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Abstract

Computational Tools for Cyber–Physical Systems

by

Humberto Gonzalez

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Cyber–Physical systems, which is the class of dynamical systems where physical and compu-
tational components interact in a tight coordination, are found in many applications, from
large–scale distributed systems, such as the electric power grid, to micro–robotic platforms
based on legged locomotion, among many others. Due to their mixed nature between phys-
ical and computational components, Cyber–Physical systems are well modeled using hybrid
dynamical models, which incorporate both continuous and discrete valued state variables.
Also, thanks to the flexibility and great variety of optimal control formulations, it is natural
to apply optimal control algorithms to solve complex problems in the context of Cyber–
Physical systems, such as the verification of a given specification, or the robust identification
of parameters under state constraints.

This thesis presents three new computational tools that bring the strength of hybrid
dynamical models and optimal control to applications in Cyber–Physical systems. The first
tool is an algorithm that finds the optimal control of a switched hybrid dynamical system
under state constraints, the second tool is an algorithm that approximates the trajectories
of autonomous hybrid dynamical systems, and the third tool is an algorithm that computes
the optimal control of a nonlinear dynamical system using pseudospectral approximations.

These results achieve several goals. They extend widely used algorithms to new classes
of dynamical systems. They also present novel mathematical techniques that can be applied
to develop new, computationally efficient, tools in the context of hybrid dynamical systems.
More importantly, they enable the use of control theory in new exciting applications, that
because of their number of variables or complexity of their models, cannot be addressed
using existing tools.
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Chapter 1

Introduction

Control theory lives in the boundary between mathematics and engineering, taking problems
from engineering to then solve them using tools obtained from mathematics. As such, the
research in this field is therefore affected by changes in either of these branches of science.
Indeed, for many years the community focused most of its efforts in the analysis of linear
dynamical systems using frequency domain tools, such as the Laplace transform and the Z–
transform, until major developments in state-space models complemented, and in many cases
outperformed, the existing results. Similarly, linear models dominated the literature, due to
their wide applications to electrical circuits and chemical processes, until it became apparent
that new, inherently nonlinear, models from aerospace applications needed completely new
tools, opening the doors to the development of control theory for nonlinear systems.

From this perspective, we can argue that the latest developments in control theory have
been inspired by several factors. For example, convex optimization introduced numerical
tools that transformed the computation of some problems, such as robust H∞–control and
finite time LQ–control, into trivial exercises. Also, the surge of networked computer plat-
forms introduced variables beyond the scope of the dominant dichotomy between linear and
nonlinear models, such as the influence in communication channels, delayed signals, and
distributed behavior, among others. In general, we can say that the latest developments in
control theory have in common that, either they consider dynamical systems with discrete–
valued states induced by computational components in them, or they apply computational
tools to solve problems that cannot be clearly solved using pure analytical tools. Moreover,
these new trends greatly enlarged the spectrum of applications where control theory could
be used, mostly in the areas of robotics and machine learning.

Nevertheless, there exists a wide range of problems where the tools that control theory
can offer are still in their infancy. This thesis is immersed within this framework, presenting
three new computational tools that aim to increase the number and types of applications
where control theory can provide solutions. Our results are motivated by applications in
Cyber–Physical systems, which is the class of systems where physical and computational
components work in a tight coordination, with two goals in mind: impose as few assumptions
as possible in the dynamical model of the system, and produce solutions that can be used
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in real–time applications.
The following sections present contextual information that is fundamental to the under-

standing and analysis of the different computational tools described in this document. We
begin with the definition of a Cyber–Physical system in Section 1.1. We continue with the
definition of a Hybrid Dynamical system in Section 1.2. Then, we define an Optimal Con-
trol Problem and we present some of its well known properties in Section 1.3. Finally, we
enumerate the main contributions of this thesis in Section 1.4.

1.1 Cyber–Physical Systems

As we mention above, a Cyber–Physical system is commonly defined as a system where
its physical and computational components work in a tight coordination. This definition
aims to differentiate Cyber–Physical systems from both classical dynamical systems, mod-
eled using ordinary differential equations, and purely computational systems, modeled using
finite–state machines. But this definition goes beyond the modeling tools used to math-
ematically describe the system. Cyber–Physical systems are present in every intersection
between computer technology and physical dynamics, ranging from the electrical power grid
to autonomous vehicles, including prosthetic devices, air–traffic control systems, and HVAC
installations, among many others. Therefore the definition of Cyber–Physical system ac-
counts for most dynamical systems that involve modern technology and are immersed in the
society.

A very particular property of all Cyber–Physical systems is their dependence on data pro-
duced by sensors in real–time. The interface between the cybernetic part and the physical
part of every Cyber–Physical system is governed by sensors, transforming physical infor-
mation into cybernetic data, and actuators, modulating physical energy from cybernetic
commands. From a control perspective, sensor data comes from many different sources,
unlike in classical applications where sensors only measured signals produced by the system
itself. From a computational perspective, the calculations have to be synchronized with
the physical system, and the results of a given actuation can only be understood as they
interact with a physical process (for example, in path planning for autonomous vehicles a
computational algorithm can produce trajectories that the physical process cannot follow).
Hence, Cyber–Physical systems not only introduce a new type of classification, but also in-
troduce exciting new problems that need to be addressed with new fundamental results by
the control theory community.

A few examples of Cyber–Physical systems are:

Electric Power Grid: This is probably one of the most important Cyber–Physical sys-
tem currently in existence. Ranging from its description as a coupled circuit between
generators and loads via distributed parameter transmission lines, to the scheduling
problem that decides who and how the circuit is connected, there exists a great number
of dynamical problems in the context of the electric grid that fall within the scope of
Cyber–Physical systems.
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Perhaps the most interesting problems in the electric power grid today, from a Cyber–
Physical perspective, are the security issues in a mostly networked system, i.e. whether
it is possible to turn the electric grid unsafe by affecting the networked software in its
controlling network of computers, and the incorporation of distributed sources of en-
ergy, such as wind and solar energy, using smart–meters and modern power–electronic
devices.

Robotic Legged Locomotion: Most of the ground vehicles developed by the robotics
community are based in wheeled locomotion due to its simplicity and robustness across
many applications. But legged locomotion has clear benefits in some scenarios, the
most important being micro–robots and prosthetic devices. Even though some tools
from classical control theory can be applied to legged locomotion, its dynamics are
inherently non–continuous due to the instantaneous change of speed at the impacts,
hence embedded computers and new mathematical tools are required to handle real–
time sensing and control in these platforms.

Autonomous Vehicles: Vehicles of all kinds, either aerial, ground, or underwater, can
be controlled using classical control theory, applied to relatively simple models, when
they are in isolation. But whenever obstacles, static or dynamic, are considered, the
problem of controlling an autonomous vehicle becomes much harder. Today we have
the technology to acquire and process data from heterogeneous classes of sensors in
real–time, enabling us to explore new control strategies. Interesting problems that
arise from autonomous vehicles are path planning under uncertainty, security of the
computer platforms in the vehicle to malicious software, and the interaction between
automation and humans, among others.

The present thesis addresses the challenge of controlling and analyzing Cyber–Physical
systems in two ways: mathematically, modeling Cyber–Physical systems using hybrid dy-
namical models, and computationally, developing new optimal control algorithms to solve
problems involving hybrid dynamical models. The next sections are dedicated to present
more details about hybrid dynamical models and the optimal control of dynamical systems.

1.2 Hybrid Dynamical Models

We say that a dynamical system is hybrid when its state contains both continuous–valued
and discrete–valued variables. In classical systems, the dynamics of continuous variables are
usually modeled using ordinary differential equations, and the dynamics of discrete variables
are modeled using finite–state machines. Hence, it is natural that hybrid dynamical models
incorporate both of these theories in a single framework.

Among all the possible classes of hybrid dynamical models, two types are of particular
interest in this thesis:
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x2

x1

u

if d = 1 if d = 2

Figure 1.1: Double water tank system illustration, where x1 and x2 are the water height of
tanks 1 and 2, u is the input flow of water, and d is the decision variable that chooses which
tank receives the water.

• We say that a hybrid model is switched if its discrete variables are completely con-
trolled, i.e. if the discrete variables can change arbitrarily regardless of the values of
all the other variables. In this case, the discrete variables behave as an input that, for
each instant of time, map to a discrete set.

For example, consider a double water tank system, as shown in Figure 1.1. The input
flow of water is denoted by u, and the height of the water in each tank is denoted
x1 and x2, respectively. The system has two discrete modes: either the input flow is
directed to tank 1, or it is directed to tank 2. Hence, the vector field is:

f(x, u, 1) =

(
u
0

)
, f(x, u, 2) =

(
0
u

)
, (1.1)

where the last argument is the discrete input indicating which tank receives the input
flow.

• The dual of a switched hybrid model is a hybrid model where the discrete variable
changes only as a functions of the state of the system. We say that this is an au-
tonomous hybrid system, and in this case the discrete variables evolve according to
the transitions in a directed graph, where the nodes of such graph are all the possible
discrete modes of operation.

The most used example for this class of hybrid system is the bouncing ball, as shown
in Figure 1.2. Consider a ball with height p and velocity v under a gravitational field
g. Whenever p > 0, the dynamics are governed by the following differential equation:(

ṗ
v̇

)
=

(
v
−g

)
. (1.2)
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v0

p0

−c v′

v′

t = t′ t = t′ + ε

g

t = 0

Figure 1.2: Bouncing ball illustration at three instants of time, with a bounce at t = t′. Left:
initial condition. Center: before the bounce at p = 0. Right: after the bounce at p = 0.

When p = 0 and v < 0, the ball bounces by changing its velocity instantaneously
to −c v, where c ∈ [0, 1] is the coefficient of restitution that models the loss of energy
due to the impact. The bouncing ball is a particular type of hybrid model because it
has only one discrete mode of operation, similar to classical differential equation based
models, but since the velocity is discontinuous it cannot be modeled using classical
tools.

Hybrid dynamical models provide a rich new framework to describe phenomena that
cannot be modeled only using differential equations, but at the same time it introduces
many new theoretical challenges. Just to name a few, the trajectories produced by hybrid
systems are not necessarily unique, nor they are continuous with respect to initial conditions
and continuous inputs, all of which are standard properties for nonlinear dynamical systems.
These challenges are one of the main forces behind the surge of new tools specifically designed
for hybrid systems, as the ones presented in this thesis.

In Chapter 2 we develop an algorithm for the optimal control of switched hybrid systems
with nonlinear dynamics and state constraints. In Chapter 3 we develop an algorithm for the
approximation of trajectories of autonomous hybrid systems, whenever the state variables
evolve in a Riemannian manifold.

1.3 Optimal Control of Dynamical Systems

The problem of finding the optimal control of a dynamical system can be regarded as a
particular case in the field of calculus of variations, which deals with finding the extrema of
mappings whose domain are functional spaces. In particular, the problem of optimal control
deals with finding a control law for a given dynamical system such that certain criteria,
defined by constraints, are satisfied and an objective function, whose range is the reals, is
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minimized. This formulation is fairly general, and its applications to dynamical systems
range from control to the identification of unknown parameters, as well as the verification of
desired performance guarantees.

The history of the calculus of variations can be dated back to the 3rd century BC, when
Dido, who later became the first Queen of Carthage, was told to take as much land as could
be covered by an oxhide. She proceeded to cut the oxhide into tiny strips, and she used them
to encircle an entire hill. By doing that, Queen Dido solved the Isoperimetric Problem, that
is, she found the plane figure of the largest possible area given a fixed perimeter. The solution
to this problem was known by the ancient Greeks, but a formal proof did not appear until
the 19th century with the use of the calculus of variations.

It is commonly agreed that the modern history of the calculus of variations begins with
the Brachistochrome Problem, originally stated by Johann Bernoulli in the late 17th century.
This problem can be stated as follows: find the shape of a wire connecting two points such
that a frictionless bead on this wire, starting from the higher point and under the action
of gravity, can cover the distance to the second point in minimum time. The same Johann
Bernoulli solved the problem showing that the optimal shape for the wire is the Cycloid
Curve.

These are just two examples of the versatility of the calculus of variations. It is worth
noting that using present–time techniques, both of these problems can be easily formulated
as optimal control problems.

Optimal control emerged as a distinct field of research during the 1950s, with aerospace
engineering being the main source of problems that could not be addressed with the existing
tools at that time. But its mathematical foundations were not set into place until Lev
Pontryagin published his book in 1962, stating the most general form of optimality condition
for the solutions of optimal control problems known today.

Within the scope of Cyber–Physical systems, the use of optimal control algorithms can
lead to a jump in the number of problems that can be solve. For example, using optimal
control we can formulate the scheduling problem of the electric power grid with guarantees
about safety and performance, we can also formulate the parameter identification problem
for dynamical models of robotic legged locomotion, and we can formulate the path planning
problem for autonomous vehicles embedded in uncontrolled environments. But there exists
a gap between the formulation of these problems and our ability to solve them, since the
algorithms that currently exist either are not compatible with hybrid dynamical models, or
they do not scale to sizes where they become useful in practice.

1.4 Our Contribution

This thesis lives in the intersection between the concept of Cyber–Physical systems, the prin-
ciples of hybrid dynamical modeling, and the tools used to solve optimal control problems.
Our main goal is to provide new tools that can solve problems relevant to the community of
Cyber–Physical systems using hybrid dynamical models and optimal control.
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In Chapter 2 we propose a new algorithm that finds the optimal control of switched
dynamical systems under state constraints. The main feature of this algorithm is that,
based on our results, it improves the speed of computation by at least an order of magnitude
when compared with currently used algorithms. Moreover, together with this great speed
improvement, we prove that the solutions of our numerical implementation converge to
the solutions of the original, infinite dimensional, problem. In Chapter 3 we present an
algorithm for the simulation of autonomous hybrid dynamical systems. This algorithm is an
extension of the well–known Forward Euler discretization, from which it retains its simple
implementation. We show that, under general assumptions, the trajectories produced by our
algorithm converge to the real trajectories of the hybrid system. To the best of our knowledge,
it is the first time that an algorithm with this property is published. Finally, in Chapter 4
we present an algorithm that finds the optimal control of nonlinear dynamical systems using
pseudospectral approximations. Pseudospectral approximations have been shown to greatly
increase the speed of computation in practical experiments, but their theoretical properties
are still an open area for research. In our result we show that it is possible to create a
numerical algorithm with desirable properties in terms of convergence, but a price must be
paid in the way the approximation is formulated.
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Chapter 2

Optimal Control of Switched
Dynamical Systems

Hybrid dynamical models arise naturally in systems in which discrete modes of operation
interact with continuous state evolution. Such systems have been used in a variety of mod-
eling applications including automobiles and locomotives employing different gears [HR99;
Rin+08], biological systems [GT01], situations where a control module has to switch its atten-
tion among a number of subsystems [LR01; RS04; WYB02], manufacturing systems [CPW01]
and situations where a control module has to collect data sequentially from a number of sen-
sory sources [Bro95; EW02]. In addition, many complex nonlinear dynamical systems can
be decomposed into simpler linear modes of operation that are more amenable to analysis
and controller design [FDF00; Gil+11].

Given their utility, there has been considerable interest in devising algorithms to perform
optimal control of such systems. In fact, even Branicky et al.’s seminal work which presented
many of the theoretical underpinnings of hybrid systems included a set of sufficient conditions
for the optimal control of such systems using quasi–variational inequalities [BBM98]. Though
compelling from a theoretical perspective, the application of this set of conditions to the
construction of a numerical optimal control algorithm for hybrid dynamical systems requires
the application of value iterations which is particularly difficult in the context of switched
systems, wherein the switching between different discrete modes is specified by a discrete–
valued input signal. The control parameter for such systems has both a discrete component
corresponding to the schedule of discrete modes visited and two continuous components
corresponding to the duration of time spent in each mode in the mode schedule and the
continuous input. The determination of an optimal control for this class of hybrid systems
is particularly challenging due to the combinatorial nature of calculating an optimal mode
schedule.
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Related Work

The algorithms to solve this switched system optimal control problem can be divided into two
distinct groups according to whether they do or do not rely on the Maximum Principle [Pic98;
Pon+62; Sus99a]. Given the difficulty of the problem, both groups of approaches sometimes
employ similar tactics during algorithm construction. A popular such tactic is one formalized
by Xu et al. [XA02] who proposed a bi-level optimization scheme that at a low level optimized
the continuous components of the problem while keeping the mode schedule fixed and at a
high level modified the mode schedule.

We begin by describing the algorithms for switched system optimal control that rely on
the Maximum Principle. One of the first such algorithms, presented by Alamir et al. [AA04],
applied the Maximum Principle directly to a discrete time switched dynamical system. In
order to construct such an algorithm for a continuous time switched dynamical system,
Shaikh et al. [SC03] employed the bi-level optimization scheme proposed by Xu et al. and
applied the Maximum Principle to perform optimization at the lower level and applied the
Hamming distance to compare different possible nearby mode schedules.

Given the algorithm that we construct in this chapter, the most relevant of the approaches
that rely on the Maximum Principle is the one proposed by Bengea et al. [BD05] who relax
the discrete–valued input and treat it as a continuous-valued input over which they can
apply the Maximum Principle to perform optimal control. A search through all possible
discrete valued inputs is required in order to find one that approximates the trajectory
of the switched system due to the application of the constructed relaxed discrete–valued
input. Though such a search is expensive, the existence of a discrete–valued input that
approximates the behavior of the constructed relaxed discrete–valued input is proven by the
Chattering Lemma [Ber74]. Moreover, this combinatorial search is unavoidable by employing
the Chattering Lemma since it provides no means to construct a discrete–valued input that
approximates a relaxed discrete–valued input with respect the trajectory of the switched
system. Unfortunately their numerical implementation for nonlinear switched systems is
fundamentally restricted due to their reliance on approximating strong or needle variations
with arbitrary precision as explained in [MP75].

Next, we describe the algorithms that do not rely on the Maximum Principle but rather
employ weak variations. Several have focused on the optimization of autonomous switched
dynamical systems (i.e. systems without a continuous input) by fixing the mode sequence
and working on devising first [EWA06] and second order [JM11] numerical optimal control
algorithms to optimize the amount of time spent in each mode. In order to extend these op-
timization techniques, Axelsson et al. [Axe+08] employed the bi-level optimization strategy
proposed by Xu et al., and after performing optimization at the lower-level by employing a
first order numerical optimal control algorithm to optimize the amount of time spent in each
mode while keeping the mode schedule fixed, they modified the mode sequence by employing
a single mode insertion technique.

There have been two major extensions to Axelsson et al.’s algorithm. First, Wardi et
al. [WE12b], extend the approach by performing several single mode insertions at each
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iteration. Second, Gonzalez et al. [Gon+10a; Gon+10b], extend the approach to make it ap-
plicable to constrained switched dynamical systems with a continuous-valued input. Though
these single mode insertion techniques avoid the computational expense of considering all
possible mode schedules during the high-level optimization, this improvement comes at the
expense of restricting the possible modifications of the existing mode schedule, which may
introduce undue local minimizers, and at the expense of requiring a separate optimization
for each of the potential mode schedule modifications, which is time consuming.

Our Contribution and Organization

Inspired by the potential of the Chattering Lemma, in this chapter, we devise and implement
a first order numerical optimal control algorithm for the optimal control of constrained
nonlinear switched systems. The contents of this chapter are based on the results presented
in [Vas+12]. In Section 2.1, we introduce the notation and assumptions used throughout the
chapter and formalize the the optimal control for constrained nonlinear switched systems.
Our approach to solve this problem, which is formulated in Section 2.2, first relaxes the
optimal control problem by treating the discrete–valued input to be continuous-valued. Next,
a first order numerical optimal control algorithm is devised for this relaxed problem. After
this optimization is complete, an extension of the Chattering Lemma that we construct,
allows us to design a projection that takes the computed relaxed discrete–valued input back
to a “pure” discrete–valued input while controlling the quality of approximation of the
trajectory of the switched dynamical system generated by applying the projected discrete–
valued input rather than the relaxed discrete–valued input. In Section 2.3, we prove that the
sequence of points generated by recursive application of our first order numerical optimal
control algorithm converge to a point that satisfies a necessary condition for optimality of
the constrained nonlinear switched system optimal control problem.

We then describe in Section 2.4 how our algorithm can be formulated in order to make
numerical implementation feasible. In fact, in Section 2.5, we prove that the this compu-
tationally implementable algorithm is a consistent approximation of our original algorithm.
This ensures that the sequence of points generated by the recursive application of this nu-
merically implementable algorithm converge to a point that satisfies a necessary condition
for optimality of the constrained nonlinear switched system optimal control problem. In
Section 2.6, we implement this algorithm and compare its performance to a commercial
mixed integer optimization algorithm on four separate problems to illustrate its superior
performance with respect to speed and quality of constructed minimizer.

2.1 Preliminaries

In this section, we formalize the problem we solve in this chapter. Before describing this
problem, we define the function spaces and norms used throughout this chapter.
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Norms and Functional Spaces

This chapter focuses on the optimization of functions with finite L2-norm and finite bounded
variation. To formalize this notion, we require a norm. For each x ∈ Rn, p ∈ N, and p > 0,
we let ‖x‖p denote the p–norm of x. For each A ∈ Rn×m, p ∈ N, and p > 0, we let ‖A‖i,p
denote the induced p–norm of A.

Given these definitions, we say a function, f : [0, 1] → Y , where Y ⊂ Rn, belongs to
L2([0, 1],Y) with respect to the Lebesgue measure on [0, 1] if:

‖f‖L2 =

(∫ 1

0

‖f(t)‖2
2 dt

) 1
2

<∞. (2.1)

We say a function, f : [0, 1] → Y , where Y ⊂ Rn, belongs to L∞([0, 1],Y) with respect
to the Lebesgue measure on [0, 1] if:

‖f‖L∞ = inf
{
α ∈ [0,∞) | ‖f(x)‖2 ≤ α for almost every x ∈ [0, 1]

}
<∞. (2.2)

In order to define the space of functions of finite bounded variation, we first define the
total variation of a function. Given P , the set of all finite partitions of [0, 1], we define the
total variation of f : [0, 1]→ Y by:

V(f) = sup

{
m−1∑
j=0

‖f(tj+1)− f(tj)‖1 | k ∈ N, {tk}mk=0 ∈ P

}
. (2.3)

We say that f is of bounded variation if ‖f‖BV <∞, and we define BV ([0, 1],Y) to be the
set of all functions of bounded variation from [0, 1] to Y .

There is an important connection between the functions of bounded variation and weak
derivatives, which we rely on throughout this chapter. Given f : [0, 1] → Y , we say that f
has a weak derivative if there exists a Radon signed measure µ over [0, 1] such that, for each
smooth bounded function v with v(0) = v(1) = 0,∫ 1

0

f(t)v̇(t)dt = −
∫ 1

0

v(t)dµ(t). (2.4)

Moreover, we say that ḟ = dµ(t)
dt

, where the derivative is taken in the Radon–Nikodym sense,

is the weak derivative of f . Note that ḟ is in general a distribution, thus it only makes
sense as an element in the dual space of L1. Perhaps the most common example of weak
derivative is the Dirac Delta distribution, which is the weak derivative of the Step Function.
The following result is fundamental in our analysis of functions of bounded variation:

Theorem 2.1 (Exercise 5.1 in [Zie89]). If f ∈ BV ([0, 1],Y), then f has a weak derivative,
denoted by ḟ . Moreover,

V(f) =

∫ 1

0

∥∥ḟ(t)
∥∥

1
dt. (2.5)
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Figure 2.1: Illustration of Σq
r and Σq

p for the case q = 3.

We omit the proof of this result since it is beyond the scope of this chapter. More details
about the functions of bounded variation and weak derivatives can be found in Sections 3.5
and 9 in [Fol99] and Section 5 in [Zie89].

Optimization Spaces

We are interested in the control of systems whose trajectory is governed by a set of vector
fields f : R× Rn × Rm ×Q → Rn, indexed by their last argument where Q = {1, 2, . . . , q}.
Each of these distinct vector fields is called a mode of the switched system. To formalize the
optimal control problem, we define three spaces: the pure discrete input space, Dp, the relaxed
discrete input space, Dr, and the continuous input space, U . Throughout the document, we
employ the following convention: given the pure or relaxed discrete input d, we denote its
i–th coordinate by di.

Before formally defining each space, we require some notation. Let the q–simplex, Σq
r, be

defined as:

Σq
r =

{
(d1, . . . , dq) ∈ [0, 1]q |

q∑
i=1

di = 1

}
, (2.6)

and let the corners of the q-simplex, Σq
p, be defined as:

Σq
p =

{
(d1, . . . , dq) ∈ {0, 1}q |

q∑
i=1

di = 1

}
. (2.7)

Note that Σq
p ⊂ Σq

r. Also, there are exactly as many corners, denoted ei for i ∈ Q, of the
q–simplex as there are distinct vector fields. Thus, Σq

p = {e1, . . . , eq}. An illustration of the
sets Σq

r and Σq
p is presented in Figure 2.1.

Using this notation, we define the pure discrete input space, Dp, as:

Dp = L2([0, 1],Σq
p) ∩BV ([0, 1],Σq

p). (2.8)

Next, we define the relaxed discrete input space, Dr:

Dr = L2([0, 1],Σq
r) ∩BV ([0, 1],Σq

r). (2.9)
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Notice that the discrete input at each instance in time can be written as the linear combina-
tion of the corners of the simplex. Given this observation, we employ these corners to index
the vector fields, i.e. for each i ∈ Q we write f(·, ·, ·, ei) for f(·, ·, ·, i). Finally, we define the
continuous input space, U :

U = L2([0, 1], U) ∩BV ([0, 1], U), (2.10)

where U ⊂ Rm is a bounded, convex set.
Let X = L∞([0, 1],Rm) × L∞([0, 1],Rq) be endowed with the following norm for each

ξ = (u, d) ∈ X :
‖ξ‖X = ‖u‖L2 + ‖d‖L2 , (2.11)

where the L2–norm is as defined in Equation (2.1). We combine U and Dp to define our pure
optimization space, Xp = U × Dp, and we endow it with the same norm as X . Similarly, we
combine U and Dr to define our relaxed optimization space, Xr = U ×Dr, and endow it with
the X–norm too. Note that Xp ⊂ Xr ⊂ X .

Trajectories, Cost, Constraint, and the Optimal Control Problem

Given ξ = (u, d) ∈ Xr, for convenience throughout the chapter we let:

f
(
t, x(t), u(t), d(t)

)
=

q∑
i=1

di(t)f
(
t, x(t), u(t), ei

)
, (2.12)

where d(t) =
∑q

i=1 di(t)ei. We employ the same convention when we consider the partial
derivatives of f . Given x0 ∈ Rn, we say that a trajectory of the system corresponding to
ξ ∈ Xr is the solution to:

ẋ(t) = f
(
t, x(t), u(t), d(t)), ∀t ∈ [0, 1], x(0) = x0, (2.13)

and denote it by x(ξ) : [0, 1] → Rn, where we suppress the dependence on x0 in x(ξ) since
it is assumed given. To ensure the clarity of the ensuing analysis, it is useful to sometimes
emphasize the dependence of x(ξ)(t) on ξ. Therefore, we define the flow of the system,
ϕt : Xr → Rn for each t ∈ [0, 1] as:

ϕt(ξ) = x(ξ)(t). (2.14)

To define the cost function, we assume that we are given a terminal cost, h0 : Rn → R.
The cost function, J : Xr → R, for the optimal control problem is then defined as:

J(ξ) = h0

(
x(ξ)(1)

)
. (2.15)

Notice that if the problem formulation includes a running cost, then one can extend the
existing state vector by introducing a new state, and modifying the cost function to evaluate
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this new state at the final time, as shown in Section 4.1.2 in [Pol97]. By performing this type
of modification, observe that each mode of the switched system can have a different running
cost associated with it.

Next, we define a family of functions, hj : Rn → R for j ∈ J = {1, . . . , Nc}. Given a
ξ ∈ Xr, the state x(ξ) is said to satisfy the constraint if hj(x

(ξ)(t)) ≤ 0 for each t ∈ [0, 1]
and for each j ∈ J . We compactly describe all the constraints by defining the constraint
function Ψ : Xr → R, by:

Ψ(ξ) = max
j∈J , t∈[0,1]

hj
(
x(ξ)(t)

)
, (2.16)

since hj
(
x(ξ)(t)

)
≤ 0 for each t and j if and only if ψ(ξ) ≤ 0. To ensure the clarity of the

ensuing analysis, it is useful to sometimes emphasize the dependence of hj
(
x(ξ)(t)

)
on ξ.

Therefore, we define component constraint functions, ψj,t : Xr → R for each t ∈ [0, 1] and
j ∈ J as:

ψj,t(ξ) = hj (ϕt(ξ)) . (2.17)

With these definitions, we can state the Switched System Optimal Control Problem:

(SSOCP) min
ξ∈Xp
{J(ξ) | Ψ(ξ) ≤ 0} . (2.18)

Assumptions and Uniqueness

In order to devise an algorithm to solve Switched System Optimal Control Problem, we make
the following assumptions about the dynamics, cost, and constraints:

Assumption 2.2. For each i ∈ Q, f(·, ·, ·, ei) is differentiable in both x and u. Also, each
f(·, ·, ·, ei) and its partial derivatives are Lipschitz continuous with constant L > 0, i.e. given
t1, t2 ∈ [0, 1], x1, x2 ∈ Rn, and u1, u2 ∈ U :

(1) ‖f(t1, x1, u1, ei)− f(t2, x2, u2, ei)‖2 ≤ L (|t1 − t2|+ ‖x1 − x2‖2 + ‖u1 − u2‖2),

(2)
∥∥∂f
∂x

(t1, x1, u1, ei)− ∂f
∂x

(t2, x2, u2, ei)
∥∥
i,2
≤ L (|t1 − t2|+ ‖x1 − x2‖2 + ‖u1 − u2‖2),

(3)
∥∥∂f
∂u

(t1, x1, u1, ei)− ∂f
∂u

(t2, x2, u2, ei)
∥∥
i,2
≤ L (|t1 − t2|+ ‖x1 − x2‖2 + ‖u1 − u2‖2).

Assumption 2.3. The functions h0 and hj are Lipschitz continuous and differentiable in
x for all j ∈ J . In addition, the derivatives of these functions with respect to x are also
Lipschitz continuous with constant L > 0, i.e. given x1, x2 ∈ Rn, for each j ∈ J :

(1) |h0(x1)− h0(x2)| ≤ L ‖x1 − x2‖2,

(2)
∥∥∂h0
∂x

(x1)− ∂h0
∂x

(x2)
∥∥

2
≤ L ‖x1 − x2‖2,

(3) |hj(x1)− hj(x2)| ≤ L ‖x1 − x2‖2,

(4)
∥∥∥∂hj∂x (x1)− ∂hj

∂x
(x2)

∥∥∥
2
≤ L ‖x1 − x2‖2.



CHAPTER 2. OPTIMAL CONTROL OF SWITCHED DYNAMICAL SYSTEMS 15

If a running cost is included in the problem statement (i.e. if the cost also depends on the
integral of a function), then this function must also satisfy Assumption 2.2. Assumption 2.3 is
a standard assumption on the objectives and constraints and is used to prove the convergence
properties of the algorithm defined in the next section. These assumptions lead to the
following result:

Lemma 2.4. There exists a constant C > 0 such that, for each ξ ∈ Xr and t ∈ [0, 1],∥∥x(ξ)(t)
∥∥

2
≤ C, (2.19)

where x(ξ) is a solution of Differential Equation (2.13).

Proof. Given ξ = (u, d) ∈ Xr and noticing that |di(t)| ≤ 1 for all i ∈ Q and t ∈ [0, 1], we
have: ∥∥x(ξ)(t)

∥∥
2
≤ ‖x0‖2 +

q∑
i=1

∫ t

0

∥∥f(s, x(ξ)(s), u(s), ei
)∥∥

2
ds. (2.20)

Next, observe that ‖f(0, x0, 0, ei)‖2 is bounded for all i ∈ Q and u(s) is bounded for each
s ∈ [0, 1] since U is bounded. Then by Assumption 2.2, we know there exists a K > 0 such
that for each s ∈ [0, 1], i ∈ Q, and ξ ∈ Xr,∥∥f(s, x(ξ)(s), u(s), ei

)∥∥
2
≤ K

(∥∥x(ξ)(s)
∥∥

2
+ 1
)
. (2.21)

Applying the Bellman-Gronwall Inequality (Lemma 5.6.4 in [Pol97]) to Equation (2.20), we
have

∥∥x(ξ)(t)
∥∥

2
≤ eqK

(
1 + ‖x0‖2

)
for each t ∈ [0, 1]. Since x0 is assumed given and bounded,

we have our result.

In fact, this implies that the dynamics, cost, constraints, and their derivatives are all
bounded:

Corollary 2.5. There exists a constant C > 0 such that for each ξ = (u, d) ∈ Xr, t ∈ [0, 1],
and j ∈ J :

(1)
∥∥f(t, x(ξ)(t), u(t), d(t)

)∥∥
2
≤ C,

∥∥∥∥∂f∂x(t, x(ξ)(t), u(t), d(t)
)∥∥∥∥

i,2

≤ C, and∥∥∥∥∂f∂u(t, x(ξ)(t), u(t), d(t)
)∥∥∥∥

i,2

≤ C.

(2)
∣∣h0

(
x(ξ)(t)

)∣∣ ≤ C, and

∥∥∥∥∂h0

∂x

(
x(ξ)(t)

)∥∥∥∥
2

≤ C.

(3)
∣∣hj(x(ξ)(t)

)∣∣ ≤ C, and

∥∥∥∥∂hj∂x

(
x(ξ)(t)

)∥∥∥∥
2

≤ C.

Where x(ξ) is a solution of Differential Equation (2.13).
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Proof. The result follows immediately from the continuity of f , ∂f
∂x

, ∂f
∂u

, h0, ∂h0
∂x

, hj, and
∂hj
∂x

for each j ∈ J , as stated in Assumptions 2.2 and 2.3, and the fact that each of the arguments
to these functions can be constrained to a compact domain, which follows from Lemma 2.4
and the compactness of U and Σq

r.

An application of this corollary leads to a fundamental result:

Theorem 2.6. For each ξ ∈ Xr Differential Equation (2.13) has a unique solution.

Proof. First let us note that f , as defined in Equation (2.12), is also Lipschitz with respect
to its fourth argument. Indeed, given t ∈ [0, 1], x ∈ Rn, u ∈ U , and d1, d2 ∈ Σq

r,

∥∥f(t, x, u, d1)− f(t, x, u, d2)
∥∥

2
=

∥∥∥∥∥
q∑
i=1

(
d1,i − d2,i

)
f(t, x, u, ei)

∥∥∥∥∥
2

≤ Cq‖d1 − d2‖2,

(2.22)

where C > 0 is as in Corollary 2.5.
Given that f is Lipschitz with respect to all its arguments, the result follows as a di-

rect extension of the classical existence and uniqueness theorem for nonlinear differential
equations (see Section 2.4.1 in [Vid02] for a standard version of this theorem).

Therefore, since x(ξ) is unique, it is not an abuse of notation to denote the solution of
Differential Equation (2.13) by x(ξ). Next, we develop an algorithm to solve the Switched
System Optimal Control Problem.

2.2 Optimization Algorithm

In this section, we describe our optimization algorithm. Our approach proceeds as follows:
first, we treat a given pure discrete input as a relaxed discrete input by allowing it to belong
Dr; second, we perform optimal control over the relaxed optimization space; and finally, we
project the computed relaxed input into a pure input. Before describing our algorithm in
detail, we begin with a brief digression to motivate why such a roundabout construction is
required in order to devise a first order numerical optimal control scheme for the Switched
System Optimal Control Problem defined in Equation (2.18).

Directional Derivatives

To appreciate why the construction of a numerical scheme to find the local minima of the
Switched System Optimal Control Problem defined in Equation (2.18) is difficult, suppose
that the optimization in the problem took place over the relaxed optimization space rather
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than the pure optimization space. The Relaxed Switched System Optimal Control Problem
is then defined as:

(RSSOCP) min
ξ∈Xr
{J(ξ) | Ψ(ξ) ≤ 0} . (2.23)

The local minimizers of this problem are then defined as follows:

Definition 2.7. Let us denote an ε–ball in the X–norm centered at ξ by:

NX (ξ, ε) =
{
ξ̄ ∈ Xr |

∥∥ξ − ξ̄∥∥X < ε
}
. (2.24)

We say that a point ξ ∈ Xr is a local minimizer of the Relaxed Switched System Optimal
Control Problem defined in Equation (2.23) if Ψ(ξ) ≤ 0 and there exists ε > 0 such that
J(ξ̂) ≥ J(ξ) for each ξ̂ ∈ NX (ξ, ε) ∩

{
ξ̄ ∈ Xr | Ψ(ξ̄) ≤ 0

}
.

Given this definition, a first order numerical optimal control scheme can exploit the vector
space structure of the relaxed optimization space in order to define directional derivatives
that find local minimizers for this Relaxed Switched System Optimal Control Problem.

To concretize how such an algorithm would work, we introduce some additional notation.
Given ξ ∈ Xr, Y a Euclidean space, and any function G : Xr → Y , the directional derivative
of G at ξ, denoted DG(ξ; ·) : X → Y , is computed as:

DG(ξ; ξ′) = lim
λ↓0

G(ξ + λξ′)−G(ξ)

λ
. (2.25)

To understand the connection between directional derivatives and local minimizers, sup-
pose the Relaxed Switched System Optimal Control Problem is unconstrained and consider
the first order approximation of the cost J at a point ξ ∈ Xr in the ξ′ ∈ X direction by
employing the directional derivative DJ(ξ; ξ′):

J(ξ + λξ′) ≈ J(ξ) + λDJ(ξ; ξ′), (2.26)

where 0 ≤ λ � 1. It follows that if DJ(ξ; ξ′), whose existence is proven in Lemma 2.24, is
negative, then it is possible to decrease the cost by moving in the ξ′ direction. That is if
the directional derivative of the cost at a point ξ is negative along a certain direction, then
for each ε > 0 there exists a ξ̂ ∈ NX (ξ, ε) such that J(ξ̂) < J(ξ). Therefore if DJ(ξ; ξ′)
is negative, then ξ is not a local minimizer of the unconstrained Relaxed Switched System
Optimal Control Problem.

Similarly, for the general Relaxed Switched System Optimal Control Problem, consider
the first order approximation of each of the component constraint functions, ψj,t for each
j ∈ J and t ∈ [0, 1] at a point ξ ∈ Xr in the ξ ∈ X direction by employing the directional
derivative Dψj,t(ξ; ξ

′):
ψj,t(ξ + λξ′) ≈ ψj,t(ξ) + λDψj,t(ξ; ξ

′), (2.27)
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where 0 ≤ λ� 1. It follows that if Dψj,t(ξ; ξ
′), whose existence is proven in Lemma 2.27, is

negative, then it is possible to decrease the infeasibility of ϕt(ξ) with respect to hj by moving
in the ξ′ direction. That is if the directional derivatives of the cost and all of the component
constraints for all t ∈ [0, 1] at a point ξ are negative along a certain direction and Ψ(ξ) = 0,
then for each ε > 0 there exists a ξ̂ ∈ {ξ̄ ∈ Xr | Ψ(ξ̄) ≤ 0} ∩NX (ξ, ε) such that J(ξ̂) < J(ξ).
Therefore, if Ψ(ξ) = 0 and DJ(ξ; ξ′) and Dψj,t(ξ; ξ

′) are negative for all j ∈ J and t ∈ [0, 1],
then ξ is not a local minimizer of the Relaxed Hybrid Optimal Control Problem. Similarly,
if Ψ(ξ) < 0 and DJ(ξ; ξ′) is negative, then ξ is not a local minimizer of the Relaxed Hybrid
Optimal Control Problem, even if Dψj,t(ξ; ξ

′) is greater than zero for all j ∈ J and t ∈ [0, 1].
Returning to the Switched System Optimal Control Problem, it is unclear how to define

a directional derivative for the pure discrete input space since it is not a vector space.
Therefore, in contrast to the relaxed discrete and continuous input spaces, the construction
of a first order numerical scheme for the optimization of the pure discrete input is non-trivial.
One could imagine trying to exploit the directional derivatives in the relaxed optimization
space in order to construct a first order numerical optimal control algorithm for the Switched
System Optimal Control Problem, but this would require devising some type of connection
between points belonging to the pure and relaxed optimization spaces.

The Weak Topology on the Optimization Space and Local
Minimizers

To motivate the type of relationship required between the pure and relaxed optimization
space in order to construct a first order numerical optimal control scheme, we begin by
describing the Chattering Lemma:

Theorem 2.8 (Theorem 1 in [BD05]). For each ξr ∈ Xr and ε > 0 there exists a ξp ∈ Xp
such that for each t ∈ [0, 1]:

‖ϕt(ξr)− ϕt(ξp)‖2 ≤ ε, (2.28)

where ϕt(ξr) and ϕt(ξp) are solutions to Differential Equation (2.13) corresponding to ξr and
ξp, respectively.

The theorem as is proven in [Ber74] is not immediately applicable to switched systems, but
a straightforward extension as is proven in Theorem 1 in [BD05] makes that feasible. Note
that the theorem as stated in [BD05], considers only two vector fields (i.e. q = 2), but as
the author’s of the theorem remark, their proof can be generalized to an arbitrary number
of vector fields. A particular version of this existence theorem can also be found in Lemma 1
in [Sus72].

Theorem 2.8 says that the behavior of any element of the relaxed optimization space with
respect to the trajectory of switched system can be approximated arbitrarily well by a point
in the pure optimization space. Unfortunately, the relaxed and pure point as in Theorem 2.8
need not be near one another in the metric induced by the X -norm. Therefore, though there
exists a relationship between the pure and relaxed optimization spaces, this connection is
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not reflected in the topology induced by the X -norm; however, in a particular topology over
the relaxed optimization space, a relaxed point and the pure point that approximates it as
in Theorem 2.8 can be made arbitrarily close:

Definition 2.9. We define the weak topology on Xr induced by Differential Equation (2.13)
as the smallest topology on Xr such that the map ξ 7→ x(ξ) is continuous. Moreover, an ε-ball
in the weak topology centered at ξ is denoted by:

Nw(ξ, ε) =
{
ξ̄ ∈ Xr |

∥∥x(ξ) − x(ξ̄)
∥∥
L2 < ε

}
. (2.29)

A longer introduction to weak topology can be found in Section 3.8 in [Rud91] or Sec-
tion 2.3 in [KZ05], but before continuing we make an important observation that aids in
motivating the ensuing analysis. In order to understand the relationship between the topol-
ogy generated by the X -norm on Xr and the weak topology on Xr, observe that ϕt is Lipschitz
continuous for all t ∈ [0, 1] (this is proven in Corollary 2.13). Therefore, for any ε > 0 there
exists a δ > 0 such that if a pair of points of the relaxed optimization space belong to the
same δ–ball in the X–norm, then the pair of points belong to the same ε–ball in the weak
topology on Xr.

