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Two elements are needed to form a truth —
a fact and an abstraction.

—Remy de Gourmont

ABSTRACT

Cluster computing applications, whether frameworks like
MapReduce and Dryad, or customized applications like
search platforms and social networks, have application-
level requirements and higher-level abstractions to ex-
press them. Networking, however, still remains at the
level of forwarding packets and balancing flows, and there
exists no networking abstraction that can take advantage
of the rich semantics readily available from these data
parallel applications. The result is a plethora of seem-
ingly disjoint, yet somehow connected, pieces of work to
address networking challenges in these applications.

We propose an application layer, data plane abstrac-
tion, coflow, that can express the requirements of (data)
parallel programming models used in clusters today and
makes it easier to express, reason about, and act upon
these requirements.

1 Introduction

With the proliferation of public and private clouds, clus-
ter computing is becoming the norm. An increasing num-
ber of organizations are developing a mixed variety of
cluster computing applications to run user-facing online
services, long-running data analytics, and to support in-
teractive short queries for exploratory purposes.

Cluster computing applications serve diverse comput-
ing requirements, and to do that, they expect a broad
spectrum of services from the network. On the one hand,
some applications are throughput-sensitive; they must fin-
ish as fast as possible and must process every piece of
input (e.g., MapReduce [14], Dryad [19]). On the other
hand, some are latency-sensitive with strict deadlines,
but they do not require the exact answer (e.g., search re-
sults from Google or Bing, home feed in Facebook). A
large body of point solutions has emerged to address the
communication requirements of cluster computing appli-
cations [6,7,12,18,27,32,33].

Unfortunately, the networking literature does not pro-
vide any construct to encapsulate the communication re-
quirements of datacenter-scale applications. For exam-
ple, the abstraction of flows cannot capture the semantics
of communication between two groups of machines in a
cluster application, where multiple flows are created be-
tween the machines in different groups. Since developers
can neither precisely express their requirements nor can
they understand the similarities or differences between
their problems and the problems already solved in some
existing application, purpose-built solutions thrive.

Lack of an abstraction that can capture the communi-
cation semantics of cluster applications has several con-
sequences. First, it promotes non-modular solutions, mak-
ing code reuse harder and promoting buggy, unoptimized
code. Second, it limits the flexibility and usability of a
solution, because it is harder to understand what other
problems can be solved with that solution, and with how
much modifications. Finally, without an abstraction it is
hard to reason about the underlying principles and to an-
ticipate problems that might arise in the future.

Abstractions generalize by extracting the essential parts
of a problem through distillation of many of its instanti-
ations; hence, finding an abstraction is often a bottom-
up process. In this paper, we study multiples classes of
parallelization models (e.g., Dataflows with and without
barriers, bulk synchronous parallel, partition-aggregate
etc.) used in cluster computing and their communication
requirements, along with the solutions that have been de-
veloped to address them. We observe that most of these
applications are organized into multiple stages or have
machines grouped by functionalities, and communica-
tion happens at the level of machine collections, often
dictated by some application-specific semantics.

Based on our observations, in this paper, we propose
coflow, an application layer networking abstraction that
captures diverse communication patterns observed in clus-
ter computing applications. Each coflow is a collection
of concurrent flows between two groups of machines with
associated semantics and an aggregate objective. The se-
mantics allow one to take different actions on the collec-
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Figure 1: Communication patterns in cluster computing: (a) Shuffle and DFS replication in the perennial MapReduce [14] model; (b) Shuffle across
multiple MapReduce jobs in dataflow pipelines that use MapReduce as the building block (e.g., Hive [4]); (c) Dataflow pipelines with streaming
(e.g., Dryad [19]); (d) Dataflow with cycles and broadcast support (e.g., Spark [31]); (e) Bulk Synchronous Parallel or BSP model (e.g., Pregel [21]);
(f) Partition-Aggregate communication in online services (e.g., user-facing portion of search engines, social networks etc.).

tion to achieve the collective end goal. We must note that and writes the output to the distributed file system (DFS)
our proposal is a culmination of existing work, where [5,15], which then replicates it to at least two racks.

researchers have used the notion of such collections or Given m mappers and r reducers, a MapReduce job
hinted at it, albeit in limited scopes [12, 18,27]. We gen- will create m x r flows for the shuffle and at least r
eralize the abstraction and take the next step by using it to flows for output replication. The primary characteristic
explain a large body of existing research, use it to express of communication in the MapReduce model is that the
complex cluster applications, and identify new problems  job will not finish until the last reducer has finished [12].
to set a possible agenda of pragmatic research in cluster ~ Consequently, there is an explicit barrier at the end of
networking. the job, which researchers have exploited for optimizing

.. L. communication in this model [12]. Similar optimization
2 Communication in Cluster Applications can also be performed for DFS replication.

