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Abstract

Computational Trade-offs in Statistical Learning

by

Alekh Agarwal

Doctor of Philosophy in Computer Science

and the Designated Emphasis

in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Peter L. Bartlett (Co-Chair)
Professor Martin J. Wainwright (Co-chair)

The last several years have seen the emergence of datasets of an unprecedented scale, and
solving various inference problems on such datasets has received much focus in the modern
machine learning and statistics literature. Understanding the statistical and computational
aspects of learning from these large and high-dimensional datasets is the key focus of this
thesis. One source of such data is the virtually unbounded amounts of unstructured infor-
mation on the internet, which can often be compiled into large datasets for training machine
learning algorithms using automated techniques, computer vision, natural language tasks,
and web search and ranking being prime examples. Computational biology, computational
astronomy and collaborative filtering are some other examples of problem domains where
vast amounts of training data for learning algorithms are often readily available.

It might be expected that the large number of samples make the statistical problem
easier, and subsampling a smaller dataset should be an effective computational strategy.
However, this is not always the case. With access to more and more data, the goal is often
to understand higher order dependencies in the data, leading to an explosion in the number
of parameters to be estimated. Indeed a large body of literature in modern machine learning
and statistics is focusing on problems where the number of parameters grows with, and is
often larger than the number of samples.

While the number of training samples and parameters seems to grow almost unboundedly,
computation is struggling to keep up. The last few years have seen a clear tapering off in the
rate of growth of computational power on individual cores. As a result, the algorithmic focus
in machine learning has shifted to online and stochastic optimization algorithms, budgeted
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learning algorithms and parallel and distributed algorithms fit for multicore, cluster or cloud
environments.

Though it might seem that computation is the main bottleneck for such massive data
problems, it is not appropriate to consider these problems as purely computational and ignore
the underlying statistical structure. In fact, in many cases the statistical nature of the data
can make the computational problem easier, and make the goals of computation simpler
than needed without this structure. As a result, a fundamental question in modern statistics
and machine learning is to understand the error of statistical estimators, as a function of the
sample size, number of parameters and the computational budget available.

The goal of this thesis is to study these trade-offs between the computational and statis-
tical aspects of learning problems. This line of research results in several natural questions,
some of which are partially addressed in this thesis and others present interesting challenges
for future work.
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Chapter 1

Introduction

Any typical solution to a machine learning problem has two fundamental aspects. The
first is a statistical aspect that characterizes how well the solution performs in making future
predictions on unseen data, or in recovering the true underlying model. The second is a
computational aspect that describes efficient algorithms that indeed compute this solution,
and characterizes the computational complexity of these algorithms. Traditionally, statistics
has been the main framework to understand the former aspect, while optimization and
sampling have served as the principal computational paradigms. The study of the two
aspects has largely happened in isolation, in the interest of modularity. In this thesis, we
examine how such a two-phased design of learning algorithms can often fail to address the
challenges of many modern learning problems involving massive amounts of data. Through
a joint analysis of the statistical and computational aspects of our learning problems, we
seek to obtain frameworks capable of addressing these challenges.

1.1 Classical statistics, big data and computational con-

straints

The last several decades of research in statistics, and more recently machine learning have
led to remarkable advances in estimation of patterns from data. The cornerstone of these
works has been a precise characterization of how well we can estimate the quantities of
interest, as the amount of data available increases. A key ingredient for this understanding
has been the literature on empirical process theory [166, 128, 163], in particular, uniform laws
of large numbers such as the Glivenko-Cantelli theorem [70, 46] and corresponding uniform
central limit theorems [62]. In particular, approaches based on VC theory [168, 167], metric
entropy [88, 163], Rademacher and Gaussian complexities [17, 99, 154] as well as their sharper
localized variants [155, 90, 21] have all played a key role in characterizing three fundamental
aspects of statistical problems:



CHAPTER 1. INTRODUCTION 2

(i) When is it possible for any possible estimator to be statistically consistent, as the
number of data samples approaches infinity?

(ii) What are sharp upper and lower bounds on the rate at which error of an estimator
decays with an increasing number of samples?

(iii) Development of general principles such as (regularized) empirical risk minimization
that achieve the above optimal limits for a large class of estimation problems.

An understanding of the minimum number of samples sufficient for a desired level of
statistical performance was indeed a critical question in the classical settings. The reason for
this is that for a long period in statistics and machine learning, the availability of data samples
formed the key constraint. The samples were quite often acquired through painstaking
manual data acquisition, or time consuming laboratory experiments. As a result, the key
consideration of both the theoretical and algorithmic endeavors in machine learning and
statistics was to extract the maximum possible information from the smallest possible number
of data samples.

However, the last several years have seen an unprecedented growth in the size of datasets,
owing largely due to rapid improvements in automated data acquisition techniques. The
Internet has served as a rich data source for machine learning problems, particularly in
natural language and computer vision applications, where large corpora can often be created
based on the freely available web content. Advancements such as high-throughput sequencing
in biology, better sensor technology allowing us to record observations at short intervals, and
most recently, the use of crowd-sourcing platforms to compile datasets of machine learning
problems have all contributed to this data deluge.

To put the difference of scales in perspective, we observe that the largest dataset in
the popular UCI machine learning repository1 prior to 1990 had about 8000 samples, in
22 dimensions. The largest dataset currently in the repository has 8 million samples, in
100000 dimensions, and this is still dwarfed in comparison to the largest datasets available
in the industry which often involve up to billions of samples and millions of features. This
apparent abundance of data leads to a very natural question about traditional statistics
and machine learning. Does the emergence of such massive datasets make complex and
sophisticated estimators redundant? Indeed there seems to be a folklore emerging to the
extent that a simple estimator computed on enormous amounts of data beats a more complex
one based on a smaller subset of the data.

In this thesis, we examine how the questions and concerns of machine learning and
statistics take an interesting twist in these massive data problems. In particular, the focus
will be on two main sources of complexity that frequently arise in such scenarios. First will
be the challenges of high-dimensionality of the data, which often means that the number of
data samples while being large, is often small relative to the number of parameters being

1http://archive.ics.uci.edu/ml/index.html

http://archive.ics.uci.edu/ml/index.html
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estimated. The second crucial challenge is that while the number and dimensionality of the
data samples seems to grow without bounds, computation is struggling to keep up. As a
result, we might not be able to compute the estimators prescribed by classical theory within
feasible computational resources. We discuss these challenges in some more detail next,
before moving on to discuss how they can be addressed.

With increasing number of samples, it is often desirable to understand higher-order in-
teractions in the data. For instance, in natural language tasks, so called n-gram features
attempt to understand the roles of pairs or triplets of words, and more generally of phrases
instead of individual words in determining the syntax and semantics of text. In computer
vision, increasingly complicated filters can be used to capture finer aspects of the images and
in many biology tasks, the samples often correspond to long genomic strings along with addi-
tional features computed on these. Many such datasets challenge a key assumption in much
of classical statistics: the number of samples grows large relative to the number of parameters.
Indeed, in a popular example of the Netflix prize, the goal was to estimate over 8.5 billion
parameters from a little more than 100 million samples. While it remains impossible to
estimate consistently in such high-dimensional problems in general, a large body of research
has investigated various structural assumptions under which statistical recovery is possible
even in these seemingly ill-posed scenarios. Examples include a large line of works on spar-
sity [59, 51, 43, 165, 30], group sparsity [110, 180, 126], low-rank assumptions [136, 1, 150]
and more abstract generalizations of these [116, 50]. Understanding the statistical and com-
putational challenges posed by such structural problems in high-dimensions will be a key
question explored in this thesis.

In stark contrast to the growth in problem sizes, the last few years have seen a tapering
off in the growth of computational power, at least that of a single core. This combination
of the large amounts of complex data and limited computational resources brings compu-
tational complexity issues to the fore. It might no longer be straightforward to compute
the estimators with good statistical properties, prescribed by learning theory. For instance,
empirical risk minimization and M-estimation typically involve solving numerical optimiza-
tion problems, which can be quite challenging with large amounts of high-dimensional data.
A natural question to ask in such scenarios is: how well can we estimate a certain number
of parameters, given a fixed amount of data, under reasonable constraints on computational
resources? On the algorithmic side, we are interested in algorithms that can work under
specified constraints on computational resources, while having good statistical guarantees on
the resulting solution. This interaction of the computational and statistical complexities is
pictorially illustrated in Figure 1.1. Furthermore, we want to develop such solutions across a
large variety of computational platforms; single cores, multiple cores and distributed systems
such as cluster and cloud infrastructures to name a few.

In the next section, we will discuss some of the existing frameworks and approaches that
address various facets of the above mentioned problems. We follow that with a detailed
discussion of the key questions and contributions of this thesis.
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Figure 1.1. An illustration of the key quantity of interest in classical statistics (left) and
modern scenarios (right). In the left plot, we study the decay of estimation error as the
number of samples is increased. The right panel explores the estimation error as a function
of the samples n and the computational time T . Capturing the behavior of the surface in
the right panel for different n, T values can be quite challenging, and a primary question of
interest in this thesis.

1.2 Connections to existing works

In this section we will survey some of the existing lines of research that explore themes
related to the work in this thesis. Since the goals and results of the thesis are rather broad,
the related works will also come from a variety of settings and considerations. We start with
some approaches aimed at understanding the fundamental interactions between statistical
and computational complexities, and then go on to related ideas in high-dimensional and
distributed computational scenarios.

1.2.1 PAC Learning

The theory of PAC learning proposed by Valiant [162] aims to ask the precise question at the
heart of this thesis: when is it possible to consistently learn a concept, using computation
that is polynomial in the number of data samples. The thesis work of Michael Kearns [86] and
his book with Vazirani [87] built on Valiant’s theory and are influential works in advancing
our understanding about when computationally efficient learning is possible. While this
line of work is extremely powerful in distinguishing between problems that are solvable in
polynomial time from those that are likely to be computationally hard, it provides no way of
judging the relative hardness of problems that are solvable in polynomial time. Nevertheless,
this remains one of the most active lines of research in understanding the interactions between
learning and computation, and has seen some interesting results recently in understanding
the trade-offs between sample sizes and training times [146].
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1.2.2 Information-Based Complexity

Another natural framework for studying the computational complexity of solving learning
problems is Information-Based Complexity (henceforth IBC). This theory aims to under-
stand the computational complexity of problems, where the observed information is partial,
noisy and/or comes at a price. This theory has been quite successful in understanding the
computation of linear operators, such as numerical integration in high-dimensions and so-
lutions of differential or integral equations. In particular, the results we will develop in
Chapter 3 on the complexity of stochastic convex optimization can be seen as understand-
ing the IBC of that problem, as observed in the context of earlier work of Nemirovski and
Yudin [119] by Traub and Wozniakowski [157].

1.2.3 Stochastic and online convex optimization

Stochastic convex optimization [119, 93] and the more general online convex optimiza-
tion [170, 47, 145] frameworks have emerged as the most scalable approaches for large-scale
machine learning [32, 147]. These algorithms have the attractive property that they typically
make a few passes over the data, doing a simple update based on each sample (or based on
a mini-batch). This naturally gives them a computationally budgeted flavor—we run the
algorithm till we exhaust the budget and take the predictor at the end. We will survey
this line of work in more detail in the next chapter. Also, Chapter 3 will investigate the
computational complexity of stochastic convex optimization algorithms.

1.2.4 Budgeted learning algorithms

Online learning algorithms directly equate samples to computational budget in some sense,
but this is not always the right way to handle computational restrictions. Other lines of
work on budgeted algorithms have explored budget constraints of various kinds, typically
tailored to specific problem settings. Some of these works have been in the context of bound
on the number of support vectors for kernelized perceptron [55, 153] or SVMs [54], where the
number of support vectors imposes both a memory and running time constraint for kernel-
based algorithms. A different class of approaches that considers budget on the complexity
of prediction during test time is coarse-to-fine learning, where the data samples are passed
through a hierarchy of models of increasing complexity. These approaches have found con-
siderable success in natural language processing [127] as well as computer vision [172]. In
Chapter 4, we will consider a budgeted framework for the model selection problem.

1.2.5 High-dimensional statistics and compressed sensing

The goal of high-dimensional statistics and its signal processing counterpart of compressed
sensing is to obtain structural conditions under which an exceedingly high-dimensional model
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can be recovered from a relatively small number of observations. A growing body of research
has furthered the understanding of such conditions under structural conditions such as spar-
sity [59, 51, 43, 165, 30], group sparsity [110, 180, 126], low-rank assumptions [136, 1, 150]
and more abstract generalizations of these [116, 50]. The estimators coming out of this
theory are often formulated as high-dimensional convex programs, which are considerably
challenging computationally. In Chapter 5 of this thesis, we will demonstrate how the struc-
tural assumptions made for statistical analysis also improve the computational complexity
of these problems.

1.2.6 Distributed optimization algorithms

If convex optimization is a scalable framework for machine learning problems on a single
computer, then it is natural to expect distributed convex optimization to be a viable solution
for distributed machine learning. Distributed optimization is a classical subject, starting
from the early works of Bertsekas [26] and Tsitsiklis[160], with many of the early results
described in their seminal book [27]. There has been renewed activity in this area, in part
owing to the growing interest from machine learning community [132, 81, 61, 36]. However,
these classical approaches often fail to fully capture the structure and assumptions underlying
distributed machine learning problems, presenting opportunities for the development of new
methods as we will see in Chapter 6.

1.3 Main problems and contributions

The main emphasis in this thesis is on understanding the interactions between statistical
and computational complexities of learning algorithms. Such an understanding is funda-
mental to characterize how we can trade-off the quality of statistical estimation for better
computational complexity, or vice versa. As might be expected with an endeavor of this
generality, there are many ways of posing the problem and this thesis will examine a few
different approaches to understanding such phenomena. More specifically, we will investigate
questions such as

(a) Given a computational budget, what are the fundamental limits on the quality of the
best estimator that can be computed? Conversely, what is the computational cost of
computing an estimator with a small error for various classes of learning problems?

(b) Can we design algorithms that work with an explicit constraint on the available com-
putational budget?

(c) What are efficient statistical and computational methods for structured learning prob-
lems in high dimensions?

(d) What are good strategies for distributed learning and inference?
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In the remainder of this section, we will describe in detail how this thesis attempts to
answer each of these questions, introducing novel concepts and frameworks in the process.

1.3.1 Fundamental oracle complexity of stochastic convex opti-
mization

Relative to the large literature on upper bounds on complexity of convex optimization, lesser
attention has been paid to the fundamental hardness of these problems. Given the extensive
use of convex optimization in machine learning and statistics, gaining an understanding of
these complexity-theoretic issues is important for answering the first question mentioned at
the start of this section. In Chapter 3, we study the complexity of stochastic convex opti-
mization within the oracle model of complexity introduced by Nemirovski and Yudin [119]
(henceforth Nemirovski and Yudin). In this complexity model, at every round the optimiza-
tion procedure queries an oracle for certain information on the function being optimized.
Our work focuses on stochastic first order oracles, where this information consists of noisy
gradient evaluations.

Within this setup, we improve upon the work of Nemirovski and Yudin [119] for stochas-
tic convex optimization in three ways. First, our lower bounds have an improved dependence
on the dimension of the space. In the context of statistical estimation, these bounds show
how the difficulty of the estimation problem increases with the number of parameters. Sec-
ond, our techniques naturally extend to give sharper results for optimization over simpler
function classes. We show that the complexity of optimization for strongly convex losses
is smaller than that for convex, Lipschitz losses. Third, we show that for a fixed function
class, if the set of optimizers is assumed to have special structure such as sparsity, then
the fundamental complexity of optimization can be significantly smaller. All of our proofs
exploit a new notion of the discrepancy between two functions that appears to be natural for
optimization problems. They involve a reduction from stochastic optimization to a statistical
parameter estimation problem, and an application of information-theoretic lower bounds for
the estimation problem.

1.3.2 Computationally adaptive model selection

A complementary algorithmic approach regarding fundamental computational complexity of
machine learning problems is the development of algorithms that take in explicit constraints
on the amount of computation they can perform, and provide statistical guarantees as a
function of this budget. A key challenge for such frameworks is setting up a notion of
computational budget which admits interesting algorithms, but is also amenable to tractable
theoretical analysis. Turing machine complexity is naturally suited to the former concern,
but often fails to satisfy the latter. As mentioned previously, online learning provides one way
of handling computational restrictions where the budget is directly equated to the number
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of samples the algorithm sees. However, this might not always be the right way to impose
budget constraints, since it might be preferable to compute a more complex estimator on
the existing data samples rather than to repeat the same computation on new samples in
different scenarios.

While such a development in a very broad setting is usually quite challenging, specific
problems often admit interesting notions of computational budget that can be more intu-
itive than either of the two extremes of Turing machine or online learning. Based on this
philosophy, Chapter 4 looks at a computationally budgeted framework for the problem of
model selection. In particular, we analyze general model selection procedures using penal-
ized empirical loss minimization under computational constraints. While classical model
selection approaches do not consider computational aspects of performing model selection,
we argue that any practical model selection procedure must not only trade off estimation
and approximation error, but also the effects of the computational effort required to compute
empirical minimizers for different function classes. We provide a framework for analyzing
such problems, and we give algorithms for model selection under a computational budget.
Our framework is based on the natural postulate that, for a fixed sample size, it is more
expensive to estimate a model from a complex class than a simple class. Put inversely, given
a computational bound, a simple model class can fit a model to a much larger sample size
than a rich model class. So any strategy for model selection under a computational bud-
get constraint should trade off two criteria: (i) the relative training cost of different model
classes, which allows simpler classes to receive far more data (thus making them resilient to
overfitting), and (ii) lower approximation error in the more complex model classes.

In addressing these computational and statistical issues, this work makes two main con-
tributions. First, we propose a novel computational perspective on the model selection
problem, which we believe should be a natural consideration in statistical learning problems.
Secondly, within this framework, we provide algorithms for model selection in many differ-
ent scenarios, and provide oracle inequalities on their estimates under different assumptions.
Our first two results address the case where we have a model hierarchy that is ordered by
inclusion. The first result provides an inequality that is competitive with an oracle, incurring
at most an additional logarithmic penalty in the computational budget. The second result
extends our approach to obtaining fast rates for model selection, as demonstrated in compu-
tationally unconstrained settings by Bartlett [19] and Koltchinskii [91]. Both of our results
carefully refine the existing complexity-regularized risk minimization techniques by a care-
ful consideration of the structure of the problem. Our third result applies to model classes
that do not necessarily share any common structure. Here we present a novel algorithm —
exploiting algorithms for multi-armed bandit problems—that uses confidence bounds based
on concentration inequalities to select a good model under a given computational budget.
We also prove a minimax optimal oracle inequality on the performance of the selected model.
All of our algorithms are computationally simple and efficient.
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1.3.3 Optimization methods for high-dimensional statistical esti-
mation

As mentioned earlier in this introduction, many modern statistical problems tend to be
overwhelmingly high-dimensional in nature. A growing body of statistical literature aims
to develop conditions under which we can estimate the underlying statistical parameter
reliably, given only a few samples, by exploiting the structure of the true parameter as
well as regularity assumptions on the data. Computationally, many of these statistical M-
estimators are based on convex optimization problems formed by the combination of a data-
dependent loss function with a norm-based regularizer. We analyze the convergence rates
of projected gradient and composite gradient methods for solving such problems, working
within a high-dimensional framework that allows the data dimension d to grow with (and
possibly exceed) the sample size n. This high-dimensional structure precludes the usual
global assumptions—namely, strong convexity and smoothness conditions—that underlie
much of classical optimization analysis.

In Chapter 5, we define appropriately restricted versions of these conditions, and show
that they are satisfied with high probability for various statistical models. Under these con-
ditions, our theory guarantees that projected gradient descent has a globally geometric rate
of convergence up to the statistical precision of the model, meaning the typical distance be-
tween the true unknown parameter θ∗ and an optimal solution θ̂. This result is substantially
sharper than previous convergence results, which yielded sublinear convergence, or linear
convergence only up to the noise level. Our analysis applies to a wide range ofM-estimators
and statistical models, including sparse linear regression using Lasso (`1-regularized regres-
sion); group Lasso for block sparsity; log-linear models with regularization; low-rank matrix
recovery using nuclear norm regularization; and matrix decomposition. Overall, our analysis
reveals interesting connections between statistical precision and computational efficiency in
high-dimensional estimation.

An interesting aspect of our results is that the global geometric convergence is not guar-
anteed to an arbitrary numerical precision, but only to an accuracy related to statistical
precision of the problem. Note that this is very natural from the statistical perspective,
since it is the true parameter θ∗ itself (as opposed to the solution θ̂ of the M-estimator) that
is of primary interest, and our analysis allows us to approach it as close as is statistically
possible. Our analysis shows that we can geometrically converge to a parameter θ such

that ‖θ − θ∗‖ =
∥∥∥θ̂ − θ∗

∥∥∥ + o
(∥∥∥θ̂ − θ∗

∥∥∥
)
, which is the best we can hope for statistically,

ignoring lower order terms. Overall, our results reveal an interesting connection between the
statistical and computational properties of M-estimators—that is, the properties of the un-
derlying statistical model that make it favorable for estimation also render it more amenable
to optimization procedures.
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1.3.4 Asymptotically optimal algorithms for distributed learning

A natural computational framework for learning with massive amounts of data is parallel
and distributed computation. This presents novel algorithmic challenges, since a vast ma-
jority of machine learning algorithms tend to be iterative; stochastic and online optimization
algorithms being prime examples. The inherent sequential nature of these algorithms pre-
cludes obvious parallelization, which has led to search for new algorithms and abstractions
fit for distributed machine learning problems. As mentioned earlier in this introduction, dis-
tributed convex optimization algorithms provide a partial answer to this question, but they
consider structures more general than typical setups in distributed learning. As a result,
they typically incur a slowdown from decentralization—there is a penalty for distributed
computation and it is ideal to have a centralized algorithm whenever possible. There have
been recent works [57, 137] that demonstrate that these slowdowns can, however, be avoided
by leveraging the greater structure present in typical distributed machine learning problems.

In Chapter 6, we analyze the convergence of gradient-based optimization algorithms that
base their updates on delayed stochastic gradient information. The main application of our
results is to the development of gradient-based distributed optimization algorithms where a
master node performs parameter updates while worker nodes compute stochastic gradients
based on local information in parallel, which may give rise to delays due to asynchrony. Our
main contribution is to show that for smooth stochastic problems, the delays are asymp-
totically negligible and we can achieve order-optimal convergence results. In application to
distributed optimization, we develop procedures that overcome communication bottlenecks
and synchronization requirements. We show n-node architectures whose optimization error
in stochastic problems—in spite of asynchronous delays—scales asymptotically asO(1/

√
nT )

after T iterations. This rate is known to be optimal for a distributed system with n nodes
even in the absence of delays. We additionally complement our theoretical results with
numerical experiments on a logistic regression task.

1.4 Thesis Overview

The remainder of this thesis is organized as follows. In Chapter 2, we provide a survey
of some of the background material from statistics and learning theory, as well as convex
optimization. Chapter 3 presents a minimax framework for understanding the complexity
of stochastic convex optimization problems, and gives lower bounds on this complexity for
various problem classes of interest. In Chapter 4, we develop a setup for model selection
problems, given computational budget constraints. Within the setup, we present new model
selection algorithms and statistical oracle inequalities on their performance. Chapter 5 con-
siders how we can exploit the structural assumptions underlying many high-dimensional
estimation problems for rapid convergence of optimization algorithms. The results show an
intricate interplay between the computational and statistical sample complexities of these
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problems. In Chapter 6, we discuss how the computational techniques can be modified to
adapt them to parallel and distributed computational infrastructures. Our results demon-
strate an asymptotically optimal linear speedup with the number of nodes, under reasonable
assumptions on the learning problem. Finally, we conclude in Chapter 7 by summarizing
the high-level message of this thesis, and outlining directions for future work. Some of the
more technical proofs will be deferred to the Appendices.
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Chapter 2

Background

The aim of this chapter is to set up some of the concepts that will be frequently used
throughout the thesis. More specialized concepts relevant to particular chapters will be
introduced in those chapters. As the title indicates, this thesis studies questions at the
intersection of statistics and computation. Consequently, we will need concepts from both
the domains to provide the background for this work. Specifically, we will require concepts
from convex optimization on the computational side, and basics of decision and learning
theory on the statistical side. We start by giving a broad setting that captures a vast
majority of machine learning problems, and then go on to discuss these computational and
statistical backgrounds.

2.1 Typical problem setup

In a typical learning or statistical estimation problem, we receive a sequence of samples
z1, z2, . . . , zn. In this thesis we will restrict attention to scenarios where the samples are
drawn i.i.d. according to an unknown distribution. There is an underlying parameter θ of
interest that we are trying to estimate from this data. For simplicity, we will restrict our
attention to settings where θ ∈ Rd for most of this thesis, although a vast majority of the
concepts extend to general functional mappings. The quality of a parameter θ in making a
prediction regarding the sample z is measured through a loss function `(θ; z). Examples of
some of the loss functions commonly used in the literature are:

• Negative log likelihood: Assume an indexed family of distributions Pθ(z) with a density
pθ, and suppose that the samples are drawn i.i.d. according to Pθ∗(z) where θ

∗ is un-
known. Then we define `(θ; z) = − log pθ(z), which results in the maximum likelihood
estimation principle.

• 0-1 loss: Suppose our samples consist of pairs (x, y) where x ∈ Rd is the covariate
vector and y ∈ {−1, 1} is the associated binary label. Let θ : Rd 7→ {−1,+1} be a
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mapping that predicts a binary label, given a data vector. A common loss function
for such classification problems is the indicator `(θ; (x, y)) = I(θ(x) 6= y), where θ(x)
is the prediction on x and I(A) is the 0-1 valued indicator function for the event A. A
typical example is θ(x) = sign(θTx).

• Squared loss: Once again our samples consist of pairs (x, y) with x ∈ Rd, but this
time we have y ∈ R. For such problems, least squares regression is defined via the loss
function `(θ; (x, y)) = (y − θTx)2 and results in the ordinary least squares estimator.

Letting E denote expectation with respect to the (unknown) probability distribution
underlying our samples, a typical goal in statistical estimation is to recover

θ∗ = argmin
θ∈Ω

E`(θ; z). (2.1)

Since the distribution is unknown, we cannot compute θ∗ directly, and machine learning
aims to define estimators for θ∗ based on the observed data samples. One particular principle
that is rather ubiquitous for defining such estimators has been called (regularized) Empirical
Risk Minimization (ERM) in machine learning, (regularized) M-estimation in frequentist
statistics and MAP estimation in the Bayesian literature. Based on a regularization function
R, we define the estimator as

θ̂n = argmin
θ∈Ω

f(θ); where f(θ) :=

{
1

n

n∑

i=1

`(θ; zi) + λnR(θ)

}
. (2.2)

Characterizing the statistical and computational properties of such estimators is a key
question of interest in statistics and machine learning. These properties often depend criti-
cally on the regularizerR, which serves to prevent overfitting statistically, and often improves
the numerical conditioning of the computational problem. Some of the commonly used reg-
ularizers in the literature include

• The simplest setting is unregularized ERM, corresponding to R(θ) ≡ 0.

• For θ ∈ Rd, a common choice is the squared `2-norm, R(θ) = ‖θ‖22. When θ belongs to
a general Hilbert or Banach space, we replace the `2-norm with the associated norm for
the space. This is often called ridge regularization owing to its use in ridge regression.

• For θ ∈ Rd, another regularizer of interest is the `1-norm: R(θ) = ‖θ‖1 =
∑d

i=1 |θi|.
This regularizer is common in applications where the desired estimator is sparse, and
various extensions are also considered in the literature.

• The final example we consider is motivated by the maximum entropy principle, and
is used when the parameters θ are non-negative. We define the negative entropy
regularizer: R(θ) =

∑d
i=1 (θi log θi − θi).
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Below we present some of the background concepts from convex optimization, crucial to
solving the computational problem (2.2) before proceeding to the statistical concepts.

2.2 Background on convex optimization

The estimator (2.2) is naturally defined as the solution of a numerical optimization problem,
and in many typical scenarios, the objective f(θ) and the constraint set Ω are both convex.
Clearly f is convex whenever the loss function `(θ; z) and the regularizer R(θ) are both
convex functions of θ. The negative log likelihood loss is convex when the distribution
Pθ comes from an exponential family with natural parameter θ, and it is easy to see that
the least squares loss is always convex. The 0-1 loss is not convex, and a large body of
literature on classification problems studies the computational and statistical properties of
convex upper bounds on the 0-1 loss. Two such popular surrogate losses are the hinge loss
`(θ; z) = max{0, 1 − yθTx} and the logistic loss `(θ; z) = log(1 + exp(−yθTx)). We refer
the reader to the excellent works [179, 16] for the statistical implications of using these
surrogate losses. As for the regularizer R, we see that all the examples discussed earlier
are indeed convex, although there has been work on non-convex regularization as well, most
prominently for variable selection problems in high dimensions [66, 178].

For the remainder of this thesis, we will restrict our attention to problems where the loss
function `(θ; z) and the regularizer R(θ) are both convex in θ, and the constraint set Ω is
also convex. As a result, the optimization problem (2.2) is convex, and can be solved in
polynomial time. Perhaps the simplest algorithm to solve the problem is projected gradient
descent which is an iterative algorithm that starts with an arbitrary initialization θ0 ∈ Ω,
and successively updates:

θt+1 = ΠΩ

(
θt − α(t)∇f(θt)

)
. (2.3)

Here ΠΩ (θ) = argminθ̃∈Ω

∥∥∥θ̃ − θ
∥∥∥
2

2
is the projection of θ on to the constraint set Ω. Some

of the other prominent approaches to solve the problem (2.2) include co-ordinate descent
methods, quasi-Newton approaches such as L-BFGS [41] and interior point methods [123].
While a detailed discussion of all the relevant optimization algorithms and their properties
is beyond the scope of this thesis, we refer the reader to the excellent texts [35, 28] for an
in-depth treatment, as well as the recent text [149] that specifically surveys optimization
algorithms for machine learning.

To describe some of the complexity aspects of the above mentioned optimization algo-
rithms relevant to this thesis, we will first need to recall some standard definitions about
the properties of the objective function f (2.2). We refer the reader to standard texts on
convex analysis [76, 140] for a more detailed treatment. For a convex function f , we define
the sub-differential set
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∂f(θ) =
{
v ∈ Rd : f(θ̃) ≥ f(θ) + 〈v, θ̃ − θ〉 ∀θ̃ ∈ Rd

}
. (2.4)

A function f is G-Lipschitz with respect to a norm ‖·‖ if |f(θ)− f(θ̃)| ≤ G
∥∥∥θ − θ̃

∥∥∥. We say

that a convex function f is γ`-strongly convex with respect to the norm ‖·‖ if

f(αθ + (1− α)θ̃) ≤ αf(θ) + (1− α)f(θ̃)− α(1− α)
γ`
2

∥∥∥θ − θ̃
∥∥∥
2

. (2.5)

For a norm ‖·‖ we define the dual norm ‖v‖∗ = sup‖θ‖≤1 〈θ, v〉. A differentiable function f
is γu-smooth with respect to the norm ‖·‖ if the gradients are γu-Lipschitz

‖∇f(θ)−∇f(θ̃)‖∗ ≤ γu

∥∥∥θ − θ̃
∥∥∥ ⇐⇒ f(θ̃) ≤ f(θ)+

〈
∇f(θ), θ̃ − θ

〉
+
γu
2

∥∥∥θ − θ̃
∥∥∥
2

. (2.6)

Based on various of the above assumptions, we now mention some complexity results for
the commonly used optimization algorithms mentioned above. All the algorithms mentioned
above are iterative, and we are interested in understanding the minimum number of iterations
T after which f(θT )− f(θ̂n) ≤ ε. When Ω ⊆ Rd and the function f is locally Lipschitz in a

neighborhood around θ̂n, then the ellipsoid algorithm and interior-point methods require at
most d log(1/ε) iterations to attain this goal [123]. This rate is also known to be optimal for
a class of gradient-based algorithms due to matching lower bounds [119]. When the function
f is both smooth and strongly convex with respect to the `2-norm, we define the condition
number κ = γ`/γu ∈ (0, 1). Under these conditions, gradient descent converges linearly, at
a rate κ log(1/ε), while Nesterov’s accelerated gradient methods [122, 159, 96] converge at
a rate

√
κ log(1/ε). The latter is known to be optimal for all first order algorithms under

these assumptions [119]. We note that L-BFGS also converges linearly with a rate c log(1/ε),
where c is a constant that depends on the line-search conditions that are satisfied, and also
enjoys local quadratic convergence.

2.3 Background on stochastic convex optimization

For problems with the structure (2.2), gradient methods have a poor scaling as the number n
of the samples grows. This is because the computation of the gradient of f(θ) involves sum-
ming over the ∇`(θ; zi) terms, increasing at least linearly in number of samples. Stochastic
convex optimization algorithms aim to address this problem by using sampling in place of
summation. Stochastic optimization algorithms for the problem (2.2) operate by drawing a
sample zt uniformly at random from the data. This sampling can be with or without replace-
ment, leading to single or multiple pass optimization algorithms. Based on the sample zt,
we can evaluate the single sample (sub-)gradients ∇`(θ; zt) + λn∇R(θ), which are unbiased
for the problems (2.2) or (2.1) depending on whether the sampling is done with or without
replacement respectively.
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We present below an example of a stochastic first-order algorithm called mirror descent,
and describe some of the complexity results for stochastic convex optimization in the context
of this algorithm. We note that similar, and somewhat improved results are sometimes
possible using other methods such as dual averaging [122, 173] and accelerated gradient
methods [122, 159, 96] respectively. For consistency of notation with standard literature, we
consider the minimization of a general convex function f , with1

θ∗f ∈ argmin
θ∈Ω

f(θ). (2.7)

Mirror descent is a generalization of (projected) stochastic gradient descent, first intro-
duced by Nemirovski and Yudin [119]; here we follow a more recent presentation of it due
to Beck and Teboulle [22]. For a given norm ‖·‖, let ψ : Rd → R∪ {+∞} be a differentiable
function that is 1-strongly convex with respect to ‖·‖ (2.5). We assume that ψ is a function
of Legendre type [140, 76], which implies that the conjugate dual ψ∗ is differentiable on its

domain with ∇ψ∗ =
(
∇ψ
)−1

. For a given proximal function, we let Dψ be the Bregman
divergence induced by ψ, given by

Dψ(θ, θ̃) := ψ(θ)− ψ(θ̃)− 〈∇ψ(θ̃), θ − θ̃〉. (2.8)

With this set-up, we can now describe the mirror descent algorithm based on the proximal
function ψ for minimizing a convex function f over a convex set Ω contained within the
domain of ψ. Starting with an arbitrary initial θ0 ∈ Ω, it generates a sequence {θt}∞t=0

contained within Ω via the updates

θt+1 = argmin
θ∈Ω

{
α(t)〈θ, ∇f(θt)〉+Dψ(θ, θ

t)
}
, (2.9)

where α(t) > 0 is a stepsize. In case of stochastic optimization, ∇f(θt) is simply replaced
by the noisy version v̂(θt) with E[v̂(θt)|θt] = ∇f(θt). We also note that the gradient can be
replaced with an arbitrary element of the subdifferential set (2.4) throughout this discussion.

A special case of this algorithm is obtained by choosing the proximal function ψ(θ) =
1
2
‖θ‖22, which is 1-strongly convex with respect to the Euclidean norm. The associated Breg-

man divergence Dψ(θ, θ̃) =
1
2
‖θ− θ̃‖22 is simply the Euclidean norm, so that the updates (2.9)

correspond to a standard projected gradient descent method. If one receives only an unbi-
ased estimate of the gradient ∇f(θt), then this algorithm corresponds to a form of projected
stochastic gradient descent. Moreover, other choices of the proximal function lead to dif-
ferent stochastic algorithms, squared-`p norms and negative entropy function being prime
examples.

Explicit convergence rates for this algorithm can be obtained under appropriate con-
vexity and Lipschitz assumptions for f . Following the standard assumptions in the litera-
ture, we assume that E [‖v̂(θt)‖2∗ | θt] ≤ G2 for all θ ∈ Ω. Given stochastic mirror descent

1For most of this thesis, our problems will have sufficient regularity that the minimum above is attained,
although it suffices to take any θ∗f such that f(θ∗f ) ≤ minθ∈Ω f(θ) + ε for ε small enough.
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based on unbiased estimates of the gradient, it can be showed that (see e.g., Chapter 5.1
of NY [119] or Beck and Teboulle [22]) with the initialization θ1 = argminθ∈Ω ψ(θ) and
stepsizes α(t) = 1/

√
t, the optimization error of the sequence {θt} is bounded as

1

T

T∑

t=1

E
[
f(θt)− f(θ∗f)

]
≤ G

√
Dψ(θ

∗
f , θ

1)

T
≤ G

√
ψ(θ∗f )

T
(2.10)

Let us define the averaged iterate θ̄(T ) =
∑T

t=1 θ
t/T . Then Jensen’s inequality combined

with the convexity of f further yields the expected convergence rate

E
[
f(θ̄(T ))− f(θ∗f)

]
≤ G

√
ψ(θ∗f)

T

The results can also be generalized to hold with high probability [48, 117], and some of
the specializations and the optimality of such results will be discussed in Chapter 3. From the
point of view of optimization, we see that the sublinear rates (2.10) are exponentially slower
than the linear convergence in the noiseless optimization scenarios. However, in statistical
applications, two factors drive the preference for stochastic approaches: (i) the complexity
of each iteration is typically O(1) instead of O(n) for full-gradient algorithms, and (ii)
statistical problems typically only require optimization to a moderate and not extremely
high precision. A detailed discussion of the latter issue can be found in Chapter 13 of the
recent book [149], and these aspects will also be covered in more depth in Chapters 3 and 5
of this thesis. We also refer the reader to the relevant chapters of the recent text [149], as
well as the ICML 2010 tutorial [151] for more details on the relevance and use of stochastic
optimization methods in machine learning.

2.4 Background on minimax theory in statistics

Once we have an algorithm to compute estimators of the form θ̂n, it is natural to ask how
well does θ̂n perform statistically in estimating θ∗. Different problems come with different
performance criteria, and we discuss the two most frequent notions of risk consistency and
parameter consistency. Based on the loss function `(θ; z), one natural performance metric is

the excess risk E`(θ̂n; z)−E`(θ∗; z). Based on a norm ‖·‖, another commonly used criterion

is the mean squared error E
∥∥∥θ̂n − θ∗

∥∥∥
2

.

A large body of literature in statistics and learning theory is devoted to studying how
these performance measures decay to 0, as n→ ∞, in expectation and with high probability.
Such results typically rely on some assumptions, such as the boundedness of the loss function
`(θ; z), or on its convexity and Lipschitz properties along with appropriate tail conditions
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on the data distribution. When θ̂n is obtained from a stochastic optimization algorithm,
that samples the data zt without replacement for the problem (2.2), then such guarantees
are a direct consequence of the so called online-to-batch conversion [48, 84]. While the
details of how such guarantees are proved are beyond the scope of this brief review, we refer
the reader to the excellent texts [58, 11], as well as some more recent papers and survey
articles [17, 21, 90, 33, 34, 163] for more details.

A complementary line of works also aims to obtain lower bounds on how well any possible
estimator θ̂n can do in estimating θ∗, after observing n samples. A useful concept in decision
theory that helps in such a study is that of minimax error

inf
θ̂n∈Ω

sup
θ∗∈Ω

E

∥∥∥θ̂n − θ∗
∥∥∥
2

,

or the corresponding excess risk variant. Here the infimum is taken over all estimators θ̂n that
can be computed from n samples. While upper bounds on the minimax error are obtained
used the techniques mentioned above, there is also a rich literature on lower bounds. In
particular, for many problems matching upper and lower bounds have been obtained through
the use of Assouad’s lemma, Fano’s inequality of Le Cam’s method [175, 176, 72]. The work
in Chapter 3 on the oracle complexity of stochastic convex optimization will draw upon this
minimax risk framework and lower bound techniques from decision theory.
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Chapter 3

Lower bounds on oracle complexity of
stochastic convex optimization

Convex optimization forms the backbone of many algorithms for statistical learning and
estimation. Given that many statistical estimation problems are large-scale in nature—with
the problem dimension and/or sample size being large—it is essential to make efficient use
of computational resources. Stochastic optimization algorithms are an attractive class of
methods, known to yield moderately accurate solutions in a relatively short time [32]. Given
the popularity of such stochastic optimization methods, understanding the fundamental
computational complexity of stochastic convex optimization is thus a key issue for large-
scale learning. A large body of literature is devoted to obtaining rates of convergence of
specific procedures for various classes of convex optimization problems. A typical outcome
of such analysis is an upper bound on the error—for instance, gap to the optimal cost—
as a function of the number of iterations. Such analyses have been performed for many
standard optimization algorithms, among them gradient descent, mirror descent, interior
point programming, and stochastic gradient descent, to name a few. We refer the reader to
various standard texts on optimization (e.g., [35, 28, 120]) for further details on such results.

On the other hand, there has been relatively little study of the inherent complexity of
convex optimization problems. To the best of our knowledge, the first formal study in this
area was undertaken in the seminal work of Nemirovski and Yudin [119]. One obstacle to a
classical complexity-theoretic analysis, as these authors observed, is that of casting convex
optimization problems in a Turing Machine model. They avoided this problem by instead
considering a natural oracle model of complexity, in which at every round the optimization
procedure queries an oracle for certain information on the function being optimized. This
information can be either noiseless or noisy, depending on whether the goal is to lower
bound the oracle complexity of deterministic or stochastic optimization algorithms. Working
within this framework, the authors obtained a series of lower bounds on the computational
complexity of convex optimization problems, both in deterministic and stochastic settings.
In addition to the original text Nemirovski and Yudin [119], we refer the interested reader to
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the book by Nesterov [120], and the lecture notes by Nemirovski [118] for further background.
In this chapter, we consider the computational complexity of stochastic convex optimiza-

tion within this oracle model. In particular, we improve upon the work of Nemirovski and
Yudin [119] for stochastic convex optimization in two ways. First, our lower bounds have
an improved dependence on the dimension of the space. In the context of statistical esti-
mation, these bounds show how the difficulty of the estimation problem increases with the
number of parameters. Second, our techniques naturally extend to give sharper results for
optimization over simpler function classes. We show that the complexity of optimization for
strongly convex losses is smaller than that for convex, Lipschitz losses. Third, we show that
for a fixed function class, if the set of optimizers is assumed to have special structure such
as sparsity, then the fundamental complexity of optimization can be significantly smaller.
All of our proofs exploit a new notion of the discrepancy between two functions that ap-
pears to be natural for optimization problems. They involve a reduction from a statistical
parameter estimation problem to the stochastic optimization problem, and an application of
information-theoretic lower bounds for the estimation problem. We note that the results of
this chapter appear in the paper [6] and a related study was independently undertaken by
Raginsky and Rakhlin [130].

The remainder of this chapter is organized as follows. We begin in Section 3.1 with
background on oracle complexity, and a precise formulation of the problems addressed in
this chapter. Section 3.2 is devoted to the statement of our main results, and discussion
of their consequences. In Section 3.3, we provide the proofs of our main results, which
all exploit a common framework of four steps. More technical aspects of these proofs are
deferred to the appendices.

Notation: For the convenience of the reader, we collect here some notation used through-
out the chapter. For p ∈ [1,∞], we use ‖θ‖p to denote the `p-norm of a vector θ ∈ Rd, and
we let q denote the conjugate exponent, satisfying 1

p
+ 1

q
= 1. For two distributions P and Q,

we use D(P ‖Q) to denote the Kullback-Leibler (KL) divergence between the distributions.
The notation I(A) refers to the 0-1 valued indicator random variable of the set A. For two
vectors α, β ∈ {−1,+1}d, we define the Hamming distance ∆H(α, β) :=

∑d
i=1 I[αi 6= βi]. We

also recall the definition of the subdifferential set of a convex function (2.4).

3.1 Background and problem formulation

We begin by introducing background on the oracle model of convex optimization, and then
turn to a precise specification of the problem to be studied.
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3.1.1 Convex optimization in the oracle model

Convex optimization is the task of minimizing a convex function f over a convex set Ω ⊆ Rd.
Assuming that the minimum is achieved, it corresponds to computing an element θ∗f that
achieves the minimum—that is, an element θ∗f ∈ argminθ∈Ω f(θ). An optimization method is
any procedure that solves this task, typically by repeatedly selecting values from Ω. For a
given class of optimization problems, our primary focus in this chapter is to determine lower
bounds on the computational cost, as measured in terms of the number of (noisy) function
and subgradient evaluations, required to obtain an ε-optimal solution to any optimization
problem within the class.

More specifically, we follow the approach of Nemirovski and Yudin [119], and measure
computational cost based on the oracle model of optimization. The main components of
this model are an oracle and an information set. An oracle is a (possibly random) function
φ : Ω 7→ I that answers any query θ ∈ Ω by returning an element φ(θ) in an information
set I. The information set varies depending on the oracle; for instance, for an exact oracle
of mth order, the answer to a query θt consists of θt and the first m derivatives of f at θt.
For the case of stochastic oracles studied in this chapter, these values are corrupted with
zero-mean noise with bounded variance. We then measure the computational labor of any
optimization method as the number of queries it poses to the oracle.

In particular, given a positive integer T corresponding to the number of iterations, an
optimization method M designed to approximately minimize the convex function f over
the convex set Ω proceeds as follows. At any given iteration t = 1, . . . , T , the method M
queries at θt ∈ Ω, and the oracle reveals the information φ(θt, f). The method then uses the
information {φ(θ1, f), . . . , φ(θt, f)} to decide at which point θt+1 the next query should be
made. For a given oracle function φ, let MT denote the class of all optimization methods M
that make T queries according to the procedure outlined above. For any method M ∈ MT ,
we define its error on function f after T steps as

εT (M, f,Ω, φ) := f(θT )−min
θ∈Ω

f(θ) = f(θT )− f(θ∗f), (3.1)

where θT is the method’s query at time T . Note that by definition of θ∗f as a minimizing
argument, this error is a non-negative quantity.

When the oracle is stochastic, the method’s query θT at time T is itself random, since it
depends on the random answers provided by the oracle. In this case, the optimization error
εT (M, f,Ω, φ) is also a random variable. Accordingly, for the case of stochastic oracles, we
measure the accuracy in terms of the expected value Eφ[εT (M, f,Ω, φ)], where the expecta-
tion is taken over the oracle randomness. Given a class of functions F defined over a convex
set Ω and a class MT of all optimization methods based on T oracle queries, we define the
minimax error

ε∗T (F ,Ω;φ) := inf
M∈MT

sup
f∈F

Eφ[εT (M, f,Ω, φ)]. (3.2)
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In the sequel, we provide results for particular classes of oracles. So as to ease the notation,
when the oracle φ is clear from the context, we simply write ε∗T (F ,Ω).

3.1.2 Stochastic first-order oracles

In this chapter, we study stochastic oracles for which the information set I ⊂ R×Rd consists
of pairs of noisy function and subgradient evaluations. More precisely, we have:

Definition 3.1. For a given set Ω and function class F , the class of first-order stochastic
oracles consists of random mappings φ : S × F → I of the form φ(θ, f) = (f̂(θ), v̂(θ)) such
that

E[f̂ (θ)] = f(θ), E[v̂(θ)] ∈ ∂f(θ), and E
[
‖v̂(θ)‖2p

]
≤ σ2. (3.3)

We use Op,σ to denote the class of all stochastic first-order oracles with parameters (p, σ).

Note that the first two conditions imply that f̂(θ) is an unbiased estimate of the function
value f(θ), and that v̂(θ) is an unbiased estimate of a subgradient v ∈ ∂f(θ). When f is
actually differentiable, then v̂(θ) is an unbiased estimate of the gradient ∇f(θ). The third
condition in equation (3.3) controls the “noisiness” of the subgradient estimates in terms of
the `p-norm.

Stochastic gradient methods are a widely used class of algorithms that can be understood
as operating based on information provided by a stochastic first-order oracle. As a particular
example, consider a function of the separable form (2.2). The natural stochastic gradient
method for this problem is to choose an index i ∈ {1, 2, . . . , n} uniformly at random, and
then to return the pair (`(θ; zi),∇`(θ; zi)). Taking averages over the randomly chosen index
i yields 1

n

∑n
i=1 `(θ; zi) = f(θ), so that `(θ; zi) is an unbiased estimate of f(θ), with an

analogous unbiased property holding for the gradient of `(θ; zi).

3.1.3 Function classes of interest

We now turn to the classes F of convex functions for which we study oracle complexity.
In all cases, we consider real-valued convex functions defined over some convex set Ω. We
assume without loss of generality that Ω contains an open set around 0, and many of our
lower bounds involve the maximum radius r = r(Ω) > 0 such that

Ω ⊇ B∞(r) :=
{
θ ∈ Rd | ‖θ‖∞ ≤ r

}
. (3.4)

Our first class consists of convex Lipschitz functions:

Definition 3.2. For a given convex set Ω ⊆ Rd and parameter p ∈ [1,∞], the class
Fcv(Ω, G, p) consists of all convex functions f : Ω → R such that

∣∣f(θ)− f(θ̃)
∣∣ ≤ G ‖θ − θ̃‖q for all θ, θ̃ ∈ Ω, (3.5)

where 1
q
= 1− 1

p
.
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We have defined the Lipschitz condition (3.5) in terms of the conjugate exponent q ∈
[1,∞], defined by the relation 1

q
= 1 − 1

p
. To be clear, our motivation in doing so is to

maintain consistency with our definition of the stochastic first-order oracle, in which we
assumed that E

[
‖v̂(θ)‖2p

]
≤ σ2. We note that the Lipschitz condition (3.5) is equivalent to

the condition

‖v‖p ≤ G ∀v ∈ ∂f(θ), and for all θ ∈ int(Ω).

If we consider the case of a differentiable function f , the unbiasedness condition in Defini-
tion 3.1 implies that

‖∇f(θ)‖p = ‖E[v̂(θ)]‖p
(a)

≤ E‖v̂(θ)‖p
(b)

≤
√
E‖v̂(θ)‖2p ≤ σ,

where inequality (a) follows from the convexity of the `p-norm and Jensen’s inequality, and

inequality (b) is a result of Jensen’s inequality applied to the concave function
√
θ. This

bound implies that f must be Lipschitz with constant at most σ with respect to the dual
`q-norm. Therefore, we necessarily must have G ≤ σ, in order for the function class from
Definition 3.2 to be consistent with the stochastic first-order oracle.

A second function class consists of strongly convex functions, defined as follows:

Definition 3.3. For a given convex set Ω ⊆ Rd and parameter p ∈ [1,∞], the class
Fscv(Ω, p;G, γ`) consists of all convex functions f : Ω → R such that the Lipschitz con-
dition (3.5) holds, and such that f satisfies the `2-strong convexity condition

f(αθ + (1− α)θ̃) ≤ αf(θ) + (1− α)f(θ̃)− α(1− α)
γ2`
2
‖θ − θ̃‖22 for all θ, θ̃ ∈ Ω. (3.6)

In this chapter, we restrict our attention to the case of strong convexity with respect
to the `2-norm. (Similar results on the oracle complexity for strong convexity with respect
to different norms can be obtained by straightforward modifications of the arguments given
here). For future reference, it should be noted that the Lipschitz constant G and strong
convexity constant γ` interact with one another. In particular, whenever Ω ⊂ Rd contains
the `∞-ball of radius r, the Lipschitz G and strong convexity γ` constants must satisfy the
inequality

G

γ2`
≥ r

4
d1/p. (3.7)

In order to establish this inequality, we note that strong convexity condition with α = 1/2
implies that

γ2`
8

≤
f(θ) + f(θ̃)− 2f

(
θ+θ̃
2

)

2‖θ − θ̃‖22
≤ G‖θ − θ̃‖q

2‖θ − θ̃‖22



CHAPTER 3. ORACLE COMPLEXITY OF CONVEX OPTIMIZATION 24

We now choose the pair θ, θ̃ ∈ Ω such that ‖θ− θ̃‖∞ = r and ‖θ− θ̃‖2 = r
√
d. Such a choice is

possible whenever Ω contains the `∞ ball of radius r. Since we have ‖θ− θ̃‖q ≤ d1/q‖θ− θ̃‖∞,

this choice yields
γ2`
4
≤ Gd

1
q −1

r
, which establishes the claim (3.7).

As a third example, we study the oracle complexity of optimization over the class of
convex functions that have sparse minimizers. This class of functions is well-motivated, since
a large body of statistical work has studied the estimation of vectors, matrices and functions
under various types of sparsity constraints. A common theme in this line of work is that the
ambient dimension d enters only logarithmically, and so has a mild effect. Consequently, it
is natural to investigate whether the complexity of optimization methods also enjoys such a
mild dependence on ambient dimension under sparsity assumptions.

For a vector θ ∈ Rd, we use ‖θ‖0 to denote the number of non-zero elements in θ. Recalling
the set Fcv(Ω, G, p) from Definition 3.2, we now define a class of Lipschitz functions with
sparse minimizers.

Definition 3.4. For a convex set Ω ⊂ Rd and positive integer s ≤ bd/2c, let

Fsp(s; Ω, G) :=
{
f ∈ Fcv(Ω, G,∞) | ∃ θ∗ ∈ argmin

θ∈Ω
f(θ) satisfying ‖θ∗‖0 ≤ s.

}
(3.8)

be the class of all convex functions that are G-Lipschitz in the `∞-norm, and have at least
one s-sparse optimizer.

We frequently use the shorthand notation Fsp(s) when the set Ω and parameter G are clear
from context.

3.2 Main results and their consequences

With the setup of stochastic convex optimization in place, we are now in a position to state
the main results of this chapter, and to discuss some of their consequences. As previously
mentioned, a subset of our results assume that the set Ω contains an `∞ ball of radius
r = r(Ω). Our bounds scale with r, thereby reflecting the natural dependence on the size of
the set Ω. Also, we set the oracle second moment bound σ to be the same as the Lipschitz
constant G in our results.