Notice, however, that it is not possible to show that for every ε > 0 that there exists
a δ > 0 such that if a pair of points of the relaxed optimization space belong to the same
δ–ball in the weak topology on Xr, then the pair of points belong to the same ε–ball in
the X–norm. More informally, a pair of points may generate trajectories that are near one
another in the L2–norm while not being near one another in the X–norm. Since the weak
topology, in contrast to the X–norm induced topology, naturally places points that generate
nearby trajectories next to one another, we extend Definition 2.9 in order to define a weak
topology on Xp which we then use to define a notion of local minimizer for the Switched
System Optimal Control Problem:

Definition 2.10. We say that a point ξ ∈ Xp is a local minimizers of the Switched System
Optimal Control Problem defined in Equation (2.18) if Ψ(ξ) ≤ 0 and there exists ε > 0 such
that J(ξ̂) ≥ J(ξ) for each ξ̂ ∈ Nw(ξ, ε) ∩

{
ξ̄ ∈ Xp | Ψ(ξ̄) ≤ 0

}
, where Nw is as defined in

Equation (2.29).

With this definition of local minimizer, we can exploit Theorem 2.8, even just as an
existence result, along with the notion of directional derivative over the relaxed optimization
space to construct a necessary condition for optimality for the Switched System Optimal
Control Problem.

An Optimality Condition

Motivated by the approach undertaken in [Pol97], we define an optimality function, denoted
by θ : Xp → (−∞, 0], that determines whether a given point is a local minimizer of the
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Switched System Optimal Control Problem and a corresponding descent direction, g : Xp →
Xr:

θ(ξ) = min
ξ′∈Xr

ζ(ξ, ξ′), g(ξ) = arg min
ξ′∈Xr

ζ(ξ, ξ′), (2.30)

where

ζ(ξ, ξ′) =


max

DJ(ξ; ξ′ − ξ), max
j∈J
t∈[0,1]

Dψj,t(ξ; ξ
′ − ξ) + γΨ(ξ)

+ ‖ξ′ − ξ‖X if Ψ(ξ) ≤ 0,

max

DJ(ξ; ξ′ − ξ)−Ψ(ξ), max
j∈J
t∈[0,1]

Dψj,t(ξ; ξ
′ − ξ)

+ ‖ξ′ − ξ‖X if Ψ(ξ) > 0,

(2.31)
where γ > 0 is a design parameters. For notational convenience in the previous equation
we have left out the natural inclusion of ξ from Xp to Xr. Before proceeding, we make two
observations. First, note that θ(ξ) ≤ 0 for each ξ ∈ Xp, since we can always choose ξ′ = ξ
which leaves the trajectory unmodified. Second, note that at a point ξ ∈ Xp the directional
derivatives in the optimality function consider directions ξ′−ξ with ξ′ ∈ Xr in order to ensure
that first order approximations constructed as in Equations (2.26) and (2.27) belong to the
relaxed optimization space Xr which is convex (e.g. for 0 < λ� 1, J(ξ) + λDJ(ξ; ξ′ − ξ) ≈
J((1− λ)ξ + λξ′) where (1− λ)ξ + λξ′ ∈ Xr).

To understand how the optimality function behaves, consider several cases. First, if
θ(ξ) < 0 and Ψ(ξ) = 0, then there exists a ξ′ ∈ Xr such that both DJ(ξ; ξ′ − ξ) and
Dψj,t(ξ; ξ

′−ξ) are negative for all j ∈ J and t ∈ [0, 1]. By employing the aforementioned first
order approximation, we can show that for each ε > 0 there exists an ε–ball in the X -norm
centered at ξ such that J(ξ̂) < J(ξ) for some ξ̂ ∈ {ξ̄ ∈ Xr | Ψ(ξ̄) ≤ 0}∩NX (ξ, ε). As a result
and because the cost and each of the component constraint functions are assumed Lipschitz
continuous and ϕt for all t ∈ [0, 1] is Lipschitz continuous as is proven in Corollary 2.13,
an application of Theorem 2.8 allows us to show that for each ε > 0 there exists an ε–ball
in the weak topology on Xp centered at ξ such that J(ξp) < J(ξ) for some ξp ∈ {ξ̄ ∈ Xp |
Ψ(ξ̄) ≤ 0} ∩ Nw(ξ, ε). Therefore, it follows that if θ(ξ) < 0 and Ψ(ξ) = 0, then ξ is not a
local minimizer of the Switched System Optimal Control Problem.

Second, if θ(ξ) < 0 and Ψ(ξ) < 0, then there exists a ξ′ ∈ Xr such that DJ(ξ; ξ′ − ξ) is
negative. Though Dψj,t(ξ; ξ

′− ξ) maybe positive for some j ∈ J and t ∈ [0, 1], by employing
the aforementioned first order approximation, we can show that for each ε > 0 there exists
an ε–ball in the X -norm centered at ξ such that J(ξ̂) < J(ξ) for some ξ̂ ∈ {ξ̄ ∈ Xr | Ψ(ξ̄) ≤
0} ∩ NX (ξ, ε). As a result and because the cost and each of the constraint functions are
assumed Lipschitz continuous and ϕt for all t ∈ [0, 1] is Lipschitz continuous as is proven in
Corollary 2.13, an application of Theorem 2.8 allows us to show that for each ε > 0 there
exists an ε–ball in the weak topology on Xp centered at ξ such that J(ξp) < J(ξ) for some
ξp ∈ {ξ̄ ∈ Xp | Ψ(ξ̄) ≤ 0} ∩ Nw(ξ, ε). Therefore, it follows that if θ(ξ) < 0 and Ψ(ξ) < 0,
then ξ is not a local minimizer of the Switched System Optimal Control Problem. In this
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case, the addition of the Ψ term in ζ ensures that a direction that reduces the cost does not
simultaneously require a decrease in the infeasibility in order to be considered as a potential
descent direction.

Third, if θ(ξ) < 0 and Ψ(ξ) > 0, then there exists a ξ′ ∈ Xr such that Dψj,t(ξ; ξ
′ −

ξ) is negative for all j ∈ J and t ∈ [0, 1]. By employing the aforementioned first order
approximation, we can show for each ε > 0 there exists an ε–ball in the X -norm centered
at ξ such that Ψ(ξ̂) < Ψ(ξ) for some ξ̂ ∈ NX (ξ, ε). As a result and because each of the
constraint functions are assumed Lipschitz continuous and ϕt for all t ∈ [0, 1] is Lipschitz
continuous as is proven in Corollary 2.13, an application of Theorem 2.8 allows us to show
that for each ε > 0 there exists an ε–ball in the weak topology on Xp centered at ξ such
that Ψ(ξp) < Ψ(ξ) for some ξp ∈ Nw(ξ, ε). Therefore, though it is clear that ξ is not a local
minimizer of the Switched System Optimal Control Problem since Ψ(ξ) > 0, it follows that
if θ(ξ) < 0 and Ψ(ξ) > 0, then it is possible to locally reduce the infeasibility of ξ. In this
case, the addition of the DJ term in ζ serves as a heuristic to ensure that the reduction in
infeasibility does not come at the price of an undue increase in the cost.

These observations are formalized in Theorem 2.34 where we prove that if ξ is a local
minimizer of the Switched System Optimal Control Problem, then θ(ξ) = 0, or that θ(ξ) = 0
is a necessary condition for the optimality of ξ. To illustrate the importance of θ satisfying
this property, recall how the directional derivative of a cost function is employed during
unconstrained finite dimensional optimization. Since the directional derivative of the cost
function at a point being equal to zero in all directions is a necessary condition for optimal-
ity for an unconstrained finite dimensional optimization problem, it is used as a stopping
criterion by first order numerical algorithms (Corollary 1.1.3 and Algorithm Model 1.2.23
in [Pol97]). Similarly, by satisfying Theorem 2.34, θ is a necessary condition for optimality
for the Switched System Optimal Control Problem and can therefore be used as a stopping
criterion for a first order numerical optimal control algorithm trying to solve the Switched
System Optimal Control Problem. Given θ’s importance, we say a point, ξ ∈ Xp, satisfies
the optimality condition if θ(ξ) = 0.

Choosing a Step Size and Projecting the Relaxed Discrete Input

Impressively, Theorem 2.8 just as an existence result is sufficient to allow for the construction
of an optimality function that encapsulates a necessary condition for optimality for the Swit-
ched System Optimal Control Problem. Unfortunately, Theorem 2.8 is unable to describe
how to exploit the descent direction, g(ξ), since its proof provides no means to construct a
pure input that approximates the behavior of a relaxed input while controlling the quality
of the approximation. In this chapter, we extend Theorem 2.8 by devising a scheme that
remedies this shortcoming. This allows for the development of a numerical optimal control
algorithm for the Switched System Optimal Control Problem that first, performs optimal
control over the relaxed optimization space and then projects the computed relaxed control
into a pure control.
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Before describing the construction of this projection, we describe how the descent direc-
tion, g(ξ), can be exploited to construct a point in the relaxed optimization space that either
reduces the cost (if the ξ is feasible) or the infeasibility (if ξ is infeasible). Comparing our
approach to finite dimensional optimization, the argument that minimizes ζ is a “direction”
along which to move the inputs in order to reduce the cost in the relaxed optimization space,
but we require an algorithm to choose a step size. We employ a line search algorithm similar
to the traditional Armijo algorithm used during finite dimensional optimization in order to
choose a step size (Algorithm Model 1.2.23 in [Pol97]). Fixing α ∈ (0, 1) and β ∈ (0, 1), a
step size for a point ξ ∈ Xp is chosen by solving the following optimization problem:

µ(ξ) =


min

{
k ∈ N | J

(
ξ + βk(g(ξ)− ξ)

)
− J(ξ) ≤ αβkθ(ξ),

Ψ
(
ξ + βk(g(ξ)− ξ)

)
≤ αβkθ(ξ)

}
if Ψ(ξ) ≤ 0,

min
{
k ∈ N | Ψ

(
ξ + βk(g(ξ)− ξ)

)
−Ψ(ξ) ≤ αβkθ(ξ)

}
if Ψ(ξ) > 0.

(2.32)

In Lemma 2.43, we prove that for ξ ∈ Xp, if θ(ξ) < 0, then µ(ξ) <∞. Therefore, if θ(ξ) < 0
for some ξ ∈ Xp, then we can construct a descent direction, g(ξ), and a step size, µ(ξ), and
a new point

(
ξ + βµ(ξ)(g(ξ)− ξ)

)
∈ Xr that produces a reduction in the cost (if ξ is feasible)

or a reduction in the infeasibility (if ξ is infeasible).
We define the projection that takes this constructed point to a point belonging the

pure optimization space while controlling the quality of approximation in two steps. First,
we approximate the relaxed input by its N–th partial sum approximation via the Haar
wavelet basis. To define this operation, FN : L2([0, 1],R) ∩ BV ([0, 1],R) → L2([0, 1],R) ∩
BV ([0, 1],R), we employ the Haar wavelet (Section 7.2.2 in [Mal99]):

λ(t) =


1 if t ∈

[
0, 1

2

)
,

−1 if t ∈
[

1
2
, 1
)
,

0 otherwise.

(2.33)

Letting 1 : R → R be the constant function equal to one and bkj : [0, 1] → R for k ∈ N
and j ∈ {0, . . . , 2k − 1}, be defined as bkj(t) = λ

(
2kt − j

)
, the projection FN for some

c ∈ L2([0, 1],R) ∩BV ([0, 1],R)→ L2([0, 1],R) ∩BV ([0, 1],R) is defined as:

[FN(c)](t) = 〈c,1〉+
N∑
k=0

2k−1∑
j=0

〈c, bkj〉
bkj(t)

‖bkj‖2
L2

. (2.34)

Note that the inner product here is the traditional Hilbert space inner product.
This projection is then applied to each of the coordinates of an element in the relaxed

optimization space. To avoid introducing additional notation, we let the coordinate-wise
application of FN to some relaxed discrete input d ∈ Dr be denoted as FN(d) and similarly
for some continuous input u ∈ U . Lemma 2.35 proves that for each N ∈ N, each t ∈ [0, 1],
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Figure 2.2: Illustration of the projection operation PN of a function d : [0, 1] → R. Left:
[P1(d)](t). Right: [P2(d)](t).

and each i ∈ {1, . . . , q}, [FN(d)]i (t) ∈ [0, 1] and
∑q

i=1 [FN(d)]i (t) = 1 for the projection
FN(d). Therefore it follows that for each d ∈ Dr, FN(d) ∈ Dr.

Second, we project the output of FN(d) to a pure discrete input by employing the func-
tion PN : Dr → Dp which computes the pulse width modulation of its argument with
frequency 2−N :

[PN(d)]i(t) =

1 if t ∈
[

(k+
∑i−1
j=1 dj( k

2N
))

2N
,
(k+

∑i
j=1 dj( k

2N
))

2N

)
, k ∈

{
0, 1, . . . , 2N − 1

}
,

0 otherwise.

(2.35)
Lemma 2.35 proves that for each N ∈ N, each t ∈ [0, 1], and each i ∈ {1, . . . , q},

[
PN
(
FN(d)

)]
i
(t) ∈ {0, 1}, and

q∑
i=1

[
PN
(
FN(d)

)]
i
(t) = 1. (2.36)

This proves that PN
(
FN(d)

)
∈ Dp for each d ∈ Dr. Figure 2.2 illustrates how PN transform

a function defined on [0, 1] into a function defined on {0, 1}. Note that, in implementation
terms, PN is simply the pulse-width modulation operator.

Fixing N ∈ N, we compose the two projections and define ρN : Xr → Xp as:

ρN(u, d) =
(
FN(u),PN

(
FN(d)

))
. (2.37)

Critically, as shown in Theorem 2.38, this projection allows us to extend Theorem 2.8 by con-
structing an upper bound that goes to zero as N goes infinity between the error of employing
the relaxed control rather than its projection in the solution of Differential Equation (2.13).
Therefore in a fashion similar to applying the Armijo algorithm, we choose an N ∈ N at
which to perform pulse width modulation by performing a line search. Fixing ᾱ ∈ (0,∞),

β̄ ∈
(

1√
2
, 1
)

, and ω ∈ (0, 1), a frequency at which to perform pulse width modulation for a
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point ξ ∈ Xp is computed by solving the following optimization problem:

ν(ξ) =



min
{
k ∈ N | ξ′ = ρk

(
ξ + βµ(ξ)(g(ξ)− ξ)

)
,

J(ξ′)− J(ξ) ≤
(
αβµ(ξ) − ᾱβ̄k

)
θ(ξ), Ψ(ξ′) ≤ 0,

ᾱβ̄k ≤ (1− ω)αβµ(ξ)
}

if Ψ(ξ) ≤ 0,

min
{
k ∈ N | ξ′ = ρk

(
ξ + βµ(ξ)(g(ξ)− ξ)

)
,

Ψ(ξ′)−Ψ(ξ) ≤
(
αβµ(ξ) − ᾱβ̄k

)
θ(ξ),

ᾱβ̄k ≤ (1− ω)αβµ(ξ)
}

if Ψ(ξ) > 0.

(2.38)

In Lemma 2.44, we prove that for ξ ∈ Xp, if θ(ξ) < 0, then ν(ξ) < ∞. Therefore, if
θ(ξ) < 0 for some ξ ∈ Xp, then we can construct a descent direction, g(ξ), a step size,
µ(ξ), a frequency at which to perform pulse width modulation, ν (ξ), and a new point
ρν(ξ)

(
ξ + βµ(ξ)(g(ξ) − ξ)

)
∈ Xp that produces a reduction in the cost (if ξ is feasible) or a

reduction in the infeasibility (if ξ is infeasible).

Switched System Optimal Control Algorithm

Consolidating our definitions, Algorithm 2.1 describes our numerical method to solve the
Switched System Optimal Control Problem. For analysis purposes, we define Γ : Xp → Xp
by

Γ(ξ) = ρν(ξ)

(
ξ + βµ(ξ)(g(ξ)− ξ)

)
. (2.39)

We say {ξj}j∈N is a sequence generated by Algorithm 2.1 if ξj+1 = Γ(ξj) for each j ∈ N. We
can prove several important properties about the sequence generated by Algorithm 2.1. First,
in Lemma 2.45, we prove that if there exists i0 ∈ N such that Ψ(ξi0) ≤ 0, then Ψ(ξi) ≤ 0 for
each i ≥ i0. That is, if the Algorithm constructs a feasible point, then the sequence of points
generated after this feasible point are always feasible. Second, in Theorem 2.46, we prove
limj→∞ θ(ξj) = 0 or that Algorithm 2.1 converges to a point that satisfies the optimality
condition.

2.3 Algorithm Analysis

In this section, we derive the various components of Algorithm 2.1 and prove that Algo-
rithm 2.1 converges to a point that satisfies our optimality condition. Our argument pro-
ceeds as follows: first, we prove the continuity of the state, cost, and constraint, which we
employ in latter arguments; second, we construct the components of the optimality function
and prove that these components satisfy various desired properties; third, we prove that we
can control the quality of approximation between the trajectories generated by a relaxed
discrete input and its projection by ρN as a function of N ; finally, we prove the convergence
of our algorithm.



CHAPTER 2. OPTIMAL CONTROL OF SWITCHED DYNAMICAL SYSTEMS 25

Require: ξ0 ∈ Xp, α ∈ (0, 1), ᾱ ∈ (0,∞), β ∈ (0, 1), β̄ ∈
(

1√
2
, 1
)

, γ ∈ (0,∞), ω ∈ (0, 1).

1: Set j = 0.
2: loop
3: Compute θ(ξj) as defined in Equation (2.30).
4: if θ(ξj) = 0 then
5: return ξj.
6: end if
7: Compute g(ξj) as defined in Equation (2.30).
8: Compute µ(ξj) as defined in Equation (2.32).
9: Compute ν(ξj) as defined in Equation (2.38).

10: Set ξj+1 = ρν(ξj)

(
ξj + βµ(ξj)(g(ξj)− ξj)

)
, as defined in Equation (2.37).

11: Replace j by j + 1.
12: end loop

Algorithm 2.1 Optimization Algorithm for the Switched System Optimal Control Problem

Continuity

In this subsection, we prove the continuity of the state, cost, and constraint. We begin by
proving the continuity of the solution to Differential Equation (2.13) with respect to ξ by
proving that this mapping is sequentially continuous:

Lemma 2.11. Let {ξj}∞j=1 ⊂ Xr be a convergent sequence with limit ξ ∈ Xr. Then the

corresponding sequence of trajectories {x(ξj)}∞j=1, as defined in Equation (2.13), converges

uniformly to x(ξ).

Proof. For notational convenience, let ξj = (uj, dj), ξ = (u, d), and ϕt as defined in Equa-
tion (2.14). We begin by proving the convergence of {ϕt(ξ)}∞j=1 to ϕt(ξ) for each t ∈ [0, 1].
Consider

‖ϕt(ξj)− ϕt(ξ)‖2 =

∥∥∥∥∥
∫ t

0

q∑
i=1

[dj]i(τ)f
(
τ, ϕτ (ξj), uj(τ), ei

)
− di(τ)f

(
τ, ϕτ (ξ), u(τ), ei

)
dτ

∥∥∥∥∥
2

.

(2.40)
Therefore,

‖ϕt(ξj)− ϕt(ξ)‖2 =

∥∥∥∥∥
∫ t

0

q∑
i=1

(
[dj]i(τ)− di(τ)

)
f
(
τ, ϕτ (ξj), uj(τ), ei

)
+

+ di(τ)
(
f
(
τ, ϕτ (ξj), uj(τ), ei

)
− f

(
τ, ϕτ (ξ), uj(τ), ei

))
+

+ di(τ)
(
f
(
τ, ϕτ (ξ), uj(τ), ei

)
− f

(
τ, ϕτ (ξ), u(τ), ei

))
dτ

∥∥∥∥∥
2

. (2.41)
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Applying the Triangle Inequality, Assumption 2.2, Condition 1 in Corollary 2.5, and the
boundedness of d, we have that there exists a C > 0 such that

‖ϕt(ξj)− ϕt(ξ)‖2 ≤
∫ 1

0

q∑
i=1

C
∣∣[dj]i(τ)− di(τ)

∣∣+L ‖ϕτ (ξj)− ϕτ (ξ)‖2 +L ‖uj(τ)− u(τ)‖2 dτ.

(2.42)
Applying the Bellman-Gronwall Inequality (Lemma 5.6.4 in [Pol97]), we have that

‖ϕt(ξj)− ϕt(ξ)‖2 ≤ eL
(∫ 1

0

C ‖dj(τ)− d(τ)‖1 + L ‖uj(τ)− u(τ)‖2 dτ

)
. (2.43)

Note that ‖u‖2 ≤ ‖u‖1 for each u ∈ Rm. Then applying Holder’s inequality (Proposition 6.2
in [Fol99]) to the vector valued function, we have:∫ 1

0

‖dj(τ)− d(τ)‖1 dτ ≤ ‖dj − d‖L2 , and

∫ 1

0

‖uj(τ)− u(τ)‖1 dτ ≤ ‖uj − u‖L2 . (2.44)

Since the sequence ξj converges to ξ, for every ε > 0 we know there exists some j0 such
that for all j greater than j0, ‖ξj − ξ‖X ≤ ε. Therefore ‖ϕt(ξj) − ϕt(ξ)‖2 ≤ eL(L + C)ε,
which proves the convergence of {ϕt(ξj)}∞j=1 to ϕt(ξ) for each t ∈ [0, 1] as j →∞. Since this

bound does not depend on t, we in fact have the uniform convergence of {x(ξj)}∞j=1 to x(ξ) as
j →∞, hence obtaining our desired result.

Notice that since Xr is a metric space, the previous result proves that the function ϕt
which assigns ξ ∈ Xr to ϕt(ξ) as the solution of Differential Equation (2.13) employing the
notation defined in Equation (2.14) is continuous.

Corollary 2.12. The function ϕt that maps ξ ∈ Xr to ϕt(ξ) as the solution of Differential
Equation (2.13) where we employ the notation defined in Equation (2.14) is continuous for
all t ∈ [0, 1].

In fact, our arguments have shown that this mapping is Lipschitz continuous:

Corollary 2.13. There exists a constant L > 0 such that for each ξ1, ξ2 ∈ Xr and t ∈ [0, 1]:

‖ϕt(ξ1)− ϕt(ξ2)‖2 ≤ L‖ξ1 − ξ2‖X , (2.45)

where ϕt(ξ) is as defined in Equation (2.14).

As a result of this corollary, we immediately have the following results:

Corollary 2.14. There exists a constant L > 0 such that for each ξ1 = (u1, d1) ∈ Xr,
ξ2 = (u2, d2) ∈ Xr, and t ∈ [0, 1]:

(1)
∥∥f(t, ϕt(ξ1), u1(t), d1(t)

)
−f
(
t, ϕt(ξ2), u2(t), d2(t)

)∥∥
2
≤

≤ L
(
‖ξ1 − ξ2‖X + ‖u1(t)− u2(t)‖2 + ‖d1(t)− d2(t)‖2

)
,
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(2)

∥∥∥∥∂f∂x(t, ϕt(ξ1), u1(t), d1(t)
)
−∂f
∂x

(
t, ϕt(ξ2), u2(t), d2(t)

)∥∥∥∥
i,2

≤

≤ L
(
‖ξ1 − ξ2‖X + ‖u1(t)− u2(t)‖2 + ‖d1(t)− d2(t)‖2

)
,

(3)

∥∥∥∥∂f∂u(t, ϕt(ξ1), u1(t), d1(t)
)
−∂f
∂u

(
t, ϕt(ξ2), u2(t), d2(t)

)∥∥∥∥
i,2

≤

≤ L
(
‖ξ1 − ξ2‖X + ‖u1(t)− u2(t)‖2 + ‖d1(t)− d2(t)‖2

)
,

where ϕt(ξ) is as defined in Equation (2.14).

Proof. The proof of Condition 1 follows by the fact that the vector field f is Lipschitz in
all its arguments, as shown in the proof of Theorem 2.6, and applying Corollary 2.13. The
remaining conditions follow in a similar fashion.

Corollary 2.15. There exists a constant L > 0 such that for each ξ1, ξ2 ∈ Xr, j ∈ J , and
t ∈ [0, 1]:

(1)
∣∣h0

(
ϕ1(ξ1)

)
− h0

(
ϕ1(ξ2)

)∣∣ ≤ L ‖ξ1 − ξ2‖X ,

(2)
∥∥∥∂h0∂x

(
ϕ1(ξ1)

)
− ∂h0

∂x

(
ϕ1(ξ2)

)∥∥∥
2
≤ L ‖ξ1 − ξ2‖X ,

(3)
∣∣hj(ϕt(ξ1)

)
− hj

(
ϕt(ξ2)

)∣∣ ≤ L ‖ξ1 − ξ2‖X ,

(4)
∥∥∥∂hj∂x (ϕt(ξ1)

)
− ∂hj

∂x

(
ϕt(ξ2)

)∥∥∥
2
≤ L ‖ξ1 − ξ2‖X ,

where ϕt(ξ) is as defined in Equation (2.14).

Proof. This result follows by Assumption 2.3 and Corollary 2.13.

Even though it is a straightforward consequence of Condition 1 in Corollary 2.15, we
write the following result to stress its importance.

Corollary 2.16. There exists a constant L > 0 such that, for each ξ1, ξ2 ∈ Xr:

|J(ξ1)− J(ξ2)| ≤ L ‖ξ1 − ξ2‖X (2.46)

where J is as defined in Equation (2.15).

In fact, the Ψ is also Lipschitz continuous:

Lemma 2.17. There exists a constant L > 0 such that, for each ξ1, ξ2 ∈ Xr:

|Ψ(ξ1)−Ψ(ξ2)| ≤ L ‖ξ1 − ξ2‖X (2.47)

where Ψ is as defined in Equation (2.16).
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Proof. Since the maximum in Ψ is taken over J × [0, 1], which is compact, and the maps
(j, t) 7→ ψj,t(ξ) are continuous for each ξ ∈ X , we know from Condition 3 in Corollary 2.15
that there exists L > 0 such that,

Ψ(ξ1)−Ψ(ξ2) = max
(j,t)∈J×[0,1]

ψj,t(ξ1)− max
(j,t)∈J×[0,1]

ψj,t(ξ2)

≤ max
(j,t)∈J×[0,1]

ψj,t(ξ1)− ψj,t(ξ2)

≤ L ‖ξ1 − ξ2‖X .

(2.48)

By reversing ξ1 and ξ2, and applying the same argument we get the desired result.

Derivation of Algorithm Terms

Next, we formally derive the components of the optimality function and prove that it is
properly defined. We begin by deriving the formal expression for the directional derivative
of the trajectory of the switched system.

Lemma 2.18. Let ξ = (u, d) ∈ Xr, ξ′ = (u′, d′) ∈ X , and let ϕt : Xr → Rn be as defined
in Equation (2.14). Then the directional derivative of ϕt, as defined in Equation (2.25), is
given by

Dϕt(ξ; ξ
′) =

∫ t

0

Φ(ξ)(t, τ)

(
∂f

∂u

(
τ, ϕτ (ξ), u(τ), d(τ)

)
u′(τ) +

q∑
i=1

f
(
τ, ϕτ (ξ), u(τ), ei

)
d′i(τ)

)
dτ,

(2.49)
where Φ(ξ)(t, τ) is the unique solution of the following matrix differential equation:

∂Φ

∂t
(t, τ) =

∂f

∂x

(
t, ϕt(ξ), u(t), d(t)

)
Φ(t, τ), t ∈ [0, 1], Φ(τ, τ) = I. (2.50)

Proof. For notational convenience, let x(λ) = x(ξ+λξ′), u(λ) = u + λu′, and d(λ) = d + λd′.
Then, if we define ∆x(λ) = x(λ) − x(ξ),

∆x(λ)(t) =

∫ t

0

f
(
τ, x(λ)(τ), u(λ)(τ), d(λ)(τ)

)
− f

(
τ, x(ξ)(t), u(τ), d(τ)

)
dτ, (2.51)

thus,

∆x(λ)(t) =

∫ t

0

f
(
τ, x(λ)(τ), u(λ)(τ), d(λ)(τ)

)
− f

(
τ, x(λ)(t), u(λ)(τ), d(τ)

)
dτ+

+

∫ t

0

f
(
τ, x(λ)(τ), u(λ)(τ), d(τ)

)
− f

(
τ, x(ξ)(t), u(λ)(τ), d(τ)

)
dτ+

+

∫ t

0

f
(
τ, x(ξ)(τ), u(λ)(τ), d(τ)

)
− f

(
τ, x(ξ)(t), u(τ), d(τ)

)
dτ, (2.52)
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and applying the Mean Value Theorem,

∆x(λ)(t) =

∫ t

0

λ

q∑
i=1

d′i(τ)f
(
τ, x(λ)(τ), u(λ)(τ), ei

)
+

+

∫ t

0

∂f

∂x

(
τ, x(ξ)(τ) + νx(τ)∆x(λ)(τ), u(λ)(τ), d(τ)

)
∆x(λ)(τ)+

+

∫ t

0

λ
∂f

∂u

(
τ, x(ξ)(τ), u(τ) + νu(τ)λu′(τ), d(τ)

)
u′(τ)dt, (2.53)

where νu, νx : [0, t]→ [0, 1].
Let z(t) be the unique solution of the following differential equation:

ż(τ) =
∂f

∂x

(
τ, x(ξ)(τ), u(τ), d(τ)

)
z(τ) +

∂f

∂u

(
τ, x(ξ)(τ), u(τ), d(τ)

)
u′(τ)+

+

q∑
i=1

d′i(τ)f
(
τ, x(ξ)(τ), u(τ), ei

)
, τ ∈ [0, t], z(0) = 0. (2.54)

We want to show that limλ↓0

∥∥∥∆x(λ)(t)
λ
− z(t)

∥∥∥
2

= 0. To prove this, consider the following

inequalities that follow from Condition 2 in Assumption 2.2:∥∥∥∥∫ t

0

∂f

∂x

(
τ, x(ξ)(τ), u(τ), d(τ)

)
z(τ)+

− ∂f

∂x

(
τ, x(ξ)(τ) + νx(τ)∆x(λ)(τ), u(λ)(τ), d(τ)

)∆x(λ)(τ)

λ
dτ

∥∥∥∥
2

≤

≤
∫ t

0

∥∥∥∥∂f∂x
∥∥∥∥
L∞

∥∥∥∥z(τ)− ∆x(λ)(τ)

λ

∥∥∥∥
2

dτ +

∫ t

0

L
(∥∥νx(τ)∆x(λ)(τ)

∥∥
2

+ λ ‖u′(τ)‖2

)
‖z(t)‖2 dτ

≤ L

∫ t

0

∥∥∥∥z(τ)− ∆x(λ)(τ)

λ

∥∥∥∥
2

dτ + L

∫ t

0

(∥∥∆x(λ)(τ)
∥∥

2
+ λ ‖u′(τ)‖2

)
‖z(t)‖2 dτ,

(2.55)
also from Condition 3 in Assumption 2.2:∥∥∥∥∫ t

0

(
∂f

∂u

(
τ, x(ξ)(τ), u(τ), d(τ)

)
− ∂f

∂u

(
τ, x(ξ)(τ), u(τ) + νu(τ)λu′(τ), d(τ)

))
u′(τ)

∥∥∥∥
2

≤

≤ L

∫ t

0

λ ‖νu(τ)u′(τ)‖2 ‖u
′(τ)‖2 dτ ≤ L

∫ t

0

λ ‖u′(τ)‖2
2 dτ, (2.56)
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and from Condition 1 in Assumption 2.2:∥∥∥∥∥
∫ t

0

q∑
i=1

d′i(τ)
(
f
(
τ, x(ξ)(τ), u(τ), ei

)
− f

(
τ, x(λ)(τ), u(λ)(τ), ei

))
dτ

∥∥∥∥∥
2

≤

≤ L

∫ t

0

q∑
i=1

d′i(τ)
(∥∥∆x(λ)(τ)

∥∥
2

+ λ ‖u′(τ)‖2

)
dτ. (2.57)

Now, using the Bellman-Gronwall Inequality (Lemma 5.6.4 in [Pol97]) and the inequalities
above,∥∥∥∥∆x(λ)(t)

λ
− z(t)

∥∥∥∥
2

≤ eLtL

(∫ t

0

(∥∥∆x(λ)(τ)
∥∥

2
+ λ ‖u′(τ)‖2

)
‖z(t)‖2 + λ ‖u′(τ)‖2

2 +

+

q∑
i=1

d′i(τ)
(∥∥∆x(λ)(τ)

∥∥
2

+ λ ‖u′(τ)‖2

)
dτ

)
, (2.58)

but note that every term in the integral above is bounded, and ∆x(λ)(τ) → 0 for each
τ ∈ [0, t] since x(λ) → x(ξ) uniformly as shown in Lemma 2.11, thus by the Dominated
Convergence Theorem (Theorem 2.24 in [Fol99]) and by noting that Dϕt(ξ; ξ

′), as defined in
Equation (2.49), is exactly the solution of Differential Equation (2.54) we get:

lim
λ↓0

∥∥∥∥∆x(λ)(t)

λ
− z(t)

∥∥∥∥
2

= lim
λ↓0

1

λ

∥∥x(ξ+λξ′)(t)− x(ξ)(t)−Dϕt(ξ;λξ′)
∥∥

2
= 0. (2.59)

The result of the Lemma then follows.

Next, we prove that Dϕt is bounded by proving that Φ(ξ) is bounded:

Corollary 2.19. There exists a constant C > 0 such that for each t, τ ∈ [0, 1] and ξ ∈ Xr:∥∥Φ(ξ)(t, τ)
∥∥
i,2
≤ C, (2.60)

where Φ(ξ)(t, τ) is the solution to Differential Equation (2.50).

Proof. Notice that, since the induced matrix norm is submultiplicative,∥∥Φ(ξ)(t, τ)
∥∥
i,2

=

∥∥∥∥Φ(ξ)(t, τ) +

∫ t

τ

(
∂f

∂x

(
s, x(ξ)(s), u(s), d(s)

)
Φ(ξ)(s, τ)

)
ds

∥∥∥∥
i,2

≤ 1 +

∫ t

τ

∥∥∥∥∂f∂x(s, x(ξ)(s), u(s), d(s)
)∥∥∥∥

i,2

∥∥Φ(ξ)(t, s)
∥∥
i,2
ds

≤ eqC ,

(2.61)

where in the last step we employed Condition 1 from Corollary 2.5 with a constant C > 0
and the Bellman-Gronwall Inequality.



CHAPTER 2. OPTIMAL CONTROL OF SWITCHED DYNAMICAL SYSTEMS 31

Corollary 2.20. There exists a constant C > 0 such that for all ξ ∈ Xr, ξ′ ∈ X , and
t ∈ [0, 1]:

‖Dϕt(ξ; ξ′)‖2 ≤ C ‖ξ′‖X , (2.62)

where Dϕt is as defined in Equation (2.49).

Proof. This result follows by employing the Cauchy-Schwarz Inequality, Corollary 2.5 and
Corollary 2.19.

In fact, we can actually prove the Lipschitz continuity of Φ(ξ):

Lemma 2.21. There exists a constant L > 0 such that for each ξ1, ξ2 ∈ Xr and each
t, τ ∈ [0, 1]: ∥∥Φ(ξ1)(t, τ)− Φ(ξ2)(t, τ)

∥∥
i,2
≤ L ‖ξ1 − ξ2‖X , (2.63)

where Φ(ξ) is the solution to Differential Equation (2.50).

Proof. Letting ξ1 = (u1, d1) ∈ Xr and ξ2 = (u2, d2) ∈ Xr and by applying the Triangle
Inequality and noticing the induced matrix norm is compatible, observe:∥∥Φ(ξ1)(t, τ)− Φ(ξ2)(t, τ)

∥∥
i,2
≤

≤
∫ t

τ

(∥∥∥∥∂f∂x (s, x(ξ2)(s), u2(s), d2(s)
)∥∥∥∥

i,2

∥∥Φ(ξ1)(s, τ)− Φ(ξ2)(s, τ)
∥∥
i,2

)
ds+

+

∫ t

τ

(∥∥∥∥∂f∂x (s, x(ξ1)(s), u1(s), d1(s)
)
− ∂f

∂x

(
s, x(ξ2)(s), u2(s), d2(s)

)∥∥∥∥
i,2

∥∥Φ(ξ1)(s, τ)
∥∥
i,2

)
ds.

(2.64)

By applying Condition 1 in Corollary 2.5, Condition 2 in Corollary 2.14, Corollary 2.19, the
same argument as in Equation (2.44), and the Bellman-Gronwall Inequality (Lemma 5.6.4
in [Pol97]), our desired result follows.

A simple extension of our previous argument shows that for all t ∈ [0, 1], Dϕt(ξ; ·) is
Lipschitz continuous with respect to its point of evaluation, ξ.

Lemma 2.22. There exists a constant L > 0 such that for each ξ1, ξ2 ∈ Xr, ξ′ ∈ X , and
t ∈ [0, 1]:

‖Dϕt(ξ1; ξ′)−Dϕt(ξ2; ξ′)‖2 ≤ L‖ξ1 − ξ2‖X ‖ξ′‖X (2.65)

where Dϕt is as defined in Equation (2.49).
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Proof. Let ξ1 = (u1, d1), ξ2 = (u2, d2), and ξ′ = (u′, d′). Then, by applying the Triangle
Inequality, and noticing that the induced matrix norm is compatible, observe:

‖Dϕt(ξ1; ξ′)−Dϕt(ξ2; ξ′)‖2 ≤

≤
∫ t

0

(∥∥Φ(ξ1)(t, s)− Φ(ξ2)(t, s)
∥∥
i,2

∥∥∥∥∂f∂u(s, x(ξ1)(s), u1(s), d1(s)
)∥∥∥∥

i,2

+

+
∥∥Φ(ξ2)(t, s)

∥∥
i,2

∥∥∥∥∂f∂u(s, x(ξ1)(s), u1(s), d1(s)
)
− ∂f

∂u

(
s, x(ξ2)(s), u2(s), d2(s)

)∥∥∥∥
i,2

)
‖u′(s)‖2 ds+

+

∫ t

0

q∑
i=1

(∥∥Φ(ξ1)(t, s)− Φ(ξ2)(t, s)
∥∥
i,2

∥∥f(s, x(ξ1)(s), u1(s), ei
)∥∥

2
+

+
∥∥Φ(ξ2)(t, s)

∥∥
i,2

∥∥f(s, x(ξ1)(s), u1(s), ei
)
− f

(
s, x(ξ2)(s), u2(s), ei

)∥∥
2

)
‖d′(s)‖ ds. (2.66)

By applying Corollary 2.19, Condition 1 in Corollary 2.5, Lemma 2.21, Conditions 1 and 3 in
Corollary 2.14, together with the boundedness of u′(s) and d′(s), and an argument identical
to the one used in Equation (2.44), our desired result follows.

Next, we prove that Dϕt is simultaneously continuous with respect to both of its argu-
ments.

Lemma 2.23. For each t ∈ [0, 1], ξ ∈ Xr, and ξ′ ∈ X , the map (ξ, ξ′) 7→ Dϕt(ξ; ξ
′), as

defined in Equation (2.49), is continuous.

Proof. To prove this result, we can employ an argument identical to the one used in the
proof of Lemma 2.11. First, note that u(t) ∈ U for each t ∈ [0, 1]. Second, note that Φ(ξ),
f , ∂f

∂x
, and ∂f

∂u
are bounded, as shown in Corollary 2.19 and Condition 1 in Corollary 2.5.

Third, recall that Φ(ξ), f , and ∂f
∂u

are Lipschitz continuous, as proven in Lemma 2.21 and
Conditions 1 and 3 in Corollary 2.14, respectively. Finally, the result follows after using an
argument identical to the one used in Equation (2.44).

We can now construct the directional derivative of the cost J and prove it is Lipschitz
continuous.

Lemma 2.24. Let ξ ∈ Xr, ξ′ ∈ X , and J be as defined in Equation (2.15). Then the
directional derivative of the cost J in the ξ′ direction is:

DJ(ξ; ξ′) =
∂h0

∂x

(
ϕ1(ξ)

)
Dϕ1(ξ; ξ′). (2.67)

Proof. The result follows directly by the Chain Rule and Lemma 2.18.
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Corollary 2.25. There exists a constant L > 0 such that for each ξ1, ξ2 ∈ Xr and ξ′ ∈ X :

|DJ(ξ1; ξ′)−DJ(ξ2; ξ′)| ≤ L ‖ξ1 − ξ2‖X ‖ξ
′‖X , (2.68)

where DJ is as defined in Equation (2.67).

Proof. Notice by the Triangle Inequality and the Cauchy-Schwartz Inequality:

|DJ(ξ1; ξ′)−DJ(ξ2; ξ′)| ≤
∥∥∥∥∂h0

∂x

(
ϕ1(ξ1)

)∥∥∥∥
2

‖Dϕ1(ξ1; ξ′)−Dϕ1(ξ2; ξ′)‖2 +

+

∥∥∥∥∂h0

∂x

(
ϕ1(ξ1)

)
− ∂h0

∂x

(
ϕ1(ξ2)

)∥∥∥∥
2

‖Dϕ1(ξ2; ξ′)‖2 . (2.69)

The result then follows by applying Condition 2 in Corollary 2.5, Condition 2 in Corol-
lary 2.15, Corollary 2.20, and Lemma 2.22.

Next, we prove that DJ is simultaneously continuous with respect to both of its argu-
ments, which is a direct consequence of Lemma 2.23.

Corollary 2.26. For each ξ ∈ Xr and ξ′ ∈ X , the map (ξ, ξ′) 7→ DJ(ξ; ξ′), as defined in
Equation (2.67), is continuous.

Next, we construct the directional derivative of each of the component constraint func-
tions ψj,t and prove that each of the component constraints is Lipschitz continuous.

Lemma 2.27. Let ξ ∈ Xr, ξ′ ∈ X , and ψj,t defined as in Equation (2.17). Then for each
j ∈ J and t ∈ [0, 1], the directional derivative of ψj,t, denoted Dψj,t, is given by:

Dψj,t(ξ; ξ
′) =

∂hj
∂x

(
ϕt(ξ)

)
Dϕt(ξ; ξ

′). (2.70)

Proof. The result follows using the Chain Rule and Lemma 2.18.

Corollary 2.28. There exists a constant L > 0 such that for each ξ1, ξ2 ∈ Xr, ξ′ ∈ X , and
t ∈ [0, 1]:

|Dψj,t(ξ1; ξ′)−Dψj,t(ξ2; ξ′)| ≤ L ‖ξ1 − ξ2‖X ‖ξ
′‖X , (2.71)

where Dψj,t is as defined in Equation (2.70).

Proof. Notice by the Triangle Inequality and the Cauchy Schwartz Inequality:

|Dψj,t(ξ1; ξ′)−Dψj,t(ξ2; ξ′)| ≤
∥∥∥∥∂hj∂x

(
ϕt(ξ1)

)∥∥∥∥
2

‖Dϕt(ξ1; ξ′)−Dϕt(ξ2; ξ′)‖2 +

+

∥∥∥∥∂hj∂x

(
ϕt(ξ1)

)
− ∂hj

∂x

(
ϕt(ξ2)

)∥∥∥∥
2

‖Dϕt(ξ2; ξ′)‖2 . (2.72)

The result then follows by applying Condition 3 in Corollary 2.5, Condition 4 in Corol-
lary 2.15, Corollary 2.20, and Lemma 2.22.
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Next, we prove that Dψj,t is simultaneously continuous with respect to both of its argu-
ments, which follows directly from Lemma 2.23:

Corollary 2.29. For each ξ ∈ Xr, ξ′ ∈ X , and t ∈ [0, 1], the map (ξ, ξ′) 7→ Dψj,t(ξ; ξ
′), as

defined in Equation (2.70), is continuous.

