock drift as a function of temperature and supply voltage. Section 6 formalizes the proposed

crystal-free TDMA-based synchronization method. The efficiency of this technique is verified

experimentally on low-end hardware, by analyzing the performance of a multi-node deployment.

Furthermore, in section 7.2, we present optional techniques to improve the convergence speed

of adaptive synchronization and to decrease the power consumption of network nodes.

Section 10 concludes this chapter and outlines the future steps necessary for the realization of the

millimeter-cubed sensor node.

5 Hardware Considerations

5.1 Clock Stability and Time-Stamping

A robust implementation of Time Synchronized Channel Hopping for WSNs demands

reliable hardware resources to ensure accurate time-stamping of packets. Once synchronized,

nodes require a stable low-powered clock to ensure that they stay synchronized to their time par-

ent, while being able to keep the majority of resources (micro-controller and radio) powered off

to conserve energy. The stability of a clock is quantified by its drift, typically measured in

parts-per-million (ppm), and corresponding to the difference in frequency relative to another clock

source. For example, a drift of 10ppm, indicates that every 100s, two clocks will move 1ms apart.

Crystal oscillators rely on a piece of crystal, typically quartz, resonating at a given frequency. The

quality of the cut of that crystal impacts its drift. For typical WSN synchronizations, low power

crystal oscillators operate at 32768Hz, with reliable crystals exhibiting a drift of 10ppm.

In a TDMA-based WSN nodes, these crystals are used to time-stamp packets by incrementing

a counter internal to the micro-controller at each clock tick. An interrupt is triggered at the re-

ception of a radio packet, and the current value of the counter (e.g. a 16-bit time stamp) is stored
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in memory. The accuracy of the time-stamp depends on the frequency of the clock driving the

counter. A 32kHz crystal, for example, is accurate to within 1/32768 ' 30us. This is accept-

able for most WSN applications, and offers an adequate trade-off between low-power operation

and time-stamping accuracy. Digitally controlled, RC-type oscillators, which can be fabricated

within a micro-controller, often oscillate at higher frequencies. As shown in the next section, such

oscillators exhibit significantly higher drift, and are much more susceptible to fluctuations in tem-

perature and voltage. This chapter will show, however, that it is possible to effectively synchronize

a TDMA-based WSN using those low-end RC-based oscillators.

5.2 Preliminary Measurements

All of the methods presented in this chapter have been implemented on on the eZ430-RF2500

platform [45], a low-cost wireless node containing an MSP430 [46] 16-bit 16MHz micro-controller

and a CC2500 [18] radio. This platform was chosen, in part, to showcase the ability to implement

a TDMA-based WSN on low-end, limited-resource, out-of-the-box hardware, thus acknowledging

that most platforms can provide the same capabilities. The micro-controller only has 1kB of RAM

memory (10kB is typical) and 32kB of flash (64kB is typical). A digital bus allows the micro-

controller to load packets into, and receive packets from the radio. The platform allows an interrupt

to be enabled to signal the beginning of a received packet.

The MSP430 micro-controller features a 16-MHz Digitally Controlled Oscillator (DCO), im-

plemented as a ring oscillator. It also contains a 12kHz Very Low-power Oscillator (VLO) [46].

The eZ430-RF2500 does not have a low-power, on-board 32KHz crystal. The CC2500 radio chip

is driven by a 26MHz crystal oscillator. For comparison purposes, the radio was programmed

to output a divided version of its crystal output. Using a Agilent 53131A Universal Counter, the

inter-device frequency variation, as well as variation over a range of temperature and voltages were

monitored for the DCO, VLO, and crystal2. In each case, the frequency variation was quantified in

parts-per-million (ppm).

Fig. 25 shows the variation of output frequency for 11 different eZ430-RF2500 boards, at a

steady ambient temperature of 25C, and input voltage of 3.6V. The crystal oscillator exhibited

2For most 32kHz crystals, these values are readily available from manufacturer data sheets.
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Figure 10: Variation of the clock frequencies over a set of different motes. Temperature was kept
constant at 25C, voltage at 3.6V.

the smallest drift (7ppm), providing a timer accuracy well suited for conventional synchronization

protocols. The VLO showed significant inter-device drift, at an average of 145000ppm, with a

frequencies varying between 11kHz and 12.5kHz. The DCO offered a 10-15 fold improvement

over the VLO, but inter-device frequency still varied between 995kHz to 1005kHz.

Fig. 11 shows the effect of supply voltage on clock frequency, for a given eZ430-RF2500 board

at a constant temperature. The crystal oscillator remained extremely stable over the range of supply

voltage, with an average drift less than 1ppm, while the VLO and DCO drifted by tens of thousands

of ppm.

The third experiment investigated oscillator stability in regard to temperature fluctuations. An

eZ430-RF2500 board was mounted on top of a heating/chilling plate, and the the temperature was

varied from -5C to 50C, while the voltage was kept at a constant 3.6V. Similar to previous cases,

Fig. 12 shows that the crystal remains much more stable relative to the VCO and DLO.
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Figure 11: Variation of the clock frequencies over a range of supply voltages Vcc. Temperature is
kept constant at 25C.

The above measurements further validate why crystals remain the dominant clock sources for

WSN synchronization applications. While digitally controlled oscillators such as the DCO and

the VLO of the MSP430 exhibit a drift that is orders of magnitude worse than a crystal oscillator,

the following sections describe techniques to permit such clock-sources to be utilized for effective

TDMA-based WSNs.

6 Problem Definition

The major challenge associated with utilizing inaccurate, high-drift clock sources for TDMA-based

WSN synchronization relates to the instability of the clock’s frequency (frequency drift). Crystal-

free nodes are unaware of the relative speed at which their clock operates. For example, as seen

in the previous section, it is entirely feasible that for one node’s 1000 clock ticks might translate

9ms, while for another node it might take 11ms. Such specifications make the tight time structure

required for conventional slotted communications infeasible. Thus, as depicted in Fig. 13 (a) and

(b), if the frequencies of two nodes are not tuned correctly, only adapting the slot phase is
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Figure 12: Variation of the clock frequency over a range of temperatures. Supply voltage is kept
constant at 3.6V.

not sufficient. In our proposed adaptive synchronization approach, the nodes also adapt

their slot duration to account for frequency drift of the their clocks (see Fig. 13 (c)).

7 Proposed Method

We assume the presence of a time master in the network, against whom other nodes synchro-

nize (possibly using a structure as in Fig. 1). The network is assumed to run a slotted proto-

col, in our case equivalent to IEEE802.15.4E. This section describes the proposed adaptive

synchronization procedure, along with multiple enhancements which can be further imple-

mented to achieve more robust performance.
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to account for unstable clock sources.

7.1 Core Algorithm

Adaptive synchronization is built upon the TDMA-based architecture described in Sec-

tion 2.3. The core of the algorithm is a controller which timestamps received packets and adjusts

the Slot Duration and TX Offset to mitigate a node’s clock-, and frequency-drift. A slot

resembles that of Fig. 4. As detailed in Section 2.3, every packet is sent exactly TX Offset after

the beginning of a slot. Adaptive synchronization timestamps the received packets to

tune the following values:

• TX Offset, the duration between the start of the slot and the moment the packet leaves the

radio, in clock ticks; this value is used to compute the synchronization error and to re-align

a node’s slot frame to a time-parent;

• Slot Duration, the duration of a single slot, in clock ticks; varying the Slot Duration

changes the length of the entire slot frame, and thus is used to correct effects of fre-

quency drift between two nodes (see Fig. 13 (b) and (c)).
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Adapting the value of TX Offset follows the principle described in Section 2.3, i.e. using

one-way synchronization 1 to re-align a nodes’ slot frame to that of its time parent. If required, this

synchronization error is then also used to tune the Slot Duration. As shown in Fig. 13(b), if

a synchronizing node’s Slot Duration is not correct, at the next synchronization opportunity,

it adjusts its slot phase to match that of its parent. Adjusting the phase consists of either delaying

or bringing forward the beginning of the current slot (effectively delaying or moving forward the

entire slot frame).