Most cluster computing applications are actually frame- 2.2 Dataflow Pipelines
works (e.g., MapReduce [14]), where analysts submit
jobs that follow particular workflows enabled by corre-
sponding programming models. Some others are user-
facing pipelines, where user requests go through a multi-
stage architecture to eventually send back the requested
outcome (e.g., search results from Google or Bing, home Dataflow with Barriers The most straightforward ex-
feed in Facebook). In this section, we summarize and  tension was to create dataflow pipelines with multiple
compare the communication requirements of popular clus- ~ Stages by using MapReduce as the building block (e.g.,
ter computing applications along with the existing work ~ Sawzall [24], Pig [23], Hive [4]). This introduced barri-

Once the usefulness of MapReduce was clear, researchers
set out to extend this model to a more general dataflow
programming model, which resulted in a collection of
dataflow pipelines with diverse characteristics.

that try to address these requirements. ers at the end of each these building blocks; communi-
cation optimizations for the MapReduce model are still
2.1 MapReduce valid in this model.
MapReduce [14], specially its open-source implemen- Streaming Dataflow To avoid explicit barriers and to
tation Hadoop [2], is the most well-known and widely enable higher-level optimizations of the operators, stream-
used cluster computing framework. In this model, map- ing dataflow pipelines were introduced (e.g., Dryad [19],
pers read input from disks, perform computations, shuf- DryadLINQ [28], SCOPE [10], FlumeJava [11], MapRe-
fle them to reducers based on some partitioning function, duce Online [13]). In this model, the next stage can start
and reducers receive multiple partitions, merges them, as soon as some input is available. Because there is no



Table 1: Summary of Communication Requirements in Cluster Computing Applications

Model | Examples | Synchronous | Barrier | Loss Tolerance | Comm. Objective
MapReduce [2,14] Yes Write to DFS None Minimize completion time
Dataflow with Barriers [4,23,24] Yes Write to DFS None Minimize completion time
Streaming Dataflow [10,11,13,19,28] Yes Input not ready None Minimize completion time
Dataflow with Cycles [30,31] Yes End of iteration None Minimize completion time
Bulk Synchronous Parallel [1,3,21] Yes End of iteration None Minimize completion time
Asynchronous Models [20] No None Partial Either
Partition-Aggregate Search/Social No End of deadline Partial Meet deadline

explicit barrier, optimization techniques that depend on it
are not useful. Instead, networking researchers focused
on understanding the internals of the communication and
optimizing them for specific scenarios [6,33].

Dataflow with Cycles Since traditional dataflow pipelines
do not support cycles, they depend on unrolling loops to
support iterative computation requirements. Spark and
its variants [30, 31] introduced cycles without unrolling
by keeping states around in memory. In the process, they
introduced communication primitives like broadcast and
many-to-one aggregation. Implicit barriers at the end
of each iteration allowed communication optimizations
similar to that in MapReduce [12].

2.3 Bulk Synchronous Parallel (BSP)

Bulk Synchronous Parallel or BSP is another popular
model in cluster computing with specific focus in graph
processing, matrix computation, and network algorithms
(e.g., Pregel [21], Giraph [1], Hama [3]). A BSP com-
putation proceeds in a series of global supersteps, each
containing three ordered stages: concurrent computation,
communication between processes, and barrier synchro-
nization. With explicit barriers at the end of each super-
step, the communication stage can be globally optimized
for the superstep.

2.4 Asynchronous Models

There are asynchronous cluster computing frameworks
as well. Sometimes complete information is not needed
for reasonably good results and iterations can proceed
with partial results. GraphLab [20] is such a framework
for machine learning and data mining on graphs. Unlike
BSP supersteps, iterations can proceed with whatever in-
formation is available as long as it converging; missing
information can asynchronously arrive later.