Given these results, we can begin describing the properties satisfied by the optimality
function:

Lemma 2.30. Let ζ be defined as in Equation (2.31). Then there exists a constant L > 0
such that, for each ξ1, ξ2, ξ

′ ∈ Xr,

|ζ(ξ1, ξ
′)− ζ(ξ2, ξ

′)| ≤ L ‖ξ1 − ξ2‖X . (2.73)

Proof. To prove the result, first notice that for {xi}i∈I , {yi}i∈I ⊂ R:∣∣∣max
i∈I

xi

∣∣∣ ≤ max
i∈I
|xi| , and max

i∈I
xi −max

i∈I
yi ≤ max

i∈I

{
xi − yi

}
. (2.74)

Therefore, ∣∣∣max
i∈I

xi −max
i∈I

yi

∣∣∣ ≤ max
i∈I
|xi − yi|. (2.75)

Letting Ψ+(ξ) = max{0,Ψ(ξ)} and Ψ−(ξ) = max{0,−Ψ(ξ)}, observe:

ζ(ξ, ξ′) = max

{
DJ(ξ; ξ′ − ξ)−Ψ+(ξ), max

j∈J , t∈[0,1]
Dψj,t(ξ; ξ

′ − ξ)− γΨ−(ξ)

}
+ ‖ξ′ − ξ‖X .

(2.76)
Employing Equation (2.75):

∣∣ζ(ξ1, ξ
′)− ζ(ξ2, ξ

′)
∣∣ ≤ max

{∣∣DJ(ξ1; ξ′ − ξ1)−DJ(ξ2; ξ′ − ξ2)
∣∣+
∣∣Ψ+(ξ2)−Ψ+(ξ1)

∣∣,
max

j∈J , t∈[0,1]

∣∣Dψj,t(ξ1; ξ′−ξ1)−Dψj,t(ξ2; ξ′−ξ2)
∣∣+γ∣∣Ψ−(ξ2)−Ψ−(ξ1)

∣∣}+
∣∣‖ξ′−ξ1‖X−‖ξ′−ξ2‖X

∣∣.
(2.77)

We show three results that taken together with the Triangle Inequality prove the desired
result. First, by applying the reverse Triangle Inequality:∣∣‖ξ′ − ξ1‖X − ‖ξ′ − ξ2‖X

∣∣ ≤ ‖ξ1 − ξ2‖X . (2.78)

Second,∣∣DJ(ξ1; ξ′ − ξ1)−DJ(ξ2; ξ′ − ξ2)
∣∣ ≤ ∣∣DJ(ξ1; ξ′)−DJ(ξ2; ξ′)

∣∣+
∣∣DJ(ξ1; ξ1)−DJ(ξ2; ξ1)

∣∣+
+

∣∣∣∣∂h0

∂x

(
ϕ1(ξ2)

)
Dϕ1(ξ2; ξ2 − ξ1)

∣∣∣∣
≤ L ‖ξ1 − ξ2‖X ,

(2.79)
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where L > 0 and we employed the linearity of DJ , Corollary 2.25, the fact that ξ′ and ξ1

are bounded since ξ′, ξ1 ∈ Xr, the Cauchy-Schwartz Inequality, Condition 2 in Corollary 2.5,
and Corollary 2.20. Notice that by employing an argument identical to Equation (2.79) and
Corollary 2.28, we can assume without loss of generality that

∣∣Dψj,t(ξ1; ξ′−ξ1)−Dψj,t(ξ2; ξ′−
ξ2)
∣∣ ≤ L ‖ξ1 − ξ2‖X . Finally, notice that by applying Lemma 2.17, Ψ+(ξ) and Ψ−(ξ) are

Lipschitz continuous.

In fact, ζ satisfies an even more important property:

Lemma 2.31. For each ξ ∈ Xp, the map ξ′ 7→ ζ(ξ, ξ′), as defined in Equation (2.31), is
strictly convex.

Proof. The proof follows after noting that the maps ξ′ 7→ DJ(ξ; ξ′−ξ) and ξ′ 7→ Dψj,t(ξ; ξ
′−ξ)

are affine, hence any maximum among these function is convex, and the map ξ′ 7→ ‖ξ′− ξ‖X
is strictly convex since we chose the 2–norm as our finite dimensional norm.

The following theorem, which follows as a result of the previous lemma, is fundamental
to our result since it shows that g, as defined in Equation (2.30), is a well-defined function.
We omit the proof since it is a particular case of a well known result regarding the exis-
tence of unique minimizers of strictly convex functions over bounded sets in Hilbert spaces
(Proposition II.1.2 in [ET87]).

Theorem 2.32. For each ξ ∈ Xp, the map ξ′ 7→ ζ(ξ, ξ′), as defined in Equation (2.31), has
a unique minimizer.

Employing these results we can prove the continuity of the optimality function. This
result is not strictly required in order to prove the convergence of Algorithm 2.1 or in order to
prove that the optimality function encodes local minimizers of the Switched System Optimal
Control Problem, but is useful when we describe the implementation of our algorithm.

Lemma 2.33. The function θ, as defined in Equation (2.30), is continuous.

Proof. First, we show that θ is upper semi-continuous. Consider a sequence {ξi}∞i=1 ⊂ Xr
converging to ξ, and ξ′ ∈ Xr such that θ(ξ) = ζ(ξ, ξ′), i.e. ξ′ = g(ξ), where g is defined as in
Equation (2.30). Since θ(ξi) ≤ ζ(ξi, ξ

′) for all i ∈ N,

lim sup
i→∞

θ(ξi) ≤ lim sup
i→∞

ζ(ξi, ξ
′) = ζ(ξ, ξ′) = θ(ξ), (2.80)

which proves the upper semi-continuity of θ.
Second, we show that θ is lower semi-continuous. Let {ξ′i}i∈N such that θ(ξi) = ζ(ξi, ξ

′
i),

i.e. ξ′i = g(ξi). From Lemma 2.30, we know there exists a Lipschitz constant L > 0 such
that for each i ∈ N, |ζ(ξ, ξ′i)− ζ(ξi, ξ

′
i)| ≤ L ‖ξ − ξi‖X . Consequently,

θ(ξ) ≤
(
ζ(ξ, ξ′i)− ζ(ξi, ξ

′
i)
)

+ ζ(ξi, ξ
′
i) ≤ L‖ξ − ξi‖X + θ(ξi). (2.81)
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Taking limits we conclude that
θ(ξ) ≤ lim inf

i→∞
θ(ξi), (2.82)

which proves the lower semi-continuity of θ, and our desired result.

Finally, we can prove that θ encodes a necessary condition for optimality:

Theorem 2.34. Let θ be as defined in Equation (2.30), then:

(1) θ is non-positive valued, and

(2) If ξ ∈ Xp is a local minimizer of the Switched System Optimal Control Problem as in
Definition 2.10, then θ(ξ) = 0.

Proof. Notice that ζ(ξ, ξ) = 0, therefore θ(ξ) = minξ′∈Xr ζ(ξ, ξ′) ≤ ζ(ξ, ξ) = 0. This proves
Condition 1.

To prove Condition 2, we begin by making several observations. Given ξ′ ∈ Xr and
λ ∈ [0, 1], using the Mean Value Theorem and Corollary 2.25 we have that there exists
s ∈ (0, 1) and L > 0 such that

J
(
ξ + λ(ξ′ − ξ)

)
− J(ξ) = DJ

(
ξ + sλ(ξ′ − ξ);λ(ξ′ − ξ)

)
≤ λDJ

(
ξ; ξ′ − ξ

)
+ Lλ2‖ξ′ − ξ‖2

X .
(2.83)

Letting A(ξ) =
{

(j, t) ∈ J × [0, 1] | Ψ(ξ) = hj
(
x(ξ)(t)

)}
, similar to the equation above, there

exists a pair (j, t) ∈ A
(
ξ + λ(ξ′ − ξ)

)
and s ∈ (0, 1) such that, using Corollary 2.28,

Ψ
(
ξ + λ(ξ′ − ξ)

)
−Ψ(ξ) ≤ ψj,t

(
ξ + λ(ξ′ − ξ)

)
−Ψ(ξ)

≤ ψj,t
(
ξ + λ(ξ′ − ξ)

)
− ψj,t(ξ)

= Dψj,t
(
ξ + sλ(ξ′ − ξ);λ(ξ′ − ξ)

)
≤ λDψj,t

(
ξ; ξ′ − ξ

)
+ Lλ2‖ξ′ − ξ‖2

X .

(2.84)

Finally, letting L denote the Lipschitz constant as in Condition 1 in Assumption 2.3, notice:

Ψ
(
ξ + λ(ξ′ − ξ)

)
−Ψ(ξ) = max

(j,t)∈J×[0,1]
ψj,t
(
ξ + λ(ξ′ − ξ)

)
− max

(j,t)∈J×[0,1]
ψj,t(ξ)

≤ max
(j,t)∈J×[0,1]

ψj,t
(
ξ + λ(ξ′ − ξ)

)
− ψj,t(ξ)

≤ L max
t∈[0,1]

‖ϕt(ξ + λ(ξ′ − ξ))− ϕt(ξ)‖2 .

(2.85)

We prove Condition 2 by contradiction. That is, using Definition 2.10, we assume that
θ(ξ) < 0 and show that for each ε > 0 there exists ξ̂ ∈ Nw(ξ, ε) ∩

{
ξ̄ ∈ Xp | Ψ(ξ̄) ≤ 0

}
such that J(ξ̂) < J(ξ), where Nw(ξ, ε) is as defined in Equation (2.29), hence arriving at a
contradiction.
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Before arriving at this contradiction, we make three initial observations. First, notice
that since ξ ∈ Xp is a local minimizer of the Switched System Optimal Control Problem,
Ψ(ξ) ≤ 0. Second, consider g as defined in Equation (2.30), which exists by Theorem 2.32,
and notice that since θ(ξ) < 0, g(ξ) 6= ξ. Third, notice that, as a result of Theorem 2.8, for
each (ξ + λ(g(ξ)− ξ)) ∈ Xr and ε′ > 0 there exists a ξλ ∈ Xp such that∥∥x(ξλ) − x(ξ+λ(g(ξ)−ξ))∥∥

L∞
< ε′ (2.86)

where x(ξ) is the solution to Differential Equation (2.13).

Now, letting ε′ = −λθ(ξ)
2L

> 0 and using Corollary 2.13:∥∥x(ξλ) − x(ξ)
∥∥
L2 ≤

∥∥x(ξλ) − x(ξ+λ(g(ξ)−ξ))∥∥
L2 +

∥∥x(ξ+λ(g(ξ)−ξ)) − x(ξ)
∥∥
L2

≤
(
−θ(ξ)

2L
+ L ‖g(ξ)− ξ‖X

)
λ.

(2.87)

Next, observe that:

θ(ξ) = max

{
DJ(ξ; g(ξ)− ξ), max

(j,t)∈J×[0,1]
Dψj,t(ξ; g(ξ)− ξ) + γΨ(ξ)

}
+ ‖g(ξ)− ξ‖X < 0.

(2.88)
Also, by Equations (2.83), (2.86), and (2.88), together with Condition 1 in Assumption 2.3
and Corollary 2.13:

J(ξλ)− J(ξ) ≤ J(ξλ)− J
(
ξ + λ(g(ξ)− ξ)

)
+ J

(
ξ + λ(g(ξ)− ξ)

)
− J(ξ)

≤ L ‖ϕ1(ξλ)− ϕ1(ξ + λ(g(ξ)− ξ))‖2 + θ(ξ)λ+ 4A2Lλ2

≤ Lε′ + θ(ξ)λ+ 4A2Lλ2

≤ θ(ξ)λ

2
+ 4A2Lλ2,

(2.89)

where A = max
{
‖u‖2 + 1 | u ∈ U

}
and we used the fact that ‖ξ − ξ′‖2

X ≤ 4A2 and

DJ(ξ; ξ′ − ξ) ≤ θ(ξ). Hence for each λ ∈
(

0, −θ(ξ)
8A2L

)
,

J(ξλ)− J(ξ) < 0. (2.90)

Similarly, using Condition 1 in Assumption 2.3, together with Equations (2.84), (2.85),
and (2.88), we have:

Ψ(ξλ) ≤ Ψ(ξλ)−Ψ
(
ξ + λ(g(ξ)− ξ)

)
+ Ψ

(
ξ + λ(g(ξ)− ξ)

)
≤ L max

t∈[0,1]
‖ϕt(ξλ)− ϕt(ξ + λ(g(ξ)− ξ))‖2 + Ψ(ξ) +

(
θ(ξ)− γΨ(ξ)

)
λ+ 4A2Lλ2

≤ Lε′ + θ(ξ)λ+ 4A2Lλ2 + (1− γλ)Ψ(ξ)

≤ θ(ξ)λ

2
+ 4A2Lλ2 + (1− γλ)Ψ(ξ),

(2.91)
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where A = max
{
‖u‖2+1 | u ∈ U

}
and we used the fact that ‖ξ−ξ′‖2

X ≤ 4A2 and Dψj,t(ξ; ξ
′−

ξ) ≤ θ(ξ)− γΨ(ξ) for each (j, t) ∈ J × [0, 1]. Hence for each λ ∈
(

0,min
{
−θ(ξ)
8A2L

, 1
γ

})
:

Ψ(ξλ) ≤ (1− γλ)Ψ(ξ) ≤ 0. (2.92)

Summarizing, suppose ξ ∈ Xp is a local minimizer of the Switched System Optimal
Control Problem and θ(ξ) < 0. For each ε > 0, by choosing any

λ ∈
(

0,min

{
−θ(ξ)
8A2L

,
1

γ
,

2Lε

2L2 ‖g(ξ)− ξ‖X − θ(ξ)

})
, (2.93)

we can construct a ξλ ∈ Xp such that ξλ ∈ Nw(ξ, ε), by Equation (2.87), such that J(ξλ) <
J(ξ), by Equation (2.90), and Ψ(ξλ) ≤ 0, by Equation (2.92). Therefore, ξ is not a local
minimizer of the Switched System Optimal Control Problem, which is a contradiction and
proves Condition 2.

Approximating Relaxed Inputs

In this subsection, we prove that the projection operation, ρN , allows us to control the
quality of approximation between the trajectories generated by a relaxed discrete input and
its projection. First, we prove for d ∈ Dr, FN(d) ∈ Dr and PN

(
FN(d)

)
∈ Dp:

Lemma 2.35. Let d ∈ Dr, FN be as defined in Equation (2.34), and PN be as defined in
Equation (2.35). Then for each N ∈ N and t ∈ [0, 1]:

(1) [FN(d)]i(t) ∈ [0, 1],

(2)
∑q

i=1[FN(d)]i(t) = 1,

(3)
[
PN
(
FN(d)

)]
i
(t) ∈ {0, 1},

(4)
∑q

i=1

[
PN
(
FN(d)

)]
i
(t) = 1.

Proof. Condition 1 follows due to the result in Section 3.3 in [Haa10]. Condition 2 follows
since the wavelet approximation is linear, thus,

q∑
i=1

[FN(d)]i =

q∑
i=1

〈di,1〉+
N∑
k=0

2k−1∑
j=0

〈di, bkj〉
bkj
‖bkj‖2

L2


= 〈1,1〉+

N∑
k=0

2k−1∑
j=0

〈1, bkj〉
bkj
‖bkj‖2

L2

= 1,

(2.94)

where the last equality holds since 〈1, bkj〉 = 0 for each k, j.
Conditions 3 and 4 are direct consequences of the definition of PN , since PN can only

take the values 0 or 1, and only one coordinate is equal to 1 at any given time t ∈ [0, 1].
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Recall that in order to avoid the introduction of additional notation, we let the coordinate-
wise application of FN to some relaxed discrete input d ∈ Dr be denoted as FN(d) and
similarly for some continuous input u ∈ U , but in fact FN as originally defined took
L2([0, 1],R) ∩ BV ([0, 1],R) to L2([0, 1],R) ∩ BV ([0, 1],R). Next, we prove that the wavelet
approximation allows us to control the quality of approximation:

Lemma 2.36. Let f ∈ L2([0, 1],R) ∩BV ([0, 1],R), then

‖f −FN(f)‖L2 ≤
1

2

(
1√
2

)N
V(f) , (2.95)

where FN is as defined in Equation (2.34) and V(·) is as defined in Equation (2.3).

Proof. Since L2 is a Hilbert space and the collection {bkj}k,j is a basis, then

f = 〈f,1〉+
∞∑
k=0

2k−1∑
j=0

〈f, bkj〉
bkj
‖bkj‖2

L2

. (2.96)

Note that ‖bkj‖2
L2 = 2−k and that

vkj(t) =

∫ t

0

bkj(s)ds =


t− j2−k if t ∈

[
j2−k,

(
j + 1

2

)
2−k
)
,

−t+ (j + 1)2−k if t ∈
[(
j + 1

2

)
2−k, (j + 1) 2−k

)
,

0 otherwise,

(2.97)

thus ‖vkj‖L∞ = 2−k−1. Now, using integration by parts, and since f ∈ BV ([0, 1],R),

|〈f, bkj〉| =

∣∣∣∣∣
∫ (j+1)2−k

j2−k
ḟ(t)vkj(t)dt

∣∣∣∣∣ ≤ 2−k−1

∫ (j+1)2−k

j2−k

∣∣ḟ(t)
∣∣dt (2.98)

Finally, Parseval’s Identity for Hilbert spaces (Theorem 5.27 in [Fol99]) implies that

∥∥f −FN(f)
∥∥2

L2 =
∞∑

k=N+1

2k−1∑
j=0

|〈f, bkj〉|2

‖bkj‖2
L2

≤
∞∑

k=N+1

2−k−2

2k−1∑
j=0

(∫ (j+1)2−k

j2−k

∣∣ḟ(t)
∣∣dt)2

≤ 2−N−2 V(f)2 ,

(2.99)

as desired, where in the last inequality we used Theorem 2.1.

The following lemma is fundamental to find a rate of convergence for the approximation
of the solution of differential equations using relaxed inputs:
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Lemma 2.37. There exists K > 0 such that for each d ∈ Dr and f ∈ L2([0, 1],Rq) ∩
BV ([0, 1],Rq),

∣∣〈d− PN(FN(d)
)
, f
〉∣∣ ≤ K

((
1√
2

)N
‖f‖L2 V(d) +

(
1

2

)N
V(f)

)
, (2.100)

where FN is as defined Equation (2.34), PN is as defined in Equation (2.35), and V(·) is as
defined in Equation (2.3).

Proof. To simplify our notation, let tk = k
2N

, pik = [FN(d)]i(tk), Sik =
∑i

j=1 pjk, and

Aik =

[
tk +

1

2N
S(i−1)k, tk +

1

2N
Sik

)
. (2.101)

Also let us denote the indicator function of the set Aik by 1Aik . Consider

〈
FN(d)− PN

(
FN(d)

)
, f
〉

=
2N−1∑
k=0

q∑
i=1

∫ tk+1

tk

(
pik − 1Aik(t)

)
fi(t)dt. (2.102)

Let wik : [0, 1]→ R be defined by

wik(t) =

∫ t

tk

pik − 1Aik(s)ds

=


pik(t− tk) if t ∈

[
tk, tk + 1

2N
S(i−1)k

)
,

1
2N
pikS(i−1)k + (pik − 1)

(
t− tk − 1

2N
S(i−1)k

)
if t ∈ Aik,

1
2N
pik(Sik − 1) + pik

(
t− tk − 1

2N
Sik
)

if t ∈
[
tk + 1

2N
Sik, tk+1

)
,

(2.103)
when t ∈ [tk, tk+1], and wik(t) = 0 otherwise. Note that ‖wik‖L∞ ≤ pik

2N
. Thus, using

integration by parts,∣∣∣∣∫ tk+1

tk

(
pik − 1Aik(t)

)
fi(t)dt

∣∣∣∣ =

∣∣∣∣∫ tk+1

tk

w(t)ḟi(t)dt

∣∣∣∣ ≤ pik
2N

∫ tk+1

tk

∣∣ḟi(t)∣∣dt, (2.104)

and ∣∣〈FN(d)− PN
(
FN(d)

)
, f
〉∣∣ ≤ 1

2N

2N−1∑
k=0

∫ tk+1

tk

q∑
i=1

pik
∣∣ḟi(t)∣∣dt

≤ 1

2N
V(f) .

(2.105)

where the last inequality follows by Hölder’s Inequality and Theorem 2.1.
Also, by Lemma 2.36 we have that

∥∥di − [F(d)]i
∥∥
L2 ≤

1

2

(
1√
2

)N
V(di) . (2.106)
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Hence, using Cauchy-Schwartz’s Inequality,∣∣〈d− PN(FN(d)
)
, f
〉∣∣ ≤ ‖d−FN(d)‖L2‖f‖L2 +

∣∣〈FN(d)− PN
(
FN(d)

)
, f
〉∣∣ , (2.107)

and the desired result follows from Equations (2.99) and (2.105).

Note that Lemma 2.37 does not prove convergence of PN
(
FN(d)

)
to d in the weak

topology on Dr. Such a result is indeed true, i.e. PN
(
FN(d)

)
does converge in the weak

topology to d, and it can be shown using an argument similar to the one used in Lemma 1
in [Sus72]. The reason we chose to prove a weaker result is because in this case we get an
explicit rate of convergence, which is fundamental to the construction of our optimization
algorithm because it allows us to bound the quality of approximation of the state trajectory.

Theorem 2.38. Let ρN be defined as in Equation (2.37) and ϕt be defined as in Equa-
tion (2.14). Then there exists K > 0 such that for each ξ = (u, d) ∈ Xr and for each
t ∈ [0, 1], ∥∥ϕt(ρN(ξ)

)
− ϕt(ξ)

∥∥
2
≤ K

(
1√
2

)N (
V(ξ) + 1

)
, (2.108)

where V(·) is as defined in Equation (2.3).

Proof. To simplify our notation, let us denote uN = FN(u) and dN = PN
(
FN(d)

)
, thus

ρN(ξ) = (uN , dN). Consider∥∥x(uN ,dN )(t)− x(u,d)(t)
∥∥

2
≤
∥∥x(uN ,dN )(t)− x(u,dN )(t)

∥∥
2

+
∥∥x(u,dN )(t)− x(u,d)(t)

∥∥
2
. (2.109)

The main result of the theorem will follow from upper bounds from each of these two parts.
Note that∥∥x(uN ,dN )(t)−x(u,dN )(t)

∥∥
2
≤

≤
∫ 1

0

∥∥f(s, x(uN ,dN )(s), uN(s), dN(s)
)
− f

(
s, x(u,dN )(s), u(s), dN(s)

)∥∥
2
ds

≤ L

∫ 1

0

∥∥x(uN ,dN )(s)− x(u,dN )(s)
∥∥

2
+
∥∥uN(s)− u(s)

∥∥
2
ds,

(2.110)
thus, using the Bellman-Gronwall Inequality (Lemma 5.6.4 in [Pol97]) together with the
result in Lemma 2.36 we get∥∥x(uN ,dN )(t)− x(u,dN )(t)

∥∥
2
≤ LeL

√
2

2

(
1√
2

)N
V(u) (2.111)

On the other hand,

x(u,dN )(t)− x(u,d)(t) =

∫ t

0

q∑
i=1

(
[dN ]i(s)− di(s)

)
f
(
s, x(u,d)(s), u(s), ei

)
ds+

+

∫ t

0

q∑
i=1

[dN ]i(s)
(
f
(
s, x(u,dN )(s), u(s), ei

)
− f

(
s, x(u,d)(s), u(s), ei

))
ds, (2.112)
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thus,

∥∥x(u,dN )(t)− x(u,d)(t)
∥∥

2
≤

∥∥∥∥∥
∫ 1

0

q∑
i=1

(
[dN ]i(s)− di(s)

)
f
(
s, x(u,d)(s), u(s), ei

)
ds

∥∥∥∥∥
2

+

+ L

∫ 1

0

∥∥x(u,dN )(s)− x(u,d)(s)
∥∥

2
ds. (2.113)

Using the Bellman-Gronwall Inequality we get

∥∥x(u,dN )(t)− x(u,d)(t)
∥∥

2
≤ eL

∥∥∥∥∥
∫ 1

0

q∑
i=1

(
[dN ]i(s)− di(s)

)
f
(
t, x(u,d)(s), u(s), ei

)
ds

∥∥∥∥∥
2

. (2.114)

Recall that f maps to Rn, so let us denote the k–th coordinate of f by fk. Let vki(t) =
fk
(
t, x(u,d)(t), u(t), ei

)
and vk = (vk1, . . . , vkq), then vk is of bounded variation. Indeed,

by Theorem 2.1 and Condition 1 in Corollary 2.5, we have that V
(
x(ξ)
)
≤ C. Thus, by

Condition 1 in Assumption 2.2 and again using Theorem 2.1, we get that, for each i ∈ Q,

V(vki) ≤ L
(
1 + C + V(u)

)
. (2.115)

Moreover, Condition 1 in Corollary 2.5 directly imply that ‖vki‖L2 ≤ C. Hence, Lemma 2.37
implies that there exists K > 0 such that

|〈d− dN , vk〉| ≤ K

((
1√
2

)N
C V(d) + q

(
1

2

)N
(1 + C + V(u))

)
. (2.116)

Since Equation (2.116) is satisfied for each k ∈ {1, . . . , n}, then after ordering the constants

and noting that 2N ≥ 2
N
2 for each N ∈ N, together with Equation (2.111) we get the desired

result.

Convergence of the Algorithm

To prove the convergence of our algorithm, we employ a technique similar to the one pre-
scribed in Section 1.2 in [Pol97]. Summarizing the technique, one can think of an algorithm
as discrete-time dynamical system, whose desired stable equilibria are characterized by the
stationary points of its optimality function, i.e. points ξ ∈ Xp where θ(ξ) = 0, since we know
from Theorem 2.34 that all local minimizers are stationary.

Before applying this line of reasoning to our algorithm, we present a simplified version
of this argument for a general unconstrained optimization problem defined over a metric
space S. This is done in the interest of clarity. Inspired by the stability analysis of dy-
namical systems, a sufficient condition for the convergence of optimization algorithms can
be formulated by requiring that the cost function satisfy a notion of sufficient descent with
respect to an optimality function:
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Definition 2.39. Let S be a metric space, and consider the problem of minimizing the cost
function J : S → R. We say that a function Γ : S → S has the sufficient descent property
with respect to an optimality function θ : S → (−∞, 0] if for each x ∈ S with θ(x) < 0, there
exists a δx > 0 and Ox ⊂ S, a neighborhood of x, such that:

J
(
Γ(x′)

)
− J(x′) ≤ −δx, ∀x′ ∈ Ox. (2.117)

Importantly, a function satisfying the sufficient property can be proven to approach the
zeros of the optimality function:

Theorem 2.40 (Theorem 1.2.8 in [Pol97]). Let S be a metric space. Consider the problem
of minimizing the cost function J : S → R. Suppose that S is a a metric space and a
function Γ : S → S has the sufficient descent property with respect to an optimality function
θ : S → (−∞, 0], as in Definition 2.39. Let {xj}j∈N be a sequence such that, for each j ∈ N:

xj+1 =

{
Γ(xj) if θ(xj) < 0,

xj if θ(xj) = 0.
(2.118)

Then every accumulation point of {xj}j∈N belongs to the set of zeros of the optimality function
θ.

Theorem 2.40, as originally stated in [Pol97], requires S to be a Euclidean space, but the
result as presented here can be proven without requiring this property using the same original
argument. Though Theorem 2.40 proves that the accumulation point of a sequence gener-
ated by Γ converges to a stationary point of the optimality function, it does not prove the
existence of the accumulation point. This is in general not a problem for finite-dimensional
optimization problems since the level sets of the cost function are usually compact, thus
every sequence produced by a descent method has at least one accumulation point. On
the other hand, infinite-dimensional problems, such as optimal control problems, do not
have this property, since bounded sets may not be compact in infinite-dimensional vector
spaces. Thus, even though Theorem 2.40 can be applied to both finite-dimensional and
infinite-dimensional optimization problems, the result is much weaker in the latter case.

The issue mentioned above has been addressed several times in the literature [Axe+08;
PW84; WE12a; WE12b], by formulating a stronger version of sufficient descent:

Definition 2.41 (Definition 2.1 in [Axe+08]). Let S be a metric space, and consider the
problem of minimizing the cost function J : S → R. A function Γ : S → S has the uniform
sufficient descent property with respect to an optimality function θ : S → (−∞, 0] if for each
C > 0 there exists a δC > 0 such that, for every x ∈ S with θ(x) < 0,

J
(
Γ(x)

)
− J(x) ≤ −δC . (2.119)

A sequence of points generated by an algorithm satisfying this property, under mild
assumptions, can be shown to approach the zeros of the optimality function:
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Theorem 2.42 (Proposition 2.1 in [Axe+08]). Let S be a metric space. Consider the problem
of minimizing a lower bounded cost function J : S → [α,∞). Suppose that S is a a metric
space and Γ : S → S satisfies the uniform sufficient descent property with respect to an
optimality function θ : S → (−∞, 0], as stated in Definition 2.41. Let {xj}j∈N be a sequence
such that, for each j ∈ N:

xj+1 =

{
Γ(xj) if θ(xj) < 0,

xj if θ(xj) = 0.
(2.120)

Then,
lim
j→∞

θ(xj) = 0. (2.121)

Proof. Suppose that lim infj→∞ θ(xj) = −2ε < 0. Then there exists a subsequence {xjk}k∈N
such that θ(xjk) < −ε for each k ∈ N. Definition 2.41 implies that there exists δε such that

J(xjk+1)− J(xjk) ≤ −δε, ∀k ∈ N. (2.122)

But this is a contradiction, since J(xj+1) ≤ J(xj) for each j ∈ N, thus J(xj) → −∞ as
j →∞, contrary to the assumption that J is lower bounded.

Note that Theorem 2.42 does not assume the existence of accumulation points of the
sequence {xj}j∈N. Thus, this Theorem remains valid even when the sequence generated by Γ
does not have accumulation points. This becomes tremendously useful in infinite-dimensional
problems where the level sets of the cost function may not be compact. Though we include
these results for the sake of completeness of presentation, our proof of convergence of the
sequence of points generated by Algorithm 2.1 does not make explicit use of Theorem 2.42.
The line of argument is similar, but our approach, as described in Theorem 2.46, requires
special treatment due to the projection operation, ρN , as defined in Equation (2.37) and the
existence of constraints.

Now, we begin the convergence proof of Algorithm 2.1 by showing that the Armijo
algorithm, as defined in Equation (2.32), terminates after a finite number of steps and its
value is bounded.

Lemma 2.43. Let α ∈ (0, 1) and β ∈ (0, 1). For every δ > 0 there exists an M∗
δ <∞ such

that if θ(ξ) ≤ −δ for ξ ∈ Xp, then µ(ξ) ≤M∗
δ , where θ is as defined in Equation (2.30) and

µ is as defined in Equation (2.32).

Proof. Given ξ′ ∈ X and λ ∈ [0, 1], using the Mean Value Theorem and Corollary 2.25 we
have that there exists s ∈ (0, 1) such that

J
(
ξ + λ(ξ′ − ξ)

)
− J(ξ) = DJ

(
ξ + sλ(ξ′ − ξ);λ(ξ′ − ξ)

)
≤ λDJ

(
ξ; ξ′ − ξ

)
+ Lλ2‖ξ′ − ξ‖2

X .
(2.123)
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Letting A(ξ) =
{

(j, t) ∈ J × [0, 1] | Ψ(ξ) = hj
(
x(ξ)(t)

)}
, then there exists a pair (j, t) ∈

A
(
ξ + λ(ξ′ − ξ)

)
and s ∈ (0, 1) such that, using Corollary 2.28,

Ψ
(
ξ + λ(ξ′ − ξ)

)
−Ψ(ξ) ≤ ψj,t

(
ξ + λ(ξ′ − ξ)

)
−Ψ(ξ)

≤ ψj,t
(
ξ + λ(ξ′ − ξ)

)
− ψj,t(ξ)

= Dψj,t
(
ξ + sλ(ξ′ − ξ);λ(ξ′ − ξ)

)
≤ λDψj,t

(
ξ; ξ′ − ξ

)
+ Lλ2‖ξ′ − ξ‖2

X .

(2.124)

Now let us assume that Ψ(ξ) ≤ 0, and consider g as defined in Equation (2.30). Then

θ(ξ) = max

{
DJ(ξ; g(ξ)− ξ), max

(j,t)∈J×[0,1]
Dψj,t(ξ; g(ξ)− ξ) + γΨ(ξ)

}
≤ −δ, (2.125)

and using Equation (2.123),

J
(
ξ + βk(g(ξ)− ξ)

)
− J(ξ)− αβkθ(ξ) ≤ −(1− α)δβk + 4A2Lβ2k, (2.126)

where A = max
{
‖u‖2 + 1 | u ∈ U

}
. Hence, for each k ∈ N such that βk ≤ (1−α)δ

4A2L
we have

that
J
(
ξ + βk(g(ξ)− ξ)

)
− J(ξ) ≤ αβkθ(ξ). (2.127)

Similarly, using Equations (2.124) and (2.125),

Ψ
(
ξ + βk(g(ξ)− ξ)

)
−Ψ(ξ) + βk

(
γΨ(ξ)− αθ(ξ)

)
≤ −δβk + 4A2Lβ2k, (2.128)

hence for each k ∈ N such that βk ≤ min
{

(1−α)δ
4A2L

, 1
γ

}
we have that

Ψ
(
ξ + βk(g(ξ)− ξ)

)
− αβkθ(ξ) ≤

(
1− βkγ

)
Ψ(ξ) ≤ 0. (2.129)

If Ψ(ξ) > 0 then
max

(j,t)∈J×[0,1]
Dψj,t(ξ; g(ξ)− ξ) ≤ θ(ξ) ≤ −δ, (2.130)

thus, from Equation (2.124),

Ψ
(
ξ + βk(g(ξ)− ξ)

)
−Ψ(ξ)− αβkθ(ξ) ≤ −(1− α)δβk + 4A2Lβ2k. (2.131)

Hence, for each k ∈ N such that βk ≤ (1−α)δ
4A2L

we have that

Ψ
(
ξ + βk(g(ξ)− ξ)

)
−Ψ(ξ) ≤ αβkθ(ξ). (2.132)

Finally, let

M∗
δ = 1 + max

{
logβ

(
(1− α)δ

4A2L

)
, logβ

(
1

γ

)}
, (2.133)

then from Equations (2.127), (2.129), and (2.132), we get that µ(ξ) ≤M∗
δ as desired.
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Next, we show that the determination of the frequency at which to perform pulse width
modulation as defined in Equation (2.38) terminates after a finite number of steps.

Lemma 2.44. Let α ∈ (0, 1), ᾱ ∈ (0,∞), β ∈ (0, 1), β̄ ∈
(

1√
2
, 1
)

, and ξ ∈ Xp. If

θ(ξ) < 0, then ν(ξ) < ∞, where θ is as defined in Equation (2.30) and ν is as defined in
Equation (2.38).

Proof. Throughout the proof, we leave out the natural inclusion taking ξ ∈ Xp to ξ ∈ Xr.
To simplify our notation let us denote M = µ(ξ) and ξ′ = ξ + βM

(
g(ξ)− ξ

)
. Theorem 2.38

implies that there exists K > 0 such that

J
(
ρN(ξ′)

)
− J(ξ′) ≤ KL

(
1√
2

)N (
V(ξ′) + 1

)
, (2.134)

where L is the constant defined in Assumption 2.3 and V(·) is as defined in Equation (2.3).
Let A(ξ) =

{
(j, t) ∈ {1, . . . , Nc} × [0, 1] | Ψ(ξ) = hj

(
x(ξ)(t)

)}
, then for each pair (j, t) ∈

A
(
ρN(ξ′)

)
we have that

Ψ
(
ρN(ξ′)

)
−Ψ(ξ′) = ψj,t

(
ρN(ξ′)

)
−Ψ(ξ′)

≤ ψj,t
(
ρN(ξ′)

)
− ψj,t(ξ′)

≤ KL

(
1√
2

)N (
V(ξ′) + 1

)
.

(2.135)

Recall that ᾱ ∈ (0,∞), β̄ ∈
(

1√
2
, 1
)

, and ω ∈ (0, 1), hence there exists N0 ∈ N such that,

for each N ≥ N0,

KL

(
1√
2

)N (
V(ξ′) + 1

)
≤ −ᾱβ̄Nθ(ξ). (2.136)

Also, there exists N1 ≥ N0 such that, for each N ≥ N1,

ᾱβ̄N ≤ (1− ω)αβM . (2.137)

Now suppose that Ψ(ξ) ≤ 0, then, for each N ≥ N1,

J
(
ρN(ξ′)

)
− J(ξ) = J

(
ρN(ξ′)

)
− J(ξ′) + J(ξ′)− J(ξ)

≤
(
αβM − ᾱβ̄N

)
θ(ξ),

(2.138)

and
Ψ
(
ρN(ξ′)

)
= Ψ

(
ρN(ξ′)

)
−Ψ(ξ′) + Ψ(ξ′)

≤
(
αβM − ᾱβ̄N

)
θ(ξ)

≤ 0.

(2.139)

Similarly, if Ψ(ξ) > 0 then, using the same argument as above, we have that

Ψ
(
ρN(ξ′)

)
−Ψ(ξ) ≤

(
αβM − ᾱβ̄N

)
θ(ξ). (2.140)
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Therefore, from Equations (2.138), (2.139), and (2.140), it follows that ν(ξ) ≤ N1 as desired.

The following lemma proves that, once Algorithm 2.1 finds a feasible point, every point
generated afterwards is also feasible. We omit the proof since it follows directly from the
definition of ν in Equation (2.38).

Lemma 2.45. Let Γ be defined as in Equation (2.39) and let Ψ be as defined in Equa-
tion (2.16). Let {ξi}i∈N be a sequence generated by Algorithm 2.1. If there exists i0 ∈ N such
that Ψ(ξi0) ≤ 0, then Ψ(ξi) ≤ 0 for each i ≥ i0.

Employing these preceding results, we can prove the convergence of Algorithm 2.1 to a
point that satisfies our optimality condition by employing an argument similar to the one
used in the proof of Theorem 2.42:

Theorem 2.46. Let θ be defined as in Equation (2.30). If {ξi}i∈N is a sequence generated
by Algorithm 2.1, then limi→∞ θ(ξi) = 0.

Proof. If the sequence produced by Algorithm 2.1 is finite, then the theorem is trivially
satisfied, so we assume that the sequence is infinite.

Suppose the theorem is not true, then lim infi→∞ θ(ξi) = −2δ < 0 and therefore there
exists k0 ∈ N and a subsequence {ξik}k∈N such that θ(ξik) ≤ −δ for each k ≥ k0. Also, recall
that ν(ξ) was chosen such that, given µ(ξ),

αβµ(ξ) − ᾱβ̄ν(ξ) ≥ ωαβµ(ξ), (2.141)

where ω ∈ (0, 1) is a parameter.
From Lemma 2.43 we know that there exists M∗

δ , which depends on δ, such that βµ(ξ) ≥
βM

∗
δ . Suppose that the subsequence {ξik}k∈N is eventually feasible, then, by Lemma 2.45,

without loss of generality we can assume that the sequence is always feasible. Thus, given Γ
as defined in Equation (2.39),

J
(
Γ(ξik)

)
− J(ξik) ≤

(
αβµ(ξ) − ᾱβ̄ν(ξ)

)
θ(ξik)

≤ −ωαβµ(ξ)δ

≤ −ωαβM∗δ δ.
(2.142)

This inequality, together with the fact that J(ξi+1) ≤ J(ξi) for each i ∈ N, implies that
lim infk→∞ J(ξik) = −∞, but this is a contradiction since J is lower bounded, which follows
from Condition 1 in Corollary 2.15.

The case when the sequence is never feasible is analogous after noting that, since the
subsequence is infeasible, then Ψ(ξik) > 0 for each k ∈ N, establishing a similar contradiction.



CHAPTER 2. OPTIMAL CONTROL OF SWITCHED DYNAMICAL SYSTEMS 48

2.4 Implementable Algorithm

In this section, we describe how to implement Algorithm 2.1 given the various algorithmic
components derived in the Section 2.3. Numerically computing a solution to the Swit-
ched System Optimal Control Problem defined as in Equation (2.18) demands employ-
ing some form of discretization. When numerical integration is introduced, the original
infinite-dimensional optimization problem defined over function spaces is replaced by a finite-
dimensional discrete-time optimal control problem. Changing the discretization precision
results in an infinite sequence of such approximating problems.

Our goal is the construction of an implementable algorithm that generates a sequence
of points by recursive application that converge to a point that satisfies the optimality
condition defined in Equation (2.30). Given a particular choice of discretization precision, at
a high level, our algorithm solves a finite dimensional optimization problem and terminates
its operation when a discretization improvement test is satisfied. At this point, a finer
discretization precision is chosen, and the whole process is repeated, using the last iterate,
obtained with the coarser discretization precision as a “warm start.”

In this section, we begin by describing our discretization strategy, which allows us to
define our discretized optimization spaces. Next, we describe how to construct discretized
trajectories, cost, constraints, and optimal control problems. This allows us to define a
discretized optimality function, and a notion of consistent approximation between the opti-
mality function and its discretized counterpart. We conclude by constructing our numerically
implementable optimal control algorithm for constrained switched systems.

Discretized Optimization Space

To define our discretization strategy, for any positive integer N we first define the N–th
switching time space as:

TN =

{
{τ0, . . . , τk} ⊂ [0, 1] | 0 = τ0 ≤ τ1 ≤ · · · ≤ τk = 1, |τi − τi−1| ≤

1

2N
∀i ∈ {1, . . . , k}

}
,

(2.143)
i.e. TN is the collection of finite partitions of [0, 1] whose samples have a maximum distance
of 1

2N
. For notational convenience, given τ ∈ TN , we define |τ | as the cardinality of τ .

Importantly, notice that the sets TN are nested, i.e. for each N ∈ N, TN+1 ⊂ TN .
We utilize the switching time spaces to define a sequence of finite dimensional subspaces

of Xp and Xr. Given N ∈ N, τ ∈ TN , and k ∈ {0, . . . , |τ | − 1}, we define πτ,k : [0, 1] → R
that scales the discretization:

πτ,k(t) =

{
1 if t ∈ [τk, τk+1),

0 otherwise.
(2.144)
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Using this definition, we define Dτ,p, a subspace of the discrete input space, as:

Dτ,p =

d ∈ Dp | d =

|τ |−1∑
k=0

d̄kπτ,k, d̄k ∈ Σq
p ∀k

 . (2.145)

Similarly, we define Dτ,r, a subspace of the relaxed discrete input space, as:

Dτ,r =

d ∈ Dr | d =

|τ |−1∑
k=0

d̄kπτ,k, d̄k ∈ Σq
r ∀k

 . (2.146)

Finally, we define Uτ , a subspace of the continuous input space, as:

Uτ =

u ∈ U | u =

|τ |−1∑
k=0

ūkπτ,k, ūk ∈ U ∀k

 . (2.147)

Now, we can define the N–th discretized pure optimization space induced by switching vector τ
as Xτ,p = Uτ ×Dτ,p, and the N–th discretized relaxed optimization space induced by switching
vector τ as Xτ,r = Uτ ×Dτ,r. Similarly, we define a subspace of X :

Xτ =

(u, d) ∈ X | u =

|τ |−1∑
k=0

ūkπτ,k, ūk ∈ Rm ∀k, and d =

|τ |−1∑
k=0

d̄kπτ,k, d̄k ∈ Rq ∀k

 .