Adaptive synchronization increments a counter by 1 each time phase is delayed, and decre-

ments it by 1 when brought forward. During this process, it also keeps track of the the previous

synchronization errors in an array PreviousErrors (in the form of a circular buffer). Once the

synchronization counter reaches a value of syncthresh, the node calculates its Slot Duration

error using 3.

errorSlotDuration =
average(PreviousErrors)

Num of Slots in Slot Frame
(3)

3 is derived assuming a node communicates exactly once every slot frame with its time par-

ent. This can, however, be generalized to compute the slot-duration error given any communica-

tions schedule. Once the error is computed, 3 is used to update the Slot Duration, and the

syncthresh counter is then reset. Adjusting the Slot Duration also requires the adjustment of

the TX Offset value. For ease of implementation, our specific instance of the algorithm defines

a constant ratio between slotDuration and TX Offset. In our implementation, this ratio is

5. This means that, if a node decides to increase Slot Duration by 5, it has to also increase

TX Offset by 1. A 10ms Slot Duration thus gives a TX Offset of 2ms , which corre-

sponds to the IEEE802.15.4E standard. This constant ratio is not required, and the algorithm can

be configured to deal with an arbitrary TX Offset within a slot.

Our implementation defines the constant syncthresh = 20. This value could potentially be pa-

rameterized via physically-based oscillator properties. For example, the Allan Deviation [47]

of an oscillator could be used to evaluate its frequency stability and to quantify its noise proper-

ties. A node could then compare these values to a on-line computation of Allan Deviation to

detect significant frequency drift, and could thus adjust the Slot Duration accordingly. Such
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optimizations are, however, beyond the scope of this chapter.

7.2 Additional Techniques

The methods presented in the previous section facilitate the basics of adaptive synchronization.

This section lists a number of additional techniques that can be used to increase the synchronization

speed and lower node power consumption.

7.2.1 Tuning TX Delay

TX Delay is the duration between the moment the micro-controller tells the radio to send the

packet, and the moment the first bytes of the packet leaves the radio. On the CC2500, this take

a constant duration of 235us [18]. Nevertheless, when using low-power oscillators, a node can

not know the frequency of its clock, and can thus not convert this duration to a number of clock

ticks. Adaptive synchronization therefore timestamps, through an interrupt form the ra-

dio, when the first packet byte leaves the antenna. It then compares this value with TX Offset

and adjusts TX Delay such that the edge rises exactly TX Offset clock ticks after the begin-

ning of the slot.

7.2.2 Synchronization Bootstrapping

In accordance with the IEEE802.15.4E standard, when a node first attempts to join a network,

it synchronizes by listening for advertisement packets from nearby neighbors. Timing

information about these packets is then used in conjunction with the adaptive approach in Section 6

to synchronize to the network. This process can be relatively slow, especially when a node and its

time parent are operating at significantly different frequencies, as in the case when using digitally

controlled oscillator clocks.

In our proposed bootstrapping approach, when a node attempts to join the network, it

waits until it hears two advertisements from the same time parent. Per the IEEE802.15.4E stan-
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Figure 14: Bootstrapping involves measuring the number of clock ticks between the reception of
two advertising packets to calibrate the initial Slot Duration.

dard, each transmitted advertisement contains a reference to the number of the absolute slot it was

transmitted in. This reference is known as the absolute slot number (asn). It is a counter

that serves the purpose of keeping track of all slots throughout the lifetime of the network, even if

the overall slot frame repeats indefinitely. When the timestamps and asns of each advertisement

packet are recorded, as depicted in Fig. 14, the node can derive a good estimate of its initial Slot

Duration using 4.

SlotDurationinitial =
timestamp2− timestamp1

(asn2− asn1)
(4)

7.2.3 Consecutive Advertisement Slots

A slight extension to the bootstrapping technique described in the previous section involves a

time parent transmitting consecutive advertisement packets. A node joining the network hears

immediate back-to-back advertisements, allowing it to calibrate its initial Slot Duration faster

(using 4). Provided that a node hears both advertisements, this approach allows for near immediate

calibration of its Slot Duration, requiring only the duration of two slots. The phase of its

slot frame can then be aligned with that of the time parent, after which the node uses adaptive

synchronization to stay synchronized. An implemented version of this modified schedule is shown

in Fig. 15.
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8 Implementation

Adaptive synchronization (including all the additional techniques described in Section 7.2)

was implemented on the eZ430-RF2500 platform. The implementation uses the MSP430’s DCO

clock while providing a slot length of 10ms. The source code3, consisting of 973 lines of C code,

was developed using IAR Embedded Workbench IDE 5.10.4. To link the micro-controller to the

radio, we utilized SPI drivers available from Texas Instruments 4, and modified the readily avail-

able CC2500 drivers. The binary compile for the MSP430f2274 micro-controller has a memory

footprint of 6532 bytes of flash memory and 383 bytes of RAM. Given the relatively low resources

available on the eZ430-RF2500, our implementation still occupies only a fifth of the available flash

and a third of the RAM, thus leaving further room for routing and applications.

Fig. 15 shows an oscilloscope-generated snapshot for a simple network of two synchronized

nodes, which are running the full adaptive synchronization implementation. Node A represents the

3As an online addition to this chapter, the complete source code is available under the OpenBSD license on the
first author’s website.

4http://focus.ti.com/docs/toolsw/folders/print/simpliciti.html
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time master. The activity of each of the node is indicated by four digital signals:

• slotFrame toggles when a new Slot Frame begins;

• slot toggles at each new slot. Each slots is 10ms long;

• radio is high whenever the radio chip is on, either transmitting or in listening mode;

• packet is connected to the interrupt line between the CC2500 and the MSP430. It is high

whenever bytes are being sent of received by the radio. The low-to-high transition of this

line is used to calculate synchronization error.

Fig. 15 furthermore indicates a sample schedule used by both nodes:

• Slots 0 and 1 are advertisement slots. In those slots, each node either transmits an adver-

tisement packet, or listens. An advertisement contains enough information for a new node

to join the network. In this case, node A transmits in both slots, while node B listens; This

demonstrates the consecutive advertisement feature described in Section 7.2.3;

• Slot 2 is a dedicated slot for node B to send information to node A. The first pulse cor-

responds to the data message sent from B to A; the second pulse in the same slot is the

acknowledgment sent from A to B;

• Slot 3 is a dedicated slot for node A to send information to node B. In this case, node A has

no packet to transmit, thus keeping its radio off; node A listens for 2ms, and switches off its

radio as it received nothing;

• Slots 4 through 8 are OFF, the two nodes do not exchange any packets;

A full 10-node network was deployed in a large office setting over a span of 30 hours to eval-

uate the synchronization algorithm. This deployment also enabled the use of channel hopping, as

described in IEEE802.15.4E. Fig. 16 shows a frequency spectrum analysis of 16 frequencies along

the 2.4GHz band, indicating that the 10 node network effectively utilized all 16 channels for packet

transmission. To our knowledge, this is the first such implementation of time synchronized

channel hopping which does not rely on a crystal time source.
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Figure 16: Frequency spectrum recording of a 10-node network running adaptive
synchronization, showing the use 16 different channels for communication.

9 Experimental Results

9.1 Impact of Temperature

To demonstrate the adaptive nature of the proposed method, the synchronization error, Slot

Duration and TX Delay were recorded, as a node synchronized to a time parent 17. At about

40s into the synchronization, an industrial hot-air gun was briefly used to heat up the synchronized

node. In accordance with Fig. 12, this caused the node’s internal RC-oscillator to resonate at a

higher frequency, thus effectively reducing the duration of its slots. The algorithm responded by

increasing the node’s Slot Duration, thus successfully mitigating the frequency drift error

induced by the fluctuation in temperature. The detailed rate-of-change of temperature was not

recorded, but it can be seen that the algorithm adapted the Slot Duration within less than a

second of the occurrence of the event, thus providing an initial evaluation of the rapid convergence

properties of the proposed approach.
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9.2 Long-term Deployment

Figure 18 displays the temporal behavior of the multi-node deployment described in section 8,

plotting the average Slot Duration of nodes in the network over a 30 hour period. The figure

also shows the spread (one standard deviation) of Slot Duration among the nodes. High

frequency fluctuations are apparent in the mean, indicating that the nodes often adjusted their

Slot Duration to mitigate frequency drift error. Furthermore, a downward trend can be seen

over the 30 hour period, showing that the average network-wide Slot Durationwas adaptively

lowered to retain synchronization to the time parent. A potential cause of this phenomenon could

be explained by an increase in the time parent’s clock frequency. During the experiment, the

time parent was physically connected to a computer for data-logging purposes. This could have

potentially led to the heating up of the mote due to heat expelled by the computer, thus causing

the time parent’s clock frequency to increase in accordance with Fig. 12. Further experiments are

required to validate this claim.