3.2.1 Oracle complexity for convex Lipschitz functions

We begin by analyzing the minimax oracle complexity of optimization for the class of
bounded and convex Lipschitz functions Fcv from Definition 3.2.
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Theorem 3.1. Let Ω ⊂ Rd be a convex set such that Ω ⊇ B∞(r) for some r > 0. Then
for a universal constant c0 > 0, the minimax oracle complexity over the class Fcv(Ω, G, p)
satisfies the following lower bounds:

(a) For 1 ≤ p ≤ 2,

sup
φ∈Op,G

ε∗T (Fcv,Ω;φ) ≥ min

{
c0G r

√
d

T
,
Gr

144

}
. (3.9)

(b) For p > 2,

sup
φ∈Op,G

ε∗T (Fcv,Ω;φ) ≥ min

{
c0G r

d1−
1
p

√
T
,
Gd1−1/pr

72

}
. (3.10)

Remarks: Nemirovski and Yudin [119] proved the lower bound Ω
(

1√
T

)
for the function

class Fcv, in the special case that Ω is the unit ball of a given norm, and the functions
are Lipschitz in the corresponding dual norm. For p ≥ 2, they established the minimax
optimality of this dimension-independent result by appealing to a matching upper bound
achieved by the method of mirror descent. In contrast, here we do not require the two
norms—namely, that constraining the set Ω and that for the Lipschitz constraint—to be dual
to one other; instead, we give give lower bounds in terms of the largest `∞ ball contained
within the constraint set Ω. As discussed below, our bounds do include the results for the
dual setting of past work as a special case, but more generally, by examining the relative
geometry of an arbitrary set with respect to the `∞ ball, we obtain results for arbitrary
sets. (We note that the `∞ constraint is natural in many optimization problems arising in
machine learning settings, in which upper and lower bounds on variables are often imposed.)
Thus, in contrast to the past work of NY on stochastic optimization, our analysis gives
sharper dimension dependence under more general settings. It also highlights the role of the
geometry of the set Ω in determining the oracle complexity.

In general, our lower bounds cannot be improved, and hence specify the optimal minimax
oracle complexity. We consider here some examples to illustrate their sharpness. Throughout
we assume that T is large enough to ensure that the 1/

√
T term attains the lower bound

and not the G/144 term. (This condition is reasonable given our goal of understanding the
rate as T increases, as opposed to the transient behavior over the first few iterations.)

(a) We start from the special case that has been primarily considered in past works. We
consider the class Fcv(Bq(1), G, p) with q = 1−1/p and the stochastic first-order oracles
Op,G for this class. Then the radius r of the largest `∞ ball inscribed within the Bq(1)
scales as r = d−1/q. By inspection of the lower bounds bounds (3.9) and (3.10), we see
that

sup
φ∈Op,G

ε∗T (Fcv,Bq(1);φ) =

{
Ω
(
G d1/2−1/q

√
T

)
for 1 ≤ p ≤ 2

Ω
(
G
T

)
for p ≥ 2.

(3.11)
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As mentioned previously, the dimension-independent lower bound for the case p ≥ 2
was demonstrated in Chapter 5 of NY, and shown to be optimal1 since it is achieved
using mirror descent with the prox-function ‖ · ‖q. For the case of 1 ≤ p < 2, the lower
bounds are also unimprovable, since they are again achieved (up to constant factors)
by stochastic gradient descent. See Appendix A.3 for further details on these matching
upper bounds.

(b) Let us now consider how our bounds can also make sharp predictions for non-dual
geometries, using the special case Ω = B∞(1). For this choice, we have r(Ω) = 1, and
hence Theorem 3.1 implies that for all p ∈ [1, 2], the minimax oracle complexity is
lower bounded as

sup
φ∈Op,G

ε∗T (Fcv,B∞(1);φ) = Ω

(
G

√
d

T

)
.

This lower bound is sharp for all p ∈ [1, 2]. Indeed, for any convex set Ω, stochas-
tic gradient descent achieves a matching upper bound (see Section 5.2.4, p. 196 of
NY [119], as well as Appendix A.3 in this chapter for further discussion).

(c) As another example, suppose that Ω = B2(1). Observe that this `2-norm unit ball sat-
isfies the relation B2(1) ⊃ 1√

d
B∞(1), so that we have r(B2(1)) = 1/

√
d. Consequently,

for this choice, the lower bound (3.9) takes the form

sup
φ∈Op,G

ε∗T (Fcv,B2(1);φ) = Ω

(
G

1√
T

)
,

which is a dimension-independent lower bound. This lower bound for B2(1) is in-
deed tight for p ∈ [1, 2], and as before, this rate is achieved by stochastic gradient
descent [119].

(d) Turning to the case of p > 2, when Ω = B∞(1), the lower bound (3.10) can be achieved
(up to constant factors) using mirror descent with the dual norm ‖ · ‖q; for further
discussion, we again refer the reader to Section 5.2.1, p. 190 of NY [119], as well as to
Appendix A.3 of this chapter. Also, even though this lower bound requires the oracle
to have only bounded variance, our proof actually uses a stochastic oracle based on
Bernoulli random variables, for which all moments exist. Consequently, at least in
general, our results show that there is no hope of achieving faster rates by restricting
to oracles with bounds on higher-order moments. This is an interesting contrast to the
case of having less than two moments, in which the rates are slower. For instance, as
shown in Section 5.3.1 of NY [119], suppose that the gradient estimates in a stochastic
oracle satisfy the moment bound E‖v̂(θ)‖bp ≤ σ2 for some b ∈ [1, 2). In this setting, the

1There is an additional logarithmic factor in the upper bounds for p = Ω(log d).
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oracle complexity is lower bounded by Ω
(
T−(b−1)/b

)
. Since T

b−1
b � T

1
2 for all b ∈ [1, 2),

there is a significant penalty in convergence rates for having less than two bounded
moments.

(e) Even though the results have been stated in a first-order stochastic oracle model, they
actually hold in a stronger sense. Let ∇if(θ) denote the ith-order derivative of f
evaluated at θ, when it exists. With this notation, our results apply to an oracle that
responds with a random function f̂t such that

E[f̂t(θ)] = E[f(θ)], and E[∇if̂t(θ)] = ∇if(θ) for all θ ∈ Ω and i such that ∇if(θ) exists,

along with appropriately bounded second moments of all the derivatives. Consequently,
higher-order gradient information cannot improve convergence rates in a worst-case
setting. Indeed, the result continues to hold even for the significantly stronger oracle
that responds with a random function that is a noisy realization of the true function.
In this sense, our result is close in spirit to a statistical sample complexity lower bound.
Our proof technique is based on constructing a “packing set” of functions, and thus
has some similarity to techniques used in statistical minimax analysis (e.g., [72, 31,
175, 176]) and learning theory (e.g., [169, 65, 148]). A significant difference, as will
be shown shortly, is that the metric of interest for optimization is very different than
those typically studied in statistical minimax theory.

3.2.2 Oracle complexity for strongly convex Lipschitz functions

We now turn to the statement of lower bounds over the class of Lipschitz and strongly convex
functions Fscv from Definition 3.3. In all these statements, we assume that γ2` ≤ 4Gd−1/p

r
, as

is required for the definition of Fscv to be sensible.

Theorem 3.2. Let Ω = B∞(r). Then there exist universal constants c1, c2 > 0 such that
the minimax oracle complexity over the class Fscv(Ω, p;G, γ`) satisfies the following lower
bounds:

(a) For p = 1, we have

sup
φ∈Op,G

ε∗(Fscv, φ) ≥ min

{
c1
G2

γ2`T
, c2Gr

√
d

T
,

G2

1152γ2`d
,
Gr

144

}
. (3.12)

(b) For p > 2, we have:

sup
φ∈Op,G

ε∗(Fscv, φ) ≥ min

(
c1
G2d1−2/p

γ2`T
, c2

Grd1−1/p

√
T

,
G2d1−2/p

1152γ2`
,
Grd1−1/p

144

)
. (3.13)
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As with Theorem 3.1, these lower bounds are sharp. In particular, for S = B∞(1),
stochastic gradient descent achieves the rate (3.12) up to logarithmic factors [75], and closely
related algorithms proposed in very recent works [74, 82] match the lower bound exactly up
to constant factors. It should be noted Theorem 3.2 exhibits an interesting phase transition
between two regimes. On one hand, suppose that the strong convexity parameter γ2` is large:
then as long as T is sufficiently large, the first term Ω(1/T ) determines the minimax rate,
which corresponds to the fast rate possible under strong convexity. In contrast, if we consider
a poorly conditioned objective with γ` ≈ 0, then the term involving Ω(1/

√
T ) is dominant,

corresponding to the rate for a convex objective. This behavior is natural, since Theorem 3.2
recovers (as a special case) the convex result with γ` = 0. However, it should be noted that
Theorem 3.2 applies only to the set B∞(r), and not to arbitrary sets Ω like Theorem 3.1.
Consequently, the generalization of Theorem 3.2 to arbitrary convex, compact sets remains
an interesting open question.

3.2.3 Oracle complexity for convex Lipschitz functions with sparse

optima

Finally, we turn to the oracle complexity of optimization over the class Fsp from Defini-
tion 3.4.

Theorem 3.3. Let Fsp be the class of all convex functions that are G-Lipschitz with respect
to the ‖ · ‖∞ norm and that have a s-sparse optimizer. Let Ω ⊂ Rd be a convex set with
B∞(r) ⊆ Ω. Then there exists a universal constant c0 > 0 such that for all s ≤ bd

2
c, we have

sup
φ∈O∞,G

ε∗(Fsp, φ) ≥ min


c0Gr

√
s2 log d

s

T
,
Gsr

432


 . (3.14)

Remark: If s = O(d1−δ) for some δ ∈ (0, 1) (so that log d
s
= Θ(log d)), then this bound is

sharp up to constant factors. In particular, suppose that we use mirror descent based on the
‖ · ‖1+ε norm with ε = 2 log d/(2 log d− 1). As we discuss in more detail in Appendix A.3, it

can be shown that this technique will achieve a solution accurate to O
(√

s2 log d
T

)
within T

iterations; this achievable result matches our lower bound (3.14) up to constant factors under
the assumed scaling s = O(d1−δ) . To the best of our knowledge, Theorem 3.3 provides the
first tight lower bound on the oracle complexity of sparse optimization.

3.3 Proofs of results

We now turn to the proofs of our main results. We begin in Section 3.3.1 by outlining the
framework and establishing some basic results on which our proofs are based. Sections 3.3.2
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through 3.3.4 are devoted to the proofs of Theorems 3.1 through 3.3 respectively.

3.3.1 Framework and basic results

We begin by establishing a basic set of results that are exploited in the proofs of the main
results. At a high-level, our main idea is to show that the problem of convex optimization
is at least as hard as estimating the parameters of Bernoulli variables—that is, the biases of
d independent coins. In order to perform this embedding, for a given error tolerance ε, we
start with an appropriately chosen subset of the vertices of a d-dimensional hypercube, each
of which corresponds to some values of the d Bernoulli parameters. For a given function
class, we then construct a “difficult” subclass of functions that are indexed by these vertices
of the hypercube. We then show that being able to optimize any function in this subclass
to ε-accuracy requires identifying the hypercube vertex. This is a multiway hypothesis test
based on the observations provided by T queries to the stochastic oracle, and we apply
Fano’s inequality [52] or Le Cam’s bound [98, 176] to lower bound the probability of error.
In the remainder of this section, we provide more detail on each of steps involved in this
embedding.

Constructing a difficult subclass of functions

Our first step is to construct a subclass of functions G ⊆ F that we use to derive lower
bounds. Any such subclass is parametrized by a subset V ⊆ {−1,+1}d of the hypercube,
chosen as follows. Recalling that ∆H denotes the Hamming metric, we let V = {α1, . . . , αM}
be a subset of the vertices of the hypercube such that

∆H(α
j, αk) ≥ d

4
for all j 6= k, (3.15)

meaning that V is a d
4
-packing in the Hamming norm. It is a classical fact (e.g., [109]) that

one can construct such a set with cardinality |V| ≥ (2/
√
e)d/2.

Now let Gbase = {f+
i , f

−
i , i = 1, . . . , d} denote some base set of 2d functions defined on

the convex set Ω, to be chosen appropriately depending on the problem at hand. For a given
tolerance δ ∈ (0, 1

4
], we define, for each vertex α ∈ V, the function

gα(θ) :=
c

d

d∑

i=1

{
(1/2 + αiδ)f

+
i (θ) + (1/2− αiδ) f

−
i (θ)

}
. (3.16)

Depending on the result to be proven, our choice of the base functions {f+
i , f

−
i } and the pre-

factor c will ensure that each gα satisfies the appropriate Lipschitz and/or strong convexity
properties over Ω. Moreover, we will ensure that that all minimizers θα of each gα are
contained within Ω.
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Based on these functions and the packing set V, we define the function class

G(δ) :=
{
gα, α ∈ V

}
. (3.17)

Note that G(δ) contains a total of |V| functions by construction, and as mentioned previously,
our choices of the base functions etc. will ensure that G(δ) ⊆ F . We demonstrate specific
choices of the class G(δ) in the proofs of Theorems 3.1 through 3.3 to follow.

Optimizing well is equivalent to function identification

We now claim that if a method can optimize over the subclass G(δ) up to a certain tolerance,
then it must be capable of identifying which function gα ∈ G(δ) was chosen. We first require
a measure for the closeness of functions in terms of their behavior near each others’ minima.
Recall that we use θ∗f ∈ Rd to denote a minimizing point of the function f . Given a convex

set S ⊆ Rd and two functions f, g, we define

ρ(f, g) := inf
θ∈Ω

[
f(θ) + g(θ)− f(θ∗f )− g(θ∗g)

]
. (3.18)

This discrepancy measure is non-negative, symmetric in its arguments, and satisfies ρ(f, g) = 0

θ∗f θ∗g

f(θ∗f)

g(θ∗g)

infθ∈Ω
{
f(θ) + g(θ)}

Figure 3.1. Illustration of the discrepancy function ρ(f, g). The functions f and g achieve
their minimum values f(θ∗f ) and g(θ∗g) at the points θ∗f and θ∗g respectively.

if and only if θ∗f = θ∗g , so that we may refer to it as a premetric. (It does not satisfy the
triangle inequality nor the condition that ρ(f, g) = 0 if and only if f = g, both of which are
required for ρ to be a metric.)

Given the subclass G(δ), we quantify how densely it is packed with respect to the pre-
metric ρ using the quantity

Φ(G(δ)) := min
α6=β∈V

ρ(gα, gβ). (3.19)
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We denote this quantity by Φ(δ) when the class G is clear from the context. We now state
a simple result that demonstrates the utility of maintaining a separation under ρ among
functions in G(δ).

Lemma 3.1. For any θ̃ ∈ Ω, there can be at most one function gα ∈ G(δ) such that

gα(θ̃)− inf
θ∈Ω

gα(θ) ≤
Φ(δ)

3
. (3.20)

Thus, if we have an element θ̃ ∈ Ω that approximately minimizes one function in the set
G(δ) up to tolerance Φ(δ), then it cannot approximately minimize any other function in the
set.

Proof. For a given θ̃ ∈ Ω, suppose that there exists an α ∈ V such that gα(θ̃)−gα(θ∗α) ≤ Φ(δ)
3
.

From the definition of Φ(δ) in (3.19), for any β ∈ V, β 6= α, we have

Φ(δ) ≤ gα(θ̃)− inf
θ∈Ω

gα(θ) + gβ(θ̃)− inf
θ∈Ω

gβ(θ) ≤ Φ(δ)

3
+ gβ(θ̃)− inf

θ∈Ω
gβ(θ).

Re-arranging yields the inequality gβ(θ̃) − gβ(θ
∗
β) ≥ 2

3
Φ(δ), from which the claim (3.20)

follows.

Suppose that for some fixed but unknown function gα∗ ∈ G(δ), some method MT is
allowed to make T queries to an oracle with information function φ(· ; gα∗), thereby obtaining
the information sequence

φ(zT1 ; g
∗
α) := {φ(θt; g∗α), t = 1, 2, . . . , T}.

Our next lemma shows that if the method MT achieves a low minimax error over the
class G(δ), then one can use its output to construct a hypothesis test that returns the true
parameter α∗ at least 2/3 of the time. (In this statement, we recall the definition (3.2) of
the minimax error in optimization.)

Lemma 3.2. Suppose that based on the data φ(zT1 ; g
∗
α), there exists a method MT that

achieves a minimax error satisfying

E
[
εT (MT ,G(δ),Ω, φ)

]
≤ Φ(δ)

9
. (3.21)

Based on such a method MT , one can construct a hypothesis test α̂ : φ(zT1 ; g
∗
α) → V such

that max
α∗∈V

Pφ[α̂ 6= α∗] ≤ 1
3
.
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Proof. Given a methodMT that satisfies the bound (3.21), we construct an estimator α̂(MT )

of the true vertex α∗ as follows. If there exists some α ∈ V such that gα(θ
T )− gα(θα) ≤ Φ(δ)

3

then we set α̂(MT ) equal to α. If no such α exists, then we choose α̂(MT ) uniformly
at random from V. From Lemma 3.1, there can exist only one such α ∈ V that satis-
fies this inequality. Consequently, using Markov’s inequality, we have Pφ[α̂(MT ) 6= α∗] ≤
Pφ
[
εT (MT , gα∗,Ω, φ) ≥ Φ(δ)/3

]
≤ 1

3
. Maximizing over α∗ completes the proof.

We have thus shown that having a low minimax optimization error over G(δ) implies that
the vertex α∗ ∈ V can be identified most of the time.

Oracle answers and coin tosses

We now describe stochastic first order oracles φ for which the samples φ(zT1 ; gα) can be related
to coin tosses. In particular, we associate a coin with each dimension i ∈ {1, 2, . . . , d}, and
consider the set of coin bias vectors lying in the set

Θ(δ) =
{
(1/2 + α1δ, . . . , 1/2 + αdδ) | α ∈ V

}
, (3.22)

Given a particular function gα ∈ G(δ)—or equivalently, vertex α ∈ V—we consider two dif-
ferent types of stochastic first-order oracles φ, defined as follows:

Oracle A: 1-dimensional unbiased gradients

(a) Pick an index i ∈ {1, . . . , d} uniformly at random.

(b) Draw bi ∈ {0, 1} according to a Bernoulli distribution with parameter 1/2 +
αiδ.

(c) For the given input θ ∈ Ω, return the value ĝα,A(θ) and a sub-gradient
v̂α,A(θ) ∈ ∂ĝα,A(θ) of the function

ĝα,A := c
[
bif

+
i + (1− bi)f

−
i

]
.

By construction, the function value and gradients returned by Oracle A are unbiased
estimates of those of gα. In particular, since each co-ordinate i is chosen with probability
1/d, we have

E
[
ĝα,A(θ)

]
=
c

d

d∑

i=1

[
E[bi]f

+
i (θ) + E[1 − bi]f

−
i (θ)

]
= gα(θ),
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with a similar relation for the gradient. Furthermore, as long as the base functions f+
i and

f−
i have gradients bounded by 1, we have E[‖v̂α,A(θ)‖p] ≤ c for all p ∈ [1,∞].

Parts of proofs are based on an oracle which responds with function values and gradients
that are d-dimensional in nature.

Oracle B: d-dimensional unbiased gradients

(a) For i = 1, . . . , d, draw bi ∈ {0, 1} according to a Bernoulli distribution with
parameter 1/2 + αiδ.

(b) For the given input θ ∈ Ω, return the value ĝα,B(θ) and a sub-gradient
v̂α,B(θ) ∈ ∂ĝα,B(θ) of the function

ĝα,B :=
c

d

d∑

i=1

[
bif

+
i + (1− bi)f

−
i

]
.

As with Oracle A, this oracle returns unbiased estimates of the function values and
gradients. We frequently work with functions f+

i , f
−
i that depend only on the ith coordinate

θ(i). In such cases, under the assumptions | ∂f
+
i

∂θ(i)
| ≤ 1 and | ∂f

−
i

∂θ(i)
| ≤ 1, we have

‖v̂α,B(θ)‖2p =
c2

d2

(
d∑

i=1

∣∣∣∣bi
∂f+

i (θ)

∂θ(i)
+ (1− bi)

∂f−
i (θ)

∂θ(i)

∣∣∣∣
p
)2/p

≤ c2d2/p−2. (3.23)

In our later uses of Oracles A and B, we choose the pre-factor c appropriately so as to
produce the desired Lipschitz constants.

Lower bounds on coin-tossing

Finally, we use information-theoretic methods to lower bound the probability of correctly
estimating the true parameter α∗ ∈ V in our model. At each round of either Oracle A
or Oracle B, we can consider a set of d coin tosses, with an associated vector θ∗ = (1

2
+

α∗
1δ, . . . ,

1
2
+ α∗

dδ) of parameters. At any round, the output of Oracle A can (at most) reveal
the instantiation bi ∈ {0, 1} of a randomly chosen index, whereas Oracle B can at most reveal
the entire vector (b1, b2, . . . , bd). Our goal is to lower bound the probability of estimating
the true parameter α∗, based on a sequence of length T . As noted previously in remarks
following Theorem 3.1, this part of our proof exploits classical techniques from statistical
minimax theory, including the use of Fano’s inequality (e.g., [72, 31, 175, 176]) and Le Cam’s
bound (e.g., [98, 176]).
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Lemma 3.3. Suppose that the Bernoulli parameter vector α∗ is chosen uniformly at random
from the packing set V, and suppose that the outcome of ` ≤ d coins chosen uniformly at
random is revealed at each round t = 1, . . . , T . Then for any δ ∈ (0, 1/4], any hypothesis test
α̂ satisfies

P[α̂ 6= α∗] ≥ 1− 16`T δ2 + log 2
d
2
log(2/

√
e)

, (3.24)

where the probability is taken over both randomness in the oracle and the choice of α∗.

Note that we will apply the lower bound (3.24) with ` = 1 in the case of Oracle A, and ` = d
in the case of Oracle B.

Proof. For each time t = 1, 2, . . . , T , let Ut denote the randomly chosen subset of size `, Xt,i

be the outcome of oracle’s coin toss at time t for coordinate i and let Yt ∈ {−1, 0, 1}d be a
random vector with entries

Yt,i =

{
Xt,i if i ∈ Ut, and

−1 if i /∈ Ut.

By Fano’s inequality [52], we have the lower bound

P[α̂ 6= α∗] ≥ 1− I({(Ut, Yt}Tt=1;α
∗) + log 2

log |V| ,

where I({(Ut, Yt}Tt=1;α
∗) denotes the mutual information between the sequence {(Ut, Yt)}Tt=1

and the random parameter vector α∗. As discussed earlier, we are guaranteed that log |V| ≥
d
2
log(2/

√
e). Consequently, in order to prove the lower bound (3.24), it suffices to establish

the upper bound I({Ut, Yt}Tt=1;α
∗) ≤ 16T ` δ2.

By the independent and identically distributed nature of the sampling model, we have

I(((U1, Y1), . . . , (UT , YT ));α
∗) =

T∑

t=1

I((Ut, Yt);α
∗) = T I((U1, Y1);α

∗),

so that it suffices to upper bound the mutual information for a single round. To simplify
notation, from here onwards we write (Y, U) to mean the pair (Y1, U1). With this notation,
the remainder of our proof is devoted to establishing that I(Y ;U) ≤ 16 ` δ2,

By chain rule for mutual information [52], we have

I((U, Y );α∗) = I(Y ;α∗ | U) + I(α∗;U). (3.25)

Since the subset U is chosen independently of α∗, we have I(α∗;U) = 0, and so it suffices to
upper bound the first term. By definition of conditional mutual information [52], we have

I(Y ;α∗ | U) = EU
[
D(PY |α∗,U ‖ PY |U)

]
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Since α has a uniform distribution over V, we have PY |U = 1
|V|
∑

α∈V PY |α,U , and convexity

of the Kullback-Leibler (KL) divergence yields the upper bound

D(PY |α∗,U ‖ PY |U) ≤
1

|V|
∑

α∈V
D(PY |α∗,U ‖ PY |α,U). (3.26)

Now for any pair α∗, α ∈ V, the KL divergence D(PY |α∗,U ‖ PY |α,U) can be at most the
KL divergence between ` independent pairs of Bernoulli variates with parameters 1

2
+ δ and

1
2
−δ. Letting D(δ) denote the Kullback-Leibler divergence between a single pair of Bernoulli

variables with parameters 1
2
+ δ and 1

2
− δ, a little calculation yields

D(δ) =

(
1

2
+ δ

)
log

1
2
+ δ

1
2
− δ

+

(
1

2
− δ

)
log

1
2
− δ

1
2
+ δ

= 2δ log

(
1 +

4δ

1− 2δ

)

≤ 8δ2

1− 2δ
.

Consequently, as long as δ ≤ 1/4, we have D(δ) ≤ 16δ2. Returning to the bound (3.26), we
conclude that D(PY |α∗,U ‖ PY |U) ≤ 16 ` δ2. Taking averages over U , we obtain the bound
I(Y ;α∗ | U) ≤ 16 ` δ2, and applying the decomposition (3.25) yields I((U, Y );α∗) ≤ 16 ` δ2,
thereby completing the proof.

The reader might have observed that Fano’s inequality yields a non-trivial lower bound
only when |V| is large enough. Since |V| depends on the dimension d for our construction,
we can apply the Fano lower bound only for d large enough. Smaller values of d can be
lower bounded by reduction to the case d = 1; here we state a simple lower bound for
estimating the bias of a single coin, which is a straightforward application of Le Cam’s
bounding technique [98, 176]. In this special case, we have V = {1/2 + δ, 1/2− δ}, and we
recall that the estimator α̂(MT ) takes values in V.

Lemma 3.4. Given a sample size T ≥ 1 and a parameter α∗ ∈ V, let {X1, . . . , XT} be T
i.i.d Bernoulli variables with parameter α∗. Let α̂ be any test function based on these samples
and returning an element of V. Then for any δ ∈ (0, 1/4], we have the lower bound

sup
α∗∈{ 1

2
+δ, 1

2
−δ}

Pα∗ [α̂ 6= α∗] ≥ 1−
√
8Tδ2.

Proof. We observe first that for α̂ ∈ V, Eα∗ [|α̂ − α∗|] = 2δPα∗ [α̂ 6= α∗], so that it suffices to
lower bound the expected error. To ease notation, let Q1 and Q−1 denote the probability
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distributions indexed by α = 1
2
+ δ and α = 1

2
− δ respectively. By Lemma 1 of Yu [176], we

have

sup
α∗∈V

Eα∗ [|α̂− α∗|] ≥ 2δ
{
1− ‖Q1 −Q−1‖1/2

}
.

where we use the fact that |(1/2 + δ)− (1/2− δ)| = 2δ. Thus, we need to upper bound the
total variation distance ‖Q1 −Q−1‖1. From Pinkser’s inequality [52], we have

‖Q1 −Q−1‖1 ≤
√

2D(Q1 ‖Q−1)
(i)

≤
√
32Tδ2,

where inequality (i) follows from the calculation following Equation 3.26 (see proof of Lemma 3.3),
and uses our assumption that δ ∈ (0, 1/4]. Putting together the pieces, we obtain a lower
bound on the probability of error

sup
α∗∈V

P[α̂ 6= α∗] = sup
α∗∈V

E|α̂− α∗|
2δ

≥ 1−
√
8Tδ2,

as claimed.

Equipped with these tools, we are now prepared to prove our main results.

3.3.2 Proof of Theorem 3.1

We begin with oracle complexity for bounded Lipschitz functions, as stated in Theorem 3.1.
We first prove the result for the set Ω = B∞(1

2
).

Part (a)—Proof for p ∈ [1, 2]: Consider Oracle A that returns the quantities (ĝα,A(θ), v̂α,A(θ)).
By definition of the oracle, each round reveals only at most one coin flip, meaning that we
can apply Lemma 3.3 with ` = 1, thereby obtaining the lower bound

P[α̂(MT ) 6= α] ≥ 1− 2
16Tδ2 + log 2

d log(2/
√
e)

. (3.27)

We now seek an upper bound P[α̂(MT ) 6= α] using Lemma 3.2. In order to do so, we
need to specify the base functions (f+

i , f
−
i ) involved. For i = 1, . . . , d, we define

f+
i (θ) :=

∣∣∣∣θ(i) +
1

2

∣∣∣∣ , and f−
i (θ) :=

∣∣∣∣θ(i)−
1

2

∣∣∣∣ . (3.28)

Given that Ω = B∞(1
2
), we see that the minimizers of gα are contained in S. Also, both the

functions are 1-Lipschitz in the `1-norm. By the construction (3.16), we are guaranteed that
for any subgradient of gα, we have

‖v̂α,A(θ)‖p ≤ 2c for all p ≥ 1.
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Therefore, in order to ensure that gα is G-Lipschitz in the dual `q-norm, it suffices to set
c = G/2.

Let us now lower bound the discrepancy function (3.18). We first observe that each
function gα is minimized over the set B∞

(
1
2

)
at the vector θα := −α/2, at which point it

achieves its minimum value
min

θ∈B∞( 1
2
)
gα(θ) =

c

2
− cδ.

Furthermore, we note that for any α 6= β, we have

gα(θ) + gβ(θ) =
c

d

d∑

i=1

[(
1

2
+ αiδ +

1

2
+ βiδ

)
f+
i (θ) +

(
1

2
− αiδ +

1

2
− βiδ

)
f−
i (θ)

]

=
c

d

d∑

i=1

[
(1 + αiδ + βiδ) f

+
i (θ) + (1− αiδ − βiδ) f

−
i (θ)

]

=
c

d

d∑

i=1

[(
f+
i (θ) + f−

i (θ)
)
I(αi 6= βi) +

(
(1 + 2αiδ)f

+
i (θ) + (1− 2αiδ)f

−
i (θ)

)
I(αi = βi)

]
.

When αi = βi then θα(i) = θβ(i) = −αi/2, so that this co-ordinate does not make a
contribution to the discrepancy function ρ(gα, gβ). On the other hand, when αi 6= βi, we
have

f+
i (θ) + f−

i (θ) =

∣∣∣∣θ(i) +
1

2

∣∣∣∣+
∣∣∣∣θ(i)−

1

2

∣∣∣∣ ≥ 1 for all θ ∈ Rd.

Consequently, any such co-ordinate yields a contribution of 2cδ/d to the discrepancy. Re-
calling our packing set (3.15) with d/4 separation in Hamming norm, we conclude that for
any distinct α 6= β within our packing set,

ρ(gα, gβ) =
2cδ

d
∆H(α, β) ≥

cδ

2
,

so that by definition of Φ, we have established the lower bound Φ(δ) ≥ cδ
2
.

Setting the target error ε := cδ
18
, we observe that this choice ensures that ε < Φ(δ)

9
.

Recalling the requirement δ < 1/4, we have ε < c/72. In this regime, we may apply
Lemma 3.2 to obtain the upper bound Pφ[α̂(MT ) 6= α] ≤ 1

3
. Combining this upper bound

with the lower bound (3.27) yields the inequality

1

3
≥ 1− 2

16Tδ2 + log 2

d log(2/
√
e)

.

Recalling that c = G
2
, making the substitution δ = 18ε

c
= 36ε

G
, and performing some algebra

yields

T ≥ c0
G2

ε2

(
d

3
log

(
2√
e

)
− log 2

)
≥ c1

G2d

ε2
for all d ≥ 11 and for all ε ≤ G

144
,
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where c0 and c1 are universal constants. Combined with Theorem 5.3.1 of NY [119] (or by
using the lower bound of Lemma 3.4 instead of Lemma 3.3), we conclude that this lower
bound holds for all dimensions d.

Part (b)—Proof for p > 2: The preceding proof based on Oracle A is also valid for
p > 2, but yields a relatively weak result. Here we show how the use of Oracle B yields the
stronger claim stated in Theorem 3.1(b). When using this oracle, all d coin tosses at each
round are revealed, so that Lemma 3.3 with ` = d yields the lower bound

P[α̂(MT ) 6= α] ≥ 1− 2
16 T d δ2 + log 2

d log(2/
√
e)

. (3.29)

We now seek an upper bound on P[α̂(MT ) 6= α]. As before, we use the set Ω = B∞(1
2
),

and the previous definitions (3.28) of f+
i (θ) and f

−
i (θ). From our earlier analysis (in partic-

ular, equation (3.23)), the quantity ‖v̂α,B(θ)‖p is at most cd1/p−1, so that setting c = Gd1−1/p

yields functions that are Lipschitz with parameter G.
As before, for any distinct pair α, β ∈ V, we have the lower bound

ρ(gα, gβ) =
2cδ

d
∆H(α, β) ≥ cδ

2
,

so that Φ(δ) ≥ cδ
2
. Consequently, if we set the target error ε := cδ

18
, then we are guaranteed

that ε < Φ(δ)
9
, as is required for applying Lemma 3.2. Application of this lemma yields the

upper bound Pφ[α̂(MT ) 6= α] ≤ 1
3
. Combined with the lower bound (3.29), we obtain the

inequality

1

3
≥ 1− 2

16 d T δ2 + log 2

d log(2/
√
e)

.

Substituting δ = 18ε/c yields the scaling ε ≥ c0
c√
T
for all d ≥ 11, ε ≤ c/72 and a universal

constant c0. Recalling that c = Gd1−1/p, we obtain the bound (3.10). Combining this with
Theorem 5.3.1 of NY [119] (or by using the lower bound of Lemma 3.4 instead of Lemma 3.3)
gives the claim for all dimensions.

We have thus completed the proof of Theorem 3.1 in the special case Ω = B∞(1
2
). In order

to prove the general claims, which scale with r when B∞(r) ⊆ Ω, we note that our preceding
proof required only that Ω ⊇ B∞(1

2
) so that the minimizing points θα = −α/2 ∈ Ω for all α

(in particular, the Lipschitz constant of gα does not depend on Ω for our construction). In
the general case, we define our base functions to be

f+
i (θ) =

∣∣∣θ(i) + r

2

∣∣∣ , and f−
i (θ) =

∣∣∣θ(i)− r

2

∣∣∣ .
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With this choice, the functions gα(θ) are minimized at θα = −rα/2, and infθ∈Ω gα(θ) = cd/2− crδ.
Mimicking the previous steps with r = 1/2, we obtain the lower bound

ρ(gα, gβ) ≥
crδ

2
∀α 6= β ∈ V.

The rest of the proof above did not depend on Ω, so that we again obtain the lower bound
T ≥ c0

d
δ2

or T ≥ c0
δ2

depending on the oracle used, for a universal constant c0. In this case,
the difference in ρ computation means that ε = Gδr

36
≤ Gr

144
, from which the general claims

follow.

3.3.3 Proof of Theorem 3.2

We now turn to the proof of lower bounds on the oracle complexity of the class of strongly
convex functions from Definition 3.3. In this case, we work with the following family of base
functions, parametrized by a scalar ϕ ∈ [0, 1):

f+
i (θ) = rϕ|θ(i) + r|+ (1− ϕ)

4
(θ(i) + r)2 , and f−

i (θ) = rϕ|θ(i)− r|+ (1− ϕ)

4
(θ(i)− r)2 .

(3.30)
A key ingredient of the proof is a uniform lower bound on the discrepancy ρ between pairs
of these functions:

Lemma 3.5. Using an ensemble based on the base functions (3.30), we have

ρ(gα, gβ) ≥
{

2cδ2r2

(1−ϕ)d ∆H(α, β) if 1− ϕ ≥ 4δ
1+2δ

cδr2

d
∆H(α, β) if 1− ϕ < 4δ

1+2δ
.

(3.31)

The proof of this lemma is provided in Appendix A.1. Let us now proceed to the proofs of
the main theorem claims.

Part (a)—Proof for p = 1: We observe that both the functions f+
i , f

−
i are r-Lipschitz

with respect to the ‖·‖1 norm by construction. Hence, gα is cr-Lipschitz and furthermore,
by the definition of Oracle A, we have E ‖v̂α,A(θ)‖21 ≤ c2r2. In addition, the function gα is
(1− ϕ)c/(4d)-strongly convex with respect to the Euclidean norm. We now follow the same
steps as the proof of Theorem 3.1, but this time exploiting the ensemble formed by the base
functions (3.30), and the lower bound on the discrepancy ρ(gα, gβ) from Lemma 3.5. We
split our analysis into two sub-cases.

Case 1: First suppose that 1 − ϕ ≥ 4δ/(1 + 2δ), in which case Lemma 3.5 yields the lower
bound

ρ(gα, gβ) ≥ 2cδ2r2

(1− ϕ)d
∆H(α, β)

(i)

≥ cδ2r2

2(1− ϕ)
∀α 6= β ∈ V,
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where inequality (i) uses the fact that ∆H(α, β) ≥ d/4 by definition of V. Hence by definition
of Φ, we have established the lower bound Φ(δ) ≥ cδ2r2

2(1−ϕ) . Setting the target error ε :=

cδ2r2/(18(1 − ϕ)), we observe that this ensures ε ≤ Φ(δ)/9. Recalling the requirement
δ < 1/4, we note that ε < cr2/(288(1− ϕ)). In this regime, we may apply Lemma 3.2 to
obtain the upper bound Pφ[α̂(MT ) 6= α] ≤ 1

3
. Combining this upper bound with the lower

bound (3.24) yields the inequality

1

3
≥ 1− 2

16Tδ2 + log 2

d log(2/
√
e)

≥ 1− 2
288Tε(1−ϕ)

cr2
+ log 2

d log(2/
√
e)

.

Simplifying the above expression yields that for d ≥ 11, we have the lower bound

T ≥ cr2

(
d
3
log(2/

√
e)− log 2

288ε(1− ϕ)

)
≥ cr2

d log(2/
√
e)

28800ε(1− ϕ)
. (3.32)

Finally, we observe that G = cr and γ2` = (1 − ϕ)c/(4d) which gives 1 − ϕ = 4drγ2`/G.
Substituting the above relations in the lower bound (3.32) gives the first term in the stated
result for d ≥ 11.

To obtain lower bounds for dimensions d < 11, we use an argument based on d = 1. For
this special case, we consider f+ and f− to be the two functions of the single coordinate
coming out of definition (3.30). The packing set V consists of only two elements now, cor-
responding to α = 1 and α = −1. Specializing the result of Lemma 3.5 to this case, we see
that the two functions are 2cδ2r2/(1− ϕ) separated. Now we again apply Lemma 3.2 to get
an upper bound on the error probability and Lemma 3.4 to get a lower bound, which gives
the result for d ≤ 11.

Case 2: On the other hand, suppose that 1 − ϕ ≤ 4δ/(1 + 2δ). In this case, appealing to
Lemma 3.5 gives us that ρ(gα, β) ≥ cδr2/4 for α 6= β ∈ V. Recalling that G = cr, we set
the desired accuracy ε := cδr2/36 = Gδr/36. From this point onwards, we mimic the proof
of Theorem 3.1; doing so yields that for all δ ∈ (0, 1/4), we have

T ≥ c0
d

δ2
= c0

G2dr2

ε2
,

corresponding to the second term in Theorem 3.1 for a universal constant c0.

Finally, the third and fourth terms are obtained just like Theorem 3.1 by checking the
condition δ < 1/4 in the two cases above. Overall, this completes the proof for the case
p = 1.

Part (b)—Proof for p > 2: As with the proof of Theorem 3.1(b), we use Oracle B that
returns d-dimensional values and gradients in this case, with the base functions defined in
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equation 3.30. With this choice, we have the upper bound

E‖v̂α,B(θ)‖2p ≤ c2d2/p−2r2,

so that setting the constant c = Gd1−1/p/r ensures that E‖v̂α,B(θ)‖2p ≤ G2. As before, we
have the strong convexity parameter

γ2` =
c(1− ϕ)

4d
=
Gd−1/p(1− ϕ)

4r
,

Also ρ(gα, gβ) is given by Lemma 3.5. In particular, let us consider the case 1−ϕ ≥ 4δ/(1+2δ)

so that Φ(δ) ≥ cδ2r2

2(1−ϕ) and we set the desired accuracy ε := cδ2r2

18(1−ϕ) as before. With this setting

of ε, we invoke Lemma 3.2 as before to argue that Pφ[α̂(MT ) 6= α] ≤ 1
3
. To lower bound the

error probability, we appeal to Lemma 3.3 with ` = d just like Theorem 3.1(b) and obtain
the inequality

1

3
≥ 1− 2

16 d T δ2 + log 2

d log(2/
√
e)

.

Rearranging terms and substituting ε = cδ2r2

18(1−ϕ) , we obtain for d ≥ 11

T ≥ c0

(
1

δ2

)
= c0

(
cr2

ε(1− ϕ)

)
,

for a universal constant c0. The stated result can now be attained by recalling c = Gd1−1/p/r
and γ2` = Gd−1/p(1−ϕ)/r for 1−ϕ ≥ 4δ/(1+2δ) and d ≥ 11. For d < 11, the cases of p > 2
and p = 1 are identical up to constant factors in the lower bounds we state. This completes
the proof for 1− ϕ ≥ 4δ/(1 + 2δ).

Finally, the case for 1−ϕ < 4δ/(1+2δ) involves similar modifications as part(a) by using
the different expression for ρ(gα, gβ). Thus we have completed the proof of this theorem.

3.3.4 Proof of Theorem 3.3

We begin by constructing an appropriate subset of Fsp(s) over which the Fano method can
be applied. Let V(s) := {α1, . . . , αM} be a set of vectors, such that each αj ∈ {−1, 0,+1}d
satisfies

‖αj‖0 = s for all j = 1, . . . ,M , and ∆H(α
j, α`) ≥ s

2
for all j 6= `.

It can be shown that there exists such a packing set with |V(s)| ≥ exp
(
s
2
log d−s

s/2

)
elements

(e.g., see Lemma 5 in Raskutti et al. [134]).
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For any α ∈ V(s), we define the function

gα(θ) := c

[
d∑

i=1

{(
1

2
+ αiδ

)∣∣∣∣ θ(i) + r

∣∣∣∣+
(
1

2
− αiδ

)
|θ(i)− r|

}
+ δ

d∑

i=1

|θ(i)|
]
. (3.33)

In this definition, the quantity c > 0 is a pre-factor to be chosen later, and δ ∈ (0, 1
4
] is a

given error tolerance. Observe that each function gα ∈ G(δ; s) is convex, and Lipschitz with
parameter c with respect to the ‖ · ‖∞ norm.

Central to the remainder of the proof is the function class G(δ; s) := {gα, α ∈ V(s)}.
In particular, we need to control the discrepancy Φ(δ; s) := Φ(G(δ; s)) for this class. The
following result, proven in Appendix A.2, provides a suitable lower bound:

Lemma 3.6. We have

Φ(δ; s) = inf
α6=β∈V(s)

ρ(gα, gβ) ≥
csδr

4
. (3.34)

Using Lemma 3.6, we may complete the proof of Theorem 3.3. Define the base functions

f+
i (θ) := d (|θ(i) + r|+ δ|θ(i)|) , and f−

i (θ) := d (|θ(i)− r|+ δ|θ(i)|) .

Consider Oracle B, which returns d-dimensional gradients based on the function

ĝα,B(θ) =
c

d

d∑

i=1

[
bif

+
i (θ) + (1− bi)f

−
i (θ)

]
,

where {bi} are Bernoulli variables. By construction, the function ĝα,B is at most 3c-Lipschitz
in `∞ norm (i.e. ‖v̂α,B(θ)‖∞ ≤ 3c), so that setting c = G

3
yields a G-Lipschitz function.

Our next step is to use Fano’s inequality [52] to lower bound the probability of error in
the multiway testing problem associated with this stochastic oracle, following an argument
similar to (but somewhat simpler than) the proof of Lemma 3.3. Fano’s inequality yields
the lower bound

P[α̂ 6= α∗] ≥ 1−
1

(|V|
2 )

∑
α6=β D(Pα ‖Pβ) + log 2

log |V| . (3.35)

(As in the proof of Lemma 3.3, we have used convexity of mutual information [52] to bound
it by the average of the pairwise KL divergences.) By construction, any two parameters
α, β ∈ V differ in at most 2s places, and the remaining entries are all zeroes in both vectors.
The proof of Lemma 3.3 shows that for δ ∈ [0, 1

4
], each of these 2s places makes a contribution

of at most 16δ2. Recalling that we have T samples, we conclude that D(Pα ‖Pβ) ≤ 32sTδ2.
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Substituting this upper bound into the Fano lower bound (3.35) and recalling that the
cardinality of V is at least exp

(
s
2
log d−s

s/2

)
, we obtain

P[α̂(MT ) 6= α] ≥ 1− 2

(
32sTδ2 + log 2

s
2
log d−s

s/2

)
(3.36)

By Lemma 3.6 and our choice c = G/3, we have

Φ(δ) ≥ csδr

4
=

Gsδr

12
,

Therefore, if we aim for the target error ε = Gsδr
108

, then we are guaranteed that ε ≤ Φ(δ)
9
,

as is required for the application of Lemma 3.2. Recalling the requirement δ ≤ 1/4 gives
ε ≤ Gsδr/432. Now Lemma 3.2 implies that P[α̂(MT ) 6= α] ≤ 1/3, which when combined
with the earlier bound (3.36) yields

1

3
≥ 1− 2

(
32sTδ2 + log 2

s
2
log d−s

s/2

)
.

Rearranging yields the lower bound

T ≥ c0

(
log d−s

s/2

δ2

)
= c0

(
G2r2 s2

log d−s
s/2

ε2

)
,

for a universal constant c0, where the second step uses the relation δ = 108ε
Gsr

for k, d ≥ 11.
As long as s ≤ bd/2c, we have log d−s

s/2
= Θ

(
log d

s

)
, which gives the result for k, d ≥ 11. The

result for k, d ≤ 11 follows Theorem 3.1(b) applied with p = ∞, completing the proof.

3.4 Discussion

In this chapter, we have studied the complexity of convex optimization within the stochastic
first-order oracle model. We derived lower bounds for various function classes, including
convex functions, strongly convex functions, and convex functions with sparse optima. As
we discussed, our lower bounds are sharp in general, since there are matching upper bounds
achieved by known algorithms, among them stochastic gradient descent and stochastic mirror
descent. Our bounds also reveal various dimension-dependent and geometric aspects of the
stochastic oracle complexity of convex optimization. An interesting aspect of our proof
technique is the use of tools common in statistical minimax theory. In particular, our proofs
are based on constructing packing sets, defined with respect to a pre-metric that measures
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how the degree of separation between the optima of different functions. We then leveraged
information-theoretic techniques, in particular Fano’s inequality and its variants, in order to
establish lower bounds.

There are various directions for future research. It would be interesting to consider the
effect of memory constraints on the complexity of convex optimization, or to derive lower
bounds for problems of distributed optimization. We suspect that the proof techniques
developed in this chapter may be useful for studying these related problems.
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Chapter 4

Oracle inequalities for
computationally adaptive model
selection

The setup of this chapter will be in the decision-theoretic framework discussed in Chap-
ter 2. The goal will be to minimize an expected risk criterion (2.1), based on the data
distribution P and loss function `. As opposed to the notation of Chapter 2, we will denote
the parameter being estimated by f instead of θ, to reflect that a functional mapping, rather
than a finite dimensional parameter is being estimated. Specifically, we will assume that the
learner receives samples {z1, . . . , zn} ⊆ Z drawn i.i.d. from some unknown distribution P

over a sample space Z, and given a loss function `, seeks a function f to minimize the risk

R(f) := E[`(z, f)]. (4.1)

Since R(f) is unknown, the typical approach is to compute estimates based on the empirical

risk, R̂n(f) :=
1
n

∑n
i=1 `(zi, f), over a function class F . Through this, we seek a function fn

with a risk close to the Bayes risk, the minimal risk over all measurable functions, which is
R0 := inff R(f). There is a natural trade-off based on the class F one chooses, since

R(fn)−R0 =

(
R(fn)− inf

f∈F
R(f)

)
+

(
inf
f∈F

R(f)− R0

)
,

which decomposes the excess risk of fn into estimation error (left) and approximation error
(right).

A common approach to addressing this trade-off is to express F as a union of classes

F =
⋃

j≥1

Fj. (4.2)
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The model selection problem is to choose a class Fi and a function f ∈ Fi to give the
best trade-off between estimation error and approximation error. This classical problem of
model selection will be revisited in this chapter. In keeping with the theme of the thesis, we
examine the problem from a fresh viewpoint taking into account both the computational and
statistical complexities of our model selection procedure. The result is a new framework, and
computationally efficient algorithms with sharp oracle inequalities within that framework.
We start by motivating our setup in which we study the problem, before moving on to the
technical content.

4.1 Motivation and setup

A common approach to the model selection problem is the now classical idea of complexity
regularization, which arose out of early works by Mallows [106] and Akaike [9]. The complex-
ity regularization approach balances two competing objectives: the minimum empirical risk
of a model class Fi (approximation error) and a complexity penalty (to control estimation
error) for the class. Different choices of the complexity penalty give rise to different model
selection criteria and algorithms (for example, see the lecture notes by Massart [108] and
the references therein). The complexity regularization approach uses penalties γi : N → R+

associated with each class Fi to perform model selection, where γi(n) is a complexity penalty
for class i when n samples are available; usually the functions γi decrease to zero in n and
increase in the index i. The actual algorithm is as follows: for each i, choose

f̂i ∈ argmin
f∈Fi

R̂n(f) and select f̃n = argmin
i=1,2,...

{
R̂n(f̂i) + γi(n)

}
(4.3)

as the output of the model selection procedure. Results of several authors [18, 104, 108]

show that given a dataset of size n, the output f̃n of the procedure roughly satisfies

ER(f̃n)−R0 ≤ min
i

[
inf
f∈Fi

R(f)− R0 + γi(n)

]
+O

(
1√
n

)
. (4.4)

Several approaches to complexity regularization are possible, and an incomplete bibliography
includes [169, 69, 138, 14, 18, 104].

These oracle inequalities show that, for a given sample size, the model selection procedure
gives the best trade-off between the approximation and estimation errors. A drawback with
the above mentioned approaches is that we need to be able to optimize over each model in
the hierarchy on the entire data, in order to prove guarantees on the result of the model
selection procedure. This is natural when the sample size is the key limitation, and it is
computationally feasible when the sample size is small and the samples are low-dimensional.
However, the cost of fitting a large number of model classes on the entire data sequence
can be prohibitive when the datasets become large and high-dimensional as is common in
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modern settings. In these cases, it is the computational resources—rather than the sample
size—that form the key constraint. In this chapter, we consider model selection from this
computational perspective, viewing the amount of computation, rather than the sample
size, as the parameter which will enter our oracle inequalities. Specifically, we consider
model selection methods that work within a given computational budget.

An interesting and difficult aspect of the problem that we must address is the interaction
between model class complexity and computation time. It is natural to assume that for a
fixed sample size, it is more expensive to estimate a model from a complex class than a simple
class. Put inversely, given a computational bound, a simple model class can fit a model to a
much larger sample size than a rich model class. So any strategy for model selection under a
computational budget constraint should trade off two criteria: (i) the relative training cost
of different model classes, which allows simpler classes to receive far more data (thus making
them resilient to overfitting), and (ii) lower approximation error in the more complex model
classes.

In addressing these computational and statistical issues, this chapter makes two main
contributions. First, we propose a novel computational perspective on the model selection
problem, which we believe should be a natural consideration in statistical learning problems.
Secondly, within this framework, we provide algorithms for model selection in many differ-
ent scenarios, and provide oracle inequalities on their estimates under different assumptions.
Our first two results address the case where we have a model hierarchy that is ordered by
inclusion, that is, F1 ⊆ F2 ⊆ F3 ⊆ . . .. The first result provides an inequality that is
competitive with an oracle, incurring at most an additional logarithmic penalty in the com-
putational budget. The second result extends our approach to obtaining fast rates for model
selection, as demonstrated in computationally unconstrained settings by Bartlett [19] and
Koltchinskii [91]. Both of our results carefully refine the existing complexity-regularized risk
minimization techniques by a careful consideration of the structure of the problem. Our third
result applies to model classes that do not necessarily share any common structure. Here we
present a novel algorithm —exploiting algorithms for multi-armed bandit problems—that
uses confidence bounds based on concentration inequalities to select a good model under
a given computational budget. We also prove a minimax optimal oracle inequality on the
performance of the selected model. All of our algorithms are computationally simple and
efficient. We note that the results of this chapter appeared in the paper [5].

The remainder of this chapter is organized as follows. We start in Section 4.2 by pre-
senting our setup, estimator and oracle inequalities for a nested hierarchy of models. In
Section 4.3 we refine the estimator and its analysis further to obtain fast rates for model
selection in favorable conditions. The setting of unstructured model collections is studied in
Section 4.4. Detailed technical arguments and various auxiliary results needed to establish
our main theorems and corollaries can be found in Appendices B.1-B.4.
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4.2 Model selection over nested hierarchies

In many practical scenarios, the family of models with which one works has some structure.
One of the most common model selection settings has the model classes Fi are ordered by
inclusion with increasing complexity. In this section, we study such model selection problems;
we begin by formally stating our assumptions and giving a few natural examples, proceeding
thereafter to oracle inequalities for a computationally efficient model selection procedure.

4.2.1 Assumptions

Our first main assumption is a natural inclusion assumption, which is perhaps the most
common assumption in prior work on model selection (e.g. [18, 104]):

Assumption A. The function classes Fi satisfy an inclusion hierarchy:

F1 ⊆ F2 ⊆ F3 ⊆ . . . (4.5)

We provide two examples of such problems in the next section. In addition to the inclusion
assumption, we make a few assumptions on the computational aspects of the problem. Most
algorithms used in the framework of complexity regularization rely on the computation of
estimators of the form

f̂i = argmin
f∈Fi

R̂n(f), (4.6)

either exactly or approximately, for each class i. Since the model classes are ordered by
inclusion, it is natural to assume that the computational cost of computing an empirical risk
minimizer from Fi is higher than that for a class Fj when i > j. Said differently, given a
fixed computational budget T , it may be impossible to use as many samples to compute
an estimator from Fi as it is to compute an estimator from Fj (again, when i > j). We
formalize this in the next assumption, which is stated in terms of an (arbitrary) algorithm
A that selects functions f ∈ Fi for each index i based on a set of ni samples.

