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Abstract

Attacks on Emerging Architectures

by

Steven Craig Hanna Jr.

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dawn Song, Chair

New architectures require careful examination of security properties in order to assess
and contain new threats. In light of this, emerging technologies, such as web APIs, medical
devices, and applications on mobile phones, are a new security landscape that has recurring
security problems. We develop new techniques to analyze these applications for security
vulnerabilities, utilizing techniques including: dynamic symbolic execution, binary analysis
and reverse engineering, and wide scale application comparison and classification. We
develop Kudzu, a system for symbolic execution of JavaScript, and use it to evaluate a
wide variety of JavaScript applications in order to find client-side validation vulnerabilities.
Secondly, we use this system to evaluate the security, in practice, of new HTML5 primitives.
Then, we conduct the first publicly available reverse engineering and security evaluation of
a ubiquitous medical device, namely an Automated External Defibrillator. We discovered a
wide array of vulnerabilities and we confirm our findings using COTS software components.
We offer considerations to help guide future development of medical devices. Finally,
we developed Juxtapp, a scalable, efficient system for detecting code reuse in Android
Applications. Using Juxtapp we detected instances of piracy, malware and buggy code reuse
among Android applications. We demonstrate that these techniques are useful at discovering
and/or preventing attacks, in their respective application domains.
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Chapter 1

Introduction

1.1 Overview

New architectures require careful examination of security properties in order to assess and
contain new threats. In light of this, emerging technologies, such as web APIs, medical
devices, and applications on mobile phones, are a new security landscape that has recurring
security problems. We develop new techniques to analyze these applications for security
vulnerabilities, utilizing techniques including: dynamic symbolic execution, binary analysis
and reverse engineering, and wide scale application comparison and classification. We
demonstrate that these techniques are useful at discovering and/or preventing attacks, in
their respective application domains.

First, we discuss Kudzu a system for symbolic execution of JavaScript. We detail how
we automatically explore client-side JavaScript programs, in order to discover client-side
validation vulnerabilities. This new class of vulnerabilities[68] demonstrates how web
applications are becoming increasingly complex as they are layered with new APIs and
paradigms to developing web applications. We further examine how new HTML5 primitives,
those used to create complex client-side JavaScript applications, may be abused by revealing
attacks against postMessage and the client-side persistent storage API. We offer guiding
principles for further primitive development.

Secondly, we discuss the reverse engineering of a publicly available, wide-spread
medical device, namely, the CardiacScience G3 Plus Automated External Defibrillator. Our
investigation reveals that this new frontier of life-critical devices, specifically the CS G3
Plus, lacked features to make the device secure from attacks. We analyze and reviewed this
device for security threats. We use static manual reverse engineering to analyze a medical
device for vulnerabilities. We use BitFuzz, a trace-based dynamic symbolic fuzzer[2], part of
the BitBlaze platform, supplied with parameters from static reverse engineering, to confirm
our manual analysis. We show that this model of AED is susceptible to many threats and
we demonstrate a wide variety of vulnerabilities. These vulnerabilities cause the device to
operate outside of a safe spectrum for medical devices. With these vulnerabilities in mind,
we offer considerations to guide future designs.
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Finally, in the rapidly growing, ubiquitous spectrum of mobile devices, we develop
a system Juxtapp for discovering similarity among Android applications. The mobile
landscape is becoming increasingly dangerous for end users as malicious and pirated
software enter third-party application marketplaces. Consequently, a system for detecting
exploitable bugs, malware, and pirated software is essential to protect the end user. We
develop a scalable system for detecting known bugs, malware, and pirated software. Juxtapp
is a scalable, efficient system, capable of quickly and accurately detecting similarities among
Android applications. We demonstrate its efficacy on a large repository of publicly available
applications.

1.1.1 A Symbolic Execution Framework for JavaScript

The web application landscape has rapidly changed with the development of client-side
JavaScript applications and new HTML primitives. These rich web applications have a
significant fraction of their code written in client-side scripting languages, such as JavaScript.
As an increasing fraction of code executes on the client, client-side security vulnerabilities
(such as client-side code injection [66, 56, 77, 68]) are becoming a prominent threat.
However, a majority of the research on web vulnerabilities so far has focused on server-
side application code written in PHP and Java. There is a growing need for powerful
analysis tools for the client-side components of web applications. This chapter presents
novel techniques and a system for automatically exploring the execution space of client-side
JavaScript code. To explore this execution space, our techniques generate new inputs to
cover a program’s value space using dynamic symbolic execution of JavaScript, and to cover
its event space by automatic GUI exploration.

Dynamic symbolic execution for JavaScript has numerous applications in web security.
We focus on one of these applications, automatically finding client-side code injection
vulnerabilities. A client-side code injection attack occurs when client-side code passes
untrusted input to a dynamic code evaluation construct, without proper validation or saniti-
zation, allowing an attacker to inject JavaScript code that runs with the privileges of a web
application.

JavaScript execution space exploration is challenging for many reasons. In particular,
JavaScript applications accept many kinds of input, and those inputs are structured just as
strings. For instance, a typical application might take user input from form fields, messages
from its server via XMLHttpRequest, and data from code running concurrently in other
browser windows. Each kind of input string has its own format, so developers use a
combination of custom routines and third-party libraries to parse and validate the inputs they
receive. To effectively explore a program’s execution space, a tool must be able to supply
values for all of these different kinds of inputs and reason about how they are parsed and
validated.

We demonstrate a system capable of automatically exploring both the value space and
event space of JavaScript applications to demonstrate the capability of our system to discover
a wide variety of client-side input validation vulnerabilities.

2



1.1.2 The Emperor’s New APIs: On the (In)Secure Usage of New
Client-side Primitives

Furthermore, with the growing demand for interactivity from Web 2.0 applications, web
application logic is shifting from the server to the browser. This need to support complex
client-side logic and cross-domain interaction has led to a proliferation of new client-side
abstractions, such as the proposals in HTML5. A number of major web application providers
(including Google and Facebook) have responded by offloading several security-critical
parts of their functionality to the client.

However, due to the nascence of these primitives, the security implications of using
these new client-side abstractions on the web application’s overall security have received
little evaluation thus far. To investigate this issue, we selected two primitives as case studies
representative of the class of emerging client-side constructs. First, we study systems using
postMessage, a primitive that enables cross-origin communication within the web browser.
Specifically, we analyzed two new purely client-side protocols, namely Google Friend
Connect and Facebook Connect, which are layered on postMessage. As a second case study,
we analyze the usage of client-side storage primitives (such as HTML5 localStorage,
webDatabase API and database storage in Google Gears) by popular applications such
as Gmail, Google Docs, Google Buzz and so on.

The postMessage API is a message passing mechanism that can be used for secure
communication of primitive strings between browser windows. However, if developers do
not use the security features of the primitive fully or implicitly trust data arriving on this
channel, a variety of attacks can result. We aim to study how consistently this API is used
securely in practice, by analyzing two prominent client-side protocols using postMessage,
namely Facebook Connect and Google Friend Connect. To systematically evaluate the secu-
rity of these protocols, we first reverse engineer the protocol mechanics/semantics as their
designs were not documented. In our evaluation, we find that both protocol implementations
use the postMessage primitive unsafely, opening the protocol to severe confidentiality and
integrity attacks. Worse, we observed that several sites using this protocol further widen
their attack surface—in one we were able to achieve arbitrary code injection. We were
able to concretely demonstrate proof-of-concept exploits that allow unauthorized web sites
to compromise users protocol sessions, which can lead to stealing of users data or even
injection of arbitrary code into benign web sites using Facebook Connect and Google Friend
Connect protocols. In our evaluation, we also observed variations—developers, belonging
to the same organization and sometimes of the same application, used the primitives safely
in some places while using them unsafely in others. The vulnerabilities in communication
primitives have been alluded to in research literature [68, 27]. We responsibly disclose these
vulnerabilities and find that in some cases, developers deliberately omit checks in order to
ensure compatibility.

As a second representative of a purely client-side abstraction, we study client-side data
storage primitives and various applications that rely on these. We find that a large fraction
(7 out of 11) of the web applications, including Google Buzz, Gmail and Google Maps,
place excessive trust on data in client-side storage. As a result of this reliance, transient
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attacks (such as a cross-site scripting vulnerability) can persist across sessions (even up to
months), while remaining invisible to the web server [48, 76]. In our results, as in the case
of the postMessage study, we observed a similar inconsistency in developer’s sanitization
of the dangerous data. Our results show that despite some prior knowledge of the storage
vulnerabilities [76], in practice, applications find it difficult to sanitize dangerous data at
all places. However, we also note the possibility that in some cases developers may choose
to omit sanitizing database input and output because of assurance that other parts of the
development framework filter attacks properly.

We observe a common problem with these new client-side primitives: to ensure security,
every use of the primitive needs to be accompanied by custom sanity checks. This leads
to repeated effort of developing sanity checks by each application that uses the primitive.
And, often even within one application similar checks may be distributed throughout the
application code, a practice that is prone to errors. We propose the economy of liabilities
principle in designing security primitives—a primitive must minimize the liability that the
user undertakes to ensure application security. For example, in this context, the principle of
economy of liabilities implies that client-side primitives should internally perform saniti-
zation functionality critical to achieve the intended security property, as much as possible.
New primitives today ignore this design principle, achieving security only ‘in principle’
rather than ‘in practice’1. We hope the economy of liabilities principle will guide the designs
of future primitives.

1.1.3 Take Two Software Updates and See Me in the Morning: The
Case for Software Security Evaluations of Medical Devices

Life-critical medical devices increasingly contain significant embedded software respon-
sible for safe and effective patient care. Devices range from life-sustaining implantable
pacemakers to life-supporting devices such as drug infusion pumps, insulin pumps, and
cardiac defibrillator monitors. While recent research analyzes the wireless security but
not the software of one implantable medical device, our work considers the embedded
software [46]. Little is known about the state of affairs of the security of embedded medical
device software itself. Furthermore, medical devices have the unique property that they
must do everything they can to fail open in order to ensure that even in the presence of
an adverse event a life-critical device continues to operate. Studying the susceptibility
of medical devices to malware is increasingly important because (1) software in medical
devices is becoming increasingly complex; (2) more and more medical devices are becoming
networked, with wireless Internet connectivity; (3) more medical devices are evolving from
electro-mechanical to software controlled devices. Over the last three decades in the U.S.
marketplace, software has played an increasing role in both the function of medical devices
and as cause for medical device recalls[39]. In the early 1980s, approximately 6% of recalls
were due to computer software issues [83]. The U.S. Food and Drug Administration reports
that software caused approximately 18% of the recalls for “510k-approved” devices between
2005 and 2009 [36, p.80]. Software is currently the third leading cause of recalls—just

1giving the “Emperor” a false impression of his shiny new clothes
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behind design flaws (23%) and manufacturing flaws (37%), but ahead of labeling flaws
(12%). We analyzed records in the FDA database of Medical & Radiation Emitting Device
Recalls—finding that between 2002–2010, there were 537 recalls of software-based medical
devices affecting as many as 1,527,311 individual devices in the U.S. marketplace.2

Furthermore, today, many medical devices benefit from a safety blanket of physical
isolation. A medical device isolated from other computing devices is less exposed to
malware. However, many medical devices are beginning to include wireless communication
and Internet connectivity—exposing devices to a much larger surface of potential threats.
Therefore, the best way to control the spread of medical malware is to focus on reducing
the susceptibility of medical devices by making software more resistant against intentional
attacks.

In order to assess the state of current security threats, we perform the first public software
security analysis of a medical device, namely, an automatic external defibrillator. AEDs are
responsible for evaluating a patient’s heart rhythm, and if required, providing a shock to
attempt to restore the patient’s heart rhythm to normal. We analyzed the (1) Cardiac Science
G3 Plus AED model 9390A, an automatic external defibrillator manufactured in 20053, and
(2) the Windows-based utilities for updating the AED and configuring the device.

We demonstrate a set of vulnerabilities that makes the device potentially susceptible to
malware. The discovered vulnerabilities include a buffer overflow that leads to arbitrary code
execution, cryptographic flaws in password protection, and a software update mechanism
that accepts counterfeit firmware. These issues highlight the impending threat of malware
and in that light, we discuss a hypothetical construction of a worm.

We use these vulnerabilities to motivate potential solutions to defend against malware,
as well as open challenges in applying computer security principles to medical devices.
For instance, a secure update mechanism has the additional challenge of key management
and power constraints, making seemingly simple solutions more nuanced. Our assessment
demonstrates real vulnerabilities in medical devices and their software and gives a first
glimpse into the viability of malware to expect in software-based medical devices.

1.1.4 Juxtapp: A Scalable System for Detecting Code Reuse Among
Android Applications

As mobile devices (e.g., smartphones, tablets) gain popularity, software marketplaces have
become centralized locations for users to download applications. For the Android operating
system, Google hosts the official Android Market while Amazon and many others provide
third party markets. The wide range of devices that are Android-compatible combined with
the open source nature of the Android operating system and development platform have led
to explosive growth of the Android market share. As of August of 2011, Android has grown
to a 52% market share[87].

2Some devices are affected by multiple recalls. An individual device is counted once for each recall.
3The G3 Plus is still the flagship AED offered by the manufacturer.

5



The rapidly increasing volume of applications, increased demand for diversified
functionality, and existence of piracy and malware places large obstacles in the way of a
healthy and sustainable Android market.

Vulnerable code reuse. To meet the demand for a variety of applications and func-
tionality, developers must adapt their applications to customer needs and balancing the
tasks of debugging, all of which can lead to buggy or vulnerable code. Besides coding
mistakes, Android developers often misuse coding idioms in Android, either due to copying
and pasting of vulnerable code or lack of developer understanding[37, 32]. Even worse,
legitimate applications may copy buggy code and libraries directly from programming
forums and unwittingly propagate potentially security critical bugs into their programs.
For instance, Google has provided sample code to interface with the License Verification
Library and the In-Application Billing APIs, which are responsible for verifying that a
user is authorized to execute a program and purchasing virtual items within an application,
respectively[10, 9]. Google explicitly warns developers that they need to modify certain
parts of the code, because the unmodified template code is subject to certain security
vulnerabilities and requires developer intervention in order to ensure security properties.

Malware. With the exploding growth in the number of Android applications, the oc-
currence of Android malware has also increased. As of August 2011, users are 2.5 times
more likely to encounter malware on their mobile devices than only 6 months ago and it is
estimated that as many as 1 million users have been exposed to malware[15].

Piracy. Furthermore, the third party Android software marketplaces are home to pi-
rated applications[6]. A common occurrence is for an illegitimate author to repackage and
rebrand a paid or popular game or application with additional program functionality in order
to generate revenue and even execute malicious code.

The current markets usually rely on two approaches to identify and remove potentially
dangerous applications: 1) review-based approach, which requires mostly expert manual
review and security examination, and 2) reactive approach, e.g., user policing, reporting,
and user ratings as indicators that an application may be misleading in its functionality or
misbehaving. Given the existence of hundreds of thousands of applications on the markets,
neither approach is scalable and reliable enough to mitigate threats to users. To empower
and expedite this process, we need an automated analysis of Android applications in order
to pare down large application datasets into a small set of noteworthy candidates for further
investigation.

Each of the aforementioned problems appears to be unrelated. However, we observe
a common invariant among them, namely, code reuse, which sheds light on the fact that a
unified approach in detecting common code (or code similarity) may address all of our goals.
Using this observation, we propose to build a fast and scalable infrastructure for detecting
code reuse in Android applications which allows for 1) early detection and developer
notification of known vulnerable or buggy code, 2) detection of instances of known malware,
either in isolation or repackaged with an innocuous program, and 3) detection of pirated
applications.
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It is a challenging task to develop a system to automatically detect code reuse in Android
applications. The system must be able to quickly compare code and detect reuse, and scale
to hundreds of thousands applications or more; the system need to be resilient to certain
levels of code modification and obfuscation, which are common in Android applications; the
system should be able to represent the application being compared in a meaningful, accurate
way in order to find the so-called needle-in-a-haystack differences in applications, all the
while maintaining low false positive and false negative rates.

As a first step solution, we use k-grams of opcode sequences of compiled applications
and feature hashing[54, 50] to efficiently tackle the problem at large-scale. k-grams of
opcode sequences have been shown to be resilient to certain types of code modification and
can be efficiently extracted from applications. Additionally, feature hashing has been shown
to work well in dimensionality reduction and classification. We combine this technique
with a variety of domain-specific knowledge in order evaluate code reuse, instances of
known malware, and piracy in Android applications. We use k-grams and feature hashing
combined in order to have a robust and efficient representation of applications. Using this
representation, we have a fast way to compute pairwise similarity between applications to
detect code reuse among hundreds of thousand of applications.

In light of this, we propose Juxtapp, a scalable architecture for quickly detecting code
reuse and similarity in Android applications. We implemented our distributed architecture
using Hadoop and ran it on Amazon EC2. It is capable of fast, incremental additions to the
analysis dataset, meaning it is amenable to frequent updates and additions to the pool of
applications. We apply Juxtapp to address three different types of problems: vulnerable code
reuse, known malware, and piracy. We evaluate Juxtapp’s ability to detect these problems
on 58,000 applications, ranging in size from hundreds of kilobytes to tens of megabytes,
which were collected from the official Android market and the Anzhi third party market[1].
We find that the system performs and scales well.

7



8



Chapter 2

A Symbolic Execution Framework for
JavaScript

2.1 Introduction

As AJAX applications gain popularity, client-side JavaScript code is becoming increasingly
complex. However, few automated vulnerability analysis tools for JavaScript exist. In this
chapter, we describe the first system for exploring the execution space of JavaScript code
using symbolic execution. To handle JavaScript code’s complex use of string operations,
we design a new language of string constraints and implement a solver for it. We build
an automatic end-to-end tool, Kudzu, and apply it to the problem of finding client-side
code injection vulnerabilities. Kudzu explores both the event space, using the GUI explorer
and the value space, using our string solver. In experiments on 18 live web applications,
Kudzu automatically discovers 2 previously unknown vulnerabilities and 9 more that were
previously found only with a manually-constructed test suite.

Contributions1.

In summary, this chapter makes the following main contributions:

• We build the first symbolic execution engine for JavaScript, using our constraint
solver.

• Combining symbolic execution of JavaScript with automatic GUI exploration and
other needed components, we build the first end-to-end automated system for explo-
ration of client-side JavaScript.

• We demonstrate the practical use of our implementation by applying it to automatically
discovering 11 client-side code injection vulnerabilities, including two that were
previously unknown.

1In this chapter, I was partially responsible for writing the path constraint collector, which was
supplemented and finished by Devdatta. Prateek, Devdatta and myself instrumented the browser for
trace extraction. I wrote the input feedback mechanism in the browser, and the event space explorer.
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2.2 Problem Statement and Overview

In this chapter we state the problem we focus on, exploring the execution space of JavaScript
applications; describe one of its applications, finding client-side code injection vulnerabili-
ties; and give an overview of our approach.

Problem statement. We develop techniques to systematically explore the execution space
of JavaScript application code.

JavaScript applications often take many kinds of input. We view the input space of a
JavaScript program as split into two categories: the event space and the value space.

• Event space. Rich web applications typically define tens to hundreds of JavaScript
event handlers, which may execute in any order as a result of user actions such as
clicking buttons or submitting forms. Event handler code may check the state of GUI
elements (such as check-boxes or selection lists). The ordering of events and the state
of the GUI elements together affects the behavior of the application code.