2.5 Partition-Aggregate

User-facing online services (e.g., search results in Google
or Bing, home feed in Facebook) receive requests from
users and send it downward to the workers using an ag-
gregation tree. At each level of the tree, each request
generates activities in different partitions. Ultimately,
components generated by the workers are aggregated and
sent back to the user within strict deadlines. Compo-
nents that cannot make it within the deadline are either

left behind [27] or sent later asynchronously (e.g., Face-
book home feed). Research in this direction looked at
dropping flows [27], preemption [18], and cutting the
tails [32]; however, they do not exploit any application-
level information.

2.6 Summary of Communication Requirements

Table 1 summarizes the key characteristics of the cluster
computing applications discussed earlier with focus on
the presence of synchronization barriers after communi-
cation stages, characteristics of such barriers, the ability
of the application to withstand loss or delay, and the pri-
mary objective of communication. We could not possibly
cover all the cluster computing frameworks or applica-
tions in this section, nor did we try to. However, we do
believe that we have covered a large enough spectrum to
raise the question: “what’s common among them?”’

3 An Application Layer Abstraction

It’s one thing to have the tools, but you also
need to have the methodology. Inevitably, the
need to move up to a higher level of abstrac-
tion is going to be there.

—Michael Sanie

With all the differences in programming models, levels
of parallelism, communication patterns, and ad-hoc solu-
tions for each of these patterns, one thing that all cluster
computing applications have in common is their high-
level architectural organization: they run on collections
of machines (from tens to thousands) that are organized
into multiple stages or grouped by functionalities [9], and
each of these collections of machines communicate be-
tween themselves with diverse requirements. In this sec-
tion, we leverage this similarity to abstract away vari-
ous communication patterns in cluster computing appli-
cations using a single data plane construct.

Coflow

The communication between two collections of machines
actually consists of multiple flows between individual
pairs of machines. Although, individual flows look the
same at the transport layer, all the flows between two
collections of machines often have application level se-
mantics. For example, it does not matter what happens



Table 2: Coflow Representations of the Communication Requirements of Cluster Computing Applications

Communication Pattern / Coflow [ Mechanism to Achieve Coflow Objective

Shuffle Set rates of individual shuffle flows such that the slowest one finishes as fast as possible [12].
DFS Replication Set rates of individual replication flows such that the slowest one finishes as fast as possible.
Broadcast Allocate rates at broadcast participants so that the slowest receiver finishes as fast as possible [12].

Streaming Dataflow Comm.

Set rates/prioritize so that later stages do not block on this coflow.

BSP Communication

Set rates at computation nodes so that the slowest sender finishes as fast as possible

Asynchronous Communication

Prioritize if the application requires more information from this coflow; else lower priority.

Partition-Aggregate

- Drop flows that are likely to miss the deadline [27].
- Set higher priorities for all the flows in a coflow that has the earliest deadline [18].

to the (m x r) — 1 flows in an m x r shuffle as long as
the very last flow has not finished [12]. Similarly, if one
decides to delay flows that will miss their deadlines [27],
it is better to restrict the delays/drops within as few re-
quests as possible.

Any collection of flows will not do, however. Three
conditions must be satisfied: first, there must be higher-
level semantics — made available by the application layer
— that apply to all the flows in a collection and allow a
combined decision; second, flows have to be concurrent
within a reasonable time window for them to be consid-
ered together; finally, all the flows should have a shared
objective that allows joint optimizations on the aggre-
gate. We refer to such collections of flows as coflows
and define them as the following:

A coflow is a semantically-bound collection
of concurrent flows with a shared objective.

By appropriately defining the objective function and
considering the semantics of corresponding applications,
we can now concisely describe the communication re-
quirements of different cluster applications using coflows.
Table 2 summarizes the communication requirements dis-
cussed in Section 2.

4 Applications of the Abstraction

Abstraction is a mental process we use when
trying to discern what is essential or relevant
to a problem;

—Tom G. Palmer

As cluster computing is maturing, its users are starting to
run diverse applications on shared infrastructures — each
purpose-built for specific activity. Researchers have re-
sponded by developing platforms to enable such coexis-
tence [17]. However, they do not manage the network
in such multi-resource environments [16, 17]. Part of it
is because the network is a distributed resource unlike
any other. We believe an even bigger reason is that it is
harder to discern the communication requirements of di-
verse cluster computing applications without an abstrac-
tion to reason about the sharing, prioritization, ordering,
or preemption of coexisting network activities from one
or more applications. In this section, we discuss how
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Figure 2: Graphical representations of cluster computing applications
using coflows.

