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A RESIDUAL REPLACEMENT STRATEGY FOR IMPROVING THE
MAXIMUM ATTAINABLE ACCURACY OF S-STEP KRYLOV

SUBSPACE METHODS

ERIN CARSON AND JAMES DEMMEL

Abstract. Recent results have demonstrated the performance benefits of communication-
avoiding Krylov subspace methods, variants which use blocking strategies to perform O(s) com-
putation steps of the algorithm for each communication step. This allows an O(s) reduction in total
communication cost, which can lead to significant speedups on modern computer architectures. De-
spite potential performance benefits, stability of these variants has been an obstacle to their use in
practice.

Following equivalent analyses for the classical Krylov methods, we bound the deviation of the
true and computed residual in finite precision communication-avoiding Krylov methods, which leads
to an implicit residual replacement strategy. We are the first, to our knowledge, to perform this
analysis for s-step variants. We show that our strategy can be implemented without affecting the
asymptotic communication or computation cost of the algorithm, for both the sequential and parallel
case. Numerical experiments demonstrate the effectiveness of our residual replacement strategy for
communication-avoiding variants of both the conjugate gradient and biconjugate gradient methods.
Specifically, it is shown that for cases where the computed residual converges, accuracy of order
O(ε) ‖A‖ ‖x‖ can be achieved with a small number of residual replacement steps, demonstrating the
potential for practical use of communication-avoiding Krylov subspace methods.

Key words. Krylov subspace methods, maximum attainable accuracy, residual replacement,
numerical stability, iterative solvers, minimizing communication, sparse matrix
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1. Introduction. Krylov subspace methods (KSMs) are a class of iterative al-
gorithms commonly used to solve linear systems. These methods work by iteratively
adding a dimension to a Krylov subspace and then choosing the “best” solution from
the resulting subspace, where the solution xk and residual rk are updated as

xk = xk−1 + αk−1p
k−1 rk = rk−1 − αk−1Apk−1 (1.1)

or something similar. Although the above formula applies specifically to conju-
gate gradient (CG) and biconjugate gradient (BICG), similar expressions describe
steepest descent, conjugate gradient squared (CGS), stabilized biconjugate gradient
(BICGSTAB), and other recursively computed residual methods.

It is important to notice that xk and rk have different round-off patterns. That
is, the expression for xk does not depend on rk, nor does the expression for rk depend
on xk. Therefore, computational errors made in xk are not self-correcting. Through-
out the iteration, these errors accumulate and cause deviation of the true residual,
b − Axk, and computed residual, rk. This limits the maximum attainable accuracy,
which bounds how accurately we can solve the system on a computer with machine
precision ε. When maximum attainable accuracy is attained, the computed residual
will continue decreasing in norm, whereas the norm of the true residual will stagnate.
It is therefore possible to have very large error in the solution despite the algorithm
reporting a very small residual norm.

Strategies such as restarting and residual replacement are commonly used to limit
the error that accumulates throughout the computation (see, e.g., [20, 24]). Simply
substituting the true residual for the Lanczos recurrence in each iteration (or even
every s iterations), in addition to increasing both the communication and computation
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in the method, can destroy the super-linear convergence properties driven by the
Lanczos process [20, 24]. Residual replacement strategies must therefore carefully
select iterations where residual replacement takes place, which requires estimating
the accrued rounding error. Van der Vorst and Ye have successfully implemented
such a strategy for standard Krylov methods [24].

The computation involved in standard Krylov methods, namely, the updates of
xk and rk, consists of one or more sparse matrix-vector multiplications (SpMVs) and
vector operations in each iteration. Because these kernels have a low computation to
communication ratio, standard Krylov method implementations are communication-
bound on modern computer architectures.

This motivated s−step, or, Communication-Avoiding KSMs (CA-KSMs), which
are equivalent to the standard KSM implementations in exact arithmetic. These
variants use blocking strategies to perform O(s) computation steps of the algorithm
for each communication step, allowing an O(s) reduction in total communication cost
(see, e.g., [2, 3, 5, 7, 8, 10, 11, 16, 25, 21, 22]).