Assumption B. Given a computational budget T , there is a sequence {ni(T )}i ⊂ N such
that

(a) ni(T ) > nj(T ) for i < j.

(b) The complexity penalties γi satisfy γi(ni(T )) < γj(nj(T )) for i < j.

(c) For each class Fi, the computational cost of using the algorithm A with ni(T ) samples is
T . That is, estimation within class Fi using ni(T ) samples has the same computational
complexity for each i.

(d) For all i, the outputA (i, T ) of the algorithmA, given a computational budget T , satisfies

R̂ni(T )(A (i, T ))− inf
f∈Fi

R̂ni(T )(f) ≤ γi(ni(T )).
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(e) As i ↑ ∞, γi(n) → ∞ for any fixed n.

The first two assumptions formalize a natural notion of computational budget in the
context of our model selection problem: given equal computation time, a simpler model can
be fit using a larger number of samples than a complex model. Assumption B(c) says that
the number of samples ni(T ) is chosen to roughly equate the computational complexity of
estimation within each class. Assumption B(d) simply states that we compute approximate
empirical minimizers for each class Fi. Our choice of the accuracy of computation to be
γi in part (d) is done mainly for notational convenience in the statements of our results; it
can be replaced with an arbitrary accuracy level ε in general. Finally part (e) just rules out
degenerate cases where the penalty function asymptotes to a finite upper bound, and this
assumption is required for our estimator to be well-defined for infinite model hierarchies.
In the sequel, we use the shorthand γi(T ) to denote γi(ni(T )) when the number of samples
ni(T ) is clear from context.

Certainly many choices are possible for the penalty functions γi, and work studying
appropriate penalties is classical [9, 106]. Our focus in this chapter is on complexity estimates
derived from concentration inequalities, which have been deeply studied by a variety of
researchers [18, 108, 15, 19, 90]. Such complexity estimates are convenient since they ensure
that the penalized empirical risk bounds the true risk with high probability. Formally, we
have

Assumption C. For each i, there are constants κ1, κ2 > 0 such that for any budget T the
output A (i, T ) ∈ Fi satisfies,

P

(
|R̂ni(T )(A (i, T ))− R(A (i, T ))| > γi(T ) + κ2ε

)
≤ κ1 exp(−4ni(T )ε

2). (4.7)

In addition, for any fixed function f ∈ Fi, P(|R̂ni(T )(f)−R(f)| > κ2ε) ≤ κ1 exp(−4ni(T )ε
2).

4.2.2 Some illustrative examples

We now provide two concrete examples to illustrate Assumptions A–C.

Example 4.1 (Linear classification with nested balls). In a classification problem, each
sample zi consists of a covariate vector x ∈ Rd and label y ∈ {−1,+1}. In margin-based
linear classification, the predictions are the sign of the linear function fθ(x) = 〈θ, x〉, where
θ ∈ Rd. A natural sequence of model classes is sets {fθ} indexed via norm-balls of increasing
radii: Fi = {fθ : θ ∈ Rd, ‖θ‖2 ≤ ri}, where 0 ≤ r1 < r2 < . . .. By inspection, Fi ⊂ Fi+1 so
that this sequence satisfies Assumption A.

The empirical and expected risks of a function fθ are often measured using the sample
average and expectation, respectively, of a convex upper bound on the 0-1 loss I (yfθ(x) ≤ 0).
Examples of such losses include the hinge loss, `(yfθ(x)) = max(0, 1−yfθ(x)), or the logistic
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loss, `(yfθ(x)) = log(1+exp(−yfθ(x))). Assume that E[‖x‖22] ≤ X2 and let σi be independent
uniform {±1}-valued random variables. Then we may use a penalty function γi based on
Rademacher complexity Rn(Fi) of the class i,

Rn(Fi) :=

{
1

n
E

[
sup
f∈Fi

∣∣∣∣
n∑

i=1

σif(Xi)

∣∣∣∣
]}

≤ 2riX√
n
.

Setting γi to be the Rademacher complexity Rn(Fi) satisfies the conditions of Assump-
tion C [17] for both the logistic and the hinge losses which are 1-Lipschitz. Hence, using the
Lipschitz contraction bound from [17, Theorem 12], we may take γi(T ) =

riX√
ni(T )

.

To illustrate Assumption B, we take stochastic gradient descent [139] as an example.
Assuming that the computation time to process a sample z is equal to the dimension d,
then Nemirovski et al. [117] show that the computation time required by this algorithm to
output a function f = A (i, T ) satisfying Assumption B(d) (that is, a γi-optimal empirical
minimizer) is at most

4r2iX
2

γ2i (T )
· d.

Substituting the bound on γi(T ) above, we see that the computational time for class i is at
most dni(T ). In other words, given a computational time T , we can satisfy the Assumption B
by setting ni(T ) ∝ T/d for each class i—the number of samples remains constant across the
hierarchy in this example.

Example 4.2 (Linear classification in increasing dimensions). Staying within the linear
classification domain, we index the complexity of the model classes Fi by an increasing
sequence of dimensions {di} ⊂ N. Formally, we set

Fi = {fθ : θj = 0 for j > di, ‖θ‖2 ≤ ri},

where 0 ≤ r1 < r2 < . . .. This structure captures a variable selection problem where we have
a prior ordering on the covariates.

In special scenarios, such as when the design matrix X = [x1 x2 · · · xn] satisfies certain
incoherence or irrepresentability assumptions [39], variable selection can be performed using
`1-regularization or related methods. However, in general an oracle inequality for variable
selection requires some form of exhaustive search over subsets. In the sequel, we show
that in this simpler setting of variable selection over nested subsets, we can provide oracle
inequalities without computing an estimator for each subset and without any assumptions
on the design matrix X .

For this function hierarchy, we consider complexity penalties arising from VC-dimension
arguments [168, 17], in which case we may set

γi(T ) =

√
di

ni(T )
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which satisfies Assumption C. Using arguments similar to those for Example 4.1, we may
conclude that the computational assumption B can be satisfied for this hierarchy, where the
algorithm A requires time dini(T ) to select f ∈ Fi. Thus, given a computational budget T ,
we set the number of samples ni(T ) for class i to be proportional to T/di.

We provide only classification examples above since they demonstrate the essential as-
pects of our formulation. Similar quantities can also be obtained for a variety of other
problems, such as parametric and non-parametric regression, and for a variety of model hi-
erarchies including polynomial or Fourier expansions, wavelets, or Sobolev classes, among
others (for more instances, see, e.g. [108, 15, 18]).

4.2.3 The computationally-aware model selection algorithm

Having specified our assumptions and given examples satisfying them, we turn to describing
our first computationally-aware model selection algorithm. Let us begin with the simpler
scenario where we have only K model classes (we extend this to infinite classes momen-
tarily). Perhaps the most obvious computationally budgeted model selection procedure is
the following: allocate a budget of T/K to each model class i. As a result, class i’s esti-

mator f̂i = A (i, T/K) is computed using ni(T/K) samples. Let f̃n denote the output of
the basic model selection algorithm (4.3) with the choices n = ni(T/K) and using ni(T/K)
samples to evaluate the empirical risk for class i; very slight modifications of standard argu-
ments [108, 18] yield the oracle inequality

R(f̃n) ≤ min
i=1,...,K

(
R∗
i + cγi

(
T

K

)
+

√
log i

ni(T/K)

)
,

where c is a universal constant. This approach can be quite poor. For instance, in Exam-
ple 4.2, we have ni(T/K) = T/(Kdi), and the above inequality incurs a penalty that grows
as

√
K. This is much worse than the logarithmic scaling in K that is typically possible in

computationally unconstrained settings [18]. It is thus natural to ask whether we can use the
nesting structure of our model hierarchy to allocate computational budget more efficiently.

To answer this question, we introduce the notion of coarse-grid sets, which use the growth
structure of the complexity penalties γi to construct a scheme for allocating the budget across
the hierarchy. Recall the constant κ2 from Assumption C and let m > 0 be an arbitrary
constant (we will see that m controls the probability of error in our results). Given s ∈ N

(s ≥ 1), we define

γi(T, s) := 2γi

(
T

s

)
+ κ2

√
2(m+ log s)

ni(T/s)
. (4.8)

With the definition (4.8), we now give a definition characterizing the growth characteristics
of the penalties and sample sizes.
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Figure 4.1. Construction of the coarse-grid set Sλ. The X-axis is the class index i, and the
Y -axis represents the corresponding complexity γi(T ). When the penalty function grows
steeply early on, we include a large number of models. The number of complex models
included in Sλ can be significantly smaller as the growth of penalty function tapers out.

Definition 4.1. Given a budget T , for a set S ⊆ N, we say that S satisfies the coarse grid
condition with parameters λ, m, and s if |S| = s and for each i there is an index j ∈ S such
that

γi(T, s) ≤ γj(T, s) ≤ (1 + λ)γi(T, s). (4.9)

This definition of the coarse-grid set is pictorially illustrated in Figure 4.1. If the coarse-
grid set is finite and, say, |S| = s, then the set S presents a natural collection of indices
over which to perform model selection. We simply split the budget uniformly amongst the
coarse-grid set S, giving budget T/s to each class in the set. Indeed, the main theorem of
this section shows that for a large class of problems, it always suffices to restrict our attention
to a finite grid set S, allowing us to present both a computationally tractable estimator and
a good oracle inequality for the estimator. In some cases, there may be no finite coarse grid
set. Thus we look for way to restrict our selection to finite sets, which we can do with the
following assumption (the assumption is unnecessary if the hierarchy is finite).

Assumption D. There is a constant B such that R(f) and R̂n(f) are both upper bounded
by B for all sample sizes n ∈ N and for all f ∈ Fi, i = 1, 2, . . . .

Under the above assumption, we define the following coarse-grid size. Given λ > 0 and
a constant m > 0, let s(λ) be any solution to the inequality

s(λ) ≥




log
(
1 + B

γ1(T,s(λ))

)

log(1 + λ)



+ 2. (4.10)
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Algorithm 1 Computationally budgeted model selection over nested hierarchies

Input: Model hierarchy {Fi} with corresponding penalty functions γi, computational bud-
get T , bound B on risk of class 1, and scale factor λ > 0.
Construction of the coarse-grid set Sλ.
Set s(λ) based on inequality (4.10).
for k = 0 to s(λ)− 1 do
Set jk+1 to be the largest class for which γj(T/s(λ)) ≤ (1 + λ)kγ1(T/s(λ)).

end for
Set Sλ = {jk : k = 1, . . . , s(λ)}.
Model selection estimate
Set f̂i = A (i, T/s(λ)) for i ∈ Sλ.
Select a class î that satisfies

î ∈ argmin
i∈S

{
R̂ni(T/s(λ))(f̂i) + γi (T/s(λ)) +

κ2
2

√
m

ni(T/s(λ))
+
κ2
2

√
log s(λ)

ni(T/s(λ))

}
.

(4.11)

Output the function f = f̂̂i = A
(
î, T/s(λ)

)
.

To see that such an s(λ) exists, note that taking s(λ) ↑ T , so that T/s(λ) = Θ(1) yields that
γ1(T, s(λ)) = Ω(

√
log T ); meaning that the left side is larger (we assume for the remainder

that T is suitably large that the inequality (4.10) has a solution). The intuition behind
the definition is the following. Under assumption B(e), the complexity penalties continue
increase with the class index i. Hence, there is a class K(λ) such that the complexity of
penalty γK(λ) is larger than the penalized risk of the smallest class 1, at which point no class
larger than K(λ) can be a minimizer in the oracle inequality. As we show in the proof of
Theorem 4.1 to follow, our choice of s(λ) ensures that there is at least one class j ∈ Sλ such
that j ≥ K(λ), allowing us to restrict our attention only to the function classes {Fi | i ∈ Sλ}.
Using the setting (4.10) of s(λ), we provide our computationally budgeted model selection
procedure in Algorithm 1.

4.2.4 Main result and some consequences

With the above definitions in place, we can now provide an oracle inequality on the perfor-
mance of the model selected by Algorithm 1. We start with our main theorem, and then
provide corollaries to help explain various aspects of it.

Theorem 4.1. Let f = A(̂i, T/s(λ)) be the output of the algorithm A for the class î specified
by the procedure (4.11). Let Assumptions A–D be satisfied. With probability at least 1 −
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2κ1 exp(−m)

R(f) ≤ min
i=1,2,3,...

{
R∗
i + (1 + λ)

(
2γi

(
T

s(λ)

)
+ κ2

√
2m+ log s(λ)

ni(T/s(λ))

)}
. (4.12)

Remarks: Theorem 4.1 provides a family of results, one for each value of λ > 0, and the
corresponding setting of s(λ). In order to obtain the best oracle inequality, one may take the
minimum over λ > 0, though we do not discuss such a choice. We turn to a few additional
explanatory remarks.

(a) To better understand the result of Theorem 4.1, we ask what an omniscient oracle with
access to the same computational algorithm A could do. Such an oracle would know the
optimal class i∗ and allocate the entire budget T to compute A (i∗, T ). By Assumption C,
the output f of this oracle satisfies with probability at least 1− κ1 exp(−m)

R(f) ≤ R∗
i∗ + γi∗(T ) + κ2

√
m

ni∗(T )
= min

i=1,2,3,...

{
R∗
i + γi(T ) + κ2

√
m

ni(T )

}
. (4.13)

Comparing this to the right hand side of Theorem 4.1, we observe that (roughly) we
incur a penalty in the computational budget of roughly a factor of s(λ), since we do not
know the optimal class. As long as s(λ) is not too large, the result is not significantly
worse than the oracle bound (4.13).

(b) In many interesting cases (such as Examples 4.1 and 4.2), the penalty γ1(T/s(λ)) is
inversely polynomial in T and n1(T/s(λ)) is (sub)linear in T . Heuristically, we may
write γi(T/s) = (s/T )p for some p ∈ (0,∞) (and similarly for ni(T/s)), in which case
the setting (4.10) for s(λ) satisfies

log
(
1 + B

γ1(T,s)

)

log(1 + λ)
≈

log
(
1 + B

(s/T )p

)

log(1 + λ)
≈ p log(T/s) + logB

log(1 + λ)
.

Thus the setting (4.10) for s(λ) is O(log T ). Comparing inequalities (4.12) and (4.13) in
this setting, we see that we match the performance of the oracle up to polylogarithmic
factors in the budget T . More generally, we can always use γ1(T, 1) in the defining
inequality (4.10) in place of γ1(T, s(λ)), which by inspection guarantees that s(λ) is
large enough to satisfy the inequality.

(c) Algorithm 1 and Theorem 4.1, as stated, require a priori knowledge of the computational
budget T . We can address this using a standard doubling argument (see e.g. [47, Sec.
2.3]). Initially we assume T = 1 and run Algorithm 1 accordingly. If we do not exhaust
the budget, we assume T = 2, and rerun Algorithm 1 for another round. If there is more



CHAPTER 4. COMPUTATIONALLY ADAPTIVE MODEL SELECTION 55

computational time at our disposal, we update our guess to T = 4 and so on. Suppose the
real budget is T0 with 2k − 1 < T0 ≤ 2k+1 − 1. After i rounds of this doubling strategy,
we have exhausted a budget of 2i−1, with the last round getting a budget of 2i−2 for
i ≥ 2. In particular, the last round with a net budget of T0 is of length at least T0/4.
Since Theorem 4.1 applies to each individual round, we obtain an oracle inequality where
we replace T0 with T0/4; we can be agnostic to the prior knowledge of the budget at the
expense of slightly worse constants.

(d) Finally, though we have assumed that the quantity B bounds the risks for all model
classes Fi, inspection of the proof of Theorem 4.1 and the setting (4.10) of s(λ) re-
quire that B only upper bound the risk of the first class F1; worst-case risks may grow
unboundedly for larger function classes Fi.

Now let us turn to a specialization of Theorem 4.1 to the settings outlined in Examples 4.1
and 4.2. The following corollary shows that—roughly—our computational restrictions give
oracle inequalities only logarithmically worse than those possible in the computationally
unconstrained model selection procedure (4.3).

Corollary 4.1. Let the conditions of Theorem 4.1 hold. Let m ≥ 0 and λ > 0 be (specified)
constants, and assume that T is large enough that BnT ≥ 1 and nT ≥ 2.

(a) In the setting of Example 4.1, let nT/d denote the number of samples that can be pro-
cessed by the inference algorithm A using T units of computation. Set

s(λ) =




log

(
1 + B

√
Tn√

d(2r1X+κ2
√
2m)

)

log(1 + λ)



+ 2.

Assume that κ2
√
2md ≥ 1. With probability at least 1 − 2κ1 exp(−m), the output f of

Algorithm 1 satisfies

R(f) ≤ inf
i=1,2,...

{
R∗
i + (1 + λ)

√
d log(2BTn)

Tn log(1 + λ)

(
2riX +

√
2κ2

√
m+ log

log(2BnT )

log(1 + λ)

)}
.

(b) In the setting of Example 4.2, let nT/di denote the number of samples that can be pro-
cessed by the inference algorithm A using T units of computation. Set

s(λ) =




log
(
1 + B

√
nT√

d1(2
√
d1+κ2

√
2m)

)

log(1 + λ)



+ 2

With probability at least 1− 2κ1 exp(−m), the output f of Algorithm 1 satisfies

R(f) ≤ inf
i=1,2,...

{
R∗
i + (1 + λ)

√
di log(2BTn)

Tn log(1 + λ)

(
2
√
di +

√
2κ2

√
m+ log

log(2BnT )

log(1 + λ)

)}
.



CHAPTER 4. COMPUTATIONALLY ADAPTIVE MODEL SELECTION 56

4.2.5 Proofs

For the proofs of Theorem 4.1 and Corollary 4.1, we require the additional notation

K(λ) = max{j : j ∈ Sλ}. (4.14)

We begin the proof of Theorem 4.1 by showing that the setting (4.10) of s(λ) entails that
any class j > K(λ) must have penalty too large to be optimal, so we can focus on classes
j ≤ K(λ). We then show that the output f of Algorithm 1 satisfies an oracle inequality for
each class in Sλ, which is possible by an adaptation of arguments in prior work [18]. Using
the definition (4.1) of our coarse grid set, we can then infer an oracle inequality that applies
to each class j ≤ K(λ), and our earlier reduction to a finite model hierarchy completes the
argument.

Proof of Theorem 4.1

The choice (4.10) of s(λ) is based on the observation that once the complexity penalty of
a class becomes too large, it can never be the minimizer of the penalized risk in the oracle
inequality (4.12). Formally, we have the following lemma (see Appendix B.1 for a proof).

Lemma 4.1. Recall the definition (4.14) of K(λ) and let i∗ be a class that attains the
minimum in the right side of the bound (4.12). For any λ > 0 and m > 0, we have
i∗ ≤ K(λ).

We also require a technical lemma that the selection of the set of jk in Algorithm 1 satisfies
Definition 4.1.

Lemma 4.2. Let {γi} be a sequence of increasing positive numbers and for each k ∈
{0, . . . , s} set jk+1 to be the largest index j such that γj ≤ (1 + λ)kγ1. Then for each i
such that i ≤ jk, there exists a j ∈ {j1, . . . , jk} such that γi ≤ γj ≤ (1 + λ)γi.

Proof. Let i ≤ jk and choose the smallest j ∈ {j1, j2, . . . , jk} such that γi ≤ γj. Assume for
the sake of contradiction that (1 + λ)γi < γj. There exists some k ∈ {0, . . . , s} such that
γj ≤ (1 + λ)kγ1 and γj > (1 + λ)k−1γ1, and thus we obtain

γi <
γj

1 + λ
≤ (1 + λ)k−1γ1.

Then γi < (1+λ)k−1γ1 so there is a j
′ (namely j′ = i) with j′ < j satisfying γj′ ≤ (1+λ)k−1γ1;

this contradicts the fact that j is the smallest index in {j1, . . . , jk} satisfying γi ≤ γj.

Equipped with the lemmas, we can restrict our attention only to classes i ≤ K(λ). To that
end, the next result will establish an oracle inequality for our algorithm compared to all the
classes in Sλ.
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Proposition 4.1. Let f = A(̂i, nî(T/s(λ))) be the output of the algorithm A for the class î
selected by the procedure (4.11). Under the conditions of Theorem 4.1, with probability at
least 1− 2κ1 exp(−m)

R(f) ≤ min
i∈Sλ

{
R∗
i + 2γi

(
T

s(λ)

)
+ κ2

√
2m+ log s(λ)

ni(T/s(λ))

}
.

The proof of the proposition follows from an argument similar to that given by Bartlett et
al. [18], though we must carefully reason about the different number of independent samples
used to estimate within each class Fi. We present a proof in Appendix B.1. We can now
complete the proof of Theorem 4.1 using the proposition.
Proof of Theorem 4.1 Let i be any class (not necessarily in Sλ) and j ∈ Sλ be the
smallest class satisfying j ≥ i. Then, by construction of Sλ, we know from Lemma 4.2 that

2γi

(
T

s(λ)

)
+ κ2

√
2(m+ log s(λ))

ni(T/s(λ))
≤ 2γj

(
T

s(λ)

)
+ κ2

√
2(m+ log s(λ))

nj(T/s(λ))

≤ (1 + λ)

[
2γi

(
T

s(λ)

)
+ κ2

√
2(m+ log s(λ))

ni(T/s(λ))

]
.

In particular, we can lower bound the penalized risk of class i as

R∗
i +2(1+λ)

[
γi

(
T

s(λ)

)
+ κ2

√
2(m+ log s(λ))

ni(T/s(λ))

]
≥ R∗

j+2γj

(
T

s(λ)

)
+κ2

√
2(m+ log s(λ))

nj(T/s(λ))
,

where we used the inclusion assumption A to conclude that R∗
j ≤ R∗

i . Now applying Propo-
sition 4.1, the above lower bound, and Lemma 4.1 in turn, we see that with probability at
least 1− 2κ1 exp(−m)

R(f) ≤ min
i∈Sλ

{
R∗
i + 2γi

(
T

s(λ)

)
+ κ2

√
2(m+ log s(λ))

ni(T/s(λ))

}

≤ min
i=1,2,...,K(λ)

{
R∗
i + (1 + λ)

(
2γi

(
T

s(λ)

)
+ κ2

√
2(m+ log s(λ))

ni(T/s(λ))

)}

≤ inf
i=1,2,3,...

{
R∗
i + (1 + λ)

(
2γi

(
T

s(λ)

)
+ κ2

√
2(m+ log s(λ))

ni(T/s(λ))

)}
.

This is the desired statement of the theorem.
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Proof of Corollary 4.1

To establish the corollary, we must verify that the condition (4.10) is satisfied for our choice
of s(λ). For any s ≥ 1, we have

γ1(T, 1) ≤ γ1(T, s) so log

(
1 +

B

γ1(T, 1)

)
≥ log

(
1 +

B

γ1(T, s)

)
. (4.15)

Following the remarks after Theorem 4.1, we have in the conditions of Example 4.1 that

γ1(T, s) = 2r1X

√
ds

nT
+ κ2

√
2(m+ log s)ds

nT
or γ1(T, 1) = 2r1X

√
d

nT
+ κ2

√
2md

nT
,

whence the inequality (4.15) establishes that taking

s(λ) =




log
(
1 + B

√
nT

2r1X
√
d+κ2

√
2md

)

log(1 + λ)



+ 2

is sufficient to establish the condition (4.10). Similarly, in the context of Example 4.2, we
have

γ1(T, 1) = 2
d1√
nT

+ κ2

√
2md1
nT

so s(λ) =




log
(
1 + B

√
nT√

d1(2
√
d1+κ2

√
2m)

)

log(1 + λ)



+ 2

is sufficient for the inequality (4.10) to hold. Since we have assumed that BnT ≥ 1 and
nT ≥ 2, we see that 1 +B

√
nT ≤ 2BnT , so that in both Examples 4.1 and 4.2

s(λ) ≤ log(2BnT )

log(1 + λ)
.

Using this bound on s(λ) completes the proof of the corollary.

4.3 Fast rates for model selection

Looking at the result given by Theorem 4.1, we observe that irrespective of the dependence of
the penalties γi on the sample size, there are terms in the oracle inequality that always decay
as O(1/

√
ni(T/s(λ))). Bartlett [19] notes a similar phenomenon for classical model selection

results in computationally unconstrained settings, pointing out that under conditions similar
to Assumption C, this inverse-root dependence on the number of samples is the best possible,
due to lower bounds on the fluctuations of the empirical process (e.g. [20, Theorem 2.3]).
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On the other hand, under suitable low noise conditions [107] or certain curvature properties
of the risk functional [21, 91, 16], it is possible to obtain estimation guarantees of the form

R(f̂) = R(f ∗) +Op

(
1

n

)
,

where f̂ (approximately) minimizes the n-sample empirical risk. Bartlett [19] and Koltchin-
skii [90] demonstrate that under suitable assumptions, complexity regularization can also
achieve fast rates for model selection. A natural question is thus whether similar results ob-
tain in computationally constrained inference settings; we demonstrate in this section that
under appropriate conditions, this question has an affirmative answer.

4.3.1 Assumptions and example

To study faster rates for model selection in the computationally bounded setting, we begin
by modifying our concentration assumption and providing a motivating example.

Assumption E. For each i, let f ∗
i ∈ argminf∈Fi

R(f). Then there are constants κ1, κ2 > 0
such that for any budget T and the corresponding sample size ni(T )

P

[
sup
f∈Fi

(
R(f)− R(f ∗

i )− 2(R̂ni(T )(f)− R̂ni(T )(f
∗
i ))
)
> γi(T ) + κ2ε

]
≤ κ1 exp(−ni(T )ε).

(4.16a)

P

[
sup
f∈Fi

(
R̂ni(T )(f)− R̂ni(T )(f

∗
i )− 2(R(f)−R(f ∗

i ))
)
> γi(T ) + κ2ε

]
≤ κ1 exp(−ni(T )ε).

(4.16b)

Contrasting with the earlier assumption C, we see that the RHS above has a dependence
on ε rather than ε2 in the exponent, which leads to faster sub-exponential rates for sample
complexity. Concentration inequalities of this form are now well known [21, 91, 16], and the
paper [19] uses an identical assumption.

Before continuing, we give an example to elucidate the assumption.

Example 4.3 (Fast rates for classification). We consider the function class hierarchy based
on increasing dimensions of Example 4.2. We assume that the risk R(fθ) = E[`(y, fθ(x))] and
that the loss function ` is either the squared loss `(y, fθ(x)) = (y−fθ(x))2 or the exponential
loss from boosting `(y, fθ(x)) = exp(−yfθ(x)). For each of these examples Assumption E is
satisfied with

γi(T ) = c
di log(ni(T )/di)

ni(T )
,
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for a universal constant c. This follows from Theorem 3 of [19] (which in turn follows from
Theorem 3.3 in [21] combined with an argument based on Dudley’s entropy integral [63]).
The other parameter settings and computational considerations are identical to those of
Example 4.2.

If we define f̂i = A (i, T ), then using Assumption B(d) (that R̂ni(T )(f̂i) − R̂ni(T )(f
∗
i ) ≤

γi(T )) in conjunction with assumption (4.16a), we can conclude that for any time budget T ,
with probability at least 1− κ1 exp(−m),

R(f̂i) ≤ R(f ∗
i ) + 3γi(T ) +

κ2m

ni(T )
. (4.17)

One might thus expect that by following arguments similar to those in Bartlett [19], it would
be possible to show fast rates for model selection based on Algorithm 1. Unfortunately, the
results of [19] heavily rely on the fact that the data used for computing the estimators f̂i
is same for each class i, so that the fluctuations of the empirical processes corresponding to
the different classes are positively correlated. In our computationally constrained setting,
however, each class’s estimator is computed on a different set of ni(T ) samples. It is thus
more difficult to relate the estimators than in previous work, necessitating a modification of
our earlier Algorithm 1 and a new analysis, which follows.

4.3.2 Algorithm and oracle inequality

As in Section 4.2, our approach is based on performing model selection over a coarsened
version of the collection F1,F2, . . .. To construct the coarser collection of indices, we define
the composite penalty term (based on Assumption E)

γi(T, s) := 20γi

(
T

s

)
+ 8

κ2m+ 2 log s

ni(T/s)
. (4.18)

Based on the above penalty term, we define our analogue of the coarse grid set (4.9) and the
size (4.10) of the coarsening as any solution to the inequality

s(λ) ≥




log
(
1 + B

s(λ)γ1(T,s(λ))

)

log(1 + λ)



+ 2. (4.19)

We give our modified model selection procedure in Algorithm 2. In the algorithm and in our
subsequent analysis, we use the shorthand R̂i(f) to denote the empirical risk of the function
f on the ni(T ) samples associated with class i. Our main convergence result is the following:

Theorem 4.2. Let f = A(̂i, T/s(λ)) be the output of the algorithm A for class î specified by
the procedure (4.20). Let Assumptions A, B, D and E be satisfied. With probability at least
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Algorithm 2 Computationally budgeted model selection over hierarchies with fast concen-
tration
Input: Model hierarchy {Fi} with corresponding penalty functions γi, computational budget
T , bound B on the risk of class 1, and scale factor λ > 0.
Construction of the coarse-grid set Sλ.
Set s(λ) satisfying inequality (4.19) with γi defined in (4.18).
for k = 0 to s(λ)− 1 do
Set jk+1 to be the largest class for which γj(T/s(λ)) ≤ (1 + λ)kγ1(T/s(λ)).

end for
Set Sλ = {jk : k = 1, . . . , s(λ)}.
Model selection estimate
Set f̂i = A (i, T/s(λ)) for i ∈ Sλ.
Select the class î ∈ Sλ to be the largest class that satisfies

R̂î(f̂̂i) +
17

2
γî

(
T

s(λ)

)
+

7

2
κ2

(
m+ log s(λ)

nî(T/s(λ))

)
≤ R̂î(f̂j) +

17

2
γj

(
T

s(λ)

)
(4.20)

for all j ∈ Sλ such that j < î.

Output the function A
(
î, T/s(λ)

)
.

1− 2κ1 exp(−m)

R(f) ≤ inf
i=1,2,3,...

{
R∗
i + (1 + λ)s(λ)

(
20γi

(
T

s(λ)

)
+ 8κ2

(m+ log s(λ))

ni(T/s(λ))

)}
. (4.21)

The following corollary shows the application of Theorem 4.2 to the classification problem
we discuss in Example 4.3.

Corollary 4.2. Let the conditions of Theorem 4.2 hold, assume Bn ≥ 1 and let m ≥ 1
and λ > 0 be (specified) constants. There exist universal constants c, c1, c2 such that in the
setting of Example 4.3, setting

s(λ) =




log
(
1 + BnT

cd21m log T

)

log(1 + λ)



+ 2

yields that with probability at least 1− 4κ1 exp(−m), the estimator (4.20) satisfies

R(f) ≤ inf
i=1,2,...

{
R∗
i + c1(1 + λ)s(λ)

(
d2i m log T

nT

)}

≤ inf
i=1,2,...

{
R∗
i + c2(1 + λ)

(
d2i m log2(2BnT )

nT log(1 + λ)

)}
.
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Corollary 4.2 makes clear that we have indeed achieved the stated goal of our this section:
we have an oracle inequality whose dependence on the computational budget (and number
of samples available) decreases—modulo logarithmic factors—at a rate of 1/T .

4.3.3 Proofs of main results

In this section, we provide proofs of Theorem 4.2 and Corollary 4.2. The proof of Theorem 4.2
broadly follows that of Theorem 4.1, in that we establish an analogue of Proposition 4.1,
which provides an oracle inequality for each class in the coarse-grid set Sλ. We then ex-
tend the proven inequality to apply to each function class Fi in the hierarchy using the
definition (4.9) of the grid set.
Proof of Theorem 4.2 Let ni be shorthand for ni(T/s(λ)), the number of samples

available to class i, and let R̂i(f) denote the empirical risk of the function f using the ni
samples for class i. In addition, let γi(ni) be shorthand for γi(ni(T/s(λ))), the penalty
value for class i using ni(T/s(λ)) samples. With these definitions, we adopt the following
shorthand for the events in the probability bounds (4.16a) and (4.16b). Let ε = {εi} be an
s(λ)-dimensional vector with (arbitrary for now) positive entries. For each i define

E i1(εi) :=
{

sup
f∈Fi

(
R(f)− R(f ∗

i )− 2
(
R̂i(f)− R̂i(f

∗
i )
))

≤ γi(ni) + κ2εi

}
(4.22a)

E i2(εi) :=
{

sup
f∈Fi

(
R̂i(f)− R̂i(f

∗
i )− 2 (R(f)−R(f ∗

i ))
)
≤ γi(ni) + κ2εi

}
, (4.22b)

and define the joint events

E1(ε) :=
⋃

i∈Sλ

E i1(εi) and E2(ε) :=
⋃

i∈Sλ

E i2(εi) . (4.23)

With the “good” events (4.23) defined, we turn to the two technical lemmas, which
relate the risk of the chosen function f̂̂i to f

∗
i for each i ∈ S. To make the proofs of each

of the lemmas cleaner and see the appropriate choices of constants, we replace the selection
strategy (4.20) with one whose constants have not been specified. Specifically, we select î as
the largest class that satisfies

R̂î(f̂̂i) + c1γî

(
T

s(λ)

)
+ c2κ2ε̂i ≤ R̂î(f̂j) + c1γj

(
T

s(λ)

)
(4.24)

for j ∈ S with j ≤ î. The proofs of these lemmas are included in Appendix B.2.

Lemma 4.3. Let the events (4.22a) and (4.22b) hold for all j ∈ Sλ, that is, E1(ε) and E2(ε)
hold. Then using the selection strategy (4.24), for each j ≤ î with j ∈ Sλ we have

R(f̂̂i) ≤ R(f ∗
j ) +

1

2

[(
17

2
− c1

)
γî(nî) + (6 + c1)γj(nj) + 2κ2εj +

(
7

2
− c2

)
κ2ε̂i

]
.
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We require a different argument for the case that j ≥ î, and the constants are somewhat
worse.

Lemma 4.4. Let the events (4.22a) and (4.22b) hold for all j ∈ Sλ, that is, E1(ε) and E2(ε)
hold. Assume also that c1 ≥ 17/2 and c2 ≥ 7/2. Then using the selection strategy (4.24),
for each j ≥ î with j ∈ Sλ we have

R(f̂̂i) ≤ R(f ∗
j ) + s(λ)

(
(2c1 + 3)γj

(
T

s(λ)

)
+ (2c2 + 1)εj

)
.

We now use Lemmas 4.3 and 4.4 to complete the proof of the theorem. When Assump-
tion E holds, the probability that one of the events E1(ε) and E2(ε) fails to hold, by a union
bound, is upper bounded by

P(E1(ε)c ∪ E2(ε)c) ≤
∑

i∈Sλ

P(E i1(εi)c) +
∑

i∈Sλ

P(E i2(εi)c) ≤ 2κ1
∑

i∈Sλ

exp(−ni(T/s(λ))εi).

Thus, we see that if we define the constants

εi =
m+ log(s(λ))

ni(T/s(λ))
,

we obtain that all of the events E i1(εi) and E i2(εi) hold with probability at least 1−2κ1 exp(−m).
Applying Lemmas 4.3 and 4.4 with the choices c1 = 17

2
and c2 = 7

2
, we obtain that with

probability at least 1− 2κ1 exp(−m)

R(f̂̂i) ≤ min
j∈Sλ

{
R(f ∗

j ) + s(λ)

(
20γj(nj) + 8

m+ log(s(λ))

nj(T/s(λ))

)}
. (4.25)

The inequality (4.25) is the analogue of Proposition 4.1 in the current setting. Given
the inequality, the remainder of the proof of Theorem 4.2 follows the same recipe as that of
Theorem 4.1. Recalling the notation (4.14) defining K(λ), we apply the inequality (4.25)
with the definition of the grid set (Definition 4.1)to obtain an oracle inequality compared to
all classes j ≤ K(λ). Then the setting (4.19) of s(λ) ensures that we can transfer the result
to the entire model hierarchy as before.

We complete this section with a proof of Corollary 4.2.
Proof of Corollary 4.2 As in the proof of Corollary 4.1, this proof relies on arguing
that our setting of s(λ) satisfies the inequality (4.19). Since in the setting of Example 4.3,
we have

γi(T, s) = c

(
di log(ni(T/s)/di) +m+ 2 log s

ni(T/s)

)
,
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we may take

s(λ) =




log
(
1 + B

γ1(T,1)

)

log(1 + λ)



+ 2 =




log
(
1 + Bn1(T )

d1 log(n1(T )/d1)+m

)

log(1 + λ)



+ 2.

By our assumptions on n1(T ) and B, we can upper bound s(λ) by a constant c′ so that
s(λ) ≤ c′ log(BnT )/ log(1 + λ). Recalling that ni(T ) = nT/di, we can then upper bound γi
by

γi

(
T

s(λ)

)
≤ c1

(
d2i s(λ) log(T/(d

2
i /s(λ))) + dis(λ)(m+ 2 log s(λ))

nT

)

≤ c2

(
d2i log

2(BnT ) + 3dim log2(BnT )

nT log(1 + λ)

)
,

where c1 and c2 are constants and we used the assumptions that m ≥ 1 and Bn ≥ 1.

4.4 Oracle inequalities for unstructured models

To this point, our results have addressed the model selection problem in scenarios where
we have a nested collection of models. In the most general case, however, the collection
of models may be quite heterogeneous, with no relationship between the different model
families. In classification, for instance, we may consider generalized linear models with
different link functions, decision trees, random forests, or other families among our collection
of models. For a non-parametric regression problem, we may want to select across a collection
of dictionaries such as wavelets, splines, and polynomials. While this more general setting is
obviously more challenging than the structured cases in the prequel, we would like to study
the effects that limiting computation has on model selection problems, understanding when
it is possible to outperform computation-agnostic strategies.

4.4.1 Problem setting and algorithm

When no structure relates the models under consideration, it is impossible to work with
an infinite collection of classes—any estimator must evaluate each class. As a result, we
restrict ourselves to finite model collections in this section, so that we have a sequence
F1, . . . ,FK of models from which we wish to select. Our approach to the unstructured case
is to incrementally allocate computational quota amongst the function classes, where we
trade off receiving samples for classes that have good risk performance against exploring
classes for which we have received few data points. More formally, with T available quanta
of computation, it is natural to view the model selection problem as a T round game, where
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in each round a procedure selects a function class i and allocates it one additional quantum
of computation.

With this setup, we turn to stating a few natural assumptions. We assume that the
computational complexity of fitting a model grows linearly and incrementally with the num-
ber of samples, which means that allocating an additional quantum of training time allows
the learning algorithm A to process an additional ni samples for class Fi. In the context of
Sections 4.2 and 4.3, this means that we assume ni(t) = tni for some fixed number ni specific
to class i. This linear growth assumption is satisfied, for instance, when the loss function ` is
convex and the black-box learning algorithm A is a stochastic or online convex optimization
procedure [47, 117]. We also require concentration assumptions similar to Assumptions B
and C:

Assumption F. Let A (i, T ) ∈ Fi denote the output of algorithm A when executed for
class Fi with a computational budget T .

(a) For each i, there exists an ni ∈ N such that in T units of time, algorithm A can compute
A (i, T ) using niT samples.

(b) For each i ∈ [K], there is a function γi and constants κ1, κ2 > 0 such that for any T ∈ N,

P

(
|R̂niT (A (i, T ))− R(A (i, T ))| > γi(niT ) + κ2ε

)
≤ κ1 exp(−4niTε

2). (4.26)

(c) The output A (i, T ) is a γi(niT )-minimizer of R̂niT , that is,

R̂niT (A (i, T ))− inf
f∈Fi

R̂niT (f) ≤ γi(niT ).

(d) For each i, the function γi satisfies γi(n) ≤ cin
−αi for some αi > 0.

(e) For any fixed function f ∈ Fi, P(|R̂n(f)−R(f)| > κ2ε) ≤ κ1 exp(−4nε2).

Comparing to Assumptions B and C, we see that the main difference is in the linear time
assumption (a) and growth assumption (d). In addition, the complexity penalties and func-
tion classes discussed in our earlier examples satisfy Assumption F. Since it is more natural
to keep track of samples received by each class in the setup of this section, we will often use
the notation A (i, n) to denote the output of algorithm A on class i after receiving n data
samples.

We now present our algorithm for successively allocating computational quanta to the
function classes. To choose the class i receiving computation at iteration t, the procedure
must balance competing goals of exploration—evaluating each function class Fi adequately—
and exploitation—giving more computation to classes with low empirical risk. To promote
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Algorithm 3 Multi-armed bandit algorithm for selection of best class î.

For each i ∈ [K], query ni examples from class Fi.
for t = K + 1 to T do
Let Ni(t) be the total number of examples seen for class i until time t

Let it = argmini∈[K]R(j, Ni(t))−
√

log t
Ni(t)

.

Query nit examples for class it and set Nit(t+ 1) = Nit(t) + nit .
end for
Output î, the index of the most frequently queried class.

exploration, we use an optimistic selection criterion to choose class i, which—assuming that
Fi has seen n samples and t computational quanta at this point—is

R(i, n) = R̂n(A (i, n))− γi(n)−
√

logK

n
+ γi(Tni). (4.27)

The intuition behind the definition of R(i, n) is that we would like the algorithm to choose

functions f and classes i that minimize R̂n(f) + γi(Tni) ≈ R(f) + γi(Tni), but the negative
γi(n) and

√
logK/n terms lower the criterion significantly when n is small and thus encour-

age initial exploration. The criterion (4.27) essentially combines a penalized model-selection
objective (used, for example in Bartlett et al. [18]) with an optimistic criterion similar to
those used in multi-armed bandit algorithms [13]. Algorithm 3 contains the formal descrip-
tion of our bandit procedure for model selection. Algorithm 3 begins by receiving ni samples
for each of the K classes Fi to form the preliminary empirical estimates (4.27); we then run
the optimistic selection criterion for T rounds until the computational budget is exhausted.

4.4.2 Main results and some consequences

The goal of the selection procedure is to find the best penalized class i∗: a class satisfying

i∗ ∈ argmin
i∈[K]

{
inf
f∈Fi

R(f) + γi(Tni)

}
= argmin

i∈[K]

{R∗
i + γi(Tni)} .

To present our main results for Algorithm 3, we define the excess penalized risk ∆i of class
i:

∆i := R∗
i + γi(Tni)− R∗

i∗ − γi∗(Tni∗) ≥ 0. (4.28)

Without loss of generality, we assume that the infimum in R∗
i = inff∈Fi

R(f) is attained
by a function f ∗

i (if not, we use a limiting argument, choosing some fixed f ∗
i such that

R(f ∗
i ) ≤ inff∈Fi

R(f) + δ for an arbitrarily small δ > 0).
The gains of a computationally adaptive strategy over näıve strategies are clearest when

the gap (4.28) is non-zero for each i, though in the sequel, we forgo this requirement. Under
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this assumption, we can follow the ideas of Auer et al. [13] to show that the fraction of the
computational budget allocated to any suboptimal class i 6= i∗ goes quickly to zero as T
grows. We provide the proof of the following theorem in Section 4.4.3.

Theorem 4.3. Let Alg. 3 be run for T rounds and let Ti(t) be the number of times class i is
queried through round t. Let ∆i be defined as in (4.28) and Assumption F hold, and assume
that T ≥ K. Define βi = max{1/αi, 2}. There is a constant C such that

E[Ti(T )] ≤
C

ni

(
ci + κ2

√
log T

∆i

)βi
and P

(
Ti(T ) >

C

ni

(
ci + κ2

√
log T

∆i

)βi)
≤ κ1
TK4

,

where ci and αi are the constants in the definition F(d) of the concentration function γi.

At a high level, this result shows that the fraction of budget allocated to any suboptimal

class goes to 0 at the rate 1
niT

(√
log T
∆i

)βi
. Hence, asymptotically in T , the procedure performs

almost as if all the computational budget were allocated to class i∗. To see an example of
concrete rates that can be concluded from the above result, let F1, . . . ,FK be model classes
with finite VC-dimension,1 so that Assumption F is satisfied with αi =

1
2
. Then we have

Corollary 4.3. Under the conditions of Theorem 4.3, assume F1, . . . ,FK are model classes
of finite VC-dimension, where Fi has dimension di. Then there is a constant C such that

E[Ti(T )] ≤ C
max{di, κ22 log T}

∆2
ini

and P

(
Ti(T ) > C

max{di, κ22 log T}
∆2
ini

)
≤ κ1
TK4

.

A lower bound by Lai and Robbins [95] for the multi-armed bandit problem shows that
Corollary 4.3 is nearly optimal in general. To see the connection, let Fi correspond to the
ith arm in a multi-armed bandit problem and the risk R∗

i be the expected reward of arm i
and assume w.l.o.g. that R∗

i ∈ [0, 1]. In this case, the complexity penalty γi for each class is
0. Let pi be a distribution on {0, 1}, where pi(1) = R∗

i and pi(0) = 1 − R∗
i (let pi = pi(1)

for shorthand). Lai and Robbins give a lower bound that shows that the expected number
of pulls of any suboptimal arm is at least E[Ti(T )] = Ω (log T/KL (pi||pi∗)), where pi and
pi∗ are the reward distributions for the ith and optimal arms, respectively. An asymptotic
expansion shows that KL (pi||pi∗) = ∆2

i /(2pi(1− pi)), plus higher order terms, in this special
case. So Corollary 4.3 is essentially tight.

The condition that the gap ∆i > 0 may not always be satisfied, or ∆i may be so small as
to render the bound in Theorem 4.3 vacuous. Nevertheless, it is intuitive that our algorithm
can quickly find a small set of “good” classes—those with small penalized risk—and spend
its computational budget to try to distinguish amongst them. In this case, Algorithm 3 does
not visit suboptimal classes and so can output a function f satisfying good oracle bounds.

1Similar corollaries hold for any model class whose metric entropy grows polynomially in log 1

ε
.
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In order to prove a result quantifying this intuition, we first upper bound the regret of
Algorithm 3, that is, the average excess risk suffered by the algorithm over all iterations,
and then show how to use this bound for obtaining a model with a small risk. For the
remainder of the section, we simplify the presentation by assuming that αi ≡ α and define
β = max{1/α, 2}.

Proposition 4.2. Use the same assumptions as Theorem 4.3, but further assume that
αi ≡ α for all i. With probability at least 1 − κ1/TK

3, the regret (average excess risk) of
Algorithm 3 satisfies

K∑

i=1

∆iTi(T ) ≤ 2eT 1−1/β

(
C

K∑

i=1

(ci + κ2
√
log T )β

ni

)1/β

for a constant C dependent on α.

Our final main result builds on Proposition 4.2 to show that when it is possible to
average functions across classes Fi, we can aggregate all the “played” functions ft, one for
each iteration t, to obtain a function with small risk. Indeed, setting ft = A (it, ni(t)), we
obtain the following theorem (whose proof, along with that of Proposition 4.2, we provide
in Appendix B.4):

Theorem 4.4. Use the conditions of Proposition 4.2. Let the risk function R be convex on
F1 ∪ . . .∪FK, and let ft be the function chosen by algorithm A at round t of Alg. 3. Define
the average function f̂T = 1

T

∑T
t=1 ft. There are constants C, C ′ (dependent on α) such that

with probability greater than 1− 2κ2/(TK
3),

R(f̂T ) ≤ R∗ + γi∗(Tni∗) + 2eκ2T
−β√log T

(
K∑

i=1

C

ni

)1/β

+ C ′ T−1/β

(
K∑

i=1

[
cin

−α
i + κ2n

− 1
2

i

√
logK + κ2n

− 1
2

i

√
log T

]β
)1/β

.

Let us interpret the above bound and discuss its optimality. When α = 1
2
(e.g., for VC

classes), we have β = 2; moreover, it is clear that
∑K

i=1
C
ni

= O(K). Thus, to within constant
factors,

R(f̂T ) = R∗
i∗ + γi∗(Tni∗) +O

(√
Kmax{log T, logK}√

T

)
.

Ignoring logarithmic factors, the above bound is minimax optimal, which follows by a re-
duction of our model selection problem to the special case of a multi-armed bandit problem.
In this case, Theorem 5.1 of Auer et al. [12] shows that for any set of K, T values, there is
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a distribution over the rewards of arms which forces Ω(
√
KT ) regret, that is, the average

excess risk of the classes chosen by Alg. 3 must be Ω(
√
KT ), matching Proposition 4.2 and

Theorem 4.4.
The scaling O(

√
K) is essentially as bad as splitting the computational budget T uni-

formly across each of the K classes, which yields (roughly) an oracle inequality of the form

R(f) = R∗
i∗ + γi∗(Tni∗/K) +O

(√
K logK√
Tni∗

)
.

Comparing this bound to Theorem 4.4, we see that the penalty γi in the theorem is smaller,
and (ignoring logarithmic factors) the difference in quality of results is the difference between

K∑

i=1

1

ni
and

K

ni∗
.

When the left quantity is smaller than the right, the bandit-based Algorithm 3 and the
extension indicated by Theorem 4.4 give improvements over the näıve strategy of uniformly
splitting the budget across classes. However, if each class has similar computational cost ni,
no strategy can outperform the näıve one.

We also observe that we can apply the online procedure of Algorithm 3 to the nested
setup of Sections 4.2 and 4.3 as well. In this case, by applying Algorithm 3 only to elements
of the coarse-grid set Sλ, we can replace K in the bounds of Theorems 4.3 and 4.4 with s(λ),
which gives results similar to our earlier Theorems 4.1 and 4.2.

4.4.3 Proof of Theorem 4.3

At a high level, the proof of this theorem involves combining the techniques for analysis
of multi-armed bandits developed in [13] with Assumption F. We start by giving a lemma
which will be useful to prove the theorem. The lemma states that after a sufficient number
of initial iterations τ , the probability that Algorithm 3 chooses to receive samples for a sub-
optimal function class i 6= i∗ is extremely small. Recall also our notational convention that
βi = max{1/αi, 2}.

Lemma 4.5. Let Assumption F hold. For any class i, any si ∈ [1, T ] and si∗ ∈ [τ, T ] where
τ satisfies

τ >
2βi(ci + κ2

√
log T + κ2

√
logK)βi

ni∆
βi
i

,

we have

P

(
R(i, nisi)− κ2

√
log T

nisi
≤ R(i∗, ni∗si∗)− κ2

√
log T

ni∗si∗

)
≤ 2κ1

(TK)4
.
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We defer the proof of the lemma to Appendix B.3, though at a high level the proof works
as follows. The “bad event” in Lemma 4.5, which corresponds to Algorithm 3 selecting a
sub-optimal class i 6= i∗, occurs only if one of the following three errors occurs: the empirical
risk of class i is much lower than its true risk, the empirical risk of class i∗ is higher than
its true risk, or si is not large enough to actually separate the true penalized risks from one
another. The assumptions of the lemma make each of these three sub-events quite unlikely.
Now we turn to the proof of Theorem 4.3, assuming the lemma.

Let it denote the model class index i chosen by Algorithm 3 at time t, and let si(t) denote
the number of times class i has been selected at round t of the algorithm. When no time
index is needed, si will denote the same thing. Note that if it = i and the number of times
class i is queried exceeds τ > 0, then by the definition of the selection criterion (4.27) and
choice of it in Alg. 3, for some si ∈ {τ, . . . , t− 1} and si∗ ∈ {1, . . . , t− 1} we have

R(i, nisi)− κ2

√
log T

nisi
≤ R(i∗, ni∗si∗)− κ2

√
log T

ni∗si∗
.

Here we interpret R(i, nisi) to mean a random realization of the observed risk consistent
with the samples we observe. Using the above implication, we thus have

Ti(T ) = 1 +
T∑

t=K+1

Iit = i ≤ τ +
T∑

t=K+1

Iit = i, Ti(t− 1) ≥ τ

≤ τ +
T∑

t=K+1

I min
τ≤si<t

R(i, nisi)− κ2

√
log T

nisi
≤ max

0<s<t
R(i∗, ni∗si∗)− κ2

√
log T

ni∗si∗

≤ τ +

T∑

t=1

t−1∑

si∗=1

t−1∑

si=τ

IR(i, nisi)− κ2

√
log T

nisi
≤ R(i∗, ni∗si∗)− κ2

√
log T

ni∗si∗
. (4.29)

To control the last term, we invoke Lemma 4.5 and obtain that

τ >
2βi(ci + κ2

√
log T + κ2

√
logK)βi

ni∆
βi
i

⇒ E[Ti(n)] ≤ τ +
T∑

t=1

t−1∑

s=1

t−1∑

si=τ

2
κ1

(TK)4
≤ τ +

κ1
TK4

.

Hence for any suboptimal class i 6= i∗, E[Ti(n)] ≤ τi+ κ1/(TK
4), where τi satisfies the lower

bound of Lemma 4.5 and is thus logarithmic in T . Under the assumption that T ≥ K, for
i 6= i∗,

E[Ti(T )] ≤ C
(ci + κ2

√
log T )max{1/αi,2}

ni∆
max{1/αi,2}
i

(4.30)

for a constant C ≤ 2 · 4max{1/αi,2}. Now we prove the high-probability bound. For this part,
we need only concern ourselves with the sum of indicators from (4.29). Markov’s inequality
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shows that

P

(
T∑

t=K+1

Iit = i, Ti(t− 1) ≥ τ ≥ 1

)
≤ κ1
TK4

.

Thus we can assert that the bound (4.30) on Ti(T ) holds with high probability.

Remark: By examining the proof of Theorem 4.3, it is straightforward to see that if we
modify the multipliers on the square root terms in the criterion (4.27) by mκ2 instead of κ2,
we get that the probability bound is of the order T 3−4m2

K−4m2

, while the bound on Ti(T )
is scaled by m1/αi .