(2.148)
In order for these discretized optimization spaces to be useful, we need to know to show

that we can use a sequence of functions belonging to these finite-dimensional subspaces to
approximate any infinite dimensional function. The following lemma proves this result and
validates our choice of discretized spaces:

Lemma 2.47. Let {τk}k∈N with τk ∈ Tk.

(1) For each ξ ∈ Xp there exists a sequence {ξk}k∈N, with ξk ∈ Xτk,p, such that ξk → ξ as
k →∞.

(2) For each ξ ∈ Xr there exists a sequence {ξk}k∈N, with ξk ∈ Xτk,r, such that ξk → ξ as
k →∞.

Proof. We only present an outline of the proof, since the argument is outside the scope of this
chapter. First, every Lebesgue measurable set in [0, 1] can be arbitrarily approximated by
intervals (Theorem 2.40 in [Fol99]). Second, the sequence of partitions {τk}k∈N can clearly
approximate any interval. Finally, the result follows since every measurable function can
be approximated in the L2–norm by integrable simple functions, which are the finite linear
combination of indicator functions defined on Borel sets (Theorem 2.10 in [Fol99]).
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Discretized Trajectories, Cost, Constraint, and Optimal Control
Problem

For a positive integer N , given a switching vector, τ ∈ TN , a relaxed control ξ = (u, d) ∈ Xτ,r,
and an initial condition x0 ∈ Rn, the discrete dynamics, denoted by

{
z

(ξ)
τ (τk)

}|τ |
k=0
⊂ Rn, are

computed via the Forward Euler Integration Formula:

z(ξ)
τ (τk+1) = z(ξ)

τ (τk)+(τk+1−τk)f
(
τk, z

(ξ)
τ (τk), u(τk), d(τk)

)
, ∀k ∈ {0, . . . , |τ |−1}, z(ξ)

τ (0) = x0.
(2.149)

Employing these discrete dynamics we can define the discretized trajectory, z
(ξ)
τ : [0, 1]→ Rn,

by performing linear interpolation over the discrete dynamics:

z(ξ)
τ (t) =

|τ |−1∑
k=0

(
z(ξ)
τ (τk) +

t− τk
τk+1 − τk

(
z(ξ)
τ (τk+1)− z(ξ)

τ (τk)
))

πτ,k(t), (2.150)

where πτ,k are as defined in Equation (2.144). Note that the definition in Equation (2.150) is
valid even if τk = τk+1 for some k ∈ {0, . . . , |τ |}, which becomes clear after replacing Equa-
tion (2.149) in Equation (2.150). For notational convenience, we suppress the dependence

on τ in z
(ξ)
τ when it is clear in context.

Employing the trajectory computed via Euler integration, we define the discretized cost
function, Jτ : Xτ,r → R:

Jτ (ξ) = h0

(
z(ξ)(1)

)
. (2.151)

Similarly, we define the discretized constraint function, ψτ : Xτ,r → R:

Ψτ (ξ) = max
j∈J , k∈{0,...,|τ |}

hj
(
z(ξ)(τk)

)
. (2.152)

Note that these definitions extend easily to points belonging to Xτ,p.
As we did in Section 2.1, we now introduce some additional notation to ensure the clarity

of the ensuing analysis. First, for any positive integer N and τ ∈ TN , we define the discretized
flow of the system, ϕτ,t : Xr → Rn for each t ∈ [0, 1] as:

ϕτ,t(ξ) = z(ξ)
τ (t). (2.153)

Second, for any positive integer N and τ ∈ TN , we define component constraint functions,
ψτ,j,t : Xr → R for each t ∈ [0, 1] and each j ∈ J as:

ψτ,j,t(ξ) = hj
(
ϕτ,t(ξ)

)
. (2.154)

Notice that the discretized cost function and the discretized constraint function become

Jτ (ξ) = h0

(
ϕτ,1(ξ)

)
, and Ψτ (ξ) = max

j∈J , k∈{0,...,|τ |}
ψτ,j,τk(ξ), (2.155)

respectively. This notation change is made to emphasize the dependence on ξ.
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Local Minimizers and a Discretized Optimality Condition

Before proceeding further, we make an observation that dictates the construction of our
implementable algorithm. Recall how we employ directional derivatives and Theorem 2.8
in order to construct a necessary condition for optimality for the Switched System Optimal
Control Problem. In particular, if at a particular point belonging to the pure optimization
space the appropriate directional derivatives are negative, then the point is not a local
minimizer of the Relaxed Switched System Optimal Control Problem. An application of
Theorem 2.8 to this point proves that it is not a local minimizer of the Switched System
Optimal Control Problem.

Proceeding in a similar fashion, for any positive integer N ∈ N and τ ∈ TN , we can define
a Discretized Relaxed Switched System Optimal Control Problem:

(DRSSOCP) min
ξ∈Xτ,r

{Jτ (ξ) | Ψτ (ξ) ≤ 0} . (2.156)

The local minimizers of this problem are then defined as follows:

Definition 2.48. Fix N ∈ N, and τ ∈ TN . Let us denote an ε–ball in the X–norm centered
at ξ induced by switching vector τ by:

Nτ,X (ξ, ε) =
{
ξ̄ ∈ Xτ,r |

∥∥ξ − ξ̄∥∥X < ε
}
. (2.157)

We say that a point ξ ∈ Xτ,r is a local minimizer of the Relaxed Switched System Optimal
Control Problem Induced by Switching Vector τ defined in Equation (2.156) if Ψτ (ξ) ≤ 0 and
there exists ε > 0 such that Jτ (ξ̂) ≥ Jτ (ξ) for each ξ̂ ∈ Nτ,X (ξ, ε) ∩

{
ξ̄ ∈ Xτ,r | Ψτ (ξ̄) ≤ 0

}
.

Given this definition, a first order numerical optimal control scheme can exploit the vector
space structure of the discretized relaxed optimization space in order to define discretized di-
rectional derivatives that find local minimizers for this Discretized Relaxed Switched System
Optimal Control Problem. Just as in Section 2.2, we can employ a first order approxima-
tion argument and the existence of the directional derivative of the cost, DJτ (proven in
Lemma 2.67), and of each of the component constraints, Dψτ,j,τk (proven in Lemma 2.70),
for each j ∈ J and k ∈ {0, . . . , |τ |} in order to elucidate this fact.

Employing these directional derivatives, we can define a discretized optimality function.
Fixing a positive integer N and τ ∈ TN , we define a discretized optimality function, θτ :
Xτ,p → (−∞, 0] and a corresponding discretized descent direction, gτ : Xτ,p → Xτ,r:

θτ (ξ) = min
ξ′∈Xτ,r

ζτ (ξ, ξ
′), gτ (ξ) = arg min

ξ′∈Xτ,r
ζτ (ξ, ξ

′), (2.158)
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where

ζτ (ξ, ξ
′) =



max

{
DJτ (ξ; ξ

′ − ξ),

max
j∈J , k∈{0,...,|τ |}

Dψτ,j,τk(ξ; ξ
′ − ξ) + γΨτ (ξ)

}
+ ‖ξ′ − ξ‖X if Ψτ (ξ) ≤ 0,

max

{
DJτ (ξ; ξ

′ − ξ)−Ψτ (ξ),

max
j∈J , k∈{0,...,|τ |}

Dψτ,j,τk(ξ; ξ
′ − ξ)

}
+ ‖ξ′ − ξ‖X if Ψτ (ξ) > 0,

(2.159)
and γ > 0 is a design parameter as in the original optimality function θ, defined in Equa-
tion (2.30). Before proceeding, we make two observations. First, note that θτ (ξ) ≤ 0 for
each ξ ∈ Xτ,p, since we can always choose ξ′ = ξ which leaves the trajectory unmodified.
Second, note that at a point ξ ∈ Xτ,p the directional derivatives in the optimality function
consider directions ξ′ − ξ with ξ′ ∈ Xτ,r in order to ensure that first order approximations
belong to the discretized relaxed optimization space Xτ,r which is convex (e.g. for 0 < λ� 1,
Jτ (ξ) + λDJτ (ξ; ξ

′ − ξ) ≈ Jτ ((1− λ)ξ + λξ′) where (1− λ)ξ + λξ′ ∈ Xτ,r).
Just as we argued in the infinite dimensional case, we can prove, as we do in Theorem 2.78,

that if θτ (ξ) < 0 for some ξ ∈ Xτ,p, then ξ is not a local minimizer of the Discretized Relaxed
Switched System Optimal Control Problem. Proceeding as we did in Section 2.2, we can
attempt to apply Theorem 2.8 to prove that θ encodes local minimizers by employing the
weak topology over the discretized pure optimization space. Unfortunately, Theorem 2.8
does not prove that the element in the pure optimization space, ξp ∈ Xp, that approximates
a particular relaxed control ξr ∈ Xτ,r ⊂ Xr at a particular quality of approximation ε > 0
with respect to the trajectory of the switched system, belongs to Xτ,p. Though the point in
the pure optimization space that approximates a particular discretized relaxed control at a
particular quality of approximation exists, it may exist at a different discretization precision.

This deficiency of Theorem 2.8 which is shared by our extension to it, Theorem 2.38,
means that our computationally tractable algorithm, in contrast to our conceptual algo-
rithm, requires an additional step where the discretization precision is allowed to improve.
Nevertheless, if we prove that the Discretized Switched System Optimal Control Problem
consistently approximates the Switched System Optimal Control Problem in a manner that
is formalized next, then an algorithm that generates a sequence of points by recursive appli-
cation that converge to a point that is a zero of the discretized optimality function is also
converging to a point that is a zero of the original optimality function.

Formally, motivated by the approach taken in [Pol97], we define consistent approximation
as:

Definition 2.49 (Definition 3.3.6 in [Pol97]). The Discretized Relaxed Switched System Op-
timal Control Problem as defined in Equation (2.156) is a consistent approximation of the
Switched System Optimal Control Problem as defined in Equation (2.18) if for any infi-
nite sequence {τi}i∈N and {ξi}i∈N such that τi ∈ Ti and ξi ∈ Xτi,p for each i ∈ N, then
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limi→∞ |θτi(ξi)− θ(ξi)| = 0, where θ is as defined in Equation (2.30) and θτ is as defined in
Equation (2.158).

Importantly, if this notion of consistent approximation is satisfied, then a critical result
follows:

Theorem 2.50. Suppose the Discretized Relaxed Switched System Optimal Control Problem,
as defined in Equation (2.156), is a consistent approximation, as in Definition 2.49, of the
Switched System Optimal Control Problem, as defined in Equation (2.18). Let {τi}i∈N and
{ξi}i∈N be such that τi ∈ Ti and ξi ∈ Xτi,p for each i ∈ N. In this case, if limi→∞ θτi(ξi) = 0,
then limi→∞ θ(ξi) = 0.

Proof. Arguing by contradiction, suppose there exists a δ > 0 such that lim infi→∞ θ(ξi) <
−δ. Then by the super-additivity of the lim inf,

lim inf
i→∞

θτi(ξi)− lim inf
i→∞

θ(ξi) ≤ lim inf
i→∞

θτi(ξi)− θ(ξi). (2.160)

Rearranging terms and applying Definition 2.49, we have that:

lim inf
i→∞

θτi(ξi) ≤ lim inf
i→∞

(θτi(ξi)− θ(ξi)) + lim inf
i→∞

θ(ξi) < −δ, (2.161)

which contradicts the fact that limi→∞ θτi(ξi) = 0. Since by Condition 1 in Theorem 2.34,
lim infi→∞ θ(ξi) ≤ lim supi→∞ θ(ξi) ≤ 0, we have our result.

To appreciate the importance of this result, observe that if we prove that the Discretized
Relaxed Switched System Optimal Control Problem is a consistent approximation of the
Switched System Optimal Control Problem, as we do in Theorem 2.79, and devise an algo-
rithm for the Discretized Relaxed Switched System Optimal Control Problem that generates
a sequence of discretized points that converge to a point that is a zero of the discretized
optimality function, then the sequence of points generated actually converges to a point that
also satisfies the necessary condition for optimality for the Switched System Optimal Control
Problem.

Choosing a Discretized Step Size and Projecting the Discretized
Relaxed Discrete Input

Before describing the step in our algorithm where the discretization precision is allowed to
increase, we describe how the descent direction can be exploited in order to construct a
point in the discretized relaxed optimization space that either reduces the cost (if the orig-
inal point is feasible) or the infeasibility (if the original point is infeasible). Just as we did
in Section 2.2, we employ a line search algorithm similar to the traditional Armijo algo-
rithm used during finite dimensional optimization in order to choose a step size (Algorithm
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Model 1.2.23 in [Pol97]). Given N ∈ N, τ ∈ TN , α ∈ (0, 1), and β ∈ (0, 1), a step size for a
point ξ ∈ Xτ,p, is chosen by solving the following optimization problem:

µτ (ξ) =


min

{
k ∈ N | Jτ

(
ξ + βk(gτ (ξ)− ξ)

)
− Jτ (ξ) ≤ αβkθτ (ξ),

Ψτ

(
ξ + βk(gτ (ξ)− ξ)

)
≤ αβkθτ (ξ)

}
if Ψτ (ξ) ≤ 0,

min
{
k ∈ N | Ψτ

(
ξ + βk(gτ (ξ)− ξ)

)
−Ψτ (ξ) ≤ αβkθτ (ξ)

}
if Ψτ (ξ) > 0.

(2.162)
Continuing as we did in Section 2.2, given N ∈ N we can apply FN defined in Equa-

tion (2.34) and PN defined in Equation (2.35) to the constructed discretized relaxed discrete
input. The pulse width modulation at a particular frequency induces a partition in TN ac-
cording to the times at which the constructed pure discrete input switched. That is, let
σN : Xr → TN be defined by

σN(u, d) =
{

0
}
∪

{
k

2N
+

1

2N

i∑
j=1

[FN(d)]j

(
k

2N

)}
i∈{1,...,q}
k∈{0,...,2N−1}

. (2.163)

Employing this induced partition, we can be more explicit about the range of ρN by stating
that ρN(ξ) ∈ XσN (ξ),p for each ξ ∈ Xr.

Now, given given N ∈ N, τ ∈ TN , ᾱ ∈ (0,∞), β̄ ∈
(

1√
2
, 1
)

, ω ∈ (0, 1), and kM ∈ N, a

frequency at which to perform pulse width modulation for a point ξ ∈ Xτ,p is computed by
solving the following optimization problem::

ντ (ξ, kM) =



min
{
k ≤ kM | ξ′ = ξ + βµτ (ξ)

(
gτ (ξ)− ξ

)
,

Jσk(ξ′)

(
ρk(ξ

′)
)
− Jτ (ξ) ≤

(
αβµτ (ξ) − ᾱβ̄k

)
θτ (ξ),

Ψσk(ξ′)

(
ρk(ξ

′)
)
≤
(
αβµτ (ξ) − ᾱβ̄k

)
θτ (ξ),

ᾱβ̄k ≤ (1− ω)αβµτ (ξ),
}

if Ψτ (ξ) ≤ 0,

min
{
k ≤ kM | ξ′ = ξ + βµτ (ξ)

(
gτ (ξ)− ξ

)
,

Ψσk(ξ′)

(
ρk(ξ

′)
)
−Ψτ (ξ) ≤

(
αβµτ (ξ) − ᾱβ̄k

)
θτ (ξ),

ᾱβ̄k ≤ (1− ω)αβµτ (ξ)
}

if Ψτ (ξ) > 0.

(2.164)
In the discrete case, as opposed to the original infinite dimensional algorithm, due to the
aforementioned shortcomings of Theorem 2.8 and 2.38, there is no guarantee that the opti-
mization problem solved in order to ντ is feasible. Without loss of generality, we say that
ντ (ξ) =∞ for each ξ ∈ Xτ,r when there is no feasible solution. Importantly letting N0 ∈ N,
τ0 ∈ TN0 , and ξ ∈ Xτ,r, we prove, in Lemma 2.83, that if θ(ξ) < 0 then for each η ∈ N there
exists a finite N ≥ N0 such that νσN (ξ)(ξ,N + η) is finite. That is, if θ(ξ) < 0, then ντ is
always finite after a certain discretization quality is reached.
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An Implementable Switched System Optimal Control Algorithm

Consolidating our definitions, Algorithm 2.2 describes our numerical method to solve the
Switched System Optimal Control Problem. Notice that note that at each step of Algo-
rithm 2.2, ξj ∈ Xτj ,p. Also, observe the two principal differences between Algorithm 2.1 and
Algorithm 2.2.

First, as discussed earlier, ντ maybe infinite as is checked in Line 12 of Algorithm 2.2, at
which point the discretization precision is increased since we know that if θ(ξ) < 0, then ντ is
always finite after a certain discretization quality is reached. Second, notice that if θτ comes
close to zero as is checked in Line 4 of Algorithm 2.2, the discretization precision is increased.
To understand why this additional check is required, remember that our goal in this chapter
is the construction of an implementable algorithm that constructs a sequence of points by
recursive application that converges to a point that satisfies the optimality condition. In
particular, θτ may come arbitrarily close to zero due to a particular discretization precision
that limits the potential descent directions to search among, rather than because it is actually
close to a local minimizer of the Switched System Optimal Control Problem. This additional
step that improves the discretization precision is included in Algorithm 2.2 to guard against
this possibility.

With regards to actual numerical implementation, we make two additional comments.
First, a stopping criterion is chosen that terminates the operation of the algorithm if θτ is
too large. We describe our selection of this parameter in Section 2.6. Second, due to the
definitions of DJτ and Dψτ,j,τk for each j ∈ J and k ∈ {0, . . . , |τ |}, the optimization required
to solve θτ is a quadratic program.

For analysis purposes, we define Γτ : {ξ ∈ Xτ,p | ντ (ξ, kmax) <∞} → Xp by:

Γτ (ξ) = ρντ (ξ,kmax)

(
ξ + βµτ (ξ)(gτ (ξ)− ξ)

)
. (2.165)

We say {ξj}j∈N is a sequence generated by Algorithm 2.2 if ξj+1 = Γτj(ξj) for each j ∈ N.
We can prove several important properties about the sequence generated by Algorithm 2.2.
First, letting {Ni}i∈N, {τi}i∈N, and {ξi}i∈N be the sequences produced by Algorithm 2.2, then,
as we prove in Lemma 2.85, there exists i0 ∈ N such that, if Ψτi0

(ξi0) ≤ 0, then Ψ(ξi) ≤ 0 and
Ψτi(ξi) ≤ 0 for each i ≥ i0. That is, once Algorithm 2.2 finds a feasible point, every point
generated after it remains feasible. Second, as we prove in Theorem 2.87, limj→∞ θ(ξj) = 0
for a sequence {ξj}j∈N generated by Algorithm 2.2, or Algorithm 2.2 converges to a point
that satisfies the optimality condition.

2.5 Implementable Algorithm Analysis

In this section, we derive the various components of Algorithm 2.2 and prove that Algo-
rithm 2.2 converges to a point that satisfies our optimality condition. Our argument proceeds
as follows: first, we prove the continuity and convergence of the discretized state, cost, and
constraints to their infinite dimensional analogues; second, we construct the components of
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Require: N0 ∈ N, τ0 ∈ TN0 , ξ0 ∈ Xτ0,p, α ∈ (0, 1), ᾱ ∈ (0,∞), β ∈ (0, 1), β̄ ∈
(

1√
2
, 1
)

,

γ ∈ (0,∞), η ∈ N, Λ ∈ (0,∞), χ ∈
(
0, 1

2

)
, ω ∈ (0, 1).

1: Set j = 0.
2: loop
3: Compute θτj(ξj) as defined in Equation (2.158).
4: if θτj(ξj) > −Λ2−χNj then
5: Set ξj+1 = ξj.
6: Set Nj+1 = Nj + 1.
7: Set τj+1 = σNj+1

(ξj).
8: else
9: Compute gτj(ξj) as defined in Equation (2.158).

10: Compute µτj(ξj) as defined in Equation (2.162).
11: Compute ντj(ξj, Nj + η) as defined in Equation (2.164).
12: if ντj(ξj, Nj + η) =∞ then
13: Set ξj+1 = ξj.
14: Set Nj+1 = Nj + 1.
15: Set τj+1 = σNj+1

(ξj+1).
16: else
17: Set ξj+1 = ρντj (ξj ,Nj+η)

(
ξj + βµτj (ξj)(gτj(ξj)− ξj)

)
.

18: Set Nj+1 = max
{
Nj, ντj(ξj, Nj + η)

}
.

19: Set τj+1 = σNj+1
(ξj+1).

20: end if
21: end if
22: Replace j by j + 1.
23: end loop

Algorithm 2.2 Numerically Tractable Algorithm for the Switched System Optimal Control
Problem

the optimality function and prove the convergence of these discretized components to their
infinite dimensional analogues; finally, we prove the convergence of our algorithm.

Continuity and Convergence of the Discretized Components

In this subsection, we prove the continuity and convergence of the discretized state, cost,
and constraint. We begin by proving the boundedness of the linear interpolation of the Euler
Integration scheme:

Lemma 2.51. There exists a constant C > 0 such that for each N ∈ N, τ ∈ TN , ξ ∈ Xτ,r,
and t ∈ [0, 1], ∥∥z(ξ)(t)

∥∥
2
≤ C (2.166)
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Proof. We begin by showing the result for each t ∈ τ . By Condition 1 in Assumption 2.2,
together with the boundedness of ‖f(0, x0, 0, ei)‖2 for each i ∈ Q, there exists a constant
K > 0 such that, for each N ∈ N, τ ∈ TN , ξ ∈ Xτ,r, i ∈ Q, and k ∈ {0, . . . , |τ |},∥∥f(τk, z(ξ)(τk), u(τk), ei

)∥∥
2
≤ K

(∥∥z(ξ)(τk)
∥∥

2
+ 1
)
. (2.167)

Employing Equation (2.149) and the Discrete Bellman-Gronwall Inequality (Exercise 5.6.14
in [Pol97]), we have:

∥∥z(ξ)(τk)
∥∥

2
≤ ‖x0‖2 +

1

2N

k∑
j=0

q∑
i=1

∥∥f(τj, z(ξ)(τj), u(τj), ei
)∥∥

2

≤ (‖x0‖2 + 1)

(
1 +

qK

2N

)2N

≤ eqK (‖x0‖2 + 1) ,

(2.168)

thus obtaining the desired result for each t ∈ τ .

The result for each t ∈ [0, 1] follows after observing that, in Equation (2.150),
(

t−τk
τk+1−τk

)
≤

1 for each t ∈ [τk, τk+1) and k ∈ {0, . . . , |τ |}.

In fact, this implies that the dynamics, cost, constraints, and their derivatives are all
bounded:

Corollary 2.52. There exists a constant C > 0 such that for each N ∈ N, τ ∈ TN , j ∈ J ,
and ξ = (u, d) ∈ Xτ,r:

(1)
∥∥f(t, z(ξ)(t), u(t), d(t)

)∥∥
2
≤ C,

∥∥∥∥∂f∂x(t, z(ξ)(t), u(t), d(t)
)∥∥∥∥

i,2

≤ C, and∥∥∥∥∂f∂u(t, z(ξ)(t), u(t), d(t)
)∥∥∥∥

i,2

≤ C.

(2)
∣∣h0

(
z(ξ)(t)

)∣∣ ≤ C, and

∥∥∥∥∂h0

∂x

(
z(ξ)(t)

)∥∥∥∥
2

≤ C.

(3)
∣∣hj(z(ξ)(t)

)∣∣ ≤ C, and

∥∥∥∥∂hj∂x

(
z(ξ)(t)

)∥∥∥∥
2

≤ C.

Proof. The result follows immediately from the continuity of f , ∂f
∂x

, ∂f
∂u

, h0, ∂h0
∂x

, hj, and
∂hj
∂x

for each j ∈ J , as stated in Assumptions 2.2 and 2.3, and the fact that the arguments of
these functions can be constrained to a compact domain, which follows from Lemma 2.51
and the compactness of U and Σq

r.

Next, we prove that the mapping from the discretized relaxed optimization space to the
discretized trajectory is Lipschitz:



CHAPTER 2. OPTIMAL CONTROL OF SWITCHED DYNAMICAL SYSTEMS 58

Lemma 2.53. There exists a constant L > 0 such that, for each N ∈ N, τ ∈ TN , ξ1, ξ2 ∈ Xτ,r
and t ∈ [0, 1]:

‖ϕτ,t(ξ1)− ϕτ,t(ξ2)‖2 ≤ L‖ξ1 − ξ2‖X , (2.169)

where ϕτ,t(ξ) is as defined in Equation (2.153).

Proof. We first prove this result for each t ∈ τ . For notational convenience we will define
∆τj = τj+1 − τj. Letting ξ1 = (u1, d1) and ξ2 = (u2, d2), notice that for j ∈ {0, . . . , |τ | − 1},
by Equation (2.149) and rearranging the terms, there exists L′ > 0 such that:∥∥ϕτ,τj+1

(ξ1)− ϕτ,τj+1
(ξ2)

∥∥
2
−
∥∥ϕτ,τj(ξ1)− ϕτ,τj(ξ2)

∥∥
2
≤

≤ ∆τj
∥∥f(τj, ϕτ,τj(ξ1), u1(τj), d1(τj)

)
− f

(
τj, ϕτ,τj(ξ2), u2(τj), d2(τj)

)∥∥
2

≤ L′

2N
∥∥ϕτ,τj(ξ1)− ϕτ,τj(ξ2)

∥∥
2

+ L′∆τj
(
‖u1(τj)− u2(τj)‖2 + ‖d1(τj)− d2(τj)‖2

)
,

(2.170)
where the last inequality holds since the vector field f is Lipschitz in all of its arguments, as
shown in the proof of Theorem 2.6, and ∆τj ≤ 1

2N
by definition of TN .

Summing the inequality in Equation (2.170) for j ∈ {0, . . . , k − 1} and noting that
ϕτ,τ0(ξ1) = ϕτ,τ0(ξ2):

∥∥ϕτ,τk(ξ1)− ϕτ,τk(ξ2)
∥∥

2
≤ L′

2N

k−1∑
j=0

∥∥ϕτ,τj(ξ1)− ϕτ,τj(ξ2)
∥∥

2
+ L′

k−1∑
j=0

∆τj ‖u1(τj)− u2(τj)‖2 +

+ L′
k−1∑
j=0

∆τj ‖d1(τj)− d2(τj)‖2 . (2.171)

Using the Discrete Bellman-Gronwall Inequality (Exercise 5.6.14 in [Pol97]) and the fact

that
(
1 + L′

2N

) L′
2N ≤ eL

′
,∥∥ϕτ,τk(ξ1)− ϕτ,τk(ξ2)
∥∥

2
≤

≤ L′eL
′

|τ |−1∑
j=0

∆τj ‖u1(τj)− u2(τj)‖2 +

|τ |−1∑
j=0

∆τj ‖d1(τj)− d2(τj)‖2


≤ L′eL

′


√√√√|τ |−1∑

j=0

∆τj ‖u1(τj)− u2(τj)‖2
2 +

√√√√|τ |−1∑
j=0

∆τj ‖d1(τj)− d2(τj)‖2
2


= L‖ξ1 − ξ2‖X ,

(2.172)
where L = L′eL

′
, and we employed Jensen’s Inequality (Equation A.2 in [Mal99]) together

the fact that the X–norm of ξ ∈ Xτ,r can be written as a finite sum.
The result for any t ∈ [0, 1] follows by noting that ϕτ,t(ξ) is a convex combination of

ϕτ,τk(ξ) and ϕτ,τk+1
(ξ) for some k ∈ {0, . . . , |τ | − 1}.
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As a consequence, we immediately have the following results:

Corollary 2.54. There exists a constant L > 0 such that for each N ∈ N, τ ∈ TN , ξ1 =
(u1, d1) ∈ Xτ,r, ξ2 = (u2, d2) ∈ Xτ,r and t ∈ [0, 1]:

(1)
∥∥f(t, ϕτ,t(ξ1), u1(t), d1(t)

)
−f
(
t, ϕτ,t(ξ2), u2(t), d2(t)

)∥∥
2
≤

≤ L
(
‖ξ1 − ξ2‖X + ‖u1(t)− u2(t)‖2 + ‖d1(t)− d2(t)‖2

)
,

(2)

∥∥∥∥∂f∂x(t, ϕτ,t(ξ1), u1(t), d1(t)
)
−∂f
∂x

(
t, ϕτ,t(ξ2), u2(t), d2(t)

)∥∥∥∥
i,2

≤

≤ L
(
‖ξ1 − ξ2‖X + ‖u1(t)− u2(t)‖2 + ‖d1(t)− d2(t)‖2

)
,

(3)

∥∥∥∥∂f∂u(t, ϕτ,t(ξ1), u1(t), d1(t)
)
−∂f
∂u

(
t, ϕτ,t(ξ2), u2(t), d2(t)

)∥∥∥∥
i,2

≤

≤ L
(
‖ξ1 − ξ2‖X + ‖u1(t)− u2(t)‖2 + ‖d1(t)− d2(t)‖2

)
,

where ϕτ,t(ξ) is as defined in Equation (2.153).

Proof. The proof of Condition 1 follows by the fact that the vector field f is Lipschitz in
all its arguments, as shown in the proof of Theorem 2.6, and applying Lemma 2.53. The
remaining conditions follow in a similar fashion.

Corollary 2.55. There exists a constant L > 0 such that for each N ∈ N, τ ∈ TN , ξ1 =
(u1, d1) ∈ Xr,τ , ξ2 = (u2, d2) ∈ Xr,τ , j ∈ J , and t ∈ [0, 1]:

(1)
∣∣h0

(
ϕτ,1(ξ1)

)
− h0

(
ϕτ,1(ξ2)

)∣∣ ≤ L ‖ξ1 − ξ2‖X ,

(2)
∥∥∥∂h0∂x

(
ϕτ,1(ξ1)

)
− ∂h0

∂x

(
ϕτ,1(ξ2)

)∥∥∥
2
≤ L ‖ξ1 − ξ2‖X ,

(3)
∣∣hj(ϕτ,t(ξ1)

)
− hj

(
ϕτ,t(ξ2)

)∣∣ ≤ L ‖ξ1 − ξ2‖X ,

(4)
∥∥∥∂hj∂x (ϕτ,t(ξ1)

)
− ∂hj

∂x

(
ϕτ,t(ξ2)

)∥∥∥
2
≤ L ‖ξ1 − ξ2‖X ,

where ϕτ,t(ξ) is as defined in Equation (2.153).

Proof. This result follows by Assumption 2.3 and Lemma 2.53.

Even though it is a straightforward consequence of Condition 1 in Corollary 2.55, we
write the following result to stress its importance.

Corollary 2.56. Let N ∈ N and τ ∈ TN , then there exists a constant L > 0 such that, for
each ξ1, ξ2 ∈ Xτ,r:

|Jτ (ξ1)− Jτ (ξ2)| ≤ L ‖ξ1 − ξ2‖X (2.173)

where Jτ is as defined in Equation (2.151).
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In fact, Ψτ is also Lipschitz continuous:

Lemma 2.57. Let N ∈ N and τ ∈ TN , then there exists a constant L > 0 such that, for
each ξ1, ξ2 ∈ Xr:

|Ψτ (ξ1)−Ψτ (ξ2)| ≤ L ‖ξ1 − ξ2‖X (2.174)

where Ψτ is as defined in Equation (2.152).

Proof. Since the maximum in Ψτ is taken over J × k ∈ {0, . . . , |τ |}, which is compact, and
the maps (j, k) 7→ ψτ,j,τk(ξ) are continuous for each ξ ∈ Xτ , we know from Condition 3 in
Corollary 2.55 that there exists L > 0 such that,

Ψτ (ξ1)−Ψτ (ξ2) = max
(j,k)∈J×{0,...,|τ |}

ψτ,j,τk(ξ1)− max
(j,k)∈J×{0,...,|τ |}

ψτ,j,τk(ξ2)

≤ max
(j,k)∈J×{0,...,|τ |}

ψτ,j,τk(ξ1)− ψτ,j,τk(ξ2)

≤ L ‖ξ1 − ξ2‖X .

(2.175)

By reversing ξ1 and ξ2, and applying the same argument we get the desired result.

We can now show the rate of convergence of the Euler Integration scheme:

Lemma 2.58. There exists a constant B > 0 such that for each N ∈ N, τ ∈ TN , ξ ∈ Xτ,r,
and t ∈ [0, 1]: ∥∥z(ξ)

τ (t)− x(ξ)(t)
∥∥

2
≤ B

2N
, (2.176)

where x(ξ) is the solution to Differential Equation (2.13) and z
(ξ)
τ is as defined in Difference

Equation (2.150).

Proof. Let ξ = (u, d), and recall that the vector field f is Lipschitz continuous in all its
arguments, as shown in the proof of Theorem 2.6. By applying Picard’s Lemma (Lemma 5.6.3
in [Pol97]), we have:∥∥z(ξ)(t)− x(ξ)(t)

∥∥
2
≤ eL

∫ 1

0

∥∥∥∥dz(ξ)

ds
(s)− f

(
s, z(ξ)(s), u(s), d(s)

)∥∥∥∥
2

ds

= eL
|τ |−1∑
k=0

∫ τk+1

τk

∥∥∥∥f(τk, z(ξ)(τk), u(τk), d(τk)
)
+

− f
(
s, z(ξ)(τk) +

s− τk
τk+1 − τk

(
z(ξ)(τk+1)− z(ξ)(τk)

)
, u(τk), d(τk)

)∥∥∥∥
2

ds

≤ LeL
|τ |−1∑
k=0

(
1 +

∥∥f(τk, z(ξ)(τk), u(τk), d(τk)
)∥∥

2

)(∫ τk+1

τk

|s− τk|ds
)

≤ 1

2N
LeL(1 + C)

|τ |−1∑
k=0

(τk+1 − τk) =
B

2N
,

(2.177)
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where C > 0 is as defined in Condition 1 in Corollary 2.52 and, B = (1 + C)LeL, and we
used the fact that τk+1 − τk ≤ 1

2N
by definition of TN in Equation (2.143).

Importantly we can show that we can bound the rate of convergence of this discretized
cost function. We omit the proof since it follows easily using Assumption 2.3 and Lemma 2.58.

Lemma 2.59. There exists a constant B > 0 such that for each N ∈ N, τ ∈ TN , and
ξ ∈ Xτ,r:

|Jτ (ξ)− J(ξ)| ≤ B

2N
, (2.178)

where J is as defined in Equation (2.15) and Jτ is as defined in Equation (2.151).

Similarly, we can bound the rate of convergence of this discretized constraint function.

Lemma 2.60. There exists a constant B > 0 such that for each N ∈ N, τ ∈ TN , and
ξ ∈ Xτ,r:

|Ψτ (ξ)−Ψ(ξ)| ≤ B

2N
, (2.179)

where Ψ is as defined in Equation (2.16) and Ψτ is as defined in Equation (2.152).

Proof. Let C > 0 be as defined in Condition 1 in Corollary 2.5, and let L > 0 be the Lipschitz
constant as specified in Assumption 2.3. Then, using the definition of TN in Equation (2.143),
for each k ∈ {0, . . . , |τ | − 1} and t ∈ [τk, τk+1],

∣∣hj(x(ξ)(t)
)
− hj

(
x(ξ)(τk)

)∣∣ ≤ L

∫ t

τk

∥∥f(s, x(ξ)(s), u(s), d(s)
)∥∥

2
ds ≤ LC

2N
. (2.180)

Moreover, Condition 3 in Assumption 2.3 together Lemma 2.58 imply the existence of a
constant K > 0 such that: ∣∣hj(x(ξ)(τk)

)
− hj

(
z(ξ)(τk)

)∣∣ ≤ K

2N
. (2.181)

Employing the Triangle Inequality on the two previous inequalities, we know there exists a
constant B > 0 such that, for each t ∈ [τk, τk+1],∣∣hj(x(ξ)(t)

)
− hj

(
z(ξ)(τk)

)∣∣ ≤ B

2N
. (2.182)

Let t′ ∈ arg maxt∈[0,1] hj
(
x(ξ)(t)

)
, and let κ(t′) ∈ {0, . . . , |τ | − 1} be such that t′ ∈[

τκ(t′), τκ(t′)+1

]
. Then,

max
t∈[0,1]

hj
(
x(ξ)(t)

)
− max

k∈{0,...,|τ |}
hj
(
z(ξ)(τk)

)
≤ hj

(
x(ξ)(t′)

)
− hj

(
z(ξ)(τκ(t′))

)
≤ B

2N
. (2.183)



CHAPTER 2. OPTIMAL CONTROL OF SWITCHED DYNAMICAL SYSTEMS 62

Similarly if k′ ∈ arg maxk∈{0,...,|τ |} hj
(
z(ξ)(τk)

)
, then

max
k∈{0,...,|τ |}

hj
(
z(ξ)(τk)

)
− max

t∈[0,1]
hj
(
x(ξ)(t)

)
≤ hj

(
z(ξ)(τk′)

)
− hj

(
x(ξ)(τk′)

)
≤ B

2N
. (2.184)

This implies that:

Ψ(ξ)−Ψτ (ξ) ≤ max
j∈J

(
max
t∈[0,1]

hj
(
x(ξ)(t)

)
− max

k∈{0,...,|τ |}
hj
(
z(ξ)(τk)

))
≤ B

2N
, (2.185)

Ψτ (ξ)−Ψ(ξ) ≤ max
j∈J

(
max

k∈{0,...,|τ |}
hj
(
z(ξ)(τk)

)
− max

t∈[0,1]
hj
(
x(ξ)(t)

))
≤ B

2N
, (2.186)

which proves the desired result.

Derivation of the Implementable Algorithm Terms

Next, we formally derive the components of the discretized optimality function, prove that
the discretized optimality function is well defined, and prove the convergence of the dis-
cretized optimality function to the optimality function. We begin by deriving the equivalent
of Lemma 2.18 for our discretized formulation.

Lemma 2.61. Let N ∈ N, τ ∈ TN , ξ = (u, d) ∈ Xτ,r, ξ′ = (u′, d′) ∈ Xτ , and ϕτ,t be as
defined in Equation (2.153). Then, for each k ∈ {0, . . . , |τ |}, the directional derivative of
ϕτ,τk , as defined in Equation (2.25), is given by

Dϕτ,τk(ξ; ξ
′) =

k−1∑
j=0

(τj+1 − τj)Φ(ξ)
τ (τk, τj+1)

(
∂f

∂u

(
τj, ϕτ,τj(ξ), u(τj), d(τj)

)
u′(τj)+

+

q∑
i=1

f
(
τj, ϕτ,τj(ξ), u(τj), ei

)
d′i(τj)

)
, (2.187)

where Φ
(ξ)
τ (τk, τj) is the unique solution of the following matrix difference equation:

Φ(ξ)
τ (τk+1, τj) = Φ(ξ)

τ (τk, τj) + (τk+1 − τk)
∂f

∂x

(
τk, ϕτ,τk(ξ), u(τk), d(τk)

)
Φ(ξ)
τ (τk, τj),

∀k ∈ {0, . . . , |τ | − 1}, Φ(ξ)
τ (τj, τj) = I. (2.188)

Proof. For notational convenience, let z(λ) = z(ξ+λξ′), u(λ) = u + λu′, and d(λ) = d + λd′.
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Also, let us define ∆z(λ) = z(λ) − z(ξ), thus, for each k ∈ {0, . . . , |τ |},

∆z(λ)(τk) =
k−1∑
j=0

(τj+1 − τj)
(
f
(
τj, z

(λ)(τj), u
(λ)(τj), d

(λ)(τj)
)
− f

(
τj, z

(ξ)(τj), u(τj), d(τj)
))

=
k−1∑
j=0

(τj+1 − τj)

(
λ

q∑
i=1

d′i(τj)f
(
τj, z

(λ)(τj), u
(λ)(τj), ei

)
+

+
∂f

∂x

(
τj, z

(ξ)(τj) + νx,j∆z
(λ)(τj), u

(λ)(τj), d(τj)
)
∆z(λ)(τj)+

+ λ
∂f

∂u

(
τj, z

(ξ)(τj), u(τj) + νu,jλu
′(τj), d(τj)

)
u′(τj)

)
,

(2.189)

where {νx,j}|τ |j=0 ⊂ [0, 1] and {νu,j}|τ |j=0 ⊂ [0, 1].

Let {y(τk)}|τ |k=0 be recursively defined as follows:

y(τk+1) = y(τk) + (τk+1 − τk)

(
∂f

∂x

(
τk, z

(ξ)(τk), u(τk), d(τk)
)
y(τk)+

+
∂f

∂u

(
τk, z

(ξ)(τk), u(τk), d(τk)
)
u′(τk) +

q∑
i=1

d′i(τk)f
(
τk, z

(ξ)(τk), u(τk), ei
))
, y(τ0) = 0.

(2.190)

We want to show that ∆z(λ)(τk)
λ

→ y(τk) as λ ↓ 0. Consider:∥∥∥∥∂f∂x(τk, z(ξ)(τk), u(τk), d(τk)
)
y(τk)+

− ∂f

∂x

(
τk, z

(ξ)(τk) + νx,k∆z
(λ)(τk), u

(λ)(τk), d(τk)
)∆z(λ)(τk)

λ

∥∥∥∥
2

≤

≤ L

∥∥∥∥y(τk)−
∆z(λ)(τk)

λ

∥∥∥∥
2

+ L
(∥∥∆z(λ)(τk)

∥∥
2

+ λ ‖u′(τk)‖2

)
‖y(τk)‖2 , (2.191)

which follows by Assumption 2.2 and the Triangle Inequality. Also,∥∥∥∥(∂f∂u(τk, z(ξ)(τk), u(τk), d(τk)
)
− ∂f

∂u

(
τk, z

(ξ)(τk), u(τk) + νu,kλu
′(τk), d(τk)

))
u′(τk)

∥∥∥∥
2

≤

≤ Lλ ‖u′(τk)‖2
2 , (2.192)
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and∥∥∥∥∥
q∑
i=1

d′i(τk)
(
f
(
τk, z

(ξ)(τk), u(τk), ei
)
− f

(
τk, z

(λ)(τk), u
(λ)(τk), ei

))∥∥∥∥∥
2

≤

≤ L
∥∥∆z(λ)(τk)

∥∥
2

+ Lλ ‖u′(τk)‖2 . (2.193)

Hence, using the Discrete Bellman-Gronwall Inequality (Lemma 5.6.14 in [Pol97]) and the
inequalities above,∥∥∥∥y(τk)−

∆z(λ)(τk)

λ

∥∥∥∥
2

≤ LeL
k−1∑
j=0

(τj+1 − τj)
((∥∥∆z(λ)(τj)

∥∥
2

+ λ ‖u′(τj)‖2

)
‖y(τj)‖2 +

+ λ ‖u′(τj)‖2

2 +
∥∥∆z(λ)(τj)

∥∥
2

+ λ ‖u′(τj)‖2

)
(2.194)

where we used the fact that
(
1 + L

2N

) L

2N ≤ eL. But, by Lemma 2.53, the right-hand side of
Equation (2.194) goes to zero as λ ↓ 0, thus obtaining that

lim
λ↓0

∆z(λ)(τk)

λ
= y(τk). (2.195)

The result of the first part of the Lemma is obtained after noting that Dϕτ,τk(ξ; ξ
′) is equal

to y(τk) for each k ∈ {0, . . . , |τ |}.

Next, we prove that Dϕτ,τk is bounded by proving that Φξ is bounded:

Corollary 2.62. There exists a constant C > 0 such that for each N ∈ N, τ ∈ TN , ξ ∈ Xτ,r,
and k, l ∈ {0, . . . , |τ |}: ∥∥Φ(ξ)

τ (τk, τl)
∥∥
i,2
≤ C, (2.196)

where Φ
(ξ)
τ (τk, τl) is the solution to the Difference Equation (2.188).