Despite attractive performance benefits, the effect of finite precision error in CA-
KSMs is not well understood. The deviation of the true and computed residual, as
well as the convergence rate, potentially become worse as s increases. Many previous
authors have observed this behavior in CA-KSMs (see, e.g. [3, 4, 5, 11, 25, 26]). We
are the first, to our knowledge, to provide a quantitative analysis of round-off error in
these algorithms which limits the maximum attainable accuracy. Our analysis, which
follows the analysis for classical KSMs in [24], leads directly to an implicit residual
replacement strategy to reduce such error.

In all numerical experiments solving Ax = b, if the norm of the computed resid-
ual for the CA-KSM converges to O(ε) ‖A‖ ‖x‖, our residual replacement strategy is
effective at maintaining agreement between residuals such that the true residual will
also converge with norm equal to O(ε) ‖A‖ ‖x‖. Furthermore, in all tests, the number
of residual replacement steps was small compared to the total number of iterations.
The highest ratio of replacement steps to total iterations was 0.03; in most cases the
ratio was less than 0.01. If we generate the Krylov basis using properly chosen Newton
or Chebyshev polynomials, the basis additionally remains well conditioned even for
large s, leading to a convergence rate close to that of the classical implementation.
We therefore conclude that, for many applications, CA-KSMs can solve Ax = b as
accurately as the classical method for a factor of O(s) less communication.

2. Related work. We briefly discuss review work in the areas of s-step and
CA-KSMs, as well as work related to the numerical analysis of classical KSMs.

2.1. s-step Krylov subspace methods. The first instance of an s-step method
in the literature is Van Rosendale’s conjugate gradient method [25]. Van Rosendale’s
implementation was motivated by exposing more parallelism using the PRAM model.
Chronopoulous and Gear later created an s−step GMRES method with the goal of
exposing more parallel optimizations [4]. Walker looked into s-step bases as a method
for improving stability in GMRES by replacing the modified Gram-Schmidt orthog-
onalization process with Householder QR [26]. All these authors used the monomial
basis, and found that convergence often could not be guaranteed for s > 5. It was
later discovered that this behavior was due to the inherent instability of the monomial
basis, which motivated research into the use of other bases for the Krylov subspace.

Hindmarsh and Walker used a scaled (normalized) monomial basis to improve con-
vergence [10], but only saw minimal improvement. Joubert and Carey implemented
a scaled and shifted Chebyshev basis which provided more accurate results [12]. Bai
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et al. also saw improved convergence using a Newton basis [1]. Although successively
scaling the basis vectors lowers the condition number of the basis matrix, hopefully
yielding convergence closer to that of the standard method, this computation rein-
troduces the dependency we sought to remove, hindering communication-avoidance.
Hoemmen resolves this using a novel matrix equilibration and balancing approach as
a preprocessing step, eliminating the need for scaled basis vectors [11].

Hoemmen et. al [7, 11, 16] have derived communication-avoiding variants of Lanc-
zos, Arnoldi, CG and GMRES. The derivation of communication-avoiding variants of
two-sided Krylov subspace methods, such as BICG, CGS, and BICGSTAB can be
found in [2].

2.2. Error analysis of Krylov subspace methods. The behavior of classical
Krylov subspace methods in finite precision arithmetic is a well-studied problem. The
finite precision Lanczos process, which drives convergence, can lead to a significant
deviation between the recursively computed residual and the true residual, b − Axk,
decreasing the maximum attainable accuracy of the solution. Previous authors have
devised residual replacement strategies for Krylov methods, in which the computed
residual is replaced by the finite precision evaluation of the true residual at carefully
chosen iterations, discussed in further detail below. In this way, agreement between
the true and computed residual is maintained throughout the iteration.

An upper bound on the maximum attainable accuracy for KSMs was provided
by Greenbaum [9]. Greenbaum proved that this bound can be given a priori for
methods like CG, but can not be predetermined for methods like BICG, which can
have arbitrarily large intermediate iterates. Additionally, Greenbaum has shown the
backward stability of the CG algorithm, by showing that the Ritz values found lie in
small intervals around the eigenvalues of A. There are many other analyses of the
behavior of various KSMs in finite precision arithmetic (see, e.g. [15, 14, 23]). The
reader is also directed to the bibliography in [18].