9.3 Synchronization Accuracy

Due to clock drift, nodes in a TDMA-based setting need to resynchronize regularly to reset their

slot phase. The frequency at which this is required to occur is linearly proportional to the drift of

the clock. For example, to retain a low radio duty cycle, the IEEE802.15.4E standard permits a

node to be desynchronized by at most 1ms. If clock has drift of 10ppm, after 100s it will become

desynchronized by 1ms; in the case of slotted communications, resynchronization thus needs to

occur at least every 100s. Similarly, if a clock drifts at 100ppm, resynchronization needs to occur

at least every 10s to retain IEEE802.15.4E specified synchronization to the network.

A shown in previous sections, the very large clock drift, and frequency instability, exhibited by

the MSP430’s DCO, can effectively be compensated in software by adaptive synchronization.

Even when compensated, the resulting system will still experience some clock drift. Evaluating

this resulting drift can be accomplished by forcing the motes to resynchronize at a specific period.

Clock drift can then be measured for a number of such periods to characterize the drift behav-

ior of the proposed approach. In our experiment, this was achieved by varying the length of the
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Figure 17: Recorded values of synchronization parameters of adaptive channel hopping while a
node is being subjected to temperature fluctuations. The synchronized node reacts by adapting
its slotDuration accordingly. The time parent is not synchronizing to another node, and thus
does not compute a synchronization error, or update its Slot Duration.
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Figure 18: Average Slot Duration for a multi-node network over time. The gray area reflects
one standard deviation around the mean.

slot frame and forcing motes to synchronize once per slot frame. An Agilent 53131A Universal

Counter was used to evaluate the relative phase between the start of consecutive slot frames. The

minimum, maximum, and mean of the phase offset were recorded to evaluate the effects of the

resynchronization period (see Fig. 19). The results were also compared to the drift of a theoretical

100ppm crystal oscillator.

Fig. 19 shows that the software compensation offered by adaptive synchronization

mitigated the large drift characteristics, and frequency instabilities of the MSP430 DCO, effec-

tively reducing the overall drift to the equivalent of a 100ppm crystal. In our particular implemen-

tation, nodes utilizing adaptive synchronization should resynchronize at least every 10s

to ensure meeting the 1m synchronization error permitted by IEEE802.15.4E. Depending on the

bandwidth requirements of a given application, it is reasonable to assume that the majority of this

resynchronization can be accomplished through the time-stamping of data packets, which need to

be transmitted, in any case, as part of general WSN traffic. Results obtained from data in Fig. 15,

indicate that the process of resynchronizing consumes 810µs of radio-on time at the transmitter,

2.55ms at the receiver. For the ex430-RF2500 platform, keeping two nodes synchronized thus

translates into a overhead duty cycle of 0.0168%, assuming a 10s synchronization period.
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Figure 19: Synchronization error as a function of the resynchronization period (length of the slot
frame). 68% of the measurements fall with the shaded area.

10 Conclusions

This chapter demonstrated that time slotted commutations and frequency channel hopping can

be implemented on low-end WSN nodes without the use of accurate crystal clock sources. We

presented a system-level solution to facilitate network-wide synchronization even when high-drift

digital oscillators are used as time sources. Combined with a crystal-free radio [44], currently

available fabrication methods could then be used to fabricate an entire mote onto a single silicon

die, thus facilitating the greater vision of the millimeter-cubed SoC WSN node. Our solution was

implemented on the ez430-RF 2500 platform to motivate the ability to implement TDMA-based

crystal-free communications on many other platforms. Superior oscillators, and WSN hardware

are currently available, and thus have the potential perform even better when compared to our

example implementation.

While our motivation was driven by a SoC mote solution, the implications of this method for

power consumption could be significant. It is reasonable to suggest that in a large number of

TDMA-based WSNs, the crystal time-source presents a major source of power consumption. To
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ensure synchronization, these crystals are fully powered throughout the entire lifetime of the de-

ployment. Thus, coupled with our proposed method, the use of a sub-nW oscillator [43], when

compared to today’s major low-power crystals, could have the potential to reduce the amount of

power required for time-keeping by at least an order of magnitude. Future work should explore the

implementation of such oscillators for WSN synchronization. Furthermore, the detailed conver-

gence properties of our approach over a broader set of experiments should be analyzed. The ability

to use physical oscillator properties, such as the Allan deviation [47], should also be investigated

to guide a more robust detection of oscillator frequency drift. This chapter was the result of a

paper, written with Thomas Watteyne, Steven Glaser, and Kris Pister.
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Part III

Feasibility Analysis of Controller Design

for Adaptive Channel Hopping

As discussed in the introduction, communication reliability in Wireless Sensor Networks (WSNs)

is challenged by narrow-band interference and persistent multi-channel fading. While frequency-

agile communication protocols have been designed and standardized to increase reliability, these

protocols do not adapt the set of channels they hop on to the environment. Rather, single channels

are selected, or an a priori hopping sequence is established. In this chapter, we evaluate the

efficacy of a controller which continuously samples all available frequency channels in order to

operate on a channel which performs reasonably well. We wills show that the overall average

link Packet Delivery Ratio when using this controller reaches 99.4%, and is higher compared to a

single channel solution, on any channel. We will also evaluate the efficiency of this approach by

simulating its behavior on connectivity traces gathered during a real-world deployment. This data

set is dense in time and sufficiently large in number of nodes and time to be statistically valid.

One approach is to select the channel on which the loss of transmitted packets is minimized;

yet, the best channel may vary over time. The option advocated in this chapter is to change chan-

nel on a link-by-link basis when necessary, a concept known as adaptive channel hopping. In

adaptive channel hopping, a mote transmits data on a channel which is predetermined to work

acceptably well. Rather than persistently sending information on this stable channel, the pair of

communicating motes transmit packets on different channels every now and then. These inter-

mittent transmissions allow for the goodness of other channels to be estimated. When the current

channel starts performing unacceptably bad, the mote pair switches to the channel which features

the best goodness estimation.

As detailed in Section 3.3, channel hopping has received increased attention in industrial and

standardization bodies, driven by the quest for reliability. To the best of our knowledge, however,

no work has quantified the performance of adaptive channel hopping. Does adaptive channel
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hopping offer an increase in performance over a single-channel solution? Over a blind channel

hopping approach? If yes, how often should a pair of nodes evaluate the goodness of the different

channels? Is it feasible to design a controller for adaptive channel hopping which is simple enough

to be implemented on current hardware? This chapter intendedd to cover channel hopping from

a ”best case” perspective, where the best known channel is always known and utilized. This will

provide us with an upper bound that can be used when motivating real-world implementations.

Choosing the methodology for answering those questions is non-trivial. On one hand, simu-

lated propagation models do not capture well complex phenomena such as persistent multi-path

fading, or the impact of a dynamic environment. On the other hand, a purely experimental study

does not provide the ability to evaluate different algorithms under the exact same conditions, as

connectivity is time-varying in nature. This chapter proposes to replay communication algorithms

on connectivity traces gathered from a real-world deployment. We believe that this novel approach

elegantly copes with the issues raised above, and that it will become commonplace for the perfor-

mance evaluation of complex environments such as channel hopping protocols.

The contributions of this chapter can be summarized as follows:

• We show that replaying communication algorithms on real-world traces allows for quick and

realistic performance evaluations;

• We demonstrate how adaptive channel hopping increases the average link Packet Delivery

Ratio P compared a single channel solution operating on any channel;

• We evaluate the impact of the choice of the channel in a single channel solution, and the

impact of the probing period when using adaptive channel hopping.

Evaluating the efficiency of communication algorithms by replaying their behavior on real-

world connectivity traces is, we believe, an approach particularly suited for complex systems such

as channel hopping Medium Access Control (MAC) protocols. Section 3.3 presented a comprehen-

sive overview of the latest academic and standardization efforts in frequency-agile communication,

as well as an overview of the connectivity traces used in this chapter. Section 11 describes the sim-

ple controller for adaptive channel hopping evaluated in this chapter, its complexity and limitations.
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In Section 17, we present the results obtained by simulating the controller’s behavior on real-world

connectivity traces; comparison is offered with single channel solutions. Section 18 underlines the

research directions stemming from this chapter and discusses the choice of parameters.