Proof. This follows directly from Equation (2.188) and Condition 1 in Corollary 2.52.

Corollary 2.63. There exists a constant C > 0 such that for each N ∈ N, τ ∈ TN , ξ ∈ Xτ,r,
ξ′ ∈ Xτ , and k ∈ {0, . . . , |τ |}:

‖Dϕτ,τk(ξ; ξ′)‖2 ≤ C ‖ξ′‖X , (2.197)

where Dϕτ,τk(ξ; ξ
′) is as defined in Equation (2.187).

Proof. This follows by the Cauchy-Schwartz Inequality together with Corollary 2.52 and
Corollary 2.62.

We now show that Φ
(ξ)
τ is in fact Lipschitz continuous.
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Lemma 2.64. There exists a constant L > 0 such that for each N ∈ N, τ ∈ TN , ξ1, ξ2 ∈ Xτ,r,
and k, l ∈ {0, . . . , |τ |}: ∥∥Φ(ξ1)

τ (τk, τl)− Φ(ξ2)
τ (τk, τl)

∥∥
i,2
≤ L ‖ξ1 − ξ2‖X , (2.198)

where Φ
(ξ)
τ is the solution to Difference Equation (2.188).

Proof. Let ξ1 = (u1, d1) and ξ2 = (u2, d2). Then, using the Triangle Inequality:∥∥∥Φ(ξ1)
τ (τk, τl)− Φ(ξ2)

τ (τk, τl)
∥∥∥
i,2
≤

≤
k−1∑
i=0

(τi+1 − τi)

(∥∥∥∥∂f∂x(τi, z(ξ2)(τi), u2(τi), d2(τi)
)∥∥∥∥

i,2

∥∥Φ(ξ1)
τ (τi, τj)− Φ(ξ2)

τ (τi, τj)
∥∥
i,2

+

+

∥∥∥∥∂f∂x(τi, z(ξ1)(τi), u1(τi), d1(τi)
)
− ∂f

∂x

(
τi, z

(ξ2)(τi), u2(τi), d2(τi)
)∥∥∥∥

i,2

∥∥Φ(ξ1)
τ (τi, τj)

∥∥
i,2

)
.

(2.199)

The result follows by applying Condition 1 in Corollary 2.52, Condition 2 in Corollary 2.54,
the same argument used in Equation (2.44), and the Discrete Bellman-Gronwall Inequality
(Exercise 5.6.14 in [Pol97]).

A simple extension of our previous argument shows that Dϕτ,τk(ξ, ·) is Lipschitz contin-
uous with respect to its point of evaluation, ξ.

Lemma 2.65. There exists a constant L > 0 such that for each N ∈ N, τ ∈ TN , ξ1, ξ2 ∈ Xτ,r,
ξ′ ∈ Xτ , and k ∈ {0, . . . , |τ |}:

‖Dϕτ,τk(ξ1; ξ′)−Dϕτ,τk(ξ2; ξ′)‖2 ≤ L ‖ξ1 − ξ2‖X ‖ξ
′‖X , (2.200)

where Dϕτ,τk is as defined in Equation (2.187).

Proof. Let ξ1 = (u1, d1), ξ2 = (u2, d2), and ξ′ = (u′, d′). Then, if ∆τk = τk+1 − τk, applying
the Triangle Inequality:∥∥Dϕτ,τk(ξ1; ξ′)−Dϕτ,τk(ξ2; ξ′)

∥∥
2
≤

≤
k−1∑
j=0

∆τj

(
q∑
i=1

∥∥Φ(ξ1)
τ (τk, τj+1)− Φ(ξ2)

τ (τk, τj+1)
∥∥
i,2

∥∥f(τj, z(ξ1)(τj), u1(τj), ei
)∥∥

i,2
|d′i(τj)|+

+
∥∥Φ(ξ2)

τ (τk, τj+1)
∥∥
i,2

∥∥f(τj, z(ξ1)(τj), u1(τj), ei
)
− f

(
τj, z

(ξ2)(τj), u2(τj), ei
)∥∥

i,2
|d′i(τj)|+

+

(∥∥Φ(ξ2)
τ (τk, τj+1)

∥∥
i,2

∥∥∥∥∂f∂u(τj, z(ξ1)(τj), u1(τj), d1(τj)
)
− ∂f

∂u

(
τj, z

(ξ2)(τj), u2(τj), d2(τj)
)∥∥∥∥

i,2

+

+
∥∥Φ(ξ1)

τ (τk, τj+1)− Φ(ξ2)
τ (τk, τj+1)

∥∥
i,2

∥∥∥∥∂f∂u(τj, z(ξ1)(τj), u1(τj), d1(τj)
)∥∥∥∥

i,2

)
‖u′(τj)‖2

)
(2.201)
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The result follows by applying Lemma 2.64, Corollary 2.62, Condition 1 in Corollary 2.5,
Conditions 1 and 3 in Corollary 2.54, and the same argument used in Equation (2.44).

Employing these results, we can prove that Dϕτ,τk(ξ; ξ
′) converges to Dϕτk(ξ; ξ

′) as the
discretization is increased:

Lemma 2.66. There exists B > 0 such that for each N ∈ N, τ ∈ TN , ξ ∈ Xτ,r, ξ′ ∈ Xτ and
k ∈ {0, . . . , |τ |}:

‖Dϕτk(ξ; ξ′)−Dϕτ,τk(ξ; ξ
′)‖2 ≤

B

2N
, (2.202)

where Dϕτk and Dϕτ,τk are as defined in Equations (2.49) and (2.187), respectively.

Proof. Let ξ = (u, d), ξ′ = (u′, d′). First, by applying the Triangle Inequality and noticing
that the induced matrix norm is compatible, we have:∥∥Dϕτk(ξ; ξ

′)−Dϕτ,τk(ξ; ξ
′)
∥∥

2
≤

≤
k−1∑
j=0

∫ τj+1

τj

∥∥Φ(ξ)(τk, s)− Φ(ξ)
τ (τk, τj+1)

∥∥
i,2

∥∥∥∥∂f∂u(τj, z(ξ)(τj), u(τj), d(τj)
)∥∥∥∥

i,2

‖u′(τj)‖2 +

+
∥∥Φ(ξ)(τk, s)

∥∥
i,2

∥∥∥∥∂f∂u(s, x(ξ)(s), u(τj), d(τj)
)
− ∂f

∂u

(
τj, z

(ξ)(τj), u(τj), d(τj)
)∥∥∥∥

i,2

‖u′(τj)‖2 ds+

+
k−1∑
j=0

∫ τj+1

τj

q∑
i=1

(∥∥Φ(ξ)(τk, s)
∥∥
i,2

∥∥f(s, x(ξ)(s), u(τj), ei
)
− f

(
τj, z

(ξ)(τj), u(τj), ei
)∥∥

2
+

+
∥∥Φ(ξ)(τk, s)− Φ(ξ)

τ (τk, τj+1)
∥∥
i,2

∥∥f(τj, z(ξ)(τj), u(τj), ei
)∥∥

2

)
|d′i(τl)| ds. (2.203)

Second, let κ(t) ∈ {0, . . . , |τ |} such that t ∈ [τκ(t), τκ(t)+1] for each t ∈ [0, 1]. Then, there
exists K > 0 such that∥∥x(ξ)(s)− z(ξ)

(
τκ(s)

)∥∥ ≤ ∥∥x(ξ)(s)− z(ξ)(s)
∥∥+

∥∥z(ξ)(s)− z(ξ)
(
τκ(s)

)∥∥
≤
∥∥x(ξ)(s)− z(ξ)(s)

∥∥+
(
s− τκ(s)

)
C

≤ K

2N
,

(2.204)

where C > 0 is as in Condition 1 in Corollary 2.52, and we applied Lemma 2.58 and the
definition of TN in Equation (2.143).

Third, analogous to our definition of discretized trajectory in Equation (2.150), we define

a discretized state transition matrix, Φ̃
(ξ)
τ for each k ∈ {0, . . . , |τ |} via linear interpolation

on the second argument:

Φ̃(ξ)
τ (τk, t) =

|τ |−1∑
j=0

(
Φ(ξ)
τ (τk, τj) +

t− τj
τj+1 − τj

(
Φ(ξ)
τ (τk, τj+1)− Φ(ξ)

τ (τk, τj)
))

πτ,j(t). (2.205)
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where ττ,j is as defined in Equation (2.144). Then there exists a constant K ′ > 0 such that
for each t ∈ [0, 1]:∥∥Φ(ξ)(τk, t)− Φ(ξ)

τ

(
τk, τκ(t)

)∥∥
i,2
≤
∥∥Φ(ξ)(τk, t)− Φ̃(ξ)

τ (τk, t)
∥∥
i,2

+
∥∥Φ̃(ξ)

τ (τk, t)− Φ(ξ)
τ

(
τk, τκ(t)

)∥∥
i,2

≤ K ′

2N
,

(2.206)
where the last inequality follows by an argument identical to the one used in the proof of
Lemma 2.58, together with an argument identical to the one used in Equation (2.204).

Finally, the result follows from Equation (2.203) after applying Condition 1 in Corol-
lary 2.52, Corollary 2.19, Conditions 1 and 3 in Corollary 2.54, Equations (2.204) and (2.206),
and the same argument as in Equation (2.44).

Next, we construct the expression for the directional derivative of the discretized cost
function and prove that it is Lipschitz continuous.

Lemma 2.67. Let N ∈ N, τ ∈ TN , ξ ∈ Xτ,r, ξ′ ∈ Xτ , and Jτ be defined as in Equa-
tion (2.151). Then the directional derivative of the discretized cost Jτ in the ξ′ direction
is:

DJτ (ξ; ξ
′) =

∂h0

∂x

(
ϕτ,1(ξ)

)
Dϕτ,1(ξ; ξ′). (2.207)

Proof. The result follows using the Chain Rule and Lemma 2.61.

Corollary 2.68. There exists a constant L > 0 such that for each N ∈ N, τ ∈ TN , ξ1, ξ2 ∈
Xτ,r, and ξ′ ∈ Xτ :

|DJτ (ξ1; ξ′)−DJτ (ξ2; ξ′)| ≤ L ‖ξ1 − ξ2‖X ‖η‖X , (2.208)

where DJτ is as defined in Equation (2.207).

Proof. Notice by the Triangle Inequality and the Cauchy Schwartz Inequality:

|DJτ (ξ1; ξ′)−DJτ (ξ2; ξ′)| ≤
∥∥∥∥∂h0

∂x

(
ϕτ,1(ξ1)

)∥∥∥∥
2

‖Dϕτ,1(ξ1; η)−Dϕτ,1(ξ2; η)‖2 +

+

∥∥∥∥∂h0

∂x

(
ϕτ,1(ξ1)

)
− ∂h0

∂x

(
ϕτ,1(ξ2)

)∥∥∥∥
2

‖Dϕτ,1(ξ2; η)‖2 . (2.209)

The result then follows by applying Condition 2 in Corollary 2.52, Condition 2 in Corol-
lary 2.55, Corollary 2.63, and Lemma 2.65.

In fact, the discretized cost function converges to the original cost function as the dis-
cretization is increased:
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Lemma 2.69. There exists a constant B > 0 such that for each N ∈ N, τ ∈ TN , ξ ∈ Xτ,r,
and ξ′ ∈ Xτ :

|DJτ (ξ; ξ′)−DJ(ξ; ξ′)| ≤ B

2N
, (2.210)

where DJ is as defined in Equation (2.67) and DJτ is as defined in Equation (2.207).

Proof. Notice by the Triangle Inequality and the Cauchy Schwartz Inequality:

|DJτ (ξ; ξ′)−DJ(ξ; ξ′)| ≤
∥∥∥∥∂h0

∂x

(
ϕ1(ξ)

)∥∥∥∥
2

‖Dϕ1(ξ; ξ′)−Dϕτ,1(ξ; ξ′)‖2 +

+

∥∥∥∥∂h0

∂x

(
ϕ1(ξ)

)
− ∂h0

∂x

(
ϕτ,1(ξ)

)∥∥∥∥
2

‖Dϕτ,1(ξ; ξ′)‖2 . (2.211)

Then the result follows by applying Condition 2 in Assumption 2.3, Condition 2 in Corol-
lary 2.5, Lemma 2.58, Lemma 2.66, and Corollary 2.63.

Next, we construct the expression for the directional derivative of the discretized compo-
nent functions and prove that they are Lipschitz continuous.

Lemma 2.70. Let N ∈ N, τ ∈ TN , ξ ∈ Xτ,r, ξ′ ∈ Xτ , j ∈ J , and ψτ,j,τk be defined as
in Equation (2.154). Then the directional derivative of each of the discretized component
constraints ψτ,j,τk for each k ∈ {0, . . . , |τ |} in the ξ′ direction is:

Dψτ,j,τk(ξ; ξ
′) =

∂hj
∂x

(
ϕτ,τk(ξ)

)
Dϕτ,τk(ξ; ξ

′). (2.212)

Proof. The result is a direct consequence of the Chain Rule and Lemma 2.61.

Corollary 2.71. There exists a constant L > 0 such that for each N ∈ N, τ ∈ TN , ξ1, ξ2 ∈
Xτ,r, ξ′ ∈ Xτ , and k ∈ {0, . . . , |τ |}:

|Dψτ,j,τk(ξ1; ξ′)−Dψτ,j,τk(ξ2; ξ′)| ≤ L ‖ξ1 − ξ2‖X ‖ξ
′‖X , (2.213)

where Dψτ,j,τk is as defined in Equation (2.212).

Proof. Notice by the Triangle Inequality and the Cauchy Schwartz Inequality:

|Dψτ,j,τk(ξ1; ξ′)−Dψτ,j,τk(ξ2; ξ′)| ≤
∥∥∥∥∂hj∂x

(
ϕτ,τk(ξ1)

)∥∥∥∥
2

‖Dϕτ,τk(ξ1; ξ′)−Dϕτ,τk(ξ2; ξ′)‖2 +

+

∥∥∥∥∂hj∂x

(
ϕτ,τk(ξ1)

)
− ∂hj

∂x

(
ϕτ,τk(ξ2)

)∥∥∥∥
2

‖Dϕτ,τk(ξ2; ξ′)‖2 . (2.214)

The result then follows by applying Condition 3 in Corollary 2.52, Condition 4 in Corol-
lary 2.55, Corollary 2.63, and Lemma 2.65.
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In fact, the discretized component constraint functions converge to the original compo-
nent constraint function as the discretization is increased:

Lemma 2.72. There exists a constant B > 0 such that for each N ∈ N, τ ∈ TN , ξ ∈ Xτ,r,
ξ′ ∈ Xτ , j ∈ J , and k ∈ {0, . . . , |τ |}:

|Dψτ,j,τk(ξ; ξ′)−Dψj,τk(ξ; ξ
′)| ≤ B

2N
, (2.215)

where Dψj,τk is as defined in Equation (2.70) and Dψτ,j,τk is as defined in Equation (2.212).

Proof. Notice by the Triangle Inequality and the Cauchy Schwartz Inequality:

|Dψτ,j,τk(ξ; ξ′)−Dψj,τk(ξ; ξ
′)| ≤

∥∥∥∥∂hj∂x

(
ϕτk(ξ)

)∥∥∥∥
2

‖Dϕτk(ξ; ξ′)−Dϕτ,τk(ξ; ξ
′)‖2 +

+

∥∥∥∥∂hj∂x

(
ϕτk(ξ)

)
− ∂hj

∂x

(
ϕτ,τk(ξ)

)∥∥∥∥
2

‖Dϕτ,τk(ξ; ξ′)‖2 . (2.216)

The result follows by applying Condition 4 in Assumption 2.3, Condition 3 in Corollary 2.5,
Lemma 2.58, Lemma 2.66, and Corollary 2.63.

Given these results, we can begin describing the properties satisfied by the discretized
optimality function:

Lemma 2.73. Let N ∈ N, τ ∈ TN , and ζτ be defined as in Equation (2.158). Then there
exists a constant L > 0 such that, for each ξ1, ξ2, ξ

′ ∈ Xτ,r,

|ζτ (ξ1, ξ
′)− ζτ (ξ2, ξ

′)| ≤ L ‖ξ1 − ξ2‖X . (2.217)

Proof. Letting Ψ+
τ (ξ) = max{0,Ψτ (ξ)} and Ψ−τ (ξ) = max{0,−Ψτ (ξ)}, observe:

ζτ (ξ, ξ
′) = max

{
DJτ (ξ; ξ

′ − ξ)−Ψ+
τ (ξ), max

j∈J , k∈{0,...,|τ |}
Dψτ,j,τk(ξ; ξ

′ − ξ)− γΨ−τ (ξ)

}
+

+ ‖ξ′ − ξ‖X . (2.218)

Employing Equation (2.75):∣∣ζτ (ξ1, ξ
′)− ζτ (ξ2, ξ

′)
∣∣ ≤

≤ max

{∣∣DJτ (ξ1; ξ′ − ξ1)−DJτ (ξ2; ξ′ − ξ2)
∣∣+
∣∣Ψ+

τ (ξ2)−Ψ+
τ (ξ1)

∣∣,
max

j∈J , k∈{0,...,|τ |}

∣∣Dψτ,j,τk(ξ1; ξ′ − ξ1)−Dψτ,j,τk(ξ2; ξ′ − ξ2)
∣∣+ γ

∣∣Ψ−τ (ξ2)−Ψ−τ (ξ1)
∣∣}+

+
∣∣‖ξ′ − ξ1‖X − ‖ξ′ − ξ2‖X

∣∣. (2.219)



CHAPTER 2. OPTIMAL CONTROL OF SWITCHED DYNAMICAL SYSTEMS 70

We show three results that taken together with the Triangle Inequality prove the desired
result. First, by applying the Reverse Triangle Inequality:∣∣‖ξ′ − ξ1‖X − ‖ξ′ − ξ2‖X

∣∣ ≤ ‖ξ1 − ξ2‖X . (2.220)

Second,∣∣DJτ (ξ1; ξ′ − ξ1)−DJτ (ξ2; ξ′−ξ2)
∣∣ ≤
≤
∣∣DJτ (ξ1; ξ′)−DJτ (ξ2; ξ′)

∣∣+
∣∣DJτ (ξ1; ξ1)−DJ(ξ2; ξ1)

∣∣+
+

∣∣∣∣∂h0

∂x

(
ϕτ,1(ξ2)

)
Dϕτ,1(ξ2; ξ2 − ξ1)

∣∣∣∣
≤ L ‖ξ1 − ξ2‖X ,

(2.221)
where L > 0 and we employed the linearity of DJτ , Corollary 2.68, the fact that ξ′ and ξ1 are
bounded since ξ′, ξ1 ∈ Xτ,r, the Cauchy-Schwartz Inequality, Condition 2 in Corollary 2.52,
and Corollary 2.63. Notice that by employing an argument identical to Equation (2.221)
and Corollary 2.71, we can assume without loss of generality that

∣∣Dψτ,j,τk(ξ1; ξ′ − ξ1) −
Dψτ,j,τk(ξ2; ξ′ − ξ2)

∣∣ ≤ L ‖ξ1 − ξ2‖X . Finally, notice that by applying Lemma 2.57, Ψ+
τ (ξ)

and Ψ−τ (ξ) are Lipschitz continuous.

Employing these results, we can prove that ζτ (ξ; ξ
′) converges to ζ(ξ; ξ′) as the discretiza-

tion is increased:

Lemma 2.74. There exists a constant B > 0 such that for each N ∈ N, τ ∈ TN , and
ξ, ξ′ ∈ Xτ,r:

|ζτ (ξ, ξ′)− ζ(ξ, ξ′)| ≤ B

2N
, (2.222)

where ζ is as defined in Equation (2.31) and ζτ is as defined in Equation (2.159).

Proof. Let Ψ+(ξ) = max{0,Ψ(ξ)}, Ψ+
τ (ξ) = max{0,Ψτ (ξ)}, Ψ−(ξ) = max{0,−Ψ(ξ)}, and

Ψ−τ (ξ) = max{0,−Ψτ (ξ)}. Notice that we can then write:

ζ(ξ, ξ′) = max

{
DJ(ξ; ξ′ − ξ)−Ψ+(ξ), max

j∈J , t∈[0,1]
Dψj,t(ξ; ξ

′ − ξ)− γΨ−(ξ)

}
+ ‖ξ′ − ξ‖X ,

(2.223)
and similarly for ζτ (ξ, ξ

′). Employing this redefinition, notice first that by employing an
argument identical to the one used in the proof of Lemma 2.60 we can show that there exists
a K > 0 such that for any positive integer N , τ ∈ TN and ξ ∈ Xτ,r:∣∣Ψ+

τ (ξ)−Ψ+(ξ)
∣∣ ≤ K

2N
, and

∣∣Ψ−τ (ξ)−Ψ−(ξ)
∣∣ ≤ K

2N
. (2.224)
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Let κ(t) ∈ {0, . . . , |τ |} such that t ∈ [τκ(t), τκ(t)+1] for each t ∈ [0, 1]. Then there exists
K ′ > 0 such that,∣∣Dψj,t(ξ; ξ′ − ξ)−Dψj,τκ(t)(ξ; ξ

′ − ξ)
∣∣ ≤

≤
∥∥∥∥∂hj∂x

(
ϕt(ξ)

)
− ∂hj

∂x

(
ϕτκ(t)(ξ)

)∥∥∥∥
2

‖Dϕt(ξ; ξ′ − ξ)‖2 +

+

∥∥∥∥∂hj∂x

(
ϕτκ(t)(ξ)

)∥∥∥∥
2

∥∥∥Dϕt(ξ; ξ
′ − ξ)−Dϕτκ(t)(ξ; ξ

′ − ξ)
∥∥∥

2

≤ C ′
(∥∥∥ϕt(ξ)− ϕτκ(t)(ξ)∥∥∥

2
+
∥∥∥Dϕt(ξ; ξ

′ − ξ)−Dϕτκ(t)(ξ; ξ
′ − ξ)

∥∥∥
2

)
≤ K ′

2N
,

(2.225)
where C ′ > 0 is a constant obtained after applying Corollary 2.20, Condition 4 in Assump-
tion 2.3, and Condition 3 in Corollary 2.5, and the last inequality follows after noting that
both terms can be written as the integral of uniformly bounded functions over an interval
of length smaller than 2−N . Thus, by the Triangle Inequality, Lemma 2.72, and Equa-
tion (2.225), we know there exists B > 0 such that for each t ∈ [0, 1]:∣∣∣Dψj,t(ξ; ξ′ − ξ)−Dψτ,j,τκ(t)(ξ; ξ

′ − ξ)
∣∣∣ ≤ B

2N
. (2.226)

Moreover, if t′ ∈ arg maxt∈[0,1] Dψj,t(ξ; ξ
′ − ξ), then

max
t∈[0,1]

Dψj,t(ξ; ξ
′−ξ)− max

k∈{0,...,|τ |}
Dψτ,j,τk(ξ; ξ

′−ξ) ≤ Dψj,t′(ξ; ξ
′−ξ)−Dψτ,j,τκ(t′)(ξ; ξ

′−ξ) ≤ B

2N
.

(2.227)
Similarly if k′ ∈ arg maxk∈{0,...,|τ |}Dψτ,j,τk(ξ; ξ

′ − ξ), then

max
k∈{0,...,|τ |}

Dψτ,j,τk(ξ; ξ
′−ξ)−max

t∈[0,1]
Dψj,t(ξ; ξ

′−ξ) ≤ Dψτ,j,τk′ (ξ; ξ
′−ξ)−Dψj,τk′ (ξ; ξ

′−ξ) ≤ B

2N
.

(2.228)
Therefore, by Equation (2.227),

max
j∈J , t∈[0,1]

Dψj,t(ξ; ξ
′ − ξ)− max

j∈J , k∈{0,...,|τ |}
Dψτ,j,τk(ξ; ξ

′ − ξ) ≤

≤ max
j∈J

(
max
t∈[0,1]

Dψj,t(ξ; ξ
′ − ξ)− max

k∈{0,...,|τ |}
Dψτ,j,τk(ξ; ξ

′ − ξ)
)
≤ B

2N
. (2.229)

and similarly, by Equation (2.228),

max
j∈J , k∈{0,...,|τ |}

Dψτ,j,τk(ξ; ξ
′ − ξ)− max

j∈J , t∈[0,1]
Dψj,t(ξ; ξ

′ − ξ) ≤

≤ max
j∈J

(
max

k∈{0,...,|τ |}
Dψτ,j,τk(ξ; ξ

′ − ξ)− max
t∈[0,1]

Dψj,t(ξ; ξ
′ − ξ)

)
≤ B

2N
, (2.230)
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Employing these results and Equation (2.75), observe that:

|ζτ (ξ, ξ′)− ζ(ξ, ξ′)| ≤ max

{
|DJτ (ξ; ξ′ − ξ)−DJ(ξ; ξ′ − ξ)|+

∣∣Ψ+(ξ)−Ψ+
τ (ξ)

∣∣ ,∣∣∣∣ max
j∈J , k∈{0,...,|τ |}

Dψτ,j,τk(ξ; ξ
′ − ξ)− max

j∈J , t∈[0,1]
Dψj,t(ξ; ξ

′ − ξ)
∣∣∣∣+ γ

∣∣Ψ−(ξ)−Ψ−τ (ξ)
∣∣}. (2.231)

Finally, applying Lemma 2.69 and the inequalities above, we get our desired result.

ζτ is in fact strictly convex just like its infinite dimensional analogue, and its proof is
similar to the proof of Lemma 2.31, hence we omit its details.

Lemma 2.75. Let N ∈ N, τ ∈ TN , and ξ ∈ Xτ,p. Then the map ξ′ 7→ ζτ (ξ, ξ
′), as defined in

Equation (2.159), is strictly convex.

Theorem 2.76 is very important since it proves that gτ , as defined in Equation (2.158), is a
well-defined function. Its proof is a consequence of the well-known result that strictly-convex
functions in finite-dimensional spaces have unique minimizers.

Theorem 2.76. Let N ∈ N, τ ∈ TN , and ξ ∈ Xτ,p. Then the map ξ′ 7→ ζτ (ξ, ξ
′), as defined

in Equation (2.159), has a unique minimizer.

Employing these results we can prove the continuity of the discretized optimality func-
tion. This result is not strictly required in order to prove the convergence of Algorithm 2.2
or in order to prove that the discretized optimality function encodes local minimizers of the
Discretized Relaxed Switched System Optimal Control Problem. However, this is a fun-
damental result from an implementation point of view, since in practice, a computer only
produces approximate results, and continuity gives a guarantee that these approximations
are at least valid in a neighborhood of the evaluation point.

Lemma 2.77. Let N ∈ N and τ ∈ TN , then the function θτ , as defined in Equation (2.158),
is continuous.

Proof. First, we show that θτ is upper semi-continuous. Consider a sequence {ξi}i∈N ⊂ Xτ,r
converging to ξ ∈ Xτ,r, and ξ′ ∈ Xτ,r, such that θτ (ξ) = ζτ (ξ, ξ

′), i.e. ξ′ = gτ (ξ), where g is
defined as in Equation (2.158). Since θτ (ξi) ≤ ζτ (ξi, ξ

′) for all i ∈ N,

lim sup
i→∞

θτ (ξi) ≤ lim sup
i→∞

ζτ (ξi, ξ
′) = ζτ (ξ, ξ

′) = θτ (ξ), (2.232)

which proves the upper semi-continuity of θτ .
Second, we show that θτ is lower semi-continuous. Let {ξ′i}i∈N ⊂ Xτ,r such that θτ (ξi) =

ζτ (ξi, ξ
′
i), i.e. ξ′i = gτ (ξi). From Lemma 2.73, we know there exists a Lipschitz constant L > 0

such that for each i ∈ N, |ζτ (ξ, ξ′i)− ζτ (ξi, ξ′i)| ≤ L ‖ξ − ξi‖X . Consequently,

θτ (ξ) ≤
(
ζτ (ξ, ξ

′
i)− ζτ (ξi, ξ′i)

)
+ ζτ (ξi, ξ

′
i) ≤ L‖ξ − ξi‖X + θτ (ξi). (2.233)
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Taking limits we conclude that

θτ (ξ) ≤ lim inf
i→∞

θτ (ξi), (2.234)

which proves the lower semi-continuity of θτ , and our desired result.

Next, we prove that the local minimizers of the Discretized Relaxed Switched System
Optimal Control Problem are in fact zeros of the discretized optimality function.

Theorem 2.78. Let N ∈ N, τ ∈ TN , and θτ be defined as in Equation (2.158), then:

(1) θτ is non-positive valued, and

(2) If ξ ∈ Xτ,p is a local minimizer of the Discretized Relaxed Switched System Optimal
Control Problem as in Definition 2.48, then θτ (ξ) = 0.

Proof. Notice ζτ (ξ, ξ) = 0, therefore θτ (ξ) = minξ′∈Xτ,r ζτ (ξ, ξ
′) ≤ ζτ (ξ, ξ) = 0. This proves

Condition 1.
To prove Condition 2, we begin by making several observations. Given ξ′ ∈ Xτ,r and

λ ∈ [0, 1], using the Mean Value Theorem and Corollary 2.68 we have that there exists
s ∈ (0, 1) and L > 0 such that

Jτ
(
ξ + λ(ξ′ − ξ)

)
− Jτ (ξ) = DJτ

(
ξ + sλ(ξ′ − ξ);λ(ξ′ − ξ)

)
≤ λDJτ

(
ξ; ξ′ − ξ

)
+ Lλ2‖ξ′ − ξ‖2

X .
(2.235)

Letting Aτ (ξ) =
{

(j, k) ∈ J × {0, . . . , |τ |} | Ψτ (ξ) = hj
(
z(ξ)(τk)

)}
, similar to the equation

above, there exists a pair (j, k) ∈ A
(
ξ + λ(ξ′ − ξ)

)
and s ∈ (0, 1) such that, using Corol-

lary 2.71,

Ψτ

(
ξ + λ(ξ′ − ξ)

)
−Ψτ (ξ) ≤ ψτ,j,τk

(
ξ + λ(ξ′ − ξ)

)
−Ψ(ξ)

≤ ψτ,j,τk
(
ξ + λ(ξ′ − ξ)

)
− ψτ,j,τk(ξ)

= Dψτ,j,τk
(
ξ + sλ(ξ′ − ξ);λ(ξ′ − ξ)

)
≤ λDψτ,j,τk

(
ξ; ξ′ − ξ

)
+ Lλ2‖ξ′ − ξ‖2

X .

(2.236)

We prove Condition 2 by contradiction. That is we assume ξ ∈ Xτ,p is a local minimizer of
the Discretized Relaxed Switched System Optimal Control Problem and θτ (ξ) < 0 and show
that for each ε > 0 there exists ξ̂ ∈ {ξ̄ ∈ Xτ,r | Ψτ (ξ̄) ≤ 0} ∩ Nτ,X (ξ, ε) such that Jτ (ξ̂) <
Jτ (ξ), where Nτ,X (ξ, ε) is as defined in Equation (2.157), hence arriving at a contradiction.

Before arriving at this contradiction, we make two more observations. First, notice that
since ξ ∈ Xp is a local minimizer of the Discretized Relaxed Switched System Optimal
Control Problem, Ψτ (ξ) ≤ 0. Second, consider gτ as defined in Equation (2.158), which
exists by Theorem 2.76 and notice that since θτ (ξ) < 0, gτ (ξ) 6= ξ.
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Next, observe that:

θτ (ξ) = max

{
DJτ (ξ; gτ (ξ)− ξ), max

(j,k)∈J×{0,...,|τ |}
Dψτ,j,τk(ξ; gτ (ξ)− ξ) + γΨτ (ξ)

}
+

+ ‖gτ (ξ)− ξ‖X < 0. (2.237)

For each λ > 0 by using Equations (2.235) and (2.237) we have:

Jτ (ξ + λ(gτ (ξ)− ξ))− Jτ (ξ) ≤ θτ (ξ)λ+ 4A2Lλ2, (2.238)

where A = max
{
‖u‖2 + 1 | u ∈ U

}
and we used the fact that DJτ (ξ; g(ξ) − ξ) ≤ θτ (ξ).

Hence for each λ ∈
(

0, −θτ (ξ)
4A2L

)
:

Jτ (ξ + λ(gτ (ξ)− ξ))− Jτ (ξ) < 0. (2.239)

Similarly, for each λ > 0 by using Equations (2.236) and (2.237) we have:

Ψτ (ξ + λ(gτ (ξ)− ξ)) ≤ Ψτ (ξ) + (θτ (ξ)− γΨτ (ξ))λ+ 4A2Lλ2, (2.240)

where, as in Equation (2.238), A = max
{
‖u‖2 + 1 | u ∈ U

}
and we used the fact that

Dψτ,j,τk(ξ; g(ξ)− ξ) ≤ θτ (ξ). Hence for each λ ∈
(

0,min
{
−θτ (ξ)
4A2L

, 1
γ

})
:

Ψτ (ξ + λ(gτ (ξ)− ξ)) ≤ (1− γλ)Ψτ (ξ) ≤ 0. (2.241)

Summarizing, suppose ξ ∈ Xτ,p is a local minimizer of the Discretized Relaxed Switched
System Optimal Control Problem and θτ (ξ) < 0. For each ε > 0, by choosing any

λ ∈
(

0,min

{
−θτ (ξ)
4A2L

,
1

γ
,

ε

‖gτ (ξ)− ξ‖X

})
, (2.242)

we can construct a new point ξ̂ =
(
ξ + λ(gτ (ξ) − ξ)

)
∈ Xτ,r such that ξ̂ ∈ Nτ,X (ξ, ε) by

our choice of λ, Jτ (ξ̂) < Jτ (ξ) by Equation (2.239), and Ψτ (ξ̂) ≤ 0 by Equation (2.241).
Therefore, ξ is not a local minimizer of the Discretized Relaxed Switched System Optimal
Control Problem, which is a contradiction and proves Condition 2.

Finally, we prove that the Discretized Relaxed Switched System Optimal Control Problem
consistently approximates the Switched System Optimal Control Problem:

Theorem 2.79. Let {τi}i∈N and {ξi}i∈N such that τi ∈ Ti and ξi ∈ Xτi,p for each i ∈ N.
Then

lim
i→∞
|θτi(ξi)− θ(ξi)| = 0, (2.243)

where θ is as defined in Equation (2.30) and θτ is as defined in Equation (2.158). That is, the
Discretized Relaxed Switched System Optimal Control Problem as defined in Equation (2.156)
is a consistent approximation of the Switched System Optimal Control Problem as defined
in Equation (2.18), where consistent approximation is defined as in Definition 2.49.
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Proof. First, by Lemma 2.74,

lim sup
i→∞

θ(ξi)− θτi(ξi) ≤ lim sup
i→∞

ζ
(
ξi, g(ξi)

)
− ζτi

(
ξi, gτi(ξi)

)
≤ lim sup

i→∞

B

2i
= 0, (2.244)

where g is as defined in Equation (2.30) and gτ is as defined in Equation (2.158).
Now, by Condition 2 in Lemma 2.47, we know there exists a sequence {ξ′i}i∈N, with

ξ′i ∈ Xτi,r for each i ∈ N, such that limi→∞ ξ
′
i = g(ξ). Then, by Lemma 2.74,

lim sup
i→∞

θτi(ξi)− θ(ξi) ≤ lim sup
i→∞

ζτi(ξi, ξ
′
i)− ζ

(
ξi, g(ξ)

)
≤ lim sup

i→∞

(
ζτi(ξi, ξ

′
i)− ζ(ξi, ξ

′
i)
)

+
(
ζ(ξi, ξ

′
i)− ζ

(
ξi, g(ξ)

))
≤ lim sup

i→∞

B

2i
+ ζ(ξi, ξ

′
i)− ζ

(
ξi, g(ξ)

)
.

(2.245)

Employing Equation (2.75):

∣∣ζ(ξi, ξ
′
i)− ζ

(
ξi, g(ξ)

)∣∣ ≤ max

{∣∣DJ(ξi; ξ
′
i − ξi)−DJ(ξi; g(ξ)− ξi)

∣∣,
max

j∈J , t∈[0,1]

∣∣Dψj,t(ξi; ξ′i − ξi)−Dψj,t(ξi; g(ξ)− ξi)
∣∣}+

∣∣‖ξ′i − ξi‖X − ‖g(ξ)− ξi‖X
∣∣. (2.246)

Notice, that by applying the reverse Triangle Inequality:∣∣‖ξ′i − ξi‖X − ‖g(ξ)− ξi‖X
∣∣ ≤ ‖ξ′i − g(ξ)‖X . (2.247)

Next, notice:∣∣DJ(ξi; ξ
′
i − ξi)−DJ(ξi; g(ξ)− ξi)

∣∣ =
∣∣DJ(ξi; ξ

′
i − g(ξ))

∣∣
=

∣∣∣∣∂h0

∂x

(
ϕ1(ξi)

)
Dϕ1(ξi; ξ

′
i − g(ξ))

∣∣∣∣
≤ L ‖ξ′i − g(ξ)‖X ,

(2.248)

where L > 0 and we employed the linearity of DJ , Condition 2 in Corollary 2.5, and
Corollary 2.20. Notice that by employing an argument identical to Equation (2.248), we can
assume without loss of generality that

∣∣Dψj,t(ξi; ξ′i−ξi)−Dψj,t(ξi; g(ξ)−ξi)
∣∣ ≤ L ‖ξ′i − g(ξ)‖X .

Therefore:
lim sup
i→∞

∣∣ζ(ξi, ξ
′
i)− ζ

(
ξi, g(ξ)

)∣∣ ≤ 0. (2.249)

From Equation (2.245), we have lim supi→∞ (θτi(ξi)− θ(ξi)) ≤ 0. Notice that

lim sup
i→∞

|θτi(ξi)− θ(ξi)| ≥ lim inf
i→∞

|θτi(ξi)− θ(ξi)| ≥ 0. (2.250)

Therefore combining our results, we have limi→∞ |θτi(ξi)− θ(ξi)| = 0.
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Convergence of the Implementable Algorithm

In this subsection, we prove that the sequence of points generated by Algorithm 2.2 converges
to a point that satisfies the optimality condition. We begin by proving that the Armijo
algorithm as defined in Equation (2.162) terminates after a finite number of steps.

Lemma 2.80. Let α ∈ (0, 1) and β ∈ (0, 1). For every δ > 0, there exists an M∗
δ <∞ such

that if θτ (ξ) ≤ −δ for N ∈ N, τ ∈ TN , and ξ ∈ Xτ,p, then µτ (ξ) ≤M∗
δ , where θτ is as defined

in Equation (2.158) and µτ is as defined in Equation (2.162).

Proof. Given ξ′ ∈ X and λ ∈ [0, 1], using the Mean Value Theorem and Corollary 2.68 we
have that there exists s ∈ (0, 1) such that

Jτ
(
ξ + λ(ξ′ − ξ)

)
− Jτ (ξ) = DJτ

(
ξ + sλ(ξ′ − ξ);λ(ξ′ − ξ)

)
≤ λDJτ

(
ξ; ξ′ − ξ

)
+ Lλ2‖ξ′ − ξ‖2

X .
(2.251)

Let Aτ (ξ) = {(j, i) ∈ J × {0, . . . , |τ |} | Ψτ (ξ) = ψτ,j,τi(ξ)}, then there exists a pair (j, i) ∈
Aτ
(
ξ + λ(ξ′ − ξ)

)
and s ∈ (0, 1) such that, using Corollary 2.28,

Ψτ

(
ξ + λ(ξ′ − ξ)

)
−Ψτ (ξ) ≤ ψτ,j,τi

(
ξ + λ(ξ′ − ξ)

)
−Ψτ (ξ)

≤ ψτ,j,τi
(
ξ + λ(ξ′ − ξ)

)
− ψτ,j,τk(ξ)

= Dψτ,j,τi
(
ξ + sλ(ξ′ − ξ);λ(ξ′ − ξ)

)
≤ λDψτ,j,τi

(
ξ; ξ′ − ξ

)
+ Lλ2‖ξ′ − ξ‖2

X .

(2.252)

Now let us assume that Ψτ (ξ) ≤ 0, and consider gτ as defined in Equation (2.158). Then

θτ (ξ) = max

{
DJτ (ξ; gτ (ξ)− ξ), max

(j,i)∈J×{0,...,|τ |}
Dψτ,j,τi(ξ; gτ (ξ)− ξ) + γΨτ (ξ)

}
≤ −δ,

(2.253)
and using Equation (2.251),

Jτ
(
ξ + βk(gτ (ξ)− ξ)

)
− Jτ (ξ)− αβkθτ (ξ) ≤ −(1− α)δβk + 4A2Lβ2k, (2.254)

where A = max
{
‖u‖2 + 1 | u ∈ U

}
. Hence, for each k ∈ N such that βk ≤ (1−α)δ

4A2L
we have

that
Jτ
(
ξ + βk(g(ξ)− ξ)

)
− Jτ (ξ) ≤ αβkθτ (ξ). (2.255)

Similarly, using Equations (2.252) and (2.253),

Ψτ

(
ξ + βk(g(ξ)− ξ)

)
−Ψτ (ξ) + βk

(
γΨτ (ξ)− αθτ (ξ)

)
≤ −δβk + 4A2Lβ2k, (2.256)

hence for each k ∈ N such that βk ≤ min
{

(1−α)δ
4A2L

, 1
γ

}
we have that

Ψτ

(
ξ + βk(g(ξ)− ξ)

)
− αβkθτ (ξ) ≤

(
1− βkγ

)
Ψτ (ξ) ≤ 0. (2.257)
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If Ψτ (ξ) > 0 then

max
(j,i)∈J×{0,...,|τ |}

Dψτ,j,τi(ξ; gτ (ξ)− ξ) ≤ θτ (ξ) ≤ −δ, (2.258)

thus, from Equation (2.252),

Ψτ

(
ξ + βk(gτ (ξ)− ξ)

)
−Ψτ (ξ)− αβkθτ (ξ) ≤ −(1− α)δβk + 4A2Lβ2k. (2.259)

Hence, for each k ∈ N such that βk ≤ (1−α)δ
4A2L

we have that

Ψτ

(
ξ + βk(gτ (ξ)− ξ)

)
−Ψτ (ξ) ≤ αβkθτ (ξ). (2.260)

Finally, let

M∗
δ = 1 + max

{
logβ

(
(1− α)δ

4A2L

)
, logβ

(
1

γ

)}
, (2.261)

then from Equations (2.255), (2.257), and (2.260), we get that µτ (ξ) ≤M∗
δ as desired.

The proof of the following corollary follows directly from the estimates of M∗
δ in the proof

of Lemma 2.80.

Corollary 2.81. Let α ∈ (0, 1) and β ∈ (0, 1). There exists a δ0 > 0 and C > 0 such that
if δ ∈ (0, δ0) and θτ (ξ) ≤ −δ for N ∈ N, τ ∈ TN , and ξ ∈ Xτ,p, then µτ (ξ) ≤ 1 + logβ(Cδ),
where θτ is as defined in Equation (2.158) and µτ is as defined in Equation (2.162).

Next, we prove a bound between the discretized trajectory for a point in the discretized
relaxed optimization space and the discretized trajectory for the same point after projection
by ρN that we use in a later argument.