Sleijpen and Van der Vorst implemented a technique called “flying restarts” to
decrease the amount of round-off error that occurs in KSMs [20]. Their method,
which is applicable to many KSMs, iteratively tracks an upper bound for the amount
of round-off that has occurred in the iteration so far. Using this upper bound, the
algorithm may decide, at each iteration, to perform a group update (discussed in
Sec. 4), to restart the algorithm (setting the right hand side appropriately), or both.
The benefit from using a group update strategy is analogous to grouping to reduce
round-off error in finite precision recursive summation. Following this work, Van der
Vorst and Ye devised a residual replacement strategy, which, rather than restarting,
replaces the residual with the computed value of the true residual, combined with
group updates [24]. This residual replacement occurs at iterations chosen such that
two objectives are met: first, the accumulated round-off does not grow so large as
to limit the attainable accuracy, and second, the Lanczos process is not perturbed so
much as to slow the rate of convergence. To determine when these conditions are met,
the algorithm iteratively updates a bound on the error accrued thus far. The analysis
for CA-KSMs in subsequent sections closely parallels the methodology of [24].

2.3. Communication-avoiding conjugate gradient. We briefly review the
communication-avoiding conjugate gradient algorithm (CA-CG), shown in Alg.1. We
chose CG for simplicity, although the same general techniques used here can be applied
to other CA-KSMs as well. In the interest of space, we refer the reader to numerous
other works on the topic, such as [3, 4, 7, 11, 13, 25, 22].
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The CA-CG method has both an inner loop, which iterates from j = 1 : s, and
k outer loop iterations, where k depends on the number of steps until convergence
(or some other termination condition). Therefore, we will index quantities as sk + j
for clarity. For reference, Table 2.1 contains quantities used in the CA-CG derivation
below along with their dimensions.

A Pk Rk V k V k
j Gk T̄ T̄j+1 T Tj+1

Rows N N N N N 2s+ 1 s+ 1 j + 1 2s+ 1 2j + 1

Cols N s+ 1 s 2s+ 1 2j − 1 2s+ 1 s j 2s+ 1 2j + 1

Table 2.1
Dimensionality of variables in CA-CG derivation.

In CA-CG, we do not update xsk+j , rsk+j , and psk+j directly within the inner
loop, but instead update their coefficients in the Krylov basis

V k = [P k, Rk] = [ρ0(A)psk, ..., ρs(A)psk, ρ0(A)rsk, ..., ρs−1(A)rsk] (2.1)

where ρi is a polynomial of degree i. We assume a three-term recurrence for generating
these polynomials, which can be written in terms of basis parameters γi, θi, and σi
as

ρi(A) = γi(A− θiI)ρi−1(A) + σiρi−2(A) (2.2)

This three-term recurrence covers a large class of polynomials (including all classical
orthogonal polynomials). The monomial, Newton, and Chebyshev bases are common
choices for CA-KSMs (see, e.g., [19]).

This Krylov basis is generated at the beginning of each outer loop, using the
current rsk and psk vectors, by the communication-avoiding matrix powers kernel
described in [7, 11, 16]. We can then represent xsk+j , rsk+j , and psk+j by coefficients
esk+j , csk+j , and ask+j , which are vectors of length 2s+ 1, such that

xsk+j = V kesk+j + xsk, rsk+j = V kcsk+j , psk+j = V kask+j

If we rearrange Eq. (2.2), we obtain an expression for multiplication by A as a linear
combination of basis vectors, with weights defined in terms of the parameters γi, θi,
and σi. In matrix form, this defines the tridiagonal matrix T̄ , of dimension (s+1)×s,
such that

AP ki = P ki+1T̄i+1 ARki = Rki+1T̄i+1

where P ki , R
k
i are N × i matrices containing the first i columns of P k or Rk, respec-

tively, and T̄i+1 is the matrix containing the first i+ 1 rows and first i columns of T̄ .
Let V kj = [P kj , R

k
j−1]. This allows us to write

AV kj = A[P kj , R
k
j−1] = [P kj+1T̄j+1, R

k
j T̄j ] = V kj+1

[
T̄j+1

T̄j

]
(2.3)