Fig. 8, shown at the beginning of this thesis, illustrates the challenges faced by adaptive channel

hopping. Overall, every channel undergoes deep fading periods, rendering single channel solutions

inadequate5. The goal of adaptive channel hopping is to assess the Packet Delivery Ratio P for all

channels, and to use this information to always communicate on a reasonably good channel. Let’s

assume, for link 24→ 17, that communication starts on channel 15. After a few hours, channel 15

features a low P , and communication can switch for example to channel 26. After day 6, channel

26 experiences poor performances, and the controller may switch to a different channel.

11 Adaptive Channel Hopping

We call controller the entity which decides upon the channel to be used.

11.1 Controller Operation

Each node implements an instance of the controller for each link it participates in. We refer to a

slot as a 15min time window6. Communication initiates on a randomly chosen channel ci. Every

k slots, the controller switches communication to channel cj 6= ci for one slot. By counting

the number of attempted and successful transmissions during that slot, the controller assesses the

Packet Delivery Ratio P of channel cj . We call probing the action of switching to a different

channel for one slot to assess P . After the probing slot, communication is resumed on channel ci.

k slots later, the controller probes channel ck = (cj + 1) %C where % is the modulo operator and C
the number of channel (C = 16 for an IEEE802.15.4-compliant radio chip). Each channel is hence

probed every C · k slots.
5Strictly speaking, channel 17 on link 24 → 17 features a constant high P . Nevertheless, a single channel MAC

protocol assigns the same channel to all links, and, as shown in Section 17, there is no channel which works well at all
times, for all links.

6This value is somewhat arbitrarily chosen as it is the time interval at which the dataset provides updates on the
channels’ Packet Deliver Ratio P .
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The controller keeps track of the Packet Delivery Ratio P of the current channel ci. Whenever

P falls below a threshold Pthres, the controller declares the performance of this channel to be un-

acceptably bad, and switches to the other channel which features the largest P . We call switching

the action of the controller to change the current channel resulting from a low P .

11.2 Optimality

We employ a controller because P is an inherently dynamic and unpredictable metric. Since

the nature of the proposed control scheme relies on the sporadic sampling of other channels, the

approach tends to be suboptimal in the case for which one specific channel is the best option at all

times. Additionally, optimality is treated in an informal fashion, realizing that optimal control of

a system such as a WSN depends often on mathematical gurantees [48]. Since solutions control

theoretic equations in real-time do not appear to be feasible given the computational limitations

imposed by the mote hardware, we employ the simplified control scheme presented above.

11.3 Packet Delivery Ratio P Estimation

The Packet Delivery Ratio P estimate of a channel is updated using 5, with Pnew the updated

estimate for a particular channel, Pold is the old estimate, and Pmeasured the estimate resulting from

the probing.

Pnew = αPold + (1− α)Pmeasured (5)

The constant α ∈ [0, 1] is introduced as a weighting factor. A large value of alpha implies that

the average Packet Delivery Ratio over time is more important than the one inferred from the last

reading.
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12 Results

We evaluate the efficiency of the controller described in Section 11 onto the dataset presented

in [14]7. The controller initially picks a channel at random, and is allowed to evolve according to

the dynamics described in Section 11.

12.1 Parameters Used

Results are obtained for α = 0.2. This puts more weight on the new Packet Delivery Ratio estimate,

as Fig. 8 indicates that P tends to change abruptly. The choice of α depends on how fast a link

transitions from high to low P .

We set Pthresh = 0.9. Pthresh influences the link hysteresis: a lower Pthresh value leads to less

less frequent switching, at the cost of communicating longer on a sub-optimal channel.

k indicates the probing period in slots. The larger the value of k, the less frequently probing

occurs, and the less up-to-date the estimate of P for each channel are. Section 12.3 evaluates the

impact of k.

12.2 Witnessing Adaptive Channel Hopping

Fig. 20 depicts the channel chosen by the controller on link 24 → 17. This plot features two

components, distinguished by line thickness. The thin line shows the polling, i.e. the periodic

evaluation of the different channels’ Packet Delivery Ratio P . Polling happens every k = 20 slots,

or 5 hours. Polling is used to maintain statistics on the goodness of each channel. When the current

channel becomes unacceptably bad (P < Pthresh), the information gathered during polling is used

to select the best channel among all other channels. Switching is then used to communicate on a

different channel. Fig. 20 shows that 9 switches occured on link 24→ 17.

7As an online addition to this chapter, the dataset is made available at
http://wsn.eecs.berkeley.edu/connectivity/.
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Figure 20: Polling – thin line – and switching – thick line – on link 24 → 17 (colored black in
Fig. 6).

12.3 Equivalent Packet Delivery Ratio P̄

The di-graph depicted in Fig. 6 contains 62 links. Over the course of the 28 days of the deploy-

ment, a link switches channels multiple times as the Packet Delivery Ratio of the current channel

drops below Pthres. We refer to the Equivalent Packet Delivery Ratio P̄ the Packet Delivery Ratio

averaged over all links and over the 28 days of the deployment. P̄ indicates what fraction of pack-

ets one may expect to be sent successfully when choosing a random time and a random link. We

determine P̄ for single channel and Adaptive Channel Hopping. A higher value of P̄ indicates a

”better” channel.

Fig. 21 shows P̄ for single channel operation (left) and Adaptive Channel Hopping (right). As

an example, when k = 20, Adaptive Channel Hopping features a P̄ = 99.4%. Note that Adaptive

Channel Hopping performs better than a single channel solution, on any channel.
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Figure 21: Equivalent Packet Delivery Ratio P̄ for a single channel operation (left) and adaptive
channel hopping (right). Adaptive channel hopping performs better than single channel operation,
on any channel.

13 Discussion

The controller designed in this chapter is simple enough to be implemented on current hardware.

It requires each node to maintain statistics for each channel and for each link it participates in.

Considering a node which participates in 5 links with 16 available channels, if each statistic is an

integer between 0 and 255, the controller requires 320 bytes of RAM memory. This is an acceptable

overhead for a micro-controller which typically features 10kB of RAM [49]. We are currently

working on implementing Adaptive Channel Hopping in an open-source version of TSCH [26].

The results presented in Section 17 indicate that Adaptive Channel Hopping performs better

than using a single channel. These results are obtained over a set of data sufficiently large in num-

ber of nodes (44 nodes) and time (28 days) to be statistically valid. However, connectivity traces

were gathered in a printing facility in which there is no external interference from technologies

operating on the same frequency band (WiFi, Bluetooth). As a result, channels are stable for hours

or days.
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The results presented in this chapter may not hold for very dynamic channels. This is the case

when there is external interference (e.g. cause by a nearby 802.11 – WiFi – network) which causes

microscopic dynamics and channels which are stable for only 500ms [50]. [4] shows that, in this

case, blind channel hopping can be used. Blind Channel Hopping is implemented in TSMP [12],

ISA100a [21], IEEE802.15.4E [25] and WirelessHART [20] and causes a link to switch channels

every tens of ms, hopping evenly on all available channels.

A real-world deployment most likely features both macroscopic and microscopic dynamics.

An issue worthwhile investigating is whether blind channel hopping can be coupled with adaptive

channel hopping. This could be done through the use of whitelists. In such a system, the controller

described in this chapter could be used to identify the n best channels (the whitelist) over which a

blind channel hopping protocol operates.

14 Conlusions

This chapter advocates the use of Adaptive Channel Hopping, in which nodes continuously eval-

uate the goodness of all available frequency channels in order to operate on a channel which per-

forms reasonably well. We show how the use of a simple controller yields performances which are

higher than a single channel solution operating on any channel. This controller is simple enough

to be implemented on current hardware, and deals efficiently with slow-varying channels.

Results are obtained by replaying the behavior of the controller on traces gathered from a real-

world deployment. The data set is sufficiently large in number of nodes (44 nodes) and time (28

days) to be statistically valid, and is dense in time. For such a replay approach to be widely adopted,

a larger set of traces is needed, with traces collected in different environments. This chapter was

the result of a paper, written with Thomas Watteyne, Steven Glaser, and Kris Pister.
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Part IV

Comparison and implementation of channel

hopping algorithms

The previous chapter showed that further reliability within TDMA-based WSNs can be improved

significantly by using a channel hopping controller that continuously monitors the channel space

to persistently operate on the best possible channel. While this improves overall PDR, it does

rely on a single channel for extended periods of time. The implementation of an ”always best”

channel hopping solution may not be feasible given sudden rapid connectivity drops, and may

not be exactly optimal, since there may be multiple channels that have 100% PDR at any time.