• Value space. The values of inputs supplied to a program also determine its behavior.
JavaScript has numerous interfaces through which input is received:

– User data. Form fields, text areas, and so on.

– URL and cross-window communication abstractions. Web principals hosted in
other windows or frames can communicate with JavaScript code via inter-frame
communication abstractions such as URL fragment identifiers and HTML 5’s
proposed postMessage, or via URL parameters.

– HTTP channels. Client-side JavaScript code can exchange data with its originat-
ing web server using XMLHttpRequest, HTTP cookies, or additional HTTP
GET or POST requests.

This chapter primarily focuses on techniques to systematically explore the value space
using symbolic execution of JavaScript, with the goal of generating inputs that exercise new
program paths. However, automatically exploring the event space is also required to achieve
good coverage. To demonstrate the efficacy of our techniques in an end-to-end system,
we combine symbolic execution of JavaScript for the value space with a GUI exploration
technique for the event space. This full system is able to automatically explore the combined
input space of client-side web application code.

Application: finding client-side code injection vulnerabilities. Exploring a program’s
execution space has a number of applications in the security of client-side web applications.
In this chapter, we focus specifically on one security application, finding client-side code
injection vulnerabilities.

Client-side code injection attacks, which are sometimes referred to as DOM-based XSS,
occur when client-side code uses untrusted input data in dynamic code evaluation constructs
without sufficient validation. Like reflected or stored XSS attacks, client-side code injection
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vulnerabilities can be used to inject script code chosen by an attacker, giving the attacker the
full privileges of the web application. We call the program input that supplies the data for
an attack the untrusted source, and the potentially vulnerable code evaluation construct the
critical sink. Examples of critical sinks include eval and HTML creation interfaces like
document.write and .innerHTML.

In our threat model, we treat all URLs and cross-window communication abstractions
as untrusted sources, as such inputs may be controlled by an untrusted web principal. In
addition, we also treat user data as an untrusted source because we aim to find cases where
user data may be interpreted as code. The severity of attacks from user-data on the client-side
is often less severe than a remote XSS attack, but developers tend to fix these and Kudzu takes
a conservative approach of reporting them. HTTP channels such as XMLHttpRequest are
currently restricted to communicating with a web server from the same domain as the client
application, so we do not treat them as untrusted sources. Developers may wish to treat
HTTP channels as untrusted in the future when determining susceptibility to cross-channel
scripting attacks [28], or when enhanced abstractions (such as the proposed cross-origin
XMLHttpRequest [79]) allow cross-domain HTTP communication directly from JavaScript.

To effectively find XSS vulnerabilities, we require two capabilities: (a) generating
directed test cases that explore the execution space of the program, and (b) checking, on a
given execution path, whether the program validates all untrusted data sufficiently before
using it in a critical sink. Custom validation checks and parsing routines are the norm
rather than the exception in JavaScript applications, so our tool must check the behavior of
validation rather than simply confirming that it is performed.

In previous work, we developed a tool called FLAX which employs taint-guided fuzzing
for finding client-side code injection attacks [68]. However, FLAX relies on an external,
manually developed test harness to explore the path space. Kudzu, in contrast, automatically
generates a test suite that explores the execution space systematically. Kudzu also uses
symbolic reasoning (with its constraint solver) to check if the validation logic employed by
the application is sufficient to block malicious inputs — this is a one-step mechanism for
directed exploit generation as opposed to multiple rounds of undirected fuzzing employed
in FLAX. Static analysis techniques have also been employed for JavaScript [43] to reason
about multiple paths, but can suffer from false positives and do not produce test inputs
or attack instances. Symbolic analyses and model-checking have been used for server-
side code [60, 25]; however, the complexity of path conditions we observe requires more
expressive symbolic reasoning than supported by tools for server-side code.

Approach Overview. The value space and event space of a web application are two different
components of its input space: code reachable by exploring one part of the input space
may not be reachable by exploring the other component alone. For instance, exploring the
GUI event space results in discovering new views of the web application, but this does not
directly affect the coverage that can be achieved by systematically exploring all the paths
in the code implementing each view. Conversely, maximizing path coverage is unlikely to
discover functionality of the application that only happens when the user explores a different
application view. Therefore, Kudzu employs different techniques to explore each part of the
input space independently.
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Value space exploration. To systematically explore different execution paths, we develop
a component that performs dynamic symbolic execution of JavaScript code, and a new
constraint solver that offers the desired expressiveness for automatic symbolic reasoning.

In dynamic symbolic execution, certain inputs are treated as symbolic variables. Dy-
namic symbolic execution differs from normal execution in that while many variable have
their usual (concrete) values, like 5 for an integer variable, the values of other variables
which depend on symbolic inputs are represented by symbolic formulas over the symbolic
inputs, like input1 + 5. Whenever any of the operands of a JavaScript operation is symbolic,
the operation is simulated by creating a formula for the result of the operation in terms of the
formulas for the operands. When a symbolic value propagates to the condition of a branch,
Kudzu can use its constraint solver to search for an input to the program that would cause
the branch to make the opposite choice.

Event space exploration. As a component of Kudzu we develop a GUI explorer that
searches the space of all event sequences using a random exploration strategy. Kudzu’s GUI
explorer component randomly selects an ordering among the user events registered by the
web page, and automatically fires these events using an instrumented version of the web
browser. Kudzu also has an input-feedback component that can replay the sequence of GUI
events explored in any given run, along with feeding new values generated by the constraint
solver to the application’s data inputs.

Testing for client-side code injection vulnerabilities. For each input explored, Kudzu
determines whether there is a flow of data from an untrusted data source to a critical sink.
If it finds one, it seeks to determine whether the program sanitizes and/or validates the
input correctly to prevent attackers from injecting dangerous elements into the critical sink.
Specifically, it attempts to prove that the validation is insufficient by constructing an attack
input. Chapter 2.3.2 combines the results of symbolic execution with a specification for
attacks to create a constraint solver query. If the constraint solver finds a solution to the
query, it represents an attack that can reach the critical sink and exploit a client-side code
injection vulnerability.

2.3 End-to-End System Design

Herein, we describe the various components that work together to make a complete Kudzu-
based vulnerability-discovery system work. For reference, the relationships between the
components are summarized in Figure 2.1.

2.3.1 System Components

First, we discuss the core components that would be used in any application of Kudzu: the
GUI explorer that generates input events to explore the event space, the dynamic symbolic
interpreter that performs symbolic execution of JavaScript, the path constraint extractor
that builds queries based on the results of symbolic execution, the constraint solver that
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Figure 2.1: Architecture diagram for Kudzu. The components drawn in the dashed box
perform functions specific to our application of finding client-side code injection. The
remaining components are application-agnostic. Components shaded in light gray are the
core contribution of this paper.

finds satisfying assignments to those queries, and the input feedback component that uses
the results from the constraint solver as new program inputs.

The GUI explorer. The first step in automating JavaScript application analysis is exploring
the event space of user interactions. Each event corresponds to a user interaction such as
clicking a check-box or a button, setting focus on a field, adding data to data fields, clicking
a link, and so on. Kudzu currently explores the space of all sequences of events using a
random exploration strategy. One of the challenges is to comprehensively detect all events
that could result in JavaScript code execution. To address this, Kudzu instruments the
browser functions that process HTML elements on the current web page to record when an
event handler is created or destroyed. Kudzu’s GUI explorer component randomly selects an
ordering among the user events registered by the web page and executes them2. The random
seed can be controlled to replay the same ordering of events. While invoking handlers,
the GUI component also generates (benign) random test strings to fill text fields. (Later,
symbolic execution will generate new input values for these fields to explore the input space
further.) Links that navigate the page away from the application’s domain are cancelled,
thereby constraining the testing to a single application domain at a time. In the future, we
plan to investigate alternative strategies to prioritize the execution of events discovered as
well.

Dynamic symbolic interpreter. Kudzu performs dynamic symbolic execution by first
recording an execution of the program with concrete inputs, and then symbolically interpret-
ing the recorded execution in a dynamic symbolic interpreter. For recording an execution
trace, Kudzu employs an existing instrumentation component [68] implemented in the

2Invoking an event handler may invalidate another handler (for instance, when the page navigates as a
result). In that case, the invalidated handlers are ignored and if new handlers are created by the event that
causes invalidation, these events are explored subsequently.
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web browser’s JavaScript interpreter. For each JavaScript bytecode instruction executed,
it records the semantics of the operation, its operands and operand values in a simplified
intermediate language called JASIL[68]. The set of JavaScript operations captured includes
all operations on integers, booleans, strings, arrays, as well as control-flow decisions, ob-
ject types, and calls to browser-native methods. For the second step, dynamic symbolic
execution, we have developed from scratch a symbolic interpreter for the recorded JASIL
instructions.

Symbolic inputs for Kudzu are configurable to match the needs of an application. For
instance, in the application we consider, detecting client-side code injection, all URL
data, data received over cross-window communication abstractions, and user data fields
are marked symbolic. Symbolic inputs may be strings, integers, or booleans. Symbolic
execution proceeds on the JASIL instructions in the order they are recorded in the execution
trace. At any point during dynamic symbolic execution, a given operand is either symbolic
or concrete. If the operand is symbolic, it is associated with a symbolic value; otherwise, its
value is purely concrete and is stored in the dynamic execution trace. When interpreting a
JASIL operation in the dynamic symbolic interpreter, the operation is symbolically executed
if one or more of its input operands are symbolic. Otherwise the operation of the symbolic
interpreter on concrete values would be exactly the same as the real JavaScript interpreter,
so we simply reuse the concrete results already stored in the execution trace.

The symbolic value of an operand is a formula that represents its computation from
the symbolic inputs. For instance, for the JASIL assignment operation y := x, if x is
symbolic (say, with the value input1 + 5), then symbolic execution of the operation copies
this value to y, giving y the same symbolic value. For an arithmetic operation, say y :=
x1 + x2 where x1 is symbolic (say with value input2 + 3) and x2 is not (say with the
concrete value 7), the symbolic value for y is the formula representing the sum (input2 +10).
Operations over strings and booleans are treated in the same way, generating formulas that
involve string operations like match and boolean operations like and. At this point, string
operations are treated simply as uninterpreted functions. During the symbolic execution,
whenever the symbolic interpreter encounters an operation outside the supported formula
grammar, it forces the destination operand to be concrete. For instance, if the operation is x
= parseFloat(s) for a symbolic string s, x and s can be replaced with their concrete
values from the trace (say, 4.3 and “4.3”). This allows symbolic computation to continue
for other values in the execution.

Path constraint extractor. The execution trace records each control-flow branch (e.g.,
if statement) encountered during execution, along with the concrete value (true or false)
representing whether the branch was taken. During symbolic execution, the path constraint
extractor records the corresponding branch condition if it is symbolic. As execution con-
tinues, the formula formed by conjoining the symbolic branch conditions (negating the
conditions of branches that were not taken) is called the path constraint. If an input value
satisfies the path constraint, then the program execution on that input will follow the same
execution path.

To explore a different execution path, Kudzu selects a branch on the execution path
and builds a modified path constraint that is the same up to that branch, but that has the
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negation of that branch condition (later conditions from the original branch are omitted). An
input that satisfies this condition will execute along the same path up to the selected branch,
and then explore the opposite alternative. There are several strategies for picking the order
in which branch conditions can be negated — Kudzu currently uses a generational search
strategy [42].

Input feedback. Solving the path constraint formula using the solver creates a new input
that explores a new program path. These newly generated inputs must be fed back to the
JavaScript program: for instance simulated user inputs must go in their text fields, and GUI
events should be replayed in the same sequence as on the original run. The input feedback
component is responsible for this task. As a particular HTML element (e.g a text field) in
a document is likely allocated a different memory address on every execution, the input
feedback component uses XPath [86] and DOM identifiers to uniquely identify HTML
elements across executions and feed appropriate values into them. If an input comes from an
attribute for a DOM object, the input feedback component sets that attribute when the object
is created. If the input comes via a property of an event that is generated by the browser
when handling cross-window communication, such as the origin and data properties of
a postMessage event, the component updates that property when the JavaScript engine
accesses it. Kudzu instruments the web browser to determine the context of accesses, to
distinguish between accesses coming from the JavaScript engine and accesses coming from
the browser core or instrumentation code.

2.3.2 Application-specific components

Next, we discuss three components that are specialized for the task of finding client-side
code injection vulnerabilities: a sink-source identification component that determines which
critical sinks might receive untrusted input, a vulnerability condition extractor that captures
domain knowledge about client-side code injection attacks, and the attack verification
component that checks whether inputs generated by the tool in fact represent exploits.

Sink-source identification. To identify if external inputs are used in critical sink operations
such as eval or document.write, we perform a dynamic data flow analysis on the
execution trace. As outlined earlier, we treat all URL data, data received over cross-
window communication abstractions (such as postMessage), and data filled into user
data fields as potentially untrusted. The data flow analysis is similar to a dynamic taint
analysis. Any execution trace that reveals a flow of data to a critical sink is subject to further
symbolic analysis for exploit generation. We use an existing framework, FLAX, for this
instrumentation and taint-tracking [68] in a manner that is faithful to the implementation of
JavaScript in the WebKit interpreter.

Vulnerability condition extractor. An input represents an attack against a program if it
passes the program’s validation checks, but nonetheless implements the attacker’s goals (i.e.,
causes a client-side code injection attack) when it reaches a critical sink. The vulnerability
condition extractor collects from the symbolic interpreter a formula representing the (possi-
bly transformed) value used at a critical sink, and combines it with the path constraint to
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create a formula describing the program’s validation of the input.3. To determine whether
this value constitutes an attack, the vulnerability condition extractor applies a sink-specific
vulnerability condition specification, which is a (regular) grammar encoding a set of strings
that would constitute an attack against a particular sink. This specification is conjoined with
the formula representing the transformed input to create a formula representing values that
are still dangerous after the transformation.

For instance, in the case of the eval sink, the vulnerability specification asserts that
a valid attack should be zero or more statements each terminated by a ‘;’, followed by
the payload. Such grammars can be constructed by using publicly available attack pat-
terns [47]. The tool’s attack grammars are currently simple and can be extended easily for
comprehensiveness and to incorporate new attacks.

To search only for realistic attacks, the specification also incorporates domain knowledge
about the possible values of certain inputs. For instance, when a string variable corresponds
to the web URL for the application, we assert that the string starts with the same domain as
the application.

Attack verification. Kudzu automatically tests the exploit instance by feeding the input
back to the application, and checking if the attack payload (such as a script with an alert
message) is executed. If this verification fails, Kudzu does not report an alarm.

2.4 Experimental Evaluation

We have built a full implementation of Kudzu using the WebKit browser, with 650, 7430
and 2200 lines of code in the path constraint extraction component, constraint solver, and
GUI explorer component, respectively. The system is written in a mixture of C++, Ruby,
and OCaml languages.

We evaluate Kudzu with three objectives. One objective is to determine whether Kudzu
is practically effective in exploring the execution space of real-world applications and
uncovering new code. The second objective is to determine the effectiveness of Kudzu
as a stand-alone vulnerability discovery tool — whether Kudzu can automatically find
client-side code injection vulnerabilities and prune away false reports. Finally, we measure
the efficiency of the constraint solver. Our evaluation results are promising, showing that
Kudzu is a powerful system that finds previously unknown vulnerabilities in real-world
applications fully automatically.
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Figure 2.2: Distribution of string operations in our subject applications.

2.4.1 Experiment Setup

We select 18 subject applications consisting of popular iGoogle gadgets and AJAX applica-
tions, as these were studied by our previous tool FLAX [68]. FLAX assumes availability of
an external (manually developed) test suite to seed its testing; in contrast, Kudzu automati-
cally generates a more comprehensive test suite and finds the points of vulnerability without
requiring any external test harness a priori. Further, in our experiments Kudzu discovers 2
new vulnerabilities within a few hours of testing which were missed by the FLAX because
of its lack of coverage. In addition, as we show later in this chapter, many of the generated
constraints are highly complex and not suitable for manual inspection or fuzzing, whereas
Kudzu either asserts the safety of the validation checks or finds exploits for vulnerabilities
in one iteration as opposed to many rounds of random testing.

To test each subject application, we seed the system with the URL of the application.
For the gadgets, the URLs are the same as those used by iGoogle page to embed the gadget.
We configure Kudzu to give a pre-prepared username and login password for applications
that required authentication. We report the results for running each application under Kudzu,
capping the testing time to a maximum of 6 hours for each application. All tests ran on a
Ubuntu 9.10 Linux workstation with 2.2 GHz Intel dual-core processors and 2 GB of RAM.

3Sanitization for critical client-side sink operations may happen on the server side (when data is sent
back via XMLHttpRequest). Our implementation handles this by recognizing such transformations using
approximate tainting techniques [68] for data transmitted over XMLHttpRequest
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Application # of new Initial / Final Bug
inputs Code Coverage found

Academia 20 30.27 / 76.47% X
AJAXIm 15 49.58 / 77.67% X

FaceBook Chat 54 26.85 / 76.84% -
ParseUri 13 53.90 / 86.10% X

Plaxo 31 5.72 / 76.43% X

AskAWord 10 29.30 / 67.95 % X
Birthday Reminder 27 59.47 / 73.94% -

Block Notes 457 65.06 / 71.50 % X
Calorie Watcher 16 64.54 / 73.53% -

Expenses Manager 133 61.09 / 76.56% -
Listy 19 65.31 / 79.73% X

Notes LP 25 46.62 / 76.67% -
Progress Bar 12 63.60 / 75.09% -

Simple Calculator 1 46.96 / 80.52% X
Todo List 15 72.51 / 86.41% X
TVGuide 6 30.39 / 75.13% X

Word Monkey 20 14.84 / 75.36% X
Zip Code Gas 11 59.05 / 74.28% -

Average 49 46.95 / 76.68% 11

Table 2.1: The top 5 applications are AJAX applications, while the rest are Google/IG
gadget applications. Column 2 reports the number of distinct new inputs generated, and
column 3 reports the increase in code coverage from the initial run to and the final run.

2.4.2 Results

Table 2.1 presents the final results of testing the subject applications. The summary of our
evaluation highlights three features of Kudzu: (a) it automatically discovers new program
paths in real applications, significantly enhancing code coverage; (b) it finds 2 client-
side code injection in the wild and several in applications that were known to contain
vulnerabilities; and (c) Kudzu significantly prunes away most false positives, successfully
discarding cases that do employ sufficient validation checks. In our experiments we had no
false positives. However, Kudzu can have false positives occur when the symbolic formula
in our constraint language does not perfectly match the underlying JavaScript being executed
in the browser. This is most prevalent in the transformation of regular expressions to our
constraint language, in which we must have explicit and controlled expansions of symbolic
formulas, in order to make the solution tractable. We discuss the cause of false positives in
Chapter 2.4.2.1.

Characteristics of string operations in our applications.