Let Tj+1 =

[
[T̄j+1, 0s+1,1]

[T̄j , 0s,1]

]
and define T ≡ Ts+1. We can then write

Apsk+j as
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Algorithm 1 CA-CG Method

1: x0, r0 = b−Ax0, p0 = r0, k = 0
2: while not converged do
3: Calculate P k, Rk, T by (2.1) and (2.3)
4: Let V k = [P k, Rk],Gk = (V k)TV k

5: ask = [1, 02s]
T

,csk = [0s+1, 1, 0s−1]
T

, esk = [02s+1]
6: for j = 1 : s do
7: αsk+j−1 = [(csk+j−1)TGk(csk+j−1)]/[(ask+j−1)TGk(Task+j−1)]
8: esk+j = esk+j−1 + αsk+j−1a

sk+j−1

9: csk+j = csk+j−1 − T
(
αsk+j−1a

sk+j−1)
10: βsk+j−1 = [(csk+j)TGk(csk+j)]/[(csk+j−1)TGk(csk+j−1)]
11: ask+j = csk+j + βsk+j−1a

sk+j−1

12: end for
13: xsk+s = [P k, Rk]esk+s + xsk, rsk+s = [P k, Rk]csk+s, psk+s = [P k, Rk]ask+s

14: k = k + 1
15: end while
16: return xsk

Apsk+j = AV kask+j = (AV kj )

[
ask+j0:j−1

ask+js+1:s+j−1

]
= V kj+1Tj+1

[
ask+j0:j

ask+js+1:s+j

]
= V kTask+j

Therefore, Task+j are the Krylov basis coefficients for Apsk+j . This expression al-
lows us to avoid explicit multiplication by A within the inner loop, and thus avoid
communication.

3. Error in finite precision CA-KSMs . Throughout this analysis, we use a
standard model of floating point arithmetic:

fl(x+ y) = x+ y + δ with |δ| ≤ ε(|x+ y|)
fl(Ax) = Ax+ δ with |δ| ≤ εNA |A| |x|

where ε is the unit round-off of the machine, x, y ∈ RN , and NA is a constant
associated with the matrix-vector multiplication (for example, the maximal number of
nonzero entries in a row of A). All absolute values and inequalities are componentwise.
Using this model, we can also write

fl(y +Ax) = y +Ax+ δ with |δ| ≤ ε(|y +Ax|+NA |A| |x|)

where, as in the remainder of the analysis, we ignore higher powers of ε for simplicity.
We can now perform an analysis of round-off error in computing the updates in the
CA-CG (and CA-BICG) method. Our goal is to bound the norm of the difference
between the true and computed residual in terms of the norms of quantities which
can be computed inexpensively in each iteration.

3.1. Error in finite precision iterate updates. First, we consider the finite
precision error in updating esk+j and csk+j in the inner loop (lines 8 and 9 in Alg. 1)
and performing the basis change to obtain xsk+s and rsk+s at the end of the s steps
(line 13 in Alg. 1). In the communication-avoiding variant of CG, we represent the
solution and computed residual by their coefficients in the Krylov basis V k = [P k, Rk],
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where P k and Rk are the O(s) dimensional Krylov bases with starting vectors psk

and rsk, respectively. These coefficient vectors are initialized as esk = [02s+1]T , csk =
[0s+1, 1, 0s−1]T . In the inner loop, we update these coefficients as

esk+j = esk+j−1 + αsk+j−1a
sk+j−1 (3.1)

csk+j = csk+j−1 − T
(
αsk+j−1a

sk+j−1) (3.2)

When (3.1) and (3.2) are implemented in finite precision, they become

êsk+j = fl(êsk+j−1 + αsk+j−1a
sk+j−1)

= êsk+j−1 + αsk+j−1a
sk+j−1 + ξsk+j (3.3)∣∣ξsk+j∣∣ ≤ ε ∣∣êsk+j∣∣ (3.4)