This chapter investigates how a list of multiple best channels can be developed. We will evaluate

the efficacy of two channel hopping algorithms. The first is based on the IEEE802.15.4e blind

channel hopping standard. The second algorithm follows a similar hopping pattern, but chooses

transmission channels based on a dynamically changing whitelist. It will be shown that the latter

reduces network radio on-time by 2.5 percent compared to the blind hopping approach.

The contributions of this chapter can be summarized as follows:

• We introduce a channel hopping algorithm which dynamically adjusts its whitelist to ensure

optimal communication

• We evaluate the presented algorithms on an extensive data set of traces collected in a real-

world setting

• We show that time synchronized channel hopping can be implemented on readily available

hardware

• We study the channels selected by these algorithms, and draw conclusions regarding ob-

served behavior
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Section 3.3 presented an overview of the current efforts centered around frequency-agile com-

munication. Section 15 describes a number of channel hopping algorithms. Section 16 describes

implementation of these algorithm on the MSP430-RF2500 platform. In section 17, we study

the behavior of these algorithms, by gathering connectivity traces over a period of 24 hours. A

discussion regarding these results is offered in section 18.

15 Channel Hopping Algorithms

In this section we present two channel hopping algorithms. As described in the introduction,

a proper implementation of these algorithms hinges upon a reliable synchronization approach,

slotted in this case (see figure 4). The algorithms below assume that a schedule has been assigned

for communication between two nodes. As such, the sole purpose of the algorithm is to provide

a corresponding frequency for each scheduled transmission. As stated in the introduction ASN is

the absolute slot number in a slotted communication scheme.

15.0.1 Algorithm 1: Blind Channel Hopping

This algorithm is a variant of the TSMP method described previously, and is further described

by the IEEE802.15.4E workgroup. For this algorithm, the network controller schedules ASNs at

which communication between two nodes should take place. The controller also initially provides

a channel offset ch0, on which the communication should take place. Assuming 16 available

channels, the next transmission takes place on:

channelnext = (ch0 + ASN)%16 (6)

where % is the modulo operator. This technique ensures that all 16 available channels will be used

equally, but that consecutive transmissions will take place on different channels. Blind channel

hopping is given by algorithm 1.
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Algorithm 1 Blind Channel Hopping.
1: initialize ch0
2: for each slot j ∈ frame do
3: channel = (asn+ ch0)%16
4: Transmit Packet
5: end for

15.0.2 Algorithm 2: Adaptive Blind Channel Hopping

This dynamic white-listing algorithm incorporates algorithm 1, where the hopping sequence is

determined according to 6, but furthermore collects link-specific statistics to restrict transmission

only to a subset of channels. PDR statistics are recorded, and updated continuously for each

channel, and a ranked list of best channels is constructed. During a scheduled transmission slot,

the transmitting node uses this list to either send a packed on a channel determined by 6, or not

transmit a packet at all. The receiving node still listens for incoming packets, but in cases where the

transmitting node is aware of an unreliable channel, transmission power is conserved. A simple

solution would involve utilizing a fixed-size whitelist, by only transmitting packets on the best

few channels, for example. This has the unintended effect of wasting potentially good channels

(as well as wasting power listening for incoming packets that never arrive), if the whitelist is too

small. Similarly, a whitelist which is too large can include unreliable channels, leading to dropped

transmissions. We thus seek to find a dynamic means by which to augment the whitelist, adding

and removing channels to ensure that radio up-time is reduced. Radio up-time is the time the radio

is kept on, transmitting, or listening to incoming packets. Reducing radio up-time reduces energy

consumption.

To further understand the effect of algorithm 2 in regard to power consumption, the IEEE80215.4e

standard can be used to isolate three general sources of radio up-time:

• The transmitting node does not transmit a packet, and the only energy consumed is by the

receiving node, which is listening for the incoming packet at the beginning of a scheduled

slot. We call this up-time Trx;

• The channel on the scheduled slot is in the whitelist, and the transmitting node sends a

packet. We call this up-time Ttx;
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• A successful transmission culminates in an acknowledgement (ACK). This entails the re-

ceiver sending an ACK packet to the transmitter, who keeps the radio on to listen to the

incoming ACK. We combine this transmission and reception, and refer to the corresponding

up-time as Tack;

Thus, a successful transmission requires an amount of radio up-time equivalent to the sum of

Ttx, Trx, and Tack. The amounts for these values will differ depending on hardware and imple-

mentation details, but it is possible to derive a realistic values of these numbers using the IEEE

IEEE80215.4e standard:

Ttx = 4.25ms Trx = 5.06 Tack = 5.60ms (7)

Given periodically gathered PDR statistics on each channel, these values can then be used to

determine the optimal size of a whitelist. Let PDRavg denote the average PDR of all channels in a

whitelist. On average, a transmitting node will require 1
PDRavg

transmissions to successfully send

a packet to the receiver. Given the size of the whitelist, a receiver will not always hear a packet on

every scheduled slot. Thus, on average, a receiver will have to listen 1
PDRavg

× 16
|whitelist| number of

times to receive the packet, where |whitelist| denotes the length of the whitelist and 16 is the total

number of available channels. Additionally, one ACK is expected during this period as well.

We introduce the cost function J to optimally, and dynamically adjust a transmitter’s whitelist,

such that overall radio up-time is minimized (or, energy is conserved). Assuming that channels are

added to the whitelist according to PDR, and sorted starting with the highest, the optimal size of a

transmitter’s whitelist is given by maximizing the following const function:

J =
1

PDRavg

(
Ttx +

(
16

|whitelist|

)
Trx

)
+ Tack (8)

J can also be viewed as the expected amount of radio time that will be required to successfully

transmit a packet. The algorithm below ensures that the transmitter only sends packets if the

channel on the scheduled slot is in the whitelist. Additionally, to ensure continuous aggregation of

PDR statistics packets are transmitted periodically over channels which are not in the whitelist.
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Algorithm 2 Adaptive Blind Channel Hopping. Does not transmit unless channel is in whitelist.
Once every framesPerStat number of frames, a packet is transmitted to update PDR statistics,
even if a channel is not on the whitelist. framesPerStat should be selected to ensure the number
of channels is mutually prime to framesPerStat× |frame|

1: initialize ch0
2: framesPerStat
3: initialize whiteList
4: for each slot j ∈ frame do
5: channel = (asn+ ch0)%16
6: if channel ∈ whiteList

or asn%(|frame| × framesPerStat) == j then
7: Transmit Packet and wait for ACK
8: Update PDR values
9: Minimize J and adjust whitelist

10: end if
11: end for

16 Implementation

A playback simulation was carried out on an extensive data set collected in an in-door setting (see

figure 22). The data set contained PDR values at hourly intervals for all links in the network. This

permitted for the implementation of the previously mentioned algorithms. The cost function (2)

was evaluated at each time step for each algorithm. A best- and worst- case cost was also evaluated

for comparison. This served as a baseline set of values to which the efficacy of the channel hopping

algorithms could be compared.

The channel hopping algorithms were implemented on the MSP430-RF2500 platform, a read-

ily available and inexpensive system-on-chip that incorporates the MSP430 micro-controller, and a

low-power CC2500 radio. The assembly does not ship with an on-board crystal. As such, a crystal-

free time synchronization method was used to synchronize the devices. More information on this

method is offered in a previous chapter. Communication was scheduled on a three-slot frame,

each slot having a 10ms duration. The first slot was used for synchronization purposes, while slots

two and three were reserved for directional communication between the motes. Per-channel PDR

statistics were gathered on the motes, and written to a UART interface.
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Figure 22: Indoor deployment which served as the data-set for evaluating channel hoping algo-
rithms.

17 Results

Evaluation of this algorithm was conducted on the detailed Soda-Hall trace data set gathered by

David Culler’s group at UCB. The connectivity graph of the network is shown in figure 22. The

results of playing back both algorithms on the trace data set are summarized in table 17. The table

shows the average values of the cost function in (8) over the lifetime of the data set, evaluated

at every time step for each link in the network. It shows the average amount of radio up-time

that can be expected for the transmission of a single packet in the network. The upper bound for

radio-up time was calculated assuming the worst possible channel selection at each time frame

(e.g. choosing to transmit on the channel with lowest PDR at every step). Similarly, the lower

bound was computed assuming transmission occurred at all times only on the channel with highest

PDR. This lower bound sets a limit to the reduction in radio up-time that can be achieved by

any given channel selection method for the particular data set. The table shows that algorithm 2

reduced average radio up-time by 2.5%, compared to the blind hopping approach of algorithm 1.