4.5 Discussion

In this chapter, we have presented a new framework for model selection with computational
constraints. The novelty of our new setting is the idea of using computation—rather than
samples—as the quantity against which we measure the performance of our estimators. By
carefully capturing the relative computational needs of fitting different models to our data,
we are able to formalize the very natural intuition: Given a computational budget, a simple
model can be fitted to a lot more samples than a complex model. As our main contribution, we
have presented algorithms for model selection in several scenarios, and the common thread
in each is that we attain good performance by evaluating only a small and intelligently-
selected set of models, allocating samples to each model based on the computational cost.
For model selection over nested hierarchies, this takes the form of a new estimator based on
a coarse gridding of the model space, which is competitive (to logarithmic factors) with an
omniscient oracle. A minor extension of this algorithm is adaptive to problem complexity,
since it yields fast rates for model selection when the underlying estimation problems have
appropriate curvature or low-noise properties. We also presented an exploration-exploitation
algorithm for model selection in unstructured cases, showing that it obtains (in some sense)
nearly optimal performance.

There are certainly many possible extensions and open questions raised by this work.
We address the setting where the complexity penalties are known and can be computed
easily in closed form. Often it is desirable to use data-dependent penalties [104, 21, 108],
since they adapt to the particular problem instance and data distribution. It appears to
be somewhat difficult to extend such penalties to the procedures we have developed in this
chapter, but we believe it would be quite interesting. Another natural question to ask
is whether there exist intermediate model selection problems between a nested sequence of
classes and a completely unstructured collection. Identifying other structures—and obtaining
the corresponding oracle inequalities and understanding their dependence on computation—
would be an interesting extension of the results presented here.
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More broadly, we believe the idea of using computation, in addition to the number of
samples available for a statistical inference problem, to measure the performance of statis-
tical procedures is appealing for a much broader class of problems. In large data settings,
one would hope that more data would always improve the risk performance of statistical
procedures, even with a fixed computational budget. We hope that extending these ideas to
other problems, and understanding how computation interacts with and affects the quality
of statistical estimation more generally will be quite fruitful.
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Chapter 5

Optimization algorithms for statistical
estimation in high-dimensions

High-dimensional data sets present challenges that are both statistical and computa-
tional in nature. On the statistical side, recent years have witnessed a flurry of results on
consistency and rates for various estimators under non-asymptotic high-dimensional scaling,
meaning that error bounds are provided for general settings of the sample size n and problem
dimension d, allowing for the possibility that d� n. These results typically involve some as-
sumption regarding the underlying structure of the parameter space, such as sparse vectors,
structured covariance matrices, low-rank matrices, or structured regression functions, as well
as some regularity conditions on the data-generating process. On the computational side,
many estimators for statistical recovery are based on solving convex programs. Examples of
such M-estimators include `1-regularized quadratic programs (also known as the Lasso) for
sparse linear regression (e.g., see the papers [156, 51, 177, 111, 30, 40, 164] and references
therein), second-order cone programs (SOCP) for the group Lasso (e.g., [180, 103, 79] and
references therein), and semidefinite programming relaxations (SDP) for various problems,
including sparse PCA and low-rank matrix estimation (e.g., [44, 135, 152, 10, 141, 115, 136]
and references therein).

Many of these programs are instances of convex conic programs, and so can (in principle)
be solved to ε-accuracy in polynomial time using interior point methods, and other standard
methods from convex programming (e.g., see the books [28, 35]). However, the complexity
of such quasi-Newton methods can be prohibitively expensive for the very large-scale prob-
lems that arise from high-dimensional data sets. Accordingly, recent years have witnessed
a renewed interest in simpler first-order methods, among them the methods of projected
gradient descent and mirror descent. Our aim in this chapter will be to consider such gra-
dient methods, and establish fast linear convergence for them under the typical statistical
settings in high-dimensions. These results extend our understanding of these methods be-
yond cases addressed by the current theory, and highlight interesting interplay between the
computational and statistical complexities of such high-dimensional estimation problems.
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5.1 Motivation and prior work

There has been a large body of literature growing around the application of existing opti-
mization methods, as well as the development of new ones tailored to the needs of struc-
tured optimization problems in high-dimensions resulting from the statistical M-estimators.
Several authors (e.g., [24, 80, 23]) have used variants of Nesterov’s accelerated gradient
method [121] to obtain algorithms for high-dimensional statistical problems with a sublinear
rate of convergence. Note that an optimization algorithm, generating a sequence of iterates
{θt}∞t=0, is said to exhibit sublinear convergence to an optimum θ̂ if the optimization error

‖θt − θ̂‖ decays at the rate 1/tκ, for some exponent κ > 0 and norm ‖ · ‖. Although this
type of convergence is quite slow, it is the best possible with gradient descent-type methods
for convex programs under only Lipschitz conditions [120].

It is known that much faster global rates—in particular, a linear or geometric rate—can
be achieved if global regularity conditions like strong convexity and smoothness are im-
posed [120]. An optimization algorithm is said to exhibit linear or geometric convergence if

the optimization error ‖θt− θ̂‖ decays at a rate κt, for some contraction coefficient κ ∈ (0, 1).
Note that such convergence is exponentially faster than sub-linear convergence. For cer-
tain classes of problems involving polyhedral constraints and global smoothness, Tseng and
Luo [105] have established geometric convergence. However, a challenging aspect of statisti-
cal estimation in high dimensions is that the underlying optimization problems can never be
strongly convex in a global sense when d > n (since the d×d Hessian matrix is rank-deficient),
and global smoothness conditions cannot hold when d/n → +∞. Some more recent work
has exploited structure specific to the optimization problems that arise in statistical settings.
For the special case of sparse linear regression with random isotropic designs (also referred to
as compressed sensing), some authors have established fast convergence rates in a local sense,
meaning guarantees that apply once the iterates are close enough to the optimum [37, 71].
The intuition underlying these results is that once an algorithm identifies the support set
of the optimal solution, the problem is then effectively reduced to a lower-dimensional sub-
space, and thus fast convergence can be guaranteed in a local sense. Also in the setting of
compressed sensing, Tropp and Gilbert [158] studied finite convergence of greedy algorithms
based on thresholding techniques, and showed linear convergence up to a certain tolerance.
For the same class of problems, Garg and Khandekar [68] showed that a thresholded gradient
algorithm converges rapidly up to some tolerance. In both of these results, the convergence
tolerance is of the order of the noise variance, and hence substantially larger than the true
statistical precision of the problem.

The focus of this chapter is the convergence rate of two simple gradient-based algorithms
for solving optimization problems that underlie regularized M-estimators. For a constrained
problem with a differentiable objective function, the projected gradient method generates a
sequence of iterates {θt}∞t=0 by taking a step in the negative gradient direction, and then pro-
jecting the result onto the constraint set. The composite gradient method of Nesterov [121] is
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well-suited to solving regularized problems formed by the sum of a differentiable and (poten-
tially) non-differentiable component. The main contribution of this chapter is to establish
a form of global geometric convergence for these algorithms that holds for a broad class
of high-dimensional statistical problems. In order to provide intuition for this guarantee,
Figure 5.1 shows the performance of projected gradient descent for a Lasso problem (`1-
constrained least-squares). In panel (a), we have plotted the logarithm of the optimization

error, measured in terms of the Euclidean norm ‖θt − θ̂‖ between the current iterate θt and

an optimal solution θ̂, versus the iteration number t. The plot includes three different curves,
corresponding to sparse regression problems in dimension d ∈ {5000, 10000, 20000}, and a
fixed sample size n = 2500. Note that all curves are linear (on this logarithmic scale), reveal-
ing the geometric convergence predicted by our theory. Such convergence is not predicted by
classical optimization theory, since the objective function cannot be strongly convex when-
ever n < d. Moreover, the convergence is geometric even at early iterations, and takes place
to a precision far less than the noise level (ν2 = 0.25 in this example). We also note that
the design matrix does not satisfy the restricted isometry property, as assumed in some past
work.
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Figure 5.1. Convergence rates of projected gradient descent in application to Lasso
programs (`1-constrained least-squares). Each panel shows the log optimization error

log ‖θt − θ̂‖ versus the iteration number t. Panel (a) shows three curves, corresponding
to dimensions d ∈ {5000, 10000, 20000}, sparsity s = d

√
de, and all with the same sample

size n = 2500. All cases show geometric convergence, but the rate for larger problems be-
comes progressively slower. (b) For an appropriately rescaled sample size (α = n

s log d), all
three convergence rates should be roughly the same, as predicted by the theory.

The results in panel (a) exhibit an interesting property: the convergence rate is dimension-
dependent, meaning that for a fixed sample size, projected gradient descent converges more
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slowly for a large problem than a smaller problem—compare the squares for d = 20000 to the
diamonds for d = 5000. This phenomenon reflects the natural intuition that larger problems
are, in some sense, “harder” than smaller problems. A notable aspect of our theory is that in
addition to guaranteeing geometric convergence, it makes a quantitative prediction regarding
the extent to which a larger problem is harder than a smaller one. In particular, our conver-
gence rates suggest that if the sample size n is re-scaled in a certain way according to the
dimension d and also other model parameters such as sparsity, then convergence rates should
be roughly similar. Panel (b) provides a confirmation of this prediction: when the sample
size is rescaled according to our theory (in particular, see Corollary 5.2 in Section 5.3.2),
then all three curves lie essentially on top of another.

Although high-dimensional optimization problems are typically neither strongly convex
nor smooth, our work shows that it is fruitful to consider suitably restricted notions of strong
convexity and smoothness. Our notion of restricted strong convexity (RSC) is related to but
slightly different than that introduced in a recent paper by Negahban et al. [116] for estab-
lishing statistical consistency. As we discuss in the sequel, bounding the optimization error
introduces new challenges not present when analyzing the statistical error. We also introduce
a related notion of restricted smoothness (RSM), not needed for proving statistical rates but
essential in the setting of optimization. Our analysis consists of two parts. We first show that
for optimization problems underlying many regularized M-estimators, appropriately mod-
ified notions of restricted strong convexity (RSC) and smoothness (RSM) are sufficient to
guarantee global linear convergence of projected gradient descent. Our second contribution is
to prove that for the iterates generated by our first-order method, these RSC/RSM assump-
tions do indeed hold with high probability for a broad class of statistical models, among
them sparse linear models, models with group sparsity constraints, and various classes of
matrix estimation problems, including matrix completion and matrix decomposition.

An interesting aspect of our results is that the global geometric convergence is not guar-
anteed to an arbitrary numerical precision, but only to an accuracy related to statistical
precision of the problem. For a given error norm ‖ · ‖, given by the Euclidean or Frobenius
norm for most examples in this chapter, the statistical precision is given by the mean-
squared error E[‖θ̂ − θ∗‖2] between the true parameter θ∗ and the estimate θ̂ obtained by
solving the optimization problem, where the expectation is taken over randomness in the
statistical model. Note that this is very natural from the statistical perspective, since it is
the true parameter θ∗ itself (as opposed to the solution θ̂ of the M-estimator) that is of
primary interest, and our analysis allows us to approach it as close as is statistically pos-
sible. Our analysis shows that we can geometrically converge to a parameter θ such that

‖θ − θ∗‖ =
∥∥∥θ̂ − θ∗

∥∥∥ + o
(∥∥∥θ̂ − θ∗

∥∥∥
)
, which is the best we can hope for statistically, ignor-

ing lower order terms. Overall, our results reveal an interesting connection between the
statistical and computational properties of M-estimators—that is, the properties of the un-
derlying statistical model that make it favorable for estimation also render it more amenable
to optimization procedures.
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The remainder of this chapter is organized as follows. We begin in Section 5.2 with
a precise formulation of the class of convex programs analyzed in this work, along with
background on the notions of a decomposable regularizer, and properties of the loss func-
tion. Section 5.3 is devoted to the statement of our main convergence result, as well as to
the development and discussion of its various corollaries for specific statistical models. In
Section 5.4, we provide a number of empirical results that confirm the sharpness of our the-
oretical predictions. Finally, Section 5.5 contains the proofs, with more technical aspects of
the arguments deferred to the Appendix. We note that an extended abstract containing the
first main theorem in this chapter and accompanying corollaries appeared in the paper [4].

5.2 Background and problem formulation

In this section, we begin by describing the class of regularized M-estimators to which our
analysis applies, as well as the optimization algorithms that we analyze. Finally, we introduce
some important notions that underlie our analysis, including the notions of a decomposable
regularization, and the properties of restricted strong convexity and smoothness.

5.2.1 Loss functions, regularization and gradient-based methods

Given a random variable z ∼ P taking values in some set Z, let zn1 = {z1, . . . , zn} be a col-
lection of n observations. Here the integer n is the sample size of the problem. Assuming
that P lies within some indexed family {Pθ, θ ∈ Ω}, the goal is to recover an estimate of
the unknown true parameter θ∗ ∈ Ω generating the data. Here Ω is some subset of Rd,
and the integer d is known as the ambient dimension of the problem. In order to measure
the “fit” of any given parameter θ ∈ Ω to a given data set zn1 , we introduce a loss func-
tion Ln : Ω× Zn → R+. By construction, for any given n-sample data set zn1 ∈ Zn, the
loss function assigns a cost Ln(θ; zn1 ) ≥ 0 to the parameter θ ∈ Ω. In many (but not all)
applications, the loss function has a separable structure across the data set, meaning that
Ln(θ; zn1 ) = 1

n

∑n
i=1 `(θ;Zi) where ` : Ω × Z :→ R+ is the loss function associated with a

single data point.

Of primary interest in this chapter are estimation problems that are under-determined,
meaning that the number of observations n is smaller than the ambient dimension d. In such
settings, without further restrictions on the parameter space Ω, there are various impossi-
bility theorems, asserting that consistent estimates of the unknown parameter θ∗ cannot be
obtained. For this reason, it is necessary to assume that the unknown parameter θ∗ either
lies within a smaller subset of Ω, or is well-approximated by some member of such a sub-
set. In order to incorporate these types of structural constraints, we introduce a regularizer
R : Ω → R+ over the parameter space. With these ingredients, the analysis of in our work



CHAPTER 5. OPTIMIZATION FOR HIGH-DIMENSIONAL ESTIMATION 78

applies to the constrained M-estimator

θ̂ρ ∈ arg min
R(θ)≤ρ

{
Ln(θ; zn1 )}, (5.1)

where ρ > 0 is a user-defined radius, as well as to the regularized M-estimator

θ̂λn ∈ arg min
R(θ)≤ρ

{
Ln(θ; zn1 ) + λnR(θ)︸ ︷︷ ︸

φn(θ)

}
(5.2)

where the regularization weight λn > 0 is user-defined. Note that the radii ρ and ρ may be
different in general. Throughout this chapter, we impose the following two conditions:

(a) for any data set zn1 , the function Ln(·; zn1 ) is convex and differentiable over Ω, and

(b) the regularizer R is a norm.

These conditions ensure that the overall problem is convex, so that by Lagrangian duality,
the optimization problems (5.1) and (5.2) are equivalent. However, as our analysis will
show, solving one or the other can be computationally more preferable depending upon the
assumptions made. Some remarks on notation: when the radius ρ or the regularization
parameter λn is clear from the context, we will drop the subscript on θ̂ to ease the notation.
Similarly, we frequently adopt the shorthand Ln(θ), with the dependence of the loss function
on the data being implicitly understood. Procedures based on optimization problems of
either form are known as M-estimators in the statistics literature.

The focus of this chapter is on two simple algorithms for solving the above optimization
problems. The method of projected gradient descent applies naturally to the constrained
problem (5.1), whereas the composite gradient descent method due to Nesterov [121] is
suitable for solving the regularized problem (5.2). Each routine generates a sequence {θt}∞t=0

of iterates by first initializing to some parameter θ0 ∈ Ω, and then applying the recursive
update

θt+1 = arg min
θ∈BR(ρ)

{
Ln(θt) + 〈∇Ln(θt), θ − θt〉+ γu

2

∥∥θ − θt
∥∥2 }, for t = 0, 1, 2, . . .,

(5.3)

in the case of projected gradient descent, or the update

θt+1 = arg min
θ∈BR(ρ)

{
Ln(θt) + 〈∇Ln(θt), θ − θt〉+ γu

2

∥∥θ − θt
∥∥2 + λnR(θ)

}
, for t = 0, 1, 2, . . .,

(5.4)

for the composite gradient method. Note that the only difference between the two updates
is the addition of the regularization term in the objective. These updates have a natural
intuition: the next iterate θt+1 is obtained by constrained minimization of a first-order
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approximation to the loss function, combined with a smoothing term that controls how far
one moves from the current iterate in terms of Euclidean norm. Moreover, it is easily seen
that the update (5.3) is equivalent to

θt+1 = Π

(
θt − 1

γu
∇Ln(θt)

)
, (5.5)

where Π ≡ ΠBR(ρ) denotes Euclidean projection onto the ball BR(ρ) = {θ ∈ Ω | R(θ) ≤ ρ}
of radius ρ. In this formulation, we see that the algorithm takes a step in the gradient
direction, using the quantity 1/γu as stepsize parameter, and then projects the resulting
vector onto the constraint set. The update (5.4) takes an analogous form, however, the
projection will depend on both λn and γu. As will be illustrated in the examples to follow,
for many problems, the updates (5.3) and (5.4), or equivalently (5.5), have a very simple
solution. For instance, in the case of `1-regularization, it can be obtained by an appropriate
form of the soft-thresholding operator.

5.2.2 Restricted strong convexity and smoothness

In this section, we define the conditions on the loss function and regularizer that underlie our
analysis. Global smoothness and strong convexity assumptions play an important role in the
classical analysis of optimization algorithms [28, 35, 120]. In application to a differentiable
loss function Ln, both of these properties are defined in terms of a first-order Taylor series
expansion around a vector θ′ in the direction of θ—namely, the quantity

TL(θ; θ
′) := Ln(θ)−Ln(θ′)− 〈∇Ln(θ′), θ − θ′〉. (5.6)

By the assumed convexity of Ln, this error is always non-negative, and global strong convex-
ity is equivalent to imposing a stronger condition, namely that for some parameter γ` > 0,
the first-order Taylor error TL(θ; θ

′) is lower bounded by a quadratic term γ`
2
‖θ − θ′‖2 for

all θ, θ′ ∈ Ω. Global smoothness is defined in a similar way, by imposing a quadratic upper
bound on the Taylor error. It is known that under global smoothness and strong convex-
ity assumptions, the method of projected gradient descent (5.3) enjoys a globally geometric
convergence rate, meaning that there is some κ ∈ (0, 1) such that1

∥∥∥θt − θ̂
∥∥∥
2

. κt
∥∥∥θ0 − θ̂

∥∥∥
2

for all iterations t = 0, 1, 2, . . .. (5.7)

We refer the reader to Bertsekas [28, Prop. 1.2.3, p. 145], or Nesterov [120, Thm. 2.2.8,
p. 88] for such results on projected gradient descent, and to Nesterov [121] for composite
gradient descent.

1In this statement (and throughout the chapter), we use . to mean an inequality that holds with some
universal constant c, independent of the problem parameters.
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Unfortunately, in the high-dimensional setting (d > n), it is usually impossible to guar-
antee strong convexity of the problem (5.1) in a global sense. For instance, when the data is
drawn i.i.d., the loss function consists of a sum of n terms. If the loss is twice differentiable,
the resulting d × d Hessian matrix ∇2L(θ;φ(zT1 ; )) is often a sum of n matrices each with
rank one, so that the Hessian is rank-degenerate when n < d. However, as we show in this
chapter, in order to obtain fast convergence rates for the optimization method (5.3), it is
sufficient that (a) the objective is strongly convex and smooth in a restricted set of direc-

tions, and (b) the algorithm approaches the optimum θ̂ only along these directions. Let us
now formalize these ideas.

Definition 5.1 (Restricted strong convexity (RSC)). The loss function Ln satisfies
restricted strong convexity with respect to R and with parameters (γ`, τ`(Ln)) over the set
Ω′ if

TL(θ; θ
′) ≥ γ`

2
‖θ − θ′‖2 − τ`(Ln) R2(θ − θ′) for all θ, θ′ ∈ Ω′. (5.8)

We refer to the quantity γ` as the (lower) curvature parameter, and to the quantity τ` as the
tolerance parameter. The set Ω′ corresponds to a suitably chosen subset of the space Ω of
all possible parameters.

In order to gain intuition for this definition, first suppose that the condition (5.8) holds
with tolerance parameter τ` = 0. In this case, the regularizer plays no role in the definition,
and condition (5.8) is equivalent to the usual definition of strong convexity on the optimiza-
tion set Ω. As discussed previously, this type of global strong convexity typically fails to
hold for high-dimensional inference problems. In contrast, when tolerance parameter τ` is
strictly positive, the condition (5.8) is much milder, in that it only applies to a limited set
of vectors. For a given pair θ 6= θ′, consider the inequality

R2(θ − θ′)

‖θ − θ′‖2 <
γ`

2 τ`(Ln)
. (5.9)

If this inequality is violated, then the right-hand side of the bound (5.8) is non-positive, in
which case the RSC constraint (5.8) is vacuous. Thus, restricted strong convexity imposes a
non-trivial constraint only on pairs θ 6= θ′ for which the inequality (5.8) holds, and a central
part of our analysis will be to prove that, for the sequence of iterates generated by projected
gradient descent, the optimization error ∆̂t := θt − θ̂ satisfies a constraint of the form (5.9).
We note that since the regularizer R is convex, strong convexity of the loss function Ln also
implies the strong convexity of the regularized loss φn as well.

For the least-squares loss, the RSC definition depends purely on the direction (and not
the magnitude) of the difference vector θ−θ′. For other types of loss functions—such as those
arising in generalized linear models—it is essential to localize the RSC definition, requiring
that it holds only for pairs for which the norm ‖θ− θ′‖2 is not too large. We refer the reader
to Section 5.2.4 for further discussion of this issue.
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Finally, we observe that our restricted version of strong convexity can be seen as an
instance of the general theory of paraconvexity (e.g., [124]); however, we are not aware of
convergence rates for minimizing general paraconvex functions.

We also specify an analogous notion of restricted smoothness:

Definition 5.2 (Restricted smoothness (RSM)). We say the loss function Ln satisfies
restricted smoothness with respect to R and with parameters (γu, τu(Ln)) over the set Ω′ if

TL(θ; θ
′) ≤ γu

2
‖θ − θ′‖2 + τu(Ln) R2(θ − θ′) for all θ, θ′ ∈ Ω′. (5.10)

As with our definition of restricted strong convexity, the additional tolerance τu(Ln) is not
present in analogous smoothness conditions in the optimization literature, but it is essential
in our set-up.

5.2.3 Decomposable regularizers

In past work on the statistical properties of regularization, the notion of a decomposable
regularizer has been shown to be useful [116]. Although the focus of this chapter is a rather
different set of questions—namely, optimization as opposed to statistics—decomposability
also plays an important role here. Decomposability is defined with respect to a pair of
subspaces defined with respect to the parameter space Ω ⊆ Rd. The set M is known as

the model subspace, whereas the set M⊥
, referred to as the perturbation subspace, captures

deviations away from the model subspace.

Definition 5.3. Given a subspace pair (M,M⊥
) such that M ⊆ M, we say that a norm

R is (M,M⊥
)-decomposable if

R(α + β) = R(α) +R(β) for all α ∈ M and β ∈ M⊥
. (5.11)

To gain some intuition for this definition, note that by triangle inequality, we always have
the bound R(α+β) ≤ R(α)+R(β). For a decomposable regularizer, this inequality always
holds with equality. Thus, given a fixed vector α ∈ M, the key property of any decompos-

able regularizer is that it affords the maximum penalization of any deviation β ∈ M⊥
.

For a given error norm ‖·‖, its interaction with the regularizer R plays an important role
in our results. In particular, we have the following:

Definition 5.4 (Subspace compatibility). Given the regularizer R(·) and a norm ‖·‖, the
associated subspace compatibility is given by

Ψ(M) := sup
θ∈M̄\{0}

R(θ)

‖θ‖ when M 6= {0}, and Ψ({0}) := 0. (5.12)



CHAPTER 5. OPTIMIZATION FOR HIGH-DIMENSIONAL ESTIMATION 82

The quantity Ψ(M) corresponds to the Lipschitz constant of the norm R with respect to
‖·‖, when restricted to the subspace M.

5.2.4 Some illustrative examples

We now describe some particular examples ofM-estimators with decomposable regularizers,
and discuss the form of the projected gradient updates as well as RSC/RSM conditions.
We cover two main families of examples: log-linear models with sparsity constraints and
`1-regularization (Section 5.2.4), and matrix regression problems with nuclear norm regular-
ization (Section 5.2.4).

Sparse log-linear models and `1-regularization

Suppose that each sample Zi consists of a scalar-vector pair (yi, xi) ∈ R×Rd, corresponding
to the scalar response yi ∈ Y associated with a vector of predictors xi ∈ Rd. A log-linear
model with canonical link function assumes that the response yi is linked to the covariate

vector xi via a conditional distribution of the form P(yi | xi; θ∗, σ) ∝ exp

{
yi 〈θ∗, xi〉−Φ(〈θ∗, xi〉)

c(σ)

}
,

where c(σ) is a known quantity, Φ(·) is the log-partition function to normalize the density,
and θ∗ ∈ Rd is an unknown regression vector. In many applications, the regression vector θ∗

is relatively sparse, so that it is natural to impose an `1-constraint. Computing the maximum
likelihood estimate subject to such a constraint involves solving the convex program2

θ̂ ∈ argmin
θ∈Ω

{ 1

n

n∑

i=1

{
yi 〈θ, xi〉 − Φ(〈θ, xi〉)

}}

︸ ︷︷ ︸
Ln(θ;zn1 )

such that ‖θ‖1 ≤ ρ, (5.13)

with xi ∈ Rd as its ith row. We refer to this estimator as the log-linear Lasso; it is a
special case of the M-estimator (5.1), with the loss function Ln(θ; zn1 ) = 1

n

∑n
i=1

{
yi 〈θ, xi〉−

Φ(〈θ, xi〉)
}
and the regularizer R(θ) = ‖θ‖1 =

∑d
j=1 |θj |.

Ordinary linear regression is the special case of the log-linear setting with Φ(t) = t2/2
and Ω = Rd, and in this case, the estimator (5.13) corresponds to ordinary least-squares
version of Lasso [51, 156]. Other forms of log-linear Lasso that are of interest include logistic
regression, Poisson regression, and multinomial regression.

Projected gradient updates: Computing the gradient of the log-linear loss from equa-
tion (5.13) is straightforward: we have ∇Ln(θ) = 1

n

∑n
i=1 xi

{
yi − Φ′(〈θ, xi〉)

}
, and the up-

date (5.5) corresponds to the Euclidean projection of the vector θt − 1
γu
∇Ln(θt) onto the

`1-ball of radius ρ. It is well-known that this projection can be characterized in terms of

2The link function Φ is convex since it is the log-partition function of a canonical exponential family.
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soft-thresholding, and that the projected update (5.5) can be computed easily. We refer the
reader to Duchi et al. [60] for an efficient implementation requiring O(d) operations.

Composite gradient updates: The composite gradient update for this problem amounts
to solving

θt+1 = arg min
‖θ‖1≤ρ

{
〈θ, ∇Ln(θ)〉+

γu
2
‖θ − θt‖22 + λn‖θ‖1

}
.

The update can be computed by two soft-thresholding operations. The first step is soft
thresolding the vector θt − 1

γu
∇Ln(θt) at a level λn. If the resulting vector has `1-norm

greater than ρ, then we project on to the `1-ball just like before. Overall, the complexity of
the update is still O(d) as before.

Decomposability of `1-norm: We now illustrate how the `1-norm is decomposable with
respect to appropriately chosen subspaces. For any subset S ⊆ {1, 2, . . . , d}, consider the
subspace

M(S) :=
{
α ∈ Rd | αj = 0 for all j /∈ S}, (5.14)

corresponding to all vectors supported only on S. Defining M(S) = M(S), its orthogonal
complement (with respect to the usual Euclidean inner product) is given by

M⊥
(S) = M⊥(S) =

{
β ∈ Rd | βj = 0 for all j ∈ S

}
. (5.15)

To establish the decomposability of the `1-norm with respect to the pair (M(S),M⊥
(S)),

note that any α ∈ M(S) can be written in the partitioned form α = (αS, 0Sc), where αS ∈ Rs

and 0Sc ∈ Rd−s is a vector of zeros. Similarly, any vector β ∈ M⊥
(S) has the partitioned

representation (0S, βSc). With these representations, we have the decomposition

‖α + β‖1 = ‖(αS, 0) + (0, βSc)‖1 = ‖α‖1 + ‖β‖1.
Consequently, for any subset S, the `1-norm is decomposable with respect to the pairs
(M(S),M⊥(S)).

In analogy to the `1-norm, various types of group-sparse norms are also decomposable
with respect to non-trivial subspace pairs. We refer the reader to the paper [116] for further
discussion and examples of such decomposable norms.

RSC/RSM conditions: A calculation using the mean-value theorem shows that for the
loss function (5.13), the error in the first-order Taylor series, as previously defined in equa-
tion (5.6), can be written as

TL(θ; θ
′) =

1

n

n∑

i=1

Φ′′(〈θt, xi〉
) (

〈xi, θ − θ′〉
)2
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where θt = tθ + (1 − t)θ′ for some t ∈ [0, 1]. When n < d, then we can always find pairs
θ 6= θ′ such that 〈xi, θ − θ′〉 = 0 for all i = 1, 2, . . . , n, showing that the objective function
can never be strongly convex. On the other hand, restricted strong convexity for log-linear
models requires only that there exist positive numbers (γ`, τ`(Ln)) such that

1

n

n∑

i=1

Φ′′(〈θt, xi〉
) (

〈xi, θ − θ′〉
)2 ≥ γ`

2
‖θ − θ′‖2 − τ`(Ln) R2(θ − θ′) for all θ, θ′ ∈ Ω′,

(5.16)

where Ω′ := Ω∩B2(R) is the intersection of the parameter space Ω with a Euclidean ball of
some fixed radius R around zero. This restriction is essential because for many generalized
linear models, the Hessian function Φ′′ approaches zero as its argument diverges. For in-
stance, for the logistic function Φ(t) = log(1+ exp(t)), we have Φ′′(t) = exp(t)/[1 + exp(t)]2,
which tends to zero as t→ +∞. Restricted smoothness imposes an analogous upper bound
on the Taylor error. For a broad class of log-linear models, such bounds hold with with

tolerance τ`(Ln) and τu(Ln) of the order
√

log d
n

. Further details on such results are provided

in the corollaries to follow our main theorem. A detailed discussion of RSC for exponential
families in statistical problems can be found in the paper [116].

In order to ensure RSC/RSM conditions on the iterates θt of the updates (5.3) or (5.4), we
also need to ensure that θt ∈ Ω′. This can be done by defining L′

n = Ln+IΩ′(θ), where IΩ′(θ)
is zero when θ ∈ Ω′ and ∞ otherwise. This is equivalent to projection on the intersection
of `1-ball with Ω′ in the updates (5.3) and (5.4) and can be done efficiently with Dykstra’s
algorithm [64], for instance, as long as the individual projections are efficient.

In the special case of linear regression, we have Φ′′(t) = 1 for all t ∈ R, so that the lower
bound (5.16) involves only the Gram matrix XTX/n. (Here X ∈ Rn×d is the usual design
matrix, with xi ∈ Rd as its ith row.) For linear regression and `1-regularization, the RSC
condition is equivalent to the lower bound

‖X(θ − θ′)‖22
n

≥ γ`
2
‖θ − θ′‖22 − τ`(Ln) ‖θ − θ′‖21 for all θ, θ′ ∈ Ω. (5.17)

Such a condition corresponds to a variant of the restricted eigenvalue (RE) conditions that
have been studied in the literature [30, 164]. Such RE conditions are significantly milder than
the restricted isometry property; we refer the reader to van de Geer and Buhlmann [164] for
an in-depth comparison of different RE conditions. From past work, the condition (5.17) is
satisfied with high probability for a broad classes of anisotropic random design matrices [133,
143], and parts of our analysis make use of this fact.

Matrices and nuclear norm regularization

We now discuss a general class of matrix regression problems that falls within our framework.
Consider the space of d1×d2 matrices endowed with the trace inner product 〈〈A, B〉〉 := trace(ATB).
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In order to ease notation, we define d := min{d1, d2}. Let Θ∗ ∈ Rd1×d2 be an unknown matrix
and suppose that for i = 1, 2, . . . , n, we observe a scalar-matrix pair Zi = (yi, Xi) ∈ R× Rd1×d2

linked to Θ∗ via the linear model

yi = 〈〈Xi, Θ
∗〉〉+ wi, for i = 1, 2, . . . , n, (5.18)

where wi is an additive observation noise. In many contexts, it is natural to assume that Θ∗

is exactly low-rank, or approximately so, meaning that it is well-approximated by a matrix
of low rank. In such settings, a number of authors (e.g., [67, 141, 115]) have studied the
M-estimator

Θ̂ ∈ arg min
Θ∈Rd1×d2

{ 1

2n

n∑

i=1

(
yi − 〈〈Xi, Θ〉〉

)2}
such that |||Θ|||1 ≤ ρ, (5.19)

or the corresponding regularized version. Here the nuclear or trace norm is given by

|||Θ|||1 :=
d∑
j=1

σj(Θ), corresponding to the sum of the singular values. This optimization prob-

lem is an instance of a semidefinite program. As discussed in more detail in Section 5.3.3,
there are various applications in which this estimator and variants thereof have proven useful.

Form of projected gradient descent: For the M-estimator (5.19), the projected gradient
updates take a very simple form—namely

Θt+1 = Π
(
Θt − 1

γu

∑n
i=1

(
yi − 〈〈Xi, Θ

t〉〉
)
Xi

n

)
, (5.20)

where Π denotes Euclidean projection onto the nuclear norm ball B1(ρ) = {Θ ∈ Rd1×d2 | |||Θ|||1 ≤ ρ}.
This nuclear norm projection can be obtained by first computing the singular value decom-
position (SVD), and then projecting the vector of singular values onto the `1-ball. The latter
step can be achieved by the fast projection algorithms discussed earlier, and there are various
methods for fast computation of SVDs. The composite gradient update also has a simple
form, requiring at most two singular value thresholding operations as was the case for linear
regression.

Decomposability of nuclear norm: We now define matrix subspaces for which the nu-
clear norm is decomposable. Given a target matrix Θ∗—that is, a quantity to be estimated—
consider its singular value decomposition Θ∗ = UDV T , where the matrix D ∈ Rd×d is diag-
onal, with the ordered singular values of Θ∗ along its diagonal, and d := min{d1, d2}. For an
integer r ∈ {1, 2, . . . , d}, let U r ∈ Rd×r denote the matrix formed by the top r left singular
vectors of Θ∗ in its columns, and we define the matrix V r in a similar fashion. Using col to
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denote the column span of a matrix, we then define the subspaces3

M(U r, V r) :=
{
Θ ∈ Rd1×d2 | col(ΘT ) ⊆ col(V r), col(Θ) ⊆ col(U r)

}
, and (5.21a)

M⊥
(U r, V r) :=

{
Θ ∈ Rd1×d2 | col(ΘT ) ⊆ (col(V r))⊥, col(Θ) ⊆ (col(U r))⊥

}
. (5.21b)

Finally, let us verify the decomposability of the nuclear norm . By construction, any pair

of matrices Θ ∈ M(U r, V r) and Γ ∈ M⊥
(U r, V r) have orthogonal row and column spaces,

which implies the required decomposability condition—namely |||Θ+ Γ|||1 = |||Θ|||1 + |||Γ|||1.
In some special cases such as matrix completion or matrix decomposition that we describe

in the sequel, Ω′ will involve an additional bound on the entries of Θ∗ as well as the iterates Θt

to establish RSC/RSM conditions. This can be done by augmenting the loss with an indicator
of the constraint and using cyclic projections for computing the updates as mentioned earlier
in Example 5.2.4.

5.3 Main results and some consequences

We are now equipped to state the two main results of this chapter, and discuss some of
their consequences. We illustrate its application to several statistical models, including
sparse regression (Section 5.3.2), matrix estimation with rank constraints (Section 5.3.3),
and matrix decomposition problems (Section 5.3.4).

5.3.1 Geometric convergence

Recall that the projected gradient algorithm (5.3) is well-suited to solving an M-estimation
problem in its constrained form, whereas the composite gradient algorithm (5.4) is appropri-

ate for a regularized problem. Accordingly, let θ̂ be any optimal solution to the constrained
problem (5.1), or the regularized problem (5.2), and let {θt}∞t=0 be a sequence of iterates
generated by generated by the projected gradient updates (5.3), or the the composite gra-
dient updates (5.4), respectively. Of primary interest to us in this work are bounds on the

optimization error, which can be measured either in terms of the error vector ∆̂t := θt − θ̂,
or the difference between the cost of θt and the optimal cost defined by θ̂. In this section,
we state two main results —Theorems 5.1 and 5.2—corresponding to the constrained and
regularized cases respectively. In addition to the optimization error previously discussed,
both of these results involve the statistical error ∆∗ := θ̂ − θ∗ between the optimum θ̂ and
the nominal parameter θ∗. At a high level, these results guarantee that under the RSC/RSM
conditions, the optimization error shrinks geometrically, with a contraction coefficient that
depends on the the loss function Ln via the parameters (γ`, τ`(Ln)) and (γu, τu(Ln)). An
interesting feature is that the contraction occurs only up to a certain tolerance parameter ε2

3 Note that the model space M(U r, V r) is not equal to M(U r, V r). Nonetheless, as required by Defini-
tion 5.3, we do have the inclusion M(U r, V r) ⊆ M(U r, V r).
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depending on these same parameters, and the statistical error. However, as we discuss, for
many statistical problems of interest, we can show that this tolerance parameter is of lower
order than the intrinsic statistical error, and hence can be neglected from the statistical point
of view. Consequently, our theory gives an explicit upper bound on the number of iterations
required to solve an M-estimation problem up to statistical precision.

Convergence rates for projected gradient: We now provide the notation necessary
for a precise statement of this claim. Our main result actually involves a family of upper

bounds on the optimization error, one for each pair (M,M⊥
) of R-decomposable subspaces

(see Definition 5.3). As will be clarified in the sequel, this subspace choice can be optimized

for different models so as to obtain the tightest possible bounds. For a given pair (M,M⊥
)

such that 16Ψ2(M)τu(Ln) < γu, let us define the contraction coefficient

κ(Ln;M) :=
{
1− γ`

γu
+

16Ψ2(M)
(
τu(Ln) + τ`(Ln)

)

γu

} {
1− 16Ψ2(M)τu(Ln)

γu

}−1

. (5.22)

In addition, we define the tolerance parameter

ε2(∆∗;M,M) :=
32
(
τu(Ln) + τ`(Ln)

) (
2R(ΠM⊥(θ∗)) + Ψ(M) ‖∆∗‖+ 2R(∆∗)

)2

γu
, (5.23)

where ∆∗ = θ̂− θ∗ is the statistical error, and ΠM⊥(θ∗) denotes the Euclidean projection of
θ∗ onto the subspace M⊥.

In terms of these two ingredients, we now state our first main result:

Theorem 5.1. Suppose that the loss function Ln satisfies the RSC/RSM condition with
parameters (γ`, τ`(Ln)) and (γu, τu(Ln)) respectively. Let (M,M) be any R-decomposable

pair of subspaces such that M ⊆ M and 0 < κ ≡ κ(Ln,M) < 1. Then for any optimum θ̂
of the problem (5.1) for which the constraint is active, we have

‖θt+1 − θ̂‖2 ≤ κt ‖θ0 − θ̂‖2 + ε2(∆∗;M,M)

1− κ
for all iterations t = 0, 1, 2, . . .. (5.24)

Remarks: Theorem 5.1 actually provides a family of upper bounds, one for each R-
decomposable pair (M,M) such that 0 < κ ≡ κ(Ln,M) < 1. This condition is always
satisfied by setting M equal to the trivial subspace {0}: indeed, by definition (5.12) of the
subspace compatibility, we have Ψ(M) = 0, and hence κ(Ln; {0}) =

(
1− γ`

γu

)
< 1. Although

this choice of M minimizes the contraction coefficient, it will lead4 to a very large tolerance

4Indeed, the setting M⊥ = Rd means that the term R(ΠM⊥(θ∗)) = R(θ∗) appears in the tolerance; this
quantity is far larger than statistical precision.
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parameter ε2(∆∗;M,M). A more typical application of Theorem 5.1 involves non-trivial
choices of the subspace M.

The bound (5.24) guarantees that the optimization error decreases geometrically, with
contraction factor κ ∈ (0, 1), up to a certain tolerance proportional to ε2(∆∗;M,M), as il-
lustrated in Figure 5.2(a). The contraction factor κ approaches the 1− γ`/γu as the number
of samples grows. The appearance of the ratio γ`/γu is natural since it measures the con-
ditioning of the objective function; more specifically, it is essentially a restricted condition
number of the Hessian matrix. On the other hand, the tolerance parameter ε depends on
the choice of decomposable subspaces, the parameters of the RSC/RSM conditions, and the

statistical error ∆∗ = θ̂−θ∗ (see equation (5.23)). In the corollaries of Theorem 5.1 to follow,

we show that the subspaces can often be chosen such that ε2(∆∗;M,M) = o(‖θ̂ − θ∗‖2).
Consequently, the bound (5.24) guarantees geometric convergence up to a tolerance smaller
than statistical precision, as illustrated in Figure 5.2(b). This is sensible, since in statistical
settings, there is no point to optimizing beyond the statistical precision.

∆̂0

∆̂1

∆̂t

0

ε

∆̂0

∆̂1

∆̂t

0

ε

‖∆∗‖

∆∗

(a) (b)

Figure 5.2. (a) Generic illustration of Theorem 5.1. The optimization error ∆̂t = θt − θ̂

is guaranteed to decrease geometrically with coefficient κ ∈ (0, 1), up to the tolerance ε2 =
ε2(∆∗;M,M), represented by the circle. (b) Relation between the optimization tolerance

ε2(∆∗;M,M) (solid circle) and the statistical precision ‖∆∗‖ = ‖θ∗− θ̂‖ (dotted circle). In
many settings, we have ε2(∆∗;M,M) � ‖∆∗‖2, so that convergence is guaranteed up to a
tolerance lower than statistical precision.

The result of Theorem 5.1 takes a simpler form when there is a subspace M that includes
θ∗, and the R-ball radius is chosen such that ρ ≤ R(θ∗). In this case, by appropriately
controlling the error term, we can establish that it is of lower order than the statistical

precision —namely, the squared difference
∥∥∥θ̂ − θ∗

∥∥∥
2

between an optimal solution θ̂ to the

convex program (5.1), and the unknown parameter θ∗.
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Corollary 5.1. In addition to the conditions of Theorem 5.1, suppose that θ∗ ∈ M and
ρ ≤ R(θ∗). Then as long as Ψ2(M)

(
τu(Ln) + τ`(Ln)

)
= o(1), we have

‖θt+1 − θ̂‖2 ≤ κt ‖θ0 − θ̂‖2 + o
(
‖θ̂ − θ∗‖2

)
for all iterations t = 0, 1, 2, . . .. (5.25)

Thus, Corollary 5.1 guarantees that the optimization error decreases geometrically, with
contraction factor κ, up to a tolerance that is of strictly lower order than the statisti-
cal precision ‖θ̂ − θ∗‖2. As will be clarified in several examples to follow, the condition
Ψ2(M)

(
τu(Ln) + τ`(Ln)

)
= o(1) is satisfied for many statistical models, including sparse

linear regression and low-rank matrix regression. This result is illustrated in Figure 5.2(b),
where the solid circle represents the optimization tolerance, and the dotted circle represents
the statistical precision. In the results to follow, we will quantify the term o

(
‖θ̂− θ∗‖2

)
in a

more precise manner for different statistical models.

Convergence rates for composite gradient: We now present our main result for the
composite gradient iterates (5.4) that are suitable for the Lagrangian-based estimator (5.2).

As before, our analysis yields a range of bounds indexed by subspace pairs (M,M⊥
) that are

R-decomposable. For any subspace M such that 64τ`(Ln)Ψ2(M) < γ`, we define effective
RSC coefficient as

γ` := γ` − 64τ`(Ln)Ψ2(M). (5.26)

This coefficient accounts for the residual amount of strong convexity after accounting for the
lower tolerance terms. In addition, we define the compound contraction coefficient as

κ(Ln;M) :=

{
1− γ`

4γu
+

64Ψ2(M)τu(Ln)
γ`

}
ξ(M) (5.27)

where ξ(M) :=
(
1 − 64τu(Ln)Ψ2(M̄)

γ`

)−1
, and ∆∗ = θ̂λn − θ∗ is the statistical error vector5

for a specific choice of ρ and λn. As before, the coefficient κ measures the geometric rate of
convergence for the algorithm. Finally, we define the compound tolerance parameter

ε2(∆∗;M,M) := 8 ξ(M) β(M)
(
6Ψ(M) ‖∆∗‖+ 8R(ΠM⊥(θ∗))

)2
, (5.28)

where β(M) := 2
(
γ`
4γu

+ 128τu(Ln)Ψ2(M̄)

γ`

)
τ`(Ln) + 8τu(Ln) + 2τ`(Ln). As with our previous

result, the tolerance parameter determines the radius up to which geometric convergence can
be attained.

Recall that the regularized problem (5.2) involves both a regularization weight λn, and
a constraint radius ρ. Our theory requires that the constraint radius is chosen such that

5When the context is clear, we remind the reader that we drop the subscript λn on the parameter θ̂.
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ρ ≥ R(θ∗), which ensures that θ∗ is feasible. In addition, the regularization parameter
should be chosen to satisfy the constraint

λn ≥ 2R∗(∇Ln(θ∗)), (5.29)

where R∗ is the dual norm of the regularizer. This constraint is known to play an impor-
tant role in proving bounds on the statistical error of regularized M-estimators (see the
paper [116] and references therein for further details). Recalling the definition (5.2) of the
overall objective function φn(θ), the following result provides bounds on the excess loss

φn(θ
t)− φn(θ̂λn).

Theorem 5.2. Consider the optimization problem (5.2) for a radius ρ such that θ∗ is feasible,
and a regularization parameter λn satisfying the bound (5.29), and suppose that the loss
function Ln satisfies the RSC/RSM condition with parameters (γ`, τ`(Ln)) and (γu, τu(Ln))
respectively. Let (M,M⊥

) be any R-decomposable pair such that

κ ≡ κ(Ln,M) ∈ [0, 1), and
32 ρ

1− κ(Ln;M)
ξ(M)β(M) ≤ λn. (5.30)

Then for any tolerance parameter δ2 ≥ ε2(∆∗;M,M)
(1−κ) , we have

φn(θ
t)− φn(θ̂λn) ≤ δ2 for all t ≥ 2 log

φn(θ0)−φn(θ̂λn )
δ2

log(1/κ)
+ log2 log2

(
ρλn
δ2

)(
1 +

log 2

log(1/κ)

)
.

(5.31)

Remarks: Note that the bound (5.31) guarantees the excess loss φn(θ
t)− φn(θ̂) decays ge-

ometrically up to any squared error δ2 larger than the compound tolerance (5.28). Moreover,
the RSC condition also allows us to translate this bound on objective values to a bound on
the optimization error θt− θ̂. In particular, for any iterate θt such that φn(θ

t)− φn(θ̂) ≤ δ2,
we are guaranteed that

∥∥∥θt − θ̂λn

∥∥∥
2

≤ 2δ2

γ`
+

16δ2τ`(Ln)
γ`λ2n

+
4τ`(Ln)(6Ψ(M) + 8R(ΠM⊥(θ∗)))2

γ`
. (5.32)

In conjunction with Theorem 5.2, we see that it suffices to take a number of steps that is
logarithmic in the inverse tolerance (1/δ), again showing a geometric rate of convergence.

Whereas Theorem 5.1 requires setting the radius so that the constraint is active, Theo-
rem 5.2 has only a very mild constraint on the radius ρ, namely that it be large enough such
that ρ ≥ R(θ∗). The reason for this much milder requirement is that the additive regular-
ization with weight λn suffices to constrain the solution, whereas the extra side constraint is
only needed to ensure good behavior of the optimization algorithm in the first few iterations.
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The regularization parameter λn must satisfy the so-called dual norm condition (5.29), which
has appeared in past literature on statistical estimation, and is well-characterized for a broad
range of statistical models (e.g., see the paper [116] and references therein).

Step-size setting: It seems that the updates (5.3) and (5.4) need to know the smoothness
bound γu in order to set the step-size for gradient updates. However, we can use the same
doubling trick as described in Algorithm (3.1) of Nesterov [121]. At each step, we check if
the smoothness upper bound holds at the current iterate relative to the previous one. If
the condition does not hold, we double our estimate of γu and resume. This guarantees a
geometric convergence with a contraction factor worse at most by a factor of 2, compared
to the knowledge of γu. We refer the reader to Nesterov [121] for details.

The following subsections are devoted to the development of some consequences of The-
orems 5.1 and 5.2 and Corollary 5.1 for some specific statistical models, among them sparse
linear regression with `1-regularization, and matrix regression with nuclear norm regular-
ization. In contrast to the entirely deterministic arguments that underlie the Theorems 5.1
and 5.2, these corollaries involve probabilistic arguments, more specifically in order to estab-
lish that the RSC and RSM properties hold with high probability.

5.3.2 Sparse vector regression

Recall from Section 5.2.4 the observation model for sparse linear regression. In a variety of
applications, it is natural to assume that θ∗ is sparse. For a parameter q ∈ [0, 1] and radius
Rq > 0, let us define the `q “ball”

Bq(Rq) :=
{
θ ∈ Rd |

d∑

j=1

|βj |q ≤ Rq

}
. (5.33)

Note that q = 0 corresponds to the case of “hard sparsity”, for which any vector β ∈ B0(R0)
is supported on a set of cardinality at most R0. For q ∈ (0, 1], membership in the set
Bq(Rq) enforces a decay rate on the ordered coefficients, thereby modeling approximate
sparsity. In order to estimate the unknown regression vector θ∗ ∈ Bq(Rq), we consider
the least-squares Lasso estimator from Section 5.2.4, based on the quadratic loss function
L(θ;Zn

1 ) := 1
2n
‖y − Xθ‖22, where X ∈ Rn×d is the design matrix. In order to state a

concrete result, we consider a random design matrix X , in which each row xi ∈ Rd is drawn
i.i.d. from a N(0,Σ) distribution, where Σ is a positive definite covariance matrix. We
refer to this as the Σ-ensemble of random design matrices, and use σmax(Σ) and σmin(Σ)
to refer the maximum and minimum eigenvalues of Σ respectively, and ζ(Σ) := max

j=1,2,...,d
Σjj

for the maximum variance. We also assume that the observation noise is zero-mean and
sub-Gaussian with parameter ν2.
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Guarantees for constrained Lasso: Our convergence rate on the optimization error
θt − θ̂ is stated in terms of the contraction coefficient

κ :=
{
1− σmin(Σ)

4σmax(Σ)
+ χn(Σ)

} {
1− χn(Σ)

}−1

, (5.34)

where we have adopted the shorthand

χn(Σ) :=

{
c0ζ(Σ)
σmax(Σ)

Rq

(
log d
n

)1−q/2
for q > 0

c0ζ(Σ)
σmax(Σ)

s
(
log d
n

)
for q = 0

, for a numerical constant c0, (5.35)

We assume that χn(Σ) is small enough to ensure that κ ∈ (0, 1); in terms of the sample size,

this amounts to a condition of the form n = Ω(R
1/(1−q/2)
q log d). Such a scaling is sensible,

since it is known from minimax theory on sparse linear regression [134] to be necessary for
any method to be statistically consistent over the `q-ball.

With this set-up, we have the following consequence of Theorem 5.1:

Corollary 5.2 (Sparse vector recovery). Under conditions of Theorem 5.1, suppose that we
solve the constrained Lasso with ρ ≤ ‖θ∗‖1.

(a) Exact sparsity: If θ∗ is supported on a subset of cardinality s, then with probability at
least 1− exp(−c1 log d), the iterates (5.3) with γu = 2σmax(Σ) satisfy

‖θt − θ̂‖22 ≤ κt‖θ0 − θ̂‖22 + c2 χn(Σ) ‖θ̂ − θ∗‖22 for all t = 0, 1, 2, . . .. (5.36)

(b) Weak sparsity: Suppose that θ∗ ∈ Bq(Rq) for some q ∈ (0, 1]. Then with probability at
least 1− exp(−c1 log d), the iterates (5.3) with γu = 2σmax(Σ) satisfy

‖θt − θ̂‖22 ≤ κt ‖θ0 − θ̂‖22 + c2 χn(Σ)

{
Rq

( log d
n

)1−q/2
+ ‖θ̂ − θ∗‖22

}
. (5.37)

We provide the proof of Corollary 5.2 in Section 5.5.4. Here we compare part (a), which
deals with the special case of exactly sparse vectors, to some past work that has established
convergence guarantees for optimization algorithms for sparse linear regression. Certain
methods are known to converge at sublinear rates (e.g., [24]), more specifically at the rate
O(1/t2). The geometric rate of convergence guaranteed by Corollary 5.2 is exponentially
faster. Other work on sparse regression has provided geometric rates of convergence that
hold once the iterates are close to the optimum [37, 71], or geometric convergence up to
the noise level ν2 using various methods, including greedy methods [158] and thresholded
gradient methods [68]. In contrast, Corollary 5.2 guarantees geometric convergence for all
iterates up to a precision below that of statistical error. For these problems, the statistical



CHAPTER 5. OPTIMIZATION FOR HIGH-DIMENSIONAL ESTIMATION 93

error ν2s log d
n

is typically much smaller than the noise variance ν2, and decreases as the sample
size is increased.