ĉsk+j = fl(ĉsk+j−1 − T
(
αsk+j−1a

sk+j−1))
= ĉsk+j−1 − T

(
αsk+j−1a

sk+j−1)+ ηsk+j (3.5)∣∣ηsk+j∣∣ ≤ ε(∣∣ĉsk+j∣∣+NT |T |
∣∣αsk+j−1ask+j−1∣∣) (3.6)

where we use hats to decorate values computed in finite precision. Note that the
rounding errors in computing αsk+j−1a

sk+j−1 do not affect the numerical deviation
of the true and computed residuals [9, 24]; the deviation of the two residuals is due to
the different round-off patterns that come from different treatment of αsk+j−1a

sk+j−1

in the recurrences for esk+j and csk+j . We therefore let the term αsk+j−1a
sk+j−1

denote the computed quantity.
In the inner loop, we denote the exact expressions for the solution and computed

residual represented in the Krylov basis by

x′
sk+j

= V kêsk+j + x̂′sk (3.7)

r′
sk+j

= V k ĉsk+j (3.8)

These expressions are computed in finite precision only at the end of each outer loop
iteration, when j = s. Thus x̂′sk = x̂′s(k−1)+s in (3.7) denotes value of the solution
computed in finite precision at the end of the (k − 1)st outer loop. Similarly, we use

r̂′sk+s to denote the computed value of r′
sk+s

. At the end of outer loop k, these
computed quantities can be written as

x̂′sk+s ≡ fl(V kêsk+s + x̂′sk) = V kêsk+s + x̂′sk + ψsk+s = x′
sk+s

+ ψsk+s (3.9)∣∣ψsk+s∣∣ ≤ ε (∣∣x̂′sk+s∣∣+NV
∣∣V k∣∣ ∣∣êsk+s∣∣) (3.10)

r̂′sk+s ≡ V k ĉsk+s + φsk+s = r′
sk+s

+ φsk+s (3.11)∣∣φsk+s∣∣ ≤ εNV ∣∣V k∣∣ ∣∣ĉsk+s∣∣ (3.12)

Note that, similar to the above case for αsk+j−1a
sk+j−1, we do not account for

any errors in computing the Krylov basis V k. Again, the deviation of the computed
residual, r′sk+s, and the true residual, b − Ax′sk+s, is due to the different round-off
patterns that come from different treatment of V k in the recurrences. This means
that errors made in computing the basis do not contribute to the numerical deviation
of the true and computed residual. A nice consequence of this is that our analysis is
independent of how V k is computed; the same bounds hold for all polynomial bases,
even in the face of numerical rank deficiency (although in this case, we certainly don’t
expect convergence of the computed residual, which makes residual replacement efforts
irrelevant).
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3.2. Deviation of the true and computed residual. We now analyze round-
off error that occurs in finite precision CA-CG and obtain an upper bound for the
norm of the difference between the true and computed residual at step sk+j, denoted
by δsk+j . We comment that the same analysis and bounds also apply to CA-BICG,
whose true and computed residual follow the same update formulas.

In the inner loop, we perform vector updates in the s-dimensional Krylov bases
represented by V k. Using (2.3), we can write the deviation of the true residual,

b−Ax′sk+j , and the computed residual, r′
sk+j

, as

b−Ax′sk+j − r′sk+j = b− (Ax′
sk+j

+ r′
sk+j

) = b− V k(T êsk+j + ĉsk+j)−Ax̂′sk

for 1 ≤ j < s. Using (3.3) and (3.5),

T êsk+j + ĉsk+j = T
(
êsk+j−1 + αsk+j−1a

sk+j−1 + ξsk+j
)

+ĉsk+j−1 − Tαsk+j−1ask+j−1 + ηsk+j

= T êsk+j−1 + ĉsk+j−1 + Tξsk+j + ηsk+j

We plug back in to obtain

b− V k(T êsk+j + ĉsk+j)−Ax̂′sk = b−Ax̂′sk − r̂′sk −
j∑
i=1

(
V kTξsk+i + V kηsk+i

)
where we have used the base cases for the values of êsk and ĉsk given in Alg. 1.