There appears to be a margin of about 12% that can be gained by utilizing an even more efficient

controller.
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Table 1: Expected per-packet radio uptime
Channel Selection Method Mean (ms) Gain over

Blind (%)
Upper Bound (worst channel) 215.6 -550
Lower Bound (best channel) 28.4 14.4

Blind Hopping 33.18 -
Adaptive Blind 32.33 2.56
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Figure 23: A histogram of whitelist sizes selected by algorithm 2 during the playback simulation.

Figure 17 shows a histogram of whitelist sizes, obtained by algorithm 2 over the lifetime of

the data set. A large portion of whitelist sizes contained all 16 of the available channels. There

were, however, still a significant amount of whitelists which relied only on a few key channels for

transmission.

Figure 23 shows a histogram of average improvements for each time slot that are provided

by algorithm 2 over algorithm 1. Algorithm 2 was never outperformed by the blind the channel

hopping method, and although in the majority of cases algorithm 2 offered reductions in radio up-

time by a few percent, a number of links existed, for which the use of algorithm 2 reduced overall

radio up-time by 5-20% over algorithm 1.
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Figure 24: Histogram of the percent of radio uptime reduced by algorithm 2 over algorithm 1.

Figure 24 shows the evaluation of the cost function (2) on a sample of links in the playback

data set. It should be noted that for a large part of the links the minimum of the cost function

was evaluated at a whitelist size of 16, implying that the optimal whitelist contained all possible

channels. However a number of links existed for which a minimum cost was achieved with a

smaller white list size. The figure shows a range of network links, where dips in the cost function

indicate optimal whitelist size.

The implementation of both algorithms on the MSP430-RF2500 motes performed according

to design. Two motes were able to successfully synchronize and transmit packets based on both

channel hopping algorithms. The motes were subjected to external WiFi interference, and adjusted

their whitelist accordingly.

18 Discussion

A large number of the links in the playback data set reflected relatively high PDR values on all

channels. In such cases, channel hopping could only provide a marginal improvement over a
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Figure 25: Cost function(2) evaluated for three sample links in the network. Minima in the cost
function indicate optimal whitelist size.

single channel approach. A number of links, however, experienced fading on a subset of channels.

If these channels were selected for transmission, this behavior would have had a significantly

adverse impact on a single-channel solution. The blind channel hopping approach (algorithm 1)

provided an advantage in such cases, as motes could still communicate on other channels. Since

most links in the playback data set contained very high PDR values, the true benefit of algorithm

2 could best be noted on those links which only had a subset of reliable channels. Figure 23

shows that communication on a number of links reduced radio up-time by 5-20 percent over blind

hopping when controlled by algorithm 2. As such, it is expected that algorithm 2 could best cope

with very unreliable links in a network. Additionally, the time resolution of the playback data set

was very coarse. A major benefit of algorithm 2 is its ability to rapidly augment its whitelist to

cope with changes in the environment. Such sudden changes were not capture by the data set.

Overall, however, an average 2.5 percent improvement over blind channel hopping, suggests that

adaptive channel hopping methods could play a significant role in improving network efficiency

and reliability.
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19 Conclusions and future work

This chapter evaluated the performance of two channel hopping techniques for WSN. The first was

based on the IEEE802.15.4e MAC standard, and blindly transmits packets, covering all 16 avail-

able channels over time. The second method performed a similar approach, but packets were only

transmitted if they were contained inside an approved whitelist. The implementation of the second

algorithm does not conflict with the IEEE802.15.4e standard, since it does not directly affect the

transmission protocol, or the pattern at which nodes wake up to listen to incoming packets. It thus

presents an elegant solution towards improving network connectivity without much overhead. A

playback analysis of link traces, showed that the adaptive algorithm reduced network radio up-time

by 2.5 percent, compared to blind channel hopping. Its impact can appreciated most on links where

only a small set of channels have reliable packet delivery. In such cases the adaptive approach was

able to reduce link-specific radio up-time by 20-30 percent. The adaptive channel hopping algo-

rithm was also implemented on real-world hardware, thus validating the channel hopping concept,

and showing how a transmitter’s whitelist can be adjusted rapidly, and in real-time to reduce drain

on radio resources. This chapter was the result of a paper, written with Thomas Watteyne, Steven

Glaser, and Kris Pister.
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Part V

Application Note: TDMA-based

communications for mobile agent networks

The previous chapters motivated the need for time synchronized channel hopping for WSNs.

Such TDMA-based communications are often designed with low-throughput applications in mind,

where relatively small payloads are transmitted once every few seconds. Furthermore, nodes are

required to synchronize to neighbors, a process which may take some time depending on the fre-

quency of advertisement beacons. This makes it somewhat infeasible for mobile nodes to easily

move around the area covered by the WSN, as well as to transmit large data streams. This chapter

explores how the previously presented TDMA-based architecture can be modified to permit for

multi-agent mobiles nodes to cooperate with a low-throughput stationary sensing backbone.

Small, cheap, highly mobile robots can be used to solve a wide variety of problems [51]. The

availability of off the shelf components for such micro air vehicles (MAVs) has made them an

active topic of current research and even commercial development (e.g. [52–54]. In particular,

MAVs are well suited for exploration of unknown or difficult to access indoor environments, such

as buildings and caves. They can be used to map out the space, or search within for items of interest.

MAVs can also be used to deploy a wireless sensor network (WSN) for long-term persistent sensing

of that environment.

Though there are many details differentiating specific mission scenarios, at the most basic level

they all involve gathering data throughout an unknown environment and passing it to a remote

base station. Only in a very narrow range of specifications can such a mission be accomplished

without any communication at all (e.g. by storing data on board then physically returning to the

base station); otherwise, multihop wireless network design becomes an integral consideration in

such missions. Different mission parameters require different tradeoffs, and so there is no single

network design that will satisfy all MAV requirements. However, there are a number common

traits, which leads to a general framework that can be used as a starting point.
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In this chapter we present a design for a network infrastructure that can accommodate typical

MAV missions. By building on existing solutions for the various subproblems, we can create a

hybrid network system that can effectively operate in a mode appropriate to the task at hand. In

section 20 we will describe typical MAV missions, and break it up into subproblems. A description

of previous research, along with hardware used for such missions will follow. The communications

requirements inherent to a MAV will be discussed in section 22, followed by the state of the art

protocol for communications in a wireless mesh network in section 23. These two modes will

be combined into a single hybrid protocol, as described in section 24. Finally, we will identify

areas where this implementation is still insufficient or unclear, and propose various solutions to

complete the design in section 25. We will close with a discussion of where future research needs

to be focused to properly design a network infrastructure to support MAV missions.

20 Missions and Requirements

A major motivating example of the need for MAV networks is shown in figure 26. In this example,

a MAV has dropped a number of nodes in an unknown environment, and is wirelessly communi-

cating with a base station over the resulting multihop mesh. The stationary network nodes serve

the purpose of relaying information between the MAV agent and the base station, while also acting

as a long-term persistent sensing platform, which can be left in place indefinitely to collect infor-

mation about its environment. The challenge of designing such a system thus lies in adapting the

wireless network to both long-term, low data rate reliable sensing missions, while accommodating

the burst of short-term, high data rate transmissions of MAV agents.

The specific mission for which a MAV will be used will define the tradeoffs necessary to

design its underlying network. However, many of those design decisions can be accomplished by

tweaking various parameters in a general framework. At its most general, then, a MAV mission

has the following components:

• Navigate through the environment

• Deploy sensors and repeater nodes
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Figure 26: This schematic shows a deployed wireless sensor network infrastructure for a MAV
mission. The laptop represents a base station, and acts as a network manager coordinating commu-
nications while serving as a sink for data generated by the MAV and sensor mesh. Data generated
by the MAV is sent through the multihop mesh.

• Relay data back from MAV and deployed sensors

The scope of an MAV mission is greatly reduced without allowing multi-hop communication

to the outside world. The arbitrary topology of the environment means that line-of-sight commu-

nication from the MAV to the outside world is often impossible. Thus, the MAV must carry along

and deploy a payload of repeater nodes along its flight path. These drop-off nodes must establish

a wireless network over which the MAV can communicate to the outside world. The nodes can be

equipped with sensors, or simply serve as relay devices.