In addition, Corollary 5.2 also applies to the case of approximately sparse vectors, lying
within the set Bq(Rq) for q ∈ (0, 1]. There are some important differences between the case
of exact sparsity (Corollary 5.2(a)) and that of approximate sparsity (Corollary 5.2(b)). Part
(a) guarantees geometric convergence to a tolerance depending only on the statistical error

‖θ̂ − θ∗‖2. In contrast, the second result also has the additional term Rq

(
log d
n

)1−q/2
. This

second term arises due to the statistical non-identifiability of linear regression over the `q-ball,

and it is no larger than
∥∥∥θ̂ − θ∗

∥∥∥
2

2
with high probability. This assertion follows from known

results [134] about minimax rates for linear regression over `q-balls; these unimprovable rates
include a term of this order.

Guarantees for regularized Lasso: Using similar methods, we can also use Theorem 5.2
to obtain an analogous guarantee for the regularized Lasso estimator. Here focus only
on the case of exact sparsity, although the result extends to approximate sparsity in a
similar fashion. Letting ci, i = 0, 1, 2, 3, 4 be universal positive constants, we define the
modified curvature constant γ` := γ` − c0

s log d
n

ζ(Σ). Our results assume that n = Ω(s log d),
a condition known to be necessary for statistical consistency, so that γ` > 0. The contraction
factor then takes the form

κ :=
{
1− σmin(Σ)

16σmax(Σ)
+ c1χn(Σ)

} {
1− c2χn(Σ)

}−1
, where χn(Σ) =

ζ(Σ)

γ`

s log d

n
.

The tolerance factor in the optimization is given by

ε2
tol

:=
5 + c2χn(Σ)

1− c3χn(Σ)

ζ(Σ) s log d

n
‖θ∗ − θ̂‖22, (5.38)

where θ∗ ∈ Rd is the unknown regression vector, and θ̂ is any optimal solution. With this
notation, we have the following corollary.

Corollary 5.3 (Regularized Lasso). Under conditions of Theorem 5.2, suppose that we solve

the regularized Lasso with λn = 6
√

ν log d
n

, and that θ∗ is supported on a subset of cardinality at

most s. Then with probability at least 1− exp(−c4 log d), for any δ2 ≥ ε2
tol
, for any optimum

θ̂λn, we have

‖θt − θ̂λn‖22 ≤ δ2 for all iterations t ≥
(
log

φn(θ0)−φn(θ̂λn )
δ2

)
/
(
log 1

κ

)
.

As with Corollary 5.2(a), this result guarantees that O(log(1/ε2
tol
)) iterations are sufficient to

obtain an iterate θt that is within squared error O(ε2
tol
) of any optimum θ̂λn . Moreover, when-

ever s log d
n

= o(1)—a condition that is required for statistical consistency of any method—the
optimization tolerance ε2

tol
is of lower order than the statistical error ‖θ∗ − θ‖22.
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5.3.3 Matrix regression with rank constraints

We now turn estimation of matrices under various types of “soft” rank constraints. Recall
the model of matrix regression from Section 5.2.4, and the M-estimator based on least-
squares regularized with the nuclear norm (5.19). So as to reduce notational overhead, here
we specialize to square matrices Θ∗ ∈ Rd×d, so that our observations are of the form

yi = 〈〈Xi, Θ
∗〉〉+ wi, for i = 1, 2, . . . , n, (5.39)

where Xi ∈ Rd×d is a matrix of covariates, and wi ∼ N(0, ν2) is Gaussian noise. As discussed
in Section 5.2.4, the nuclear norm R(Θ) = |||Θ|||1 =

∑d
j=1 σj(Θ) is decomposable with respect

to appropriately chosen matrix subspaces, and we exploit this fact heavily in our analysis.
We model the behavior of both exactly and approximately low-rank matrices by enforcing

a sparsity condition on the vector σ(Θ) =
[
σ1(Θ) σ2(Θ) · · · σd(Θ)

]
of singular values.

In particular, for a parameter q ∈ [0, 1], we define the `q-“ball” of matrices

Bq(Rq) :=
{
Θ ∈ Rd×d |

d∑

j=1

|σj(Θ)|q ≤ Rq

}
. (5.40)

Note that if q = 0, then B0(R0) consists of the set of all matrices with rank at most r = R0.
On the other hand, for q ∈ (0, 1], the set Bq(Rq) contains matrices of all ranks, but enforces
a relatively fast rate of decay on the singular values.

Bounds for matrix compressed sensing

We begin by considering the compressed sensing version of matrix regression, a model first
introduced by Recht et al. [136], and later studied by other authors (e.g., [100, 115]). In
this model, the observation matrices Xi ∈ Rd×d are dense and drawn from some random
ensemble. The simplest example is the standard Gaussian ensemble, in which each entry of
Xi is drawn i.i.d. as standard normal N(0, 1). Note that Xi is a dense matrix in general;
this in an important contrast with the matrix completion setting to follow shortly.

Here we consider a more general ensemble of random matrices Xi, in which each matrix
Xi ∈ Rd×d is drawn i.i.d. from a zero-mean normal distribution in Rd2 with covariance matrix
Σ ∈ Rd2×d2 . The setting Σ = Id2×d2 recovers the standard Gaussian ensemble studied in past
work. As usual, we let σmax(Σ) and σmin(Σ) define the maximum and minimum eigenvalues
of Σ, and we define ζmat(Σ) = sup‖u‖2=1 sup‖v‖2=1 var

(
〈〈X, uvT 〉〉

)
, corresponding to the

maximal variance of X when projected onto rank one matrices. For the identity ensemble,
we have ζmat(I) = 1.

We now state a result on the convergence of the updates (5.20) when applied to a sta-
tistical problem involving a matrix Θ∗ ∈ Bq(Rq). The convergence rate depends on the
contraction coefficient

κ :=
{
1− σmin(Σ)

4σmax(Σ)
+ χn(Σ)

} {
1− χn(Σ)

}−1

,
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where χn(Σ) :=
c1ζmat(Σ)
σmax(Σ)

Rq

(
d
n

)1−q/2
for some universal constant c1. In the case q = 0, cor-

responding to matrices with rank at most r, note that we have R0 = r. With this notation,
we have the following convergence guarantee:

Corollary 5.4 (Low-rank matrix recovery). Under conditions of Theorem 5.1, consider the
semidefinite program (5.19) with ρ ≤ |||Θ∗|||1, and suppose that we apply the projected gradient
updates (5.20) with γu = 2σmax(Σ).

(a) Exactly low-rank: In the case q = 0, if Θ∗ has rank r < d, then with probability at
least 1− exp(−c0d), the iterates (5.20) satisfy the bound

|||Θt − Θ̂|||2F ≤ κt|||Θ0 − Θ̂|||2F + c2 χn(Σ) |||Θ̂−Θ∗|||2F for all t = 0, 1, 2, . . .. (5.41)

(b) Approximately low-rank: If Θ∗ ∈ Bq(Rq) for some q ∈ (0, 1], then with probability at
least 1− exp(−c0d), the iterates (5.20) satisfy

|||Θt − Θ̂|||2F ≤ κt |||Θ0 − Θ̂|||2F + c2χn(Σ)

{
Rq

(
d

n

)1−q/2
+ |||Θ̂−Θ∗|||2F

}
, (5.42)

Although quantitative aspects of the rates are different, Corollary 5.4 is analogous to
Corollary 5.2. For the case of exactly low rank matrices (part (a)), geometric convergence

is guaranteed up to a tolerance involving the statistical error |||Θ̂ − Θ∗|||2F . For the case of
approximately low rank matrices (part (b)), the tolerance term involves an additional factor

of Rq

(
d
n

)1−q/2
. Again, from known results on minimax rates for matrix estimation [141], this

term is known to be of comparable or lower order than the quantity |||Θ̂−Θ∗|||2F . As before,
it is also possible to derive an analogous corollary of Theorem 5.2 for estimating low-rank
matrices; in the interests of space, we leave such a development to the reader.

Bounds for matrix completion

In this model, observation yi is a noisy version of a randomly selected entry Θ∗
a(i),b(i) of the

unknown matrix Θ∗. Applications of this matrix completion problem include collaborative
filtering [152], where the rows of the matrix Θ∗ correspond to users, and the columns cor-
respond to items (e.g., movies in the Netflix database), and the entry Θ∗

ab corresponds to
user’s a rating of item b. Given observations of only a subset of the entries of Θ∗, the goal is
to fill in, or complete the matrix, thereby making recommendations of movies that a given
user has not yet seen.

Matrix completion can be viewed as a particular case of the matrix regression model (5.18),
in particular by setting Xi = Ea(i)b(i), corresponding to the matrix with a single one in posi-
tion (a(i), b(i)), and zeroes in all other positions. Note that these observation matrices are ex-
tremely sparse, in contrast to the compressed sensing model. Nuclear-norm based estimators
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for matrix completion are known to have good statistical properties (e.g., [44, 135, 152, 114]).
Here we consider the M-estimator

Θ̂ ∈ argmin
Θ∈Ω

1

2n

n∑

i=1

(
yi −Θa(i)b(i)

)2
such that |||Θ|||1 ≤ ρ, (5.43)

where Ω = {Θ ∈ Rd×d | ‖Θ‖∞ ≤ α
d
} is the set of matrices with bounded elementwise `∞

norm. This constraint eliminates matrices that are overly “spiky” (i.e., concentrate too much
of their mass in a single position); as discussed in the paper [114], such spikiness control is
necessary in order to bound the non-identifiable component of the matrix completion model.

Corollary 5.5 (Matrix completion). Under the conditions of Theorem 5.1, suppose that
Θ∗ ∈ Bq(Rq), and that we solve the program (5.43) with ρ ≤ |||Θ∗|||1. As long as n >

c0R
1/(1−q/2)
q d log d for a sufficiently large constant c0, then with probability at least 1 −

exp(−c1d log d), there is a contraction coefficient κt ∈ (0, 1) that decreases with t such that
for all iterations t = 0, 1, 2, . . .,

|||Θt+1 − Θ̂|||2F ≤ κtt |||Θ0 − Θ̂|||2F + c2

{
Rq

( α2d log d

n

)1−q/2
+ |||Θ̂−Θ∗|||2F

}
. (5.44)

In some cases, the bound on ‖Θ‖∞ in the algorithm (5.43) might be unknown, or un-
desirable. While this constraint is necessary in general [114], it can be avoided if more
information such as the sampling distribution (that is, the distribution of Xi) is known and
used to construct the estimator. In this case, Koltchinskii et al. [89] show error bounds on

a nuclear norm penalized estimator without requiring `∞ bound on Θ̂.
Again a similar corollary of Theorem 5.2 can be derived by combining the proof of

Corollary 5.5 with that of Theorem 5.2. An interesting aspect of this problem is that the

condition 5.29(b) takes the form λn >
cα
√
d log d/n

1−κ , where α is a bound on ‖Θ‖∞. This
condition is independent of ρ, and hence, given a sample size as stated in the corollary, the
algorithm always converges geometrically for any radius ρ ≥ |||Θ∗|||1.

5.3.4 Matrix decomposition problems

In recent years, various researchers have studied methods for solving the problem of matrix
decomposition (e.g., [49, 45, 174, 8, 78]). The basic problem has the following form: given a
pair of unknown matrices Θ∗ and Γ∗, both lying in Rd1×d2 , suppose that we observe a third
matrix specified by the model Y = Θ∗ + Γ∗ +W , where W ∈ Rd1×d2 represents observation
noise. Typically the matrix Θ∗ is assumed to be low-rank, and some low-dimensional struc-
tural constraint is assumed on the matrix Γ∗. For example, the papers [49, 45, 78] consider
the setting in which Γ∗ is sparse, while Xu et al. [174] consider a column-sparse model, in
which only a few of the columns of Γ∗ have non-zero entries. In order to illustrate the appli-
cation of our general result to this setting, here we consider the low-rank plus column-sparse



CHAPTER 5. OPTIMIZATION FOR HIGH-DIMENSIONAL ESTIMATION 97

framework [174]. (We note that since the `1-norm is decomposable, similar results can easily
be derived for the low-rank plus entrywise-sparse setting as well.)

Since Θ∗ is assumed to be low-rank, as before we use the nuclear norm |||Θ|||1 as a regular-
izer (see Section 5.2.4). We assume that the unknown matrix Γ∗ ∈ Rd1×d2 is column-sparse,
say with at most s < d2 non-zero columns. A suitable convex regularizer for this matrix
structure is based on the columnwise (1, 2)-norm, given by

‖Γ‖1,2 :=
d2∑

j=1

‖Γj‖2, (5.45)

where Γj ∈ Rd1 denotes the jth column of Γ. Note also that the dual norm is given by
the elementwise (∞, 2)-norm ‖Γ‖∞,2 = maxj=1,...,d2 ‖Γj‖2, corresponding to the maximum
`2-norm over columns.

In order to estimate the unknown pair (Θ∗,Γ∗), we consider the M-estimator

(Θ̂, Γ̂) := argmin
Θ,Γ

|||Y −Θ− Γ|||2F such that |||Θ|||1 ≤ ρΘ, ‖Γ‖1,2 ≤ ρΓ and ‖Θ‖∞,2 ≤
α√
d2

(5.46)

The first two constraints restrict Θ and Γ to a nuclear norm ball of radius ρΘ and a
(1, 2)-norm ball of radius ρΓ, respectively. The final constraint controls the “spikiness” of
the low-rank component Θ, as measured in the (∞, 2)-norm, corresponding to the maxi-
mum `2-norm over the columns. As with the elementwise `∞-bound for matrix completion,
this additional constraint is required in order to limit the non-identifiability in matrix de-
composition. (See the paper [8] for more discussion of non-identifiability issues in matrix
decomposition.)

With this set-up, consider the projected gradient algorithm when applied to the matrix
decomposition problem: it generates a sequence of matrix pairs (Θt,Γt) for t = 0, 1, 2, . . .,

and the optimization error is characterized in terms of the matrices ∆̂t
Θ := Θt − Θ̂ and

∆̂t
Γ := Γt − Γ̂. Finally, we measure the optimization error at time t in terms of the squared

Frobenius error e2(∆̂t
Θ, ∆̂

t
Γ) := |||∆̂t

Θ|||2F + |||∆̂t
Γ|||2F , summed across both the low-rank and column-

sparse components.

Corollary 5.6 (Matrix decomposition). Under the conditions of Theorem 5.1, suppose that
‖Θ∗‖∞,2 ≤ α√

d2
and Γ∗ has at most s non-zero columns. If we solve the convex program (5.46)

with ρΘ ≤ |||Θ∗|||1 and ρΓ ≤ ‖Γ∗‖1,2, then for all iterations t = 0, 1, 2, . . .,

e2(∆̂t
Θ, ∆̂

t
Γ) ≤

(
3

4

)t
e2(∆̂0

Θ, ∆̂
0
Γ) + c

(
|||Γ̂− Γ∗|||2F + α2 s

d2

)
.
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This corollary has some unusual aspects, relative to the previous corollaries. First of all,
in contrast to the previous results, the guarantee is a deterministic one (as opposed to holding
with high probability). More specifically, the RSC/RSM conditions hold deterministic sense,
which should be contrasted with the high probability statements given in Corollaries 5.2-5.5.
Consequently, the effective conditioning of the problem does not depend on sample size and
we are guaranteed geometric convergence at a fixed rate, independent of sample size. The
additional tolerance term is completely independent of the rank of Θ∗ and only depends on
the column-sparsity of Γ∗.

5.4 Simulation results

In this section, we provide some experimental results that confirm the accuracy of our the-
oretical results, in particular showing excellent agreement with the linear rates predicted by
our theory. In addition, the rates of convergence slow down for smaller sample sizes, which
lead to problems with relatively poor conditioning. In all the simulations reported below,
we plot the log error ‖θt − θ̂‖ between the iterate θt at time t versus the final solution θ̂.
Each curve provides the results averaged over five random trials, according to the ensembles
which we now describe.

5.4.1 Sparse regression

We begin by considering the linear regression model y = Xθ∗ + w where θ∗ is the unknown
regression vector belonging to the set Bq(Rq), and i.i.d. observation noise wi ∼ N(0, 0.25).
We consider a family of ensembles for the random design matrix X ∈ Rn×d. In particular, we
construct X by generating each row xi ∈ Rd independently according to following procedure.
Let z1, . . . , zn be an i.i.d. sequence of N(0, 1) variables, and fix some correlation parameter
ω ∈ [0, 1). We first initialize by setting xi,1 = z1/

√
1− ω2, and then generate the remaining

entries by applying the recursive update xi,t+1 = ωxi,t + zt for t = 1, 2, . . . , d − 1, so that
xi ∈ Rd is a zero-mean Gaussian random vector. It can be verified that all the eigenvalues
of Σ = cov(xi) lie within the interval [ 1

(1+ω)2
, 2
(1−ω)2(1+ω) ], so that Σ has a a finite condition

number for all ω ∈ [0, 1). At one extreme, for ω = 0, the matrix Σ is the identity, and so
has condition number equal to 1. As ω → 1, the matrix Σ becomes progressively more ill-
conditioned, with a condition number that is very large for ω close to one. As a consequence,
although incoherence conditions like the restricted isometry property can be satisfied when
ω = 0, they will fail to be satisfied (w.h.p.) once ω is large enough.

For this random ensemble of problems, we have investigated convergence rates for a
wide range of dimensions d and radii Rq. Since the results are relatively uniform across the
choice of these parameters, here we report results for dimension d = 20, 000, and radius
Rq = d(log d)2e. In the case q = 0, the radius R0 = s corresponds to the sparsity level. The
per iteration cost in this case is O(nd). In order to reveal dependence of convergence rates
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on sample size, we study a range of the form n = dα s log de, where the order parameter
α > 0 is varied.

Our first experiment is based on taking the correlation parameter ω = 0, and the `q-ball
parameter q = 0, corresponding to exact sparsity. We then measure convergence rates for
sample sizes specified by α ∈ {1, 1.25, 5, 25}. As shown by the results plotted in panel (a) of
Figure 5.3, projected gradient descent fails to converge for α = 1 or α = 1.25; in both these
cases, the sample size n is too small for the RSC and RSM conditions to hold, so that a
constant step size leads to oscillatory behavior in the algorithm. In contrast, once the order
parameter α becomes large enough to ensure that the RSC/RSM conditions hold (w.h.p.),

we observe a geometric convergence of the error
∥∥∥θt − θ̂

∥∥∥
2
. Moreover the convergence rate

is faster for α = 25 compared to α = 5, since the RSC/RSM constants are better with
larger sample size. Such behavior is in agreement with the conclusions of Corollary 5.2,
which predicts that the the convergence rate should improve as the number of samples n is
increased.

20 40 60 80
−10

−8

−6

−4

−2

0

2

Iteration Count

lo
g(
‖
θ

t
−

θ̂
‖
)

(r
es

ca
le

d
)

q = 0 , ω = 0 , d = 20000

 

 

   1
1.25
   5
  25

20 40 60 80
−10

−8

−6

−4

−2

0

2

Iteration Count

lo
g(
‖
θ

t
−

θ̂
‖
)

(r
es

ca
le

d
)

α = 25 , q = 0 , d = 20000

 

 

ω=  0
ω=0.5
ω=0.8

20 40 60 80
−10

−8

−6

−4

−2

0

2

Iteration Count

lo
g(
‖
θ

t
−

θ̂
‖
)

(r
es

ca
le

d
)

α = 25 , ω = 0 , d = 20000

 

 

q=  0
q=0.5
q=  1

(a) (b) (c)

Figure 5.3. Plot of the log of the optimization error log
(∥∥∥θt − θ̂

∥∥∥
2

)
in the sparse linear

regression problem, rescaled so the plots start at 0. In this problem, d = 20000, s = dlog de,
n = αs log d. Plot (a) shows convergence for the exact sparse case with q = 0 and Σ = I

(i.e. ω = 0). In panel (b), we observe how convergence rates change as the correlation
parameter ω is varied for q = 0 and α = 25. Plot (c) shows the convergence rates when
ω = 0, α = 25 and q is varied.

On the other hand, Corollary 5.2 also predicts that convergence rates should be slower
when the condition number of Σ is worse. In order to test this prediction, we again studied
an exactly sparse problem (q = 0), this time with the fixed sample size n = d25s log de, and
we varied the correlation parameter ω ∈ {0, 0.5, 0.8}. As shown in panel (b) of Figure 5.3,
the convergence rates slow down as the correlation parameter is increased and for the case
of extremely high correlation of ω = 0.8, the optimization error curve is almost flat—the
method makes very slow progress in this case.
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A third prediction of Corollary 5.2 is that the convergence of projected gradient descent
should become slower as the sparsity parameter q is varied between exact sparsity (q = 0),
and the least sparse case (q = 1). (In particular, note for n > log d, the quantity χn from
equation (5.35) is monotonically increasing with q.) Panel (c) of Figure 5.3 shows convergence
rates for the fixed sample size n = 25s log d and correlation parameter ω = 0, and with the
sparsity parameter q ∈ {0, 0.5, 1.0}. As expected, the convergence rate slows down as q
increases from 0 to 1. Corollary 5.2 further captures how the contraction factor changes
as the problem parameters (s, d, n) are varied. In particular, it predicts that as we change
the triplet simultaneously, while holding the ratio α = s log d/n constant, the convergence
rate should stay the same. We recall that this phenomenon was indeed demonstrated in
Figure 5.1 in Section 5.1.

5.4.2 Low-rank matrix estimation

We also performed experiments with two different versions of low-rank matrix regression.
Our simulations applied to instances of the observation model yi = 〈〈Xi, Θ∗〉〉 + wi, for
i = 1, 2, . . . , n, where Θ∗ ∈ R200×200 is a fixed unknown matrix, Xi ∈ R200×200 is a matrix of
covariates, and wi ∼ N(0, 0.25) is observation noise. In analogy to the sparse vector problem,
we performed simulations with the matrix Θ∗ belonging to the set Bq(Rq) of approximately
low-rank matrices, as previously defined in equation (5.40) for q ∈ [0, 1]. The case q = 0
corresponds to the set of matrices with rank at most r = R0, whereas the case q = 1
corresponds to the ball of matrices with nuclear norm at most R1.

In our first set of matrix experiments, we considered the matrix version of compressed
sensing [135], in which each matrix Xi ∈ R200×200 is randomly formed with i.i.d. N(0, 1)
entries, as described in Section 5.3.3. In the case q = 0, we formed a matrix Θ∗ ∈ R200×200

with rank R0 = 5, and performed simulations over the sample sizes n = αR0 d, with the
parameter α ∈ {1, 1.25, 5, 25}. The per iteration cost in this case is O(nd2). As seen in
panel (a) of Figure 5.4, the projected gradient descent method exhibits behavior that is
qualitatively similar to that for the sparse linear regression problem. More specifically, it
fails to converge when the sample size (as reflected by the order parameter α) is too small,
and converges geometrically with a progressively faster rate as α is increased. We have also
observed similar types of scaling as the matrix sparsity parameter is increased from q = 0 to
q = 1.

In our second set of matrix experiments, we studied the behavior of projected gradient
descent for the problem of matrix completion, as described in Section 5.3.3. For this problem,
we again studied matrices of dimension d = 200 and rank R0 = 5, and we varied the sample
size as n = α R0 d log d for α ∈ {1, 2, 5, 25}. As shown in panel (b) of Figure 5.4, projected
gradient descent for matrix completion also enjoys geometric convergence for α large enough.
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Figure 5.4. (a) Plot of log Frobenius error log(|||Θt − Θ̂|||F ) versus number of iterations in
matrix compressed sensing for a matrix size d = 200 with rank R0 = 5, and sample sizes
n = αR0d. For α ∈ {1, 1.25}, the algorithm oscillates, whereas geometric convergence is
obtained for α ∈ {5, 25}, consistent with the theoretical prediction. (b) Plot of log Frobenius

error log(|||Θt−Θ̂|||F ) versus number of iterations in matrix completion with d = 200, R0 = 5,
and n = αRod log(d) with α ∈ {1, 2, 5, 25}. For α ∈ {2, 5, 25} the algorithm enjoys geometric
convergence.

5.5 Proofs

In this section, we provide the proofs of our results. Recall that we use ∆̂t := θt − θ̂ to
denote the optimization error, and ∆∗ = θ̂ − θ∗ to denote the statistical error. For future
reference, we point out a slight weakening of restricted strong convexity (RSC), useful for
obtaining parts of our results. As the to follow reveals, it is only necessary to enforce an
RSC condition of the form

TL(θ
t; θ̂) ≥ γ`

2
‖θt − θ̂‖2 − τ`(Ln) R2(θt − θ̂)− δ2, (5.47)

which is milder than the original RSC condition (5.8), in that it applies only to differences

of the form θt − θ̂, and allows for additional slack δ. We make use of this refined notion in
the proofs of various results to follow.

With this relaxed RSC condition and the same RSM condition as before, our proof shows
that

‖θt+1 − θ̂‖2 ≤ κt ‖θ0 − θ̂‖2 + ε2(∆∗;M,M) + 2δ2/γu
1− κ

for all iterations t = 0, 1, 2, . . ..

(5.48)
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Note that this result reduces to the previous statement when δ = 0. This extension of
Theorem 5.1 is used in the proofs of Corollaries 5.5 and 5.6.

We will assume without loss of generality that all the iterates lie in the subset Ω′ of
Ω. This can be ensured by augmenting the loss with the indicator of Ω′ or equivalently
performing projections on the set Ω′ ∩ BR(ρ) as mentioned earlier.

5.5.1 Proof of Theorem 5.1

Recall that Theorem 5.1 concerns the constrained problem (5.1). The proof is based on
two technical lemmas. The first lemma guarantees that at each iteration t = 0, 1, 2, . . .,
the optimization error ∆̂t = θt − θ̂ belongs to an interesting constraint set defined by the
regularizer.

Lemma 5.1. Let θ̂ be any optimum of the constrained problem (5.1) for which R(θ̂) = ρ.

Then for any iteration t = 1, 2, . . . and for any R-decomposable subspace pair (M,M⊥
), the

optimization error ∆̂t := θt − θ̂ satisfies the cone bound

R(∆) ≤ 2Ψ(M) ‖∆‖ + 2R(ΠM⊥(θ∗)) + 2R(∆∗) + Ψ(M) ‖∆∗‖ . (5.49)

The proof of this lemma, provided in Appendix C.1.1, exploits the decomposability of the
regularizer in an essential way.

The cone bound (5.49) takes a simpler form in the special case when M is chosen to
contain θ∗ and M = M. In this case, we have R(ΠM⊥(θ∗)) = 0, and hence the optimization

error ∆̂t satisfies the inequality

R(∆̂t) ≤ 2Ψ(M)
{∥∥∥∆̂t

∥∥∥+ ‖∆∗‖
}
+ 2R(∆∗). (5.50)

An inequality of this type, when combined with the definitions of RSC/RSM, allows us to
establish the curvature conditions required to prove globally geometric rates of convergence.

We now state a second lemma under the more general RSC condition (5.47):

Lemma 5.2. Under the RSC condition (5.47) and RSM condition (5.10), for all t =
0, 1, 2, . . ., we have

γu 〈θt − θt+1, θt − θ̂〉
≥
{γu

2
‖θt − θt+1‖2 − τu(Ln)R2(θt+1 − θt)

}
+
{γ`
2
‖θt − θ̂‖2 − τ`(Ln)R2(θt − θ̂)− δ2

}
.

(5.51)
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The proof of this lemma, provided in Appendix C.1.2, follows along the lines of the
intermediate result within Theorem 2.2.8 of Nesterov [120], but with some care required
to handle the additional terms that arise in our weakened forms of strong convexity and
smoothness.

Using these auxiliary results, let us now complete the the proof of Theorem 5.1. We first
note the elementary relation

‖θt+1 − θ̂‖2 = ‖θt − θ̂ − θt + θt+1‖2 = ‖θt − θ̂‖2 + ‖θt − θt+1‖2 − 2〈θt − θ̂, θt − θt+1〉.
(5.52)

We now use Lemma 5.2 and the more general form of RSC (5.47) to control the cross-term,
thereby obtaining the upper bound

‖θt+1 − θ̂‖2 ≤ ‖θt − θ̂‖2 − γ`
γu

‖θt − θ̂‖2 + 2τu(Ln)
γu

R2(θt+1 − θt) +
2τ`(Ln)
γu

R2(θt − θ̂) +
2δ2

γu

=
(
1− γ`

γu

)
‖θt − θ̂‖2 + 2τu(Ln)

γu
R2(θt+1 − θt) +

2τ`(Ln)
γu

R2(θt − θ̂) +
2δ2

γu
.

We now observe that by triangle inequality and the Cauchy-Schwarz inequality,

R2(θt+1 − θt) ≤
(
R(θt+1 − θ̂) +R(θ̂ − θt)

)2 ≤ 2R2(θt+1 − θ̂) + 2R2(θt − θ̂).

Recall the definition of the optimization error ∆̂t := θt − θ̂, we have the upper bound

‖∆̂t+1‖2 ≤
(
1− γ`

γu

)
‖∆̂t‖2 + 4τu(Ln)

γu
R2(∆̂t+1) +

4τu(Ln) + 2τ`(Ln)
γu

R2(∆̂t) +
2δ2

γu
. (5.53)

We now apply Lemma 5.1 to control the terms involving R2. In terms of squared quan-
tities, the inequality (5.49) implies that

R2(∆̂t) ≤ 4Ψ2(M⊥)
∥∥∥∆̂t

∥∥∥
2

+ 2ν2(∆∗;M,M) for all t = 0, 1, 2, . . .,

where we recall that Ψ2(M⊥
) is the subspace compatibility (5.12) and ν2(∆∗;M,M) accu-

mulates all the residual terms. Applying this bound twice—once for t and once for t+1—and

substituting into equation (5.53) yields that
{
1− 16Ψ2(M

⊥

)τu(Ln)
γu

}
‖∆t+1‖2 is upper bounded

by

{
1− γ`

γu
+

16Ψ2(M⊥)
(
τu(Ln) + τ`(Ln)

)

γu

}
‖∆t‖2 + 16

(
τu(Ln) + τ`(Ln)

)
ν2(∆∗;M,M)

γu
+

2δ2

γu
.
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Under the assumptions of Theorem 5.1, we are guaranteed that 16Ψ2(M⊥)τu(Ln)
γu

< 1/2, and
so we can re-arrange this inequality into the form

‖∆t+1‖2 ≤ κ ‖∆t‖2 + ε2(∆∗;M,M) +
2δ2

γu
(5.54)

where κ and ε2(∆∗;M,M) were previously defined in equations (5.22) and (5.23) respec-
tively. Iterating this recursion yields

‖∆t+1‖2 ≤ κt ‖∆0‖2+
(
ε2(∆∗;M,M) +

2δ2

γu

)( t∑

j=0

κj
)
.

The assumptions of Theorem 5.1 guarantee that κ ∈ (0, 1), so that summing the geometric
series yields the claim (5.24).

5.5.2 Proof of Theorem 5.2

The Lagrangian version of the optimization program is based on solving the convex pro-
gram (5.2), with the objective function φ(θ) = Ln(θ) + λnR(θ). Our proof is based on

analyzing the error φ(θt)− φ(θ̂) as measured in terms of this objective function. It requires
two technical lemmas, both of which are stated in terms of a given tolerance η > 0, and an
integer T > 0 such that

φ(θt)− φ(θ̂) ≤ η for all t ≥ T . (5.55)

Our first technical lemma is analogous to Lemma 5.1, and restricts the optimization error
∆̂t = θt − θ̂ to a cone-like set.

Lemma 5.3 (Iterated Cone Bound (ICB)). Let θ̂ be any optimum of the regularized M-
estimator (5.2). Under condition (5.55) with parameters (T, η), for any iteration t ≥ T and

for any R-decomposable subspace pair (M,M⊥
), the optimization error ∆̂t := θt− θ̂ satisfies

R(∆̂t) ≤ 4Ψ(M)
∥∥∥∆̂t

∥∥∥+ 8Ψ(M) ‖∆∗‖+ 8R(ΠM⊥(θ∗)) + 2min

(
η

λn
, ρ

)
(5.56)

Our next lemma guarantees sufficient decrease of the objective value difference φ(θt) −
φ(θ̂). Lemma 5.3 plays a crucial role in its proof. Recall the definition (5.27) of the compound
contraction coefficient κ(Ln;M), defined in terms of the related quantities ξ(M) and β(M).
Throughout the proof, we drop the arguments of κ, ξ and β so as to ease notation.

Lemma 5.4. Under the RSC (5.47) and RSM conditions (5.10), as well as assumption (5.55)
with parameters (η, T ), for all t ≥ T , we have

φ(θt)− φ(θ̂) ≤ κt−T (φ(θT )− φ(θ̂)) +
2

1− κ
ξ(M) β(M)(ε2 + ε̄2

stat
),

where ε := 2min(η/λn, ρ) and ε̄stat := 8Ψ(M) ‖∆∗‖+ 8R(ΠM⊥(θ∗)).
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We are now in a position to prove our main theorem, in particular via a recursive appli-
cation of Lemma 5.4. At a high level, we divide the iterations t = 0, 1, 2, . . . into a series of
disjoint epochs [Tk, Tk+1) with 0 = T0 ≤ T1 ≤ T2 ≤ · · · . Moreover, we define an associated
sequence of tolerances η0 > η1 > · · · such that at the end of epoch [Tk−1, Tk), the optimiza-

tion error has been reduced to ηk. Our analysis guarantees that φ(θt) − φ(θ̂) ≤ ηk for all
t ≥ Tk, allowing us to apply Lemma 5.4 with smaller and smaller values of η until it reduces
to the statistical error ε̄stat.

At the first iteration, we have no a priori bound on the error η0 = φ(θ0)−φ(θ̂). However,
since Lemma 5.4 involves the quantity ε = min(η/λn, ρ), we may still apply it6 at the first
epoch with ε0 = ρ and T0 = 0. In this way, we conclude that for all t ≥ 0,

φ(θt)− φ(θ̂) ≤ κt(φ(θ0)− φ(θ̂)) +
2

1− κ
ξβ(ρ2 + ε̄2stat).

Now since the contraction coefficient κ ∈ (0, 1), for all iterations t ≥ T1 := (dlog(2 η0/η1)/ log(1/κ)e)+,
we are guaranteed that

φ(θt)− φ(θ̂) ≤ 4 ξβ

1− κ
(ρ2 + ε̄2stat)

︸ ︷︷ ︸
η1

≤ 8ξβ

1− κ
max(ρ2, ε̄2stat).

This same argument can now be applied in a recursive manner. Suppose that for some
k ≥ 1, we are given a pair (ηk, Tk) such that condition (5.55) holds. An application of
Lemma 5.4 yields the bound

φ(θt)− φ(θ̂) ≤ κt−Tk(φ(θTk)− φ(θ̂)) +
2 ξβ

1− κ
(ε2k + ε̄2stat) for all t ≥ Tk.

We now define ηk+1 :=
4 ξβ
1−κ(ε

2
k+ ε̄

2
stat). Once again, since κ < 1 by assumption, we can choose

Tk+1 := dlog(2ηk/ηk+1)/ log(1/κ)e+ Tk, thereby ensuring that for all t ≥ Tk+1, we have

φ(θt)− φ(θ̂) ≤ 8ξβ

1− κ
max(ε2k, ε̄

2
stat).

In this way, we arrive at recursive inequalities involving the tolerances {ηk}∞k=0 and time
steps {Tk}∞k=0—namely

ηk+1 ≤
8 ξβ

1− κ
max(ε2k, ε̄

2
stat), where εk = 2 min{ηk/λn, ρ}, and (5.57a)

Tk ≤ k +
log(2kη0/ηk)

log(1/κ)
. (5.57b)

6It is for precisely this reason that our regularized M -estimator includes the additional side-constraint
defined in terms of ρ.
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Now we claim that the recursion (5.57a) can be unwrapped so as to show that

ηk+1 ≤
ηk

42k−1
and

ηk+1

λn
≤ ρ

42k
for all k = 1, 2, . . .. (5.58)

Taking these statements as given for the moment, let us now show how they can be used to
upper bound the smallest k such that ηk ≤ δ2. If we are in the first epoch, the claim of the
theorem is straightforward from equation (5.57a). If not, we first use the recursion (5.58)
to upper bound the number of epochs needed and then use the inequality (5.57b) to obtain
the stated result on the total number of iterations needed. Using the second inequality in
the recursion (5.58), we see that it is sufficient to ensure that ρλn

42k−1 ≤ δ2. Rearranging this

inequality, we find that the error drops below δ2 after at most

kδ ≥ log

(
log

(
ρλn
δ2

)
/ log(4)

)
/ log(2) + 1 = log2 log2

(
ρλn
δ2

)

epochs. Combining the above bound on kδ with the recursion 5.57b, we conclude that the
inequality φ(θt)− φ(θ̂) ≤ δ2 is guaranteed to hold for all iterations

t ≥ kδ

(
1 +

log 2

log(1/κ)

)
+

log η0
δ2

log(1/κ)
,

which is the desired result.

It remains to prove the recursion (5.58), which we do via induction on the index k. We begin
with base case k = 1. Recalling the setting of η1 and our assumption on λn in the theorem
statement (5.30), we are guaranteed that η1/λn ≤ ρ/4, so that ε1 ≤ ε0 = ρ. By applying
equation (5.57a) with ε1 = 2η1/λn and assuming ε1 ≥ ε̄stat, we obtain

η2 ≤ 32ξβη21
(1− κ)λ2n

(i)

≤ 32ξβρη1
(1− κ)4λn

(ii)

≤ η1
4
, (5.59)

where step (i) uses the fact that η1
λn

≤ ρ
4
, and step (ii) uses the condition (5.30) on λn. We

have thus verified the first inequality (5.58) for k = 1. Turning to the second inequality in
the statement (5.58), using equation 5.59, we have

η2
λn

≤ η1
4λn

(iii)

≤ ρ

16
,

where step (iii) follows from the assumption (5.30) on λn. Turning to the inductive step, we
again assume that 2ηk/λn ≥ ε̄stat and obtain from inequality (5.57a)

ηk+1 ≤
32ξβη2k

(1− κ)λ2n

(iv)

≤ 32ξβηkρ

(1− κ)λn42
k−1

(v)

≤ ηk
42k−1

.

Here step (iv) uses the second inequality of the inductive hypothesis (5.58) and step (v) is a
consequence of the condition on λn as before. The second part of the induction is similarly
established, completing the proof.
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5.5.3 Proof of Corollary 5.1

In order to prove this claim, we must show that ε2(∆∗;M,M), as defined in equation (5.23),

is of order lower than E[
∥∥∥θ̂ − θ∗

∥∥∥
2

] = E[‖∆∗‖2]. We make use of the following lemma, proved

in Appendix C.3:

Lemma 5.5. If ρ ≤ R(θ∗), then for any solution θ̂ of the constrained problem (5.1) and

any R-decomposable subspace pair (M,M⊥), the statistical error ∆∗ = θ̂ − θ∗ satisfies the
inequality

R(∆∗) ≤ 2Ψ(M⊥) ‖∆∗‖+R(ΠM⊥(θ∗)). (5.60)

Using this lemma, we can complete the proof of Corollary 5.1. Recalling the form (5.23),
under the condition θ∗ ∈ M, we have

ε2(∆∗;M,M) :=
32
(
τu(Ln) + τ`(Ln)

) (
2R(∆∗) + Ψ(M⊥) ‖∆∗‖

)2

γu
.

Using the assumption (τu(Ln)+τ`(Ln))Ψ2(M⊥)
γu

= o(1), it suffices to show thatR(∆∗) ≤ 2Ψ(M⊥) ‖∆∗‖.
Since Corollary 5.1 assumes that θ∗ ∈ M and hence that ΠM⊥(θ∗) = 0, Lemma 5.5 implies
that R(∆∗) ≤ 2Ψ(M⊥) ‖∆∗‖, as required.

5.5.4 Proofs of Corollaries 5.2 and 5.3

The central challenge in proving this result is verifying that suitable forms of the RSC and
RSM conditions hold with sufficiently small parameters τ`(Ln) and τu(Ln).
Lemma 5.6. Define the maximum variance ζ(Σ) := max

j=1,2,...,d
Σjj. Under the conditions of

Corollary 5.2, there are universal positive constants (c0, c1) such that for all ∆ ∈ Rd, we
have

‖X∆‖22
n

≥ 1

2
‖Σ1/2∆‖22 − c1ζ(Σ)

log d

n
‖∆‖21, and (5.61a)

‖X∆‖22
n

≤ 2‖Σ1/2∆‖22 + c1ζ(Σ)
log d

n
‖∆‖21, (5.61b)

with probability at least 1− exp(−c0 n).
Note that this lemma implies that the RSC and RSM conditions both hold with high prob-
ability, in particular with parameters

γ` =
1

2
σmin(Σ), and τ`(Ln) = c1ζ(Σ)

log d

n
, for RSC, and

γu = 2σmax(Σ) and τu(Ln) = c1ζ(Σ)
log d

n
for RSM.
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This lemma has been proved by Raskutti et al. [133] for obtaining minimax rates in sparse
linear regression.

Let us first prove Corollary 5.2 in the special case of hard sparsity (q = 0), in which θ∗

is supported on a subset S of cardinality s. Let us define the model subspace

M :=
{
θ ∈ Rd | θj = 0 for all j /∈ S

}
,

so that θ∗ ∈ M. Recall from Section 5.2.4 that the `1-norm is decomposable with respect to
M andM⊥; as a consequence, we may also set M⊥ = M in the definitions (5.22) and (5.23).
By definition (5.12) of the subspace compatibility between with `1-norm as the regularizer,
and `2-norm as the error norm, we have Ψ2(M) = s. Using the settings of τ`(Ln) and τu(Ln)
guaranteed by Lemma 5.6 and substituting into equation (5.22), we obtain a contraction
coefficient

κ(Σ) :=
{
1− σmin(Σ)

4σmax(Σ)
+ χn(Σ)

} {
1− χn(Σ)

}−1

, (5.62)

where χn(Σ) := c2ζ(Σ)
σmax(Σ)

s log d
n

for some universal constant c2. A similar calculation shows
that the tolerance term takes the form

ε2(∆∗;M,M) ≤ c3 φ(Σ; s, d, n)
{‖∆∗‖21

s
+ ‖∆∗‖22

}
for some constant c3.

Since ρ ≤ ‖θ∗‖1, then Lemma 5.5 (as exploited in the proof of Corollary 5.1) shows that
‖∆∗‖21 ≤ 4s‖∆∗‖22, and hence that ε2(∆∗;M,M) ≤ c3 χn(Σ) ‖∆∗‖22. This completes the
proof of the claim (5.36) for q = 0.

We now turn to the case q ∈ (0, 1], for which we bound the term ε2(∆∗;M,M) using a

slightly different choice of the subspace pair M and M⊥
. For a truncation level µ > 0 to be

chosen, define the set Sµ :=
{
j ∈ {1, 2, . . . , d} | |θ∗j | > µ

}
, and define the associated sub-

spaces M = M(Sµ) andM⊥
= M⊥(Sµ). By combining Lemma 5.5 and the definition (5.23)

of ε2(∆∗;M,M), for any pair (M(Sµ),M⊥(Sµ)), we have

ε2(∆∗;M,M⊥) ≤ c ζ(Σ)

σmax(Σ)

log d

n

(
‖ΠM⊥(θ∗)‖1 +

√
|Sµ| ‖∆∗‖2

)2
,

where to simplify notation, we have omitted the dependence of M and M⊥ on Sµ. We now
choose the threshold µ optimally, so as to trade-off the term ‖ΠM⊥(θ∗)‖1, which decreases
as µ increases, with the term

√
Sµ‖∆∗‖2, which increases as µ increases.

By definition of M⊥(Sµ), we have

‖ΠM⊥(θ∗)‖1 =
∑

j /∈Sµ

|θ∗j | = µ
∑

j /∈Sµ

|θ∗j |
µ

≤ µ
∑

j /∈Sµ

( |θ∗j |
µ

)q
,
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where the inequality holds since |θ∗j | ≤ µ for all j /∈ Sµ. Now since θ∗ ∈ Bq(Rq), we conclude
that

‖ΠM⊥(θ∗)‖1 ≤ µ1−q
∑

j /∈Sµ

|θ∗j |q ≤ µ1−qRq. (5.63)

On the other hand, again using the inclusion θ∗ ∈ Bq(Rq), we have Rq ≥
∑

j∈Sµ
|θ∗j |q ≥ |Sµ|µq

which implies that |Sµ| ≤ µ−qRq. By combining this bound with inequality (5.63), we obtain
the upper bound

ε2(∆∗;M,M⊥) ≤ c ζ(Σ)

σmax(Σ)

log d

n

(
µ2−2qR2

q + µ−qRq‖∆∗‖22
)

=
c ζ(Σ)

σmax(Σ)

log d

n
µ−qRq

(
µ2−qRq + ‖∆∗‖22

)
.

Setting µ2 = log d
n

then yields

ε2(∆∗;M,M⊥) ≤ ϕn(Σ)

{
Rq

( log d
n

)1−q/2
+ ‖∆∗‖22

}
, where ϕn(Σ) :=

cζ(Σ)
σmax(Σ)

Rq

(
log d
n

)1−q/2
.

Finally, let us verify the stated form of the contraction coefficient. For the given subspace
M⊥ = M(Sµ) and choice of µ, we have Ψ2(M⊥) = |Sµ| ≤ µ−qRq. From Lemma 5.6, we
have

16Ψ2(M⊥)
τ`(Ln) + τu(Ln)

γu
≤ ϕn(Σ),

and hence, by definition (5.22) of the contraction coefficient,

κ ≤
{
1− γ`

2γu
+ ϕn(Σ)

} {
1− ϕn(Σ)

}−1

.

For proving Corollary 5.3, we observe that the stated settings γ`, χn(Σ) and κ follow
directly from Lemma 5.6. The bound for condition 5.2(a) follows from a standard argument
about the suprema of d independent Gaussians with variance ν.

5.5.5 Proof of Corollary 5.4

This proof is analogous to that of Corollary 5.2, but appropriately adapted to the matrix
setting. We first state a lemma that allows us to establish appropriate forms of the RSC/RSM
conditions. Recall that we are studying an instance of matrix regression with random design,
where the vectorized form vec(X) of each matrix is drawn from a N(0,Σ) distribution, where
Σ ∈ Rd2×d2 is some covariance matrix. In order to state this result, let us define the quantity

ζmat(Σ) := sup
‖u‖2=1, ‖v‖2=1

var(uTXv), where vec(X) ∼ N(0,Σ). (5.64)
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Lemma 5.7. Under the conditions of Corollary 5.4, there are universal positive constants
(c0, c1) such that

‖Xn(∆)‖22
n

≥ 1

2
σmin(Σ) |||∆|||2F − c1ζmat(Σ)

d

n
|||∆|||21, and (5.65a)

‖Xn(∆)‖22
n

≤ 2 σmax(Σ) |||∆|||2F − c1 ζmat(Σ)
d

n
|||∆|||21, for all ∆ ∈ Rd×d. (5.65b)

with probability at least 1− exp(−c0 n).

Given the quadratic nature of the least-squares loss, the bound (5.65a) implies that the RSC
condition holds with γ` = 1

2
σmin(Σ) and τ`(Ln) = c1ζmat(Σ)

d
n
, whereas the bound (5.65b)

implies that the RSM condition holds with γu = 2σmax(Σ) and τu(Ln) = c1ζmat(Σ)
d
n
.

We now prove Corollary 5.4 in the special case of exactly low rank matrices (q = 0), in
which Θ∗ has some rank r ≤ d. Given the singular value decomposition Θ∗ = UDV T , let U r

and V r be the d × r matrices whose columns correspond to the r non-zero (left and right,
respectively) singular vectors of Θ∗. As in Section 5.2.4, define the subspace of matrices

M(U r, V r) :=
{
Θ ∈ Rd×d | col(Θ) ⊆ U r and row(Θ) ⊆ V r

}
, (5.66)

as well as the associated set M⊥
(U r, V r). Note that Θ∗ ∈ M by construction, and moreover

(as discussed in Section 5.2.4, the nuclear norm is decomposable with respect to the pair

(M,M⊥
).

By definition (5.12) of the subspace compatibility with nuclear norm as the regularizer
and Frobenius norm as the error norm, we have Ψ2(M) = r. Using the settings of τ`(Ln)
and τu(Ln) guaranteed by Lemma 5.7 and substituting into equation (5.22), we obtain a
contraction coefficient

κ(Σ) :=
{
1− σmin(Σ)

4σmax(Σ)
+ χn(Σ)

} {
1− χn(Σ)

}−1

, (5.67)

where χn(Σ) :=
c2ζmat(Σ)
σmax(Σ)

rd
n
for some universal constant c2. A similar calculation shows that

the tolerance term takes the form

ε2(∆∗;M,M) ≤ c3 φ(Σ; r, d, n)
{ |||∆∗|||21

r
+ |||∆∗|||2F

}
for some constant c3.

Since ρ ≤ |||Θ∗|||1 by assumption, Lemma 5.5 (as exploited in the proof of Corollary 5.1)
shows that |||∆∗|||21 ≤ 4r|||∆∗|||2F , and hence that

ε2(∆∗;M,M) ≤ c3 χn(Σ) |||∆∗|||2F ,

which show the claim (5.41) for q = 0.
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We now turn to the case q ∈ (0, 1]; as in the proof of this case for Corollary 5.2, we
bound ε2(∆∗;M,M) using a slightly different choice of the subspace pair. Recall our no-
tation σ1(Θ

∗) ≥ σ2(Θ
∗) ≥ · · · ≥ σd(Θ

∗) ≥ 0 for the ordered singular values of Θ∗. For a
threshold µ to be chosen, define Sµ =

{
j ∈ {1, 2, . . . , d} | σj(Θ∗) > µ

}
, and U(Sµ) ∈ Rd×|Sµ|

be the matrix of left singular vectors indexed by Sµ, with the matrix V (Sµ) defined simi-
larly. We then define the subspace M(Sµ) := M(U(Sµ), V (Sµ)) in an analogous fashion to

equation (5.66), as well as the subspace M⊥
(Sµ).

Now by a combination of Lemma 5.5 and the definition (5.23) of ε2(∆∗;M,M), for any

pair (M(Sµ),M⊥
(Sµ)), we have

ε2(∆∗;M,M⊥
) ≤ c ζmat(Σ)

σmax(Σ)

d

n

(∑

j /∈Sµ

σj(Θ
∗) +

√
|Sµ| |||∆∗|||F

)2
,

where to simplify notation, we have omitted the dependence of M and M⊥ on Sµ. As in
the proof of Corollary 5.2, we now choose the threshold µ optimally, so as to trade-off the
term

∑
j /∈Sµ

σj(Θ
∗) with its competitor

√
|Sµ| |||∆∗|||F . Exploiting the fact that Θ∗ ∈ Bq(Rq)

and following the same steps as the proof of Corollary 5.2 yields the bound

ε2(∆∗;M,M⊥
) ≤ c ζmat(Σ)

σmax(Σ)

d

n

(
µ2−2qR2

q + µ−qRq|||∆∗|||2F
)
.

Setting µ2 = d
n
then yields

ε2(∆∗;M,M⊥
) ≤ ϕn(Σ)

{
Rq

(d
n

)1−q/2
+ |||∆∗|||2F

}
,

as claimed. The stated form of the contraction coefficient can be verified by a calculation
analogous to the proof of Corollary 5.2.

5.5.6 Proof of Corollary 5.5

In this case, we let Xn : Rd×d → Rn be the operator defined by the model of random signed
matrix sampling [114]. As previously argued, establishing the RSM/RSC property amounts

to obtaining a form of uniform control over
‖Xn(Θ)‖22

n
. More specifically, from the proof of

Theorem 5.1, we see that it suffices to have a form of RSC for the difference ∆̂t = Θt − Θ̂,
and a form of RSM for the difference Θt+1−Θt. The following two lemmas summarize these
claims:

Lemma 5.8. There is a constant c such that for all iterations t = 0, 1, 2, . . . and integers
r = 1, 2, . . . , d− 1, with probability at least 1− exp(−d log d),

‖Xn(∆̂
t)‖22

n
≥ 1

2
|||∆̂t|||2F − cα

√
r d log d

n

{∑d
j=r+1 σj(Θ

∗)
√
r

+ α

√
rd log d

n
+ |||∆∗|||F

}

︸ ︷︷ ︸
δ`(r)

. (5.68)
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Lemma 5.9. There is a constant c such that for all iterations t = 0, 1, 2, . . . and integers
r = 1, 2, . . . , d− 1, with probability at least 1− exp(−d log d), the difference Γt := Θt+1 −Θt

satisfies the inequality
‖Xn(Γt)‖22

n
≤ 2|||Γt|||2F + δu(r), where

δu(r) := cα

√
rd log d

n

{∑d
j=r+1 σj(Θ

∗)
√
r

+ α

√
rd log d

n
+ |||∆∗|||F + |||∆̂t|||F + |||∆̂t+1|||F

}
.

We can now complete the proof of Corollary 5.5 by a minor modification of the proof of
Theorem 5.1. Recalling the elementary relation (5.52), we have

|||Θt+1 − Θ̂|||2F = |||Θt − Θ̂|||2F + |||Θt −Θt+1|||2F − 2〈〈Θt − Θ̂, Θt −Θt+1〉〉.

From the proof of Lemma 5.2, we see that the combination of Lemma 5.8 and 5.9 (with
γ` =

1
2
and γu = 2) imply that

2〈〈Θt −Θt+1, Θt − Θ̂〉〉 ≥ |||Θt −Θt+1|||2F +
1

4
|||Θt − Θ̂|||2F − δu(r)− δ`(r)

and hence that

|||∆̂t+1|||2F ≤ 3

4
|||∆̂t|||2F + δ`(r) + δu(r).

We substitute the forms of δ`(r) and δu(r) given in Lemmas 5.8 and 5.9 respectively; per-
forming some algebra then yields

{
1−

c α
√

rd log d
n

|||∆̂t+1|||F

}
|||∆̂t+1|||2F ≤

{3
4
+
cα
√

rd log d
n

|||∆̂t|||F

}
|||∆̂t|||2F + c′ δ`(r).