We can then use (3.9) and (3.11) to write

b−Ax̂′sk − r̂′sk =
(
b−Ax′s(k−1)+s − r′s(k−1)+s

)
−Aψs(k−1)+s − φs(k−1)+s

If we keep unrolling the recurrence, we obtain an expression for the deviation of the
true and computed residual:

b−Ax′sk+j − r′sk+j = b−Ax0 − r0 + δsk+j

(3.13)

where

δsk+j ≡ −
k−1∑
l=0

[
Aψsl+s + φsl+s +

s∑
i=1

(
V lTξsl+i + V lηsl+i

)]

−
j∑
i=1

(
V kTξsk+i + V kηsk+i

)
(3.14)

We will now bound the norm of δsk+j . Using the componentwise bounds for ξsl+i

and ηsl+i in (3.4) and (3.6), respectively, we can write
j∑
i=1

[
∣∣V k∣∣ (|T | ∣∣ξsk+i∣∣+

∣∣ηsk+i∣∣)]
≤ ε

j∑
i=1

∣∣V k∣∣ (|T | ∣∣êsk+i∣∣+
∣∣ĉsk+i∣∣+NT |T |

∣∣αsk+i−1ask+i−1∣∣)
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Rearranging (3.3), we obtain

αsk+i−1a
sk+i−1 = êsk+i − êsk+i−1 − ξsk+i

which gives us the componentwise bound for the summation

j∑
i=1

∣∣αsk+i−1ask+i−1∣∣ ≤ (2 + ε)

j∑
i=1

∣∣êsk+i∣∣ (3.15)

Therefore,

j∑
i=1

[
∣∣V k∣∣ (|T | ∣∣ξsk+i∣∣+

∣∣ηsk+i∣∣)] ≤ ε j∑
i=1

∣∣V k∣∣ [(1 + 2NT ) |T |
∣∣êsk+i∣∣+

∣∣ĉsk+i∣∣]
If we combine this with the componentwise bounds for ψsl+s and φsl+s in (3.10)

and (3.12), we get

∣∣δsk+j∣∣ ≤ ε k−1∑
l=0

(
|A|
∣∣x̂′sl+s∣∣+NV |A|

∣∣V l∣∣ ∣∣êsl+s∣∣+NV
∣∣V l∣∣ ∣∣ĉsl+s∣∣) (3.16)

+ε

k−1∑
l=0

s∑
i=1

∣∣V l∣∣ [(1 + 2NT ) |T |
∣∣êsl+i∣∣+

∣∣ĉsl+i∣∣]
+ε

j∑
i=1

∣∣V k∣∣ [(1 + 2NT ) |T |
∣∣êsk+i∣∣+

∣∣ĉsk+i∣∣]
From this follows a bound for δsk+j in terms of norms:

∥∥δsk+j∥∥ ≤ ε k−1∑
l=0

(
‖A‖

∥∥x̂′sl+s∥∥+NV ‖A‖
∥∥∣∣V l∣∣ ∣∣êsl+s∣∣∥∥+NV

∥∥∣∣V l∣∣ ∣∣ĉsl+s∣∣∥∥)(3.17)

+ε

k−1∑
l=0

s∑
i=1

[
(1 + 2NT ) ‖T‖

∥∥∣∣V l∣∣ ∣∣êsl+i∣∣∥∥+
∥∥∣∣V l∣∣ ∣∣ĉsl+i∣∣∥∥]

+ε

j∑
i=1

[
(1 + 2NT ) ‖T‖

∥∥∣∣V k∣∣ ∣∣êsk+i∣∣∥∥+
∥∥∣∣V k∣∣ ∣∣ĉsk+i∣∣∥∥]

In the equation above, it could be the case that
∥∥V k∥∥ ∥∥êsk+j∥∥� ∥∥∣∣V k∣∣ ∣∣êsk+j∣∣∥∥ and∥∥V k∥∥∥∥ĉsk+j∥∥ � ∥∥∣∣V k∣∣ ∣∣ĉsk+j∣∣∥∥, which will lead to a very large overestimate of the

deviation of residuals. Therefore it is beneficial to use the quantities
∥∥∣∣V k∣∣ ∣∣êsk+j∣∣∥∥

and
∥∥∣∣V k∣∣ ∣∣ĉsk+j∣∣∥∥ in (3.17).