The objective of the general MAV mission is then to relay data from inside the unknown en-

vironment to the outside world. The data can come from the sensors on the MAV itself, using the

deployed network nodes merely as a communications infrastructure. Data can also be generated

by the deployed nodes. In the case of reconnaissance-type missions, data from MAV sensors will

be composed of short, high volume bursts (camera feeds, microphones, etc). The stationary net-

work nodes will generate low rate data over the long-term for purposes of anomaly detection or the

monitoring of slowly-changing environmental phenomena (footstep detection, smoke detection,

etc).
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The most significant design constraints in such missions are weight and power consumption;

the two go hand-in-hand. The lower the mass of the MAV with its payload, the less power is needed

to fly, and so the longer a mission can be. Similarly, the lower the power consumption, the smaller

the battery needed for a given mission, and so the lighter the weight. Since the deployed network is

initially dead payload weight on the MAV, minimizing network power consumption minimizes the

battery requirement on the drop off nodes (or eliminates in entirely in favor of energy scavenging

sources), thus increasing the scope of possible missions.

Guidance of the MAV can either be handled remotely, via a central base station, or autonomously

through on board processing. Remote control simplifies flight processing by offloading guidance

and navigation decisions to a central operator. However, it imposes high throughput and low

latency requirements on the network. Onboard data must be passed rapidly to the operator to facil-

itate real-time control of the MAV. Due to possible radio interference and limited centralized radio

resources, this tends to limit the ability to utilize multiple MAVs during a mission. Autonomous

MAV operation, on the other hand, greatly increases on-board sensing and processing require-

ments, but reduces required sustained data rates. Autonomous operation can also enable multiple

MAVs in a single network, which increases complexity of the network routing and general network

resource allocation.

Given such tradeoffs, there are a number of important parameters to consider when evaluating

a MAV system. The potential capability of the system is directly related to the mission duration,

which in turn depends on power consumption. The efficacy at which the MAV can accomplish the

goals of the mission tie into the data transfer out of the system, which can be measured both by

data throughput and network latency. Finally, it is important to evaluate how the system can scale

in size and scope.

21 Sample hardware

Our MAV platform combines a miniature helicopter with an ultra-low-powered wireless node (fig-

ure 26). The GINA board [55] consists of a 2.4 GHz 802.15.4 radio, TI MSP430 microprocessor,

and a number of inertial sensors. The GINA platform can be used directly as a MAV flight con-
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Figure 27: GINA hardware is used to implement an integrated MAV + WSN system.

troller, or as a relay for control signals from a central location [56]. The OpenWSN project [57]

uses the GINA hardware to implement time syntonization, frequency channel hopping, mesh net-

working, and multihop communications. A MAV controlled by a GINA can be used to deploy

additional GINA nodes for the stationary drop-off mesh infrastructure, as shown in figure 27. With

standards compliant networking interfaces, this hardware forms a testbed for the implementation

of the protocols described in this chapter.

22 MAV communication

A MAV interacts with its communication system in two major ways, which are tied to its two major

functional subsystems: flight and sensing.

22.1 Flight

Different levels of autonomy require different amounts of communication. If the on-board con-

troller is solely responsible for stability, then a human operator must remote-control the flight. In

that case, the base station needs to get sensor data of sufficient fidelity to understand the environ-

ment in order to direct the MAV. This is generally at least video at a few frames per second, perhaps
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augmented with additional inertial sensor data. This typically requires a throughput on the order of

100kbps. Then, the operator must send control signals back to the MAV. This is generally a much

smaller amount of data, on the order of tens to hundreds of bits per second.

The data flowing in both directions needs to be sent in real time – minimizing latency is key.

Without intelligence on board the MAV, a network delay on the order of tenths of a second could

drive the MAV into a wall or obstacle. Slower, more stable MAVs may be able to tolerate the delay,

but they waste energy in hover in low speed movement. As MAV functionality is optimized, round

trip latency becomes even more critical.

The required data rates and latencies are typically not difficult to achieve in a point-to-point

link, and can even be attained over a short multi-hop path. However, the performance rapidly

degrades as the distance between the MAV and its basestation increases. Each additional hop

along a network path adds both latency and network traffic, and as network traffic increases, the

constant total bandwidth results in lowered end to end data throughput.

This saturation can be alleviated by requiring autonomy of the MAV. This can range from

merely obstacle avoidance along a user-defined waypointed path to full autonomous path planning

and guidance decisions. Autonomy thus minimizes or eliminates intervention from a human oper-

ator, and similarly, reduces the data that then needs to be sent to the base station for flight control.

Nonetheless, data throughput and latency are still important parameters that impact the ability of

human operators to influence the MAV mission.

22.2 Sensing

MAVs necessarily carry a number of sensors. At minimum, they include those required for stability

(e.g. inertial sensors, LIDARs, etc.), but additional sensors may fall into one or more categories:

• Sensors that require significant mobility, e.g still and video cameras;

• Sensors that are too heavy to carry multiple, e.g. chemical sensors;

• Sensors that need to be used only once per location, e.g. thermal sensors, PIRs.
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Many of these, such as thermal or chemical sensors, generate data at low rates, on the order of

a few bytes per sample. Also, since the measurement often doesn’t have high spatial or temporal

variability, samples are infrequently generated. In this case, throughput is of minimal concern. If

the gathered data does not impact the real time mission status, then latency requirements can also

be relaxed.

Other sensors, however, can generate large volumes of data. Of these probably the most widely

applicable and thus most common are cameras, which can generate anywhere from kilobytes to

megabytes per sample, at rates from minutes per sample up to samples per second. Again, if

the gathered data does not impact the mission, latency may not be so much of a concern, but

maximizing data throughput is critical. High latency can also affect the throughput, though, if

data flowing through the network saturates node capacities, resulting in dropped data. It is thus

imperative that the network containing the MAV support both rapid data streams, and well as more

sporadic, smaller size packets.

23 Stationary sensor network

23.1 Low power persistent sensing

Reliable communication with mobile MAV agents demands a stationary wireless network, which

routes information to and form MAV agents, while serving as a persistent sensing platform to

processes information about its surrounding environment. While MAV agents are deployed for

short-term mission-specific purposes, this stationary network is expected to have deployment life-

times on the order of days to months. As such, low power consumption is key for maximizing

battery and deployment lifetime. Compared to the requirements imposed by mobile MAV agents,

the data throughput requirements of stationary network nodes are expected to be low, generating

packets on the order of seconds to minutes. Fro example, in mission critical settings the station-

ary network would be responsible for environmental-sensing tasks such as proximity sensing or

footstep detection.
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Table 2: Differences
Metric Stationary network MAV comms

Duration 106 seconds 103 seconds

Data rates 102 bits / second 105 bits / second

Latency 102 seconds 10−2 seconds

Network routing stable dynamic

24 Hybrid network

The time synchronized mesh protocol (TSMP) architecture was presented earlier as a means of fa-

cilitating low-power, reliable communications for a stationary WSN deployments. Table 2 shows

the drastic, yet realistic differences which are imposed when comparing stationary network perfor-

mance, to that of the MAV.

Rather than try to build a single network architecture that compromises on all the metrics, we

instead propose to have a dual-mode network. The deployed stationary network by default operates

as a standard TDMA-based mesh. As new nodes are dropped off by the MAV, they join the mesh

and carry on as necessary. A modification is added to allow communication with the MAV; this

communication is carried out on an independent set of channels. One set of channels is reserved for

low throughput stationary mesh communications, while the remainder is only used when required

by MAV agents.

24.1 TSMP modification

The stationary network dropped off by the MAV can implement a low power low duty cycle TSMP

mesh. As nodes are dropped off, they join that mesh, with the routing configurations updating

accordingly. The frame length must initially be set short enough to incorporate new nodes into the

network on a rate comparable to the deployment of the nodes by the MAV. After the MAV mission,

this can be slowed down as necessary.

Because the MAV is highly mobile, it will not maintain a constant set of neighbors, and so it

is not useful as a member of the mesh. It still listens for advertisement (ADV) packets to maintain
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synchronization with the network, but never sends out its own ADVs. Instead, it can send an

acknowledgement packet (ACK) to an ADV to initiate communication into the network. After

sending an ADV, stationary nodes listen to receive the ACK from a MAV. The advertisements are

scheduled inversely proportional to neighbor count as usual so that on average, the MAV would be

able to hear one ADV every frame without packet collisions. The frame length again must be short

enough so that typically the MAV would remain within range of the node for the duration of the

frame.