Consequently, as long as min{|||∆̂t|||2F , |||∆̂t+1|||2F} ≥ c3α
rd log d
n

for a sufficiently large constant
c3, we are guaranteed the existence of some κ ∈ (0, 1) such that

|||∆̂t+1|||2F ≤ κ|||∆̂t|||2F + c′δ`(r). (5.69)

Since δ`(r) = Ω( rd log d
n

), this inequality (5.69) is valid for all t = 0, 1, 2, . . . as long as c′ is
sufficiently large. As in the proof of Theorem 5.1, iterating the inequality (5.69) yields

|||∆̂t+1|||2F ≤ κt|||∆̂0|||2F +
c′

1− κ
δ`(r). (5.70)

It remains to choose the cut-off r ∈ {1, 2, . . . , d − 1} so as to minimize the term δ`(r).
In particular, when Θ∗ ∈ Bq(Rq), then as shown in the paper [115], the optimal choice is
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r � α−qRq

(
n

d log d

)q/2
. Substituting into the inequality (5.70) and performing some algebra

yields that there is a universal constant c4 such that the bound

|||∆̂t+1|||2F ≤ κt|||∆̂0|||2F +
c4

1− κ

{
Rq

(αd log d
n

)1−q/2
+

√
Rq

(αd log d
n

)1−q/2 |||∆∗|||F
}
.

holds. Now by the Cauchy-Schwarz inequality we have

√
Rq

(αd log d
n

)1−q/2 |||∆∗|||F ≤ 1

2
Rq

(αd log d
n

)1−q/2
+

1

2
|||∆∗|||2F ,

and the claimed inequality (5.44) follows.

5.5.7 Proof of Corollary 5.6

Again the main argument in the proof would be to establish the RSM and RSC properties
for the decomposition problem. We define ∆̂t

Θ = Θt − Θ̂ and ∆̂t
Γ = Γt − Γ̂. We start with

giving a lemma that establishes RSC for the differences (∆̂t
Θ, ∆̂

t
Γ). We recall that just like

noted in the previous section, it suffices to show RSC only for these differences. Showing
RSC/RSM in this example amounts to analyzing |||∆̂t

Θ + ∆̂t
Γ|||2F . We recall that this section

assumes that Γ∗ has only s non-zero columns.

Lemma 5.10. There is a constant c such that for all iterations t = 0, 1, 2, . . . ,

|||∆̂t
Θ + ∆̂t

Γ|||2F ≥ 1

2

(
|||∆̂t

Θ|||2F + |||∆̂t
Γ|||2F
)
− cα

√
s

d2

(
|||Γ̂− Γ∗|||F + α

√
s

d2

)
(5.71)

This proof of this lemma follows by a straightforward modification of analogous results in
the paper [8].

Matrix decomposition has the interesting property that the RSC condition holds in a
deterministic sense (as opposed to with high probability). The same deterministic guarantee
holds for the RSM condition; indeed, we have

|||∆̂t
∆ + ∆̂t

Γ|||2F ≤ 2
(
|||∆̂t

Θ|||2F + |||∆̂t
Γ|||2F
)
, (5.72)

by Cauchy-Schwartz inequality. Now we appeal to the more general form of Theorem 5.1 as
stated in Equation 5.48, which gives

|||∆̂t+1
Θ |||2F + |||∆̂t+1

Γ |||2F ≤
(
3

4

)t (
|||∆̂0

Θ|||2F + |||∆̂0
Γ|||2F
)
+ c

√
αs

d2

(
|||Γ̂− Γ∗|||F +

αs

d2

)
.

The stated form of the corollary follows by an application of Cauchy-Schwarz inequality.
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5.6 Discussion

In this chapter, we have shown that even though high-dimensional M-estimators in statis-
tics are neither strongly convex nor smooth, simple first-order methods can still enjoy global
guarantees of geometric convergence. The key insight is that strong convexity and smooth-
ness need only hold in restricted senses, and moreover, these conditions are satisfied with
high probability for many statistical models and decomposable regularizers used in practice.
Examples include sparse linear regression and `1-regularization, various statistical models
with group-sparse regularization, matrix regression with nuclear norm constraints (including
matrix completion and multi-task learning), and matrix decomposition problems. Overall,
our results highlight some important connections between computation and statistics: the
properties of M-estimators favorable for fast rates in a statistical sense can also be used to
establish fast rates for optimization algorithms.
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Chapter 6

Asymptotically optimal algorithms for
distributed machine learning

In this chapter, we focus on stochastic convex optimization problems of the form

minimize
θ∈Ω

f(θ) for f(θ) := EP [F (θ; z)] =

∫

Z
F (θ; z)dP (z), (6.1)

where Ω ⊆ Rd is a closed convex set, P is a probability distribution over Z, and F (· ; z)
is convex for all z ∈ Z, so that f is convex. The goal is to find a parameter x that
approximately minimizes f over θ ∈ Ω. Classical stochastic gradient algorithms [139, 129]
iteratively update a parameter θt ∈ Ω by sampling z ∼ P , computing g(t) = ∇F (θt; z),
and performing the update θt+1 = ΠΩ(θ

t − α(t)g(t)), where ΠΩ denotes projection onto
the set Ω and α(t) ∈ R is a stepsize. In this chapter, we analyze asynchronous gradient
methods, where instead of receiving current information g(t), the procedure receives out of
date gradients g(t− τ(t)) = ∇F (θ(t−τ(t)), z), where τ(t) is the (potentially random) delay at
time t. The central contribution of this chapter is to develop algorithms that—under natural
assumptions about the functions F in the objective (6.1)—achieve asymptotically optimal
rates for stochastic convex optimization in spite of delays. We start by giving the motivation
for this problem in the context of distributed machine learning, and survey some of the past
work in this area.

6.1 Motivation and related work

Our model of delayed gradient information is particularly relevant in distributed optimization
scenarios, where a master maintains the parameters θ while workers compute stochastic
gradients of the objective (6.1). The architectural assumption of a master with several
worker nodes is natural for distributed computation, and other researchers have considered
models similar to those in this chapter [113, 97]. By allowing delayed and asynchronous
updates, we can avoid synchronization issues that commonly handicap distributed systems.
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Master

1 2 3 n

g(t− n)

g(t− n+ 1)

g(t− 1)

θ
t

θ
(t+1)

θ
(t+n−1)

Figure 6.1. Cyclic delayed update architecture. Workers compute gradients cyclically
and in parallel, passing out-of-date information to master. Master responds with current
parameters. Diagram shows parameters and gradients communicated between rounds t and
t+ n− 1.

Certainly distributed optimization has been studied for several decades, tracing back at
least to seminal work of Bertsekas and Tsitsiklis (1983, 1984, 1989) on asynchronous com-
putation and minimization of smooth functions where the parameter vector is distributed.
More recent work has studied problems in which each processor or node i in a network has a
local function fi, and the goal is to minimize the sum f(θ) = 1

n

∑n
i=1 fi(θ) [112, 131, 81, 61].

Much prior work in this setting implicitly assumes as a constraint that data lies on several
different nodes throughout a network. However, as Dekel et al. [57] first noted, in distributed
stochastic settings independent realizations of a stochastic gradient can be computed concur-
rently, and it is thus possible to obtain an aggregated gradient estimate with lower variance.
Using modern stochastic optimization algorithms [e.g. 83, 96], Dekel et al. give a series of
reductions to show that in an n-node network it is possible to achieve a speedup of O(n)
over a single-processor so long as the objective f is smooth.

Our work is closest to Nedić et al.’s asynchronous incremental subgradient method (2001),
which is an incremental gradient procedure in which gradient projection steps are taken us-
ing out-of-date gradients. See Figure 6.1 for an illustration. Nedić et al. show that in spite
of asynchrony and the fact that f is non-smooth, the asynchronous subgradient method
guarantees convergence to a minimum of 1

n

∑n
i=1 fi(θ). In addition, using the results in the

above paper one can prove a finite sample convergence rate: if the gradients are computed
with a delay of τ , then the optimization error of the procedure after T iterations is at most
O(
√
τ/T ). As in Fig. 6.1, the delay τ can essentially be of order n in an n-node distributed

network, giving a convergence rate of O(
√
n/T ). Without delay, a centralized stochastic

gradient algorithm attains convergence rate O(1/
√
T ) and Langford et al. [97] also consider

general delayed stochastic optimization and attempt to remove the asymptotic delay penalty
by considering smooth objective functions, though their approach has a technical error (see
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Appendix C of the preprint [2]). They also do not demonstrate any provable benefits of
distributed computation. This leads to the two motivating questions of our work: (1) is
it possible (perhaps under additional assumptions) to remove the delay penalty and (2) is
it possible to demonstrate benefits in convergence rate by leveraging parallel computation,
in spite of delays? Analyzing similar asynchronous algorithms, we show that the answer to
both the above questions is yes. For smooth stochastic problems the delay is asymptotically
negligible—the time τ does not matter—and in fact, with parallelization, delayed updates
can give provable performance benefits.

We build on results of Dekel et al. [57], who show that when the objective f has Lipschitz-
continuous gradients, then when n processors compute stochastic gradients in parallel using
a common parameter θ it is possible to achieve convergence rate O(1/

√
Tn) so long as the

processors are synchronized (under appropriate synchrony conditions, this holds nearly in-
dependently of network topology). A variant of their approach is asymptotically robust to
asynchrony so long as most processors remain synchronized for most of the time [56]. We
show results similar to their initial discovery, but we analyze the effects of asynchronous gra-
dient updates where all the nodes in the network can suffer delays. Application of our main
results to the distributed setting provides convergence rates in terms of the number of nodes
n in the network and the stochastic process governing the delays. Concretely, we show that
under different assumptions on the network and delay process, we achieve convergence rates
ranging from O(n3/T + 1/

√
Tn) to O(n/T + 1/

√
Tn), which is O(1/

√
nT ) asymptotically

in T . For problems with large n, we demonstrate rates ranging from O((n/T )2/3 + 1/
√
Tn)

to O(1/T 2/3 + 1/
√
Tn). In either case, the time necessary to achieve ε-optimal solution to

the problem (6.1) is asymptotically O(1/nε2), a factor of n—the size of the network—better
than a centralized procedure in spite of delay.

The remainder of the chapter is organized as follows. We begin by reviewing known
algorithms for solving the stochastic optimization problem (6.1) and stating our main as-
sumptions. Then in Section 6.3 we give abstract descriptions of our algorithms and state
our main theoretical results, which we make concrete in Section 6.4 by formally placing the
analysis in the setting of distributed stochastic optimization. We complement the theory
in Section 6.5 with experiments on a real-world dataset, and proofs follow in the remaining
sections. We also note that the results of this chapter appear in the paper [3].

Notation We collect our (mostly standard) notation specific to this chapter here. We
recall the definitions related to a convex function from Section 2.2. We use the short-
hand ‖∂f(θ)‖∗ := supg∈∂f(θ) ‖g‖∗. We assume that f is G-Lipschitz, which by convexity, is
equivalent to ‖∂f(θ)‖∗ ≤ G for all θ ∈ Ω [76]. For convex differentiable h, the Bregman
divergence [38] between θ and θ̃ is defined as

Dh(θ, θ̃) := h(θ)− h(θ̃)−
〈
∇h(θ̃), θ − θ̃

〉
. (6.2)

We use [n] to denote the set of integers {1, . . . , n}.
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6.2 Setup and Algorithms

In this section we set up and recall the delay-free algorithms underlying our approach. We
then give the appropriate delayed versions of these algorithms, which we analyze in the
sequel.

6.2.1 Setup and Delay-free Algorithms

To build intuition for the algorithms we analyze, we first describe two closely related first-
order algorithms: the dual averaging algorithm of Nesterov [122] and the mirror descent
algorithm of Nemirovski and Yudin [119], which is analyzed further by Beck and Teboulle
[22]. We begin by collecting notation and giving useful definitions. Both algorithms are
based on a proximal function ψ(θ), where it is no loss of generality to assume that ψ(θ) ≥ 0
for all θ ∈ Ω. We assume ψ is 1-strongly convex (by scaling, this is no loss of generality).

By definitions (6.2) and (2.5), the divergence Dψ satisfies Dψ(θ, θ̃) ≥ 1
2

∥∥∥θ − θ̃
∥∥∥
2

.

In the oracle model of stochastic optimization that we assume, at time t both algorithms
query an oracle at the point θt, and the oracle then samples z(t) i.i.d. from the distribution
P and returns g(t) ∈ ∂F (θt; z(t)). The dual averaging algorithm [122] updates a dual vector
µt and primal vector θt ∈ Ω via

µt+1 = µt + g(t) and θt+1 = argmin
θ∈Ω

{〈
µt+1, θ

〉
+

1

α(t+ 1)
ψ(θ)

}
, (6.3)

while mirror descent [119, 22] performs the update

θt+1 = argmin
θ∈Ω

{
〈g(t), θ〉+ 1

α(t)
Dψ(θ, θ

t)
}
. (6.4)

Both make a linear approximation to the function being minimized—a global approximation
in the case of the dual averaging update (6.3) and a more local approximation for mirror
descent (6.4)—while using the proximal function ψ to regularize the points θt.

We now state the two essentially standard assumptions [83, 96, 173] we most often make
about the stochastic optimization problem (6.1), after which we recall the convergence rates
of the algorithms (6.3) and (6.4).

Assumption A (Lipschitz Functions). For P -a.e. z, the function F (· ; z) is convex. More-
over, for any θ ∈ Ω, E[‖∂F (θ; z)‖2∗] ≤ G2.

In particular, Assumption A implies that f is G-Lipschitz continuous with respect to the
norm ‖·‖ and that f is convex. Our second assumption has been used to show rates of
convergence based on the variance of a gradient estimator for stochastic optimization prob-
lems [83, 96].
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Assumption B (Smooth Functions). The function f defined in (6.1) has L-Lipschitz con-
tinuous gradients, and for all θ ∈ Ω the variance bound E[‖∇f(θ)−∇F (θ; z)‖2∗] ≤ σ2 holds.1

Several commonly used functions satisfy the above assumptions, and we recall some of the
relevant examples from Section 2.1 here:

(i) The logistic loss : F (θ; z) = log[1 + exp(−〈θ, z〉)], the objective for logistic regres-
sion [e.g. 73], where z = xy for y ∈ {−1, 1} and x ∈ Rd. The objective F satisfies
Assumptions A and B so long as ‖z‖ is bounded.

(ii) Least squares or linear regression: F (θ; z) = (y − 〈θ, x〉)2 where z = (x, y) for x ∈ Rd

and y ∈ R, satisfies Assumptions A and B as long as z is bounded and Ω is compact.

We also make a standard compactness assumption on the optimization set Ω.

Assumption C (Compactness). For θ∗ ∈ argminθ∈Ω f(θ) and θ ∈ Ω, the bounds ψ(θ∗) ≤
R2/2 and Dψ(θ

∗, θ) ≤ R2 both hold.

Under Assumptions A or B in addition to Assumption C, the updates (6.3) and (6.4)
have known convergence rates. Define the time averaged vector θ(T ) as

θ(T ) :=
1

T

T∑

t=1

θt+1. (6.5)

Then under Assumption A, both algorithms satisfy

E[f(θ(T ))]− f(θ∗) = O
(
RG√
T

)
(6.6)

for the stepsize choice α(t) = R/(G
√
t) [e.g. 122, 173, 117]. The result (6.6) is sharp to

constant factors in general [119, 6], but can be further improved under Assumption B.
Building on work of Juditsky et al. [83] and Lan [96], Dekel et al. [57, Appendix A] show that
under Assumptions B and C the stepsize choice α(t)−1 = L+ η(t), where η(t) is a damping
factor set to η(t) = σR

√
t, yields for either of the updates (6.3) or (6.4) the convergence rate

E[f(θ(T ))]− f(θ∗) = O
(
LR2

T
+
σR√
T

)
. (6.7)

1If f is differentiable, then F (·; z) is differentiable for P -a.e. z, and conversely, but F need not be smoothly
differentiable [25]. Since ∇F (θ; z) exists for P -a.e. z, we will write ∇F (θ; z) with no loss of generality.
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6.2.2 Delayed Optimization Algorithms

We now turn to extending the dual averaging (6.3) and mirror descent (6.4) updates to the
setting in which instead of receiving a current gradient g(t) at time t, the procedure receives a
gradient g(t−τ(t)), that is, a stochastic gradient of the objective (6.1) computed at the point
θ(t−τ(t)). In the simplest case, the delays are uniform and τ(t) ≡ τ for all t, but in general
the delays may be a non-i.i.d. stochastic process. Our analysis admits any sequence τ(t) of
delays as long as the mapping t 7→ τ(t) satisfies E[τ(t)2] ≤ B2 < ∞. We also require that
each update happens once, i.e., t 7→ t− τ(t) is one-to-one, though this second assumption is
easily satisfied.

Recall that the problems we consider are stochastic optimization problems of the form (6.1).
Under the assumptions above, we extend the mirror descent and dual averaging algorithms
in the simplest way: we replace g(t) with g(t−τ(t)). For dual averaging (cf. the update (6.3))
this yields

µt+1 = µt + g(t− τ(t)) and θt+1 = argmin
θ∈Ω

{〈
µt+1, θ

〉
+

1

α(t+ 1)
ψ(θ)

}
, (6.8)

while for mirror descent (cf. the update (6.4)) we have

θt+1 = argmin
θ∈Ω

{
〈g(t− τ(t)), θ〉+ 1

α(t)
Dψ(θ, θ

t)
}
. (6.9)

An extension of Nedić et al.’s (2001) results by combining their techniques with the con-
vergence proofs of dual averaging [122] and mirror descent [22] is as follows. Under As-
sumptions A and C, so long as E[τ(t)] ≤ B < ∞ for all t, choosing α(t) = R

G
√
Bt

gives
rate

E[f(θ(T ))]− f(θ∗) = O
(
RG

√
B√

T

)
. (6.10)

6.3 Convergence rates for delayed optimization of smooth

functions

In this section, we state and discuss several results for asynchronous stochastic gradient
methods. We give two sets of theorems. The first are for the asynchronous method when we
make updates to the parameter vector x using one stochastic subgradient, according to the
update rules (6.8) or (6.9). The second method involves using several stochastic subgradients
for every update, each with a potentially different delay, which gives sharper results that we
present in Section 6.3.2.
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6.3.1 Simple delayed optimization

Intuitively, the
√
B-penalty due to delays for non-smooth optimization arises from the fact

that subgradients can change drastically when measured at slightly different locations, so
a small delay can introduce significant inaccuracy. To overcome the delay penalty, we now
turn to the smoothness assumption B as well as the Lipschitz condition A (we assume both
of these conditions along with Assumption C hold for all the theorems). In the smooth case,
delays mean that stale gradients are only slightly perturbed, since our stochastic algorithms
constrain the variability of the points θt. As we show in the proofs of the remaining results,
the error from delay essentially becomes a second order term: the penalty is asymptotically
negligible. We study both update rules (6.8) and (6.9), and we set α(t) = 1

L+η(t)
. Here η(t)

will be chosen to both control the effects of delays and for errors from stochastic gradient
information. We prove the following theorem in Sec. 6.6.1.

Theorem 6.1. Let the sequence θt be defined by the update (6.8). Define the stepsize η(t) ∝√
t or let η(t) ≡ η for all t. Then

E

[ T∑

t=1

f(θt+1)

]
− Tf(θ∗) ≤ 1

α(T + 1)
R2 +

σ2

2

T∑

t=1

1

η(t)
+ 2LG2(τ + 1)2

T∑

t=1

1

η(t)2
+ 4τGR.

The mirror descent update (6.9) exhibits similar convergence properties, and we prove the
next theorem in Sec. 6.6.2.

Theorem 6.2. Use the conditions of Theorem 6.1 but generate θt by the update (6.9). Then

E

[ T∑

t=1

f(θt+1)

]
− Tf(θ∗) ≤ LR2 +R2η(T ) +

σ2

2

T∑

t=1

1

η(t)
+ 2LG2(τ + 1)2

T∑

t=1

1

η(t)2
+ 4τGR.

In each of the above theorems, we can set η(t) = σ
√
t/R. As immediate corollaries, we

recall the definition (6.5) of the averaged sequence of θt and use convexity to see that

E[f(θ(T ))]− f(θ∗) = O
(
LR2 + τGR

T
+
σR√
T

+
LG2τ 2R2 log T

σ2T

)

for either update rule. In addition, we can allow the delay τ(t) to be random:

Corollary 6.1. Let the conditions of Theorem 6.1 or 6.2 hold, but allow τ(t) to be a random
mapping such that E[τ(t)2] ≤ B2 for all t. With the choice η(t) = σ

√
T/R the updates (6.8)

and (6.9) satisfy

E[f(θ(T ))]− f(θ∗) = O
(
LR2 +B2GR

T
+
σR√
T

+
LG2B2R2

σ2T

)
.
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We provide the proof of the corollary in Sec. 6.6.3. Even though the corollary is stated
only for fixed step size, the conclusion extends to decaying step sizes too, albeit with an
additional log T factor on the last term. The take-home message from the above corollaries,
as well as Theorems 6.1 and 6.2, is that the penalty in convergence rate due to the delay
τ(t) is asymptotically negligible. As we discuss in greater depth in the next section, this has
favorable implications for robust distributed stochastic optimization algorithms.

6.3.2 Combinations of delays

In some scenarios—including distributed settings similar to those we discuss in the next
section—the procedure has access not to only a single delayed gradient but to several with
different delays. To abstract away the essential parts of this situation, we assume that the
procedure receives n gradients g1, . . . , gn, where each has a potentially different delay τ(i).
Now let λ = (λi)

n
i=1 belong to the probability simplex, though we leave λ’s values unspecified

for now. Then the procedure performs the following updates at time t: for dual averaging,

µt+1 = µt +

n∑

i=1

λigi(t− τ(i)) and θt+1 = argmin
θ∈Ω

{〈
µt+1, θ

〉
+

1

α(t+ 1)
ψ(θ)

}
(6.11)

while for mirror descent, the update is

gλ(t) =
n∑

i=1

λigi(t− τ(i)) and θt+1 = argmin
θ∈Ω

{
〈gλ(t), θ〉+

1

α(t)
Dψ(θ, θ

t)
}
. (6.12)

The next two theorems build on the proofs of Theorems 6.1 and 6.2, combining several tech-
niques. We provide the proof of Theorem 6.3 in Sec. 6.7, omitting the proof of Theorem 6.4
as it follows in a similar way from Theorem 6.2.

Theorem 6.3. Let the sequence θt be defined by the update (6.11). Under assumptions A, B
and C, let 1

α(t)
= L+ η(t) and η(t) ∝

√
t or η(t) ≡ η for all t. Then

E

[
T∑

t=1

f(θt+1)− Tf(θ∗)

]
≤ 1

α(T + 1)
R2 + 4

n∑

i=1

λiτ(i)GR + 2
n∑

i=1

λiLG
2(τ(i) + 1)2

T∑

t=1

1

η(t)2

+
T∑

t=1

1

2η(t)
E

∥∥∥∥
n∑

i=1

λi[∇f(θ(t−τ(i)))− gi(t− τ(i))]

∥∥∥∥
2

∗
.

Theorem 6.4. Use the same conditions as Theorem 6.3, but assume that θt is defined by
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the update (6.12) and Dψ(θ
∗, θ) ≤ R2 for all θ ∈ Ω. Then

E

[
T∑

t=1

f(θt+1)− Tf(θ∗)

]
≤ (L+ η(T ))R2 + 4

n∑

i=1

λiτ(i)GR + 2
n∑

i=1

λiLG
2(τ(i) + 1)2

T∑

t=1

1

η(t)2

+

T∑

t=1

1

2η(t)
E

∥∥∥∥
n∑

i=1

λi[∇f(θ(t−τ(i)))− gi(t− τ(i))]

∥∥∥∥
2

∗
.

The consequences of Theorems 6.3 and 6.4 are powerful, as we illustrate in the next section.

6.4 Distributed Optimization

We now turn to what we see as the main purpose and application of the above results:
developing robust and efficient algorithms for distributed stochastic optimization. Our main
motivations here are machine learning and statistical applications where the data is so large
that it cannot fit on a single computer. Examples of the form (6.1) include logistic regression,
where the task is to learn a linear classifier that assigns labels in {−1,+1} to a series of
examples, in which case we have the objective F (θ; z) = log[1 + exp(−〈z, θ〉)] as described
in Sec. 6.2.1(i); or linear regression, where z = (x, y) ∈ Rd × R and F (θ; z) = 1

2
[y − 〈x, θ〉]2

as described in Sec. 6.2.1(ii). Both objectives satisfy assumptions A and B as discussed
earlier. We consider both stochastic and online/streaming scenarios for such problems. In
the simplest setting, the distribution P in the objective (6.1) is the empirical distribution
over an observed dataset, that is,

f(θ) =
1

N

N∑

i=1

F (θ; zi).

We divide the N samples among n workers so that each worker has an N/n-sized subset of
data. In streaming applications, the distribution P is the unknown distribution generating
the data, and each worker receives a stream of independent data points z ∼ P . Worker i
uses its subset of the data, or its stream, to compute gi, an estimate of the gradient ∇f of
the global f . We make the simplifying assumption that gi is an unbiased estimate of ∇f(θ),
which is satisfied, for example, when each worker receives an independent stream of samples
or computes the gradient gi based on samples picked at random without replacement from
its subset of the data.

The architectural assumptions we make are natural and based off of master/worker
topologies, but the convergence results in Section 6.3 allow us to give procedures robust
to delay and asynchrony. We consider two protocols: in the first, workers compute and com-
municate asynchronously and independently with the master, and in the second, workers
are at different distances from the master and communicate with time lags proportional to
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their distances. We show in the latter part of this section that the convergence rates of
each protocol are O(1/

√
nT ) for n-node networks (though lower order terms are different for

each).
Before describing our architectures, we note that perhaps the simplest master-worker

scheme is to have each worker simultaneously compute a stochastic gradient and send it to
the master, which takes a gradient step on the averaged gradient. While the n gradients
are computed in parallel, accumulating and averaging n gradients at the master takes Ω(n)
time, offsetting the gains of parallelization. Thus we consider alternate architectures that
are robust to delay.

Cyclic Delayed Architecture This protocol is the delayed update algorithm mentioned
in the introduction, and it parallelizes computation of (estimates of) the gradient ∇f(θ).
Formally, worker i has parameter θt and computes gi(t) = ∇F (θt; zi(t)) ∈ Rd, where zi(t)
is a random variable sampled at worker i from the distribution P . The master maintains a
parameter vector θ ∈ Ω. The algorithm proceeds in rounds, cyclically pipelining updates.
The algorithm begins by initiating gradient computations at different workers at slightly
offset times. At time t, the master receives gradient information at a τ -step delay from some
worker, performs a parameter update, and passes the updated central parameter θt+1 back to
the worker. Other workers do not see this update and continue their gradient computations
on stale parameter vectors. In the simplest case, each node suffers a delay of τ = n, though
our earlier analysis applies to random delays throughout the network as well. Recall Fig. 6.1
for a graphic description of the process.

Locally Averaged Delayed Architecture At a high level, the protocol we now describe
combines the delayed updates of the cyclic delayed architecture with averaging techniques
of previous work [112, 61]. We assume a network G = (V, E), where V is a set of n nodes
(workers) and E are the edges between the nodes. We select one of the nodes as the master,
which maintains the parameter vector θt ∈ Ω over time.

The algorithm works via a series of multicasting and aggregation steps on a spanning
tree rooted at the master node. In the first phase, the algorithm broadcasts from the root
towards the leaves. At step t the master sends its current parameter vector θt to its immediate
neighbors. Simultaneously, every other node broadcasts its current parameter vector (which,
for a depth d node, is θ(t−d)) to its children in the spanning tree. See Fig. 6.2(a). Every
worker receives its new parameter and computes its local gradient at this parameter. The
second part of the communication in a given iteration proceeds from leaves toward the root.
The leaf nodes communicate their gradients to their parents. The parent takes the gradients
of the leaf nodes from the previous round (received at iteration t−1) and averages them with
its own gradient, passing this averaged gradient back up the tree. Again simultaneously, each
node takes the averaged gradient vectors of its children from the previous rounds, averages
them with its current gradient vector, and passes the result up the spanning tree. See
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Figure 6.2. Master-worker averaging network. (a): parameters stored at different distances
from master node at time t. A node at distance d from master has the parameter θ(t−d).
(b): gradients computed at different nodes. A node at distance d from master computes
gradient g(t− d).

Fig. 6.2(b) and Fig. 6.3 for a visual description.
Slightly more formally, associated with each node i ∈ V is a delay τ(i), which is (generally)

twice its distance from the master. Fix an iteration t. Each node i ∈ V has an out of date
parameter vector θ(t−τ(i)/2), which it sends further down the tree to its children. So, for
example, the master node sends the vector θt to its children, which send the parameter
vector θt−1 to their children, which in turn send θt−2 to their children, and so on. Each node
computes

gi(t− τ(i)/2) = ∇F (θ(t−τ(i)/2); zi(t)),
where zi(t) is a random variable sampled at node i from the distribution P . The communi-
cation back up the hierarchy proceeds as follows: the leaf nodes in the tree (say at depth d)
send the gradient vectors gi(t − d) to their immediate parents in the tree. At the previous
iteration t−1, the parent nodes received gi(t−d−1) from their children, which they average
with their own gradients gi(t− d+1) and pass to their parents, and so on. The master node
at the root receives an average of delayed gradients from the entire tree, with each gradient
having a potentially different delay, leading to updates of the form (6.11) or (6.12).

6.4.1 Convergence rates for delayed distributed minimization

Having described our architectures, we can now give corollaries to the theoretical results
from the previous sections that show it is possible to achieve asymptotically faster rates (over
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3g2(t− d− 2) + 1

3
g3(t− d− 2)

g2(t− d− 1) g3(t− d− 1)

Depth d

Depth d+ 1 {θ(t−d−1)}

{θ(t−d), g2(t− d− 2), g3(t− d− 2)}

{θ(t−d−1)}

Figure 6.3. Communication of gradient information toward master node at time t from
node 1 at distance d from master. Information stored at time t by node i in brackets to
right of node.

centralized procedures) using distributed algorithms even without imposing synchronization
requirements. We allow workers to pipeline updates by computing asynchronously and in
parallel, so each worker can compute low variance estimate of the gradient ∇f(θ).

We begin with a simple corollary to the results in Sec. 6.3.1. We ignore the constants L,
G, R, and σ, which are not dependent on the characteristics of the network. We also assume
that each worker uses m independent samples of z ∼ P to compute the stochastic gradient

gi(t) =
1

m

m∑

j=1

∇F (θt; zi(j)).

Using the cyclic protocol as in Fig. 6.1, Theorems 6.1 and 6.2 give the following result.

Corollary 6.2. Let ψ(θ) = 1
2
‖θ‖22, assume the conditions in Corollary 6.1, and assume that

each worker uses m samples z ∼ P to compute the gradient it communicates to the master.
Then with the choice η(t) =

√
T/

√
m either of the updates (6.8) or (6.9) satisfy

E[f(θ(T ))]− f(θ∗) = O
(
B2

T
+

1√
Tm

+
B2m

T

)
.

Proof. The corollary follows straightforwardly from the realization that the variance

σ2 = E[
∥∥∇f(θt)− gi(t)

∥∥2
2
] = E[

∥∥∇f(θt)−∇F (θt; z)
∥∥2
2
]/m = O(1/m)

when workers use m independent stochastic gradient samples.

In the above corollary, so long as the bound B on the expected delay satisfies, say, B =
o(T 1/4), then the last term in the bound is asymptotically negligible, and we achieve a
convergence rate of O(1/

√
Tm).
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The cyclic delayed architecture has the drawback that information from a worker can take
O(n) time to reach the master. While the algorithm is robust to delay and does not need
lock-step coordination of workers, the downside of the architecture is that the essentially
n2m/T term in the bounds above can be quite large. Indeed, if each worker computes
its gradient over m samples with m ≈ n—say to avoid idling of workers—then the cyclic
architecture has convergence rate O(n3/T + 1/

√
nT ). For moderate T or large n, the delay

penalty n3/T may dominate 1/
√
nT , offsetting the gains of parallelization.

To address the large n drawback, we turn our attention to the locally averaged architec-
ture described by Figs. 6.2 and 6.3, where delays can be smaller since they depend only on
the height of a spanning tree in the network. The algorithm requires more synchronization
than the cyclic architecture but still performs limited local communication. Each worker
computes gi(t− τ(i)) = ∇F (θ(t−τ(i)); zi(t)) where τ(i) is the delay of worker i from the mas-
ter and zi ∼ P . As a result of the communication procedure, the master receives a convex
combination of the stochastic gradients evaluated at each worker i, for which we gave results
in Section 6.3.2.

In this architecture, the master receives gradients of the form gλ(t) =
∑n

i=1 λigi(t− τ(i))
for some λ in the simplex, which puts us in the setting of Theorems 6.3 and 6.4. We now
make the reasonable assumption that the gradient errors ∇f(θt) − gi(t) are uncorrelated
across the nodes in the network.2 In statistical applications, for example, each worker may
own independent data or receive streaming data from independent sources; more generally,
each worker can simply receive independent samples zi ∼ P . We also set ψ(θ) = 1

2
‖θ‖22, and

observe

E

∥∥∥∥
n∑

i=1

λi∇f(θ(t−τ(i)))− gi(t− τ(i))

∥∥∥∥
2

2

=

n∑

i=1

λ2iE
∥∥∇f(θ(t−τ(i)))− gi(t− τ(i))

∥∥2
2
.

This gives the following corollary to Theorems 6.3 and 6.4.

Corollary 6.3. Set λi =
1
n
for all i, ψ(θ) = 1

2
‖θ‖22, and η(t) = σ

√
t+ τ/R

√
n. Let τ̄ and

τ 2 denote the average of the delays τ(i) and τ(i)2, respectively. Under the conditions of
Theorem 6.3 or 6.4,

E

[
T∑

t=1

f(θt+1)− Tf(θ∗)

]
= O

(
LR2 + τ̄GR +

LG2R2nτ 2

σ2
log T +

Rσ√
n

√
T

)
.

The log T multiplier can be reduced to a constant if we set η(t) ≡ σ
√
T/R

√
n. By using

the averaged sequence θ(T ) (6.5), Jensen’s inequality gives that asymptotically E[f(θ(T ))]−
f(θ∗) = O(1/

√
Tn), which is an optimal dependence on the number of samples z calculated

by the method. We also observe in this architecture, the delay τ is bounded by the graph

2Similar results continue to hold under weak correlation.
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diameter D, giving us the bound:

E

[
T∑

t=1

f(θt+1)− Tf(θ∗)

]
= O

(
LR2 +DGR +

LG2R2nD2

σ2
log T +

Rσ√
n

√
T

)
. (6.13)

The above corollaries are general and hold irrespective of the relative costs of communi-
cation and computation. However, with knowledge of the costs, we can adapt the stepsizes
slightly to give better rates of convergence when n is large or communication to the master
node is expensive. For now, we focus on the cyclic architecture (the setting of Corollary 6.2),
though the same principles apply to the local averaging scheme. Let C denote the cost of
communicating between the master and workers in terms of the time to compute a sin-
gle gradient sample, and assume that we set m = Cn, so that no worker node has idle
time. For simplicity, we let the delay be non-random, so B = τ = n. Consider the choice
η(t) = η

√
T/(Cn) for the damping stepsizes, where η ≥ 1. This setting in Theorem 6.1 gives

E[f(θ(T ))]− f(θ∗) = O
(
Cn3

η2T
+

η√
TCn

+
1

η
√
TCn

)
= O

(
Cn3

η2T
+

η√
TCn

)
,

where the last equality follows since η ≥ 1. Optimizing for η on the right yields

η = max

{
n7/6C1/2

T 1/6
, 1

}
and E[f(θ(T ))]− f(θ∗) = O

(
min

{
n2/3

T 2/3
,
n3

T

}
+

1√
TCn

)
.

(6.14)
The convergence rates thus follow two regimes. When T ≤ n7C3, we have convergence rate
O(n2/3/T 2/3), while once T > n7C3, we attain O(1/

√
TCn) convergence. Roughly, in time

proportional to TC, we achieve optimization error 1/
√
TCn, which is order-optimal given

that we can compute a total of TCn stochastic gradients [6]. The scaling of this bound is
nicer than that previously: the dependence on network size is at worst n2/3, which we obtain
by increasing the damping factor η(t)—and hence decreasing the stepsize α(t) = 1/(L +
η(t))—relative to the setting of Corollary 6.2. We remark that applying the same technique
to Corollary 6.3 gives convergence rate scaling as the smaller of O((D/T )2/3 + 1/

√
TCn)

and O((nCD2/T + 1/
√
TCn). Since the diameter D ≤ n, this is faster than the cyclic

architecture’s bound (6.14).

6.4.2 Running-time comparisons

Having derived the rates of convergence of the different distributed procedures above, we
now explicitly study the running times of the centralized stochastic gradient algorithms (6.3)
and (6.4), the cyclic delayed protocol with the updates (6.8) and (6.9), and the locally aver-
aged architecture with the updates (6.11) and (6.12). To make comparisons more cleanly, we
avoid constants, assuming without loss that the variance bound σ2 on E ‖∇f(θ)−∇F (θ; z)‖2
is 1, and that sampling z ∼ P and evaluating ∇F (θ; z) requires one unit of time. Noting



CHAPTER 6. ASYMPTOTICALLY OPTIMAL DISTRIBUTED LEARNING 129

Centralized (6.3, 6.4) Ef(θ)− f(θ∗) = O
(√

1

T

)

Cyclic (6.8, 6.9) Ef(θ)− f(θ∗) = O
(
min

(
n2/3

T 2/3
,
n3

T

)
+

1√
Tn

)

Local (6.11, 6.12) Ef(θ)− f(θ∗) = O
(
min

(
D2/3

T 2/3
,
nτ 2

T

)
+

1√
nT

)

Table 6.1. Upper bounds on Ef(θ)− f(θ∗) for three computational architectures, where θ
is the output of each algorithm after T units of time. Each algorithm runs for the amount
of time it takes a centralized stochastic algorithm to perform T iterations as in (6.15). Here

D is the diameter of the network, n is the number of nodes, and τ2 = 1
n

∑n
i=1 τ(i)

2 is the
average squared communication delay for the local averaging architecture. Bounds for the
cyclic architecture assume delay τ = n.

that E[∇F (θ; z)] = ∇f(θ), it is clear that if we receive m uncorrelated samples of z, the
variance E‖∇f(θ)− 1

m

∑m
j=1∇F (θ; zj)‖22 ≤ 1

m
.

Now we state our assumptions on the relative times used by each algorithm. Let T
be the number of units of time allocated to each algorithm, and let the centralized, cyclic
delayed and locally averaged delayed algorithms complete Tcent, Tcycle and Tdist iterations,
respectively, in time T . It is clear that Tcent = T . We assume that the distributed methods
use mcycle and mdist samples of z ∼ P to compute stochastic gradients and that the delay
τ of the cyclic algorithm is n. For concreteness, we assume that communication is of the
same order as computing the gradient of one sample ∇F (θ; z) so that C = 1. In the cyclic
setup of Sec. 6.3.1, it is reasonable to assume that mcycle = Ω(n) to avoid idling of workers
(Theorems 6.1 and 6.2, as well as the bound (6.14), show it is asymptotically beneficial to
have mcycle larger, since σ

2
cycle = 1/mcycle). For mcycle = Ω(n), the master requires

mcycle

n
units

of time to receive one gradient update, so
mcycle

n
Tcycle = T . In the locally delayed framework,

if each node uses mdist samples to compute a gradient, the master receives a gradient every
mdist units of time, and hence mdistTdist = T . Further, σ2

dist = 1/mdist. We summarize our
assumptions by saying that in T units of time, each algorithm performs the following number
of iterations:

Tcent = T, Tcycle =
Tn

mcycle

, and Tdist =
T

mdist

. (6.15)

Plugging the above iteration counts into the earlier bound (6.7) and Corollaries 6.2 and 6.3
via the sharper result (6.14), we can provide upper bounds (to constant factors) on the ex-
pected optimization accuracy after T units of time for each of the distributed architectures
as in Table 6.1. Asymptotically in the number of units of time T , both the cyclic and locally
communicating stochastic optimization schemes have the same convergence rate. However,
topological considerations show that the locally communicating method (Figs. 6.2 and 6.3)
has better performance than the cyclic architecture, though it requires more worker coordi-
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nation. Since the lower order terms matter only for large n or small T , we compare the terms
n2/3/T 2/3 and D2/3/T 2/3 for the cyclic and locally averaged algorithms, respectively. Since
D ≤ n for any network, the locally averaged algorithm always guarantees better performance
than the cyclic algorithm. For specific graph topologies, however, we can quantify the time
improvements:

• n-node cycle or path: D = n so that both methods have the same convergence rate.

• √
n-by-

√
n grid: D =

√
n, so the distributed method has a factor of n2/3/n1/3 = n1/3

improvement over the cyclic architecture.

• Balanced trees and expander graphs: D = O(logn), so the distributed method has a
factor—ignoring logarithmic terms—of n2/3 improvement over cyclic.

Naturally, it is possible to modify our assumptions. In a network in which commu-
nication is cheap, or conversely, in a problem for which the computation of ∇F (θ; z) is
more expensive than communication, then the number of samples z ∼ P for which which
each worker computes gradients is small. Such problems occur frequently, such as learn-
ing conditional random field models for natural language processing, computational biology,
or other applications [94]. In this case, it is reasonable to have mcycle = O(1), in which
case Tcycle = Tn and the cyclic delayed architecture has stronger convergence guarantees of
O(min{n2/T, 1/T 2/3} + 1/

√
Tn). In any case, both non-centralized protocols enjoy signifi-

cant asymptotically faster convergence rates for stochastic optimization problems in spite of
asynchronous delays.

6.5 Numerical Results

Though this work focuses mostly on the theoretical analysis of the methods we have pre-
sented, it is important to understand the practical aspects of the above methods in solv-
ing real-world tasks and problems with real data. To that end, we use the cyclic delayed
method (6.11) to solve a logistic regression problem:

minimize
x

f(θ) =
1

N

N∑

i=1

log(1 + exp(−yi 〈xi, θ〉)) subject to ‖θ‖2 ≤ R. (6.16)

We use the Reuters RCV1 dataset [101], which consists of N ≈ 800000 news articles, each
labeled with some combination of the four labels economics, government, commerce, and
medicine. In the above example, the vectors xi ∈ {0, 1}d, d ≈ 105, are feature vectors repre-
senting the words in each article, and the labels bi are 1 if the article is about government,
−1 otherwise.

We simulate the cyclic delayed optimization algorithm (6.8) for the problem (6.16) for
several choices of the number of workers n and the number of samples m computed at each
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Figure 6.4. Optimization performance of the delayed cyclic method (6.8) for the Reuters
RCV1 dataset. Each plot shows the estimated time to compute ε-accurate solution to the
objective (6.16) as a function of the number of workers n. Plot (a): convergence time
assuming the cost of communication to the master is the same as computing the gradient
of one term in the objective (6.16). The number of samples m is equal to n for each worker.
Plot (b): convergence time assuming the cost of communication to the master is 16 times
as expensive as computing the gradient of one term in the objective (6.16). The number of
samples m is equal to 16n for each worker.

worker. We summarize the results of our experiments in Figure 6.4. To generate the figure,
we fix an ε (in this case, ε = .05), then measure the time it takes the stochastic algorithm (6.8)
to output an θ such that f(θ) ≤ infθ∈Ω f(θ)+ε. We perform each experiment ten times. The
two plots differ in the amount of time C required to communicate the parameters θ between
the master and the workers (relative to the amount of time to compute the gradient of one
term in the objective (6.16)). For the experiments exhibited in the left plot in Fig. 6.4(a),
we assume that C = 1, while for those described in Fig. 6.4(b), we assume that C = 16.

We now turn to discussing the individual plots. For Fig. 6.4(a), each worker uses m = n
samples to compute a stochastic gradient for the objective (6.16). As mentioned above,
we assume the communication cost C = 1 so that each worker is continuously performing
computation. The plotted results show the delayed update (6.8) enjoys speedup (the ratio
of time to ε-accuracy for an n-node system versus the centralized procedure) nearly linear in
the number n of worker machines until n ≥ 15 or so. Since we use the stepsize choice η(t) ∝√
t/n, which yields the predicted convergence rate given by Corollary 6.2, the n2m/T ≈ n3/T

term in the convergence rate presumably becomes non-negligible for larger n. This expands
on earlier experimental work with a similar method [97], which experimentally demonstrated
linear speedup for small values of n, but did not investigate larger network sizes.
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In Fig. 6.4(b), we study the effects of more costly communication by assuming that com-
munication is C = 16 times more expensive than gradient computation. As we recommend
in our discussion of convergence rates for distributed minimization in Sec. 6.4.1, we thus set
the number of samples each worker computes to m = Cn = 16n and correspondingly reduce
the damping stepsize η(t) ∝

√
t/(Cn). In the regime of more expensive communication—

as our theoretical results predict—small numbers of workers still enjoy significant speedups
over a centralized method. For non-asymptotic regimes with moderate to large numbers of
workers, the cost of communication and delays mitigate some of the benefits of paralleliza-
tion. Nevertheless, as our analysis shows, allowing delayed and asynchronous updates still
gives significant performance improvements. We remark that the alternate choice of stepsize
yielding the rates (6.14) gives qualitatively similar performance.

6.6 Delayed Updates for Smooth Optimization

In this section, we prove Theorems 6.1 and 6.2. We collect in Appendix D a few technical
results relevant to our proof; we will refer to results therein without comment. Before proving
either theorem, we state the lemma that is the key to our argument. Lemma 6.1 shows that
certain gradient-differencing terms are essentially of second order. As a consequence, when

we combine the results of the lemma with Lemma D.3, which bounds E

[∥∥θt − θ(t+τ)
∥∥2
]
,

the gradient differencing terms become O(log T ) for step size choice η(t) ∝
√
t, or O(1) for

η(t) ≡ η
√
T .

Lemma 6.1. Let assumptions A and B on the function f and the compactness assumption C
hold. Then for any sequence θt

T∑

t=1

〈
∇f(θt)−∇f(θ(t−τ)), θt+1 − θ∗

〉
≤ L

2

T∑

t=τ+1

∥∥θ(t−τ) − θt+1
∥∥2 + 4τGR.

Consequently, if E[‖θt − θt+1‖2] ≤ κ(t)2G2 for a non-increasing sequence κ(t),

E

[ T∑

t=1

〈
∇f(θt)−∇f(θ(t−τ)), θt+1 − θ∗

〉 ]
≤ LG2(τ + 1)2

2

T∑

t=τ+1

κ(t− τ)2 + 4τGR.

Proof. The proof follows by using a few Bregman divergence identities to rewrite the left
hand side of the above equations, then recognizing that the result is close to a telescoping
sum. Recalling the definition of a Bregman divergence (6.2), we note the following well-
known four term equality, a consequence of straightforward algebra: for any a, b, c, d,

〈∇f(a)−∇f(b), c− d〉 = Df(d, a)−Df(d, b)−Df (c, a) +Df(c, b). (6.17)
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Using the equality (6.17), we see that for t ≥ τ ,
〈
∇f(θt)−∇f(θ(t−τ)), θt+1 − θ∗

〉

= Df (θ
∗, θt)−Df(θ

∗, θ(t−τ))−Df (θ
t+1, θt) +Df (θ

t+1, θ(t−τ)). (6.18)

To make the equality (6.18) useful, we note that the Lipschitz continuity of ∇f implies

f(θt+1) ≤ f(θ(t−τ)) +
〈
∇f(θ(t−τ)), θt+1 − θ(t−τ)

〉
+
L

2

∥∥θ(t−τ) − θt+1
∥∥2

so that recalling the definition (6.2) of Df we have

Df(θ
t+1, θ(t−τ)) ≤ L

2

∥∥θ(t−τ) − θt+1
∥∥2 .

In particular, using the non-negativity of Df(θ, θ̃), we can replace (6.18) with the bound

〈
∇f(θt)−∇f(θ(t−τ)), θt+1 − θ∗

〉
≤ Df (θ

∗, θt)−Df(θ
∗, θ(t−τ)) +

L

2

∥∥θ(t−τ) − θt+1
∥∥2 .

For t ≤ τ , we have
〈
∇f(θt)−∇f(θ(t−τ)), θt+1 − θ∗

〉
≤ 2τGR using the compactness and

Lipschitz assumptions. Summing the above two inequalities, we see that

T∑

t=1

〈
∇f(θt)−∇f(θ(t−τ)), θt+1 − θ∗

〉

=
τ∑

t=1

〈
∇f(θt)−∇f(θ(t−τ)), θt+1 − θ∗

〉
+

T∑

t=τ+1

〈
∇f(θt)−∇f(θ(t−τ)), θt+1 − θ∗

〉

≤ 2τGR +

T∑

t=T−τ+1

Df(θ
∗, θt) +

L

2

T∑

t=τ+1

∥∥θ(t−τ) − θt+1
∥∥2 . (6.19)

To bound the Bregman divergence term, we recall that by Assumption C and the strong
convexity of ψ, ‖θ∗ − θt‖2 ≤ 2Dψ(θ

∗, θt) ≤ 2R2, and hence the optimality of θ∗ implies

Df (θ
∗, θt) = f(θ∗)− f(θt)−

〈
∇f(θt), θ∗ − θt

〉
≤ ‖∇f(θt)‖∗

∥∥θ∗ − θt
∥∥ ≤ 2GR.

This gives the first bound of the lemma. For the second bound, using convexity, we see that

∥∥θ(t−τ) − θt+1
∥∥2 ≤ (τ + 1)2

τ∑

s=0

1

τ + 1

∥∥θ(t−s) − θ(t−s+1)
∥∥2 ,

so by taking expectations we have E[
∥∥θt − θ(t+τ+1)

∥∥2] ≤ (τ + 1)2κ(t − τ)2G2. Since κ is
non-increasing (by the definition of the update scheme) we see that the sum (6.19) is further
bounded by 4τGR + L

2

∑T
t=τ+1G

2(τ + 1)2κ(t− τ)2 as desired.
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6.6.1 Proof of Theorem 6.1

The essential idea in this proof is to use convexity and smoothness to bound f(θt)− f(θ∗),
then use the sequence {η(t)}, which decreases the stepsize α(t), to cancel variance terms.
We will roughly ignore the first τ terms in the sequence f(θt) − f(θ∗), which reduce to an
O(τ/T ) term in the final rate. To begin, we define the error e(t)

e(t) := ∇f(θt)− g(t− τ)

where g(t− τ) = ∇F (θ(t−τ); z(t)) for some z(t) ∼ P . Note that e(t) in general has non-zero
expectation, as there is a time delay.

By using the convexity of f and then the L-Lipschitz continuity of ∇f , for any θ∗ ∈ Ω,
we have

f(θt)− f(θ∗) ≤
〈
∇f(θt), θt − θ∗

〉
=
〈
∇f(θt), θt+1 − θ∗

〉
+
〈
∇f(θt), θt − θt+1

〉

≤
〈
∇f(θt), θt+1 − θ∗

〉
+ f(θt)− f(θt+1) +

L

2

∥∥θt − θt+1
∥∥2 ,

so that using the definition (6.8) of µt,

f(θt+1)− f(θ∗) ≤
〈
∇f(θt), θt+1 − θ∗

〉
+
L

2

∥∥θt − θt+1
∥∥2

=
〈
g(t− τ), θt+1 − θ∗

〉
+
〈
e(t), θt+1 − θ∗

〉
+
L

2

∥∥θt − θt+1
∥∥2

=
〈
µt+1, θt+1 − θ∗

〉
−
〈
µt, θt+1 − θ∗

〉
+
〈
e(t), θt+1 − θ∗

〉
+
L

2

∥∥θt − θt+1
∥∥2 .

Applying Lemma D.1 in Appendix D and the definition of the update (6.8), we see that

−
〈
µt, θt+1 − θ∗

〉
≤ −

〈
µt, θt − θ∗

〉
+

1

α(t)

[
ψ(θt+1)− ψ(θt)

]
− 1

α(t)
Dψ(θ

t+1, θt),

which implies

f(θt+1)− f(θ∗)

≤
〈
µt+1, θt+1 − θ∗

〉
−
〈
µt, θt − θ∗

〉
+

1

α(t)
[ψ(θt+1)− ψ(θt)]

− LDψ(θ
t+1, θt)− η(t)Dψ(θ

t+1, θt) +
L

2

∥∥θt − θt+1
∥∥2 +

〈
e(t), θt+1 − θ∗

〉

≤
〈
µt+1, θt+1 − θ∗

〉
−
〈
µt, θt − θ∗

〉
+

1

α(t)
[ψ(θt+1)− ψ(θt)]

− η(t)Dψ(θ
t+1, θt) +

〈
e(t), θt+1 − θ∗

〉
. (6.20)
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To get the bound (6.20), we substituted α(t)−1 = L+ η(t) and then used the fact that ψ is
strongly convex, so Dψ(θ

t+1, θt) ≥ 1
2
‖θt − θt+1‖2. By summing the bound (6.20), we have

the following non-probabilistic inequality:

T∑

t=1

f(θt+1)− f(θ∗)

≤
〈
µT+1, θT+1 − θ∗

〉
+

1

α(T )
ψ(θT+1) +

T∑

t=1

ψ(θt)

[
1

α(t− 1)
− 1

α(t)

]

−
T∑

t=1

η(t)Dψ(θ
t+1, θt) +

T∑

t=1

〈
e(t), θt+1 − θ∗

〉

≤ 1

α(T + 1)
ψ(θ∗) +

T∑

t=1

ψ(θt)

[
1

α(t− 1)
− 1

α(t)

]
−

T∑

t=1

η(t)Dψ(θ
t+1, θt)

+
T∑

t=1

〈
e(t), θt+1 − θ∗

〉
(6.21)

since ψ(θ) ≥ 0 and θT+1 minimizes
〈
µT+1, θ

〉
+ 1

α(T+1)
ψ(θ). What remains is to control the

summed e(t) terms in the bound (6.21). We can do this simply using the second part of
Lemma 6.1. Indeed, we have

T∑

t=1

〈
e(t), θt+1 − θ∗

〉
(6.22)

=

T∑

t=1

〈
∇f(θt)−∇f(θ(t−τ)), θt+1 − θ∗

〉
+

T∑

t=1

〈
∇f(θ(t−τ))− g(t− τ), θt+1 − θ∗

〉
.