4. Error in finite precision CA-KSMs with residual replacement and
group update. In the residual replacement strategy of Van der Vorst and Ye [24],
the computed residual r̂m is replaced with the true residual fl(b − Ax̂m) at residual
replacement steps m = m1,m2, · · · ,my.

Van der Vorst and Ye combine residual replacement with a group update strategy.
A group update strategy ensures that the deviation of residuals remains on the order
of O(ε) ‖A‖ ‖x‖ from the last replacement step mk to the final iteration by reducing
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error in the local recurrence. Similar techniques are used to reduce error accumulation
in evaluating a sum S =

∑∞
i=1 wi of small numbers by direct recursive additions [24].

This error can be corrected by grouping operations as S1 +S2 + · · · = (w1 +w2 + · · ·+
wm1) + (wm1+1 + · · ·+wm2) + . . . , where terms close in magnitude are grouped in Si.
This makes rounding error associated with additions within group Si of magnitude
εSi, which can be much smaller than εS. This strategy has previously been suggested
for use in KSMs by Neumaier and was also used by Sleijpen and Van der Vorst
(see [17, 20, 24]), where the solution is instead updated by the recurrence

xn = x0 +

n∑
i=1

αi−1a
i−1

= x0 +
(
α0a

0 + · · ·+ αm1−1a
m1−1

)
+
(
αm1

am1 + · · ·+ αm2−1a
m2−1

)
+ . . .

In [24], when a residual replacement occurs, a group update is also performed; we
use the same strategy here. When a residual replacement and group update occurs
in CA-CG, we update vector z, which represents the group approximate solution, as
z = z + x′sk+j , and reset x′sk+j = x0 = 0. The true residual is then computed as
fl(b−Az).

In the CA-CG algorithm, we begin a new outer loop immediately following a
residual replacement step, as we can no longer use the generated s-step bases to
recover iterates according to the recurrence; we must redistribute the true residual
and generate a new basis using the matrix powers kernel. For simplicity of notation,
we will reset k = 0 after a group update occurs. Although this adds additional
communication steps to the algorithm, it will be shown in subsequent sections that the
number of replacements is small, and thus the extra communication cost is negligible.

In order for our residual replacement strategy to be successful, we must satisfy
the following constraints [24]:

1. The accumulated error from the last residual replacement step my should be
small relative to ε(|r′my |+NA |A| |x′my |).

2. The residual in the algorithm with residual replacement should maintain the
convergence mechanism driven by underlying finite precision Lanczos process.

The use of the group update strategy satisfies the first objective [24]. We briefly dis-
cuss the latter constraint, which will motivate the condition for residual replacement.

4.1. Selecting residual replacement steps. We review the analysis in [24]
which leads to the residual replacement condition. Consider the classical finite pre-
cision CG iteration, where, in iteration n, the computed residuals r̂n and search
directions p̂n satisfy

r̂n = r̂n−1 − αn−1Ap̂n−1 + ηn p̂n = r̂n + βnp̂
n−1 + τn (4.1)

In this subsection, we let en denote the nth identity column, rather than the coeffi-
cients used in CA-CG. We can then write the above equations in matrix form as

AZn = ZnHn −
1

α′n

r̂n+1

‖r̂1‖
eTn + Fn with Zn =

[
r̂1

‖r̂1‖
, . . . ,

r̂n

‖r̂n‖

]
where Hn is an invertible tridiagonal matrix, α′n = eTnH

−1
n e1 and Fn =

[
f1, . . . , fn

]
with

fn =
Aτn

‖r̂n‖
+

1

αn

ηn+1

‖r̂n‖
− βn
αn−1

ηn

‖r̂n‖
(4.2)
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It has been shown (see, e.g., [14]) that if a sequence r̂n satisfies (4.1) and the basis
Zn+1 is full rank, ∥∥r̂n+1

∥∥ ≤ (1 +Kn) min
ρ∈Pn,ρ(0)=1

∥∥ρ(A+ ∆An)r̂1
∥∥ (4.3)

where Pn is the set of polynomials of degree n, Kn =
∥∥(AZn − Fn)H−1n

∥∥ ∥∥Z+
n+1

∥∥ and
∆An = −FnZ+

n . A consequence of this is that no matter how r̂n is generated, if it
satisfies (4.1), we can bound its norm by (4.3). Then by (4.2), we can replace the
computed residual with the true residual without affecting the convergence rate when
ηn is not too large relative to ‖r̂n‖ and