An extra slot is added to the frame after the ADV slot for communication from the network to

the MAVs. If a node received an ACK to its ADV in the previous slot, it can then confirm with the

MAV that it will switch to MAV mode for the frame, and also pass along any data it received from

the base station for the MAV. If two MAVs respond to an ACK at the same time, a packet collision

may occur. In this case, a randomized back − off timer is used to retry communication at a later

time. Once an MAV receives a clear − to − send signal during the second slot of each frame it

enters one of two throughput modes.

24.2 Low throughput MAV mode

When ACKing an ADV packet the MAV specifies the kind of data it is intending to transmit.

If the the data to be transmitted can be fit into a few packets, without needing stringent latency

requirements, it can send this over the reserved MAV channels to the stationary node in the mesh.

The stationary node responds to the MAV ACK with slots in the TSMP schedule frame during

which it is free and can receive data from the MAV. These slots can be predetermined prior to

the deployment. The MAV then communicates with the mesh as would any other node during

its scheduled slot, and again the data would pass through the network as normal. This mode is

outlined in figure 28. This scheme also permits multiple MAVs to communicate with neighboring

motes at the same time.
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Figure 28: If the MAV has a small amount of data to send, it can request a number of slots to
communicate to its nearest neighbor in the mesh. These slots can be predetermined by the manager.
That data then gets sent over the mesh in the following several slot frames as would any other data
generated in the mesh.

24.3 MAV burst mode

When the MAV has high volumes of data to transmit, or when latency is a primary concern, sending

packets through mesh traffic becomes insufficient. In this case, the MAV requests a mode switch

in its ADV ACK. If this is confirmed by the stationary node in the MAV slot (see figure 29), then a

dedicated channel will be opened up between the MAV and the base station. The route from MAV

to base station is determined during standard operation of the mesh, and is unlikely to change over

the duration of a slot-frame. Starting from the node in contact with the MAV, then, each node in

the mesh informs its direct parent of the mode switch, and then shifts to the burst mode.

This upstream notification can happen in two ways. The standard TSMP communication could

be used, in which case the notification would reliably propagate upstream over the course of a

slot-frame. Alternately, a separate slot following the MAV slot could be dedicated to this function,

in which every node would listen for a mode-switch notification, and immediately turn around and

forward such a message to its parent when one is received.

The burst mode communication happens over an independent set of channels from the main

mesh. During the streaming mode slot-frame, nodes not involved in the direct path from the MAV

to the base station carry on network operations as usual. Meanwhile, the direct path nodes establish

a separate communications schedule over its channels. The burst communication schedule is sim-

ilar to the standard TSMP communication; however there are a number of important differences.
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Figure 29: In burst mode, the nodes along the direct path from the MAV to the base station remove
themselves from the TSMP network and communicate in a separate high throughput, low latency
mode.

Since the data is a single, unidirectional, burst mode stream over a predefined path, most of the

headers can be stripped out of the packets to yield a higher data throughput. For similar reasons,

the slot length can be narrowed (halved to about 5ms in an IEEE802.15.4E setting) to facilitate

higher packet density. Link level ACKs are eschewed in favor of higher bandwidth; typically this

sort of data doesn’t require very high reliability. This mode is diagrammed in figure 29.

This burst mode subnetwork persists for one slot-frame. On the next frame, the network re-

turns to its original state. Data still in transit along the path can either be discarded or stored for

transmission over the default channels. If the MAV has additional data it needs to transmit, it can

request burst mode from the next ADV packet it hears.

25 Analysis and conclusions

25.1 Overview

Extensive analysis on TDMA networking, in particular TSMP, has demonstrated its importance

for low power wireless networking [58–60]. The low throughput MAV mode is effectively just a

slight extension to a standard IEEE802.15.4E TSMP network, with out-of-band communication

reserved for direct point-to-point communication with the mobile MAV. Network maintenance

and the remaining traffic is left to the primary unmodified IEEE802.15.4 mesh, thus ensuring the

65



robustness, reliability, and scalability inherited from the original standard.

Burst mode communication, on the other hand, augments the underlying TSMP MAC layer

with an additional independent set of channels for the MAV burst data. This additional network is

effectively a separate, stripped down TSMP network, derived from the original mesh but operating

on orthogonal channels. Given a single unique path from a MAV to the base station a MAV can not

simply send one packet after the other. Since its parent node must forward the packer, the MAV

must pause until the parent node is ready to receive again. This leads to the transmission schedule

seen in figure 29.

25.2 Tuning network parameters

The hybrid mode networking requires dividing the available network space into separate channels

for stationary mesh and MAV communication. With one unique path to the base station, the optimal

scenario involves the ability of the MAV to transmit a packet every other slot. If not enough slot

offsets are available, the paths to the base station will fill the transmission schedule in a way that

does not permit the MAV to transmit a packet every other slot. This is considered sub-optimal.

As a rule of thumb, the number of hops (paths to the base station) can only be twice the size of

the reserved channels to ensure that the MAV can transmit a packet every other slot. As a MAV gets

more hops away from the base station, channels should be allocated to ensure that burst mode is

carried out at the fastest possible rate. As such, to achieve high throughput, the number of allocated

MAV channels must be at least half the number of hops that the data must traverse (see figure 30).

With half-duplex radios, each node along the pipe must spend half its time receiving and half

its time retransmitting the data along the pipe, thus limiting the throughput to half the available

data bandwidth. However, with a sufficiently dense network, this limitation could be lifted. If two

completely independent paths can be found from the MAV to the base station without overlapping

intermediate nodes, data can be alternately sent along both pipes, maximizing the throughput to

the full available data rate. In this case, the number of available channels would need to be at least

the number of hops from MAV to base station.
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Figure 30: Given the expected maximum network distance from the MAV to the base station, a
number of channels can be allocated to the MAV burst mode. As long as the number of channels is
at least half the number of hops, the MAV will be able to communicate at the maximum supported
throughput of the network given one unique path to the base station.

As there are only 16 channels available in the IEEE802.15.4 standard, allowing a more exten-

sive network requires more channels to be allocated for MAV use, and fewer for the underlying

stationary mesh. However, as shown in [60], the robustness and efficiency benefits of channel hop-

ping become evident with only a small subset of channels. Peak performance can be achieved by

allocating six channels to the stationary mesh; ten channels can thus be available for MAV com-

munications, allowing for a reliable network up to 20 hops deep. This chapter was the result of a

paper, written with Ankur Mehta, Steven Glaser, and Kris Pister.
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Part VI

Conclusions

This thesis investigated a novel synchronization algorithm for TDMA-based WSNs. Furthermore,

a number of frequency channel hopping methods were investigated to evaluate their impact on

overall network reliability. It was shown how a slotted synchronization protocol could be im-

plemented even using low-cost, high-drift, on-chip oscillators. This opens the door to a truly

crystal-free mote, and enables another path towards the one-mm-cubed WSN node. The ability to

carry out such a slotted communications scheme will be central to preserving power on future mote

platforms, since radio up-time will be significantly reduced, permitting for significantly extended

battery life.

Furthermore, it was emphasized that channel hopping is essential when considering adverse

communication effects due to external interference or multipath fading. It was shown that channel

hoping controllers can be designed to optimally utilize a subset of the allotted frequency band.

The major benefit of such an approach relates higher PDR, and thus much higher reliability. Power

consumption may not however be drastically improved due to adaptive channel hopping when

compared to a blind hopping approach. Low PDR links may require retransmissions, but since

the mote spends most of its time (99%) in a low power mode due to the slotted synchronizations

scheme, retransmissions will only account for a smaller increase in energy use. This should hold

true for most links in most applications, where blind channel hopping will be sufficient to facili-

tate robust communications. As mentioned in the previous chapter, the benefit of more advanced

channel hopping methods applies mostly to a few links in the network that may contain mostly

unreliable, low PDR links.

Power consumption is also a function of latency requirements. Nodes in TDMA based net-

works typically only transmit a few packets during a slot frame, thus conserving radio resources.

It was show, however, that such network protocols can be modified to reliably support moving

agents as well as high-throughput data streams, while not affecting overall network functionality

and reliability.
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This thesis leaves a number of possible future research questions open, primarily relating to

improving synchronization accuracies and channel hopping algorithms through various bootstrap-

ping methods. The major open research question, however, still relates to developing a crystal-free

radio solution, which will permit the removal of the final crystal component on a mote, thus open-

ing the door to the truly crystal-free WSN. Such a solution should not be too far in the future from

becoming reality.
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