Constraints arising from our applications have an average of 63 JavaScript string op-
erations, while the remaining are boolean, logical and arithmetic constraints. Figure 2.2
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groups the observed string operations by similarity. The largest fraction are operations
like indexOf that take string inputs and return an integer, which motivate the need for
a solver that reasons about integers and strings simultaneously. A significant fraction of
the operations, including substring, split and replace, implicitly give rise to new
strings from the original one, thereby giving rise to constraints involving multiple string
variables. Of the match, split and replace operations, 31% are regular expression
based. Over 33% of the regular expressions have one or more capturing parentheses. Captur-
ing parentheses in regular expression based match operations lead to constraints involving
multiple string variables, similar to operations such as split.

These characteristics show that a significant fraction of the string constraints arising
in our target applications require a solver that can reason about multiple string variables.
We empirically see examples of complex regular expressions as well as concatenation
operations, which stresses the need for our solver that handles both word equations and
regular expression constraints. Prior to this work, off-the-shelf solvers did not support word
equations and regular expressions simultaneously.

Vulnerability Discovery. Kudzu is able to find client-side code injection vulnerabili-
ties in 11 of the applications tested. 2 of these were not known prior to these experi-
ments and were missed by FLAX. One of them is on a social-networking application
(http://plaxo.com) that was missed by our FLAX tool because the vulnerability ex-
ists on a page linked several clicks away from the initial post-authentication page. The
vulnerable code is executed only as part of a feature in which a user sets focus on a text box
and uses it to update his or her profile. This is one of the many different ways to update
the profile that the application provides. Kudzu found that only one of these ways resulted
in a client-side code injection vulnerability, while the rest were safe. In this particular
functionality, the application fails to properly validate a string from a postMessage event
before using it in an eval operation. The application implicitly expects to receive this
message from a window hosted at a sub-domain of facebook.com; however, Kudzu
automatically determines that any web principal could inject any data string matching the
format FB_msg:.*{.*}. This subsequently results in code injection because the vulner-
able application fails to validate the origin of the sender and the structure of JSON string
before its use in eval.

The second new vulnerability was found in a ToDo Google/IG gadget. Similar to the
previous case, the vulnerability becomes reachable only when a specific value is selected
from a dropdown box. This interaction is among many that the gadget provides and we
believe that Kudzu’s automatic exploration is the key to discovering this use case. In several
other cases, such as AjaxIM, the vulnerable code is executed only after several events are
executed after initial sign-in page—Kudzu automatically reaches them during its exploration.

Kudzu did not find vulnerabilities in only one case that FLAX reported a bug. This
is because the vulnerability was patched in the time period between our experimental
evaluation of FLAX and Kudzu.

Code and Event-space Coverage. Table 2.1 shows the code coverage by executing the
initial URL, and the final coverage after the test period. Measuring code coverage in a
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Figure 2.3: For each application, the lower-left and lower-right bars represent the amount
of code compiled and executed initially when the application was visited during the testing
period. The upper-left and upper-right bars represent the additional amount of code compiled
and code executed, respectively, when Kudzu was used to explore the application. The
stacked bars represent the total amount of instructions compiled and executed, where the
partitions represent the absolute increase in number of instructions when Kudzu was used to
explore the application.
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Figure 2.4: For each application, the lower-left and lower-right bars represent the amount
of code compiled and executed initially when the application was executed using symbolic
execution alone versus using the complete Kudzu system which includes both event and
value space exploration. The upper-left and upper-right bars represent the additional amount
of code compiled and code executed, respectively, when Kudzu was used to explore the
application, versus only symbolically executing the application. The stacked bars represent
the total amount of instructions compiled and executed, where the partitions represent the
absolute increase in number of instructions.
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dynamically compiled language is challenging because all the application code is not known
prior to the experiments. In our experiments, we measured the total code compiled during
our experiments and the total code executed 4.

Table 2.1 shows an average improvement of over 29% in code coverage. The coverage
varies significantly depending on the application. Figure 2.3 provides more detail. On
several large applications, such as Facebook Chat, AjaxIM, and Plaxo, Kudzu discovers
a lot of new code during testing. Kudzu is able to concretely execute several code paths,
as shown by the increase in the right-side bars in Figure 2.3. On the other less complex
gadget applications, most of the relevant code is observed during compilation in the initial
run itself, leaving a relatively smaller amount of new code for Kudzu to discover. We also
manually analyzed the source code of these applications and found that a large fraction of
their code branches were not dependent on data we treat as untrusted.

To measure the benefits of symbolic execution alone, we repeated the experiments with
the event-space exploration turned off during the test period and report the comparison
to full-featured Kudzu in Figure 2.4. We consistently observe that symbolic execution
alone discovers and executes a significant fraction of the application by itself. The event-
exploration combined with symbolic execution does perform strictly better than symbolic
execution in all but 3 cases. In a majority of the cases, turning on the event-space exploration
significantly complements symbolic execution, especially for the AJAX applications which
have a significant GUI component. In the 3 cases where improvements are not significant,
we found that the event exploration generally either led to off-site navigations or the code
executed could be explored by symbolic execution alone. For example, in the parseUri case,
the same code is executed when a user types into a text-box input or clicking a button on its
GUI

Table 2.2 shows the increase in number of events executed by Kudzu from the initial run
to the total at the end of test period. These events include all keyboard and mouse events
which result in execution of event handlers, navigation, form submissions and so on. We
find that new events are dynamically generated during one particular execution as well as
when new code is discovered. As a result, Kudzu gradually discovers new events and was
able to execute approximately 50% of the events it observes during the period of testing.

Effectiveness. Kudzu automatically generates a test suite of 49 new distinct inputs on
average for an application in the test period (shown in column 2 of table 2.1).

In the exploitable cases we observed, Kudzu was able to show the existence of a
vulnerability with an attack string once it reached the point of vulnerability. That is, its
constraint solver correctly determines the sufficiency or insufficiency of validation checks in
a single query without manual intervention or undirected iteration. This eliminates most
false positives in practice, except in the case where our constraint language fails to model the
JavaScript regular expression language in its entirety, which we discuss in Chapter 2.4.2.1.

4One unit of code in our experiments is a JavaScript bytecode compiled by the interpreter. To avoid
counting the same bytecode across several runs, we adopted a conservative counting scheme. We assigned a
unique identifier to each bytecode based on the source file name, source line number, line offset and a hash of
the code block (typically one function body) compiled.
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Application # of initial # of total Total events
events fired events fired discovered

Academia 20 78 310
AJAXIm 72 481 988

FaceBook Chat 15 989 1354
ParseUri 5 16 17

Plaxo 88 381 688
AskAWord 2 8 11

Birthday Reminder 12 20 20
Block Notes 7 85 319

Calorie Watcher 14 18 22
Expenses Manager 10 107 1473

Listy 15 470 638
Notes LP 10 592 1034

Progress Bar 8 24 36
Simple Calculator 17 34 67

Todo List 8 26 61
TVGuide 17 946 1517

Word Monkey 3 10 22
Zip Code Gas 12 12 12

Average 18.61 238.72 477.17

Table 2.2: Event space coverage: Column 2 and 3 show the number of events fired in the
first run and in total. The last column shows the total number events discovered during the
testing.

function validate (input) {
//input = ’{"action":"","val":""}’;
mustMatch = ’{]:],]:]}’;
re1 =/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g;
re2 =/"[ˆ"\\\n\r]*"|true|false|null|

-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g;
re3 = /(?:ˆ|:|,)(?:\s*\[)+/g;
rep1 = str.replace(re1, "@");
rep2 = rep1.replace(re2, "]");
rep3 = rep2.replace(re3, "");
if(rep3==mustMatch) { eval(input); return true; }
return false; }

Figure 2.5: Example of a regular-expression-based validation check, adapted from a real-
world JavaScript application. This illustrates the complexity of real regular expression
syntax.
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An instance of false positive elimination occurred when Kudzu found that the Facebook web
application has several uses of postMessage data in eval constructs, but all uses were
correctly preceded by checks that assert that the origin of the message is a domain ending
in .facebook.com. In contrast, the vulnerability in Plaxo fails to check this and Kudzu
identifies the vulnerability the first time it reaches that point. Some of the validation checks
Kudzu deals with are quite complex — Figure 2.5 shows an example which is simplified
from a real application. These examples are illustrative of the need for automated reasoning
tools, because checking the sufficiency of such validation checks would be onerous by hand
and impractical by random fuzzing. Lastly, we point out that like most other vulnerability
discovery tools, Kudzu can have false negatives because it may fail to cover code, or because
of overly strict attack grammars.

2.4.2.1 String and Regular Expression Limitations and False Positives

Kudzu can cover the majority of regular expressions and string operations, however, our
tool has a few limitations which we describe below. These limitations can lead to incorrect
modeling of the underlying JavaScript string and regular expression representations, which
can lead to false positives.

For instance, string replace is often used in sanitization to transform unsafe characters
into safe ones. Our translation uses a concrete value for the number of occurrences of the
searched-for pattern: if a pattern was replaced six times in the original run, the tool will
search for other inputs in which the pattern occurs six times. This sacrifices some generality
(for instance, if a certain attack is only possible when the string appears seven times).
However, we believe this is a beneficial trade-off since it allows our tool to analyze and find
bugs in many uses of replace. For comparison, most previous string constraint solvers do
not support replace at all, and adding a replace that applied to any number of occurrences of
a string (even limited to single-character strings) would make our core constraint language
undecidable in the unbounded case[29].

Furthermore, the regular expressions supported by languages like JavaScript have many
more features than the typical definition given in a computability textbook. Kudzu handles
a majority of the syntax for regular expressions in JavaScript, which includes support for
(possibly negated) character classes, escaped sequences, repetition operators ({n}/?/*/+/)
and submatch extraction using capturing parentheses. Kudzu keeps track of the nesting of
capturing parentheses, so that it can express the relation between the input string and the
parts of it that match the captured groups. Kudzu does not currently support back-references,
which are strictly more expressive than true regular expressions.

Besides these limitations, we find that Kudzu works well and gets rid of most, if not all
false positives in the cases we examined.
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2.5 Related Work

Kudzu is the first application of dynamic symbolic execution to client-side JavaScript. Here,
we discuss some related projects that have applied similar techniques to server-side web
applications, or have used different techniques to search for JavaScript bugs. Finally, we
summarize why we needed to build a new string constraint solver.

Server-side analysis. JavaScript application code is similar in some ways to server-side
code (especially PHP); for instance, both tend to make heavy use of string operations.
Several previous tools have demonstrated the use of symbolic execution for finding SQL
injection and reflected or stored cross-site scripting attacks to code written in PHP and
Java [84, 53, 23]. However, JavaScript code usually parses its own input, so JavaScript
symbolic execution requires more expressive constraints, specifically to relate different
strings that were previously part of a single string. Additional challenges unique to JavaScript
arise because JavaScript programs take many different kinds of input, some of which come
via user interface events.

Like Kudzu, the Saner [25] tool for PHP aims to check whether sanitization routines
are sufficient, not just that they are present. However their techniques are quite different:
they select paths and model transformations statically, then perform testing to verify some
vulnerabilities. Their definition of sanitization covers only string transformations, not
validation checks involving branches, which occur frequently in our applications.

Analysis frameworks for JavaScript. Several works have recently applied static analysis
to detect bugs in JavaScript applications (e.g., [43, 33]). Static analysis is complementary
to symbolic execution: if a static analysis is sound, an absence of bug reports implies the
absence of bugs, but static analysis warnings may not be enough to let a developer reproduce
a failure, and in fact may be false positives.

FLAX uses taint-enhanced blackbox fuzzing to detect if the JavaScript application
employs sufficient validation or not [68]; like Kudzu, it searches for inputs to trigger a
failure. However, FLAX requires an external test suite to be able to reach the vulnerable code,
whereas Kudzu generates a high-coverage test suite automatically. Also, FLAX performs
only black-box fuzz testing to find vulnerabilities, while Kudzu’s use of a constraint solver
allows it to reason about possible vulnerabilities based on the analyzed code.

Crawljax is a recently developed tool for event-space exploration of AJAX applica-
tions [61]. Specifically, Crawljax builds a static representation of a Web 2.0 application
by clicking elements on the page and building a state graph from the resulting transitions.
Kudzu’s value space exploration complements such GUI exploration techniques and enables
a more complete analysis of the application using combined symbolic execution and GUI
exploration.

Artemis is a tool developed by IBM for feedback driven, random testing of JavaScript
applications[22]. Artemis explores a prioritized space of events and inputs. New inputs are
generated by modifying previous test inputs, and new events are discovered by executing
the same application again but modifying inputs and event sequences in order to gain code
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coverage. Primarily, they avoid reasoning about JavaScript string constraints in favor of
a simpler, yet effective, method of randomly exploring JavaScript applications. However,
Artemis will miss code paths in applications which have complex checks based on a string’s
format.

2.6 Conclusion

With the rapid growth of AJAX applications, JavaScript code is becoming increasingly
complex. In this regard, security vulnerabilities and analysis of JavaScript code is an
important area of research. In this chapter, we presented the design of the first complete
symbolic-execution based system for exploring the execution space of JavaScript programs.
In making the system practical we addressed challenges ranging from designing a more
expressive language for string constraints to implementing exploration and replay of GUI
events. We have implemented our ideas in a tool called Kudzu. Given a URL for a web
application, Kudzu automatically generates a high-coverage test suite. We have applied
Kudzu to find client-side code injection vulnerabilities and Kudzu finds 11 vulnerabilities (2
previously unknown) in live applications without producing false positives.
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Chapter 3

The Emperor’s New APIs: On the
(In)Secure Usage of New Client-side
Primitives

3.1 Introduction

Several new browser primitives have been proposed to meet the demands of application
interactivity while enabling security. To investigate whether applications consistently use
these primitives safely in practice, we study the real-world usage of two client-side primi-
tives, namely postMessage and HTML5’s client-side database storage. We examine new
purely client-side communication protocols layered on postMessage (Facebook Connect
and Google Friend Connect) and several real-world web applications (including Gmail,
Buzz, Maps and others) which use client-side storage abstractions. We find that, in practice,
these abstractions are sometimes used insecurely, which leads to severe vulnerabilities and
can increase the attack surface for web applications in unexpected ways. We conclude
the paper by offering insights into why these abstractions can potentially be hard to use
safely, and propose the economy of liabilities principle for designing future abstractions.
The principle recommends that a good design for a primitive should minimize the liability
that the user undertakes to ensure application security.

Summary of Contributions1.

• We systematically examine two representatives of new client-side primitives which
are in popular use by real-world applications: (a) postMessage, a cross-domain

1In this chapter, I was jointly responsible for the idea to study HTML5 primitives, as a natural exten-
sion of our previous web work, I conducted the clientStorage experiments and worked on suggestions
for improving these primitives.
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message passing API, and (b) persistent client-side database storage (HTML5
localStorage, webDatabase APIs and database storage in Google Gears).

• We present the first step towards understanding purely client-side protocols, by reverse
engineering them directly from their implementation in JavaScript and formalizing
them. We systematically extract the sanity checks that applications implement on
the security-relevant data and use these to find new vulnerabilities in our target
applications.

• We provide practical evidence of the pervasiveness of these new attacks on several
important web application protocols (Facebook Connect and Google Friend Connect)
and web applications (Gmail, Google Buzz, Google Docs and others).

• To eliminate the variation we observe in safe usage of these client-side primitives, we
propose the guiding principle of economy of liabilities and suggest remedies based
on this principle to make the primitives more practical for safe use with the aim of
garnering discussion and obtaining community feedback. Our experiments indicate
that developers sometimes know how to use the primitives, and even make deliberate
decisions to ignore the security properties offered and implement their own protocol
on top of these new primitives.

3.2 Attacks on Client-side Messaging

The postMessage API is a client-side primitive to enable cross-origin communication
at the browser side. Originally introduced in HTML5, postMessage aims to provide a
simple, purely client-side cross-origin channel for exchanging primitive strings[79]. Web
browsers typically prevent documents with different origins from affecting each other [75].
A mashup specifically aims to overcome this restriction and communicate with another web
site in order to provide a richer experience to the user. Barth et al.[26] study various client-
side cross-origin communication channels and recommend the postMessage mechanism,
due to the security guarantees (detailed below) it is able to provide.

The postMessage primitive aims to provide the dual guarantees of authenticity
and confidentiality. Messages can be sent to another window by invoking the window’s
postMessage method. Note that this message exchange happens completely over the
client side and no data is sent over the network. The security guarantees are achieved as
follows:

• Confidentiality: The sender can specify the intended recipient’s origin in the
postMessage method call. The browser guarantees that the actual recipient’s
origin matches the origin given in the postMessage call, and code executing in any
other origin’s context is unable to see the message. The intended recipient’s origin,
specified in the method call, is called the targetOrigin parameter. For use cases
in which confidentiality is not essential, a sender can specify the all-permissive ‘*’
literal as the targetOrigin.
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• Authenticity: The browser attributes each received message with the origin of the
sender, as the origin property of the message event. The recipient is expected to
validate the sender’s origin as coming from a trusted source, thus achieving sender
authenticity.

Note that if these checks are missed by the application, the browser does not guarantee
anything about the security of the postMessage channel. For instance, a malicious web-
site could send arbitrary messages to a benign website, and it is the latter’s responsibility to
ensure that it only processes messages from trusted senders. To avoid the aforementioned
problems, the HTML5 proposal recommends websites to set the targetOrigin parame-
ter for any confidential message and to always check the origin parameter on receiving a
message.

Attacking postMessage Applications. We investigate two prominent users of the
postMessage primitive, the Facebook Connect protocol and the Google Friend Connect
protocol. We conjecture that for complex cross-domain interactions involving fine-grained
origins, developers may fail to follow the recommended practice. In such a case, the channel
would not provide a security property that the developer might have come to expect. Due
to the complexity of the JavaScript code used by these protocols, we use the Kudzu [67]
system to check for the absence of such validation in the code. We find that large parts
of the protocols are undocumented, and we reverse engineer these protocols based on the
interactions we observe.

Scope of Attack. The threat model for our attacks on postMessage usage is the web
attacker threat model [27]. In particular, we constrain the attacker to only controlling content
on his own site. A user can visit the attacker’s site, but may not necessarily trust content from
it. Phishing attacks are outside the scope of this work. Bugs in browser implementations are
also beyond the scope of this attack. An attacker can assume the user to have already logged
onto Facebook and authorized Facebook Connect applications not controlled by the attacker.

Summary of Findings. We find various inconsistencies in the use of postMessage.
Developers use these primitives correctly in some cases, while making mistaken assumptions
in others. We demonstrate vulnerabilities in both Facebook Connect and Google Friend
Connect protocols. We explain these two protocols in detail, point out vulnerabilities and
demonstrate concrete attacks. We end our analysis of the postMessage primitive with a
discussion of the observed real world usage of the postMessage primitive.

3.2.1 The Facebook Connect protocol

Facebook Connect is a system that enables a Facebook user to share his identity with
third-party sites. Some notable users include TechCrunch, Huffington Post, ABC and
Netflix. After being authorized by a user, a third party web site can query Facebook for the
user’s information and use it to provide a richer experience that leverages the user’s social
connections. For example, a logged-in user can view his Facebook friends who also use the
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third-party web site, and interact with them directly there. Note that the site now contains
content from multiple principals—the site itself and facebook.com.

Mechanism. The same-origin policy does not allow a third-party site (e.g TechCrunch),
called implementor in the paper, to communicate directly with facebook.com. To
support this interaction, Facebook provides a JavaScript library for sites implementing Face-
book Connect. This library creates two hidden iframes with an origin of facebook.com
which in turn communicate with Facebook. The cross-origin communication between
hidden iframes and the implementor’s window are layered over postMessage2.