Lemma 2.82. Consider ρN defined as in Equation (2.37) and σN defined as in Equa-
tion (2.163). There exists K > 0 such that for each N0, N ∈ N, τ ∈ TN0, ξ = (u, d) ∈ Xr,τ ,
and t ∈ [0, 1]:

∥∥ϕσN (ξ),t

(
ρN(ξ)

)
− ϕτ,t(ξ)

∥∥
2
≤ K

((
1√
2

)N (
V(ξ) + 1

)
+

(
1

2

)N0
)
, (2.262)

where ϕτ,t is as defined in Equation (2.153) and V(·) is as defined in Equation (2.3).

Proof. We prove this argument for t = 1, but the argument follows identically for all t ∈ [0, 1].
Using the Triangle Inequality we have that∥∥ϕσN (ξ),1

(
ρN(ξ)

)
− ϕτ,1(ξ)

∥∥
2
≤
∥∥ϕσN (ξ),1

(
ρN(ξ)

)
− ϕ1

(
ρN(ξ)

)∥∥
2

+
∥∥ϕ1

(
ρN(ξ)

)
− ϕ1(ξ)

∥∥
2
+

+
∥∥ϕ1(ξ)− ϕτ,1(ξ)

∥∥
2
. (2.263)
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Thus, by Theorem 2.38 and Lemma 2.58 there exists K1, K2, and K3 such that∥∥ϕσN (ξ),1

(
ρN(ξ)

)
− ϕτ,1(ξ)

∥∥
2
≤ K1

(
1√
2

)N (
V(ξ) + 1

)
+
K2

2N
+
K3

2N0
, (2.264)

hence the result follows after organizing the constants and noting that 2
N
2 ≤ 2N for each

N ∈ N.

Using this previous lemma, we can prove that ντ is eventually finite for all ξ such that
θ(ξ) < 0.

Lemma 2.83. Let N0 ∈ N, τ0 ∈ TN0, and ξ ∈ Xτ,r. If θ(ξ) < 0 then for each η ∈ N there
exists a finite N ≥ N0 such that νσN (ξ)(ξ,N + η) is finite.

Proof. Recall ντ , as defined in Equation (2.164), is infinity only when the optimization
problem it solves is not feasible. To simplify our notation, let ξ′ ∈ XσN (ξ),r defined by

ξ′ = ξ + βµσN (ξ)(ξ)
(
gσN (ξ)(ξ)− ξ

)
. Then, using Lemma 2.82, for k ∈ N, k ∈ [N,N + η],

Jσk(ξ′)

(
ρk(ξ

′)
)
− JσN (ξ)(ξ

′) ≤ LK

((
1√
2

)k
(V(ξ′) + 1) +

(
1

2

)N)

≤ LK

(
1√
2

)N
(V(ξ′) + 2) ,

(2.265)

where V(·) is as defined in Equation (2.3).
Also, from Theorem 2.79 we know that for N large enough,

1

2
θ(ξ) ≥ θσN (ξ)(ξ). (2.266)

Thus, given δ > 1
2
θ(ξ), there exists N∗ ∈ N such that, for each N ≥ N∗ and k ∈ [N,N + η],

Jσk(ξ′)

(
ρk(ξ

′)
)
− JσN (ξ)(ξ

′) ≤ −ᾱβ̄N 1

2
θ(ξ)

≤ −ᾱβ̄NθσN (ξ)(ξ).
(2.267)

and at the same time

ᾱβ̄N ≤ (1− ω)αβM
∗
δ ≤ (1− ω)αβµσN (ξ), (2.268)

where M∗
δ is as in Lemma 2.80.

Similarly, given Aτ (ξ) = {(j, t) ∈ J × [0, 1] | Ψτ (ξ) = ψτ,j,t(ξ)}, let (j, t) ∈ AσN (ξ′)(ξ
′).

Thus, for N ≥ N∗, k ∈ [N,N + η], and using Lemma 2.82,

Ψσk(ξ′)

(
ρk(ξ

′)
)
−ΨσN (ξ)(ξ

′) = ψσk(ξ′),j,t

(
ρk(ξ

′)
)
−ΨσN (ξ)(ξ

′)

≤ ψσk(ξ′),j,t

(
ρk(ξ

′)
)
− ψσN (ξ),j,t(ξ

′)

≤ LK

(
1√
2

)N
(V(ξ′) + 2)

≤ −ᾱβ̄NθσN (ξ)(ξ).

(2.269)
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Therefore, for N ≥ N∗, if ΨσN (ξ)(ξ) ≤ 0, then by Equations (2.267), (2.269), and the
inequalities from the computation of µτ (ξ),

Jσk(ξ′)

(
ρk(ξ

′)
)
− JσN (ξ)(ξ) ≤

(
αβµσN (ξ) − ᾱβ̄N

)
θσN (ξ)(ξ), (2.270)

Ψσk(ξ′)

(
ρk(ξ

′)
)
≤
(
αβµσN (ξ) − ᾱβ̄N

)
θσN (ξ)(ξ) ≤ 0, (2.271)

which together with Equation (2.268) implies that the feasible set is not empty. Similarly, if
ΨσN (ξ)(ξ) > 0, by Equation (2.269),

Ψσk(ξ′)

(
ρk(ξ

′)
)
−ΨσN (ξ)(ξ) ≤

(
αβµσN (ξ) − ᾱβ̄N

)
θσN (ξ)(ξ), (2.272)

as desired.
Hence for all N ≥ N∗ the feasible sets of the optimization problems associated with νσN (ξ)

are not empty, and therefore νσN (ξ)(ξ,N + η) <∞.

In fact, the discretization precision constructed by Algorithm 2.2 increases arbitrarily.

Lemma 2.84. Let {Ni}i∈N, {τi}i∈N, and {ξi}i∈N be the sequences generated by Algorithm 2.2.
Then Ni →∞ as i→∞.

Proof. Suppose that Ni ≤ N∗ for all i ∈ N. Then, by definition of Algorithm 2.2, there
exists i0 ∈ N such that θ(ξi) ≤ −Λ2−χNi ≤ −Λ2−χN

∗
and ξi+1 = Γτi(ξi) for each i ≥ i0,

where Γτ is defined in Equation (2.165).
Moreover, by definition of ντ we have that if there exists i1 ≥ i0 such that Ψτi1

(ξi1) ≤ 0,
then Ψτi(ξi) ≤ 0 for each i ≥ i1. Let us assume that there exists i1 ≥ i0 such that Ψτi1

(ξi1) ≤
0, then, using Lemma 2.80,

Jτi+1
(ξi+1)− Jτi(ξi) ≤

(
αβµτi (ξi) − ᾱβ̄ντi (ξi,Ni+η)

)
θ(ξi)

≤ −ωαβM∗δ′δ′,
(2.273)

for each i ≥ i1, where δ′ = Λ2−χN
∗
. But this implies that Jτi(ξi)→ −∞ as i→∞, which is

a contradiction since h0, and therefore Jτi , is lower bounded.
The argument is completely analogous in the case where the sequence is perpetually

infeasible. Indeed, suppose that Ψτi(ξi) > 0 for each i ≥ i0, then by Lemma 2.80,

Ψτi+1
(ξi+1)−Ψτi(ξi) ≤

(
αβµτi (ξi) − ᾱβ̄ντi (ξi,Ni+η)

)
θ(ξi)

≤ −ωαβM∗δ′δ′,
(2.274)

for each i ≥ i0, where δ′ = Λ2−χN
∗
. But again this implies that Ψτi(ξi) → −∞ as i → ∞,

which is a contradiction since we had assumed that Ψτi(ξi) > 0.

Next, we prove that if Algorithm 2.2 find a feasible point, then every point generated
afterwards remains feasible.
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Lemma 2.85. Let {Ni}i∈N, {τi}i∈N, and {ξi}i∈N be the sequences generated by Algorithm 2.2.
Then there exists i0 ∈ N such that, if Ψτi0

(ξi0) ≤ 0, then Ψ(ξi) ≤ 0 and Ψτi(ξi) ≤ 0 for each
i ≥ i0, where Ψτ is as defined in Equation (2.152).

Proof. Let I ⊂ N be a subsequence defined by

I =

{
i ∈ N | θτi(ξi) ≤ −

Λ

2χNi
and ντi(ξi, Ni + η) <∞

}
. (2.275)

Note that, by definition of Algorithm 2.2, Ψ(ξi+1) = Ψ(ξi) for each i /∈ I. Now, for each i ∈ I
such that Ψτi(ξi) ≤ 0, by definition of ντ in Equation (2.164) together with Corollary 2.81,

Ψτi+1
(ξi+1) ≤

(
αβµτi (ξi) − ᾱβ̄ντi (ξi,Ni+η)

)
θτi(ξi)

≤ −ωαβµτi (ξi) Λ

2χNi

≤ −ωαβC
(

Λ

2χNi

)2

,

(2.276)

where C > 0. By Lemma 2.60 and the fact that Ni+1 ≥ Ni, we have that

Ψ(ξi+1) ≤ B

2Ni
− ωαβC

(
Λ

2χNi

)2

≤ 1

22χNi

(
B

2(1−2χ)Ni
− ωαβCΛ2

)
.

(2.277)

Hence, if Ψτi1
(ξi1) ≤ 0 for i1 ∈ N such that Ni1 is large enough, then Ψ(ξi) ≤ 0 for each

i ≥ i1.
Moreover, from Equation (2.277) we get that for each N ≥ Ni and each τ ∈ TN ,

Ψτ (ξi+1) ≤ 1

22χNi

(
B

2(1−2χ)Ni
− ωαβCΛ2

)
+
B

2N

≤ 1

22χNi

(
2B

2(1−2χ)Ni
− ωαβCΛ2

)
.

(2.278)

Thus, if Ψτi2
(ξi2) ≤ 0 for i2 ∈ N such that Ni2 is large enough, then Ψτ (ξi2) ≤ 0 for each

τ ∈ TN such that N ≥ Ni. But note that this is exactly the case when i2 + k /∈ I for
k ∈ {1, . . . , n}, thus we can conclude that Ψτi2+k

(ξi2+k) ≤ 0. Also note that the case of i ∈ I
is trivially satisfied by the definition of ντ .

Finally, by setting i0 = max{i1, i2} we get the desired result.

Next, we prove θτ converges to zero.

Lemma 2.86. Let {Ni}i∈N, {τi}i∈N, and {ξi}i∈N be the sequences generated by Algorithm 2.2.
Then θτi(ξi)→ 0 as i→∞, where θτ is as defined in Equation (2.158).
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Proof. Let us suppose that limi→∞ θτi(ξi) 6= 0. Then there exists δ > 0 such that

lim inf
i→∞

θτi(ξi) < −4δ, (2.279)

and hence, using Theorem 2.79 and Lemma 2.84, there exists an infinite subsequence K ⊂ N
defined by

K =
{
i ∈ N | θτi(ξi) < −2δ and θ(ξi) < −δ

}
. (2.280)

Let us define a second subsequence I ⊂ N by

I =

{
i ∈ N | θτi(ξi) ≤ −

Λ

2χNi
and ντi(ξi, Ni + η) <∞

}
. (2.281)

Note that by the construction of the subsequence K, together with Lemma 2.83, we get that
K ∩ I is an infinite set.

Now we analyze Algorithm 2.2 by considering the behavior of each step as a function of
its membership to each subsequence. First, for each i /∈ I, ξi+1 = ξi, thus J(ξi+1) = J(ξi)
and Ψ(ξi+1) = Ψ(ξi). Second, let i ∈ I such that Ψτi(ξi) ≤ 0, then

Jτi+1
(ξi+1)− Jτi(ξi) ≤

(
αβµτi (ξi) − ᾱβ̄ντi (ξi,Ni+η)

)
θτi(ξi)

≤ −ωαβµτi (ξi) Λ

2χNi

≤ −ωαβC
(

Λ

2χNi

)2

,

(2.282)

where C > 0 and the last inequality follows from Corollary 2.81. Recall that Ni+1 ≥ Ni,
thus using Lemmas 2.59 and 2.84 we have that

J(ξi+1)− J(ξi) ≤
2B

2Ni
− ωαβC

(
Λ

2χNi

)2

≤ 1

22χNi

(
2B

2(1−2χ)Ni
− ωαβCΛ2

)
,

(2.283)

and since χ ∈
(
0, 1

2

)
, we get that for Ni large enough J(ξi+1) ≤ J(ξi). Similarly, if Ψτi(ξi) > 0

then

Ψ(ξi+1)−Ψ(ξi) ≤
1

22χNi

(
2B

2(1−2χ)Ni
− ωαβCΛ2

)
, (2.284)

thus for Ni large enough, Ψ(ξi+1) ≤ Ψ(ξi). Third, let i ∈ K ∩ I such that Ψτi(ξi) ≤ 0, then,
by Lemma 2.80,

Jτi+1
(ξi+1)− Jτi(ξi) ≤

(
αβµτi (ξi) − ᾱβ̄ντi (ξi,Ni+η)

)
θτi(ξi)

≤ −2ωαβM
∗
2δδ,

(2.285)
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thus, by Lemmas 2.59 and 2.84, for Ni large enough,

J(ξi+1)− J(ξi) ≤ −ωαβM
∗
2δδ. (2.286)

Similarly, if Ψτi(ξi) > 0, using the same argument and Lemma 2.60, for Ni large enough,

Ψ(ξi+1)−Ψ(ξi) ≤ −ωαβM
∗
2δδ. (2.287)

Now let us assume that there exists i0 ∈ N such that Ni0 is large enough and Ψτi0
(ξi0) ≤ 0.

Then by Lemma 2.85 we get that Ψτi(ξi) ≤ 0 for each i ≥ i0. But as shown above, either
i /∈ K∩I and J(ξi+1) ≤ J(ξi) or i ∈ K∩I and Equation (2.286) is satisfied, and since K∩I
is an infinite set we get that J(ξi) → −∞ as i → ∞, which is a contradiction as J is lower
bounded.

On the other hand, if we assume that Ψτi(ξi) > 0 for each i ∈ N, then either i /∈ K ∩ I
and Ψ(ξi+1) ≤ Ψ(ξi) or i ∈ K ∩ I and Equation (2.287) is satisfied, thus implying that
Ψ(ξi)→ −∞ as i→∞. But this is a contradiction since, by Lemma 2.60, this would imply
that Ψτi(ξi)→ −∞ as i→∞.

Finally, both contradictions imply that θτi(ξi)→ 0 as i→∞ as desired.

In conclusion, we can prove that the sequence of points generated by Algorithm 2.2
converges to a point that is a zero of θ or a point that satisfies our optimality condition.

Theorem 2.87. Let {Ni}i∈N, {τi}i∈N, and {ξi}i∈N be the sequences constructed by Algo-
rithm 2.2, then

lim
i→∞

θ(ξi) = 0, (2.288)

where θ is as defined in Equation (2.30).

Proof. This result follows immediately from Lemma 2.86 after noticing that the Discretized
Relaxed Switched System Optimal Control Problem is a consistent approximation of the
Switched System Optimal Control Problem, as is proven in Theorem 2.79, and applying
Theorem 2.50.

2.6 Examples

In this section, we apply Algorithm 2.2 to calculate an optimal control for four examples.
Before describing each example, we begin by describing the numerical implementation of
Algorithm 2.2. First, observe that the analysis presented thus far does not require that the
initial and final times of the trajectory of switched system be fixed to 0 and 1, respectively.
Instead, the initial and final times of the trajectory of the switched system are treated as fixed
parameters t0 and tf , respectively. Second, we employ a MATLAB implementation of LSSOL
from TOMLAB in order to compute the optimality function at each iteration of the algorithm
since it is a quadratic program [Hol99]. Third, for each example we employ a stopping
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Example Mode 1 Mode 2 Mode 3

LQR ẋ(t) = Ax(t) +

 0.9801
−0.1987

0

u(t) ẋ(t) = Ax(t) +

 0.1743
0.8601
−0.4794

u(t) ẋ(t) = Ax(t) +

0.0952
0.4699
0.8776

u(t)

Tank ẋ(t) =

[
1−

√
x1(t)√

x1(t)−
√
x2(t)

]
ẋ(t) =

[
2−

√
x1(t)√

x1(t)−
√
x2(t)

]
N/A

Quadrotor ẍ(t) =

 sinx3(t)
M

(u(t) +Mg)
cosx3(t)

M
(u(t) +Mg)− g

0

 ẍ(t) =

 g sinx3(t)
g cosx3(t)− g

−Lu(t)
I

 ẍ(t) =

 g sinx3(t)
g cosx3(t)− g

Lu(t)
I



Needle ẋ(t) =


sin
(
x5(t)

)
u1(t)

− cos
(
x5(t)

)
sin
(
x4(t)

)
u1(t)

cos
(
x4(t)

)
cos
(
x5(t)

)
u1(t)

κ cos
(
x6(t)

)
sec
(
x5(t)

)
u1(t)

κ sin
(
x6(t)

)
u1(t)

−κ cos
(
x6(t)

)
tan
(
x5(t)

)
u1(t)

 ẋ(t) =


0
0
0
0
0

u2(t)

 N/A

Table 2.1: The dynamics of each of the modes of the switched system examples.

Example L(x(t), u(t), t) ϕ
(
x(ξ)(tf )

)
U γ α β ᾱ β̄ Λ χ ω t0 tf

LQR 0.01 · (u(t))2

∥∥∥∥∥∥
x1(tf )− 1
x2(tf )− 1
x3(tf )− 1

∥∥∥∥∥∥
2

2

u(t) ∈ [−20, 20] 1 0.1 0.87 0.005 0.72 10−4 1
4

10−6 0 2

Tank 2 · (x2(t)− 3)2 0 N/A 100 0.01 0.75 0.005 0.72 10−4 1
4

10−6 0 10

Quadrotor 5 · (u(t))2

∥∥∥∥∥∥∥

√

5 · (x1(tf )− 6)√
5 · (x2(tf )− 1)

sin
(
x3(tf )

2

)

∥∥∥∥∥∥∥

2

2

u(t) ∈ [0, 10−3] 10 0.01 0.80 5× 10−4 0.72 10−4 1
4

10−6 0 7.5

Needle 0.01 ·
∥∥∥∥[u1(t)
u2(t)

]∥∥∥∥2

2

∥∥∥∥∥∥
 x1(tf ) + 2
x2(tf )− 3.5
x3(tf )− 10

∥∥∥∥∥∥
2

2

u1(t) ∈ [0, 5]
u2(t) ∈ [−π

2
, π

2
]

100 0.002 0.72 0.001 0.71 10−4 1
4

0.05 0 8

Table 2.2: The parameters and cost functions used for each of the examples in the imple-
mentation of Algorithm 2.2.

Example
Initial Continuous Initial Discrete Algorithm 2.2 Algorithm 2.2 MIP MIP
Input, ∀t ∈ [t0, tf ] Input, ∀t ∈ [t0, tf ] Computation Time Final Cost Computation Time Final Cost

LQR u(t) = 0 d(t) =

1
0
0

 9.827[s] 1.23× 10−3 753.0[s] 1.89× 10−3

Tank N/A d(t) =

[
1
0

]
32.38[s] 4.829 119700[s] 4.828

Quadrotor u(t) = 5× 10−4 d(t) =

0.33
0.34
0.33

 8.350[s] 0.128 2783[s] 0.165

Needle u(t) =

[
0
0

]
d(t) =

[
0.5
0.5

]
62.76[s] 0.302 did not converge did not converge

Table 2.3: The initialization parameters used for each of the examples in the implementation
of Algorithms 2.2 and MIP, together with the computation time and the final optimal values.
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Figure 2.3: Optimal trajectories for each of the algorithms where the point (1, 1, 1) is drawn
in green, and where the trajectory is drawn in blue when in mode 1, in purple when in mode
2, and in red when in mode 3.

criterion that terminates Algorithm 2.2, if θτ becomes too large. Each of these stopping
criteria is described when we describe each example. Next, for the sake of comparison we
compare the performance of Algorithm 2.2 on each of the examples to a traditional Mixed
Integer Program (MIP). To perform this comparison, we employ a TOMLAB implementation
of a MIP described in [FL94] which mixes branch and bound steps with sequential quadratic
programming steps. Finally, all of our comparisons are performed on an Intel Xeon, 6 core,
3.47 GHz, 100 GB RAM machine.

Constrained Switched Linear Quadratic Regulator (LQR)

Switched Linear Quadratic Regulator (LQR) examples have been used to illustrate the utility
of a variety of proposed optimal control algorithms [EWA06; XA02]. We consider an LQR
system in three dimensions, with three discrete modes, and a single continuous input. The
dynamics in each mode are as described in Table 2.1 where:

A =

 1.0979 −0.0105 0.0167
−0.0105 1.0481 0.0825
0.0167 0.0825 1.1540

 . (2.289)
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Figure 2.4: Optimal trajectories for each of the algorithms where x1(t) is drawn using points,
x2(t) is drawn using stars, and each state trajectory is drawn in blue when in mode 1 and
in purple when in mode 2.

The system matrix is purposefully chosen to have three unstable eigenvalues and the control
matrix in each mode is only able to control along single dimension. Hence, while the system
and control matrix in each mode is not a stabilizable pair, the system and all the control
matrices taken together simultaneously is stabilizable and is expected to appropriately switch
between the modes to reduce the cost. The objective of the optimization is to have the
trajectory of the system at time tf be at (1, 1, 1) while minimizing the input required to
achieve this task. This objective is reflected in the chosen cost function which is described
in Table 2.2.

Algorithm 2.2 and the MIP are initialized at x0 = (0, 0, 0) with continuous and discrete
inputs as described in Table 2.3 with 16 equally spaced samples in time. Algorithm 2.2 took
11 iterations, ended with 48 time samples, and terminated after the optimality condition was
bigger than −10−2. The result of both optimization procedures is illustrated in Figure 2.3.
The computation time and final cost of both algorithms can be found in Table 2.3. Notice
that Algorithm 2.2 is able to compute a lower cost continuous and discrete input when
compared to the MIP and is able to do it more than 75 times faster.

Double Tank System

To illustrate the performance of Algorithm 2.2 when there is no continuous input present,
we consider a double-tank example. The two states of the system correspond to the fluid
levels of an upper and lower tank. The output of the upper tank flows into the lower tank,
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Figure 2.5: Optimal trajectories for each of the algorithms where the point (6, 1) is drawn
in green, the trajectory is drawn in blue when in mode 1, in purple when in mode 2, and in
red when in mode 3. Also, the quadrotor is drawn in black and the normal direction to the
frame is drawn in gray.

the output of the lower tank exits the system, and the flow into the upper tank is restricted
to either 1 or 2. The dynamics in each mode are then derived using Toricelli’s Law and are
describe in Table 2.1. The objective of the optimization is to have the fluid level in the lower
tank track 3 and this is reflected in the chosen cost function described in Table 2.2.

Algorithm 2.2 and the MIP are initialized at x0 = (0, 0) with a discrete input described in
Table 2.3 with 128 equally spaced samples in time. Algorithm 2.2 took 67 iterations, ended
with 256 time samples, and terminated after the optimality condition was bigger than −10−2.
The result of both optimization procedures is illustrated in Figure 2.4. The computation
time and final cost of both algorithms can be found in Table 2.3. Notice that Algorithm 2.2
is able to compute a comparable cost discrete input compared to the MIP and is able to do
it nearly 3700 times faster.

Quadrotor Helicopter Control

Next, we consider the optimal control of a quadrotor helicopter in 2D using a model described
in [Gil+11]. The evolution of the quadrotor can be defined with respect to a fixed 2D reference
frame using six dimensions where the first three dimensions represent the position along a
horizontal axis, the position along the vertical axis and the roll angle of the helicopter,
respectively, and the last three dimensions represent the time derivative of the first three
dimensions. We model the dynamics as a three mode switched system (the first mode
describes the dynamics of going up, the second mode describes the dynamics of moving to
the left, and the third mode describes the dynamics of moving to the right) with a single
input as described in Table 2.1 where L = 0.3050 meters, M = 1.3000 kilograms, I = 0.0605
kilogram meters squared, and g = 9.8000 meters per second squared. The objective of the
optimization is to have the trajectory of the system at time tf be at position (6, 1) with a
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Figure 2.6: Optimal trajectory and optimal discrete inputs generated by Algorithm 2.2,
where the point (−2, 3.5, 10) is drawn in green and obstacles are drawn in gray.

zero roll angle while minimizing the input required to achieve this task. This objective is
reflected in the chosen cost function which is described in Table 2.2. A state constraint is
added to the optimization to ensure that the quadrotor remains above ground.

Algorithm 2.2 and the MIP are initialized at position (0, 1) with a zero roll angle, with
zero velocity, with continuous and discrete inputs as described in Table 2.3, and with 64
equally spaced samples in time. Algorithm 2.2 took 31 iterations, ended with 192 time
samples, and terminated after the optimality condition was bigger than −10−4. The result
of both optimization procedures is illustrated in Figure 2.5. The computation time and final
cost of both algorithms can be found in Table 2.3. Notice that Algorithm 2.2 is able to
compute a lower cost continuous and discrete input when compared to the MIP and is able
to do it more than 333 times faster.

Bevel-Tip Flexible Needle

Bevel-tip flexible needles are asymmetric needles that move along curved trajectories when
a forward pushing force is applied. The 3D dynamics of such needles has been described
in [KC07] and the path planning in the presence of obstacles has been heuristically considered
in [Dui+08]. The evolution of the needle can be defined using six dimensions where the first
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three dimensions represent the position of the needle relative to the point of entry and the
last three dimensions represent the yaw, pitch and roll of the needle relative to the plane,
respectively. As suggested by [Dui+08], the dynamics of the needle are naturally modeled as
a two mode (the first mode describes the dynamics of going forward while the second mode
describes the dynamics of the needle turning) switched system as described in Table 2.1 with
two continuous inputs: u1 representing the insertion speed and u2 representing the rotation
speed of the needle and where κ is the curvature of the needle and is equal to .22 inverse
centimeters. The objective of the optimization is to have the trajectory of the system at
time tf be at position (−2, 3.5, 10) while minimizing the input required to achieve this task.
This objective is reflected in the chosen cost function which is described in Table 2.2. A
state constraint is added to the optimization to ensure that the needle remains outside of
three spherical obstacles centered at (0 , 0 , 5), (1 , 3 , 7), and (−2 , 0 , 10) all with radius 2.

Algorithm 2.2 and the MIP are initialized at position (0, 0, 0) with continuous and discrete
input described in Table 2.3 with 64 equally spaced samples in time. Algorithm 2.2 took
103 iterations, ended with 64 time samples, and terminated after the optimality condition
was bigger than −10−3. The computation time and final cost of both algorithms can be
found in Table 2.3. The MIP was unable to find any solution. The result of Algorithm 2.2
is illustrated in Figure 2.6.
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Chapter 3

Metrization and Numerical
Integration of Hybrid Dynamical
Systems

Hybrid dynamical systems provide natural models for systems whose dynamics involve both
continuous and discrete transitions. Critical to the study of such systems is numerical simu-
lation. Two approaches to numerical simulation have been considered in the hybrid systems
literature. The first method, event detection, aims to approximate the instant in time when
a trajectory crosses a switching surface by constructing a polynomial approximation to the
trajectory and then employing a root-finding scheme [Car78; EKP01; SGB91]. Unfortunately
no proof exists that the approximation generated using this method converges to the actual
trajectory. The second method, time stepping, uses a variable-step integrator to place events
at sample times of the discrete approximation [Bro+02]. Convergence results exist for this
method but only for the particular case of mechanical systems with impact [PS03b; PS03a].

Here we present a numerical integration algorithm to simulate hybrid dynamical systems
whose continuous states evolve on smooth manifolds. First, we relax switching surfaces by
attaching an ε-sized strip in a manner similar to the technique involved in regularizing Zeno
executions [JEL99]. We then extend the vector field and distance metric from each domain
onto these strips to obtain a relaxed hybrid dynamical system. In a manner similar to the
construction of the hybrifold [Sim+05] and hybrid colimit [AS05], we identify subsets of the
relaxed domains to construct a single metric space and develop our numerical integration
scheme on this space. Importantly, we prove that the discrete approximation generated by
our algorithm converges to the original trajectory in this space. We formulate our result
in the context of autonomous vector fields to simplify the exposition, but under reasonable
assumptions the same result can be applied on controlled vector fields.

Our contributions are twofold: first, in Section 3.2 we construct a metric space which
contains the domains of a hybrid system and supports convergence analysis; second, in
Section 3.3 we develop a discrete approximation technique and prove that this approximation
converges to the original trajectory. Section 3.1 describes the notation used throughout the
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chapter and Section 3.4 contains an example illustrating the numerical integration scheme.
The contents of this chapter are based on the results presented in [Bur+11].

3.1 Preliminaries

Smooth Manifolds

We begin by introducing the standard mathematical objects used throughout this chapter.
An extended introduction to the ideas presented herein related to manifolds can be found
in [Lee03].

Definition 3.1. A topological n–dimensional manifold is a space with the following proper-
ties:

(1) M is a Hausdorff space.

(2) M is second countable.

(3) M is locally equivalent to a subset of Rn, i.e. for each p ∈M there exists a neighborhood
Up of p and a function ϕp : M → Rn such that ϕp|Up is a homeomorphism.

The last condition implies the existence of a collection of pairs of neighborhoods and func-
tions. We call this collection the charts of M and denote it by {(Uα, ϕα)}α∈A for some index
set A.

Definition 3.2. A smooth n–dimensional manifold, or simply a manifold, is a topological
manifold, as described in Definition 3.1, such that for each α, β ∈ A the map ϕα ◦ ϕ−1

β :
ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ) is a diffeomorphism.

Definition 3.3. A manifold with boundary is a topological manifold where the range of the
charts {ϕα}α∈A is not Rn, as described in Definition 3.1, but

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}. (3.1)

We define the boundary of M , denoted by ∂M , as the union of the preimages of all charts
of the set {(x1, . . . , xn) ∈ Rn | xn = 0}.

Note that the definition of manifold with boundary is a generalization of the original
definition of manifold, in the sense that every manifold can be seen as a manifold with
boundary, where the boundary is the null set.

Definition 3.4. An embedded k–dimensional submanifold of a manifold M is a subset
S ⊂M where for each p ∈ S there exists a neighborhood Up of p and a function ϕp : M → Rn

such that ϕp(Up ∩ S) ⊂ {(x1, . . . , xn) ∈ Rn | xk+1 = · · · = xn = 0}. We also say that S has
codimension equal to (n− k).
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Given a manifold with boundary M , ∂M is clearly an embedded (n − 1)–dimensional
submanifold, as described in Definition 3.3.

Definition 3.5. Given a smooth manifold M , we say that C∞(M) is the set of all the
infinitely smooth functions from M to R.

Definition 3.6. Given a manifold M , the tangent space at p ∈M , denoted by TpM , is the
set of all maps V : C∞(M)→ R such that, for any f, g ∈ C∞(M),

V (fg) = f(p)V (g) + g(p)V (f). (3.2)

If the manifold is Rn, then, given p ∈ Rn, TpRn is exactly the set of all directional
derivatives of smooth functions evaluated at p, i.e. for each V ∈ TpM there exists a direction
d ∈ Rn such that

V (f) = lim
λ→0

f(p+ λd)− f(p)

λ
. (3.3)

As shown in Section 3 in [Lee03], Definition 3.6 is the right definition for the tangent space
in the sense that we can intuitively match every element in TpM with a vector belonging to
a tangential plane to p ∈ M . Also, given a smooth curve γ : R → M , a natural definition
for its derivative at each t ∈ R, denoted by γ̇(t), is exactly a vector in Tγ(t)M .

The most important result obtained from Definition 3.6 is that for each p ∈ M , TpM is
an n–dimensional vector space, thus isomorphic to Rn (Lemmas 3.9 and 3.10 in [Lee03]).

Definition 3.7. The tangent bundle of a manifold M , denoted by TM , is the disjoint union
of all the tangent spaces, i.e. TM =

∐
p∈M TpM . In other words, the elements in TM are

pairs of the form (p, V ) where p ∈M and V ∈ TpM .

Definition 3.8. A vector field in a manifold M is a map F : M → TM such that, for each
p ∈M , F (p) ∈ TpM .

Definition 3.9. Given two manifolds M and N and a smooth function F : M → N , the
pushforward at p ∈ M , denoted by F∗|p : TpM → TF (p)N , is defined as

(
F∗|p(V )

)
(f) =

V (f ◦ F ).

In practice, the pushforward can be understood as the Jacobian matrix of F evaluated
at p, taking vectors from TpM to TF (p)N .

Definition 3.10. Given a smooth vector field F : M → TM and a point p ∈M , the integral
curve of F with initial condition p, denoted x : I →M , where I ⊂ R is an interval containing
the origin, is a curve satisfying:

ẋ(t) = F
(
x(t)

)
, x(0) = p, ∀t ∈ I. (3.4)

Moreover, we say that x is a maximal integral curve of V if for any other integral curve
x̃ : Ĩ →M of F with initial condition p, Ĩ ⊂ I.
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Theorem 17.8 in [Lee03] proves all the fundamental results for integral curves, namely
that for every smooth vector field there exists a unique maximal smooth integral curve. Also,
Theorem 17.11 in [Lee03] proves that every smooth vector field in a compact manifold has a
maximal integral curve whose domain is R, which is a particular case of the well known result
for ordinary differential equations about the existence and uniqueness of solutions when the
vector field is Lipschitz continuous (see Section 2.4.1 in [Vid02] for a standard version of this
result).

Definition 3.11. A Riemannian metric at p ∈ M is a smooth bilinear map gp : TpM ×
TpM → R, such that gp(V,W ) = gp(W,V ) for each V,W ∈ TpM , and gp(V, V ) > 0 whenever
V 6= 0.

A Riemannian metric on M is a collection of Riemannian metrics at each point in M
forming a smooth map g : TM × TM → R.

A Riemannian manifold is a pair (M, g) where M is a manifold (possibly with boundary)
and g is a Riemannian metric on M .

We can define an induced distance by the Riemannian metric on a Riemannian manifold,
denoted d : M ×M → [0,∞), to be the infimum of the length of piece–wise smooth curves
between the arguments of d, i.e. if we define the length of a curve γ : [0, T ]→M by:

L(γ) =

∫ T

0

√
gγ(t)

(
γ̇(t), γ̇(t)

)
dt, (3.5)

then the metric d is defined by:

d(p, q) = inf {L(γ) | γ : [0, T ]→M piece–wise smooth, γ(0) = p, and γ(T ) = q}. (3.6)

A fundamental result in Riemannian manifolds is that its induced metric d generates the
topology of M (see Lemma 6.2 in [Lee97] for manifolds without boundary, and Lemma 2
in [AA81] for manifold with boundary). Also note that given V ∈ TpM , the map ‖V ‖g =√
gp(V, V ) is indeed a norm in TpM .

Definition 3.12. Given Wp ⊂ TpM , a neighborhood of 0 ∈ TpM , we say that a retraction
at p ∈M is a map βp : Wp →M that is differentiable at the origin satisfying:

(1) βp(0) = p.

(2) (βp)∗|0 ≡ idTpM , where we use the canonical identification of every element in T0 (TpM)
to its analogous in TpM , and idTpM : TpM → TpM is the identity function.

A retraction on M is a collection of retractions at each point in M forming a map
β : W →M , where W ⊂ TM is the disjoint union of neighborhoods Wp.
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The intuition behind retractions is closely related to the concept of first-order approx-
imations to curves. Indeed, given a smooth curve γ : R → M , t ∈ R, its tangent vector
V = γ̇(t) ∈ TpM at t, and a retraction βγ(t), a first-order approximation of γ(t+λ), for small
values of λ, is βγ(t)(λV ). Moreover, if M = Rn then the canonical retraction is βp(V ) = p+V .

Retractions are defined to preserve first derivatives around the origin, as stated in Condi-
tion 2 in Definition 3.12. Even though we do not make use of it in our result, the most impor-
tant retraction in a Riemannian manifold is the Exponential Map (see Section 5 in [Lee97])
which preserves the derivatives of any order.

Hybrid Dynamical Systems

Motivated by the definitions of hybrid systems presented in [BBM98; JEL99; Lyg+99;
Sim+05], we begin by defining the class of hybrid systems of interest.

Definition 3.13. A hybrid dynamical system is a tuple H = (J ,Γ,D,B,F ,G,R), where:

• J is a finite set indexing the discrete states of H.

• Γ ⊂ J × J is the set of edges, forming a directed graph structure over J .

• D = {Dj}j∈J is the set of domains, where each Dj is a compact connected smooth
nj-dimensional Riemannian manifold with boundary, with Riemannian metric gj and
induced distance dj.

• B = {βj}j∈J is the set of retractions, where βj is a retraction defined on Dj.

• F = {Fj}j∈J is the set of vector fields, where each Fj is a vector field defined on Dj.

• G = {Ge}e∈Γ is the set of guards, where G(j,j′) ⊂ ∂Dj is a guard in mode j ∈ J which
defines a transition to mode j′ ∈ J .

• R = {Re}e∈Γ is the set of reset maps, where R(j,j′) : G(j,j′) → ∂Dj′ is a continuous
map.

A diagram presenting a three mode hybrid system is shown in Figure 3.1.
We make the following assumptions on the vector fields, guards, reset maps, and retrac-

tions:

Assumption 3.14. Given j ∈ J , Fj is Lipschitz continuous. That is, for each chart

(Uα, ϕα) of Dj, the function F̃j : Uα → TRnj , defined by F̃j(p) =
(
(ϕα)∗ ◦ Fj ◦ ϕ−1

α

)
(p), is

Lipschitz continuous.

Assumption 3.15. The guards do not intersect. That is, for each pair of edges e1, e2 ∈ Γ,
with e1 6= e2, Ge1 ∩Ge2 = ∅.
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Figure 3.1: Diagram of a hybrid dynamical system with three modes.

Assumption 3.16. The guards are closed embedded submanifolds with codimension 1. Also,
the image of each reset map is a closed set.

Note that, since reset maps are continuous, Assumption 3.16 implies that the guards are
also closed sets.

Assumption 3.17. The pushforward of each retraction in each chart is Lipschitz with respect
to its point of evaluation, i.e. given a chart ϕα on Dj and a neighborhood of the origin

W̃p ⊂ TpRnj , the function β̃p(V ) : W̃p → Rnj , defined by β̃p(V ) =
(
ϕα ◦ (βj)p ◦ (ϕα)−1

∗
)
(V ),

has a pushforward, denoted by (β̃p)∗|V that is Lipschitz with respect to its point of evaluation
V .

Assumptions 3.14 and 3.15 are sufficient to ensure the existence and uniqueness of exe-
cutions of hybrid dynamical systems as we prove in Lemma 3.32. Assumption 3.16 allows us
to metrize our relaxed domain in Section 3.2. Assumption 3.17 is critical in ensuring that
the numerical integration scheme described in Section 3.3 is properly defined.

3.2 Relaxation and Metrization of Hybrid Dynamical

Systems

Rather than approximating the time instant when a trajectory intersects a guard, we prove
convergence of the numerical integration scheme described in the next section by relaxing
the hybrid dynamical system. First, we relax hybrid domains along their guards and extend
the definition of the domain’s metric, vector field, and retraction onto this relaxation. Next,
we attach the disparate domains to each other via a topological quotient and construct a
single metric space in which we can prove convergence.

The main mathematical tool behind the final result in this section is that we can cre-
ate an equivalence relation that relates each relaxed guard, Gε

e, with its image through its
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corresponding reset map, Rε
e

(
Gε
e

)
. Formally, given a topological space S and a function

f : A→ B, A,B ⊂ S, we define the following equivalence relation:

Λf =
{

(a, b) ∈ S × S | a ∈ f−1(b), or b ∈ f−1(a), or a = b
}
, (3.7)

and we say that a, b ∈ S are related, denoted by a
f∼ b, if (a, b) ∈ Λf . It is clear that Λf

defines an equivalence relation, since it is reflexive, symmetric, and transitive. We denote
the quotient of S under Λf by S

Λf
. Also, in this case we say that the equivalence class of

x ∈ S is [x]f =
{
a ∈ S | a f∼ x

}
.

Another useful tool from graph theory is the concept of neighborhood in a graph. Using
the same notation as in Definition 3.13, given a node j ∈ J , we say that the neighborhood
of j is

Nj = {e ∈ J × J | ∃j′ ∈ J s.t. e = (j, j′) ∈ Γ}. (3.8)

We begin by defining the relaxation of Dj, a single domain of a hybrid system. The
relaxation is accomplished by first “stretching” the guards belonging to Dj by attaching an
ε-sized strip along each guard. As we show in the next section, this eliminates the need to
exactly detect guard satisfaction, which is fundamental in order to create an implementable
computational scheme.

Definition 3.18. Let H be a hybrid dynamical systems as in Definition 3.13. Given e ∈
Γ, we say that Sεe = Ge × [0, ε] is the strip associated to guard Ge. Given j ∈ J , let
ιj :

∐
e∈Nj Ge →

∐
e∈Nj S

ε
e be the canonical identification ιj(p) = (p, 0) in its corresponding

strip.
Then, the relaxation of Dj is defined by:

Dε
j =

Dj

∐(∐
e∈Nj S

ε
e

)
Λιj

, (3.9)

where Λιj is defined as in Equation (3.7).

Note that, since Ge, for e ∈ Nj, is a closed embedded submanifold of ∂Dj by Assump-
tion 3.16, Sεe is a compact smooth manifold.

A point on a strip Sεe of Dj is defined using nj coordinates (z1, . . . , znj−1, τ), shortened
(ζ, τ), where the final coordinate, τ , is called the transverse coordinate and is the distance
along the interval [0, ε]. An illustration of the quotient process taking place in Definition 3.18
together with the definition of coordinates in each strip is shown in Figure 3.2. In the
definitions and results below we slightly abuse the notation in the following way: given
j ∈ J , e ∈ Nj, and p ∈ Ge, we say that (p, 0) ∈ Sεe , where what we mean is that ιj(p) ∈ Sεe ,
with ιj as in Definition 3.18.

We can construct coordinate charts for relaxations by extending the existing coordinate
charts in our original space.
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Λιj−−−−−→
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(1,3)

Sε
(1,2)

ε

Figure 3.2: Left: disjoint union of Dj and all its strips {Sεe}e∈Nj . Right: relaxed domain Dε
j

after taking the quotient with the relation Λιj .

Definition 3.19. Let α ∈ A and (Uα, ϕα) be a chart on Dj. If Uα is not a boundary chart,
then its relaxation (U ε

α, ϕ
ε
α) equals the original chart. Otherwise, let ια : ∂Uα → ∂Uα × {0}

be the canonical identification ια(p) = (p, 0).
Then the relaxation of Uα is:

U ε
α =

Uα
∐(

∂Uα × [0, ε]
)

Λια

, (3.10)

where Λια is as defined in Equation (3.7), and the relaxation of ϕα is:

ϕεα(x) =

{
ϕα(x) if x ∈ Uα,(
ϕα(ζ), τ

)
if x = (ζ, τ) ∈ (∂Uα × [0, ε]).

(3.11)

Note that ϕεα|Uεα is a homeomorphism, and that the relaxation of Uα is done in the same
spirit as the relaxation of Dj in Definition 3.18.

Next, we develop a metric on each relaxed domain. We aim to endow each relaxed domain
Dε
j with a metric dεj : Dε

j × Dε
j → [0,∞) which restricts to dj on Dj. To achieve this, we

first define a metric on each strip and then prove that the metric induced by the quotient
structure of the relaxation is actually a metric on Dε

j with the desired property.