(a) Two coflows  (b) Coflows in the network

Figure 3: Network modeled as a black box with two ongoing coflows.

coflows make it simpler to reason about cluster applica-
tions and sharing the network between them, as well as
the minimal mechanisms that must be there to take ad-
vantage of the abstraction.

4.1 Preliminaries

We start by defining the application and network models
we will be using throughout the section.

Application Model If we represent a distributed cluster
computing application using a graph G¢ = (V¢ E©)
and V¢ is the set of its stages or functional groups, then
EC is the set of coflows that connect elements of V.
Each coflow ¢(u,v) € E¢ is a collection of flows be-
tween machines in v and v, with an associated objective
function, O(c). We denote the cardinality or the num-
ber of elements in a coflow ¢ by |c|. Figure 2 represents
MapReduce and dataflow applications in Figure 1(a) and
Figure 1(c) expressed using this application model.

Network Model If we denote the physical topology of
the cluster network using a graph G = (VP EF), where
VP and E are the sets of physical machines and links,
a coflow c(u,v) is a subset of paths in E¥’, and u and
v are subsets of V' that might be distributed all over
the network based on some machine allocation or task
scheduling mechanism. For simplicity of exposition, we



represent the network as a black box (N) that connects
all the machines in the cluster (as shown in Figure 3).
Using this abstraction of the network, we can consider
coflows from one or more applications to be competing
for a shared resource and focus on the interactions be-
tween multiple concurrent coflows.

4.2 Interactions Between Coflows

Many applications run simultaneously in a shared cluster,
and multiple coflows can be active in parallel. We can
express the interactions between multiple coflows using
the following concepts.

Sharing Sharing the cluster network among multiple ten-
ants is an active research problem [8,25,26]. Given two
concurrent coflows ¢; and ¢y from two different applica-
tions, we consider how to express their allocations A(.),
of the shared network N/, given their demands D(.).

Reservation schemes [8] are the easiest to articulate:
each coflow gets whatever fraction of A they asked/paid
for. One can also ensure max-min fairness between c;
and cy over N by progressively filling their demands,
D(c;) and D(cg). To provide network proportionality
[25], one just has to maintain A(c1) : A(cz) = |e1] : |eal.
Finally, using coflows, one will be able to include the
network as a resource in an DRF offer [16, 17].

Prioritization Not all applications have the same prior-
ity. While frameworks allow assigning priorities to in-
dividual jobs, they cannot ensure these priorities in the
network. By using priorities as weights, one can pro-
vide larger allocations to coflows from applications with
higher priorities, i.e., A(c1) : A(cz) = P(e1)D(ey) :
P(c2)D(c2), where P(.) is priority function of coflows
C1 and Co.

Preemption When two applications have the same pri-
ority, preemption might be of use [18, 27]. Consider
a shared cluster with two coflows ¢; and ¢, where ¢
has no deadline but the application cannot tolerate loss
(e.g., shuffle in MapReduce) and ¢, belongs to an ap-
plication that can trade accuracy off for lower latency
(e.g., D-Streams [30]). Simply weighing by their pri-
orities will not do in this case; one must consider the
objectives O(cy1) and O(cz) as well as the deadlines to
determine which one to preempt and to what extent.

Ordering All coflows from the same application have
the same priority. However, we often observe an order-
ing of coflows within the same application. Consider the
example Dryad application in Figure 2(b), and assume
that shuffle; is denoted by c;.

Because Dryad does not introduce explicit barriers be-
tween its stages, c3 can start while c; and co are still ac-
tive. However, the progress of cs depends on the progress
of its predecessors, c¢; and co. This suggests a partial or-
dering between the three coflows, which we denote by

c1,c2 > c3. The relationship ‘>’ allows concurrent ex-
ecution of two coflows, whereas ‘>’ denotes a strict or-
dering between them.