1. (API key, origin)

2. (S, K, origin)

Implementor facebook.com

3. message: (S, K)

targetOrigin: origin loginFrame

4. request proxy code

proxyFrame

5. code for proxy
6. message: (query, S)KtargetOrigin: * 7. (query, S)K

8. (user data)

9. message: (user data)

targetOrigin: *

origin
matches
API key?

serverbrowser

…

browser

make login frame

make proxy frame

Figure 3.1: The Facebook Connect protocol. Ladder diagram of messages exchanged in the
protocol. The dashed arrows represent client-side communication via postMessage and
the solid arrows represent communication over HTTP. (query,S)K represents a HMAC
using the secret K. Frame hierarchy for the Facebook Connect protocol. In this example, the
proxyFrame is inside the main implementor window.

2In older browsers, other techniques are used which we do not discuss.
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proxyFrame
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8. (user data)

9. message: (user data)
targetOrigin: *

Facebook

6. me
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: (que
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targe
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n: "*"

Figure 3.2: The Facebook Connect protocol. Frame hierarchy for the Facebook Connect
protocol. In this example, the proxyFrame is inside the main implementor window.

Figures 3.2 and 3.1 detail the protocol. The first iframe created by the library is used for
the initial session negotiation with Facebook and the other is used for all subsequent data
exchanges between the Facebook server and its client-side counterpart. More specifically,
the first iframe (loginFrame, in Fig 3.2) receives a secret key (K) and a session ID (S)
from facebook.com and sends it to implementor (message 3). The second iframe
(proxyFrame, in Fig 3.2) also running in facebook.com’s origin, acts as a proxy for
requests. Any query for data that implementor wants to make to facebook.com is
first sent to proxyFrame (message 6), which then makes the request to facebook.com
using XMLHttpRequest (message 7) and then sends the response (message 8) back to
implementor (message 9). At the end of this transaction, the user has essentially logged
in to implementor using his Facebook credentials.

3.2.2 Vulnerabilities in Facebook Connect

Observation 1: During our testing, we noticed that the origin of received messages was
sporadically verified. In particular, out of all of the messages exchanged, only about half
were accompanied with an origin check in the receiver’s code. Further investigation revealed
that neither participant, namely the proxyFrame and the implementor (message 6 and 9),
checked the origin of received messages.

Additionally, we also noticed that the message 6 and 9 had the targetOrigin param-
eter set to the ‘*’ literal, while in message 3, the targetOrigin parameter was correctly
set. We also observe that a query for data is authenticated by an HMAC with the shared
secret K. This serves as a signature for every query (message 6) that the proxyFrame
receives.

Attack on message integrity. As discussed before, validating the origin of received mes-
sages is necessary for ensuring sender authenticity. Based on Observation 1, a mali-
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cious attacker can inject arbitrary data in the communication between proxyFrame and
implementor. In this particular case, we find that the data received over the channel is
used in a code evaluation construct and thus allows an attacker to inject arbitrary code into
implementor’s security context.

The attack is illustrated in Figures 3.3 and ??. In particular, an attacker replaces
proxyFrame with a malicious iframe that he controls. By sending a malicious message in
place of message 9, an attacker can inject a script into the implementor’s security context. In
the actual attack, the attacker has to include the implementor page in a iframe on a page
controlled by him (see bottom of Figure 3.3). This gives the attacker the power to replace
the benign Facebook proxyFrame with his own malicious proxyFrame. This attack is
possible because on receiving message 9, the implementor does not validate the origin of
the message sender, and thus processes a message from the attacker. The shared secret only
provides authenticity of the query (message 6) and not for the response (message 9).

Implementor facebook.com

4. request proxy code 

proxyFrame

5. code for proxy

attacker's
proxyFrame

6. message: (query, S)KtargetOrigin: *

…

9. message: (XSS)

targetOrigin: *

serverbrowser browser

make proxy frame

Figure 3.3: Integrity attack on Facebook Connect. Messages exchanged in the protocol.
Note that midway through the protocol (after message 5), the request proxy is replaced by
an attacker-controlled proxy.

On our test site, we were able to inject a script payload into the benign implementor’s
security context. We had previously discovered a similar flow of data to a critical code
evaluation construct, which was fixed by Facebook by adding data sanitization routines [67].
This is not a scalable fix. We have also confirmed this attack on Facebook’s reference
implementation of a Facebook Connect site. As the Facebook Connect functionality is
provided as a drop-in JavaScript library, we believe most real-world websites directly using
this library are also vulnerable.
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Implementor

Attacker

6. message: (query, S)K

targetOrigin: *

9. message: (XSS)targetOrigin: *

Attacker

Figure 3.4: Integrity attack on Facebook Connect. Frame hierarchy for the integrity attack.
The topmost frame is owned by the attacker.

Attack on confidentiality. Observation 2: Setting the targetOrigin parameter to the
‘*’ literal leaks sensitive user data like profile information and friend lists to the attacker.
This data can then be used by the attacker to gain the real-world identity of a visitor to his
website.

The attack is illustrated in Figure 3.5 and 3.6. Message 9 and Message 6 have
the targetOrigin set to ‘*’. Based on Observation 2, this allows a malicious at-
tacker to easily launch a man-in-the-middle attack against the communication between
the implementor and the proxyFrame (message 6a in Fig 3.5). The fact that
implementor does not validate the sender of messages (of message 9a in Fig 3.5, in
particular) enables a complete man-in-the-middle attack, while the signature on the query
provides no protection. The main attack occurs at message 9 (Fig 3.5), which consists of
sensitive user data and is read by the attacker. In the actual attack, the attacker again includes
the benign implementor page in an iframe and then replaces the proxyFrame with
his man-in-the-middle frame, which in turn includes the real proxyFrame (bottom of Fig
3.5).

3.2.3 The Google Friend Connect protocol

Google Friend Connect is a system that provides similar functionality to Facebook Connect.
An important difference is that Google Friend Connect allows a user to use multiple identity
providers (like Yahoo!, Twitter, or Google) while signing onto various third-party sites. The
aim, again, is to enable a richer social experience for users.

Mechanism. Typically, Google Friend Connect applications embed ‘gadgets’ inside iframes,
which directly communicate with the relevant server. These gadgets communicate with
the integrating page, referred to as implementor in the paper, via postMessage for
parameters like colors, fonts and layouts. Like Facebook Connect, third-party websites
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Implementor facebook.com

4. request proxy code

5. code for proxy

attacker's
proxyFrame

4a. proxy code?

5a. code for proxy

8. (user data)

…

proxyFrame

proxyFrame

6. msg: (query, S)KtargetOrigin: *
6a. msg: (query, S)KtargetOrigin: *

7. (query, S)K

9. msg: (user data)

targetOrigin: *9a. msg: (user data)

targetOrigin: *

serverbrowser browser browser

make proxy frame

make proxy frame

Figure 3.5: Confidentiality attack on Facebook Connect. Message Exchange—note the
replayed messages 6a and 9a.
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Implementor

Attacker

Attacker

Facebook

7. (query, S)K

8. (user data)

6. (q
uery

, S)K

9a. (user data)

6a. (que
ry, S)K

proxyFrame

9. (user data)

Figure 3.6: Confidentiality attack on Facebook Connect. Frame hierarchy for the confiden-
tiality attack. Note the presence of two attacker frames—the main window frame and the
man-in-the-middle frame.

interested in integrating Google Friend Connect in their sites need to include a Google
JavaScript library in their pages.

Figure 3.7 details the protocol. The code running in the implementor’s context
generates a random nonce (N ), and creates an iframe that requests a gadget (message 1 in Fig.
3.7). The nonce is included in the request as a GET parameter. Subsequent communication
(messages 4 and 5) between the gadget and the implementor includes this nonce. Notice
that the private user data (user info) is never sent over a postMessage channel.

3.2.4 Vulnerabilities in Google Friend Connect

Observation 3: During our testing, we noticed that all message exchanges in the Google
Friend Connect protocol had the correct targetOrigin set. Analysis of the JavaScript
code revealed the absence of any sender authenticity checks. In particular, for all the 12
messages that were exchanged, no participant checked the message sender’s origin. Instead,
we noticed checks for the nonce (N in Fig. 3.7). The protocol uses the nonce to authenticate
all message exchanges. As the targetOrigin is correctly set for all messages, the nonce
can never leak to an attacker.

Observation 4: The random number generator provided by the browser (via
Math.random) is not cryptographically secure (as shown in [57]). With just one call to
Math.random(), an attacker can guess all future values of Math.random(). This
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Figure 3.7: Google Friend Connect’s gadget protocol: the nonce N is generated by the
implementor. Message 4 is a query Q for parameters. The implementor responds
with the parameters P in message 5.

breaks the authentication used by Google Friend Connect. For example, on Firefox 3.6, we
were able to exactly predict the nonce that would be used by the Google Friend Connect
protocol.

Similar to the Facebook Connect attack, the attacker can embed the benign
implementor in an iframe within his own malicious page. The attacker’s page can then
sample Math.random() to predict the value of the nonce, and then spoof any message
exchanged by implementor and the gadget over postMessage, compromising the
Google Friend Connect session (see figure 3.7). Based on Observation 3 and Observation
4 we observe that this attack would have failed if the Google Friend Connect protocol
validated the message sender by checking the origin, rather than relying on predictable
nonces. Correctly setting the targetOrigin on all messages makes the protocol secure
against confidentiality attacks.

3.2.5 Discussion

Authenticity and confidentiality are strong properties that the postMessage API can
provide, in principle. Our study of real world usage of the postMessage API reveals
that developers sometimes do not use the abstractions provided by the postMessage
primitive correctly. Designing in-house secure protocols is challenging—as we’ve seen.
Both Facebook Connect and Google Friend Connect tried to achieve sender authenticity
by using their own system (secret nonce or HMAC), instead of the recommended practice
(checking the origin parameter). We were able to circumvent the authentication methods
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used by these protocols and insert malicious messages in the communication. In the case of
Facebook Connect, we were also able to achieve arbitrary code execution.

3.2.5.1 Potential Difficulties with postMessage

We first conjecture one possible cause of the errors we discovered. Then, we include a
discussion with Facebook regarding their use of postMessage which indicates that the
vulnerabilities were caused by an unrelated problem. We discuss both below.

Consider this example:

if(event.origin == ‘http://example.com’) {
// execute code

}

Such examples give a false sense of simplicity. In the real world, the source of messages
could be one of many possible fine grained origins. So, writing checks can involve the
creation of a long and potentially complex regular expression and string operations, espe-
cially when multitudes of origins are permissible. Additionally, for complex protocols, these
checks must be repeated for every message— which can lead to code bloat, repeated checks,
and can be easily forgotten as permissible origins are added or deleted from the application.
Furthermore, the complexity of the code increases if different code is executed depending
on the chosen origin.

eo = event.origin
var re1 = /https?:\/\/[abc].example.com/;
var re2 = /http:\/\/examplepartner.com|org/");
var re3 = /http:\/\/[xyz].otherexamplepartner.com|org/");
var re4 = /https?:\/\/example.com/");

if (re1.test(eo) || re2.test(eo) || re3.test(eo) ||
re4.test(eo) || ... || reN.test(eo)
/*more checks for each valid origin*/ ) {
//execute code
}

Implementing this functionality would require a series of string-based verification
comparisons, namely complex regular expressions—which is precisely the problem we have
exemplified above. Furthermore, if a mashup includes content from more than a couple of
origins, these checks become even more taxing. Fundamentally, this is a usability issue of
the API. In Chapter 3.4, we suggest potential enhancements to the specifications to mitigate
these issues, in keeping with the economy of liabilities principle.

The use of the all-permissive ‘*’ as the targetOrigin allows leakage of confidential
data. The HTML5 specification [79] warns against the use of the ‘*’ literal for confidential
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data. We believe giving developers the choice of insecure usage is not a good practice.
Additionally, it is notoriously hard to figure out what data is privacy sensitive and what
isn’t[63]—and we believe this will only get more difficult. Based on these facts, we suggest
a possible modification in Chapter 3.4.

Vendor Discussion. We conjectured the developers created their own network style protocol
due to the fact that ‘simple’ sender origin checks may not be easy to get correct3. However,
our discussion with Facebook regarding Facebook Friend Connect yielded edifying insights
into the compatibility issues that vendors have to deal with —especially, those arising from
the same client-side code having to behave the same in a variety of browser execution
environments. Specifically, we asked Facebook why they chose to ignore the origin field
when receiving messages over postMessage. Facebook responded that only about half
of their users’ browsers support postMessage and neither Flash nor fragments provide
the origin, as required for authenticity checks. In response to this, they developed the
protocol we previously discussed that relies on a nonce for authenticating messages. In
fact, in our discussion with Facebook, we were informed that they used the all-permissive
‘*’ directive because postMessage does not support multicast. Multicast, in this sense,
would implement a method in which a message could be sent or received to or from a list
of list of permissible origins. Furthermore, we discussed the idea of multicast enabled
messaging, which we discuss in Chapter 3.4, with Facebook and they responded that they
would find that modification to the specification to be a useful addition.

Additionally, we contacted the security team at Google to notify them of the vulnera-
bilities we found in Google Friend Connect. Google responded by stating that the Friend
Connect team was investigating the issue and it is currently fixed.

3.3 Persistent, Server-Oblivious Client-side Database At-
tacks

In this chapter, we study the usage of new client side persistent storage mechanisms sup-
ported by HTML5 and Google Gears. We find that data stored in client-side databases is
often used in code evaluation constructs without sanitization. Client-side databases, thus,
provide additional avenues for attackers to persist their payloads across sessions. For in-
stance, attackers only need to inject XSS attack payloads once into the client-side storage to
have them repeatedly compromise the client-side code integrity for sustained periods of time
(unlike a common reflected XSS issue which is fixed once patched). Additionally, because
the attack payload is stored on the client-side, the server is oblivious to the nefarious activity.
We show that the 7 out of 11 major applications we studied trust the client-side storage
and are vulnerable to such persistent attacks, including: Gmail, Google Buzz, Google
Documents and others.

3Perhaps due to the complicated regular expressions required to match all possible origins able to send
messages to the implementor.
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3.3.1 Client-side Storage: Background

HTML5 proposes two persistent storage abstractions: localStorage and
webDatabase[81, 80]. A limited number of browsers currently support these fea-
tures. The client-side storage mechanisms work as follows:

• localStorage is a key/value store tied to an application’s origin. Script executing
within an origin can get or set values of the data store using the localStorage
object.

• webDatabase is a client-side database that supports execution of SQL state-
ments. The database is bound to the origin in which the code executes and
web applications are restricted to only modifying the structure and contents
of their associated origin’s database. To execute SQL against the database
one can use: executeSql(sqlStatement, arguments, callback,
errorCallback).

• Gears is a Google product designed to enable applications to work offline. Recently,
Google has decided to deprecate Gears in favor of HTML5[38]. Despite syntactic
differences, Gears and HTML5 webDatabase data storage work in very similar
ways.

In each of these cases, database modifications persist until the creating application
destroys the data.

3.3.2 Persisting Server-Oblivious Attack Payloads

We consider two possible attack vectors in our threat model, a network attacker and a
transient XSS vulnerability.

The goal of either attacker is to inject code into the local storage in order to gain a
persistent foothold in the application—one that remains even when the transient attack
vector is fixed. Once an application has been compromised, the attacker has control of the
application until the client side database is cleared. In current implementations, this only
occurs when the database is explicitly cleared by an application, making the attack have a
long lifetime.

Network Attacker. Consider the case when a network attacker is able to modify packets
destined to the victim. When the user visits a site using client-side storage the attacker
modifies the victims network packets to allow the network attacker to inject arbitrary
JavaScript. This allows the attacker to compromise the database with no trace server-side
that a client-side exploit has occurred until the client-side database is cleared. However, in
the case of a network attacker, it is worth pointing out that other attacks may be more fruitful
to the attacker such as: a full man-in-the-middle attack or Cross-Channel Scripting[28].
Both of these attacks can persistently inject content at the network and application level
respectively, which pose greater persistent threats.
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As an example of a realistic scenario, consider when a user visits a coffee shop with
open wireless. Unbeknownst to him, the network attacker intercepts his network connections
so that they are forwarded through the attacker’s computer. When the user visits Google
Buzz, the network attacker modifies the page returned to supply a script which modifies the
client-side database. Now, whenever the data from the database is used in a code evaluation
construct, the attack payload is executed instead. The user now leaves the cafe with a
compromised machine and due to the stealthy injection (with no server side XSS required),
little evidence remains that an attack occurred.

Transient XSS. As a second attack vector, suppose that an attacker has exploited a transient
XSS vulnerability as a primary attack vector and has been able to execute arbitrary code
within the context of the target site. The attacker is able to modify the database arbitrarily
because the attacker has used the XSS to execute JavaScript with the same privilege as the
code running within that origin. Not only is this attack persistent, it is also stealthy. Besides
the initial XSS injection vector, all of the code execution and state modification happens
on the client-side rendering the server oblivious to the attack. It is worth noting that if the
attacker has a primary injection mechanism, one that is not transient, then the primary XSS
is a strictly more powerful due. This is due to the ability to perform tasks on the behalf of
the user from within the context of the web application.

For a concrete example, suppose an attacker finds an XSS attack on a web email
application that uses webDatabase to save emails. In such a case, the attacker writes an
exploit such that its payload is stored inside an email in the database. When the user views
the email, the injected code is executed. Now, even if the XSS vulnerability is fixed, the
payload persists as long as the database.

In either case, it’s important to note that if the injected database data is used in code
evaluation constructs, such as eval or document.write without proper sanitization
(as we observed), the attack can persist its attack payload. This payload can be used for
a variety of attacks such as stealing passwords, cookies and email. The execution of the
code on the client-side and resulting payload is stealthy because the server is oblivious to
the compromise.

3.3.3 Approach

We evaluated 11 applications that use client-side storage using Kudzu. Kudzu, a systematic
vulnerability finding tool built on the WebKit framework, is a dynamic symbolic execu-
tion engine framework which is designed to analyze JavaScript applications running in
browsers[67]. We modified Kudzu to mark database outputs as symbolic and we note a
possible vulnerability when a database output flows to a critical sink (like innerHTML or
eval). All vulnerabilities were verified in Safari 4.0.4 by modifying the content of the
database being targeted to contain executable code. Experiments using Google Gears were
verified in Firefox 3.5.8. We verify that the code is executed by viewing the target applica-
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tion. In order to ensure that HTML5 features were used when applicable, we modified our
User-Agent string to match the latest reported by an Apple iPhone.

Experimental Results. Figure 3.8 shows that we find vulnerabilities in 7 applications.
In addition, it presents the type of persistent storage being used, and whether or not the
database modification remains persistent.

Application Storage Vulns. Persistent?
Type

Gmail Database Yes Yes
Google Buzz Database Yes Yes

Google Calendar Database No N/A
Google Documents Gears Yes Yes

Google Maps Database Yes Yes
Google Reader Gears Yes Yes*

Google Translate Database No N/A
Snapbird localStorage Yes Yes

Remember The Milk Gears No N/A
Yahoo Apps Mobile Database No N/A

Zoho Writer Gears Yes Yes*
Total — — 7

Figure 3.8: A security evaluation of applications using client-side database storage. The
modified database persisted through reloading of the application, closing the browser, and
logging in and logging back out. Note: (*) indicates that the attack only persisted while the
application was in offline mode.