Definition 3.20. Let j ∈ J and e ∈ Nj, where Nj is as in Equation (3.8). Then, the metric
dSεe : Sεe × Sεe → [0,∞) on the strip Sεe is:

dSεe
(
(ζ, τ), (ζ ′, τ ′)

)
= dj(ζ, ζ

′) + |τ − τ ′| . (3.12)

Before we continue we will define the simplest possible metric for the disjoint union of
sets in metric spaces.
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Definition 3.21. Let S1 and S2 be sets in metric spaces, with metric d1 and d2 respectively.
Then we say that d̃ : S1

∐
S2 × S1

∐
S2 → [0,∞] is the disjoint metric of S1

∐
S2, defined

by:

d̃(x, y) =


d1(x, y) if x, y ∈ S1,

d2(x, y) if x, y ∈ S2,

∞ otherwise.

(3.13)

Using Definition 3.21 we can define d̃εj to be the disjoint metric of Dj

∐(∐
e∈Nj S

ε
e

)
.

Then the function dεj : Dε
j ×Dε

j → [0,∞) defined by:

dεj(x, y) = inf

{
k∑
i=1

d̃εj(pi, qi) | k ∈ N, x = p1, y = qk, qi
ιj∼ pi+1 ∀i ∈ {1, . . . , k − 1}

}
,

(3.14)
where ιj is as in Definition 3.18, is a semi-metric on Dε

j , i.e. it is non-negative, symmetric, and
satisfies the Triangle Inequality (Definition 3.1.12 in [BBI01]), but in general, dεj(x, y) = 0

may not imply x
ιj∼ y. The following theorem establishes that, in fact, dεj is a metric on Dε

j .

Theorem 3.22. For each j ∈ J , the function dεj, as in Equation (3.14), is a metric on Dε
j ,

as in Definition 3.18.

Proof. We already know that dεj is a semi-metric, so all we must show is that [x]ιj = [y]ιj
whenever dεj

(
[x]ιj , [y]ιj

)
= 0, where ιj is as in Definition 3.18.

Let e ∈ Nj. Each x ∈ Dj \ Ge has a dj-ball that is disjoint from Ge, since Ge is closed
by Assumption 3.16, therefore [x]ιj = {x} is a singleton. Similarly each x ∈ Sεe \ (Ge × {0})
has a dSεe -ball which is disjoint from Ge × {0}, therefore [x]ιj = {x} is a singleton. Finally,

each x ∈ Ge has a dj-ball and a dSεe -ball (defined in their appropriate space) disjoint from
any other y ∈ Ge, therefore [x]ιj = {x, (x, 0)}.

This argument is true for each e ∈ Nj, and thus establishes that dεj is a metric on Dε
j .

The following Lemma, whose proof we omit, gives us a basic estimate of the relaxed
metric dεj .

Lemma 3.23. Let dεj be defined as in Equation (3.14), and let e ∈ Nj, where Nj is as in
Equation (3.7).

Then, given x, y ∈ Dj, d
ε
j(x, y) ≤ dj(x, y). Similarly, given x, y ∈ Sεe , dεj(x, y) ≤ dSεe (x, y).

Next, we extend the vector field onto the strip:

Definition 3.24. Given j ∈ J , for each e ∈ Nj, where Nj is as in Equation (3.7), let
the vector field on the strip Sεe , denoted FSεe , be the unit vector pointing outward along the
transverse direction, i.e. FSεe (ζ, τ) = ∂

∂τ
.
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D1 ε

Sε
(1,2)

Sε
(1,3)

Figure 3.3: Relaxed vector field F ε
j on Dε

j .

Then, the relaxation of Fj is:

F ε
j (x) =

{
Fj(x) if x ∈ Dj,

FSεe (x) if x ∈ Ge × (0, ε], ∀e ∈ Nj.
(3.15)

Note that the relaxation of the vector field is generally not continuous along each Ge,
for e ∈ Nj. As we will show in Lemma 3.33, this discontinuous vector field does not lead to
executions described as Filippov solutions of a switched differential equation [Fil88], since
the vector field on the strips always points away of the guard. An illustration of the relaxed
vector field F ε

j on Dε
j is shown in Figure 3.3.

In contrast to the vector field, which we explicitly extend throughout the strip, we do
not require an explicit form for our relaxed retractions. Instead, we require that any relaxed
retraction centered at points sufficiently close to a guard has a range that includes the strip.

Definition 3.25. Let j ∈ J , and e ∈ Nj, where Nj is as in Equation (3.7). Also, let
p ∈ Dj \ ∂Dj, and βp : Wp → Dj a retraction on p, as in Definition 3.12.

If β−1
p

(
G(j,j′)

)
∩Wp = ∅, then any relaxation of βp equals βp. Otherwise, we say that a

relaxation of βp is any differentiable function βεp : Up → Dε
j , with Up an open set containing

Wp, so that βεp agrees with βp on Wp.
The relaxation of βj, denoted by βεj , is just the collection of relaxations of βεp on the

interior of Dj.

Constructing a relaxed retraction is always possible by means of local relaxed coordinate
charts, but we omit the proof since it is outside the scope of our result. Note in particular
that if the domain Dj is a subset of Rnj , then a relaxation of a retraction βp(v) = p+v could
be constructed by simply extending the domain of βp and setting βεp(v) = p + v for each v
in the new domain.

We simultaneously relax each hybrid domain to define the relaxation of a hybrid dy-
namical system and then attach the disparate domains of the relaxed system together to
construct a metric space.
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Definition 3.26. Let H be a hybrid system as in Definition 3.13. The relaxation of H is a
tuple Hε = (J ,Γ,Dε,Bε,F ε,Gε,Rε), where:

• Dε =
{
Dε
j

}
j∈J is the set of relaxations of the domains D, as in Definition 3.18, with

metrics
{
dεj
}
j∈J , as in Equation (3.14).

• Bε =
{
βεj
}
j∈J is a set of relaxations of the retractions B, as in Definition 3.25.

• F ε =
{
F ε
j

}
j∈J is the set of relaxations of the vector fields F , as in Definition 3.24.

• Gε = {Gε
e}e∈Γ is the set of relaxations of the guards G, where, given e = (j, j′), each

guard Ge ⊂ ∂Dj is relaxed to Gε
e = Ge × {ε} ⊂ ∂Dε

j .

• Rε = {Rε
e}e∈Γ is the set of relaxations of the reset maps R, where, given e = (j, j′),

Rε
e : Gε

e → ∂Dj′ is defined by Rε
e(ζ, τ) = Re(ζ).

Now we can define a new metric space where the executions of hybrid systems can be
naturally described. This definition is, in practice, completely equivalent to the hybrid colimit
presented in [AS05].

Definition 3.27. Let Hε be a relaxed hybrid system as in Definition 3.26. Also, let

Rε :
∐
e∈Γ

Gε
e →

∐
j∈J

Dε
j , (3.16)

the function that represents all reset maps as a unified function, i.e. Rε(p) = Rε
e(p) whenever

p ∈ Gε
e.

Then, the relaxed hybrid quotient space of a relaxed hybrid dynamical system Hε is:

Mε =

∐
j∈J D

ε
j

ΛRε
, (3.17)

where ΛRε is as in Equation (3.7).

The illustration in Figure 3.4 shows the details about the construction in Definition 3.27.
As we did in the definition of the relaxed metric dεj , we say that µ̃ε is the disjoint metric on∐

j∈J D
ε
j based on the individual metrics

{
dεj
}
j∈J , as in Definition 3.21. Then the function

µε :Mε ×Mε → [0,∞) defined by:

µε(x, y) = inf

{
k∑
i=1

µ̃ε(pi, qi) | k ∈ N, x = p1, y = qk, qi
Rε∼ pi+1 ∀i ∈ {1, . . . , k − 1}

}
,

(3.18)
is a semi-metric on Mε, where Rε is as in Definition 3.27. In general, µε(x, y) = 0 may not

necessarily imply x
Rε∼ y. The following theorem establishes the fact that µε is a metric on

Mε.
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Figure 3.4: Left: disjoint union of Dε
1 and Dε

2. Right: relaxed hybrid quotient space Mε

after taking the quotient with the relation ΛRε .

Theorem 3.28. The function µε is a metric on Mε.

Proof. Since, by Assumption 3.16, the image of each reset map is closed, and since we can
obtain metric neighborhoods separating distinct points in Rε

e

(
Gε
e

)
for each e ∈ Γ, the result

follows by a similar argument to the one presented in the proof of Theorem 3.22.

As we did in Lemma 3.23, the next Lemma shows that we can estimate the value of µε

using each relaxed metric dεj within a domain. We omit the proof since it follows easily from
the definition of the metric as the infimum of all possible paths.

Lemma 3.29. Let µε be defined as in Equation (3.18), and let j ∈ J . Then given x, y ∈ Dε
j ,

µε(x, y) ≤ dεj(x, y).

Perhaps the most relevant property of µε is that if y = Rε
e(x) for some x ∈ Gε

e and
e ∈ Γ, then µε(x, y) = 0, which is exactly what we would expect to happen if we want the
trajectories of hybrid systems to be continuous. Exploiting this property, we define a metric
between curves on Mε.

Definition 3.30. Let I ⊂ [0,∞) a bounded interval, and µε as in Equation (3.18). Then,
given any two curves x, x′ : I →Mε we define

ρεI
(
x, x′

)
= sup

{
µε
(
x(t), x′(t)

)
| t ∈ I

}
. (3.19)

Our choice of the supremum among point-wise distances in ρεI is inspired in the sup-norm
for continuous real functions, since, as we show in Section 3.3, the executions of relaxed hybrid
systems are continuous.



CHAPTER 3. METRIZATION AND INTEGRATION OF HYBRID SYSTEMS 101

Require: t = 0, j ∈ J , and p ∈ Dj.
1: Set x(0) = p.
2: loop
3: Compute γ : J → Dj, the maximal integral curve of Fj such that γ(t) = x(t).
4: Set x(s) = γ(s) for each s ∈ J ∩ [t,∞).
5: Let t′ = sup J . . Note that if t′ is finite, then x(t′) ∈ ∂Dj.
6: if t′ =∞ or @e ∈ Nj such that x(t′) ∈ Ge then
7: Stop.
8: end if
9: Let (j, j′) ∈ Nj such that x(t′) ∈ G(j,j′). . Now we perform a mode transition.

10: Replace the value of x(t′) with R(j,j′)

(
x(t′)

)
.

11: Set t = t′ and j = j′.
12: end loop

Algorithm 3.1 Execution of a hybrid system H.

3.3 Relaxed Executions and Discrete Approximations

This section contains our main result: discrete approximations to trajectories of hybrid
dynamical systems, constructed using a modified version of the Forward Euler Algorithm,
converge to the actual trajectories. First, we define executions of hybrid dynamical systems
and relaxed hybrid dynamical systems. Next, we define our discrete approximation scheme
on our relaxed quotient space Mε. Finally, we prove that the discrete approximations of
executions of the relaxed hybrid dynamical system converge to the executions of the original
hybrid dynamical system.

Execution of a Hybrid System

We begin by defining an execution of a hybrid dynamical system. This definition agrees
with the standard intuition about executions of hybrid systems, i.e. the execution evolves as
a standard dynamical system until a guard is reached, in which case a “jump” occurs via
a reset map to a new hybrid domain. The main purpose of writing a new definition is to
clarify technical details that will become relevant in the proofs below.

Let H be a hybrid system as described in Definition 3.13. Then, Algorithm 3.1 defines
the execution of H by construction. Note that, since each domain in D is compact and each
vector field in F is Lipschitz continuous by Assumption 3.14, every maximal integral curve
of the vector field Fj, as in Definition 3.10, either stops in finite time at a point p ∈ ∂Dj

or it continues in Dj indefinitely (this is a simple extension of Theorem 7.10 in [Lee03]).
This fact is fundamental in Step 6, since it narrows down to only two possible cases after we
compute a maximal integral curve. A resulting execution from Algorithm 3.1, denoted x, is
a piece–wise continuous function defined from an interval I ⊂ [0,∞) to

∐
j∈J Dj. Figure 3.5
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Figure 3.5: Mode transition of execution x in a two-mode hybrid dynamical system.

shows an example of the mode transition of an execution.
Formally, given x as constructed by Algorithm 3.1 and t ∈ I, x(t) ∈

∐
j∈J Dj, but we

abuse notation and say that x(t) ∈ Mε when we should say that [x]Rε ∈ Mε, where Rε is
as in Definition 3.27. We make use of this fact when comparing a hybrid execution with its
corresponding relaxed execution, which we define in Algorithm 3.2.

With our definition of execution of a hybrid system in place, we can define an important
class of executions that only exist in hybrid systems.

Definition 3.31. A Zeno execution is an execution where there exists an infinite number
of discrete transitions in a finite amount of time. Hence, there exists T ∈ R so that the
execution is only defined on I = [0, T ).

Zeno executions are important because, among other properties, they are very hard
to approximate numerically since, in practice, simulating an infinite number of discrete
transitions takes an infinite amount of time in any computer.

Now we show that Algorithm 3.1 produces well-defined trajectories.

Lemma 3.32. Let H be a hybrid system as in Definition 3.13, j ∈ J , and p ∈ Dj. Then,
Algorithm 3.1 produces a unique maximal trajectory.

Proof. Let x : I →
∐

j∈J Dj be the execution produced by Algorithm 3.1. First note that
for each t ∈ I, x(t) is uniquely defined. Indeed, either x(t) is defined by a maximal integral
curve in Step 3, which is unique by Assumption 3.14, or it is defined as the image of a reset
map in Step 10, which is also unique by Assumption 3.15.

Now, Algorithm 3.1 can produce only three types of executions:

• x has a finite number of mode transitions and I = [0,∞).

• x has a finite number of mode transitions, I = [0, T ] for some T > 0, and x(T ) ∈ ∂Dj

for some j ∈ J .
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Require: t = 0, j ∈ J , and p ∈ Dj.
1: Set xε(0) = p.
2: loop
3: Compute γ : J → Dj, the maximal integral curve of Fj such that γ(t) = xε(t).
4: Set xε(s) = γ(s) for each s ∈ J ∩ [t,∞).
5: Let t′ = sup J . . Note that if t′ is finite, then xε(t′) ∈ ∂Dj.
6: if t′ =∞ or @e ∈ Nj such that x(t′) ∈ Sεe then
7: Stop.
8: end if
9: Let (j, j′) ∈ Nj such that x(t′) = (q, 0) ∈ Sε(j,j′).

. Now we perform a mode transition.
10: Set xε(t′ + τ) = (q, τ) for each τ ∈ [0, ε].

. Note that [xε(t′ + ε)]Rε =
[
Rε

(j,j′)

(
xε(t′ + ε)

)]
Rε

.

11: Set t = t′ + ε and j = j′.
12: end loop

Algorithm 3.2 Relaxed execution of a relaxed hybrid system Hε.

• x is a Zeno execution and I = [0, T ) for some T > 0.

In either case we obtain a maximal trajectory, since its time domain cannot be extended.

Relaxed Execution of a Hybrid System

Now we define the relaxed execution of a hybrid dynamical system. The main idea here
is that, once the execution reaches a guard, we continue integrating over the strip with its
trivial vector field FSεe , as in Definition 3.24.

Let H be a hybrid system, as in Definition 3.13, and Hε its relaxation, as in Defini-
tion 3.26. Then, Algorithm 3.2 defines a relaxed execution of Hε by construction. The
resulting relaxed execution, denoted xε, is continuous function defined from an interval
I ⊂ [0,∞) to Mε, as in Definition 3.27. Note that Algorithm 3.2 is only defined for initial
conditions in Dj for some j ∈ J since the strips are artificial objects which do not appear
in the original model of the system.

A very important part of Algorithm 3.2 is Step 10, since it allow us to “connect” each
mode transition, forming a continuous curve in the relaxed quotient space Mε. It is also
important that our definition for the relaxed execution over the strip Sεe , also in Step 10, is
exactly equal to the maximal integral curve of FSεe . In other words, we could have written a
shorter version of Algorithm 3.2 by solving the maximal integral curve of the relaxed vector
field F ε

j in Step 3, at the expense of making it harder to understand. Figure 3.6 shows an
example of the relaxed mode transition produced by this Algorithm.
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Figure 3.6: Relaxed mode transition of the relaxed execution xε in a two-mode hybrid
dynamical system.

Note that, given a hybrid system H, its relaxation Hε, and an initial condition p ∈
Dj, the relaxed execution of Hε produced by Algorithm 3.2 is simply a delayed version
of the execution of H produced by Algorithm 3.1, since the relaxed version has to spend
additional time on each mode transition. Also, note that our definition of relaxed execution
is compatible with the execution of a regularized hybrid system as defined in [JEL99].

We omit the proof of the following Lemma since it is similar to the proof of Lemma 3.32.

Lemma 3.33. Let H be a hybrid system as in Definition 3.13, and let Hε be its relaxation
as in Definition 3.26. Also, let j ∈ J and p ∈ Dj.

Then, Algorithm 3.2 produces a unique maximal trajectory.

Next, we define the types of trajectories that can be approximated.

Definition 3.34. Let H be a hybrid system, as in Definition 3.13, and Hε be its relaxation,
as in Definition 3.26. Given j ∈ J and p ∈ Dj, let us denote the execution of H with
initial condition p by xp, and similarly let us denote the relaxed execution of Hε with initial
condition p by xεp.

Then, we say that xp is orbitally stable at p′ ∈Mε if, for each t ∈ I, the map p 7→ xεp(t)
is continuous at p′.

Orbitally stable executions are exactly the type of execution that can be approximated
in a hybrid dynamical system [Lyg+03]. Indeed, if an execution is not orbitally stable then
there exists a time t′ such that, if we initialize another execution arbitrarily close to xε(t′),
the executions will have different sequences of discrete transitions. Classical dynamical
systems are always orbitally stable (see Theorem 17.8 in [Lee03] for a stronger version of this
result), hence non-orbitally stable executions are, together with Zeno executions, two of the
consequences of allowing discrete transitions as time evolves. Figure 3.7 shows the case of a
non-orbitally stable execution due to a discrete transition in the boundary of a guard.
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Figure 3.7: Non-orbitally stable execution at p′ of a two-mode hybrid dynamical system.

Even though we do not deal with this problem in our result, we can mention a third
consequence of discrete mode transitions: the evolution of a hybrid system cannot be reversed
in time, as opposed to classical dynamical systems where we can always solve a differential
equation either forward or backwards in time. This problem is one of the biggest problems
in the computation of the optimal control of hybrid systems, since the costate is usually
calculated as the solution of a differential equation backwards in time (more details can be
found in [Sus99b; SC07; HT11]).

Before we state our result proving the convergence of relaxed executions as ε → 0, we
introduce a particular type of Zeno executions of interest.

Definition 3.35. Let H be a hybrid system, as in Definition 3.13, j ∈ J , and p ∈ Dj

such that x : [0, T ) → Mε, the execution of H with initial condition p as constructed by
Algorithm 3.1, is a Zeno execution as in Definition 3.31.

We say that x accumulates on p′ ∈ Mε if there exists C > 0 such that for each r > 0
there exists δ > 0 satisfying:

sup
t∈[T−δ,T )

µε
(
p′, x(t)

)
≤ Cε+ r. (3.20)

In practice, if a Zeno executions accumulates then it is impossible for this execution to
“fill” a portion of the hybrid space while having an infinite number of discrete transitions.
Examples of Zeno executions that do not accumulate can be found in [Zha+01]. Figure 3.8
shows a Zeno execution that accumulates on p′. Note that p′ must belong to a guard of the
hybrid system. Also, the choice of p′ is not unique in Mε for ε > 0, since we can always
choose the image of p′ via a reset map.

Now we state our first convergence theorem.

Theorem 3.36. Let H be a hybrid system, as in Definition 3.13, and Hε be its relaxation,
as in Definition 3.26. Also, let j ∈ J , p ∈ Dj, x : I →Mε be the execution of H with initial
condition p, constructed by Algorithm 3.1, and xε be the relaxed execution of Hε with initial
condition p, constructed by Algorithm 3.2.

If x has a finite number of discrete transitions or it is a Zeno execution that accumulates,
then for each J ⊂ I, where J is bounded interval,

lim
ε→0

ρεJ(x, xε) = 0, (3.21)
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Figure 3.8: Zeno execution accumulating on p′ for a two mode hybrid dynamical system.

where ρεJ is as in Definition 3.30.

Proof. First, let us consider the case when x undergoes a finite number of discrete transitions
on J , thus without loss of generality we can assume that J = [0, T ] for some T > 0. Let
{tk}m+1

k=0 be the sequence of times at which discrete mode transitions occur, with t0 = 0 and
tm+1 = T , and let {jk}mk=0 be the sequence of domains visited by the execution. Also, let
ε > 0 such that

(m+ 1)ε < sup {tk+1 − tk | tk+1 > tk, k ∈ {0, . . . ,m}}. (3.22)

Since the function x|[tk,tk+1) is defined on Djk , then using Lemmas 3.23 and 3.29 and the
definition of dj in Equation (3.6), for each t, t′ ∈ [tk, tk+1), t′ ≥ t,

µε
(
x(t), x(t′)

)
≤ djk

(
x(t), x(t′)

)
≤
∫ t′

t

√
gjk
(
ẋ(s), ẋ(s)

)
ds ≤ L(t′ − t), (3.23)

where L = sup
{
‖Fj(p)‖gj | p ∈ Dj, j ∈ J

}
, which is bounded since each Dj is compact.

Note that by definition, x|[t0,t1) = xε|[t0,t1). Let k ∈ {1, . . . ,m} such that tk+1 > tk. Then
we compute a bound on the distance µε

(
xε(t), x(t)

)
for t ∈ [tk, tk+1), by considering three

cases:

(1) t ∈ [tk, tk + (k − 1)ε): In this case xε(t) ∈ Djk−1
and x(t) ∈ Djk by our choice of ε in

Equation (3.22). Moreover, xε(t) = x
(
t− (k − 1)ε

)
. If we define x(t−k ) = limt→t−k

x(t),

then by Equation (3.23):

µε
(
xε(t), x(t)

)
≤ µε

(
x
(
t− (k − 1)ε

)
, x(t−k )

)
+ µε

(
x(t−k ), x(tk)

)
+ µε

(
x(tk), x(t)

)
≤ L(k − 1)ε+ ε+ L(k − 1)ε.

(3.24)

(2) t ∈ [tk + (k − 1)ε, tk + kε): In this case xε(t) ∈ Sε(jk−1,jk) and x(t) ∈ Djk , hence:

µε
(
xε(t), x(t)

)
≤ µε

(
xε(t), x(tk)

)
+ µε

(
x(tk), x(t)

)
≤ ε+ Lkε.

(3.25)
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(3) t ∈ [tk + kε, tk+1): In this case xε(t), x(t) ∈ Djk , hence xε(t) = x(t− kε) and:

µε
(
xε(t), x(t)

)
≤ Lkε. (3.26)

If there is a sequence of ` consecutive jumps such that tk = · · · = tk+`−1 then the argument is
analogous, noting that in the case 2 the interval of interest is [tk+(k−1)ε, tk+(k+`)ε), with a
bound `ε+L(k+`)ε. Also, note that µε

(
xε(tm+1), x(tm+1)

)
≤ µε

(
xε(t−m+1), x(t−m+1)

)
+ε, this

last bound being an equality if there is a discrete transition exactly at t = tm+1. Therefore,
putting together all the bounds above we have that for each t ∈ [0, T ]:

µε
(
xε(t), x(t)

)
≤ (2L+ 1)mε, (3.27)

which proves the theorem if the number of transitions is finite.
Next, let us consider the case when x is a Zeno execution that accumulates on p′, thus

I = [0, T ). As we did above, let {tk}∞k=0 be the sequence of times at which discrete mode
transitions occur, and let {jk}∞k=0 be the sequence of domains visited by the execution. Let
r > 0, and note that as a consequence of Definition 3.35 there exists C > 0 and δr > 0 such
that µε

(
p′, x(t)

)
≤ Cε + r for each t ∈ [T − δr, T ). Let us denote by n(δ) the number of

discrete transitions on the interval [0, T − δ], and let ε > 0 such that:

n(δr)ε < min
{
tn(δr)+1 − tn(δr), δ2r

}
, (3.28)

where without loss of generality we have assumed that tm(δr)+1 > tm(δr).
From this choice of ε we get that both xε and x are in the same domain at t = T − δr,

hence xε(t) = x
(
t− n(δr)ε

)
, and since n(δr)ε < δ2r, then

µε
(
p′, xε(t)

)
≤ Cε+ 2r, ∀t ∈ [T − δr, T ) . (3.29)

The conclusion follows since there exists C ′ > 0 such that, using Equations (3.27)
and (3.28),

µε
(
xε(t), x(t)

)
≤ C ′

(
tn(δr)+1 − tn(δr) + ε

)
+ 2r, ∀t ∈ [0, T ), (3.30)

But r > 0 was arbitrary and tn(δr)+1 − tn(δr) → 0 as r → 0 since the number of discrete
transitions goes to infinity, hence ρε[0,T )(x

ε, x)→ 0 as ε→ 0 as desired.

Discrete Approximations

Now we can define the discrete approximation of a relaxed execution. As mentioned above,
our discrete approximation scheme is based on the Forward Euler integration approximation
for ODE’s, modified to be applicable on Riemannian manifolds by using retractions, as in
Definition 3.12.

Given a hybrid systemH, as in Definition 3.13, and its relaxationHε, as in Definition 3.26.
Then, Algorithm 3.3 defines a discrete approximation of a relaxed execution of Hε. The
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Require: h > 0, k = 0, j ∈ J , and p ∈ Dj.
1: Set t0 = 0 and z(ε,h)(0) = p.
2: loop
3: if @t > 0 such that tFj

(
z(ε,h)(tk)

)
is in the domain of βεj then

4: Stop.
5: end if
6: Find smallest n such that h

2n
Fj
(
z(ε,h)(tk)

)
is in the domain of βεj .

7: Set tk+1 = tk + h
2n

.
8: Set z(ε,h)(t) = βεj

(
tFj
(
z(ε,h)(tk)

))
for each t ∈ [tk, tk+1].

9: if ∃e ∈ Nj such that z(ε,h)(tk+1) ∈ Sεe then
10: Let (j, j′) ∈ Nj such that z(ε,h)(tk+1) = (q, τ) ∈ Sε(j,j′).

. Now we perform a mode transition.
11: Set tk+2 = tk+1 + ε− τ .
12: Set z(ε,h)(t) = (q, t− tk+1 + τ) for each t ∈ [tk+1, tk+2].

. Note that
[
z(ε,h)(tk+2)

]
Rε

=
[
Rε

(j,j′)

(
z(ε,h)(tk+2)

)]
Rε

.

13: Set k = k + 2 and j = j′.
14: else
15: Set k = k + 1.
16: end if
17: end loop

Algorithm 3.3 Discrete approximation of the execution of a relaxed hybrid system Hε.

resulting discrete approximation, for a step size h > 0, denoted by z(ε,h), is a function from
a closed interval I ⊂ [0,∞) to Mε, as in Definition 3.27.

We now make a few remarks about Algorithm 3.3. First, the condition in Step 3 can only
be satisfied, i.e. the Algorithm only stops, if z(ε,h)(tk) ∈ ∂Dk and Fj

(
z(ε,h)(tk)

)
is outward-

pointing, since otherwise the domain of βεj contains a Euclidean neighborhood of the origin.
The intuition about outward-pointing vectors in the tangent space is very simple, these are
exactly the vectors that generate curves going “out” of the manifold. More details can
be found in Section 13 in [Lee03], particularly in Lemma 13.5. Second, Step 6 effectively
implements a variable step size Forward Euler scheme for Riemannian manifolds, where we
only reduce the step size when we are close to the boundary of Dε

j . Third, in Step 8, note that
if Dj ⊂ Rnj then the canonical retraction (βj)p(V ) = p + V produces exactly the Forward
Euler approximation as expected. Fourth, the function z(ε,h) is continuous on Mε.

But perhaps the most important comment we can make about Algorithm 3.3 is related
with Step 12. Indeed, similarly to Algorithm 3.2, the curve assigned to z(ε,h) in this Step is
exactly the maximal integral curve of FSεe in the strip. We explain the importance of this fact
within the context of existing algorithms. As mentioned in the introduction to this Chapter,
the hardest problem to solve in the numerical integration of hybrid dynamical systems is
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Figure 3.9: Discrete approximation z(ε,h) of a relaxed execution in a two-mode hybrid dy-
namical system.

finding the guard with enough accuracy so that the reset could be applied without errors.
By relaxing the guards using strips, and then endowing the strips with a trivial vector field,
we can implement a scheme that does not need to find exact guard, while still evaluating
the reset maps at exactly the points belonging to the guards. Our relaxation does introduce
an error in the approximation, but as we show in Theorem 3.37, the error is of order ε.

Figure 3.9 shows a discrete approximation produced by Algorithm 3.3 as it performs a
mode transition.

Theorem 3.37. Let H be a hybrid dynamical system, as in Definition 3.13, Hε its relaxation,
as in Definition 3.26. Also, let j ∈ J , p ∈ Dj, and I = [0, T ] for some T > 0.

If the relaxed execution of Hε with initial condition p, constructed by Algorithm 3.2, has a
domain that contains I and is orbitally stable, as in Definition 3.34, then there exists C > 0
such that

lim
h→0

ρεI
(
xε, z(ε,h)

)
= Cε, (3.31)

where ρεI is as in Definition 3.30.

Proof. We complete this proof in incremental steps, first showing the convergence of our
modified Forward Euler scheme in Riemannian manifolds for a single domain, and then
showing that our relaxation of the discrete transitions converge on the relaxed quotient
space Mε.

In order to simplify the first part of our argument, let us assume that the hybrid system
has only one domain and no discrete transitions, i.e. D = {D}, F = {F}, B = {β},
J = {1}, Γ = G = R = ∅. Let xε : [0, T ] → D a relaxed execution, constructed by
Algorithm 3.2, where without loss of generality we are assuming that [0, T ] belongs to the
domain of the relaxed execution. Similarly, let z(ε,h) : [0, T ] → D a discrete approximation,
constructed using Algorithm 3.3. Note that we have not made any assumptions about the
initial conditions of xε or z(ε,h). Also, since we have a single domain, x and xε are identical.
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Let {tk}`k=0 ⊂ [0, T ] be the sequence of time samples derived from Algorithm 3.3, where
t0 = 0 and we remove the dependence of each tk and ` on h for notational convenience. Note
that ` does not need to be finite. Given a chart (U,ϕ), let us also define β̃ : W̃ → Rn,

W̃ ⊂ TRn, and F̃ : Ũ → TRn, Ũ ⊂ Rn, such that

β̃p(V ) =
(
ϕ ◦ βp ◦ ϕ−1

∗
)

(V ),

F̃ (q) =
(
ϕ∗ ◦ F ◦ ϕ−1

)
(q),

(3.32)

and similarly denote x̃ε = ϕ ◦ x and z̃(ε,h) = ϕ ◦ z(ε,h).
Let us assume that given i, i′ ∈ {0, . . . , `} such that ti ≤ ti′ , both xε|[ti,ti′ ) and z(ε,h)|[ti,ti′ )

belong to the same chart. Then, using Picard’s Lemma (Lemma 5.6.3 in [Pol97]), for each
t ∈ [ti, ti′):

∥∥x̃ε(t)− z̃(ε,h)(t)
∥∥ ≤ eL(ti′−ti)

(∥∥x̃ε(ti)− z̃(ε,h)(ti)
∥∥+

i′−1∑
k=i

∫ tk+1

tk

∥∥∥F̃k − (β̃k)∗|(s−tk)F̃k
F̃k

∥∥∥ ds),
(3.33)

where L is the Lipschitz constant of F̃ as defined in Assumption 3.14, F̃k = F̃
(
z̃(ε,h)(tk)

)
,

and β̃k = β̃z̃(ε,h)(tk). Now, since the domain D is compact, β̃∗ is Lipschitz by Assumption 3.17,

and since β̃∗|0 = In as in Definition 3.12, where n is the dimension of D, then there exists
C > 0 such that: ∥∥∥F̃k − (β̃k)∗|(s−tk)F̃k

F̃k

∥∥∥ ≤ C
(
s− tk

)
, (3.34)

and therefore, for all t ∈ [ti, ti′),∥∥x̃(t)− z̃h(t)
∥∥ ≤ eL(ti′−ti)

(∥∥x̃ε(ti)− z̃(ε,h)(ti)
∥∥+

1

2
Ch

)
. (3.35)

Since D is compact, there exists a finite set of charts {(Ui, ϕi)}νi=1 such that {Ui}νi=1

form a cover of D. Without loss of generality, we can assume that Ui is closed for each
i ∈ {1, . . . , ν}, Let r0 be defined by:

r0 = inf
i∈{1,...,ν}

inf
q∈∂Ui

sup
j 6=i

inf
q′∈∂Uj∩Ui

‖ϕi(q)− ϕi(q′)‖ , (3.36)

and note that r0 > 0 since every point at a boundary of a chart is at a positive distance from
another boundary, because the boundaries are closed and there are only a finite number of
them. Then, for each a ∈ ϕi(Ui) there exists a neighborhood of a with radius at least r0

contained in some ϕj(Uj), j 6= i.
Let (Ui, ϕi) be a chart. If q, q′ ∈ Ui then, given the curve α(t) = ϕ−1

i

(
(1−t)ϕi(q)+tϕi(q

′)
)

for t ∈ [0, 1], there exists C > 0 such that:

dj(q, q
′) ≤

∫ 1

0

√
g (α̇(t), α̇(t))dt ≤ C‖ϕi(q)− ϕi(q′)‖, (3.37)
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where C is in practice the supremum of ‖(ϕi)∗‖, over all i ∈ {1, . . . , ν} and all points in the
compact domain D.

Now we can finish the argument for executions on a manifold. Suppose that xε(0) and
z(ε,h)(0) are in the same chart and that

∥∥x̃ε(0)− z̃(ε,h)(0)
∥∥ ≤ δ, then there exists s > 0 such

that xε|[0,s) and z(ε,h)|[0,s) are in the same chart. Hence, by Equation 3.35,

d
(
xε(s), z(ε,h)(s)

)
≤ eLTCh+ δ. (3.38)

Without loss of generality assume that either xε(s) or z(ε,h)(s) is at the boundary of a chart.
If h and δ are small enough then this distance is smaller than r0

2
, and in that case there exists

s′ > s such that, for an interval [s, s′), both functions are again in the same chart domain
Ui. Also note that, by a similar argument to the one used in Equation (3.23), s′ − s ≥ r0

2L
.

Therefore, since there exists a lower bound in the time spent in each chart, given δ small
enough we can be certain that both executions cross the same finite charts. If the executions
cover N different charts in their execution then, by Equation 3.35, for each t ∈ [0, T ],

d
(
xε(t), z(ε,h)(t)

)
≤ eLTNC(δ + h). (3.39)

Now let us consider the case of relaxed domains in our original relaxed hybrid dynamical
systemHε. Let q ∈ Dε

j be in the same chart (U,ϕ) as p ∈ Dj, and assume ‖ϕ(p)− ϕ(q)‖ ≤ δ.

Then, if z(ε,h) is the discrete approximation starting at q, Equation (3.39) is satisfied for the
distance between xε and z(ε,h) as long as they do not transition onto a strip.

Suppose that there exists t′ such that xε(t′) ∈ G(j,j′) for some (j, j′) ∈ Nj, where Nj is
as in Equation (3.8). Since xε is assumed orbitally stable, there exists δ small enough such
that z(ε,h)(t′h) ∈ G(j,j′) for some t′h ∈ [0, T ]. Let k′ ∈ N be such that t′h ∈ [tk′ , tk′+1), where
we remove the dependence of k′ on h for notational convenience. Since by construction xε

crosses the guard at a unique point and so does z(ε,h), then t′h → t′ as h→ 0. Thus, for each
δ′ > 0 there exists h small enough such that |t′ − tk′+1| ≤ δ′ + h.

Let us define the following times:

σm = min
{
tk′+1, t

′}, σM = max
{
tk′+1, t

′},
ωm = min

{
tk′+2, t

′ + ε
}
, ωM = max

{
tk′+2, t

′ + ε
}
.

(3.40)

Then on the interval [0, σm) we can still use the bound in Equation (3.39). On the interval
[σm, σM) one execution has transitioned into a strip, while the other is still governed by the
vector field on Dj. On the interval [σM , ωm) both executions are inside the strip, and on the
interval [ωm, ωM) one execution has transitioned to a new domain, while the second is still
on the strip. After time ωM both executions are in a new domain, and we can repeat the
process. Therefore, we need to find bounds for the distance between xε and z(ε,h) on each of
these intervals.

Due to the compactness of each domain Dj, we know that the relaxed vector fields F ε
j and

their coordinate representations F̃ ε
j are bounded. Similarly, the pushforward of the relaxed
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retractions (βεj )∗ are also bounded. Then, using Equation (3.23) as we did in the proof of
Theorem 3.36, together with Equation (3.39), there exists C > 0 such that:

µε
(
xε(σM), z(ε,h)(σM)

)
≤ C(δ + δ′ + h). (3.41)

Also
µε
(
xε(ωm), z(ε,h)(ωm)

)
≤ µε

(
xε(σM), z(ε,h)(σM)

)
+ 2ε, (3.42)

and, using the same argument, there exists another C > 0 such that

µε
(
xε(ωM), z(ε,h)(ωM)

)
≤ µε

(
xε(ωm), z(ε,h)(ωm)

)
+ C(δ′ + h), (3.43)

because |t′ + ε− tk′+2| ≤ δ′ + 2h by the construction in Algorithm 3.3.
At this point the generalization to relaxed executions defined on Mε and their discrete

approximations follows by noting that they have the same initial condition, they perform a
finite number of discrete jumps on any bounded interval, the number of discrete modes is
finite, and that δ′ can be chosen arbitrarily small. With that information we can construct
a constant C > 0 such that, for each t ∈ [0, T ],

µε
(
xε(t), z(ε,h)(t)

)
≤ C(ε+ h), (3.44)

therefore proving the theorem.

Now we can state the main result in this Section, which is simply a Corollary of Theo-
rems 3.36 and 3.37.

Corollary 3.38. Let H be a hybrid dynamical system, as in Definition 3.13, and Hε be its
relaxation, as in Definition 3.26. Let j ∈ J , p ∈ Dj, and x be the execution of H with initial
condition p constructed by Algorithm 3.1, and let I ⊂ [0,∞) be a bounded interval contained
in the domain of x. Also, let z(ε,h) be the discrete approximation with initial condition p
constructed by Algorithm 3.3.

If the following conditions are satisfied:

(1) x has a finite number of mode transitions, or x is a Zeno execution that accumulates,
as in Definition 3.31,

(2) x is orbitally stable, as in Definition 3.34,

then
lim
ε→0
h→0

ρεI
(
x, z(ε,h)

)
= 0. (3.45)

Proof. Note that, by Theorem 3.36 together with the Triangle Inequality, this corollary is
equivalent to prove that ρεI

(
xε, z(ε,h)

)
→ 0 as both ε, h→ 0.
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Hence we show that ρεI
(
xε, z(ε,h)

)
converges uniformly on h as ε→ 0. Using an argument

similar to the one in the proof of Theorem 7.9 in [Rud64], proving the uniform convergence
on h is equivalent to showing:

lim
h→0

lim sup
ε→0

ρεI
(
xε, z(ε,h)

)
= 0 (3.46)

but this is clearly true by Theorem 3.37, therefore obtaining our desired result.

3.4 Implementation and Example

In this section, we describe the information required to implement Algorithm 3.3, and then
present an example.

To simplify the exposition, we will consider the case where the hybrid system is comprised
of a single domain and a single guard, i.e. J = {1}, Γ = {(1, 1)}, D = {D}, B = {β},
F = {F}, G = {G}, and R = {R}. There is no loss of generality in specializing the
discussion to this particular case, as the only difference with the general case is the choice
of proper guard before performing a relaxed mode transition.

There are two main issues to consider before implementing our numerical scheme. First,
the algorithm needs a collection of charts whose domains form a cover of D, and a way to
determine which charts contain a given point in the domain. Since D is compact, only a
finite number of charts is required. Note that if D admits a single chart, as in the case of D
being a subset of Rn where the chart is trivial, then the implementation is greatly simplified.
Second, in some problems the boundary of the manifold is not described as the preimage
of the set {(x1, . . . , xn) | xn = 0} under a boundary chart, but rather as the zero section of
a smooth function λ : D → R, i.e. ∂D = λ−1(0) and λ∗(x) 6= 0 for all x ∈ ∂D. In this
case, since D is compact, and given ε sufficiently small, the value of λ can be used as the
transverse coordinate on the strip Sε = G× [0, ε], which can be used in place of the boundary
charts.

We illustrate the implementation1 of our numerical scheme to approximate trajectories of
a double pendulum with a mechanical stop. Figure 3.10 shows the illustration of the double
pendulum and the parameters of the problem. Prior to an impact with the mechanical stop,
i.e. while θ2 > 0 and the system is unconstrained, the system has two angular degrees of
freedom, q = (θ1, θ2) ∈ R2 and the dynamics are Lagrangian, i.e. they have the form

M(q)q̈ + C(q, q̇)q̇ +
∂V

∂q
(q) = 0, (3.47)

where M(q) ∈ R2×2 is the mass matrix, C(q, q̇) ∈ R2×2 is the Coriolis matrix, and V (q) ∈ R
is the potential energy. We refer the reader to [OA09] for the explicit expressions of these
functions. When the second link collides with the mechanical stop, i.e. when θ2 = 0, the

1Code is available at http://purl.org/sburden/cdc2011

http://purl.org/sburden/cdc2011
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θ1
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θ2

mech. stop

m1, L1

m2, L2

Figure 3.10: Planar double pendulum with mechanical stop. θ1 gives the angle of the first
link with respect to vertical, and θ2 gives the angle of the second link with respect to the
first. The link masses are m1 and m2, and their lengths are L1 and L2. A gravitational force
points downward with constant g.

system becomes constrained. During the impact the velocities are updated according to the
following reset map:

(
θ̇1, θ̇2

)
7→

(
θ̇1 − (1 + c)θ̇2

(
M(q)−1

)
1,2(

M(q)−1
)

2,2

,−c θ̇2

)
, (3.48)

where c ∈ [0, 1] is the coefficient of restitution. After impact, the system is re-initialized
in a different discrete mode depending on the value of this constant. If c > 0, the system
“bounces”, i.e. it is reset to the unconstrained mode and simulation continues as before. If
c = 0, the system enters the constrained state until the virtual force required to enforce the
constraint θ2 = 0, defined by:

λ(q, q̇) = −

(
M(q)−1

)
2,·(

M(q)−1
)

2,2

(
C(q, q̇)q̇ +

∂V

∂q
(q)

)
. (3.49)

becomes non-positive.
As shown in [OA09], when θ2 = 0 either λ > 0 and θ̈2 = 0 (i.e. the constraint is

maintained), or λ = 0 and θ̈2 > 0 (i.e. the system transitions to unconstrained motion).
Thus the description of the hybrid dynamics of the system is consistent.

An illustration of the execution with different values for the coefficient restitution are
shown in Figures 3.11 and 3.12. Observe that in either instance there is an epsilon sized
delay due to the addition of the strip. In particular, notice that in the case of Zeno the strips
begin to accumulate.
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Figure 3.11: Trajectory of double pendulum with c = 0, h = 0.001, ε = 0.2, and initial
condition

(
θ1, θ2, θ̇1, θ̇2

)
= (30◦, 25◦, 0, 0). Vertical gray bars indicate when the simulation

resides in the strip.