We can apply Lemma 6.1 to the first term in (6.22) by bounding ‖θt − θt+1‖ with Lemma D.3.
Since η(t) ∝

√
t, Lemma D.3 implies E[‖θt − θt+1‖2] ≤ 4G2

η(t)2
. As a consequence,

E

[ T∑

t=1

〈
∇f(θt)−∇f(θ(t−τ)), θt+1 − θ∗

〉 ]
≤ 4τGR + 2L(τ + 1)2G2

T∑

t=τ+1

1

η(t− τ)2
.

What remains is to bound the stochastic (second) term in (6.22). This is straightforward:

〈
∇f(θ(t−τ))− g(t− τ), θt+1 − θ∗

〉

=
〈
∇f(θ(t−τ))− g(t− τ), θt − θ∗

〉
+
〈
∇f(θ(t−τ))− g(t− τ), θt+1 − θt

〉

≤
〈
∇f(θ(t−τ))− g(t− τ), θt − θ∗

〉
+

1

2η(t)
‖∇f(θ(t−τ))− g(t− τ)‖2∗ +

η(t)

2

∥∥θt+1 − θt
∥∥2
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by the Fenchel-Young inequality applied to the conjugate pair 1
2
‖ ·‖2∗ and 1

2
‖·‖2. In addition,

∇f(θ(t−τ))− g(t− τ) is independent of θt given the sigma-field containing g(1), . . . , g(t− τ − 1),
since θt is a function of gradients to time t − τ − 1, so the first term has zero expectation.
Also recall that E[‖∇f(θ(t−τ)) − g(t − τ)‖∗]2 is bounded by σ2 by assumption. Combining
the above two bounds into (6.22), we see that

T∑

t=1

E[
〈
e(t), θt+1 − θ∗

〉
]

≤ σ2

2

T∑

t=1

1

η(t)
+

1

2

T∑

t=1

η(t)
∥∥θt+1 − θt

∥∥2 + 2LG2(τ + 1)2
T∑

t=τ+1

1

η(t− τ)2
+ 4τGR. (6.23)

Since Dψ(θ
t+1, θt) ≥ 1

2
‖θt − θt+1‖2, combining (6.23) with (6.21) and noting the two facts

that 1
α(t−1)

− 1
α(t)

≤ 0 and
∑T

t=τ+1 η(t− τ)−2 ≤
∑T

t=1 η(t)
−2 gives

T∑

t=1

Ef(θt+1)− f(θ∗) ≤ 1

α(T + 1)
ψ(θ∗) +

σ2

2

T∑

t=1

1

η(t)
+ 2LG2(τ + 1)2

T∑

t=1

1

η(t)2
+ 4τGR.

6.6.2 Proof of Theorem 6.2

The proof of Theorem 6.2 is similar to that of Theorem 6.1, so we will be somewhat terse.
We define the error e(t) = ∇f(θt)− g(t− τ), identically as in the earlier proof, and begin as
we did in the proof of Theorem 6.1. Recall that for t ≥ τ ,

f(θt+1)− f(θ∗) ≤
〈
g(t− τ), θt+1 − θ∗

〉
+
〈
e(t), θt+1 − θ∗

〉
+
L

2

∥∥θt − θt+1
∥∥2 . (6.24)

Applying the first-order optimality condition to the definition of θt+1 (6.4), we get
〈
α(t)g(t− τ) +∇ψ(θt+1)−∇ψ(θt), θ − θt+1

〉
≥ 0

for all θ ∈ Ω. In particular, we have

α(t)
〈
g(t− τ), θt+1 − θ∗

〉
≤
〈
∇ψ(θt+1)−∇ψ(θt), θ∗ − θt+1

〉

= Dψ(θ
∗, θt)−Dψ(θ

∗, θt+1)−Dψ(θ
t+1, θt).

Applying the above to the inequality (6.24), we see

f(θt+1)− f(θ∗) ≤ 1

α(t)

[
Dψ(θ

∗, θt)−Dψ(θ
∗, θt+1)−Dψ(θ

t+1, θt)
]

+
〈
e(t), θt+1 − θ∗

〉
+
L

2

∥∥θt − θt+1
∥∥2

≤ 1

α(t)

[
Dψ(θ

∗, θt)−Dψ(θ
∗, θt+1)

]
+
〈
e(t), θt+1 − θ∗

〉
− η(t)Dψ(θ

t+1, θt) (6.25)
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where for the last inequality, we use the fact that Dψ(θ
t+1, θt) ≥ 1

2
‖θt − θt+1‖2, by the strong

convexity of ψ, and that α(t)−1 = L+ η(t). By summing the inequality (6.25), we have

T∑

t=1

f(θt+1)− f(θ∗) ≤ 1

α(1)
Dψ(θ

∗, θ1) +

T∑

t=2

Dψ(θ
∗, θt)

[
1

α(t)
− 1

α(t− 1)

]

−
T∑

t=1

η(t)Dψ(θ
t+1, θt) +

T∑

t=1

〈
e(t), θt+1 − θ∗

〉
. (6.26)

Comparing the bound (6.26) with the earlier bound for the dual averaging algorithms (6.21),
we see that the only essential difference is the α(t)−1 − α(t− 1)−1 terms. The compactness
assumption guarantees that Dψ(θ

∗, θt) ≤ R2, however, so

1

α(1)
Dψ(θ

∗, θ1)+

T∑

t=2

Dψ(θ
∗, θt)

[
1

α(t)
− 1

α(t− 1)

]
≤ R2

α(1)
+

T∑

t=2

R2

[
1

α(t)
− 1

α(t− 1)

]
=

R2

α(T )
.

The remainder of the proof uses Lemmas D.3 and 6.1 completely identically to the proof of
Theorem 6.1.

6.6.3 Proof of Corollary 6.1

We prove this result only for the mirror descent algorithm (6.9), as the proof for the dual-
averaging algorithm (6.8) is similar. We define the error at time t to be e(t) = ∇f(θt)− g(t− τ(t)),
and observe that we only need to control the second term involving e(t) in the bound (6.25)
differently. Expanding the error terms above and using Fenchel’s inequality as in the proofs
of Theorems 6.1 and 6.2, we have

〈
e(t), θt+1 − θ∗

〉

≤
〈
∇f(θt)−∇f(θ(t−τ(t))), θt+1 − θ∗

〉
+
〈
∇f(θ(t−τ(t)))− g(t− τ(t)), θt − θ∗

〉

+
1

2η(t)
‖∇f(θ(t−τ(t)))− g(t− τ(t))‖2∗ +

η(t)

2

∥∥θt+1 − θt
∥∥2 ,

Now we note that conditioned on the delay τ(t), we have

E[
∥∥θ(t−τ(t)) − θt+1

∥∥2 | τ(t)] ≤ G2(τ(t) + 1)2α(t− τ(t))2.

Consequently we apply Lemma 6.1 (specifically, following the bounds (6.18) and (6.19)) and
find

T∑

t=1

〈
∇f(θt)−∇f(θ(t−τ(t))), θt+1 − θ∗

〉

≤
T∑

t=1

[
Df(θ

∗, θt)−Df(θ
∗, θ(t−τ(t)))

]
+G2

T∑

t=1

(τ(t) + 1)2α(t− τ(t))2.
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The sum of Df terms telescopes, leaving only terms not received by the gradient procedure
within T iterations, and we can use α(t) ≤ 1

η
√
T
for all t to derive the further bound

∑

t:t+τ(t)>T

Df(θ
∗, θt) +

G2

η2T

T∑

t=1

(τ(t) + 1)2. (6.27)

To control the quantity (6.27), all we need is to bound the expected cardinality of the
set {t ∈ [T ] : t+ τ(t) > T}. Using Chebyshev’s inequality and standard expectation bounds,
we have

E [card({t ∈ [T ] : t+ τ(t) > T})] =
T∑

t=1

P(t + τ(t) > T ) ≤ 1 +
T−1∑

t=1

E[τ(t)2]

(T − t)2
≤ 1 + 2B2,

where the last inequality comes from our assumption that E[τ(t)2] ≤ B2. As in Lemma 6.1,
we have Df(θ

∗, θt) ≤ 2GR, which yields

E

[ T∑

t=1

〈
∇f(θt)−∇f(θ(t−τ(t))), θt+1 − θ∗

〉 ]
≤ 6GRB2 +

G2(B + 1)2

η2

We can control the remaining terms as in the proofs of Theorems 6.1 and 6.2.

6.7 Proof of Theorem 6.3

The proof of Theorem 6.3 is not too difficult given our previous work—all we need to do is
redefine the error e(t) and use η(t) to control the variance terms that arise. To that end, we
define the gradient error terms that we must control. In this proof, we set

e(t) := ∇f(θt)−
n∑

i=1

λigi(t− τ(i)) (6.28)

where gi(t) = ∇f(θt; zi(t)) is the gradient of node i computed at the parameter θt and τ(i)
is the delay associated with node i.

Using Assumption B as in the proofs of previous theorems, then applying Lemma D.1,
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we have

f(θt+1)− f(θ∗) ≤
〈
∇f(θt), θt+1 − θ∗

〉
+
L

2

∥∥θt − θt+1
∥∥2

=

〈
n∑

i=1

λigi(t− τ(i)), θt+1 − θ∗

〉
+
〈
e(t), θt+1 − θ∗

〉
+
L

2

∥∥θt − θt+1
∥∥2

=
〈
µt+1, θt+1 − θ∗

〉
−
〈
µt, θt+1 − θ∗

〉
+
〈
e(t), θt+1 − θ∗

〉
+
L

2

∥∥θt − θt+1
∥∥2

≤
〈
µt+1, θt+1 − θ∗

〉
−
〈
µt, θt − θ∗

〉
+

1

α(t)
ψ(θt+1)− 1

α(t)
ψ(θt)

− 1

α(t)
Dψ(θ

t+1, θt) +
〈
e(t), θt+1 − θ∗

〉
+
L

2

∥∥θt − θt+1
∥∥2 .

We telescope as in the proofs of Theorems 6.1 and 6.2, canceling L
2
‖θt − θt+1‖2 with the

LDψ divergence terms to see that

T∑

t=1

f(θt+1)− f(θ∗)

≤
〈
µT+1, θT+1 − θ∗

〉
+

1

α(T )
ψ(θT )−

T∑

t=1

η(t)Dψ(θ
t+1, θt) +

T∑

t=1

〈
e(t), θt+1 − θ∗

〉

≤ 1

α(T + 1)
ψ(θ∗)−

T∑

t=1

η(t)Dψ(θ
t+1, θt) +

T∑

t=1

〈
e(t), θt+1 − θ∗

〉
. (6.29)

This is exactly as in the non-probabilistic bound (6.21) from the proof of Theorem 6.1, but
the definition (6.28) of the error e(t) here is different.

What remains is to control the error term in (6.29). Writing the terms out, we have

T∑

t=1

〈
e(t), θt+1 − θ∗

〉
=

T∑

t=1

〈
∇f(θt)−

n∑

i=1

λi∇f(θ(t−τ(i))), θt+1 − θ∗

〉

+
T∑

t=1

〈
n∑

i=1

λi
[
∇f(θ(t−τ(i)))− gi(t− τ(i))

]
, θt+1 − θ∗

〉
(6.30)

Bounding the first term above is simple via Lemma 6.1: as in the proof of Theorem 6.1, we
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have

E

[ T∑

t=1

〈
∇f(θt)−

n∑

i=1

λi∇f(θ(t−τ(i))), θt+1 − θ∗

〉]

=

n∑

i=1

λi

T∑

t=1

E[
〈
∇f(θt)−∇f(θ(t−τ(i))), θt+1 − θ∗

〉
]

≤ 2
n∑

i=1

λiLG
2(τ(i) + 1)2

T∑

t=1

1

η(t)2
+ 4

n∑

i=1

λiτ(i)GR.

We use the same technique as the proof of Theorem 6.1 to bound the second term from
(6.30). Indeed, the Fenchel-Young inequality gives

〈
n∑

i=1

λi
[
∇f(θ(t−τ(i)))− gi(t− τ(i))

]
, θt+1 − θ∗

〉

=

〈
n∑

i=1

λi
[
∇f(θ(t−τ(i)))− gi(t− τ(i))

]
, θt − θ∗

〉

+

〈
n∑

i=1

λi
[
∇f(θ(t−τ(i)))− gi(t− τ(i))

]
, θt+1 − θt

〉

≤
〈

n∑

i=1

λi
[
∇f(θ(t−τ(i)))− gi(t− τ(i))

]
, θt − θ∗

〉

+
1

2η(t)

∥∥∥∥
n∑

i=1

λi
[
∇f(θ(t−τ(i)))− gi(t− τ(i))

]∥∥∥∥
2

∗
+
η(t)

2

∥∥θt+1 − θt
∥∥2 .

By assumption, given the information at worker i at time t−τ(i), gi(t−τ(i))) is independent
of θt, so the first term has zero expectation. More formally, this happens because θt is a
function of gradients gi(1), . . . , gi(t − τ(i) − 1) from each of the nodes i and hence the
expectation of the first term conditioned on {gi(1), . . . , gi(t − τ(i) − 1)}ni=1 is 0. The last
term is canceled by the Bregman divergence terms in (6.29), so combining the bound (6.30)
with the above two paragraphs yields

T∑

t=1

Ef(θt+1)− f(θ∗) ≤ 1

α(T + 1)
ψ(θ∗) + 2

n∑

i=1

λiLG
2(τ(i) + 1)2

T∑

t=1

1

η(t)2
+ 4

n∑

i=1

λiτ(i)GR

+

T∑

t=1

1

2η(t)
E

∥∥∥∥
n∑

i=1

λi
[
∇f(θ(t−τ(i)))− gi(t− τ(i))

] ∥∥∥∥
2

∗
.
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6.8 Conclusion and Discussion

In this chapter, we have studied dual averaging and mirror descent algorithms for smooth
and non-smooth stochastic optimization in delayed settings, showing applications of our re-
sults to distributed optimization. We showed that for smooth problems, we can preserve the
performance benefits of parallelization over centralized stochastic optimization even when
we relax synchronization requirements. Specifically, we presented methods that take advan-
tage of distributed computational resources and are robust to node failures, communication
latency, and node slowdowns. In addition, by distributing computation for stochastic opti-
mization problems, we were able to exploit asynchronous processing without incurring any
asymptotic penalty due to the delays incurred. In addition, though we omit these results for
brevity, it is possible to extend all of our expected convergence results to guarantees with
high-probability.

We believe several interesting questions remain open after this work. Certainly network
topologies other than those we considered are possible, and it would be interesting to compare
the effects that topology has on convergence rate of similar distributed procedures. Analyzing
the robustness and fail-over capacity of distributed optimization protocols could be quite
interesting, as would a careful study of the effect of communication latency. We hope to
address these questions in future work.
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Chapter 7

Conclusions and future directions

The aim of this section is to reiterate the main themes and contributions of this thesis,
and to layout a rough road map of some of the things that could likely follow directly, and
not so directly, as future developments on the results presented here. We start with the
easy part of summarizing the main ideas in the next section. Section 7.2 outlines some of
the themes that are the natural extensions of the ideas in this thesis. Section 7.3 takes a
slightly longer-term view of this research agenda, identifying other areas and directions that
are relevant to the work presented here, but not necessarily direct consequences.

7.1 Summary and key contributions

With all the technical content and results in place, we are now in a position to revisit the
key motivation underlining the bulk of work in this thesis, and understand how the different
chapters address different aspects of the quest. As summarized pictorially in Figure 1.1,
the aim of this thesis is to understand the interplay between statistical error, and the com-
putational resources available. More concretely, we seek to understand how the statistical
error changes, as we vary the number of data samples, and the amount of computation at
a learner’s disposal. Below, we will discuss how each chapter in this thesis relates to and
advances our understanding of this question. Throughout, the notion of computation we will
be using will be within the framework of convex optimization which really forms the core of
this thesis.

Chapter 3 is a direct attempt at perhaps the most fundamental way of posing this ques-
tion. It asks what is the minimum achievable statistical error given a certain computational
constraint? Within the black box model of complexity for stochastic convex optimization,
we present lower bounds that answer this question for various problem classes. The notion
of computation here really equates samples and computation. Given a desired statistical
accuracy target ε, we keep drawing samples from the underlying distribution, making a
stochastic gradient-style update with every sample till we run out of computation. The re-
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sults in Chapter 3 provide lower bounds on the smallest T that is needed by any stochastic
optimization algorithm to achieve this error ε, for many different problem classes. In doing
so, we also shed light on the various properties of a problem that influence its computational
complexity, and the corresponding optimal methods. We also provide a general recipe for
obtaining such results for other problems.

Chapter 4 considers the natural algorithmic counterpart of the question. Given a com-
putational constraint, how can we design algorithms with good statistical performance that
obey the computational constraint. For the problem of model selection, the main results
in Chapter 4 provide direct bounds on the statistical quality of the obtained solution as a
function of the computational budget. A striking feature of the results is their efficiency in
competing with an omniscient oracle, incurring at most an additional logarithmic penalty in
many typical applications. The results of both this chapter and the previous one really aim
to understand statistical error solely as a function of the computational budget, taking the
large data assumption really to an extreme and considering access to an essentially infinite
sample pool.

In Chapter 5, we tip the balance against computation even more severely, considering
high-dimensional settings where the number of samples is large and the number of parameters
is substantially larger. While a general statistical problem with these characteristics is
hopeless, of interest are well-behaved problems with structural assumptions on the data
generating process. For such problems, the number of samples n and the computational
time T combine beautifully to reveal striking interactions between the computational and
statistical complexities. Specifically, for the gradient methods examined in this chapter, the
sample size n determines the conditioning of the problem, and hence the rate of convergence.
The computational time T constrains the number of iterations that the method can perform,
and together the two define the statistical quality of the solution we compute. The results
also reveal that while the problems might be hard to solve to a numerical precision, we
can indeed rapidly solve them to a coarser accuracy related to the statistical precision of
the underlying data generating model. Such a delicate interaction between the optimization
error and statistical precision was previously unknown to the best of our knowledge.

Chapter 6 considers the natural framework of distributed computation for these large,
high-dimensional problems. Given a distributed network of k computers, we have the ability
to perform k times as many computations per unit time than a single computer. In Chapter 6,
we ask how this computational gain translates into faster machine learning algorithms. The
main question to ask is whether the gain of parallel computation is offset by the loss due
to decentralization of data, or can we indeed obtain faster algorithms in this framework.
The results in Chapter 6 yield a partial answer to the question. They develop partially
asynchronous stochastic gradient algorithms, that enjoy linear speedups with the size of the
network at least asymptotically. That is, the amount of time to reach a certain statistical
error improves to T/k for a k-node network when T is large enough. However, the results also
show that the gains might be offset, or even reversed when the communication cost starts to
dominate computation. Nevertheless, the results provide an important step in extending our
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understanding of computational issues from a centralized setting to distributed networks.
Overall, we see that the various chapters examine different intuitive aspects of an ex-

tremely challenging problem. This pursuit has led to the development of techniques and
frameworks which are of interest in their own right. The results also naturally lead to fur-
ther questions which we hope will provide a fertile source of problems in the future years.
The next section examines these direct implications for future work in more depth.

7.2 Important open questions and immediate future

directions

One of the important contributions of this thesis has been crystallizing some concrete ques-
tions that explain different aspects of statistical estimation in computationally constrained
settings. While we present interesting results towards answering these different questions, a
lot remains to be done before we can claim a complete understanding of any of them.

7.2.1 Better oracle models for time and space complexity

Towards understanding the fundamental computational complexity of statistical estimation,
Section 3 takes an approach with deep roots in information theory [52], convex optimiza-
tion [119] and information-based complexity [157]. The framework captures certain aspects
of the complexity of stochastic first-order optimization methods, namely that of gradient
computation. Looking at many commonly used stochastic first-order optimization algo-
rithms, the two primary sources of computational complexity are gradient computation and
a projection step, the latter also often referred to as computing a prox-mapping. Jointly
capturing the cost of gradient computation and projection operations would bring the oracle
model of complexity significantly closer to the real computational cost. In some problems,
this projection step can be just a simple rescaling or recentering when the projection is
on to a simple set such as a norm-ball. However, in many instances the feasible sets are
significantly more complex such as a polytope defined by a large number of constraints as
in graphical model inference [171], or the cone of positive semidefinite matrices in kernel
and metric learning [161]. A natural complexity model for computing the prox-mapping is
to assume oracle access to projections onto some simple sets such as linear constraints and
norm balls, and formulate the complexity of projections onto more complex sets in terms of
the number of oracle calls.

Another interesting line for future work in the setup of Chapter 3 is to impose constraints
on both the time and space complexities of optimization methods. This is important, because
in terms of oracle information, first-order and Quasi-Newton methods are often identical.
However the memory footprint of the Quasi-Newton algorithms is often much larger since
they typically store and manipulate some kind of Hessian matrix approximation. A natural
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framework for understanding these issues is that of Communication complexity [92], which
has been successfully applied for space lower bounds on streaming algorithms.

7.2.2 Computational budget beyond model selection

Chapter 4 introduces a computationally budgeted framework and resulting algorithms for
the model selection problem. There are some natural open questions that would be direct
extensions to the work, which we discuss in Section 4.5. However the general principle
of using computation, rather than data samples, as the unit of allocation to a learning
algorithm has appeal and applications beyond just the model selection problem. While
model selection is a natural and very broadly used problem, understanding such issues in
other common problems such as regression and classification within a fixed model would
also be of significant interest. A natural way to formalize this would be close to the online
learning framework, but more computation-centric. We consider an algorithm that receives
quanta of computation incrementally. The learning algorithm has access to a finite data
sample, and it uses the fresh computation to update its model based on the data. Perhaps
the most interesting question in this direction is to formalize what it means to receive a
quantum of computation. One natural candidate is to define a base set of operations that
can be performed in unit time, and a more information-theoretic approach would be allow
the computation of estimators with a bounded mutual information with the data. While a
typical online learning algorithm would just pick one of more samples and repeat the same
form of computation iteratively, we hope that the computational viewpoint will allow for
more general algorithms.

7.2.3 Improved computational complexity under structural assump-
tions

Chapter 5 shows that significantly improved computational complexities are often possible by
carefully considering the underlying statistical structure of the problem. This is of course now
completely surprising, or hitherto unforeseen; the analysis of the perceptron algorithm[142]
for solving the NP-hard problem of minimizing 0-1 loss under a margin assumption being
perhaps the most classical example. Two natural questions in the setup of Chapter 5 are
what other algorithms and what other problem structures enjoy similar performance gains.
In answering the first question, we have recently succeeded in showing that stochastic opti-
mization algorithms also enjoy fast convergence within the setup of Chapter 5, which results
in near-linear time algorithms for many problems of interest. The second question of other
problem structures remains quite open and challenging. There are some cases such as matrix
decompositions [49, 8] where more general structures can be built on top of existing ones and
our theory can then be applied. Beyond such cases, manifold-based assumptions have seen
a large amount of work on the statistical side although the understanding is still relatively
poor. On the computational side, little is known about the implications of these assumptions
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beyond nearest-neighbor search [53] and other similar geometric algorithms. Other recent
work has explored different tractable restrictions of these assumptions statistically [50], and
extending our computational results to these frameworks would be of significant interest.

7.2.4 Communication efficient distributed algorithms with prov-

able speedups

Chapter 6 explores the landscape of distributed algorithms for machine learning. While
parallel and distributed computation has a rich tradition in the disciplines of scientific com-
putation such as convex optimization and numerical linear algebra, the application of these
to develop better machine learning algorithms is relatively recent. The theory developed in
Chapter 6 points out how we can obtain substantially improved complexity for distributed
algorithms by taking the statistical nature of machine learning problems into account. How-
ever, our current understanding of these issues can still be called only preliminary at best.
The algorithms of Chapter 6, while being robust to asynchrony and delays to a certain
degree, still require relatively cheap and frequent communication both theoretically and em-
pirically. These assumptions can often be unrealistic in a distributed network, and a study
of better algorithms that achieve a more careful balance of their computational and com-
munication needs remains quite important in this area. A key drawback of mini-batch style
algorithms explored in Chapter 6 is that the algorithm goes over a large set of examples
before the parameter is updated. Online and stochastic optimization algorithms enjoy rapid
initial convergence due to the frequent updates they make on the parameters. A natural
question to ask is what happens if the nodes continue to update their parameter locally as
they compute the stochastic gradients, rather than only updating them after finishing gra-
dient computation on a mini-batch. Another option is a more thorough analysis of hybrid
optimization schemes such as those considered in the recent manuscript [7]. It would be also
of interest to extend the lower bound techniques of Chapter 3 to distributed optimization
scenarios, for an understanding of fundamental limitations in these setups.

7.3 Other suggestions for future work

This thesis completely focuses on the computational framework of convex optimization for
understanding trade-offs between statistical and computational complexities. This is quite
natural since many machine learning problems are quite naturally cast as convex optimiza-
tion, and it remains one of the most scalable computational paradigms in machine learning.
However, a natural direction for future research to push our frontiers beyond this setting.

A large body of research in combinatorial optimization [144] focuses on convex relaxations
of non-convex problems, and there have been successful applications in graphical model
inference [171] as well as vector and matrix compressed sensing problems [51, 42, 44], and
the classical perceptron algorithm [142, 125] to name a few examples. However, while the
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non-convex formulations are often quite natural and abundant, successes in this area are
still only numbered. For instance even considering the well-understood problem of binary
classification, while the hinge-loss and logistic loss relaxations are typically effective, they can
be more susceptible to outliers and missing features than their non-convex capped versions.
A better understanding of structural conditions on the problem and the data that allow for
efficient solutions of such non-convex problems should be an important consideration in the
years to come.

Another important computational paradigm that is of use primarily with Bayesian meth-
ods is that of sampling. The chasm between theory and practice here is much wider than
convex optimization. While there have been impressive breakthroughs in understanding
the mixing rates of MCMC algorithms, the sampling methods that are most widely used
in machine learning have little known theoretically on their mixing properties. Convex op-
timization provides some interesting possibilities here. There are many known connections
that go from sampling methods leading to optimization algorithms [85, 29]. This leads to the
natural question if convex optimization algorithms also lead to efficient sampling methods.
A natural direction here is the following. Suppose there is a simple distribution that we can
efficiently and provably sample from. Can we define a convex optimization problem, which
takes a random vector from this simple distribution and whose optimal solution is distributed
according to our desired distribution of interest?. More importantly, does an approximate
optimum also have a distribution close to the desired one? An understanding of such is-
sues would naturally lead to provably efficient sampling algorithms by building on the rich
literature of convex optimization. Furthermore, by extending the literature on distributed
optimization, such a development would also naturally lead to distributed algorithms for
sampling.

On a more statistical side, the thesis assumed throughout that we have access to large
amounts of data with no data samples having missing or noisy attributes. In practice, these
large datasets are often acquired using automated techniques which combine multiple sources
of information. In such settings, not all features are observed for all the examples and even
when they are, their values often have varying degrees of reliability. More critically, while it is
easy to acquire the covariate vector, the labels in a classification or a regression problem often
require manual supervision. In such scenarios, we have access to a massive pool of unlabeled
data, but the set of labeled examples is often restricted and involves monetary costs. This
naturally shifts the focus to active learning and semi-supervised learning algorithms, since we
want to spend our resources on acquiring the minimum number of labels with the maximum
statistical impact. Our understanding of these problems has certainly improved significantly
over the last decade or so, but it is nowhere as complete as supervised learning settings.
Handling of missing and noisy attributes is understood to an even lesser degree, and many
of the classical imputation methods [102] come with little in the way of theoretical guarantees
both statistically and computationally. Developing computationally and statistically efficient
techniques for these more general scenarios would be an important challenge in pushing the
frontiers of our understanding.
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Appendix A

Technical proofs for Chapter 3

A.1 Proof of Lemma 3.5

Let gα and gβ be an arbitrary pair of functions in our class, and recall that the con-
straint set Ω is given by the ball B∞(r). From the definition (3.18) of the discrepancy
ρ, we need to compute the single function infimum infθ∈B∞(r) gα(θ), as well as the quantity
infθ∈B∞(r){gα(θ) + gβ(θ)}.

Evaluating the single function infimum: Beginning with the former quantity, first
observe that for any θ ∈ B∞(r), we have

|θ(i) + r| = θ(i) + r and |θ(i)− r| = r − θ(i). (A.1)

Consequently, using the definition (3.30) of the base functions, some algebra yields the
relations

f+
i (θ) =

1− ϕ

4
θ(i)2 +

1 + 3ϕ

4
r2 +

(1 + ϕ)

2
rθ(i), and

f−
i (θ) =

1− ϕ

4
θ(i)2 +

1 + 3ϕ

4
r2 − (1 + ϕ)

2
rθ(i).

Using these expressions for f+
i and f−

i , we obtain

(
1

2
+ αiδ

)
f+
i (θ) +

(
1

2
− αiδ

)
f−
i (θ)

︸ ︷︷ ︸
hi(θ)

=
1

2

(
f+
i (θ) + f−

i (θ)
)
+ αiδ

(
f+
i (θ)− f−

i (θ)
)

=
1− ϕ

4
θ(i)2 +

1 + 3ϕ

4
r2 + (1 + ϕ)αiδrθ(i).
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A little calculation shows that constrained minimum of the univariate function hi over the
interval [−r, r] is achieved at

θ∗(i) :=

{
−2αiδr(1+ϕ)

1−ϕ if 1−ϕ
1+ϕ

≥ 2δ

−αir if 1−ϕ
1+ϕ

< 2δ,

where we have recalled that αi takes values in {−1,+1}. Substituting the minimizing argu-
ment θ∗(i), we find that the minimum value is given by

hi(θ
∗(i)) =

{
1+3ϕ

4
r2 − δ2r2(1+ϕ)2

(1−ϕ) if 1−ϕ
1+ϕ

≥ 2δ
1+ϕ
2
r2 − (1 + ϕ)δr2 if 1−ϕ

1+ϕ
< 2δ.

Summing over all co-ordinates i ∈ {1, 2, . . . , d}, we obtain

inf
θ∈B∞(r)

gα(θ) =
c

d

d∑

i=1

hi(θ
∗(i)) =

{
− δ2r2c(1+ϕ)2

(1−ϕ) + cr2(1+3ϕ)
4

if 1−ϕ
1+ϕ

≥ 2δ
1+ϕ
2
cr2 − (1 + ϕ)cδr2 if 1−ϕ

1+ϕ
< 2δ.

(A.2)

Evaluating the joint infimum: Here we begin by observing that for any two α, β ∈ V,
we have

gα(θ) + gβ(θ) =
c

d

d∑

i=1

[
1− ϕ

2
θ(i)2 +

1 + 3ϕ

2
r2 + 2(1 + ϕ)αiδrθ(i)I(αi = βi)

]
. (A.3)

As in our previous calculation, the only coordinates that contribute to ρ(gα, gβ) are the ones
where αi 6= βi, and for such coordinates, the function above is minimized at θ∗(i) = 0.
Furthermore, the minimum value for any such coordinate is (1 + 3ϕ)cr2/(2d).

We split the remainder of our analysis into two cases: first, if we suppose that 1−ϕ
1+ϕ

≥ 2δ,

or equivalently that 1− ϕ ≥ 4δ/(1 + 2δ), then equation (A.3) yields that

inf
θ∈B∞(r)

{
gα(θ) + gβ(θ)} =

c

d

d∑

i=1

[
1 + 3ϕ

2
r2 − 2δ2r2(1 + ϕ)2

1− ϕ
I(αi = βi)

]
.

Combined with our earlier expression (A.2) for the single function infimum, we obtain that
the discrepancy is given by

ρ(gα, gβ) =
2δ2r2c(1 + ϕ)2

d(1− ϕ)
∆H(α, β) ≥

2δ2r2c

d(1− ϕ)
∆H(α, β).

On the other hand, if we assume that 1−ϕ
1+ϕ

< 2δ, or equivalently that 1−ϕ < 4δ/(1+2δ),
then we obtain

inf
θ∈B∞(r)

{
gα(θ) + gβ(θ)} =

c

d

d∑

i=1

[
1 + 3ϕ

2
r2 −

(
2(1 + ϕ)r2δ − 1− ϕ

2
r2
)
I(αi = βi)

]
,
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Combined with our earlier expression (A.2) for the single function infimum, we obtain

ρ(gα, gβ) =
c

d

(
2(1 + ϕ)r2δ − 1− ϕ

2
r2
)
∆H(α, β)

(i)

≥ c(1 + ϕ)r2δ

d
∆H(α, β),

where step (i) uses the bound 1− ϕ < 2δ(1 + ϕ). Noting that ϕ ≥ 0 completes the proof of
the lemma.

A.2 Proof of Lemma 3.6

Recall that the constraint set Ω in this lemma is the ball B∞(r). Thus, recalling the
definition (3.18) of the discrepancy ρ, we need to compute the single function infimum
infθ∈B∞(r) gα(θ), as well as the quantity infθ∈B∞(r){gα(θ) + gβ(θ)}.

Evaluating the single function infimum: Beginning with the former quantity, first
observe that for any θ ∈ B∞(r), we have

[
1

2
+ αiδ

]
|θ(i) + r|+

[
1

2
− αiδ

]
|θ(i)− r| = r + 2αiδθ(i). (A.4)

We now consider one of the individual terms arising in the definition (3.16) of the function
gα. Using the relation (A.4), it can be written as

1

d

[(
1

2
+ αiδ

)
f+
i (θ) +

(
1

2
− αiδ

)
f−
i (θ)

]
=

(
1

2
+ αiδ

)
|θ(i) + r|+

(
1

2
− αiδ

)
|θ(i)− r|+ δ|θ(i)|

=

{
r + (2αi + 1)δθ(i) if θ(i) ≥ 0

r + (2αi − 1)δθ(i) if θ(i) ≤ 0

From this representation, we see that whenever αi 6= 0, then the ith term in the summation
defining gα minimized at θ(i) = −rαi, at which point it takes on its minimum value r(1−δ).
On the other hand, for any term with αi = 0, the function is minimized at θ(i) = 0 with
associated minimum value of r. Combining these two facts shows that the vector −αr is an
element of the set argminθ∈Ω gα(θ), and moreover that

inf
θ∈Ω

gα(θ) = cr (d− sδ) . (A.5)

Evaluating the joint infimum: We now turn to the computation of infθ∈B∞(r){gα(θ) +
gβ(θ)}. From the relation (A.4) and the definitions of gα and gβ, some algebra yields

inf
θ∈Ω

{gα(θ) + gβ(θ)} = c inf
θ∈Ω

d∑

i=1

{2r + 2δ [(αi + βi)θ(i) + |θ(i)|]} . (A.6)



APPENDIX A. TECHNICAL PROOFS FOR CHAPTER 3 151

Let us consider the minimizer of the ith term in this summation. First, suppose that
αi 6= βi, in which case there are two possibilities.

• If αi 6= βi and neither αi nor βi is zero, then we must have αi + βi = 0, so that the
minimum value of 2r is achieved at θ(i) = 0.

• Otherwise, suppose that αi 6= 0 and βi = 0. In this case, we see from Equation (A.6)
that it is equivalent to minimizing αiθ(i) + |θ(i)|. Setting θ(i) = −αi achieves the
minimum value of 2r.

In the remaining two cases, we have αi = βi.

• If αi = βi 6= 0, then the component is minimized at θ(i) = −αir and the minimum
value along the component is 2r(1− δ).

• If αi = βi = 0, then the minimum value is 2r, achieved at θ(i) = 0.

Consequently, accumulating all of these individual cases into a single expression, we obtain

inf
θ∈Ω

{gα(θ) + gβ(θ)} = 2cr

(
d− δ

d∑

i=1

I[αi = βi 6= 0]

)
. (A.7)

Finally, combining equations (A.5) and (A.7) in the definition of ρ, we find that

ρ(gα, gβ) = 2cr

[
d− δ

d∑

i=1

I[αi = βi 6= 0]− (d− sδ)

]

= 2cδr

[
s−

d∑

i=1

I[αi = βi 6= 0]

]

= crδ∆H(α, β),

where the second equality follows since α and β have exactly s non-zero elements each.
Finally, since V is an s/2-packing set in Hamming distance, we have ∆H(α, β) ≥ s/2, which
completes the proof.

A.3 Upper bounds via mirror descent

This appendix is devoted to background on the family of mirror descent methods. We
specialize the known convergence results to specific cases of interest here and show that
different forms of mirror descent provide matching upper bounds for several of the lower
bounds established in Chapter 3, as discussed in the main text.
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A.3.1 Matching upper bounds

Now consider the form of mirror descent obtained by choosing the proximal function

ψa(θ) :=
1

(a− 1)
‖θ‖2a for 1 < a ≤ 2. (A.8)

Note that this proximal function is 1-strongly convex with respect to the `a-norm for 1 <
a ≤ 2, meaning that

1

(a− 1)
‖θ‖2a ≥

1

(a− 1)

∥∥∥θ̃
∥∥∥
2

a
+

(
∇ 1

(a− 1)
‖θ‖2a

)T
(θ − θ̃) +

1

2

∥∥∥θ − θ̃
∥∥∥
2

a
.

We also consider a somewhat modified application of mirror descent for consistency with
our lower bounds. Specifically, we consider mirror descent for T − 1 rounds and then set
θT = θ̄(T − 1), allowing us to have a convergence error bound on the final iterate θT .

Upper bounds for dual setting: Let us start from the case 1 ≤ p ≤ 2. In this case we use
stochastic gradient descent with , and the choice of p ensures that E ‖v̂(θ)‖22 ≤ E ‖v̂(θ)‖2p ≤ G2

(the second inequality is true by assumption of Theorem 3.1). Also a straightforward calcu-
lation shows that ‖θ∗‖2 ≤ ‖θ∗‖q d1/2−1/q so that we get the upper bound:

E
[
f(θT )− f(θ∗)

]
= O

(
Gd1/2−1/q

√
T

)
,

which matches the lower bound from Equation (3.11) for this case. For p ≥ 2, we use mirror
descent with a = q = p/(p− 1). In this case, E ‖v̂(θ)‖2p ≤ G2 and ‖θ∗‖q ≤ 1 for the convex
set Bq(1) and the function class Fcv(Bq(1), G, p). Hence in this case, the upper bound from
Equation 2.10 isO(G/

√
T ) as long as p = o(log d), which again matches our lower bound from

Equation 3.11. Finally, for p = Ω(log d), we use mirror descent with a = 2 log d/(2 log d−1),
which gives an upper bound of O(G

√
log d/T ) (since 1/(a− 1) = O(log d) in this regime).

Upper bounds for `∞ ball: For this case, we use mirror descent based on the proximal
function ψa with a = q. Under the condition ‖θ∗‖∞ ≤ 1, a condition which holds in our
lower bounds, we obtain

‖θ∗‖q ≤ ‖θ∗‖∞ d1/q = d1/q,

which implies that Φq(θ
∗) = O(d2/q). Under the conditions of Theorem 3.1, we have

E ‖v̂(θt)‖2p ≤ G2 where p = q/(q − 1) defines the dual norm. Note that the condition

1 < q ≤ 2 implies that p ≥ 2. Based on our setting of θT to be θ̄(T − 1), substituting this
in the upper bound (2.10) yields

E
[
f(θT )− f(θ∗)

]
= O

(
G
√
d2/q/T

)
= O

(
Gd1−1/p

√
1

T

)
,
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which matches the lower bound from Theorem 3.1(b) (we note that there is an additional
log factor here just like the preceding discussion when p = O(log d) which we ignore here).

For 1 ≤ p ≤ 2, we use stochastic gradient descent with q = 2, in which case ‖θ∗‖2 ≤
√
d

and E ‖v̂(θt)‖22 ≤ E ‖v̂(θt)‖2p ≤ G2 by assumption. Substituting these in the upper bound for
mirror descent yields an upper bound to match the lower bound of Theorem 3.1(a).

Upper bounds for Theorem 3.3: In order to recover matching upper bounds in this
case, we use the function ψa from Equation (A.8) with a = 2 log d

2 log d−1
. In this case, the resulting

upper bound (2.10) on the convergence rate takes the form

E
[
f(θT )− f(θ∗)

]
= O

(
G

√
‖θ∗‖2a

2(a− 1)T

)
= O

(
G

√
‖θ∗‖2a log d

T

)
, (A.9)

since 1
a−1

= 2 log d−1. Based on the conditions of Theorem 3.3, we are guaranteed that θ∗ is

s-sparse, with every component bounded by 1 in absolute value, so that ‖θ∗‖2a ≤ s2/a ≤ s2,
where the final inequality follows since a > 1. Substituting this upper bound back into
Equation (A.9) yields

E
[
f(θT )− f(θ∗)

]
= O

(
L

√
s2 log d

T

)
.

Note that whenever s = O(d1−δ) for some δ > 0, then we have log d = Θ(log d
s
), in which

case this upper bound matches the lower bound from Theorem 3.3 up to constant factors,
as claimed.
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Appendix B

Auxiliary results and proofs for
Chapter 4

B.1 Auxiliary results for Theorem 4.1 and Corollary 4.1

We start by establishing Lemma 4.1. To prove the lemma, we first need a simple claim.

Lemma B.1. Let c1 > c2 > 0, s > 0, and define

i∗1 = argmin
i=1,2,3,...

{
R∗
i + c1

(
γi

(
T

s

)
+ κ2

√
2(m+ log s)

ni(T/s)

)}
,

i∗2 = argmin
i=1,2,3,...

{
R∗
i + c2

(
γi

(
T

s

)
+ κ2

√
2(m+ log s)

ni(T/s)

)}
.

Then under the monotonicity assumptions B, we have i∗1 ≤ i∗2.

Proof. Recall the shorthand definition (4.8) of γi. Under the monotonicity assumptions B(a)–
(b), γi is monotone increasing in i. By the definitions of i∗1 and i∗2 we have

R∗
i1
+ c1γi∗1 (T, s) ≤ R∗

i2
+ c1γi∗2 (T, s) and R∗

i2
+ c2γi∗2 (T, s) ≤ R∗

i1
+ c2γi∗1 (T, s) .

Adding the two inequalities we obtain

(c1 − c2)γi∗1 (T, s) ≤ (c1 − c2)γi∗2 (T, s) .

Since c1 − c2 > 0 by assumption, the monotonicity of γi guarantees i
∗
1 ≤ i∗2.

We now proceed to establish Lemma 4.1.
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Proof of Lemma 4.1 Lemma B.1 allows us to establish a simpler version of Lemma 4.1.
Since 1 + λ > 1, it suffices to establish i0 ≤ K(λ), where

i0 = argmin
i=1,2,3,...

{
R∗
i + γi

(
T

s(λ)

)
+ κ2

√
2(m+ log s(λ))

ni(T/s(λ))

}
.

Let γi be shorthand for the quantity (4.8) as usual. Recalling the construction of S in
Algorithm 1, we observe that the class K(λ) satisfies

(1 + λ)s(λ)−2 γ1 (T, s(λ)) ≤ γK(λ) (T, s(λ)) ≤ (1 + λ)s(λ)−1 γ1 (T, s(λ)) .

The setting (4.10) of s(λ) ensures that

(1 + λ)s(λ)−2 ≥ (1 + λ)dlog(1+B/γ1(T,s(λ)))/ log(1+λ)e ≥ exp

(
log

(
1 +

B

γ1(T, s(λ))

))

so that

(1 + λ)s(λ)−2 γ1 (T, s(λ)) ≥ B + γ1 (T, s(λ)) ≥ R∗
1 + γ1 (T, s(λ)) ≥ inf

i
{R∗

i + γi (T, s(λ))} .

Hence we observe that

R∗
K(λ) + γK(λ) (T, s(λ)) ≥ γK(λ) (T, s(λ))

≥ (1 + λ)s(λ)−2 γ1 (T, s(λ))

≥ inf
i=1,2,3,...

{R∗
i + γi (T, s(λ))} .

We must thus have i0 ≤ K(λ), and Lemma B.1 further implies that i∗ ≤ K(λ).

We finally provide a proof for Proposition 4.1.
Proof of Proposition 4.1 Since for any a, b ≥ 0,

√
a +

√
b ≤

√
2(a + b), it suffices to

control the probability of the event

R(f) > min
i∈S

{
R∗
i + 2γi

(
T

s(λ)

)
+ κ2

√
log s(λ)

2ni(T/s(λ))
+ κ2

√
m

ni(T/s(λ))

}
. (B.1)

For the event (B.1) to occur, at least one of

R(f) > min
i∈S

{
R̂ni(T/s(λ))(f̂i) + γi

(
T

s(λ)

)
+
κ2
2

√
m

ni(T/s(λ))
+
κ2
2

√
log s(λ)

ni(T/s(λ))

}
(B.2a)
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or

min
i∈S

{
R̂ni(T/s(λ))(f̂i) + γi

(
T

s(λ)

)
+
κ2
2

√
log s(λ)

ni(T/s(λ))
+
κ2
2

√
m

ni(T/s(λ))

}

> min
i∈S

{
R∗
i + 2γi

(
T

s(λ)

)
+ κ2

√
log s(λ)

2ni(T/s(λ))
+ κ2

√
m

ni(T/s(λ))

}
(B.2b)

must occur. We bound the probabilities of the events (B.2a) and (B.2b) in turn.
If the event (B.2a) occurs, by definition of the selection strategy (4.11), it must be the

case that for some i ∈ S

R(f̂i) > R̂ni(T/s(λ))(f̂i) + γi

(
T

s(λ)

)
+
κ2
2

√
m

ni(T/s(λ))
+
κ2
2

√
log s(λ)

ni(T/s(λ))

since the choice f minimizes the right side of this display over the classes Fi for i ∈ S. By
a union bound, we see that

P

[
R(f) > min

i∈S

{
R̂ni(T/s(λ))(f̂i) + γi

(
T

s(λ)

)
+
κ2
2

√
m

ni(T/s(λ))
+
κ2
2

√
log s(λ)

ni(T/s(λ))

}]

≤ P

[
∃ i ∈ S s.t. R(f̂i) > R̂(f̂i) + γi

(
T

s(λ)

)
+
κ2
2

√
m

ni(T/s(λ))
+
κ2
2

√
log s(λ)

ni(T/s(λ))

]

≤ κ1
∑

i∈S
exp (−m− log s(λ)) = κ1 exp(−m),

where the final inequality follows from Assumption C.
Now we bound the probability of the event (B.2b), noting that the event implies that

max
i∈S

{
R̂ni(T/s(λ))(f̂i)− R∗

i − γi

(
T

s(λ)

)
− κ2

2

√
log s(λ)

ni(T/s(λ))
− κ2

2

√
m

ni(T/s(λ))

}
> 0.

We can thus apply a union bound to see that the probability of the event (B.2b) is bounded
by

P

[
max
i∈S

{
R̂ni(T/s(λ))(f̂i)− R∗

i − γi

(
T

s(λ)

)
− κ2

2

√
log s(λ)

ni(T/s(λ))
− κ2

2

√
m

ni(T/s(λ))

}
> 0

]

≤
∑

i∈S
P

[
R̂ni(T/s(λ))(f̂i)− R∗

i − γi

(
T

s(λ)

)
− κ2

2

√
log s(λ)

ni(T/s(λ))
− κ2

2

√
m

ni(T/s(λ))
> 0

]

≤
∑

i∈S
P

[
R̂(f ∗

i )− R∗
i >

κ2
2

√
log s(λ)

ni(T/s(λ))
+
κ2
2

√
m

ni(T/s(λ))

]
, (B.3)
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where the final inequality uses Assumption B(d), which states that A outputs a γi-minimizer
of the empirical risk. Now we can bound the deviations using the second part of Assump-
tion C, since f ∗

i is non-random: the quantity (B.3) is bounded by

∑

i∈S
κ1 exp

(
−ni(T/s(λ))

(
log s(λ)

ni(T/s(λ))
+

m

ni(T/s(λ))

))
≤ κ1 exp(−m).

Combining the two events (B.2a) and (B.2b) completes the proof of the proposition.

B.2 Auxiliary results for Theorem 4.2

Proof of Lemma 4.3 In the proof of the lemma, assume that both of the events (4.23)
hold. Recall that we define f̂j = A (j, nj), so that by the definition (4.22a) and Assumption B

that f̂j is a γj-accurate minimizer of the empirical risk, we have

R(f̂j) ≤ R(f ∗
j ) + 3γj(nj) + κ2εj (B.4)

for any j. By our assumption that the index j ≤ î, we have f̂j ∈ Fî, and since the

event (4.22b) holds for the class î (i.e. E î2(ε̂i) occurs), we further obtain that

R̂î(f̂j)− R̂î(f
∗
j ) ≤ 2

(
R(f̂j)− R(f ∗

j )
)
+ γî(nî) + κ2ε̂i. (B.5)

Applying our earlier bound on R(f̂j)− R(f ∗
j ) to the inequality (B.5), we see that

R̂î(f̂j)− R̂î(f
∗
j ) ≤ 6γj(nj) + 2κ2εj + γî(nî) + κ2ε̂i. (B.6)

Again using the fact that the event (4.22b) holds for the class î and choosing f = f ∗
j , we see

that
2
(
R(f ∗

j )− R(f ∗
î
)
)
≥
(
R̂î(f

∗
j )− R̂î(f

∗
î
)
)
− γî(nî)− κ2ε̂i.

Now apply the inequality (B.6) to lower bound R̂î(f
∗
j ) to see that

2
(
R(f ∗

j )−R(f ∗
î
)
)
≥ R̂î(f̂j)− R̂î(f

∗
î
)− 6γj(nj)− 2κ2εj − 2γî(nî)− 2κ2ε̂i.

Using the condition (4.24) that defines the selected index î, we obtain

2
(
R(f ∗

j )−R(f ∗
î
)
)
≥ R̂î(f̂̂i) + c1γî(nî) + c2κ2ε̂i − c1γj(nj)− R̂î(f

∗
î
)− 6γj(nj)− 2κ2εj − 2γî(nî)− 2κ2ε̂i

= R̂î(f̂̂i)− R̂î(f
∗
î
) + (c1 − 2)γî(nî)− (6 + c1)γj(nj)− 2κ2εj + (c2 − 2)κ2ε̂i
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Finally, we note that by the event (4.22a), since R(f ∗
j )−R(f) ≤ 0 for all f ∈ Fj, we have

R̂î(f
∗
î
) ≤ R̂î(f̂̂i) +

1

2
γî(nî) +

1

2
κ2ε̂i,

whence we obtain

2
(
R(f ∗

j )−R(f ∗
î
)
)
≥ (c1 − 5/2) γî(nî)− (6 + c1)γj(nj)− 2κ2εj + (c2 − 5/2)κ2ε̂i. (B.7)

Applying the inequality (B.4) for the class î, we have

R(f ∗
j )−R(f̂̂i) ≥ R(f ∗

j )− R(f ∗
î
)− 3γî(nî)− κ2ε̂i,

and combining this inequality with the earlier guarantee (B.7), we find that

2
(
R(f ∗

j )−R(f̂̂i)
)
≥ (c1 − 17/2)γî(nî)− (6 + c1)γj(nj)− 2κ2εj + (c2 − 7/2)κ2ε̂i

Rearranging terms, we obtain the statement of the lemma.

In order to prove the other Lemma 4.4, we need one more simple result. We start by
stating and proving a simple lemma, and the establish Lemma 4.4.

Lemma B.2. Let the events (4.22a) and (4.22b) hold for all i ∈ Sλ, that is, E1(ε) and E2(ε)
hold. For any classes i, j ∈ Sλ such that i ≥ j and

R̂i(f̂j) + c1γj

(
T

s(λ)

)
≤ R̂i(f̂i) + c1γi

(
T

s(λ)

)
+ c2κ2εi

we have
R(f̂j) ≤ R(f ∗

i ) + (2c1 + 3)γi(ni) + (2c2 + 1)κ2εi.

Proof. We begin by noting that since i ≥ j, we have f̂j ∈ Fi, and since the event (4.22a)
holds by assumption, we have

R(f̂j)−R(f ∗
i ) ≤ 2

(
R̂i(f̂j)− R̂i(f

∗
i )
)
+ γi(ni) + κ2εi.

Recalling the inequality assumed in the condition of the lemma, we see that

R(f̂j)−R(f ∗
i ) ≤ 2

(
R̂i(f̂i) + c1γi(ni) + c2κ2εi − c1γj(nj)− R̂i(f

∗
i )
)
+ γi(ni) + κ2εi.

Applying Assumption B(d) on the empirical minimizers, we have R̂i(f̂i)− R̂i(f
∗
i ) ≤ γi(ni),

so
R(f̂j)− R(f ∗

i ) ≤ 2 ((c1 + 1)γi(ni) + c2κ2εi − c1γj(nj)) + γi(ni) + κ2εi.

Ignoring the negative term −c1γj(nj) yields the lemma.
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Proof of Lemma 4.4 For j ∈ Sλ, define Sλ(j) to be the position of class j in the
coarse-grid set (that is, Sλ(1) = 1, the next class j ∈ Sλ has Sλ(j) = 2 and so on). We prove
the lemma by induction on the class j for j ≥ î, j ∈ Sλ. Our inductive hypothesis is that

R(f̂̂i) ≤ R(f ∗
j ) + (Sλ(j)− Sλ(̂i) + 1)

(
(2c1 + 3)γj

(
T

s(λ)

)
+ (2c1 + 1)κ2εj

)
. (B.8)

The base case for j = î is immediate since by assumption, the event (4.22a) holds, so we
obtain the inequality (B.4).

For the inductive step, we assume that the claim holds for all î ≤ k ≤ j − 1 such
that k ∈ Sλ and establish the claim for j. Since î is the largest class in Sλ satisfying the
condition (4.24) and j ≥ î, there must exist a class k < j in Sλ for which

R̂j(f̂k) + c1γk(nk) < R̂j(f̂j) + c1γj(nj) + c2κ2εj . (B.9)

By inspection, this is precisely the condition of Lemma B.2, so

R(f ∗
k ) ≤ R(f̂k) ≤ R(f ∗

j ) + (2c1 + 3)γj(nj) + (2c2 + 1)κ2εj .