Gmail. We walk through a sample attack on Gmail to give an idea how a typical persistent
attack may take place. First, we launch Gmail using Kudzu to analyze the application. We
login to our account and are then taken to our Inbox. After this we close the browser. Kudzu
then notifies us that it found data going from the database into the inner text of a div tag,
without proper sanitization.

We concretely verified the attack. First, we note that Safari implements an SQLite
database on a per origin basis. We open the database associated with Gmail, in this case
/Library/Safari/Databases/https mail.google.com 0, and modify the
body field of message found in the cached messages table to include the text <img
src=dne onerror=alert(1);>. When the Gmail application uses the database, the
cached message containing the attack payload is executed.

3.3.4 Discussion

Our experimentation reveals variation in the way that developers sanitize their database
outputs before using them in critical constructs. We found that many prominent applications,
such as Google Reader, Gmail and Google Buzz do not sanitize their database output at all.
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In contrast, we found a few applications aware of the severity of the mentioned attacks and
they perform some kind of sanitization on their database output.

One such application, Google Calendar, sufficiently mitigates the attack. It uses a
complex combination of JSON and XML to verify the data format, and sanitizes the user
input to further ensure that scripts were not injectable.

Another application that mitigates code injection is Google Translate. When using
Translate, the result of a translation is placed into a text node on the user’s page. Therefore,
the attack is mitigated as no code can be executed in a text node.

However, all of the other applications failed to sufficiently sanitize database outputs. We
speculate that some applications did not sanitize database outputs because of the complexity
of the sanitization process required to eliminate the attack. Alternatively, the developers may
be confident enough with their sanitization prior to inserting it into the database that they
omit output sanitization. Consider Gmail and Google Buzz, two applications that have fields
in their database representing the textual content of an email or buzz respectively, in both
cases, containing HTML. When these fields are modified by an attacker, the original content
and injected attack text are rendered to the user, without the attack text being sanitized. In
Gmail and Buzz, the textual content is mixed with HTML and the task of stripping away all
of the possible scripting elements which result in code execution is difficult. Thus, when an
attacker views the email or buzz, the persistent code in the database executed4.

We also found some intermediate cases, including Zoho Writer, a web browser based
document editor, and Google Reader. Both applications were only susceptible to a transient
client-side database attack. That is, the data only persists in the offline store for as long as
the client was offline. When the user returned online, the cache was cleared and refreshed
with new content.

These examples show that different applications vary in the richness of content that
they store in the database. Furthermore, developers, even within the same organization,
may choose different security strategies when storing content, which could lead to potential
problems when applications interact.

3.3.4.1 Vendor Discussion

We contacted the security team at Google to discuss the persistent, client-side database
attacks that we discovered against a variety of their applications. Google responded to our
vulnerability disclosure stating that their primary concern is preventing users from primary
XSS attack vectors. They added that they felt, to a large extent, that these problems were
inherent to the way that the mechanisms such as localStorage were designed and that
first-degree XSS attacks are their primary focus.

4As of January 12, 2010, GMail supports always on SSL[69], thus breaking this version of the attack unless
the client has explicitly turned off SSL-enabled GMail.
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3.4 Enhancements

Client-side browser primitives expect users to perform multiple sanitization checks at various
points in the code, to prevent the attacks we outlined. Further, such validation functionality is
duplicated across applications. These checks are tedious, repetitive and sometimes complex,
which adds unnecessary liability to developers leading to inconsistencies in use and errors.
In Chapter 3.1, we proposed the general principle of economy of liabilities in the design of
abstractions which helps minimize the required liability on users to ensure security.

Retrofitting the principle in existing client-side primitive designs is challenging. Below
we suggest enhancements to the primitives we study, in ways which are a compromise
between the need for flexibility, compatibility and security.

3.4.1 Enhancing postMessage

In Chapter 3.2, we raised the question of whether it should be possible to make the
postMessage design easier for safe usage. We believe this is a topic of debate for
the web community, in light of the empirical fact that early adopters of postMessage are
using the primitives unsafely. On the flip side, we point out that any changes to the web
platform come with cost to compatibility and generality too. We outline our suggestions
below to stimulate the discussion on the best way to use these primitives securely.

Origin Whitelist. Based on the current usage, in order to ensure authenticity of messages
received, we suggest a declarative system for specifying origins allowed to send messages
will function better than manual origin checks. For instance, the Content Security Policy
proposal allows a website to specify a whitelist of origins trusted to execute code in the
website’s security context [62]. We suggest extending CSP with a directive to specify origins
allowed to send messages to the website. Moreover, the CSP proposal has gone through
intense community discussion and at least one implementation—making it a potential
starting point to build on.

In addition, from our experiments and evaluation of applications that use the
postMessage API, in order to protect confidentiality, we recommend that broadcast
should be disabled in favor of multicast, based on our discussions with Facebook during
responsible disclosure. Currently, postMessage does not permit wildcard characters
in domain names. However, to support multicast the API could be changed to allow the
application to declaratively specify a wildcard in a domain name (e.g. *.facebook.com).
This would restrict the domains capable of receiving messages without the need for complex
regular expressions for parsing and verification. Additionally, if required, allowing for
finer-grained control for recipients is also a possibility—the postMessage function could
take a list of origins that are allowed to receive the specified message. With this primitive in
place, it would be the browser’s responsibility to check the sender’s origin with this whitelist
before delivering the message.

Origin Comparison Primitive. Instead of requiring every user of the postMessage
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API to implement a function for comparing origins, it would be much more efficient for
the browser to provide this as a primitive function. If the browser provided the primitive,
such a function would support comparison based on some standard language for specifying
origins (like the grammar in CSP [62]). Note that browsers already have to do such checks
for enforcing the same origin policy [75]. The grammar for this list could be similar to
the grammar for origins specified in Content Security Policies, omitting the all-permissive
‘*’ [62].

3.4.2 Pre or Post Sanitization of Database Content

Sanitizing the values stored by a database before using them in critical constructs can
protect against persistent XSS attacks. We found few applications which performed any
type of database output sanitization. But, like postMessage, we noticed that the output
sanitization can often be complex and occur throughout the application code. Developers
have two choices, either implement functionality to sanitize their data in such a way that they
are confident that when it is stored it does not contain any malicious code. Or developers
must be confident in their expected format when pulling data from the database such that
they can be sanitized and verified before presenting this data to the web application.

We realize that the above discussion to retrofit additional security involve changes to
existing or developing specifications. As the APIs studied are relatively nascent, we are
hopeful of a positive response from the community. In the present scenario, without modifi-
cation, users of these APIs can use JavaScript analysis techniques to detect and eliminate
such attacks during testing [67, 78]. Analysis systems similar to ours can be extended to
taint data from postMessage, localStorage and webDatabase, ensuring that no
tainted data flows to critical code evaluation constructs without sufficient validation. We
have had some success in the past with such an approach [68, 67].

3.5 Related Work

Browser based abstractions and new browser features have been a topic of discussion in
recent literature. Namely, the postMessage API was studied by Barth et al. as a browser
based primitive capable of sandboxing mashup communications[26]. The authors used
postMessage for frame communication and emphasize its utility as a primitive. In
contrast, we focus our discussion on the difficulties in verifying an origin of a message.

A survey of the possible dangers of browser based storage was presented by Michael
Sutton at Blackhat 2009 and discussed briefly in the book AJAX Security[76, 48]. These
works differ from ours because we focus on showing that persistent browser based storage
is a vector for stealthy, persistent attacks. We also show that robust, popular applications are
already using this technology, despite the nascence of the API. Additionally, we propose
solutions to detect and mitigate the threat of browser based storage.

A similar, but potentially more serious attack is persistent cross channel scripting(XCS),
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introduced by Bojinov et al., is an attack where a non-web channel is used to inject a script
into web content running in a different security context[28]. They study devices like network
attached storage and enterprise level lights management systems, which often have web
management software built in, and show that they are susceptible to persistent injected
content.

Automatically reverse engineering protocols was addressed by Caballero et al. with their
prototype tool Polyglot[30]. However, they focus their efforts on using dynamic analysis to
reverse engineer network protocols. An earlier work, Athena, aims to prove the correctness
of security protocols[74]. In contrast, our efforts focused on manual protocol verification
using tools such as Kudzu to analyze the JavaScript application.

Finally, a variety of tools have been developed for analyzing JavaScript for security
vulnerabilities. Kudzu is a mixed concrete and symbolic execution engine which does infor-
mation flow analysis of JavaScript programs in order to find potential vulnerabilities[67].
Another tool, Gatekeeper, takes a mostly static approach for analyzing JavaScript applica-
tions, and constructs multiple information flow policies for evaluating JavaScript[43]. In
contrast, their work focuses on finding flows that exhibit a general policy violation in the
code (such as untrusted data being written to the GlobalStore or untrusted data flowing
to document.write).

3.6 Conclusion

New primitives, especially for browser-side functionality, are being designed and proposed
at a rapid pace to facilitate the demand for interactivity while enabling security. However,
a recurring problem in these designs is that these abstractions were not designed with
the economy of liabilities principle in mind, i.e., they rely significantly on the developers
to ensure security. In the case of postMessage, developers must check the origin of
the message being received in order to ensure authenticity, however, nothing prevents a
developer from omitting these checks. In the case of localStorage, developers are
required to sanitize their data before or after it is inserted or read from the database. We
noted that some applications performed sanitization and others did not. However, we cannot
conclusively say that those who omitted checks did so without knowledge of the impact of
their decisions— they may be confident in their platform’s ability to perform sanitization,
thereby omitting database level sanitization[85].

In this chapter, we found vulnerabilities based on usage of two recent client-side abstrac-
tions: postMessage, a cross-domain communication construct and client-side persistent
storage (HTML5 and Google Gears). In the case of postMessage, we reverse engineered
the client-side protocols and systematically extracted the security-relevant checks in the
code to find new vulnerabilities in them. In the case of client-side storage, we found that
applications do not sanitize database outputs, which can lead to a stealthy, persistent, client-
side XSS attack. We found bugs in several prominent web applications including Gmail and
Google Buzz and uncovered severe new attacks in major client-side protocols like Facebook
Connect and Google Friend Connect.
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We hope our study encourages future primitives to be designed with the economy of
liabilities principle in mind. We offer some enhancements to existing to the current APIs
to shift the burden of verifying and ensuring security properties from the developer to the
browser. And, we encourage developers to scrutinize their applications for similar problems
using automated techniques.
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Chapter 4

Take Two Software Updates and See Me
in the Morning: The Case for Software
Security Evaluations of Medical Devices

4.1 Introduction

Medical devices used for critical care are becoming increasingly reliant on software; however,
little is understood about the security threats facing medical devices and their software. To
investigate this open question, we analyze the security of software that controls a modern
Automated External Defibrillator (AED) used for treating cardiac arrhythmias. We identify
several software security vulnerabilities and discuss key insights and open challenges in
improving software-controlled medical devices to be resistant to malware1.

4.2 AED Overview

In this chapter, we introduce automated external defibrillators and discuss why they are a
quintessential software-based medical device to investigate. We point out that AEDs are
significantly different from implantable cardiac defibrillators both physically in terms of
their hardware, software and connectivity, and in terms of risk. We discuss AEDs in use and
introduce the Cardiac Science G3 Plus — the subject of our evaluation.

An AED allows a person with limited medical training to defibrillate a patient who
experiences certain kinds of cardiac arrhythmias that, untreated, can lead to cardiac arrest.
The device is typically attached to the chest of the individual using two pads, and it delivers
an electric shock to reestablish a normal heart rhythm. The conditions that can be treated
through defibrillation, for example cardiac arrhythmias of ventricular fibrillation and ventric-
ular tachycardia, generally require prompt attention in order to prevent severe brain damage

1In this chapter, I was responsible for jointly reverse engineering and finding vulnerabilities, guiding exploit
development and jointly creating the proposals for securing medical devices.
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or death. Studies have shown that the chances of survival improve if an individual receives
defibrillation within 3-5 minutes of collapse [3]. For this reason, AEDs are widely available
in airports, community centers, schools, government buildings and other public locations.
As of 2010, there are about 280,000 AEDs worldwide [35].

The FDA has received more than 28,000 adverse event reports for external defibrillators
between January 2005 and May 2010, including malfunctions, patient injuries and deaths.
As a result, the FDA has issued 68 recalls, 17 alone in 2009. In U.S. hospitals, more than
50,000 AED units were sold between 2003–2008, with a projected annual sales growth
of 9% to 12% over the next 5 years [31]. In 2005, over 192,400 AED units were sold in
the U.S. marketplace [71]. 16.2% of AED advisories were confirmed to be as a result of
software-related issues (6 advisories affecting 12,311 individual devices). Only one category
had a higher incidence (electrical issues at 21.6% of the causes of a recall) [71]. Given
the importance of these devices in saving lives, the FDA began an initiative to promote the
development of safer external defibrillators in November of 2010 [8].

Figure 4.1: The Cardiac Science G3 Plus exploited to install our custom firmware. The AED
displays DEVICE COMPROMISED.

In this chapter, we study one particular model of AED, the Cardiac Science G3 Plus with
model number 9390A-501. We decided to examine an Automated External Defibrillator
(AED) because of its reliance on software updates to address an FDA recall. Depending on
how the device is configured, the shock administered can be 150-300 Joules, which can be
administered multiple times on one battery before the device requires a recharge. The G3
Plus is pictured in Figure 4.1.

4.3 Case Study

In this chapter, we analyze the Cardiac Science G3 Plus Automated External Defibrillator.
We obtained the device new from an online vendor and the firmware update and software
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suite from the Cardiac Science website. In order to analyze the device, we used IDA Pro 5.6,
an inexpensive, commercially available software package, to statically reverse engineer the
device’s update and diagnostic software, communication protocol, and firmware [13]. Our
analysis was conducted using COTS hardware and software, and took upwards of 100 hours.
During our analysis, we discovered that 4 vulnerabilities while reversing the device and its
software. We verified our analysis and show the gravity of software exploits on medical
devices by executing concrete attacks and demonstrating their potential impact.

4.3.1 Analyzing the G3 Plus

Performing a security analysis of the G3 Plus necessitated reverse engineering device
operation and controlling software because it is a closed-platform device, with proprietary
hardware, firmware and software.

As a first step in the investigation, we had to determine which components were respon-
sible for the AED’s functionality. In order to do this, we opened the G3 Plus, and we noted
the chip model numbers, which were later cross-referenced with known components. The
devices of interest were an Actel FPGA, an OKI LSI Audio Playback FIFO chip, and an
Intel 16-bit High Integration Embedded Processor. The playback IC is used for playing
audio prompts to the user to guide resuscitation. It is also used to play diagnostic messages.
We speculate that the FPGA is used to detect heart rhythm and assess a patient’s cardiac
health.

We discovered that the AED’s CPU implements a 16-bit x86 ISA by examining the
internals of the AED with CPU processor manuals. From this, we applied static reverse
engineering techniques to the firmware.

The device comes with three software packages: MDLink, RescueLink and AEDUpdate,
responsible for programming device parameters (like shock value), collecting post-cardiac
arrest reports, and updating the AED, respectively. We focus our analysis on the device
firmware (252KB), AEDUpdate (8MB) and MDLink (680k) because of their potential impact
on correct device operation; they are responsible for communicating with the host computer,
updating firmware, and programming device parameters.

We also used the device’s manual to determine operational parameters and constants,
which we used as clues to firmware functionality.

4.3.1.1 Preliminary Analysis

We use the functional descriptions of the software to guide our analysis of the G3 Plus.
After providing a basis for our analysis, we delve into the details of the device and described
vulnerabilities contained therein.

Isolation and Architecture. We discovered that the G3 Plus platform is centrally controlled
by an Intel 16-bit High Integration Embedded Processor, which implements a 16-bit x86
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instruction set. The architecture supports a single execution thread in a shared memory
model without any signs of virtual memory, segmentation or any other memory isolation or
virtualization techniques.

Firmware. We noted, while exploring the AEDUpdate software, that the device’s firmware
is updated by sending the new firmware over the COM port. Using this observation, we
were able to reverse engineer the code to determine that a local copy of the firmware existed
hidden in the Cardiac Science program directory. When an update is initiated, the software
determines the AED connected, and selects the corresponding firmware. Having both
the firmware and copies of the medical device software, we are able to delve deeper into
exploration by applying binary analysis techniques.

Language, Libraries, and Execution Safety. We began studying the firmware by executing
a preliminary analysis with IDA. We set out to determine the compiler used and libraries
utilized. As an initial step, we had to manually discover the firmware entry point. We used
the Intel processor manual to discover that the entry point2 is fixed at address 0xFFFF0.
Using this, we applied IDA FLIRT signatures and control flow analysis.

The FLIRT analysis aided us in determining if a known library was compiled into the
firmware. As a preliminary step, this serves to partition firmware code into library functions
and device code, both offering us insight into the library and its intended function. This also
allows us to focus our analysis on the portion of the firmware responsible for controlling the
defibrillator, and then use the FLIRT-identified library functions as clues to infer firmware
function behavior from context.

We determined the compiler by applying each of IDA’s FLIRT signatures applicable
to 16-bit x86 code. One such signature, “MSVC v1.0/v1.5 DOS runtime,” resulted in over
200 sequentially-located functions being recognized as library functions. The sequential
locality matched our expectations of how statically-linked libraries are typically compiled
into binaries. A manual analysis confirmed that these functions behaved in the ways that
their FLIRT-identified library names suggested.

Further manual inspection of the code suggested that the firmware was unoptimized, did
not employ any sort of binary packer, and did not employ obfuscation techniques3. Based
on the libraries compiled into the firmware, the compiler used and manual confirmation, we
determined that the firmware was written in C and 16-bit x86 assembly, and the majority of
functions conformed to the cdecl calling convention.

Attack Vectors. As discussed previously, the device is equipped with a serial port for
communication with the host computer. We discovered that the serial port is used by
AEDUpdate, RescueLink, and MDLink for device updates, post-defibrillation reports, and

2In the Intel manual, this is known as the Reset Vector.
3Although, some optimizations are inherently invisible and difficult or impossible to recognize: function

inlining and loop unrolling, for example.
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device parameters, respectively.

4.3.2 Vulnerabilities in the Cardiac Science G3 AED

Below we detail the key findings of our investigation into the security of the AED and
its software. First, we discuss the bugs and vulnerabilities we found in the MDLink and
AEDUpdate software. Following that, we discuss how we can arbitrarily change the G3
Plus’s firmware.

Vulnerability 1: AEDUpdate integer/buffer overflow. Initially, AEDUpdate sends a packet
over the COM port to the AED and then receives a response. In order to verify the
vulnerability, we spoofed packets coming from the COM port such that we were able
to control the data that AEDUpdate received from the device, and thereby triggered the
vulnerability and achieved arbitrary code execution.

The AEDUpdate program counts the number of ‘0’-characters in the response and then
performs a memcpy based on the number of zeros found. Specifically, the program expects
to find no more than 8 zeros, so it uses the expression 8-num zeros to calculate the size
of the buffer to copy. However, if there are more than 8 zeros, the size parameter underflows
and results in attempting to copy around 4.3 billion bytes of data into a 16-byte buffer,
causing the program to throw an exception. In order to exploit this vulnerability, we need
to overwrite the most recently registered exception handler with our own and cause this
exception to occur before the corrupted return address is checked, which allows us to redirect
program flow into arbitrary code.