−40

−20

0

20

40

θ
1
 (

d
eg

)

0 1 2 3 4 5

0

5

10

15

20

25

Time (sec)

θ
2
 (

d
eg

)

Figure 3.12: Zeno trajectory of double pendulum with c = 0.5, h = 0.001, ε = 0.2, and initial
condition

(
θ1, θ2, θ̇1, θ̇2

)
= (30◦, 25◦, 0, 0). Vertical gray bars indicate when the simulation

resides in the strip.
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Chapter 4

Pseudospectral Approximations for
Optimal Control

Computational tools for the calculation of the optimal control of a continuous–time dy-
namical system using nonlinear programming have existed for a long time in the liter-
ature [CCP70]. They have allowed us to address general forms of optimal control prob-
lems, ranging from state–constrained problems [Pol97] to receding–horizon control prob-
lems [May+00; SB00], including many important applications such as path planning in
aerospace control [Tre12].

On the other hand, nonlinear programming lacks the nice theoretical properties of con-
vex programming, namely the ability to always find a global minimizer, and the existence
of polynomial–time algorithms that solve most interesting classes of convex programming
problems [BV04; Kar84; Roc70]. But from an optimal control perspective we do not need
to focus purely on the complexity of the numerical nonlinear programming algorithms, since
what is relevant is the interaction between the discretization scheme, used to transform the
optimal control problem into a nonlinear programming problem, and the numerical algo-
rithm used to solve such nonlinear programming problem. For example, it is a well known
fact that using a Forward Euler scheme for the discretization of the optimal control problem
leads to a set of equality constraints whose derivatives are sparse, thus greatly increasing the
speed of computation when used with sparse nonlinear programming solvers [Bet10; Pol97].
Similarly, research has also been done to study the interaction of the Runge–Kutta method
applied to the discretization of optimal control problems [SP96].

In recent years, a relatively new family of techniques, called pseudospectral methods,
originally used to approximate partial differential equations [Can+88; For96; ST89; Ste73],
found a strong support in the optimal control community [Ben05; EKR95; Hun07; RF03].
The main feature of pseudospectral methods is that, for smooth functions, they have a
convergence rate that is faster than any polynomial [SW05]. This result is impressive when
compared to Forward Euler and Runge–Kutta schemes, which have a polynomial rate of
convergence. From an implementation point of view, a faster rate of convergence means that
less samples are required to achieve a desired error level. For the discretization of optimal
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control problems it has been found experimentally that one can get a reduction of an order
of magnitude in the number of samples used to solve a particular problem (for example, see
Table 1 in [GKR06]). This last fact cannot be overlooked, since the time it takes to compute
each iteration in a nonlinear programming solver is a (usually polynomial) function of the
number of variables in the problem.

A fundamental question must be asked when an infinite dimensional optimization problem
is approximated by a finite dimensional problem, such as the case with optimal control
problems being approximated by nonlinear programming problems: do the global minimizers
of the finite dimensional problems converge to global minimizers of the original infinite
dimensional problem as the discretization becomes more accurate? Similarly, we can ask
the analogous question about the convergence of local minimizers. The former question can
be addressed using the concept of Epi–convergence, as explained in Chapter 7 in [RW98],
while the latter can be addressed using the concept of Consistent Approximations, defined
in Chapter 3 in [Pol97].

For pseudospectral methods, the convergence of global minimizers has been addressed in
the literature. In [KRG07] the authors present an overview of the state of the art in terms of
convergence of global minimizers. The main result in that paper states that, whenever the
underlying dynamical system has a single input, is affine in the control, has relative degree n
(see Definition 9.1 in [Sas99] for a definition of relative degree), and its optimal control is
smooth, then the global minimizers converge. The problem of global minimizer convergence
when the optimal control is not smooth is address in [KGR05; RF04]. Both papers prove the
convergence for particular classes of dynamical systems and problem formulations, the former
for feedback–linearizable nonlinear systems, and the latter for problems where one can find
the discontinuities in the control a priori. In [Gon+07] the authors prove the convergence
of global minimizers of both primal and dual pseudospectral approximations, also for the
case when the optimal control is smooth. In [RZL11] the authors show that a L2–norm
based discretization, as opposed to the standard L∞–norm based discretization usually used
in the literature, provides convergence of the value function of the optimal control problem,
provided the optimal control itself is smooth. All these results show that this topic has been
an active area of research in recent years, but the general problem of convergence of local
minimizers for general nonlinear systems, and more importantly, without assumptions about
the smoothness of the optimal control, remains open.

In this chapter we take the first step towards this result. Here we show that, for a
particular pseudospectral approximation of the optimal control problem, we can prove the
convergence of global minimizers whenever the optimal control is of bounded variation. Our
formulation is special because we decouple the discretization of the signals, i.e. the state
and control, from the discretization of the differential equation, eventually showing that the
differential equation needs to be sampled at a higher rate than the signals. Also, we are
hopeful that this new formulation will allow us in the future to prove the convergence of
local minimizers, and at the same time formulate new adaptive algorithms that iterate both
on the optimization space and on the discretization level.
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4.1 Preliminaries

We begin this section by introducing the functional spaces that are the foundation to our
optimization space. Throughout this chapter every integral will be computed with respect
to the Lebesgue measure.

Given n ∈ N, we endow the real vector space Rn with the 2-norm, thus making (Rn, ‖·‖2)
a normed vector space. Consider f : [−1, 1]→ Rn. We say that f ∈ L2([−1, 1],Rn) if

‖f‖L2 =

(∫ 1

−1

‖f(t)‖2
2 dt

) 1
2

<∞. (4.1)

A key feature of L2([−1, 1],Rn) is that it is a Hilbert space together with the following dot
product:

(f, g) 7→ 〈f, g〉 =

∫ 1

−1

f(t)g(t)dt, (4.2)

and note that
√
〈f, f〉 = ‖f‖L2 .

Also, we say that f ∈ L∞([−1, 1],Rn) if

‖f‖L∞ = inf {α ∈ [0,∞) | ‖f(t)‖2 ≤ α for almost every t ∈ [−1, 1]} <∞. (4.3)

Note that the definition in Equation (4.3) is very similar to the definition of supremum. This
similarity motivates most authors to define it as the essential supremum, hence:

‖f‖L∞ = ess sup {‖f(t)‖2 | t ∈ [−1, 1]}. (4.4)

Let P be the set of finite partitions of [−1, 1]. We define the total variation of f by:

V(f) = sup

{
k−1∑
i=0

‖f(ti+1)− f(ti)‖1 | k ∈ N, {ti}kk=0 ∈ P

}
, (4.5)

and we say that f is of bounded variation if V(f) <∞. Moreover, we define BV ([−1, 1],Rn)
as the vector space of all functions of bounded variation.

As we did in Chapter 2, we now introduce a very important relation between functions of
bounded variation and the existence of weak derivatives. We say that f has a weak derivative
if there exists a Radon signed measure µ over [−1, 1] such that, for each smooth bounded
function v with v(−1) = v(1) = 0,∫ 1

−1

f(t)v̇(t)dt = −
∫ 1

−1

v(t)dµ(t). (4.6)

Moreover, we say that ḟ = dµ
dt

, where the derivative is taken in the Radon–Nikodym sense,

is the weak derivative of f . Note that ḟ is in general a distribution, thus it only makes sense
as an element in the dual space of L1, when considering L1 as a Banach space. Perhaps
the most common example of weak derivative is the Dirac Delta distribution, which is the
weak derivative of the Step Function. The following result is fundamental in our analysis of
functions of bounded variation:
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Theorem 4.1 (Exercise 5.1 in [Zie89]). If f ∈ BV ([−1, 1],Rn), then f has a weak derivative,
denoted ḟ . Moreover,

V(f) =

∫ 1

−1

∥∥ḟ(t)
∥∥

1
dt. (4.7)

We omit the proof of this result since it is beyond the scope of this chapter. More details
about the functions of bounded variation and weak derivatives can be found in Sections 3.5
and 9 in [Fol99] and Section 5 in [Zie89].

We will consider optimal control problems in which the dynamical system is defined by
a controlled vector field h : Rn × Rm → Rn as follows,

ẋ(t) = h
(
x(t), u(t)

)
, for almost every t ∈ [−1, 1], x(−1) = ξ, (4.8)

where ξ ∈ Rn is the initial condition, u : [−1, 1]→ Rm is the control, and x : [−1, 1]→ Rn is
the state of the dynamical system. To ensure the existence and uniqueness of the solutions
of Differential Equation (4.8) we make the following assumption.

Assumption 4.2. The function h is differentiable in both x and u. Also, h and its partial
derivatives are Lipschitz continuous in both of their arguments, i.e. there exists L > 0 such
that for each x1, x2 ∈ Rn and u1, u2 ∈ Rm,

(1) ‖h(x1, u1)− h(x2, u2)‖2 ≤ L (‖x1 − x2‖2 + ‖u1 − u2‖2).

(2)
∥∥∂h
∂x

(x1, u1)− ∂h
∂x

(x2, u2)
∥∥

2
≤ L (‖x1 − x2‖2 + ‖u1 − u2‖2).

(3)
∥∥∂h
∂u

(x1, u1)− ∂h
∂u

(x2, u2)
∥∥

2
≤ L (‖x1 − x2‖2 + ‖u1 − u2‖2).

We say that f is absolutely continuous if for each ε > 0 there exists δ > 0 such that for
any finite set of disjoint intervals {(ai, bi)}ki=1 ⊂ [−1, 1],

k∑
i=1

(bi − ai) < δ ⇒
k∑
i=1

‖f(bi)− f(ai)‖2 < ε. (4.9)

We also define the vector space of all absolutely continuous functions from [−1, 1] to Rn by
AC([−1, 1],Rn). More details about the definition of absolutely continuous functions and
their properties can be found in Section 3.5 in [Fol99].

We state the following theorem without proof since it is a standard result in the literature.
A standard version of this proof for existence and uniqueness can be found in Section 2.4.1
in [Vid02]. A version of the proof of absolute continuity can be found in Theorem 3.35
in [Fol99].

Theorem 4.3. Let ξ ∈ Rn and u : [−1, 1] → Rm such that ‖u‖L∞ < ∞. Then, Differential
Equation (4.8) has a unique solution x : [−1, 1]→ Rn. Moreover, x is absolutely continuous.
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Whenever we want to make explicit the relation between the pair (ξ, u) and the solution
of Differential Equation (4.8), we write its unique solution by x(ξ,u).

We define the set of admissible controls by:

U =

{
u ∈ L2([−1, 1],Rm) ∩BV ([−1, 1],Rm) | sup

t∈[−1,1]

‖u(t)‖2 <∞

}
, (4.10)

and we endow it with the L2-norm, as defined in Equation (4.1). From Equation (4.10) it is
clear that U ⊂ L∞([−1, 1],Rm) ⊂ L2([−1, 1],Rm).

Lemma 4.4. Let ξ ∈ Rn, u ∈ U , and let x be the unique solution of Differential Equa-
tion (4.8) with initial condition ξ and control u. Then ẋ ∈ BV ([−1, 1],Rn).

Proof. From Condition 1 in Assumption 4.2 we know that there exists C > 0 such that, for
each x ∈ Rn and u ∈ Rm:

‖h(x, u)‖2 ≤ C(‖x‖2 + ‖u‖2 + 1), (4.11)

and that same condition together with the definition of total variation in Equation (4.5)
imply that:

V(ẋ) ≤ L
(
V(x) + V(u)

)
. (4.12)

Now, it follows by Hölder’s Inequality, together with Condition 1 in Assumption 4.2 and
Theorem 4.1, that:

V(x) =

∫ 1

−1

∥∥h(x(t), u(t)
)∥∥

2
dt ≤

√
2L
(
‖x‖L2 + ‖u‖L2 + 1

)
. (4.13)

The conclusion follows since x ∈ L2([−1, 1],Rn), because it is a continuous function in
a bounded domain, and u ∈ L2([−1, 1],Rm) ∩ BV ([−1, 1,Rm) by definition of U in Equa-
tion (4.10).

Lemma 4.4 and Theorem 4.3 introduce a natural definition for our space of solutions of
Differential Equation (4.8). We define the space that contains the solutions of Differential
Equation (4.8) with inputs taken from the set U and initial conditions from Rn by:

X =

{
x ∈ AC([−1, 1],Rn) | ẋ ∈ BV ([−1, 1],Rn), and sup

t∈[−1,1]

‖ẋ(t)‖2 <∞

}
. (4.14)

and we endow X with the following norm:

‖x‖X = ‖x‖L∞ + ‖ẋ‖L2 . (4.15)

Note that, since x ∈ X is a continuous function, ‖x‖L∞ = supt∈[−1,1] ‖x(t)‖2.
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Polynomial Approximations

Let N ∈ N. We say that {tN,k}Nk=0 ⊂ [−1, 1] is a set of collocation nodes if

− 1 ≤ tN,0 < tN,1 < · · · < tN,N ≤ 1. (4.16)

Given a set of collocation nodes we can define a unique set of Lagrange interpolation polyno-
mials of order N , denoted by {bN,k}Nk=0, bN,k : [−1, 1]→ R, satisfying the following condition
for each k, j ∈ {0, . . . , N}:

bN,k(tN,j) =

{
1 if k = j,

0 otherwise.
(4.17)

It is not hard to conclude from Equation (4.17) that, for each k ∈ {0, . . . , N},

bN,k(t) =

∏
i 6=k(t− tN,i)∏

i 6=k(tN,k − tN,i)
(4.18)

Note that {bN,k}Nk=0 is linearly independent, hence it is a basis for the vector space of poly-
nomials of order N .

Furthermore, given a set of collocation nodes {tN,k}Nk=0 there exists a unique set of reals

{ωN,k}Nk=0 such that the Gauss quadrature integral approximation is exact for polynomials
of order at most N , i.e. such that for each polynomial p of order at most N ,∫ 1

−1

p(t)dt =
N∑
k=0

ωN,k p(tN,k). (4.19)

The proof of uniqueness of the constants {ωN,k}Nk=0 is outside the scope of this chapter, but
we will mention that, in practice,

ωN,k =

∫ 1

−1

bN,k(t)dt. (4.20)

More details about these results can be found in Sections 2.7.1 and 2.7.2 in [DR84], and
in [Pat68].

At this point we can construct a subset of X consisting of polynomial approximations
of its functions in the following way. Define the set XN as the subset of X containing all
functions that are a linear combination of the polynomials (bN,k)

N
k=0, i.e.

XN =
{
x ∈ X | xi ∈ span {bN,k}Nk=0 for each i ∈ {1, . . . , n}

}
. (4.21)

In a similar way, we can define UN by

UN =
{
u ∈ U | ui ∈ span {bN,k}Nk=0 for each i ∈ {1, . . . ,m}

}
. (4.22)
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Definition 4.5. Let {tN,k}Nk=0 be a set of collocation nodes. We define the interpolation
operator, denoted IN , such that when applied to a function f , it returns following unique
polynomial:

(INf)(t) =
N∑
k=0

f(tN,k)bN,k(t). (4.23)

It is clear from Definition 4.5 that (INf)(tN,k) = f(tN,k) for each k ∈ {0, . . . , N}.
Since the derivative of a polynomial of degree N is another polynomial of degree N − 1,

such derivative can also be written as an expansion of the basis of polynomials of order smaller
than N formed by {bN,k}Nk=0. Indeed, there exists a unique set of constants {dN,k,j}Nk,j=0 such

that, for each xN =
∑N

k=0 x̄kbN,k ∈ XN ,

ẋN(t) =
N∑
k=0

(
N∑
j=0

dN,k,j x̄j

)
bN,k(t). (4.24)

Note that if we write ẋN =
∑N

k=0 ȳk bN,k then, given DN ∈ R(n+1)×(n+1) defined by [DN ]k,j =
dN,k,j, we have that: 

ȳ0

ȳ1
...
ȳN

 = DN


x̄0

x̄1
...
x̄N

 (4.25)

As we mention above, the constants {ωN,k}Nk=0 and {dN,k,j}Nk,j=0, as well as the polynomials

{bN,k}Nk=0, are completely determined by the choice of collocation nodes {tN,k}Nk=0. There are
several, well established, choices for the collocation nodes based on the roots of orthogonal
polynomials for some measure in [−1, 1]. We present some of these choices of collocation
nodes, and their associated coefficients for approximate integrals and derivatives, in the next
section.

Types of Collocation Nodes

As we mentioned above, given a set of collocation nodes {tN,k}Nk=0 we get three unique sets
that are key parts of pseudospectral approximations: a collection of Lagrange polynomials
{bN,k}Nk=0 that define the interpolation operator, a collection of coefficients {ωN,k}Nk=0 that
define the integral approximation using Gauss quadrature, and a collection of coefficients
{dN,k,j}Nk,j=0 that define the derivative matrix for polynomials of order N .

Before we present more details we need to define the set of Legendre polynomials. We
say that {pk}∞k=0, where pk : [−1, 1] → R for each k ∈ {0, . . . , N}, is the set of Legendre
polynomials, defined by the following recursion:

(k + 1) pk+1(t) = (2k + 1) t pk(t)− k pk−1(t), ∀k ≥ 2. (4.26)
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where p0(t) = 1 and p1(t) = t. Among the many properties of Legendre polynomials,
the most important one from our point of view is that they form an orthogonal basis for
L2([−1, 1],R), using the dot product defined in Equation (4.2).

We now present two types of collocation nodes that are particularly interesting from
an implementation point of view since they are derived using integrals with the Lebesgue
measure. In particular, the Lebesgue–Gauss–Lobatto rule is commonly used to approximate
differential equations in optimal control problems since it includes collocation nodes at t = −1
and t = 1.

The derivations of the formulas included below is outside the scope of this chapter.
Moreover, to the best of our knowledge, the details of the derivations of these formulas
cannot be found in a single publication. Nevertheless, they can be collected from [Can+88;
Can+06; DR84; For96; Fun92; STW11].

Legendre–Gauss (LG)
Set of collocation nodes:

{tk}Nk=0 =
{
t ∈ [−1, 1] | pN+1(t) = 0

}
. (4.27)

Lagrange polynomials:

bN,k(t) =
pN+1(t)(

t− tN,k
)
ṗN+1(tN,k)

. (4.28)

Gauss quadrature coefficients:

ωN,k =
2(

1− t2N,k
)(
ṗN+1(tN,k)

)2 . (4.29)

Derivative matrix coefficients:

dN,k,j =


ṗN+1(tN,k)(

tN,k − tN,j
)
ṗN+1(tN,j)

if k 6= j,

tN,k
1− t2N,k

if k = j.
(4.30)

Legendre–Gauss–Lobatto (LGL)
Set of collocation nodes:

{tk}Nk=0 =
{
t ∈ [−1, 1] | (1− t2)ṗN(t) = 0

}
. (4.31)

Lagrange polynomials:

bN,k(t) =
(t2 − 1)ṗN(t)

N(N + 1)
(
t− tN,k

)
pN(tN,k)

. (4.32)
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Gauss quadrature coefficients:

ωN,k =
2

N(N + 1)
(
pN(tN,k)

)2 . (4.33)

Derivative matrix coefficients:

dN,k,j =



pN(tN,k)(
tN,k − tN,j

)
pN(tN,j)

if k 6= j,

−N(N + 1)

4
if k = j = 0,

N(N + 1)

4
if k = j = N,

0 if k = j ∈ {1, . . . , N − 1}.

(4.34)

Optimal Control Problem Definition

Since we need to relate the solutions of the optimal control problem with the approximation
using pseudospectral methods, we find it convenient to define the optimal control problem of
interest in an unconventional form. Given the functions f 0 : Rn×Rn → R, and f j : Rn → R
for each j ∈ {1, . . . , q}, we define the optimal control problem P0 as follows:

(P0) min

{
f 0
(
ξ, x(1)

)
| ξ ∈ Rn, x ∈ X , u ∈ U ,∫ 1

−1

∥∥ẋ(t)− h
(
x(t), u(t)

)∥∥2

2
dt = 0, x(−1) = ξ,

f j
(
x(t)

)
≤ 0, ∀t ∈ [−1, 1], ∀j ∈ {1, . . . , q}

}
. (4.35)

Note that the main difference with the standard optimal control notation lies in our formu-
lation for the differential equation constraint. The formulation for the differential equation
constraint in Equation (4.35) is completely equivalent to the original formulation in Equa-
tion (4.8), thus our decision is purely based on our desire to simplify the understanding of
our pseudospectral approximation for Problem P0. Also, to simplify our notation, we define
F0 ⊂ Rn × X × U as the feasible set of Problem P0, i.e. the set of all points satisfying the
constraints in Equation (4.35).

We now introduce a Lipschitz continuity assumption for the cost and state constraint
functions in Equation (4.35).

Assumption 4.6. For each j ∈ {0, . . . , q}, f j is differentiable. Also, each f j and its partial
derivatives are Lipschitz continuous in both of their arguments, i.e. there exists L > 0 such
that for each ξ1, ξ2, x1, x2 ∈ Rn and j ∈ {1, . . . , q},

(1) ‖f 0(ξ1, x1)− f 0(ξ2, x2)‖2 ≤ L (‖ξ1 − ξ2‖2 + ‖x1 − x2‖2).
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(2)
∥∥∥∂f0∂ξ (ξ1, x1)− ∂f0

∂ξ
(ξ2, x2)

∥∥∥
2
≤ L (‖ξ1 − ξ2‖2 + ‖x1 − x2‖2).

(3)
∥∥∥∂f0∂x

(ξ1, x1)− ∂f0

∂x
(ξ2, x2)

∥∥∥
2
≤ L (‖ξ1 − ξ2‖2 + ‖x1 − x2‖2).

(4) ‖f j(x1)− f j(x2)‖2 ≤ L ‖x1 − x2‖2.

(5)
∥∥∥∂fj∂x (x1)− ∂fj

∂x
(x2)

∥∥∥
2
≤ L ‖x1 − x2‖2.

We will restrict our analysis to problems where the minimum is achieved, and therefore
the feasible set is not empty. This condition is summarized in the following assumption.

Assumption 4.7. There exists a triple (ξ∗, x∗, u∗) ∈ F0 such that for each (ξ, x, u) ∈ F0,

f 0
(
ξ∗, x∗(1)

)
≤ f 0

(
ξ, x(1)

)
. (4.36)

Using the sets XN and UN , as defined in Equations (4.21) and (4.22), we can define the
following pseudospectral approximation of Problem P0. Let N ∈ N, {tN,k}Nk=0 a set of collo-

cation nodes as in Equation (4.16), and {ωN,k}Nk=0 its related Gauss quadrature coefficients,
as defined in Equation (4.19). Moreover, let δ > 0, M =

⌈
N4+δ

⌉
, and {πk}∞k=0, a strictly

increasing divergent sequence. We define our pseudospectral approximation of Problem P0,
as defined in Equation (4.35), as follows:

(PN,δ) min

{
f 0
(
ξ, x(1)

)
+πNε | ξ ∈ Rn, x ∈ XN , u ∈ UN , ε ∈ [0,∞),

M∑
k=0

ωM,k

∥∥ẋ(tM,k)− h
(
x(tM,k), u(tM,k)

)∥∥2

2
≤
(
N−

δ
3 + ε

)2
,

x(−1) = ξ,

f j
(
x(tN,k)

)
≤ N−

1
3 + ε, ∀k ∈ {0, . . . , N}, ∀j ∈ {1, . . . , q}

}
(4.37)

Note that the time derivative of x ∈ XN in Equation (4.37), ẋ, can be explicitly computed
as explained in Equation (4.24). As we did with Problem P0, we define FN,δ ⊂ Rn×X ×U ×
[0,∞) as the feasible set of Problem PN,δ, i.e. the set of all points satisfying the constraints
in Equation (4.37).

4.2 Global Minimizer Convergence of Pseudospectral

Approximations

In this section we show that for each δ > 0, every sequence of global minimizers of Prob-
lems PN,δ, indexed by N ∈ N, accumulates in set of global minimizers of Problem P0.
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Feasibility of Pseudospectral Approximation

We begin with a lemma that provides useful estimates for the norm and total variation of a
solution of Differential Equation (4.8) given its initial condition and control.

Lemma 4.8. There exists a constant C > 0 such that, for each tuple (ξ, x, u) ∈ F0:

(1) ‖x‖L∞ ≤ C
(
‖ξ‖2 + ‖u‖L2 + 1

)
,

(2) V(x) ≤ C
(
‖ξ‖2 + ‖u‖L2 + 1

)
,

where F0 is the feasible set of Problem P0, as defined in Equation (4.35).

Proof. Let t ∈ [−1, 1]. Then, by Differential Equation (4.8) and Condition 1 in Assump-
tion 4.2,

‖x(t)‖2 ≤ ‖ξ‖2 + L

∫ 1

−1

(
‖x(s)‖2 + ‖u(s)‖2 + 1

)
ds. (4.38)

Thus, applying the Bellman-Gronwall Inequality (Lemma 5.6.4 in [Pol97]),

‖x(t)‖2 ≤ e2L
(
‖ξ‖2 + 2L ‖u‖L2 + 2L

)
, (4.39)

proving the inequality in Condition 1.
The inequality in Condition 2 follows after noting that, by Theorem 4.1, and as we

computed in Equation (4.13) in the proof of Lemma 4.4:

V(x) =

∫ 1

−1

∥∥h(x(t), u(t)
)∥∥ dt ≤ √2L

(
‖x‖L2 + ‖u‖L2 + 1

)
. (4.40)

Therefore, using Equation (4.39) we obtain the desired result.

The following lemma presents a rate of convergence for our polynomial approximation
for functions of bounded variation.

Lemma 4.9. There exists N0 ∈ N and C > 0 such that, for each f ∈ L2([−1, 1],R) ∩
BV ([−1, 1],R), we can find a polynomial p of order N ≥ N0 satisfying:

‖f − p‖L2 ≤ C
1√
N

V(f) , (4.41)

where V(·) is as defined in Equation (4.5).

Proof. Our proof will be divided in two parts. First, we prove that we can approximate
f using a trigonometric polynomial using a truncated Fourier series expansion. Then, we
approximate that trigonometric polynomial using its Taylor expansion.
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Let ck : [−1, 1] → R and sk : [−1, 1] → R by ck(t) = cos(2πkt) and sk(t) = sin(2πkt).
Note that the set {ck, sk}∞k=1 forms an orthonormal basis for L2([−1, 1],R) using the dot
product defined in Equation (4.2). Then, by Theorem 5.27 in [Fol99],

f = 〈f,1〉+
∞∑
k=1

〈f, ck〉 ck + 〈f, sk〉 sk. (4.42)

where 1 is the function identical to one for all t ∈ [−1, 1]. Let us define the truncated Fourier
series expansion of order M for f by:

SMf = 〈f,1〉+
M∑
k=1

〈f, ck〉 ck + 〈f, sk〉 sk. (4.43)

Now, using the identity in Equation (4.6),

|〈f, ck〉| =
∣∣∣∣∫ 1

−1

ḟ(t)
1

2πk
sin(2πkt)dt

∣∣∣∣ ≤ 1

2πk
V(f) , (4.44)

and using the same argument,

|〈f, sk〉| ≤
1

2πk
V(f) . (4.45)

Thus, by Parseval’s Identity (Theorem 5.27 in [Fol99]),

‖f − SMf‖2
L2 =

∞∑
k=M+1

|〈f, ck〉|2 + |〈f, sk〉|2

≤ 1

2π2
V(f)2

∞∑
k=M+1

1

k2

≤ 1

2π2
V(f)2 1

M
.

(4.46)

Let us now consider the Taylor expansion of order N for SMf at t = 0, denoted PN(SMf).
By the Lagrange Remainder Formula (see Section 1.11.4 in [DR84] one of its expressions),

‖SMf − PN(SMf)‖L∞ ≤
1

(N + 1)!

∣∣∣∣dN+1SMf

dtN+1
(t′)

∣∣∣∣ ∣∣tN+1
∣∣

≤ 1

(N + 1)!

∥∥∥∥dN+1SMf

dtN+1

∥∥∥∥
L∞

(4.47)
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where we used the fact that
∣∣tN+1

∣∣ ≤ 1 for each t ∈ [−1, 1], and t′ ∈ (−1, 1). But note that,
using Equations (4.44) and (4.45),∣∣∣∣ dN+1

dtN+1
(SMf)(t)

∣∣∣∣ =

∣∣∣∣∣
M∑
k=1

〈f, ck〉
dN+1ck
dtN+1

(t) + 〈f, sk〉
dN+1sk
dtN+1

(t)

∣∣∣∣∣
≤

M∑
k=1

|〈f, ck〉| (2πk)N+1 + |〈f, sk〉| (2πk)N+1

≤ 2 V(f) (2π)N
M∑
k=1

kN

≤ 2 V(f) (2π)NMN+1.

(4.48)

Also, by Stirling’s Approximation (Equation (17.42) in [CT06]),

1

(N + 1)!
<

1√
2π(N + 1)

(
e

N + 1

)N+1

. (4.49)

Hence, from Equations (4.47), (4.47), and (4.49) we know that there exists C ′ > 0 such that

‖SMf − PN(SMf)‖L2 ≤ C ′V(f)

(
2πeM

N + 1

)N+1

. (4.50)

Finally, given N ≥ (3πe − 1), if we choose M =
⌊
N+1
3πe

⌋
then by the Triangle Inequality

and Equations (4.46) and (4.50) we get the desired result.

Note that, from the proof of Lemma 4.9 we can conclude that a good estimate for N0 is
25, which is important from an implementation point of view.

Besides providing a clear bound for the rate of convergence of polynomial approximations
to functions of bounded variation, Lemma 4.9 also proves that

⋃
N∈NXN and

⋃
N∈N UN are

dense in X and U , respectively. In particular, we get the following corollary.

Corollary 4.10. There exists C > 0 and N0 ∈ N such that, for each tuple (ξ, x, u) ∈ F0

and each N ∈ N, N ≥ N0, we can find a pair (xN , uN) ∈ XN × UN satisfying the following
conditions:

(1) ‖u− uN‖L2 ≤ C
1√
N

V(u),

(2) ‖x− xN‖X ≤ C
1√
N

(
‖ξ‖2 + ‖u‖L2 + 1

)
,

where V(·) is as defined in Equation (4.5), and F0 is the feasible set of Problem P0, as defined
in Equation (4.35).
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Proof. Since U ⊂ L2([−1, 1],Rm)∩BV ([−1, 1],Rm), then by Lemma 4.9 there exists uN ∈ UN
that satisfies the Condition (1).

Now, Lemma 4.4 indicates that ẋ ∈ BV ([−1, 1],Rn). Hence, again using Lemma 4.9, for
each N ≥ N0 there exists C ′ > 0 and p ∈ XN−1 such that

‖ẋ− p‖L2 ≤ C ′
1√
N

V(x) . (4.51)

Let xN ∈ XN defined by

xN(t) = ξ +

∫ t

−1

p(s)ds, (4.52)

where it is important to note that xN is indeed a polynomial or order at most N . Then,
there exists C ′ > 0 such that for each t ∈ [−1, 1],

‖x(t)− xN(t)‖2 ≤
∫ 1

−1

‖ẋ(s)− p(s)‖2 ds ≤ C ′
1√
N

V(x) , (4.53)

where the last inequality follows by Hölder’s Inequality. The conclusion follows from Equa-
tions (4.51) and (4.53), the definition of the X -norm in Equation (4.15), and Condition 2 in
Lemma 4.8.

The following lemma states that given an element in the feasible set of Problem P0, we
can find an element in the feasible set of Problem PN,δ for N large enough.

Lemma 4.11. For each N ∈ N, let {tN,k}Nk=0 be the set of either Legendre–Gauss or
Legendre–Gauss–Lobatto collocation nodes, as defined in Equations (4.27) and (4.31), re-
spectively. Also, let {ωN,k}Nk=0 be its associated set of Gauss quadrature coefficients.

Then there exists C > 0 and N0 ∈ N such that, given (ξ, x, u) ∈ F0, N ≥ N0, and δ > 0,
we can find (xN , uN) ∈ XN × UN satisfying:

(1)
(∑M

k=0 ωM,k

∥∥ẋN(tM,k)− h
(
xN(tM,k), uN(tM,k)

)∥∥2

2

) 1
2 ≤ CN−

δ
2

(
‖ξ‖2+‖u‖L2+V(u)+1

)
,

(2) f j
(
xN(tN,k)

)
≤ CN−

1
2

(
‖ξ‖2 + ‖u‖L2 + 1

)
, ∀k ∈ {0, . . . , N}, ∀j ∈ {1, . . . , q},

where M =
⌈
N4+δ

⌉
and V(·) is as defined in Equation (4.5).

Proof. LetN ≥ N0. Since x is feasible and f j is Lipschitz continuous, as stated in Condition 4
in Assumption 4.6, there exists C1 > 0 such that for each j ∈ {1, . . . , q} and k ∈ {0, . . . , N}:

f j
(
xN(tN,k)

)
≤
∣∣f j(x(tN,k)

)
− f j

(
xN(tN,k)

)∣∣ ≤ C1
1√
N

(
‖ξ‖2 + ‖u‖L2 + 1

)
, (4.54)

where the last inequality follows by Condition 2 in Corollary 4.10.



CHAPTER 4. PSEUDOSPECTRAL APPROXIMATIONS 130

Let eN : [−1, 1] → Rn be defined by eN(t) = ẋN(t) − h
(
xN(t), uN(t)

)
. Then, by Condi-

tion 1 in Assumption 4.2 together with Condition 2 in Corollary 4.10, there exists C2 > 0
such that:

‖eN‖L2 ≤ ‖ẋN − ẋ‖L2 +

(∫ 1

−1

∥∥h(x(s), u(s)
)
− h
(
xN(s), uN(s)

)∥∥2

2
ds

) 1
2

≤ C1
1√
N

(
‖ξ‖2 + ‖u‖L2 + 1

)
+ 2L

(
‖x− xN‖L2 + ‖u− uN‖L2

)
≤ C2

1√
N

(
‖ξ‖2 + ‖u‖L2 + V(u) + 1

)
.

(4.55)

Now let M ∈ N. Then, since the collocation nodes are either Legendre–Gauss or Legendre–
Gauss–Lobatto, by Theorem 6.6.1 in [Fun92] we get that there exists C3 > 0 such that:

‖eN − IMeN‖L2 ≤ C3
1√
M
‖ėN‖L2

≤ C3
1√
M

(
‖ẍN‖L2 +

∥∥∥∥dhdx
∥∥∥∥
L∞
‖ẋN‖L2 +

∥∥∥∥dhdu
∥∥∥∥
L∞
‖u̇N‖L2

)
.

(4.56)

In order to obtain a bound for the inequality in Equation (4.56) note that, by Condition 2
in Corollary 4.10, Condition 1 in Assumption 4.2, and Lemma 4.8, there exists C4 such that:

‖ẋN‖L2 ≤ C1
1√
N

(
‖ξ‖2 + ‖u‖L2 + 1

)
+ ‖ẋ‖L2

≤ C4

(
1√
N

+ 1

)(
‖ξ‖2 + ‖u‖L2 + 1

)
.

(4.57)

Also, note that by Condition 1 in Assumption 4.2:∥∥∥∥dhdx
∥∥∥∥
L∞
≤ L, and

∥∥∥∥dhdu
∥∥∥∥
L∞
≤ L, (4.58)

Moreover, Theorem 6.3.2 in [Fun92] states that there exists C4 > 0 such that for each
polynomial p of order N :

‖ṗ‖L2 ≤ C4N
2 ‖p‖L2 . (4.59)

Therefore, from Equations (4.57), (4.58), and (4.59), we get the following estimate:

‖eN − IMeN‖L2 ≤ C5
N2

√
M

(
‖ξ‖2 + ‖u‖L2 + V(u) + 1

)
, (4.60)

for some C5 > 0. The proof is complete by noting that there exists C6 > 0 such that:(
M∑
k=0

ωM,k ‖eN(tM,k)‖2
2

) 1
2

=

(
M∑
k=0

ωM,k ‖IMeN(tM,k)‖2
2

) 1
2

≤ C6 ‖IMeN‖L2 , (4.61)
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where the last inequality follows from Theorem 3.8.2 in [Fun92]. Therefore, using the bounds
in Equations (4.55) and (4.60), we get that there exists C7 > 0 such that:(

M∑
k=0

ωM,k ‖eN(tM,k)‖2

) 1
2

≤ C7

(
1√
N

+
N2

√
M

)
, (4.62)

thus, if we choose M =
⌈
N4+δ

⌉
for any δ > 0, we get the desired result.

Now we can state the main result in this chapter, which is that global minimizers of any
sequence of Problems PN,δ as N →∞,

Theorem 4.12. For each N ∈ N, let {tk}Nk=0 be a set of either Legendre–Gauss or Legendre–
Gauss–Lobatto collocation nodes, as defined in Equations (4.27) and (4.31), respectively.
Also, given δ > 0, let {(ξN , xN , uN , εN)}N∈N be a sequence of minimizers of Problems
{PN,δ}N∈N, as defined in Equation (4.37).

Then any accumulation point of this sequence is of the form
(
ξ̂, x̂, û, 0

)
∈ Rn ×X ×U ×

[0,∞), where the tuple
(
ξ̂, x̂, û

)
is a minimizer of Problem P0, as defined in Equation (4.35).

Proof. Without loss of generality, let us assume that (ξN , xN , uN , εN) →
(
ξ̂, x̂, û, ε̂

)
. We

will first show that ε̂ = 0. Recall that ε̂ ≥ 0 since, by definition of the constraints of
Problem PN,δ, εN ≥ 0 for each N ∈ N.

Let us assume that ε̂ > 0. Let
(
ξ̃, x̃, ũ

)
∈ Rn × X × U be a minimizer of Problem (P0).

Then there exists a sequence
{(
ξ̄N , x̄N , ūN , ε̄N

)}
N∈N ⊂ FN,δ, where FN,δ is the feasible set

of Problem PN,δ, converging to
(
ξ̃, x̃, ũ, 0

)
. Indeed, for any C ′, δ′ > 0 there exists N0 such

that for each N ≥ N0:

C ′N−
δ′
2

(∥∥ξ̃∥∥
2

+ ‖ũ‖L2 + V(ũ) + 1
)
≤ N−

δ′
3 ,

C ′N−
1
2

(∥∥ξ̃∥∥
2

+ ‖ũ‖L2 + 1
)
≤ N−

1
3 .

(4.63)

Hence, by Lemma 4.11, for N ≥ N0 we can choose
(
ξ̄N , x̄N , ūN

)
such that

(
ξ̄N , x̄N , ūN , 0

)
∈

FN,δ.
Let α > 0, and let N1 ∈ N, N1 ≥ N0, such that for each N ≥ N1,

f 0
(
ξ̄N , x̄N(1)

)
≤ f 0

(
ξ̃, x̃(1)

)
+ α. (4.64)

Also, let N2 ∈ N, N2 ≥ N1, such that for each N ≥ N2

f 0
(
ξ̂, x̂(1)

)
+ πN ε̂ ≥ f 0

(
ξ̃, x̃(1)

)
+ 4α. (4.65)

Since the map (ξ, x) 7→ f 0
(
ξ, x(1)

)
is continuous with the topology of Rn×X , there exists a

neighborhood V ⊂ Rn×X ×U × [0,∞) of
(
ξ̂, x̂, û, ε̂

)
such that for each tuple (ξ, x, u, ε) ∈ V

f 0
(
ξ, x(1)

)
+ πNε ≥ f 0

(
ξ̃, x̃(1)

)
+ 2α. (4.66)
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But we assumed that (ξN , xN , uN , εN) →
(
ξ̂, x̂, û, ε̂

)
, hence there exists N3 ∈ N, N3 ≥ N2,

such that (ξN , xN , uN , εN) ∈ V for each N ≥ N3. Thus:

f 0
(
ξN , xN(1)

)
+ πN ε̂ ≥ f 0

(
ξ̃, x̃(1)

)
+ 2α > f 0

(
ξ̄N , x̄N(1)

)
, (4.67)

which contradicts the fact that (ξN , xN , uN , εN) is a minimizer of Problem PN,δ. Therefore
ε̂ = 0.

Now we prove that
(
ξ̂, x̂, û

)
is a minimizer of Problem P0. Suppose not, then:

f 0
(
ξ̃, x̃(1)

)
< f 0

(
ξ̂, x̂(1)

)
, (4.68)

and therefore, again by continuity of the map (ξ, x) 7→ f 0
(
ξ, x(1)

)
, there exists N4 ∈ N,

N4 ≥ N3, such that:
f 0
(
ξ̄N , x̄N(1)

)
< f 0

(
ξN , xN(1)

)
. (4.69)

Recall that ε̄N = 0 for each N ≥ N4. Since (ξN , xN , uN , εN) is a minimizer of Problem PN,δ,
then the following inequalities are satisfied:

f 0
(
ξ̄N , x̄N(1)

)
< f 0

(
ξN , xN(1)

)
+ πNεN ≤ f 0

(
ξ̄N , x̄N(1)

)
, (4.70)

but this is clearly a contradiction, hence proving the theorem.
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Chapter 5

Conclusion

We have presented three results in the intersection of hybrid dynamical systems and optimal
control, with applications to Cyber–Physical Systems. The first result, in Chapter 2, is
an algorithm that computes the optimal control of switched hybrid dynamical systems with
state constraints. The second result, in Chapter 3, is an algorithm that simulates autonomous
hybrid dynamical systems using a novel relaxation technique. The third result, in Chapter 4,
is an algorithm that computes the optimal control of nonlinear dynamical systems with
states constraints using pseudospectral approximations. These algorithms where developed
motivated by the some difficulties faced by Cyber–Physical applications, such as the problem
of generalizing dynamical models to account for both continuous and discrete state variables,
and the problem of improving the speed of computation so that large–scale problems can be
addressed.

Each of these results opens the doors to many research possibilities. First of all, we have
not tested any of these algorithms using experimental data. Algorithms tend to perform
better with simulated data than with experimental data, hence using them in real–life ap-
plications is fundamental to understand their weaknesses. In particular, the algorithm in
Chapter 2 has many promising properties, as shown in Section 2.6, that make us think it will
be applicable to a wide range of applications. Second, in Chapter 3 we construct a hybrid
system metric, i.e. a metric that takes into account mode transitions to measure distances
within a hybrid dynamical system, which has the potential to solve many long standing
problems in hybrid system theory. Our result uses this hybrid system metric to prove that
our simulations converge to real trajectories, but at the same time it can be used to answer
questions about the topology of the hybrid system, such as finding the families of trajectories
that are not orbitally stable, or showing that some trajectories are Zeno. Also, we expect to
extend our result on Chapter 3 to hybrid systems with controlled inputs, both continuous
and discrete. Third, as explained in Chapter 4, our result in pseudospectral approximations
is just a first step towards finding an numerical method for the computation of optimal
control, based on pseudospectral methods, that can be provably convergent for practical
problems. This is very relevant for real–life applications, since using this new algorithm will
allow us to implement exciting experiments solving optimal control problems in real–time.
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Finally, we firmly believe that addressing the challenges faced today in the context of
Cyber–Physical Systems will produce dramatic improvements to our society. The incor-
poration of new distributed sources of energy to the electric power grid, autonomous cars
that guarantee our safety while increasing their performance, and the development of pros-
thetic devices, are just a few of the applications where control theory for Cyber–Physical
Systems plays a fundamental part. The results presented in this thesis are a small step
towards undertaking these huge problems, nevertheless we are certain that they are steps in
the right direction, and we hope that they help inspire even better results in the thriving
Cyber–Physical research community.
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