Now there are two possibilities. If k ≤ î, Lemma 4.3 applies, and we recall the assumptions
on c1 and c2, which guarantee 2c1 + 3 ≥ 6 + c1 and 2c2 + 1 ≥ 2. If j ≥ î, then we can apply
our inductive hypothesis since k < j. In either case, we conclude that

R(f̂̂i) ≤ R(f ∗
k ) + (Sλ(k)− Sλ(̂i) + 1) [(2c1 + 3)γk(nk) + (2c2 + 1)κ2εk]

≤ R(f ∗
k ) + (Sλ(j)− 1− Sλ(̂i) + 1) [(2c1 + 3)γj(nj) + (2c2 + 1)κ2εj] ,

where the final inequality uses Sλ(k) ≤ Sλ(j) − 1 and the monotonicity assumptions B(a)-
(b). Applying the relationship (B.9) of the risk of f ∗

k to that of f ∗
j shows that the inductive

hypothesis (B.8) holds at j. Noting that s(λ) ≥ Sλ(j)− Sλ(̂i) + 1 completes the proof.

B.3 Proof of Lemma 4.5

Following [13], we show that the event in the lemma occurs with very low probability by
breaking it up into smaller events more amenable to analysis. Recall that we’re interested
in controlling the probability of the event

R(i, nisi)− κ2

√
log T

nisi
≤ R(i∗, ni∗si∗)− κ2

√
log T

ni∗si∗
(B.10)
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For this bad event to happen, at least one of the following three events must happen:

R̂nisi(A (i, nisi))− inf
f∈Fi

R(f) ≤ −γi(nisi)− κ2

√
logK

nisi
− κ2

√
log T

nisi
(B.11a)

R̂ni∗si∗ (A (i∗, ni∗si∗))− inf
f∈Fi∗

R(f) ≥ γi(ni∗si∗) + κ2

√
logK

ni∗si∗
+ κ2

√
log T

ni∗si∗
(B.11b)

R∗
i + γi(Tni) ≤ R∗ + γi∗(Tni∗) + 2

(
γi(nisi) + κ2

√
logK

nisi
+ κ2

√
log T

nisi

)
. (B.11c)

Temporarily use the shorthand fi = A (i, nisi) and fi∗ = A (i∗, ni∗si∗). The relationship
between Eqs. (B.11a)–(B.11c) and the event in (B.10) follows from the fact that if none of
(B.11a)–(B.11c) occur, then

R(i, nisi)− κ2

√
log T

nisi

= R̂nisi(fi) + γi(Tni)− γi(nisi)− κ2

√
logK

nisi
− κ2

√
log T

nisi

(B.11a)
> inf

f∈Fi

R(f) + γi(Tni)− 2

(
γi(nisi) + κ2

√
logK

nisi
+ κ2

√
log t

nisi

)

(B.11c)
> inf

f∈Fi∗

R(f) + γi∗(Tni∗) + 2

(
γi(nisi) + κ2

√
logK

nisi
+ κ2

√
log T

nisi

)

− 2

(
γi(nisi) + κ2

√
logK

nisi
+ κ2

√
log n

nisi

)

(B.11b)
> R̂ni∗si∗ (fi∗) + γi∗(Tni∗)− γi(ni∗si∗)− κ2

√
logK

ni∗si∗
− κ2

√
log t

ni∗si∗

= R(i∗, ni∗si∗)− κ2

√
log t

ni∗si∗
.

From the above string of inequalities, to show that the event (B.10) has low probability, we
need simply show that each of (B.11a), (B.11b), and (B.11c) have low probability.

To prove that each of the bad events have low probability, we note the following conse-
quences of Assumption C. Recall the definition of f ∗

i as the minimizer of R(f) over the class
Fi. Then by Assumption C(b),

R(f ∗
i )− γi(n)− κ2ε ≤ R(A (i, n))− γi(n)− κ2ε < R̂n(A (i, n)),

while Assumptions C(c) and C(e) imply

R̂n(A (i, n)) ≤ R̂n(f
∗
i ) + γi(n) ≤ R(f ∗

i ) + γi(n) + κ2ε,
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each with probability at least 1−κ1 exp(−4nε2). In particular, we see that the events (B.11a)
and (B.11b) have low probability:

P

[
R̂nisi(A (i, nisi))−R(f ∗

i ) ≤ −γi(nisi)− κ2

√
logK

nisi
− κ2

√
log T

nisi

]

≤ κ1 exp

(
−4nisi

(
logK

nisi
+

log t

nisi

))
=

κ1
(tK)4

P

[
R̂ni∗si∗ (A (i∗, ni∗si∗))− R∗ ≥ γi∗(ni∗si∗) + κ2

√
logK

ni∗si∗
+ κ2

√
log T

ni∗si∗

]

≤ κ1 exp

(
−4ni∗si∗

(
logK

ni∗si∗
+

log T

ni∗si∗

))
=

κ1
(tK)4

.

What remains is to show that for large enough τ , (B.11c) does not happen. Recalling
the definition that R∗ + γi∗(Tni∗) = R∗

i + γi(Tni) −∆i, we see that for (B.11c) to fail it is
sufficient that

∆i > 2γi(τni) + 2κ2

√
logK

niτ
+ 2κ2

√
log T

niτ
.

Let x ∧ y := min{x, y} and x ∨ y := max{x, y}. Since γi(n) ≤ cin
−αi , the above is satisfied

when

∆i

2
> ci(τni)

−(αi∧ 1
2
) + κ2

√
logK(τni)

−(αi∧ 1
2
) + κ2

√
log T (τni)

−(αi∧ 1
2
) (B.12)

We can solve (B.12) above and see immediately that if

τi >
21/αi∨2(ci + κ2

√
log T + κ2

√
logK)1/αi∨2

ni∆
1/αi∨2
i

,

then

R∗
i > R∗ + 2

(
γi(niτi) + κ2

√
logK

niτi
+ κ2

√
log T

niτi

)
. (B.13)

Thus the event in (B.11c) fails to occur, completing the proof of the lemma.

B.4 Proofs of Proposition 4.2 and Theorem 4.4

In this section we provide proofs for Proposition 4.2 and Theorem 4.4. The proof of the
proposition follows by dividing the model classes into two groups: those for which ∆i > γ,
and those with small excess risk, i.e. ∆i < γ. Theorem 4.3 provides an upper bound on the
fraction of budget allocated to model classes of the first type. For the model classes with
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small excess risk, all of them are nearly as good as i∗ in the regret criterion of Proposition 4.2.
Combining the two arguments gives us the desired result.

Of course, the proposition has the drawback that it does not provide us with a prescription
to select a good model or even a model class. This shortcoming is addressed by Theorem 4.4.
The theorem relies on an averaging argument used quite frequently to extract a good solution
out of online learning or stochastic optimization algorithms [48, 117].

B.4.1 Proof of Proposition 4.2

Define βi = max{1/αi, 2} as in the conclusion of Theorem 4.3, and let bi = ci + κ2
√
log T .

Dividing the regret into classes with high and low excess penalized risk ∆i, for any threshold
γ ≥ 0 we have by a union bound that with probability at least 1− κ1/TK

3,

K∑

i=1

∆iTi(T ) =
∑

{i|∆i≥γ}
∆iTi(T ) +

∑

{i|∆i≤γ}
∆iTi(T )

≤ C
∑

{i|∆i≥γ}
∆i

bβii
ni∆

βi
i

+ γT ≤ C

K∑

i=1

bβii
niγβi−1

+ γT.

To simplify this further, we use the assumption that αi ≡ α for all i. Hence the complexity
penalties of the classes differ only in the sampling rates ni, that is,

K∑

i=1

∆iTi(T ) ≤
1

γβ−1

K∑

i=1

Cbβii
ni

+ γT. (B.14)

Minimizing the bound (B.14) over γ by taking derivatives, we get

γ = T− 1
β (β − 1)

1
β

(
K∑

i=1

Cbβi
ni

) 1
β

,

which, when plugged back into (B.14), gives

K∑

i=1

∆iTi(T ) ≤ 2

(
K∑

i=1

Cbβi
ni

)1/β

(β − 1)1/βT 1−1/β.

Noting that 1
β
log(β−1) ≤ β−2

β
< 1, we see that (β−1)1/β < exp(1). Plugging the definition

of β = max{1/α, 2}, so that 1/β = min{α, 1
2
}, gives the result of the proposition.
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B.4.2 Proof of Theorem 4.4

Before proving the theorem, we state a technical lemma that makes our argument somewhat
simpler.

Lemma B.3. For 0 < p < 1 and a � 0, consider the optimization problem

max
x

K∑

i=1

aix
p
i s.t.

K∑

i=1

xi ≤ T, xi ≥ 0.

The solution of the problem is to take xi ∝ a
1/(1−p)
i , and the optimal value is

T p

(
K∑

i=1

a
1

1−p

i

)1−p

.

Proof. Reformulating the problem to make it a minimization problem, that is, our objective
is −

∑K
i=1 aix

p
i , we have a convex problem. Introducing Lagrange multipliers θ ≥ 0 and

ν ∈ RK
+ for the inequality constraints, we have Lagrangian

L(x, θ, ν) = −
K∑

i=1

aix
p
i + θ

(
K∑

i=1

xi − T

)
− 〈ν, x〉 .

To find the infimum of the Lagrangian over x, we take derivatives and see that −aipxp−1
i +

θ − νi = 0, or that xi = a
−1/(p−1)
i p−1/(p−1)(θ − νi)

1/(p−1). Since ai > 0, the complimentary
slackness conditions for ν are satisfied with ν = 0, and we see that θ is simply a multiplier
to force the sum

∑K
i=1 xi = T . That is, xi ∝ a

1/(1−p)
i , and normalizing appropriately,

xi = Ta
1/(1−p)
i /

∑K
j=1 a

1/(1−p)
j . By plugging xi into the objective, we have

K∑

i=1

aix
p
i = T p

∑K
i=1 aia

p/(1−p)
i(∑K

j=1 a
1/(1−p)
j

)p = T p
∑K

i=1 a
1/(1−p)
i(∑K

j=1 a
1/(1−p)
j

)p = T p

(
K∑

i=1

a
1/(1−p)
i

)1−p

With the Lemma B.3 in hand, we proceed with the proof of Theorem 4.4. As before,
we use the shorthand β = max{1/α, 2} throughout the proof to reduce clutter. We also let
si(t) be the number of times class i was selected by time t. Recalling the definition of the
regret from (4.28) and the result of the previous proposition, we have with probability at
least 1− κ1/(TK

3)

1

T

T∑

t=1

[R∗
it + γit(Tnit)] ≤ R∗ + γi∗(Tni∗) + 2eκ2T

−1/β
√

log T

(
K∑

i=1

C

ni

)1/β

.
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Using the definition of f ∗
i as the minimizer of R(f) over Fi, we use Assumptions C(c) and

C(e) to see that for fixed si, with probability at least 1− κ1/(TK)4,

R̂nisi(A (i, nisi)) ≤ R̂nisi(f
∗
i )+γi(nisi) ≤ R(f ∗

i )+γi(nisi)+κ2

√
logK

nisi
+κ2

√
log T

nisi
. (B.15)

Denote by ft the output of A on round t, that is, ft = A (it, nitsit(t)). By the previous
equation (B.15), we can use a union bound and the regret bound from Proposition 4.2 to
conclude that with probability at least 1− κ1/(TK

3)− κ1/(T
3K3),

1

T

T∑

t=1

R̂nitsit (t)
(ft) + γit(Tnit)

≤ 1

T

T∑

t=1

[
γi(nitsit(t)) + κ2

√
logK

nitsit(t)
+ κ2

√
log T

nitsit(t)

]
+

1

T

T∑

t=1

[
R∗
it + γit(Tnit)

]

≤ 1

T

T∑

t=1

[
γi(nitsit(t)) + κ2

√
logK

nitsit(t)
+ κ2

√
log T

nitsit(t)

]
+R(f ∗

i ) + γi(nisi)

+ 2eκ2T
−1/β

√
log T

(
K∑

i=1

C

ni

)1/β

. (B.16)

Now we again make use of Assumption C(b) to note that with probability at least 1 −
κ1/(T

4K4),

R(ft) ≤ R̂nitsit (t)
(ft) + γit(nitsit(t)) + κ2

√
logK

nitsit(t)
+ κ2

√
log T

nitsit(t)
.

Using a union bound and applying the empirical risk bound (B.16), we drop the positive
γit(Tnit) terms from the left side of the bound and see that with probability at least 1 −
κ1/(TK

3)− 2κ1/(T
3K3),

1

T

T∑

t=1

R(ft) ≤ R∗ + γi∗(Tni∗) + 2eκ2T
−1/β

√
log T

(
K∑

i=1

C

ni

)1/β

+
2

T

T∑

t=1

[
γi(nitsit(t)) + κ2

√
logK

nitsit(t)
+ κ2

√
log T

nitsit(t)

]
. (B.17)

Defining f̂T := 1
T

∑T
t=1 ft, we use Jensen’s inequality to see that R(f̂T ) ≤ 1

T

∑T
t=1R(ft).

Thus, all that remains is to control the last sum in (B.17). Using the definition of γi, we
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replace the sum with

T∑

t=1

cin
−α
it
sit(t)

−α + n
− 1

2

it
sit(t)

− 1
2κ2

[√
logK +

√
log T

]

≤
T∑

t=1

[
cin

−α
it + κ2n

− 1
2

it

√
logK + κ2n

− 1
2

it

√
log T

]
sit(t)

−min{α, 1
2
}.

Noting that

∑

t:it=i

sit(t)
−min{α, 1

2
} =

Ti(T )∑

t=1

t−1/β ≤ C ′ Ti(T )
1−1/β

for some constant C ′ dependent on α, we can upper bound the last sum in (B.17) by

T∑

t=1

[
γi(nitsit(t)) + κ2

√
logK

nitsit(t)
+ κ2

√
log T

nitsit(t)

]

≤ C ′
K∑

i=1

[
cin

−α
i + κ2n

− 1
2

i

√
logK + κ2n

− 1
2

i

√
log T

]
Ti(T )

1−1/β. (B.18)

Now that we have a sum of order K with terms Ti(T ) that are bounded by T , that is,∑K
i=1 Ti(T ) = K, we can apply Lemma B.3. Indeed, we set p = 1−1/β = 1−min{α, 1

2
} and

ai = cin
−α
i + κ2n

− 1
2

i [
√
logK +

√
log T ] in the lemma, and we see immediately that (B.18) is

upper bounded by

C ′ T 1−min{α, 1
2
}

(
K∑

i=1

[
cin

−α
i + κ2n

− 1
2

i

√
logK + κ2n

− 1
2

i

√
log T

]max{1/α,2}
)min{α, 1

2
}

.

Dividing by T completes the proof that the average f̂T has good risk properties with prob-
ability at least 1− κ1/(TK

3)− 2κ1(T
3K3) > 1− 2κ1/(TK

3).
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Appendix C

Auxiliary results and proofs for
Chapter 5

C.1 Auxiliary results for Theorem 5.1

In this appendix, we provide the proofs of various auxiliary lemmas required in the proof of
Theorem 5.1.

C.1.1 Proof of Lemma 5.1

Since θt and θ̂ are both feasible and θ̂ lies on the constraint boundary, we have R(θt) ≤ R(θ̂).

Since R(θ̂) ≤ R(θ∗) +R(θ̂ − θ∗) by triangle inequality, we conclude that

R(θt) ≤ R(θ∗) +R(∆∗).

Since θ∗ = ΠM(θ∗) + ΠM⊥(θ∗), a second application of triangle inequality yields

R(θt) ≤ R(ΠM(θ∗)) +R(ΠM⊥(θ∗)) +R(∆∗). (C.1)

Now define the difference ∆t := θt − θ∗. (Note that this is slightly different from ∆̂t, which

is measured relative to the optimum θ̂.) With this notation, we have

R(θt) = R
(
ΠM(θ∗) + ΠM⊥(θ∗) + ΠM̄(∆t) + ΠM̄⊥(∆t)

)

(i)

≥ R
(
ΠM(θ∗) + ΠM̄⊥(∆t)

)
−R

(
ΠM⊥(θ∗) + ΠM̄(∆t)

)

(ii)

≥ R
(
ΠM(θ∗) + ΠM̄⊥(∆t)

)
−R(ΠM⊥(θ∗))−R(ΠM̄(∆t)),

where steps (i) and (ii) each use the triangle inequality. Now by the decomposability condi-
tion, we have R

(
ΠM(θ∗) +ΠM̄⊥(∆t)

)
= R(ΠM(θ∗)) +R(ΠM̄⊥(∆t)), so that we have shown



APPENDIX C. AUXILIARY RESULTS AND PROOFS FOR CHAPTER 5 167

that

R(ΠM(θ∗)) +R(ΠM̄⊥(∆t))−R(ΠM⊥(θ∗))−R(ΠM̄(∆t)) ≤ R(θt).

Combining this inequality with the earlier bound (C.1) yields

R(ΠM(θ∗)) +R(ΠM̄⊥(∆t))−R(ΠM⊥(θ∗))−R(ΠM̄(∆t)) ≤ R(ΠM(θ∗)) +R(ΠM⊥(θ∗)) +R(∆∗).

Re-arranging yields the inequality

R(ΠM̄⊥(∆t)) ≤ R(ΠM̄(∆t)) + 2R(ΠM⊥(θ∗)) +R(∆∗). (C.2)

The final step is to translate this inequality into one that applies to the optimization
error ∆̂t = θt − θ̂. Recalling that ∆∗ = θ̂ − θ∗, we have ∆̂t = ∆t −∆∗, and hence

R(∆̂t) ≤ R(∆t) +R(∆∗), by triangle inequality. (C.3)

In addition, we have

R(∆t) ≤ R(ΠM̄⊥(∆t)) +R(ΠM̄(∆t))
(i)

≤ 2R(ΠM̄(∆t)) + 2R(ΠM⊥(θ∗)) +R(∆∗)

(ii)

≤ 2Ψ(M⊥)
∥∥ΠM̄(∆t)

∥∥+ 2R(ΠM⊥(θ∗)) +R(∆∗),

where inequality (i) uses the bound (C.2), and inequality (ii) uses the definition (5.12) of the
subspace compatibility Ψ. Combining with the inequality (C.3) yields

R(∆̂t) ≤ 2Ψ(M⊥)
∥∥ΠM̄(∆t)

∥∥+ 2R(ΠM⊥(θ∗)) + 2R(∆∗).

Since projection onto a subspace is non-expansive, we have ‖ΠM̄(∆t)‖ ≤ ‖∆t‖, and hence

∥∥ΠM̄(∆t)
∥∥ ≤

∥∥∥∆̂t +∆∗
∥∥∥ ≤

∥∥∥∆̂t
∥∥∥+ ‖∆∗‖ .

Combining the pieces, we obtain the claim (5.49).

C.1.2 Proof of Lemma 5.2

We start by applying the RSC assumption to the pair θ̂ and θt, thereby obtaining the lower
bound

Ln(θ̂)−
γ`
2
‖θ̂ − θt‖2 ≥ Ln(θt) + 〈∇Ln(θt), θ̂ − θt〉 − τ`(Ln)R2(θt − θ̂)

= Ln(θt) + 〈∇Ln(θt), θt+1 − θt〉+ 〈∇Ln(θt), θ̂ − θt+1〉 − τ`(Ln)R2(θt − θ̂).
(C.4)



APPENDIX C. AUXILIARY RESULTS AND PROOFS FOR CHAPTER 5 168

Here the second inequality follows by adding and subtracting terms.
Now for compactness in notation, define

ϕt(θ) := Ln(θt) +
〈
∇Ln(θt), θ − θt

〉
+
γu
2
‖θ − θt‖2,

and note that by definition of the algorithm, the iterate θt+1 minimizes ϕt(θ) over the ball

BR(ρ). Moreover, since θ̂ is feasible, the first-order conditions for optimality imply that

〈∇ϕt(θt+1), θ̂ − θt+1〉 ≥ 0, or equivalently that 〈∇Ln(θt) + γu(θ
t+1 − θt), θ̂ − θt+1〉 ≥ 0.

Applying this inequality to the lower bound (C.4), we find that

Ln(θ̂)−
γ`
2
‖θ̂ − θt‖2 ≥ Ln(θt) + 〈∇Ln(θt), θt+1 − θt〉+ γu〈θt − θt+1, θ̂ − θt+1〉 − τ`(Ln)R2(θt − θ̂)

= ϕt(θ
t+1)− γu

2
‖θt+1 − θt‖2 + γu〈θt − θt+1, θ̂ − θt+1〉 − τ`(Ln)R2(θt − θ̂)

= ϕt(θ
t+1) +

γu
2
‖θt+1 − θt‖2 + γu〈θt − θt+1, θ̂ − θt〉 − τ`(Ln)R2(θt − θ̂),

(C.5)

where the last step follows from adding and subtracting θt+1 in the inner product.
Now by the RSM condition, we have

ϕt(θ
t+1) ≥ Ln(θt+1)− τu(Ln)R2(θt+1 − θt)

(a)

≥ Ln(θ̂)− τu(Ln)R2(θt+1 − θt), (C.6)

where inequality (a) follows by the optimality of θ̂, and feasibility of θt+1. Combining this

inequality with the previous bound (C.5) yields that Ln(θ̂) − γ`
2
‖θ̂ − θt‖2 is lower bounded

by

Ln(θ̂)−
γu
2
‖θt+1 − θt‖2 + γu〈θt − θt+1, θ̂ − θt〉 − τ`(Ln)R2(θt − θ̂)− τu(Ln)R2(θt+1 − θt),

and the claim (5.51) follows after some simple algebraic manipulations.

C.2 Auxiliary results for Theorem 5.2

In this appendix, we prove the two auxiliary lemmas required in the proof of Theorem 5.2.

C.2.1 Proof of Lemma 5.3

This result is a generalization of an analogous result in Negahban et al. [116], with some
changes required so as to adapt the statement to the optimization setting. Let θ be any
vector, feasible for the problem (5.2), that satisfies the bound

φ(θ) ≤ φ(θ∗) + η, (C.7)
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and assume that λn ≥ 2R∗(∇Ln(θ∗)). We then claim that the error vector ∆ := θ − θ∗

satisfies the inequality

R(ΠM̄⊥(∆)) ≤ 3R(ΠM̄(∆)) + 4R(ΠM⊥(θ∗)) + 2min
{ η
λn
, ρ
}
. (C.8)

For the moment, we take this claim as given, returning later to verify its validity.
By applying this intermediate claim (C.8) in two different ways, we can complete the

proof of Lemma 5.3. First, we observe that when θ = θ̂, the optimality of θ̂ and feasibility
of θ∗ imply that assumption (C.7) holds with η = 0, and hence the intermediate claim (C.8)

implies that the statistical error ∆∗ = θ∗ − θ̂ satisfies the bound

R(ΠM̄⊥(∆∗)) ≤ 3R(ΠM̄(∆∗)) + 4R(ΠM⊥(θ∗)). (C.9)

Since ∆∗ = ΠM̄(∆∗)ΠM̄⊥(∆∗), we can write

R(∆∗) = R(ΠM̄(∆∗) + ΠM̄⊥(∆∗)) ≤ 4R(ΠM̄(∆∗)) + 4R(ΠM⊥(θ∗)), (C.10)

using the triangle inequality in conjunction with our earlier bound (C.9). Similarly, when
θ = θt for some t ≥ T , then the given assumptions imply that condition (C.7) holds with η >
0, so that the intermediate claim (followed by the same argument with triangle inequality)
implies that the error ∆t = θt − θ∗ satisfies the bound

R(∆t) ≤ 4R(ΠM̄(∆t)) + 4R(ΠM⊥(θ∗)) + 2min
{ η
λn
, ρ
}
. (C.11)

Now let ∆̂t = θt − θ̂ be the optimization error at time t, and observe that we have the
decomposition ∆̂t = ∆t +∆∗. Consequently, by triangle inequality

R(∆̂t) ≤ R(∆t) +R(∆∗)

(i)

≤ 4
{
R(ΠM̄(∆t)) +R(ΠM̄(∆∗))

}
+ 8R(ΠM⊥(θ∗)) + 2min

{ η
λn
, ρ
}

(ii)

≤ 4Ψ(M)
{
‖ΠM̄(∆t)‖+ ‖ΠM̄(∆∗)‖

}
+ 8R(ΠM⊥(θ∗)) + 2min

{ η
λn
, ρ
}

(iii)

≤ 4Ψ(M)
{
‖∆t‖+ ‖∆∗‖

}
+ 8R(ΠM⊥(θ∗)) + 2min

{ η
λn
, ρ
}
, (C.12)

where step (i) follows by applying both equation (C.10) and (C.11); step (ii) follows from the
definition (5.12) of the subspace compatibility that relates the regularizer to the norm ‖ · ‖;
and step (iii) follows from the fact that projection onto a subspace is non-expansive. Finally,

since ∆t = ∆̂t −∆∗, the triangle inequality implies that ‖∆t‖ ≤ ‖∆̂t‖+ ‖∆∗‖. Substituting
this upper bound into inequality (C.12) completes the proof of Lemma 5.3.
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It remains to prove the intermediate claim (C.8). Letting θ be any vector, feasible for
the program (5.2), and satisfying the condition (C.7), and let ∆ = θ − θ∗ be the associated
error vector. Re-writing the condition (C.7), we have

Ln(θ∗ +∆) + λnR(θ∗ +∆) ≤ Ln(θ∗) + λnR(θ∗) + η.

Subtracting
〈
∇Ln(θ∗), ∆

〉
from each side and then re-arranging yields the inequality

Ln(θ∗ +∆)−Ln(θ∗)−
〈
∇Ln(θ∗), ∆

〉
+ λn

{
R(θ∗ +∆)−R(θ∗)

}
≤ −

〈
∇Ln(θ∗), ∆

〉
+ η.

The convexity of Ln then implies that Ln(θ∗ +∆)−Ln(θ∗)−
〈
∇Ln(θ∗), ∆

〉
≥ 0, and hence

that
λn

{
R(θ∗ +∆)−R(θ∗)

}
≤ −

〈
∇Ln(θ∗), ∆

〉
+ η.

Applying Hölder’s inequality to
〈
∇Ln(θ∗), ∆

〉
, as expressed in terms of the dual norms

R and R∗, yields the upper bound

λn

{
R(θ∗ +∆)−R(θ∗)

}
≤ R∗(∇Ln(θ∗)) R(∆) + η

(i)

≤ λn
2

R(∆) + η,

where step (i) uses the fact that λn ≥ 2R∗(∇Ln(θ∗)) by assumption.
For the remainder of the proof, let us introduce the convenient shorthand ∆M̄ := ΠM̄(∆)

and ∆M̄⊥ := ΠM̄⊥(∆), with similar shorthand for projections involving θ∗. Making note of
the decomposition ∆ = ∆M̄ + ∆M̄⊥, an application of triangle inequality then yields the
upper bound

R(θ∗ +∆)−R(θ∗) ≤ 1

2

{
R(∆M̄) +R(∆M̄⊥)

}
+

η

λn
, (C.13)

where we have rescaled both sides by λn > 0.
It remains to further lower bound the left-hand side (C.13). By triangle inequality, we

have

−R(θ∗) ≥ −R(θ∗M)−R(θ∗M⊥). (C.14)

Let us now write θ∗ +∆ = θ∗M + θ∗M⊥ +∆M̄ +∆M̄⊥. Using this representation and triangle
inequality, we have

R(θ∗ +∆) ≥ R(θ∗M +∆M̄⊥)−R(θ∗M⊥ +∆M̄) ≥ R(θ∗M +∆M̄⊥)−R(θ∗M⊥)−R(∆M̄).

Finally, since θ∗M ∈ M and ∆M̄⊥ ∈ M⊥
, the decomposability of R implies that R(θ∗M +

∆M̄⊥) = R(θ∗M) +R(∆M̄⊥), and hence that

R(θ∗ +∆) ≥ R(θ∗M) +R(∆M̄⊥)−R(θ∗M⊥)−R(∆M̄). (C.15)
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Adding together equations (C.14) and (C.15), we obtain the lower bound

R(θ∗ +∆)−R(θ∗) ≥ R(∆M̄⊥)− 2R(θ∗M⊥)−R(∆M̄). (C.16)

Combining this lower bound with the earlier inequality (C.13), some algebra yields the bound

R(∆M̄⊥) ≤ 3R(∆M̄) + 4R(θ∗M⊥) + 2
η

λn
,

corresponding to the bound (C.8) when η/λn achieves the final minimum. To obtain the
final term involving ρ in the bound (C.8), two applications of triangle inequality yields

R(∆M̄⊥) ≤ R(∆M̄) +R(∆) ≤ R(∆M̄) + 2ρ,

where we have used the fact that R(∆) ≤ R(θ)+R(θ∗) ≤ 2ρ, since both θ and θ∗ are feasible
for the program (5.2).

C.2.2 Proof of Lemma 5.4

The proof of this result follows lines similar to the proof of convergence by Nesterov [121].

Recall our notation φ(θ) = Ln(θ) + λnR(θ), ∆̂t = θt − θ̂, and that ηtφ = φ(θt) − φ(θ̂).
We begin by proving that under the stated conditions, a useful version of restricted strong
convexity (5.47) is in force:

Lemma C.1. Under the assumptions of Lemma 5.4, we are guaranteed that
{γ`
2
− 32τ`(Ln)Ψ2(M)

}
‖∆̂t‖2 ≤ 2τ`(Ln) v2 + φ(θt)− φ(θ̂), and (C.17a)

{γ`
2
− 32τ`(Ln)Ψ2(M)

}
‖∆̂t‖2 ≤ 2 τ`(Ln) v2 + TL(θ̂; θ

t), (C.17b)

where v := ε̄stat + 2min( η
λn
, ρ).

See Appendix C.2.3 for the proof of this claim. So as to ease notation in the remainder of
the proof, let us introduce the shorthand

φt(θ) := Ln(θt) +
〈
∇Ln(θt), θ − θt

〉
+
γu
2
‖θ − θt‖2 + λnR(θ), (C.18)

corresponding to the approximation to the regularized loss function φ that is minimized
at iteration t of the update (5.4). Since θt+1 minimizes φt over the set BR(ρ), we are
guaranteed that φt(θ

t+1) ≤ φt(θ) for all θ ∈ BR(ρ). In particular, for any α ∈ (0, 1), the

vector θα = αθ̂ + (1− α)θt lies in the convex set BR(ρ), so that

φt(θ
t+1) ≤ φt(θα) = Ln(θt) +

〈
∇Ln(θt), θα − θt

〉
+
γu
2
‖θα − θt‖2 + λnR(θα)

(i)
= Ln(θt) +

〈
∇Ln(θt), αθ̂ − αθt

〉
+
γuα

2

2
‖θ̂ − θt‖2 + λnR(θα)

(ii)

≤ Ln(θt) +
〈
∇Ln(θt), αθ̂ − αθt

〉
+
γuα

2

2
‖θ̂ − θt‖2 + λnαR(θ̂) + λn(1− α)R(θt),



APPENDIX C. AUXILIARY RESULTS AND PROOFS FOR CHAPTER 5 172

where step (i) follows from substituting the definition of θα, and step (ii) uses the convexity
of the regularizer R.

Now, the stated conditions of the lemma ensure that γ`/2−32τ`(Ln)Ψ2(M) ≥ 0, so that

by equation (C.17b), we have Ln(θ̂) + 2τ`(Ln)v2 ≥ Ln(θt) +
〈
∇Ln(θt), θ̂− θt

〉
. Substituting

back into our earlier bound yields

φt(θ
t+1) ≤ (1− α)Ln(θt) + αLn(θ̂) + 2ατ`(Ln)v2 +

γuα
2

2
‖θ̂ − θt‖2 + αλnR(θ̂) + (1− α)λnR(θt)

(iii)
= φ(θt)− α(φ(θt)− φ(θ̂)) + 2τ`(Ln)v2 +

γuα
2

2
‖θ̂ − θt‖2, (C.19)

where we have used the definition of φ and α ≤ 1 in step (iii).
In order to complete the proof, it remains to relate φt(θ

t+1) to φ(θt+1), which can be
performed by exploiting restricted smoothness. In particular, applying the RSM condition
at the iterate θt+1 in the direction θt yields the upper bound

Ln(θt+1) ≤ Ln(θt) +
〈
Ln(θt), θt+1 − θt

〉
+
γu
2
‖θt+1 − θt‖2 + τu(Ln)R2(θt+1 − θt),

so that

φ(θt+1) ≤ Ln(θt) +
〈
Ln(θt), θt+1 − θt

〉
+
γu
2
‖θt+1 − θt‖2 + τu(Ln)R2(θt+1 − θt) + λnR(θt+1)

= φt(θ
t+1) + τu(Ln)R2(θt+1 − θt).

Combining the above bound with the inequality (C.19) and recalling the notation ∆̂t = θt−θ̂,
we obtain

φ(θt+1) ≤ φ(θt)− α(φ(θt)− φ(θ̂)) +
γuα

2

2
‖θ̂ − θt‖2 + τu(Ln)R2(θt+1 − θt) + 2τ`(Ln)v2

(iv)

≤ φ(θt)− α(φ(θt)− φ(θ̂)) +
γuα

2

2
‖∆̂t‖2 + τu(Ln)[R(∆̂t+1) +R(∆̂t)]2 + 2τ`(Ln)v2

(v)

≤ φ(θt)− α(φ(θt)− φ(θ̂)) +
γuα

2

2
‖∆̂t‖2 + 2τu(Ln)(R2(∆̂t+1) +R2(∆̂t)) + 2τ`(Ln)v2.

(C.20)

Here step (iv) uses the fact that θt− θt+1 = ∆̂t− ∆̂t+1 and applies triangle inequality to the
norm R, whereas step (v) follows from Cauchy-Schwarz inequality.

Next, combining Lemma 5.3 with the Cauchy-Schwarz inequality inequality yields the
upper bound

R2(∆̂t) ≤ 32Ψ2(M)‖∆̂t‖2 + 2v2 (C.21)

where v = ε̄stat(M,M) + 2min( η
λn
, ρ), is a constant independent of θt and ε̄stat(M,M)

was previously defined in the lemma statement. Substituting the above bound into inequal-
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ity (C.20) yields that φ(θt+1) is at most

φ(θt)− α(φ(θt)− φ(θ̂)) +
γuα

2

2
‖∆̂t‖2 + 64τu(Ln)Ψ2(M)‖∆̂t+1‖2

+ 64τu(Ln)Ψ2(M)‖∆̂t‖2 + 8τu(Ln)v2 + 2τ`(Ln)v2. (C.22)

The final step is to translate quantities involving ∆̂t to functional values, which may be
done using the RSC condition (C.17a) from Lemma C.1. In particular, combining the RSC
condition (C.17a) with the inequality (C.22) yields

φ(θt+1) ≤ φ(θt)− αηtφ +

(
γuα

2 + 64τu(Ln)Ψ2(M)
)

γ`
(ηtφ + 2τ`(Ln)v2) +

64τu(Ln)Ψ2(M)

γ`
(ηt+1
φ + 2τ`(Ln)v2) + 8τu(Ln)v2 + 2τ`(Ln)v2.

where we have introduced the shorthand γ` := γ`−64τ`(Ln)Ψ2(M). Recalling the definition

of β, adding and subtracting φ(θ̂) from both sides, and choosing α = γ`
2γu

∈ (0, 1), we obtain

(
1− 64τu(Ln)Ψ2(M)

γ`

)
ηt+1
φ ≤

(
1− γ`

4γu
+

64τu(Ln)Ψ2(M)

γ`

)
ηtφ + β(M)v2.

Recalling the definition of the contraction factor κ from the statement of Theorem 5.2, the
above expression can be rewritten as

ηt+1
φ ≤ κηtφ + β(M)ξ(M)v2, where ξ(M) =

{
1− 64τu(Ln)Ψ2(M)

γ`

}−1
.

Finally, iterating the above expression yields ηtφ ≤ κt−TηTφ + ξ(M)β(M)v2

1−κ , where we have used
the condition κ ∈ (0, 1) in order to sum the geometric series, thereby completing the proof.

C.2.3 Proof of Lemma C.1

The key idea to prove the lemma is to use the definition of RSC along with the iterated cone
bound of Lemma 5.3 for simplifying the error terms in RSC.

Let us first show that condition (C.17a) holds. From the RSC condition assumed in the
lemma statement, we have

Ln(θt)− Ln(θ̂)− 〈∇Ln(θ̂), θt − θ̂〉 ≥ γ`
2
‖θ̂ − θt‖2 − τ`(Ln) R2(θ̂ − θt). (C.23)

From the convexity of R and definition of the subdifferential ∂R(θ), we obtain

R(θt)−R(θ̂)−
〈
∂R(θ̂), θt − θ̂

〉
≥ 0.
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Adding this lower bound with the inequality (C.23) yields

φ(θt)− φ(θ̂)− 〈∇φ(θ̂), θt − θ̂〉 ≥ γ`
2
‖θ̂ − θt‖2 − τ`(Ln) R2(θ̂ − θt),

where we recall that φ(θ) = Ln(θ) + λnR(θ) is our objective function. By the optimality of

θ̂ and feasibility of θt, we are guaranteed that 〈∇φ(θ̂), θt − θ̂〉 ≥ 0, and hence

φ(θt)− φ(θ̂) ≥ γ`
2
‖θ̂ − θt‖2 − τ`(Ln) R2(θ̂ − θt)

(i)

≥ γ`
2
‖θ̂ − θt‖2 − τ`(Ln)

{
32Ψ2(M)‖θ̂ − θt‖2 + 2v2

}

where step (i) follows by applying Lemma 5.3. Some algebra then yields the claim (C.17a).

Finally, let us verify the claim (C.17b). Using the RSC condition, we have

Ln(θ̂)−Ln(θt)− 〈∇Ln(θt), θ̂ − θt〉 ≥ γ`
2
‖θ̂ − θt‖2 − τ`(Ln) R2(θ̂ − θt). (C.24)

As before, applying Lemma 5.3 yields

Ln(θ̂)−Ln(θt)− 〈∇Ln(θt), θ̂ − θt〉︸ ︷︷ ︸
TL(θ̂;θt)

≥ γ`
2
‖θ̂ − θt‖2 − τ`(Ln)

(
32Ψ2(M)‖θ̂ − θt‖2 + 2v2

)
,

and rearranging the terms and establishes the claim (C.17b).

C.3 Proof of Lemma 5.5

Given the condition R(θ̂) ≤ ρ ≤ R(θ∗), we have R(θ̂) = R(θ∗ +∆∗) ≤ R(θ∗). By triangle
inequality, we have

R(θ∗) = R(ΠM(θ∗) + ΠM⊥(θ∗)) ≤ R(ΠM(θ∗)) +R(ΠM⊥(θ∗)).

We then write

R(θ∗ +∆∗) = R(ΠM(θ∗) + ΠM⊥(θ∗) + ΠM̄(∆∗) + ΠM̄⊥(∆∗))

(i)

≥ R(ΠM(θ∗) + ΠM̄⊥(∆∗))−R(ΠM̄(∆∗))−R(ΠM⊥(θ∗))

(ii)
= R(ΠM(θ∗)) +R(ΠM̄⊥(∆∗))−R(ΠM̄(∆∗))−R(ΠM⊥(θ∗)),

where the bound (i) follows by triangle inequality, and step (ii) uses the decomposability of

R over the pair M and M⊥
. By combining this lower bound with the previously established

upper bound

R(θ∗ +∆∗) ≤ R(ΠM(θ∗)) +R(ΠM⊥(θ∗)),



APPENDIX C. AUXILIARY RESULTS AND PROOFS FOR CHAPTER 5 175

we conclude that R(ΠM̄⊥(∆∗)) ≤ R(ΠM̄(∆∗))+2R(ΠM⊥(θ∗)). Finally, by triangle inequal-
ity, we have R(∆∗) ≤ R(ΠM̄(∆∗)) +R(ΠM̄⊥(∆∗)), and hence

R(∆∗) ≤ 2R(ΠM̄(∆∗)) + 2R(ΠM⊥(θ∗))

(i)

≤ 2Ψ(M⊥) ‖ΠM̄(∆∗)‖+ 2R(ΠM⊥(θ∗))

(ii)

≤ 2Ψ(M⊥) ‖∆∗‖+ 2R(ΠM⊥(θ∗)),

where inequality (i) follows from Definition 5.4 of the subspace compatibility Ψ, and the
bound (ii) follows from non-expansivity of projection onto a subspace.

C.4 A general result on Gaussian observation opera-

tors

In this appendix, we state a general result about a Gaussian random matrices, and show
how it can be adapted to prove Lemmas 5.6 and 5.7. Let X ∈ Rn×d be a Gaussian random
matrix with i.i.d. rows xi ∼ N(0,Σ), where Σ ∈ Rd×d is a covariance matrix. We refer to
X as a sample from the Σ-Gaussian ensemble. In order to state the result, we use Σ1/2 to
denote the symmetric matrix square root.

Proposition C.1. Given a random matrix X drawn from the Σ-Gaussian ensemble, there
are universal constants ci, i = 0, 1 such that

‖Xθ‖22
n

≥ 1

2
‖Σ1/2θ‖22 − c1

(E[R∗(xi)])
2

n
R2(θ) and (C.25a)

‖Xθ‖22
n

≤ 2‖Σ1/2θ‖22 + c1
(E[R∗(xi)])

2

n
R2(θ) for all θ ∈ Rd (C.25b)

with probability greater than 1− exp(−c0 n).
We omit the proof of this result. The two special instances proved in Lemma 5.6 and 5.7 have
been proved in the papers [134] and [115] respectively. We now show how Proposition C.1
can be used to recover various lemmas required in our proofs.

Proof of Lemma 5.6: We begin by establishing this auxiliary result required in the proof
of Corollary 5.2. When R(·) = ‖ · ‖1, we have R∗(·) = ‖ · ‖∞. Moreover, the random
vector xi ∼ N(0,Σ) can be written as xi = Σ1/2w, where w ∼ N(0, Id×d) is standard normal.
Consequently, using properties of Gaussian maxima [99] and defining ζ(Σ) = maxj=1,2,...,dΣjj,
we have the bound

(E[‖xi‖∞])2 ≤ ζ(Σ) (E[‖w‖∞])2 ≤ 3ζ(Σ)
√

log d.

Substituting into Proposition C.1 yields the claims (5.61a) and (5.61b).
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Proof of Lemma 5.7: In order to prove this claim, we view each random observation ma-
trix Xi ∈ Rd×d as a d = d2 vector (namely the quantity vec(Xi)), and apply Proposition C.1
in this vectorized setting. Given the standard Gaussian vector w ∈ Rd2 , we let W ∈ Rd×d

be the random matrix such that vec(W ) = w. With this notation, the term R∗(vec(Xi))
is equivalent to the operator norm |||Xi|||op. As shown in Negahban and Wainwright [115],

E[|||Xi|||op] ≤ 24ζmat(Σ)
√
d, where ζmat was previously defined (5.64).

C.5 Auxiliary results for Corollary 5.5

In this section, we provide the proofs of Lemmas 5.8 and 5.9 that play a central role in
the proof of Corollary 5.5. In order to do so, we require the following result, which is a
re-statement of a theorem due to Negahban and Wainwright [114]:

Proposition C.2. For the matrix completion operator Xn, there are universal positive con-
stants (c1, c2) such that

∣∣∣∣
‖Xn(Θ)‖22

n
− |||Θ|||2F

∣∣∣∣ ≤ c1 d‖Θ‖∞ |||Θ|||1
√
d log d

n
+ c2

(
d‖Θ‖∞

√
d log d

n

)2

for all Θ ∈ Rd×d

(C.26)

with probability at least 1− exp(−d log d).

C.5.1 Proof of Lemma 5.8

Applying Proposition C.2 to ∆̂t and using the fact that d‖∆̂t‖∞ ≤ 2α yields

‖Xn(∆̂
t)‖22

n
≥ |||∆̂t|||2F − c1α|||∆̂t|||1

√
d log d

n
− c2 α

2d log d

n
, (C.27)

where we recall our convention of allowing the constants to change from line to line. From
Lemma 5.1,

|||∆̂t|||1 ≤ 2Ψ(M⊥) |||∆̂t|||F + 2|||ΠM⊥(θ∗)|||1 + 2|||∆∗|||1 +Ψ(M⊥)|||∆∗|||F .

Since ρ ≤ |||Θ∗|||1, Lemma 5.5 implies that |||∆∗|||1 ≤ 2Ψ(M⊥)|||∆∗|||F + |||ΠM⊥(θ∗)|||1, and hence
that

|||∆̂t|||1 ≤ 2Ψ(M⊥) |||∆̂t|||F + 4|||ΠM⊥(θ∗)|||1 + 5Ψ(M⊥)|||∆∗|||F . (C.28)

Combined with the lower bound, we obtain that
‖Xn(∆̂t)‖22

n
is lower bounded by

|||∆̂t|||2F

{
1−

2c1 αΨ(M⊥)
√

d log d
n

|||∆̂t|||F

}
− 2c1 α

√
d log d

n

{
4|||ΠM⊥(θ∗)|||1 + 5Ψ(M⊥)|||∆∗|||F

}
− c2 α

2d log d

n
.
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Consequently, for all iterations such that |||∆̂t|||F ≥ 4c1Ψ(M⊥)
√

d log d
n

, we have

‖Xn(∆̂
t)‖22

n
≥ 1

2
|||∆̂t|||2F − 2c1 α

√
d log d

n

{
4|||ΠM⊥(θ∗)|||1 + 5Ψ(M⊥)|||∆∗|||F

}
− c2 α

2d log d

n
.

By subtracting off an additional term, the bound is valid for all ∆̂t—viz.

‖Xn(∆̂
t)‖22

n
≥ 1

2
|||∆̂t|||2F − 2c1 α

√
d log d

n

{
4|||ΠM⊥(θ∗)|||1 + 5Ψ(M⊥)|||∆∗|||F

}

− c2 α
2d log d

n
− 16c21α

2Ψ2(M⊥)
d log d

n
.

C.5.2 Proof of Lemma 5.9

Applying Proposition C.2 to Γt and using the fact that d‖Γt‖∞ ≤ 2α yields

‖Xn(Γ
t)‖22

n
≤ |||Γt|||2F + c1α|||Γt|||1

√
d log d

n
+ c2 α

2d log d

n
, (C.29)

where we recall our convention of allowing the constants to change from line to line. By
triangle inequality, we have |||Γt|||1 ≤ |||Θt − Θ̂|||1 + |||Θt+1 − Θ̂|||1 = |||∆̂t|||1 + |||∆̂t+1|||1.
Equation C.28 gives us bounds on |||∆̂t|||1 and |||∆̂t+1|||1. Substituting them into the upper
bound (C.29) yields the claim.
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Appendix D

Technical proofs for Chapter 6

In this appendix, we collect several useful results about proximal functions and continuity
properties of the solutions of proximal operators. We begin with results useful for the dual-
averaging updates (6.3) and (6.8). We define the proximal dual function

ψ∗
α(µ) := sup

θ∈Ω

{
〈−µ, θ〉 − 1

α
ψ(θ)

}
. (D.1)

Since ∇ψ∗
α(µ) = argmaxθ∈Ω{〈−µ, θ〉−α−1ψ(θ)}, it is clear that θt = ∇ψ∗

α(t)(µ
t). Further, by

the strong convexity of ψ, we have that ∇ψ∗
α(µ) is α-Lipschitz continuous [122, 77, Chapter

X], that is, for the norm ‖·‖ with respect to which ψ is strongly convex and its associated
dual norm ‖ · ‖∗, ∥∥∥∇ψ∗

α(µ
′

)−∇ψ∗
α(µ)

∥∥∥ ≤ α‖µ′ − µ‖∗. (D.2)

We will find one more result about solutions to the dual averaging update useful. This result
has essentially been proven in many contexts [122, 159, 57].

Lemma D.1. Let θ+ minimize 〈µ, θ〉+ Aψ(θ) for all θ ∈ Ω. Then for any θ ∈ Ω,

〈µ, θ〉+ Aψ(θ) ≥
〈
µ, θ+

〉
+ Aψ(θ+) + ADψ(θ, θ

+)

Now we turn to describing properties of the mirror-descent step (6.4), which we will
also use frequently. The lemma allows us to bound differences between θt and θt+1 for the
mirror-descent family of algorithms.

Lemma D.2. Let θ+ minimize 〈g, θ〉+ 1
α
Dψ(θ, θ̃) over θ ∈ Ω. Then

∥∥∥θ+ − θ̃
∥∥∥ ≤ α‖g‖∗.

Proof. The inequality is clear when θ+ = θ̃, so assume that θ+ 6= θ̃. Since θ+ minimizes
〈g, θ〉+ 1

α
Dψ(θ, θ̃), the first order conditions for optimality imply

〈
αg +∇ψ(θ+)−∇ψ(θ̃), θ − θ+

〉
≥ 0
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for any θ ∈ Ω. Thus we can choose θ̃ = θ and see that

α
〈
g, θ̃ − θ

〉
≥
〈
∇ψ(θ+)−∇ψ(θ̃), θ+ − θ̃

〉
≥
∥∥∥θ+ − θ̃

∥∥∥
2

,

where the last inequality follows from the strong convexity of ψ. Using Hölder’s inequality

gives that α‖g‖∗
∥∥∥θ̃ − θ

∥∥∥ ≥
∥∥∥θ+ − θ̃

∥∥∥
2

, and dividing by
∥∥∥θ̃ − θ

∥∥∥ completes the proof.

The last technical lemma we give explicitly bounds the differences between θt and θ(t+τ),
for some τ ≥ 1, by using the above continuity lemmas.

Lemma D.3. Let Assumption A hold. Define θt via the dual-averaging updates (6.3), (6.8),
or (6.11) or the mirror-descent updates (6.4), (6.9), or (6.12). Let α(t)−1 = L + η(t + t0)

c

for some c ∈ [0, 1], η > 0, t0 ≥ 0, and L ≥ 0. Then for any fixed τ ,

E[
∥∥θt − θ(t+τ)

∥∥2] ≤ 4G2τ 2

η2(t+ t0)2c
and E[

∥∥θt − θ(t+τ)
∥∥] ≤ 2Gτ

η(t+ t0)c
.

Proof. We first show the lemma for the dual-averaging updates. Recall that θt = ∇ψ∗
α(t)(µ

t)
and ∇ψ∗

α is α-Lipschitz continuous. Using the triangle inequality,

∥∥θt − θ(t+τ)
∥∥ =

∥∥∇ψ∗
α(t)(µ

t)−∇ψ∗
α(t+τ)(µ

(t+τ))
∥∥

=
∥∥∇ψ∗

α(t)(µ
t)−∇ψ∗

α(t+τ)(µ
t) +∇ψ∗

α(t+τ)(µ
t)−∇ψ∗

α(t+τ)(µ
(t+τ))

∥∥

≤
∥∥∇ψ∗

α(t)(µ
t)−∇ψ∗

α(t+τ)(µ
t)
∥∥+

∥∥∇ψ∗
α(t+τ)(µ

t)−∇ψ∗
α(t+τ)(µ

(t+τ))
∥∥

≤ (α(t)− α(t+ τ))‖µt‖∗ + α(t+ τ)‖µt − µ(t+τ)‖∗. (D.3)

It is easy to check that for c ∈ [0, 1],

α(t)− α(t+ τ) ≤ cητ

(L+ ηtc)2t1−c
≤ cτ

ηt1+c
.

By convexity of ‖ · ‖2∗, we can bound E[‖µt − µ(t+τ)‖2∗]:

E[‖µt − µ(t+τ)‖2∗] = τ 2E

[∥∥∥∥
1

τ

τ∑

s=1

µ(t+s) − µ(t+s−1)

∥∥∥∥
2

∗

]
= τ 2E

[∥∥∥∥
1

τ

τ−1∑

s=0

g(s)

∥∥∥∥
2

∗

]
≤ τ 2G2,

since E[‖∂F (θ; z)‖2∗] ≤ G2 by assumption. Thus, bound (D.3) gives

E[
∥∥θt − θ(t+τ)

∥∥2] ≤ 2(α(t)− α(t+ τ))2E[‖µt‖2∗] + 2α(t+ τ)2E[‖µt − µ(t+τ)‖2∗]

≤ 2c2t2τ 2G2

η2t2+2c
+ 2G2τ 2α(t+ τ)2 =

2c2τ 2G2

η2t2c
+

2G2τ 2

(L+ η(t+ τ)c)2
,
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where we use Cauchy-Schwarz inequality in the first step. Since c ≤ 1, the last term is clearly
bounded by 4G2τ 2/η2t2c.

To get the slightly tighter bound on the first moment in the statement of the lemma,
simply use the triangle inequality from the bound (D.3) and that

√
EX2 ≥ E|X|.

The proof for the mirror-descent family of updates is similar. We focus on non-delayed
update (6.4), as the other updates simply modify the indexing of g(t + s) below. We know
from Lemma D.2 and the triangle inequality that

∥∥θt − θ(t+τ)
∥∥ ≤

τ∑

s=1

∥∥θ(t+s) − θ(t+s−1)
∥∥ ≤

τ∑

s=1

α(t+ s− 1)‖g(t+ s)‖∗

Squaring the above bound, taking expectations, and recalling that α(t) is non-increasing, we
see

E[
∥∥θt − θ(t+τ)

∥∥2] ≤
τ∑

s=1

τ∑

r=1

α(t+ s)α(t+ r)E[‖g(t+ s)‖∗‖g(t+ r)‖∗]

≤ τ 2α(t)2max
r,s

√
E[‖g(t+ s)‖2∗]

√
E[‖g(t+ r)‖2∗] ≤ τ 2α(t)2G2

by Hölder’s inequality. Substituting the appropriate value for α(t) completes the proof.
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[112] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on Automatic Control, 54:48–61, 2009.
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