Figure 4.2: AEDUpdate buffer overflow. Executed code includes a message box showing
the potential flow of the vulnerability from the AED (if the firmware were replaced) to the
software.

In Windows XP SP2, nearly every module linked into a binary uses Safe Structured
Exception Handling (SSEH). Meaning, the exception handler must be registered with the
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operating system, and if during execution it is discovered that it is not registered, the process
is terminated by the OS [18]. oledlg.dll was the only DLL imported into the binary
that did not employ SSEH. Using this, we overwrote the exception handler on the stack
with a subverted one, forcing the program to execute our payload when an exception was
thrown4. Figure 4.2 shows AEDUpdate being exploited.

Vulnerability 2: Weak password authentication scheme. The MDLink software has indi-
vidual user profiles protected by a password. However, the password file is stored on the
local hard drive, and anyone with privileges can simply delete it in order to circumvent the
protection mechanisms or circumvent it completely by installing the software fresh on a
machine that does not have access restrictions. Furthermore, after we reverse engineered the
MDLink authentication mechanism, we discovered that the password was obfuscated using
a simple XOR scheme. From there, we extracted the scheme and wrote a small utility to
arbitrarily change or recover a user’s password.

Vulnerability 3: Credentials stored in plaintext. While examining AEDUpdate, we
came across functionality that seemed to upload a file to a remote FTP server. Further
investigation revealed that we had found that the AEDUpdate stores the address of the
FTP server, username, and password in plain text within the update software. When
warranted, either due to a failed upgrade or other diagnostic problem, the diagnostic file
is sent to Cardiac Science. This private user information is collected when a firmware
upgrade is started by AEDUpdate. and includes: contact information, serial number, and
the firmware version — all potentially available to anyone who accesses the login credentials.

Vulnerability 4: Improper use of weak CRC as digital signature. We discovered that the
update software begins the update process by sending a Cyclic Redundancy Check (CRC)
value of the new firmware. Once transferred, the device calculates the CRC of the received
firmware and allows the current firmware to be replaced only if the values match. In order to
install custom firmware, we populated its CRC verification table with new values calculated
over the entirety of our custom image. To obtain the precise integrity check employed
by the AED, we extracted the code responsible for CRC calculation and verification from
AEDUpdate, which we used to generate a new CRC to convince the AED that our image
was a legitimate one.

This vulnerability allows malicious modifications that could lead to device failure,
patient harm, and financial burden. These attacks include: (1) Disabling or falsifying
integrity checking so that when a component fails, the device will pass verification; (2)
Setting arbitrary shock protocols and shock strength; (3) Failing to administer shocks despite
device appearing to operate as normal; (4) Bricking the device; (5) Destroying the AED’s
audit trail; (6) Resource exhaustion and DoS by exhausting the devices battery and (7)
Executing a conditional payload, depending on the date or time.

4For instance, by corrupting a function pointer on the stack.

52



4.3.3 Impact

Besides the direct security implications of the vulnerabilities discovered, perhaps less
obviously, the resulting vulnerabilities, namely Vulnerability 1 and Vulnerability 4 can be
combined to create a hybrid piece of malware capable of infecting both AEDs and PCs.
Consider the scenario where an attacker replaces the firmware of an AED with custom
malware designed to exploit the AEDUpdate buffer overflow. This would allow the AED
to execute arbitrary code. An attacker could create a worm that infects the host computer
and subsequently infect other AEDs connected to the host. This type of attack could have
the purpose of damaging other equipment within an organization or obtaining private data
stored in systems other than the affected medical devices. Threats like these punctuate the
necessity of designing medical devices with security in mind.

4.4 Automatic Vulnerability Discovery in Medical Device
Software

Dynamic analysis and symbolic execution are a viable way to systematically explore medical
device software for bugs and vulnerabilities. We obtained BitFuzz, which is based on the
BitBlaze framework, an open-source framework for trace-based dynamic symbolic execution
of COTS software[73].

BitFuzz is particularly suited for confirming the results of a manual reverse engineering
effort (see Chapter 4.4); and it can be used to uncover other potential software vulnerabilities.
BitBlaze is comprised of three main components, TEMU, Vine and BitFuzz. TEMU is a full
system emulator with dynamic taint tracking, which is used for recording execution traces.
This is used in conjunction with Vine, which converts the trace based format into a side-effect
free, RISC-like instruction set that captures the semantics of the original operation. Finally,
BitFuzz is used for generating inputs which cause a bug to be triggered. It drives the guided
exploration of the program by analyzing the intermediate representation of each execution
trace and generates precise logical formula leading to a particular branch condition, which
can be extracted and solved.5 Using the solution to a branch condition, BitFuzz negates
conditions and explores previously unreachable branches in the program.

Using BitFuzz for Software Flaw Confirmation. As we alluded to previously, BitFuzz
combined with insight gained by reverse engineering provides the necessary tools to apply
binary analysis techniques to automatically investigate areas of interest. We detail how
we used BitFuzz to confirm our suspicions of software flaws discovered when reverse
engineering the G3 Plus update process.

We were specifically interested in discovering how the program communicated with
the AED as well as the format of the protocol in hopes of discovering how to replace the
device firmware with our own. We investigated each function that read or wrote to the

5This assumes that the decision procedure determines that the logical formula is satisfiable and that the
logical formula falls within a theory of arrays and bit vectors.
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serial port and annotated it with suspected functionality. We specifically explore each use of
ReadFile Windows API function because it is responsible for reading the input stream
from the serial port. In the process of determining how the program updates the AED
firmware, we noticed that when the firmware is about to be updated, an initial handshake
takes place between the host and the AED, followed by sending the configuration of the
connected AED to the host computer.

We found that the configuration protocol had 9 packet payloads with 128 bytes in each
packet. While investigating the initial handshake (first 3 packets), we found a suspected flaw
in which AEDUpdate seemed to make incorrect assumptions about the format of the reply
packet. That is, we found a memcpy in the packet parsing code whose size parameter was
calculated by subtracting the number of ‘0’ characters in the header from 8. We were unable
to find code that ensured that the size parameter was not negative before invoking memcpy.
Further investigation suggested that we had found an integer buffer overflow; however, in
order to verify our suspicions, we had to ensure that the integrity of the packet was not
verified elsewhere in the program. In order to side-step the laborious task of completely
reverse engineering the AEDUpdate binary, we used BitFuzz to determine that we had in
fact found a bug in the software. Below, we discuss the experimental setup.

Experimental Setup. We ran BitFuzz in Linux on a 2.4Ghz Quad Core Intel CPU with 4GB
of RAM. We marked ReadFile as a taint source and configured BitFuzz to repeatedly
force AEDUpdate to execute the configuration handshake. BitFuzz confirmed that a bug
existed in AEDUpdate. On the 94th input stream generated, the program crashed. This
occurred after running BitFuzz 77 minutes and 20 seconds.

4.5 Improving Software-based Medical Device Security

In order to improve upon the security of medical devices, we discuss four key principles
which, based on our experiences, mitigate the attacks outlined in this chapter against the
G3 Plus. Most importantly, we discuss future areas of exploration along with defenses and
stress that solutions must be consider along with the potential risk to the patient.

4.5.1 Cryptographically secure device updates are needed to ensure
firmware integrity

An end-to-end secure device update prevents attackers from replacing medical device
firmware. Recall that the G3 Plus’ update mechanism relies on a cyclic redundancy check
to detect errors in transmission of data to the device but lacks a mechanism to guarantee
firmware authenticity. We propose that in light of this, devices like the AED with on-device
firmware should be designed to only accept signed firmware.

However, the solution to this in not obvious. In addition to having strict power constraints,
a complete solution to the problem of providing secure software updates for embedded
devices has not yet been found. Attempts have been made to extend a Trusted Computing
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Platform for software-supported and hardware-supported updates [52]. However, solutions
applying to software medical devices have not been explored.

4.5.2 Device telemetry verified for integrity and authenticity

Software or devices that rely on medical device telemetry should treat input data as adver-
sarial and design the device’s software to handle a wide range of malformed or malicious
inputs. As we saw with the G3 Plus, the update software did not correctly handle the case
where a packet was malformed. Accurate modeling of device protocols and testing are
the obvious choices to ensure correct operation. Furthermore, greater assurance of correct
device operation is attainable by implicitly not trusting telemetry and programmatically
employing rigorous sanity checks on inter-device communication. Good programming
practices coupled with rigorous static analysis checking for security vulnerabilities mitigates
many threats, and in the case of the G3 Plus, would have prevented the overflow that lead to
arbitrary code execution [64].

4.5.3 Passwords should be cryptographically secure and easily man-
aged

The two password mechanisms we found in the program relied on obscuring the location
or text of the password, which made them easily recoverable. In medical devices, where
passwords potentially provide access to private date or life-critical functionality, they must
be securely protected. However, traditional protection mechanisms are muddied by the
added complexity of managing passwords in an environment where potentially many people
need to access the same device or software functionality. Furthermore, password revocation
and access control add to the intricacy of a secure design.

4.5.4 Defenses and updates must be weighed with their risk to the pa-
tient

Mechanisms that ensure and maintain device integrity must be weighed with their potential
risk to the patient. With respect to updates: What is the purpose of the update? How
might it change device operation? Is the update crucial to patient safety? In the case of
defending against modification, if a device’s firmware has been modified, it may be necessary
to identify with certainty the severity of the potential integrity flaw. In other words, the
process of verifying that a device has not been tampered with should not make it easier for a
malicious party to launch a denial of service attack on a device with critical functionality.

Most notably, we point out the general principal that medical devices, in most cases,
need to fail open. This is particularly true when emergency access to medical devices is
needed. For instance, if a patient with an implantable defibrillator collapses, the treating
doctor would need to query the device for information in order to treat the patient. Simply
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denying access to the doctor is unacceptable, as it puts security ahead of accessibility which
is in direct contention with the usability of the device [45].

This presents a major design challenge for device developers because they are faced
with the difficult problem of providing security while judiciously restricting accessibility.

4.6 Conclusion

Software security remains an afterthought for medical device design. Our case study of
a popular Automated External Defibrillator (AED) identified security flaws in both the
embedded software and the COTS software update mechanism. For future medical devices
to remain safe and effective in the presence of fast wireless communication and dense
Internet connectivity, medical device software designers must learn how to improve their
software security and explore solutions to withstand malware while confronting the unique
challenges in the domain.
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Chapter 5

Juxtapp: A Scalable System for
Detecting Code Reuse Among Android
Applications

5.1 Introduction

Mobile application markets such as the Android Marketplace provide a centralized showcase
of applications that end users can purchase or download for free onto their mobile phones.
Despite the influx of applications to the markets, applications are cursorily reviewed
by marketplace maintainers due to the vast number of submissions. User policing and
reporting is the primary method to detect misbehaving applications. This reactive approach
to application security, especially when programs can contain bugs, malware, or pirated
(inauthentic) code, puts too much responsibility on the end users. In light of this, we propose
Juxtapp, a scalable infrastructure for code similarity analysis among Android applications.
Juxtapp provides a key solution to a number of problems in Android security, including
determining if apps contain copies of buggy code, have significant code reuse that indicates
piracy, or are instances of known malware. We evaluate our system using more than 58,000
Android applications and demonstrate that our system scales well and is effective. Our
results show that Juxtapp is able to detect: 1) 463 applications with confirmed buggy code
reuse that can lead to serious vulnerabilities in real-world apps, 2) 34 instances of known
malware and variants (13 distinct variants of the GoldDream malware), and 3) pirated
variants of a popular paid game.

Contributions1.

• Vulnerable Code Reuse. We show that applications widely use significant portions

1In this Chapter, I was responsible for development of the single user version of the tools and
methodology(excluding clustering) and the evaluations (excluding performance evaluations).

57



of the Google In-App Billing and License Verification example code, leaving them
susceptible to vulnerabilities.

• Instances of Known Malware. We find 34 instances of malware in Android markets,
13 of which are distinct, previously unknown variants that have been repackaged with
innocuous-looking applications.

• Piracy. We identify pirated applications in third party markets and show that Jux-
tapp can detect pirated applications that are obfuscated and with significant code
variation from the original application.

5.2 Problem Definition

In this chapter we consider the problem of automatically finding similarity among Android
applications with the goal of detecting known buggy code patterns and vulnerabilities,
repackaged and pirated applications, and known malware in Android markets. Detecting
code reuse in Android applications offers a first chance in detecting applications that may
negatively impact the user’s security and experience or defraud developers of revenue. We
develop Juxtapp, an architecture that automatically examines code containment in Android
applications. We define code containment to be a measure of the relative amount of code in
common between two Android applications. Using this, we examine a variety of Android
market applications for instances of vulnerable code, known malware, and piracy.

Buggy and Vulnerable Code Reuse. Previous manual investigations into developer
errors[32, 37] in Android applications have indicated that developers often copy and paste
code as well as reuse sample code obtained from Android-specific developer websites
without modification. Using application similarity, we can examine the Android Market to
see if they contain known buggy or vulnerable pieces of code.

Known Malware. The incidence of malware in Android marketplaces has been rising
rapidly. In January 2011, 80 applications were known to be infected with malware, as
opposed to June 2011, when the incidence rate had risen to over 400 instances of malicious
applications [15]. Malware authors often repackage legitimate applications with a malicious
payload in order to entice users to download an infected application.

Piracy and Application Repackaging. Popular Android applications and games are com-
monly repackaged with modified code in order to evade copyrights protection and to generate
revenue for the pirate [6]. By comparing applications from the official Android market to
third party markets we show that we can detect instances of piracy.

Scope. We restrict ourselves to the Android application domain, excluding obfuscation in
the form of functional code transformation. For instance, we are able to detect two instances
of similar obfuscated code, but we restrict ourselves to this domain and do not consider the
problem of matching code which has been transformed to be functionally equivalent.
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5.2.1 Goals and Challenges

Juxtapp has a variety of challenges which must be met in order to detect code reuse in
Android applications. Some specific goals of our platform are to:

Automatically analyze code similarity in Android applications. As of November 2011,
the Android market had over 310,000 applications[16]. The rapid growth of market applica-
tions and increase in the number of pirated and malicious applications underlines the need
for a way to rapidly and automatically analyze applications.

Scale to a large number of applications. Android markets have hundreds of thousands of
applications with new applications being added all the time. Our architecture must be able
to scale in order to detect similarity across a wide range of applications, including the ability
to incrementally update our application repository in an efficient manner.

Accurately and efficiently represent the applications under analysis. In handling hun-
dreds of thousands of applications, Juxtapp must be able to accurately represent and quickly
determine code similarity among applications. There is an implicit trade-off between the
accuracy of the analysis and the amount of space it takes to represent an application under
analysis.

5.2.1.1 Android Specific

In addition to general challenges, there are a number of domain specific considerations when
computing the similarity of Android applications.

Java Source Code Unavailable. For most applications on the Android Markets, source
code is not available. Android applications are compiled from Java to Dalvik bytecode
(known as the DEX format)—the bytecode for the Dalvik VM[5]. This compiled code
and application resources are packaged as an APK. The DEX format fully describes the
application and retains class structure, function information, etc.

Multiple Entry Points. Unlike traditional desktop programs, Android applications have
multiple potential entry points. Android applications are broken up into components and
these components can each have their own entry points.

Obfuscation. Android developers are encouraged to obfuscate their code using
Proguard[17]. Proguard attempts to remove unused code and renames classes, methods, and
fields with obscured names to make reverse engineering of Android applications more diffi-
cult. However, this process is deterministic so two identical applications will be transformed
in the same way.

Therefore, any type of program analysis must take these challenges into consideration.
And indeed, the domain specific challenges can be used to impose structure on the applica-
tions so that feature hashing and clustering are more amenable in the Android application
domain.
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Figure 5.1: The Juxtapp Workflow.

5.3 Background

Like static code reuse detection proposed in [82, 58], we use k-gram features of code
sequence to represent applications. However, k-grams extracted from code sequence usually
results in an enormous feature space (e.g., 2128 features in [82, 58]), preventing efficient
feature storage and similarity comparison even for a moderate number of applications. To
analyze large volumes of mobile applications, we need an efficient feature representation of
the applications and a fast way to compare features between them.

Feature Hashing. The main technique we use is feature hashing. Feature hashing is a
popular and powerful technique for reducing the dimensionality of the data being ana-
lyzed [54, 72]. Using a single hash function, it compresses the original large data space
into a smaller, randomized feature space, in which feature hashing, representation, and
pairwise comparison are all efficient. This efficiency comes at the cost of potential collisions
while hashing. However, theoretical and experimental results from the machine learning
community show that pairwise similarity maintains high accuracy, thus algorithms built on
top like hierarchical clustering, will be close to exact [54, 72]. Feature hashing was recently
introduced into the security community for malware analysis [50].
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Figure 5.2: Example outcome of feature hashing a basic block found in an application.

The resulting representation of an application can be encoded into a succinct bitvector
which represents the features present in the data. As always, choosing a good hash function
and a bitvector representation of prime length is essential to minimize the number of
collisions in the vector.

Similarity. We determine the similarity of two applications by the similarity between their
feature sets. We use the Jaccard similarity metric defined as J(A, B) = |A∩B|

|A∪B| , where A and
B are two k-gram feature sets of two applications, respectively. Because we hash k-gram
sets into boolean vectors, with each entry indicating presence or absence of a feature, as
opposed to a set of items, we can approximate this quantity much more efficiently using
bit-wise operations: J(Â, B̂) = |Â∧B̂|

|Â∨B̂| , where Â and B̂ are bitvector representations of
k-gram sets A and B, respectively. As shown in [50], as long as the size of the bitvector
is large enough, J(Â, B̂) is very close to J(A,B), the similarity between two applications
represented by the k-gram feature sets. The Jaccard distance D(A, B), which measures
dissimilarity between two feature vectors, is obtained by subtracting the Jaccard similarity
from one: D(Â, B̂) = 1− J(Â, B̂). Both Jaccard similarity and distance have values in the
range [0, 1].
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5.4 Our Approach

As shown in Figure 5.1, our approach, Juxtapp, involves the following steps for analyzing
Android applications: 1) application preprocessing, 2) feature extraction, and 3) clustering
and containment analyses.

5.4.1 Application Preprocessing

We preprocess each application in order to extract the DEX file, which represents the
compiled application code. In our approach, the original Java source code is not required
because the DEX format fully describes the application and retains class structure, function
information, etc.

For each application we convert its DEX file into a complete XML representation of the
Dalvik program, including program structure. From this, we extract each basic block and
label it according to which package it came from within the application. We process each
basic block and only retain the opcodes while discarding most operands. The exception
to this is for opcodes storing constant data, such as the const-string opcode, which
becomes a concatenation of the opcode along with the value it references.

The intuition behind this is that many Java applications contain boiler plate code that
will appear in many applications when only opcodes are considered. Furthermore, including
constants makes the feature hashing (discussed below) more fine-grained and more restrictive
about matching. This is especially important because many applications use Java reflections
to access functionality, with the only difference between programs being the string arguments
passed to the Reflections API.