4.3 Developing Cluster Applications with Coflows

Using the coflow abstraction, writing a brand new clus-
ter computing application or extending an existing one
to accommodate new communication requirements boils
down to specifying the end points of coflows with respec-
tive priorities, ordering, and objectives. How the func-
tionality of a coflow will be made available is part of the
underlying mechanism, which an application developer
should not have to worry about — they seldom ponder
how a flow moves data from one process to another.

4.4 Immediate Research Agenda

While defining coflow, we have identified several mech-
anism challenges that require immediate attention. We
consider this to be a small victory for the abstraction.

Decide on and Develop a Coordination Mechanism
We have to decide upon the architecture that will make
coflows available to cluster applications and act upon the
priorities, ordering, and objectives attached to individual
coflows. It can be centralized (as seen in many cluster
computing systems), distributed (as idealized in the net-
working literature), or a hybrid of both. Whatever the
choice — even if it is not a one-size-fits-all — it must exist.
We should also investigate the nature of interactions be-
tween various coflows, impacts of such interactions, and
associated tradeoffs.

Optimize Common Coflows Table 2 shows that a hand-
ful of coflows can satisfy most communication require-
ments across a wide spectrum of cluster applications.
We must optimize them and make them available for
reuse. This will ensure less bugs and more optimizations.
An example candidate would be the Weighted Shuffle
Scheduling (WSS) algorithm in [12], which claims to be
an optimal implementation of shuffle in certain scenario.

Define Interfaces Finally, we must define how an appli-
cation will be able to access the coflows exposed by the
coordination mechanism, e.g., whether through the host
OS, or a cluster OS [29], or using some REST-based API.

We should expose interfaces to add new coflows, if
nothing suitable exists, as well as to compose new coflows
using the existing ones as building blocks. Developers
should be able to create distributed cluster applications
without having to reinvent communication solutions.

As we analyze further using coflows and understand
more about the fundamentals of communication require-
ments in cluster computing, we expect to uncover addi-
tional practical and intellectual challenges.



4.5 Evaluating Potentials

The fundamental goal of any abstraction, including coflow,
is to help understand disjoint solutions, to discern es-
sential problems, and finally, to provide intellectual un-
derpinnings to our understanding. Still, one might won-
der about tangible gains from co-optimizing collections
of concurrent flows. We refer to three instances, where
thinking at the level coflows instead of individual flows
have had substantial practical gains and motivated us.

e WSS [12] reported 1.5x improvement in MapReduce-
style shuffles by allowing the slowest flow progress
faster at the expense of faster flows.

e D? [27] doubled the peak load that a datacenter net-
work can support by dropping flows with impending
deadlines in partition-aggregate coflows.

e Orchestra [12] ensured 1.7 improvement of high-
priority coflows through cross-coflow prioritization.

Currently, we are working on developing coflows for stream-

ing dataflows with support for coflow ordering.

S Related Networking Abstractions

Control Plane Abstractions Software Defined Network-
ing or SDN [22] is gaining wide adoption in both academia
and industry. The primary objective of SDN is to ab-
stract away all the control plane mechanisms we use and
replace them with abstractions that allow systematic de-
composition of the problems our protocols try to solve
into composable modules for reuse and conceptual sep-
aration of concerns. Techniques developed in the con-
text of SDN might be useful for optimizing coflow im-
plementations.

Data Plane Abstractions Unlike the control plane, the
data plane has long had abstractions at different layers.
The notion of bits in the physical layer forms frames in
the link layer, which in turn are combined into packets in
the network layer. On top of that, one has the abstraction
of flows between two processes. Not only are these ab-
stractions intellectually appealing, but they are practical
as well — making it easier to express, solve, and optimize
many of the problems we face. Coflows aim to do the
same for cluster computing applications.

6 Conclusion

While there are a large number of cluster computing ap-
plications and a handful of paradigms to express them,
networking is still handled in an ad-hoc manner. This
results in repetition, under-optimization, and a general
state of confusion about the principles underneath. In
this paper, we looked at the communication requirements
of diverse cluster computing applications and distilled re-
sultant networking solutions developed for them to iden-
tify an application-level abstraction, coflow, that can suc-
cinctly represent such requirements. Not only do coflows

provide a cleaner way to design, develop, and optimize
the communication requirements in cluster applications,
but using this abstraction and accompanying application
and network models, we also exposed a set of research
problems that must be addressed by the networking com-
munity — be it using the proposed abstraction or without.
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