5.4.2 Feature Extraction

We use k-grams of opcodes and feature hashing to extract features from applications. We
use the djb2 hash function which is known to have an excellent distribution[12]. As shown
in the Feature Hash box in Figure 5.1, for each application’s basic block representation
of the original XML file, we extract each k-gram using a moving window of size k, and
hash it using djb2. k-grams across basic blocks are ignored. For each hashed value, we set
the corresponding bit in the bitvector of the application, indicating existence of the k-gram.
Along with this information, we efficiently store the package name from which the basic
block originated, the basic block offset within the basic block file, and the k-gram offset.
This allows us to recover how and why our architecture determined that applications are
similar and serves as a way to verify matching applications.

In order to feature hash, we have two parameters to determine, namely: length of k-gram
k and bitvector size m. In Chapter 5.5, we show an experimental evaluation of several values
of k and m in order to determine optimal values of these parameters over our dataset.

Choosing k. k is a parameter which determines the number of dimensions of the underlying
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feature space for representing the Android applications, and it bounds the number of
features that can be extracted for each application. k is a crucial parameter for detecting
similarity. If k is too small (e.g., k = 1), there will be a small number of unique features
from all applications, resulting in an oversimplified, low-dimensional representation of the
applications. In this representation, overmatching between applications can occur, and many
applications would be falsely classified as being similar applications would be falsely similar.
On the other hand, if k is too large (e.g., bigger than the size of most basic blocks), even
small code changes might result in large changes in the feature representation, preventing
us from obtaining a meaningful and robust comparisons between applications. In general,
a reasonable k should have a small value, at which further increase in value would cause
insignificant increase in the quality of the pairwise similarity comparison. As shown in
Chapter 5.5, we evaluate different k values, and choose k = 5, at which its marginal impact
on similarity accuracy is around 0.01.

Choosing Bitvector Size. The bitvector size m strikes the tradeoff between (similarity)
computation efficiency and approximation error of the bitvector representation of the k-gram
features.

Ideally, we want size m to be large enough so that few collisions would happen when we
feature hash k-grams into bitvectors; practically, we want size m to be small so that we can
efficiently compute pairwise similarity among hundreds of thousands of applications. The
larger the bitvector size m, the more accurately a bitvector represents an application, but at
the cost of more time required to compute the pairwise similarity among all applications.

As shown in [50], as long as m� N , which is the number of k-grams extracted from
an application, the Jaccard similarity between two bitvectors very closely approximates
computing the set intersection between two k-gram feature sets. That is, as long as m is
large enough, Jaccard similarity is nearly an exact representation in practice. Based on
this principle, we use a data-driven approach in our experiments in Chapter 5.5, in order to
determine a bitvector size which is large enough to represent the feature space in question.

5.4.3 Analysis of Feature Hashing Results

A variety of data analyses can be performed on the feature representation of the applications.
In this paper, we primarily focus on similarity, containment and clustering analysis, which
help us to filter out vast amounts of uninteresting instances and pare down a small set of
interesting candidates for further analysis.

5.4.3.1 Code Containment Comparison

Containment analysis is a useful tool for paring down application candidates that potentially
have copied code, pirating, and malware contamination. We define the containee A to be
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the application being examined for similarity and the container (or carrier 2 ) B to be the
application which houses the packages and associated features that we test for existence
inside the containee. We define a metric that gives the percentage of containment by
considering the number of features common in both applications, divided by the number
of bits in the containee application. Formally, containment is defined as: C(Â|B̂) = |Â∧B̂|

|Â| .
Written in this form, this containment is defined as the percentage of features in application
A that exist within application B.

5.4.3.2 Clustering

To find inherent patterns among Android applications, we use agglomerative hierarchical
clustering[34] on the feature bitvector representation of each application in order to group
similar applications together. The basic idea is that the collection of feature bitvectors
represents the applications in a high-dimensional space with a well-defined distance metric,
the Jaccard distance. Using this distance metric, we can group bitvectors that are close-by
and, thus, we are able to group similar applications.

Hierarchical clustering produces clusters without having to specify the number of clusters
in advance. The input to the clustering algorithm is a threshold t (e.g., 90%) and a list of
Jaccard similarity values between each pair of applications. The output is a clustering S
for the applications, in which all applications in a cluster are with similarity s greater than
or equal to t : s ≥ t. The threshold t is set by the desired precision tradeoff between the
number of applications in the clusters and the “closeness” of applications within a given
cluster. While a smaller t puts more applications into a few large clusters, a larger t discovers
specific variants of application families (e.g., similar applications developed by the same
authors).

Hierarchical clustering begins with one application in its own cluster; then it selects the
closest pair and merges them into a common cluster. The cluster comparing and merging
process continues until there is no pair whose similarity exceeds the input threshold t.

For clusters with multiple applications, we use single-linkage to define the similarity
between them, i.e., the similarity between cluster Sa and cluster Sb is the maximum similarity
between all possible pairs, i.e., J(Sa, Sb) = max{J(A, B)|A ∈ Sa, B ∈ Sb}.

5.4.4 Core Functionality and Result Refinement

Clustering can be a way to visualize the application topology in order to qualitatively
understand how well applications are classified among a given cluster. Application similarity
can be dominated by large similar libraries common to many applications (e.g. AdMob).
In light of this, we develop the notion of core functionality, which seeks to capture in a
coarse-grained manner how included libraries interact with the main application component.

2In the case of malware, a carrier is a more appropriate term because the innocuous application is modified
in order to execute code outside of the intended functionality.
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That is, the main package of the application is the core application component, and any
direct edges from that component to other libraries makes that package a core application
component.

Simply put, we examine each application and whether or not the core application
component directly invokes an outside library. If the core application invokes a method
in the library, then is a part of the application’s functionality; otherwise, that code can be
excluded from the analysis. For instance, AdMob, generally speaking, has no direct edges
from or to its library code to the main application component, indicating it can be excluded
in most applications 3.

We refer to the set of libraries excluded as an exclusion list. We point out that the exclu-
sion is an over-approximation and aggressively excludes libraries. Because the exclusion
list only looks at direct invocations to other packages and libraries, it will miss invocations
due to dynamically called functionality, such as: Java reflections, dynamically registered
event handlers, and other entry points implicitly defined by the Android Manifest.

In practice, we didn’t find that the automatic generation of the exclusion list in the
current implementation of this approach worked very well. In general, packages containing
library code which many applications invoke, may only have a single piece of functionality
used, but an inclusion of the entire library causes them to be falsely similar. This is because
they actually use different functionality from within the same package. Future work will
attempt to make this more fine-grained, at the package and method level.

Despite automatic generation of the exclusion list not being perfect, the automatic
generation can be manually pruned or added to by an analyst. In practice, we have found
analyst-driven modifications to the exclusion list works well, as we discuss in Chapter 5.5.

5.4.5 Implementation

The workflow of Juxtapp can be roughly broken up into the following stages: application
preprocessing, feature hashing, clustering and containment analysis. Juxtapp consists of
6,400 lines of C++, 1,600 lines of Java, and 600 lines of scripts.

The first step in the process is converting the Android application file (APK) to a format
which is usable by our architecture. Juxtapp processes the APK and outputs the file in an
XML format with functions split into basic blocks, which is then converted to a basic block
format, which has a label indicating the source package, class and method.

After preprocessing, the applications are feature hashed. Juxtapp processes the basic
block file for each application and outputs a feature vector representing the application along
with recovery information to verify matching portions of applications. That is, in addition to
the features, we also store the package and class name, and the offset within the original file
in order to verify matching potions of applications. Figure 5.2 shows an example basic block
being feature hashed, along with the recovery information we store for each feature. For

3AdMob is invoked through the applications manifest or layout file, which we consider to not be a direct
invocation to the application.
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each program under analysis, the features calculated are stored as a sparse representation of
the vector, while a table of each feature’s offset within the original program along with the
package and class from which it originated. The feature hash file stores the size of the vector,
the number of entries that are set to one, and a list of features appearing in the program. The
table file stores a feature number, the basic block offset within the file, the instruction offset
within that basic block, and finally the class, package, and method name that the basic block
was derived from.

After processing all of the applications’ basic block files, Juxtapp calculates a pairwise
distance matrix between all applications. This matrix is used for clustering and determining
similarity among applications. We note that Juxtapp is capable of incremental analysis
which allows additional applications to be considered without recalculating the entire dataset.

After the applications have been feature hashed, Juxtapp can perform other in-depth
analysis. First, the applications under analysis can be clustered based on their computed
distance matrix, which offers a topological view of the dataset, which can help an analyst
narrow down interesting areas to investigate. For instance, after clustering, we combine
author information with the applications in each cluster. This allows us to understand which
applications came from which authors and helps us identify interesting candidates, i.e., those
with conflicting authors and similar but modified application code.

Finally, Juxtapp computes containment between sets of applications. Given a set of
feature hashed applications represented, the containment tool determines what features are
common between applications and outputs the percentage of code in common, along with
the ratio of the comparative sizes of the number of features. The ratio is important because
of the asymmetric notion of containment which may indicate a high degree of similarity
between two applications, but this is only a meaningful comparison if the applications are of
the same relative size. For instance, a very small application may have many bits in the bit
vector in common with a very large application, but this is due to the density of the larger
application’s bit vector and not necessarily a meaningful comparison. Simply put, a large
application when compared to a small application may inadvertently have a large subset of
the smaller applications features by virtue of the fact that a larger application will produce a
dense feature vector. This ratio is used to remove false positives.

Distributed Analysis. We have both a single machine implementation of Juxtapp as well
as a distributed implementation which uses Hadoop on Amazon EC2. We use the Hadoop
MapReduce framework for performing large-scale computations and HDFS for sharing
common data among nodes[11]. We wrote a MapReduce application in order to perform the
APK to basic-block conversion portion of the workflow, and we used Hadoop Streaming
to interface with our C++ applications, which were responsible for feature hashing and
containment calculations. We note that the Hadoop Streaming interface is unable to take
advantage of resource management because of the our application is invoked from Hadoop
Streaming as an external program, and therefore must distribute data manually to and from
HDFS nodes. We also note we are unable to take advantage of other Hadoop optimizations,
like compression, intelligent file and resource distribution across nodes, and caching of
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resources4. Many of the tasks required of Juxtapp are easily parellizable tasks which
greatly improves performance when dealing with large datasets. As a result, Juxtapp can
feature hash, cluster, and analyze containment in a distributed manner which offers great
performance increases over the single machine version.

Incremental Update and Increasing Performance The statelessness property of many
stages in Juxtapp makes it easy to incrementally process the applications, update their
similarity matrix, and analyze them in detail without the need to reprocess all applications
under analysis. When creating or updating the pairwise similarity matrix, only values greater
than 50% similarity are stored, making the matrix sparse among dissimilar applications.
When a set of m new applications are added to the analysis, the application preprocessing
(conversion of APK to XML to basic block) and the feature hashing are inherently incremen-
tal, meaning, only the new applications need conversion and feature hashing. As shown in
Figure 5.3, with n existing applications and m new applications, updating the existing n×n
similarity matrix A is as follows: 1) compute the m×m similarity matrix B among the new
applications, 2) compute the n×m similarity matrix C between the set of new applications
and the existing ones, and 3) concatenate them together and grow the existing similarity
matrix A at appropriate rows and columns to get the new (n+m)×(n+m) similarity matrix.
With the new similarity in B and C, it is also straightforward to update the hierarchical
clustering using incremental methods to obtain a new clustering results [65, 44].

5.5 Evaluation

In this chapter, we evaluate the efficacy of Juxtapp. We first introduce our evaluation
dataset and describe our experimental setup. Then, we discuss determining experimental
parameters and their impact on our results. Finally, we introduce case studies in which we
use Juxtapp to detect instances of vulnerable code reuse, known malware, and piracy on
Android markets.

5.5.1 Experimental Evaluation Dataset

We evaluate our approach using applications from three different sources. From the official
Android Market we obtained 30,000 free Android applications. Additionally, we downloaded
28,159 applications from a third-party Chinese market, Anzhi, a Chinese corporation, which
aims to be the central repository for Chinese third-party Android applications. Anzhi was
the first third party market to break 10 million users in 2010, and as of 2012 claims to
have more than 25 million users worldwide, with over 180 million downloads per month[1].
The 72 malware in our malware dataset came from the Contagio malware dump and other
sources [4]. Lastly, we use a set of 95,000 Android applications from the official Android
Market to evaluate the performance of Juxtapp 5.

4Hadoop Streaming uses program input and output to interface with the Java application.
5 We obtained a larger dataset of applications in order to show that our technique scales to a large number

of applications beyond our evaluation set of applications
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Figure 5.3: Incrementally updating the similarity matrix. A contains similarity values
among existing applications, B contains similarity values among the new applications, and
C contains similarity values between the new applications and the existing ones.
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Figure 5.5: Frequency distribution of size of APK files. For better visualization, we do not
show the largest 4% of the applications. The largest APK file in our dataset is 52.26MB.
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5.5.2 Experimental Setup and Performance

Local experiments, when tractable, such as containment between a small set of applications
and our dataset, were run on Ubuntu Linux 2.6.38 with Intel Xeon CPU (8 cores) and 8GB
of RAM. When larger experiments were required, such as containment between on-market
to off-market applications, and generating pairwise distance matrix, we conducted them on
Amazon EC2. For our Amazon EC2 clusters, we used m2.4xlarge instances, which run on
Ubuntu Linux 2.6.38-8-virtual with 8 virtual cores and 68.4GB of memory.

We varied the number of nodes running from 25 to 100 and used 8 worker threads per
node. Figure 5.4 shows the time required to complete a full run of the entire pipeline, which
includes APK to basic block format file conversion, feature hashing, and computation of the
pairwise similarity when using 95,000 unique Android applications. At the time of writing,
there are around 310,000 Android Applications[16], which demonstrates that Juxtapp scales
well.

As we increase the number of nodes, the amount of time required to do analysis becomes
gradually dominated by the overhead of parallelization, including the distribution of re-
sources and the recombination of resources in order to combine all of the resulting bit vectors
in order to calculate the pairwise distance matrix. In addition, the APK to basic-block and
feature hashing stages were parallelizable without any synchronized state, which contributed
to significant performance gains as the number of workers increased. Figure 5.4 shows how
the overhead of the pairwise comparison approaches a constant overhead as the number of
nodes are increased. We speculate that a native implementation in Java using Hadoop would

69



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1  20000

 40000

 60000

 80000

 100000

 120000

N
u

m
b
e

r 
o

f 
o

c
c
u

rr
e
n

c
e

s

Number of opcodes per application

Figure 5.6: Frequency distribution of number of opcodes of applications. For better
visualization, we do not show the largest 11.2% of basic block files. The largest file in our
dataset has 1,728,196 opcodes. The numbers on the x-axis are the lower bounds of the bins,
and the size of each bin is 2500.

reduce the overhead across the board in both the resource distribution and recombination
steps.

Incremental Update Performance. Incremental updates of the dataset allow us to continu-
ously process and update our dataset with new market applications without requiring running
the entire Juxtapp workflow on our application repository. Table 5.5.2 shows the time
required to add from 100 to 7,000 APKs to the dataset. Distribution time is the time required
to distribute APKs to worker nodes. This time begins to become dominant as the number
of APKs increases. This overhead is caused by not being fully able to take advantage of
Hadoop’s resource allocation, due to our Hadoop Streaming implementation. Despite this,
these numbers show that adding a large number of applications to the comparison repository
daily or even multiple times daily is feasible with Juxtapp.

5.5.3 Dataset Statistics

To gain a general understanding of our dataset, we analyzed our collection of 30,000 unique
applications as a representative sample of the official Android Market. Figure 5.5 shows the
distribution of the sizes of APK files in kilobytes, and Figure 5.6 shows the distribution of
the number of opcodes per application. Both distributions are skewed to the right, with APK
files having a median size of 724KB and applications having a median number of opcodes
of 20,555. The 75th percentile values for APK file sizes and number of opcodes are 2,071kb
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# Incr. APKs Distribution Time Completion Time
100 0m 36s 5m 11s
500 4m 49s 9m 35s

1000 8m 58s 21m 5s
3000 20m 20s 42m 31s
5000 42m 52s 80m 51s
7000 57m 0s 104m 48s

Table 5.1: The time to incrementally process varying numbers of APKs. Note, distribution
time is included to show how file distribution starts to dominate the processing time.
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Figure 5.7: Cumulative distribution of the number of opcodes per basic block, using all
basic blocks with more than 2 opcodes. The mean is 5.35 opcodes and the median is 2
opcodes, while the largest one contains 35,517 opcodes.

k Average Jaccard Distance
3 0.939
5 0.969
7 0.980
9 0.984

Table 5.2: Experiment showing the impact of varying k on the Jaccard distance.

and 56,166, respectively. The total file size of these APKs is 50.43GB and total number of
opcodes in all applications is approximately 1.45 billion.
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Figure 5.8: The clusters obtained from 30,000 Android application using hierarchical
clustering with similarity threshold t = 0.9.
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Figure 5.9: Cumulative distribution of the number of unique k-grams extracted from 30,000
Android applications (with k = 5).

5.5.4 Determining Experimental Values

Before feature hashing we must choose values for k-gram size k and bitvector size m. We
use the 30,000 Android applications to determine their values.
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Figure 5.10: Cumulative distribution of the number of bits set in the bitvectors of 30,000
Android applications.

5.5.4.1 Choosing k for our Dataset.

To choose k, we randomly select pairs of applications and evaluate their Jaccard distance to
determine how much varying k impacts the average distance between them. Table 5.2 shows
varying values of k and the resulting average distance between pairs of randomly sampled
6,000 applications6. We repeat the experiment on multiple runs, but see little variance across
them. The key intuition is if two applications are chosen at random from our dataset, they
are likely to be dissimilar. The table shows that starting from 5, further increasing k has
little impact on the distance calculation. Based on this, we chose a value of k to be 5 and
performed feature hashing and clustering on our sampled applications. Figure 5.7 shows the
cumulative distribution of opcodes per basic block for all basic blocks with more than two
opcodes. This indicates that the majority of the basic blocks are dominated by a small value
of k, and 5 is an appropriate choice for this dataset.

5.5.4.2 Choosing an Appropriate Bitvector Size.

The bitvector size m strikes the trade-off between efficiency (similarity) computation and
approximation error of using bitvectors to represent the sets of k-gram for each application.
Ideally, we want size m to be large enough such that few collision occur during feature
hashing. Practically, we want size m to be small so that we can efficiently compute similarity
between all pairs of hundreds of thousands of applications.

According to [50], we need m � N , the number of k-grams extracted from an ap-
plication, so that the Jaccard similarity between two bitvectors is very close to the exact

6A distance of 1 indicates no similarity where a distance of 0 indicates identical similarity.
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representation of computing the intersection between two k-gram feature sets. In addition,
in all of our analysis, we are particularly interested in applications with high similarity, e.g.,
application pairs with similarity greater than 50%. We sparsely store this pairwise matrix
and only store values for which the threshold is reached. This optimization yields good
similarity results because those excluded applications at the 50% threshold are very unlikely
to have similar applications within the comparison dataset.

We use all of the 30,000 applications from the Android Market to determine m. We
compute the number of unique 5-gram features that can be extracted from each application,
and plot its cumulative distribution from all applications in Figure 5.9. We find N90 in
the distribution, which represents the threshold in which 90% of all applications’ k-gram
features are less than this value. We then set m = 240, 007, a prime that is more than nine
times N90, satisfying the condition m� N suggested by [50].

We use the following two ways to verify whether m = 240, 007 is large enough. 1) We
do feature hashing with m = 240, 007 for all 30,000 applications, and count the number
of bits set in the bitvector for each application. We plot its distribution in Figure 5.10. We
observe that more than 95% of applications have 1/5 of their bits set in their bitvectors, and
more than 90% of applications have only 1/10 of their bits set. Hence, we do obtain sparse
bitvector representation for the majority of applications. 2) We also randomly sample a
subset of 1000 applications, compute the pairwise similarity among them using their k-gram
feature sets, and compare the similarity values to those computed using their bitvectors. We
find that the average difference between them is less than 0.01. With these two observations,
we conclude that m = 240, 007 is suitable for our analysis.

5.5.4.3 Clustering for Application Topology

We use clustering as a way to group similar applications together. We run hierarchical
clustering on the 30,000 Android applications using a similarity threshold t = 0.9, with and
without a core functionality exclusion list applied, respectively. Figure 5.8 shows the cluster
size sorted in a descending order. However, as stated before our automatic exclusion list
generation did not work as well as we had hoped. Large, common libraries like Admob
were automatically pruned, but after investigation we determined that clusters were still
dominated by large libraries, not quite capturing the core functionality. We found that
clusters with exclusion no longer had application clusters dominated by large libraries,
instead they were dominated by smaller libraries. However, the clustering as a whole worked
well to detect similarity within a given threshold.

We observe that there are around 200 clusters, each of which has at least 10 applications,
and in total there are 9344 applications in those clusters. We find that our clustering identified
three unique, commonly occurring patterns. They are:

Same application title, different versions. One cluster contained several versions of the
same movie player, which were all responsible for displaying explicit pictures of models.
Within the cluster, there were 4 different versions of the same model’s movie player, heaven8.
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Differing author and functionality, same tool for development. In one example, AppBar
is a tool for allowing users to visually create applications for Android without needing to
know about the underlying development platform. The platform allows for the addition of
sounds, images, twitter feeds, and all sorts of additional widgets. We identified a cluster on
the official Android market consisting of 735 applications of this type, ranging from RSS
feeds to audio programs.

Multiple apps from an author, different underlying functionality. A common pattern
is for a developer to make a framework for creating applications and then reusing the
applications in a variety of contexts. For instance, the company BrightAI produces a variety
of applications related to sports. One such cluster contained 28 different applications, all by
BrightAI, but with different application purposes.

We stress that clustering with a high threshold (say 90% match) can miss similarities
among applications with a large amount of code in common. For example, multiple versions
of the same application across versions may have additional libraries added or removed,
thus reducing the amount of similarity across this threshold. Simply put, this works well
for classifying very similar applications on a global view, while containment is useful for
comparing individual samples to see what fraction of code they have in common. Lowering
the threshold can capture similar applications of different sizes, at the cost of additional
noise in each cluster. Meaning, applications may be clustered based on large libraries within
each application, as opposed to their core functionality.

5.5.5 Case Studies

Previous work on studying Android applications[37] has shown that developers copy and
paste code snippets from popular programming web sites into their own code, without
understanding the potential security risks posed by blindly copying code.

Recently, Google announced an In-Application Billing API along with a sample applica-
tion which demonstrates how the purchasing protocol works[14]. Several security warnings
accompany the document, including statements regarding how developers should obfuscate
their code, protect their purchasable content, and verify purchases on a remote server. We
show how Juxtapp can not only detect applications in the Android Market that copied
this sample code, but we also show how we can detect other known source code-related
vulnerabilities in the market using our architecture.

5.5.5.1 Reuse of Vulnerable Code

In this chapter, we examine two cases of vulnerable code reuse of sample code provided
by Google: In-Application Billing and the License Verification Library. We show that
Juxtapp can quickly and efficiently reduce the set of potentially vulnerable applications and
detect vulnerable code reuse in Android Applications.
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In-Application Billing. Google In-Application Billing (IAB) is a library provided for
developers to include so that their customers can sell digital content within their application,
while letting Google handle authentication and credit card purchases[9]. For security reasons,
Google advises that developers use obfuscation in order to make the code more difficult to
understand for an adversary and they also recommend that developers perform verification
on a remote server.

However, the sample code provided by Google is not obfuscated and performs veri-
fication of a purchase on the device. The left side of Figure 5.11, Line 231, shows the
potential single point of attack. Meaning, if a developer can rewrite the statement to negate
the condition, or force it to be true in some other way, the application will skip verification
and allow the current user access.

In order to detect a potential attack, we analyzed the containment between the IAB
sample code and the 30,000 applications in our dataset. We set a threshold that at least 70%
of the IAB sample code must be in the application before further exploration.

Running containment between the sample IAB code and the Android Market applications
took 1.5 minutes, and we detected 295 applications containing 70% of the IAB code. Other
researchers used these applications to demonstrate that they could use the tool they developed
for application rewriting to automatically exploit a vulnerability to get virtual goods for
free [21]. Of those that used a significant portion of the sample code, 174 were vulnerable,
while 65 use off-device/JNI verification and 56 were inoperable after rewriting. Our results
show that Juxtapp is a fast way to quickly analyze large sets of applications for vulnerabilities
caused by code reuse.

License Verification Library. The License Verification Library (LVL) is a library provided
by Google in order to allow developers to query the Android Market at runtime in order to
determine if a user is licensed to use a particular application[10]. Similar to IAB, Google
provides sample code which encourages developers to obscure their code and ensure that
single points of attack are protected. The sample code uses caching in order to prevent
having to contact the Android Market every time the user invokes the application. However,
the right side of Figure 5.11, Line 133, shows the potential vulnerability. This line could be
rewritten to negate the condition, or to check another condition, making this a single point
of failure, allowing a clever attacker to use the library without a license.

We executed containment on 30,000 using the Google LVL sample code to guide the
search. For this experiment, we detected 272 potential candidates, 182 of which had 90%
of the code, and 90 more, with at least 70% of the sample code. It took about 2 minutes to
analyze the dataset. Of the potentially vulnerable candidates, 239 of the 272 applications
had the vulnerable pattern in their code. We manually verified the results in order to be
assured that the pattern was in the code. Our analysis took about 10 minutes with script
assistance responsible for opening each document which allowing the analyst to determine
if the pattern exists, without the task of manually opening each file. Of those detected, some
had obfuscated class and method names, but Juxtapp was still able to detect similarity. A
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222: boolean verify(...) {
231: if (!sig.verify(
232: Base64.decode(signature))){
233: return false;
234: }
235: return true;

130: void checkAccess(...) {
131: // skip asking market if cached license
133: if (mPolicy.allowAccess()) {
135: callback.allow();
136: } else {
137: //verification code

Figure 5.11: The code on the top shows the vulnerable code present in the In-Application
Billing Example Code Security.java. On the bottom is the point of vulnerability
within the License Verification Library sample code LicenseChecker.cpp .

few of the applications which were not vulnerable omitted the check for a cached response
so that each time the user wished to use the application, a license must be granted7.

Malware Instances Found Distinct New Carriers Found Malware BB Size
GoldDream 25 13 1,898

DroidKungFu 6 0 5,357
DroidKungFu2 2 0 375

zsone 1 0 280
DroidDream 0 0 2,526

Total 34 13 -

Table 5.3: Number of instances of each kind of malware found in the Anzhi Market dataset.
Also shown are the distinct new carriers discovered in our dataset.

5.5.5.2 Android Malware

The Android Market place has recently experienced an influx of malware. Google has
responded by exercising its remote application removal ability, that is, if Google determines
an application is malicious or untrustworthy, it can remotely push a command to remove
the application from affected devices[7]. In fact, as of August 2011, users are 2.5 times
more likely to encounter malware on their mobile devices than only 6 months ago, and it is
estimated that as many as 1 million users have been exposed to mobile malware[15][19].
We suspected that unregulated, 3rd party markets will have a higher incidence of malware
and indeed our results and research published concurrently with this chapter shows that third
party markets do have a high incidence of malware[88, 89].

Containment between Anzhi Market and Malware. In order to evaluate whether third
party markets contain known malware, we select a subset of 5 malware applications from
our dataset, which represents some of the most prolific, well-known malware. They include:
DroidDream, DroidKungFu1/2, zsone and GoldDream. Each malware sample had a manual
exclusion list applied, that is, using widely available malware analysis, we excluded common

7Note: While this code is technically safe, Google advises against this because applications will be unusable
when a user does not have Internet access.
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code from malware such as advertising libraries and common utilities which contribute
nothing to the uniqueness of the code. The exclusion list can also be generated in a semi-
automatic manner. As we stated our core functionality did not generate ideal exclusion
lists. In practice, we did automatic generation, and then pruned or added to the list with
analyst-driven expertise. Juxtapp can simplify this task for the analyst by first attempting to
find a matching carrier application which is the same as the malware and then removing all
similar code between the matching applications. The resulting code would be an exclusion
list with only the differences between the applications remaining, which in this case is the
malware exclusion list.

Table 5.3 shows that we were able to detect 34 malware applications in the off-market
dataset. We define a carrier application to be a legitimate application that has been modified
to contain a malicious payload. The experiment took around 10 minutes to complete. Among
those that matched we noticed a very high incidence of code reuse ranging from 93%-100%.
The lower percentage matching shows that the technique is amenable to code mutations
and variants. When investigating those with lower percentages, we noted that variants often
changed file paths, reworked small amounts of code, changed exploit names, etc., and a
100% match indicated, with high probability, that the two pieces of malware are identical
and indeed, when investigated the samples matched.

When evaluating the samples, we also consider the ratio of the size of the malware
sample compared to the size of the container application in order to remove false positives.
As stated before, this ratio is the size of the number of features of the two applications under
comparison. An application that has a high percentage match, but a low ratio indicates that
it is likely a false positive due to the high density of the bit vector of the large application
in comparison to the smaller application. A low ratio (e.g., .8x, 1x, 2x) indicates similar
orders of magnitude among the code sample, where a higher ratio (e.g., 40x, 50x, etc.)
indicates that the reported matching is likely a false positive due to the density of the
bitvector representing the larger application. For instance, when evaluating our dataset for
containment of GoldDream, we evaluated both the ratio and percentage match in order to
eliminate false positives. We found that the highest percentage match outside of the range
discussed previously (93%-100%) was 73% with a code ratio of 20 times greater than that
of the sample, indicating a false positive. This sort of clear demarcation allows us to quickly
and easily identify malware samples and discard false positives. Some malware found in the
Anzhi market matched our sample malware dataset with little variation in code between them.
However, other matched malware was significantly different from our evaluation set and we
show how we can detect new variants, with new malware carriers using Juxtapp. Most of
the minor changes were related to class and package names. However, Table 5.3 shows that
we found 13 unique carriers of the GoldDream malware in our dataset. Meaning, of these
we found 13 previously unknown to us, distinct applications in our evaluation dataset, which
were all different types of games that had been repackaged with the GoldDream malware.
Of the 13 significant variants, one of them was found 12 times in the Market with only very
small differences between them, so we consider this to be one instance. The differences
between very closely matching variants were constant strings, relating to the storage of
various dropped files that the malware uses, along with variation in the class and package
name, but little else. Our results confirm our suspicion that third party markets house known
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malware and that Juxtapp can be used to find known malware and previously unknown,
new variants of them.

Identifying Contaminated Code. As a further step in analysis and verification of malware,
Juxtapp can identify the commonality between applications and exclude those features
that are contained within both applications and output the resulting code. By excluding
the code that caused the match, an analyst can quickly discover which portions of the
code were modified or injected into the application. For instance, when conducting the
GoldDream experiments above, we could identify the carrier applications because the
GoldDream portions of the application are removed, due to sharing similar code across
variants. This allowed us to quickly and easily identify the main, non-infected, components
of the applications.

Containment between Android Market and Malware. We evaluated containment be-
tween 63 malware samples to the 30,000 collected from the official Android Market. The
experiment took 19 minutes to execute locally.

Juxtapp did not detect any instances of known malware on the Android Market. This
result is unsurprising given that Google has been vigilant about removing malware once it is
found, banning the associated account, and issuing remote removal[20].

However, as expected, Juxtapp was able to detect the original application that the
malware sample had been repackaged with in order to trick users into downloading. That is,
a subset of our samples were repackaged with legitimate applications. Table 5.4 shows the
Android applications we were able to detect using the malware sample.

Application File Name Features Name Repackaged with
com.codingcaveman.solotrial.apk 4,272/4,831 Guitar Solo Lite DroidDream.1
it.medieval.blueftp.apk 19,597/18,946 Bluetooth File Transfer DroidDream.2
com.tencent.qq.apk 28,712 Tencent QQ Messaging PJApps
de.schaeuffelhut.android.openvpn.apk 2,009 OpenVPN Settings DroidKungFu

Table 5.4: Juxtapp is able to detect the original (and versions) of the application which was
repackaged when compared to our malware dataset. Multiple features indicate multiple versions in
our dataset.

5.5.5.3 Piracy and Application Repackaging

In addition to vulnerable code and malware on the Android markets, piracy, especially
among games, has become a major problem for developers. Android applications are often
pirated by rogue authors, which remove copy protection and replace developer revenue
mechanisms such as advertising libraries. In order to examine the third party market Anzhi
for piracy, we downloaded and paid for the two applications mentioned in a Guardian article
about Android privacy[6]: 1) Chillingo’s The Wars; 2) Neolithic Software’s Sinister Planet.
We compared these applications against the 28,159 applications in the Anzhi market, which
took around 19 minutes to execute locally.
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We found no instances of the Sinister Planet program being pirated on a third-party
market. However, we found 3 pirated versions of Chillingo’s The Wars, being marketed by
the company Joy World, the same company accused of piracy in the article. Each of the
pirated versions has 71% code in common with the original application. There were no
false positives in either case.

Despite the fact that the legitimate Wars program is unobfuscated, the Joy World version
is obfuscated with methods and classes renamed. Additionally, we found that the pirate had
added advertising libraries to the application which were not present in the original version.
So, even in light of significant obfuscation and additional code added, we were still able
to detect similarity showing that Juxtapp handles perturbations in code well. Finally, the
pirate did not remove the company name of the original producer of The Wars. Notably, the
original maker, Chillingo, releases names under Deluxeware as well and this name remains
in all pirated versions of the code. We found that advertising and other libraries were added
to the pirated versions to generate revenue for the pirate. In this chapter, we have shown that
Juxtapp works well in detecting code reuse in Android applications. Namely, we’ve shown
that instances of piracy, buggy code reuse, and known malware, even with obfuscation, can
be detected by our tool.

5.6 Related Work

DroidMOSS uses a technique similar to ours has been independently developed by Zhou et
al. [88]. While they focused on detecting repackaged applications, we applied our technique
and show that it is effective to detect repackaged applications, buggy code reuse and known
malware. In addition, we implemented the technique on a distributed infrastructure using
Amazon MapReduce, which enables us to analyze a much larger application corpus.

DroidRanger, another system by Zhou et al. is a system designed to detect known mal-
ware and unknown malware in both the official Android market and third party markets[89].
The primary difference in our tools is that Juxtapp primarily uses static features and byte-
code semantic information to detect known malware and variants, where DroidRanger
uses heuristic and known malware-based filtering to discover new malware and detect new
malware based on known exploit vectors. For known malware detection, their system uses
behavioral-based detection in which they filter based on dangerous permissions malware
has been known to use, like SEND SMS. Additionally, they include information from the
manifest (like listening for SMS messages), semantic information from the bytecode (strings
and numbers), and structural layout of the applications packages and classes. Secondly, they
design a heuristic model for detecting malware which monitors dynamic loading of code
and also has dynamic execution monitoring including Linux syscalls associated with known
exploits. Unlike Juxtapp, the performance and scalability of DroidRanger is not discussed.

For large-scale malware analysis, Jang et al. [50] developed BitShred, a system for
large-scale malware triage and similarity detection based on feature hashing. However,
they focus on the technique as a contribution and classify x86 malware, whereas we apply
similar techniques, with domain specific knowledge in order to find a variety of code reuse in
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Android marketplaces. Instead of using boolean features, Gao et al. [41] and Hu et al. [49]
use features based upon isomorphisms between control flow and function call graphs of the
program. While these work primarily focus on techniques to compare and index malware,
our work is focused on techniques to determine similarity among Android applications and
conduct deep security analysis.

Winnowing, a fuzzing hashing technique that selects a subset of features from a pro-
gram for analysis, has been widely used for code similarity analysis[24] and plagiarism
detection[70]. However, the winnowing algorithm requires calculating set inclusion, which
is expensive when comparing many features.

A variety of approaches for static code clone detection have been proposed in the
programming language literature for refactoring, finding bugs, and better understanding of
the code [40, 55, 59, 51]. All those techniques can be applied into our framework to further
improve the accuracy and robustness our approach.

5.7 Conclusion

In this chapter, we presented Juxtapp, a scalable architecture for detecting code reuse in
Android applications. Our architecture is implemented in Hadoop and we ran it on Amazon
EC2. We evaluated the efficacy of Juxtapp in detecting vulnerable code reuse, known
malware, and piracy in a dataset of 58,000 applications from Android marketplaces. In
the evaluation of vulnerable code reuse, we found that many developers did not modify
the sample code significantly from the Google-provided libraries, which left applications
vulnerable to a variety of rewriting attacks. Furthermore, we used Juxtapp to discover 34
instances of malware, including 13 variants of the GoldDream malware which we found
to be using a variety of games as carrier applications. Finally, we found 3 instances of
piracy in which a game was victim to removal of copy protection and the addition code
to include a multitude of advertising libraries which benefit the pirate. Our findings show
that Juxtapp is a valuable architecture in detecting application similarity and code reuse in
Android applications.
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Chapter 6

Conclusion

New architectures require careful examination of security properties in order to assess
and contain new threats. In light of this, emerging technologies, such as web APIs, medical
devices, and applications on mobile phones, are a new security landscape that has recurring
security problems. In this dissertation, we develop new techniques to analyze several emerg-
ing applications for security vulnerabilities. We utilized techniques including: dynamic
symbolic execution, binary analysis and reverse engineering, and wide scale application
comparison and classification.

First, we created Kudzu, a system for symbolic execution of JavaScript. We detailed
how our tool systematically explores client-side JavaScript programs. We explored both the
value space and event space of these applications in order to discover client-side validation
vulnerabilities.

We used Kudzu to further examine how new HTML5 primitives. These new primitives
are those used to create complex client-side JavaScript applications. We show how they may
be abused by revealing attacks against postMessage and the client-side persistent storage
API.

Then, we explored the area of medical device security. We reverse engineered the
CardiacScience G3 Plus Automated External Defibrillator, a publicly available, wide-spread
medical device. We demonstrated 4 vulnerabilities in the device and its software. We
then offered suggestions to guide future medical device design based on the results of our
investigation. We demonstrated that this new frontier of life-critical devices, especially as
they become more advanced, must be secure and reviewed for security threats.

Finally, we developed Juxtapp, a system for discovering similarity among Android
applications. Juxtapp is a scalable, efficient and capable of quickly and accurately detecting
similarities among Android applications. We used Juxtapp to detect piracy, code reuse, and
known malware in third party markets.

We demonstrate that these techniques are useful at discovering and/or preventing attacks,
in their respective application domains.
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