∥∥r̂n−1∥∥.
We now seek a bound on the perturbation term in CA-CG with residual replace-

ment and group update strategies, which we denote ηn(RR), analogous to ηn term for
the algorithm without replacement. Comparing this value with the norms of the com-
puted residuals in the CA-CG algorithm with replacement, ‖r̂n‖ and

∥∥r̂n−1∥∥, will
then allow us to select safe residual replacement steps. Specifically, this gives the
following condition for residual replacement:∥∥ηn−1(RR)

∥∥ ≤ τ ∥∥r̂n−1∥∥ and
∥∥ηn(RR)

∥∥ > τ ‖r̂n‖ (4.4)

where τ is a tolerance parameter. Because τ controls perturbations to the Lanczos
recurrence, it should be chosen as small as possible. However, if it is too small, residual
replacement will terminate early in the iteration and the accumulated error after the
last replacement can become significant [24]. The value τ =

√
ε has been found to

balance these two constraints for standard KSMs [24]; we have observed good results
for CA-KSMs as well.

4.2. Bounding the error term. We will now describe and analyze the error in
CA-CG with residual replacement and group update strategies. Our goal is a bound
on the perturbation term ηsk+j(RR) in the recurrence for the computed residual in the
CA-KSM with residual replacement and group update:

r̂n = V k
(
ĉsk+j−1 − Tαsk+j−1ask+j−1

)
+ ηsk+j(RR)

This will enable us to determine when we can replace the computed residual with the
true residual without affecting convergence. We note that the same analysis applies to
CA-BICG. We use rn to denote the residual in the CA-KSM with residual replacement
and group updating, defined as

rn =

{
fl(b−Axn), n = m1, · · · ,my

r′
n

= V k
(
ĉsk+j−1 − T

(
αsk+j−1a

sk+j−1)+ ηsk+j
)
, otherwise

(4.5)
At iteration n = sk + j, where m was the last residual replacement step, we use xn

to denote the current solution in the residual replacement algorithm, that is,

xn = xm + x′
sk+j

= xm + x̂′sk + V kêsk+j (4.6)

where xm is the approximate solution computed in the last group update in step m
and x′

sk+j
remains defined as in (3.7).

We use r̂n to denote the finite precision evaluation of the computed residual in
(4.5) and x̂n to denote the finite precision evaluation of the approximate solution in
(4.6). If we replace the residual and perform a group update in iteration n, we can
write the computed group approximate solution and residual as
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x̂n ≡ fl(xm + x′
sk+j

) = xm + x′
sk+j

+ ζn (4.7)

where |ζn| ≤ ε |xn| ≤ ε
(
|xm|+

∣∣x̂′sk∣∣+
∣∣V kêsk+j∣∣) (4.8)

r̂n ≡ fl(b−Ax̂n) = b−A
(
xm + x̂′sk + V kêsk+j + ζn

)
+ µn

= b−Axn −Aζn + µn (4.9)

where |µn| ≤ ε (|rn|+NA |A| |xn|)
≤ ε

(
|rn|+NA |A| |xm|+NA |A|

∣∣x̂′sk∣∣+NA |A|
∣∣V kêsk+j∣∣) (4.10)

Immediately after the last residual replacement step m, xm = z + x0 = z, where
z is the updated solution vector and x0 has been set to 0 (note that ê0 = 02s+1, since
we begin a new outer loop after replacement). Then at step m,

rm = fl(b−Az) = fl(b−Axm) = b−Axm + µm

Let δm(RR) = b − Axm − rm denote the deviation of the true and computed residual
in CA-CG with residual replacement. Then we can rearrange the above to obtain
δm(RR) = b−Axm − rm = −µm. Because we computed rm = fl(b−Axm) by (4.5), we
can bound µm as |µm| ≤ ε (|rm|+NA |xm|). Then, after a residual replacement step,
the norm of the deviation of residuals is immediately reduced to ‖µm‖.

Now, at step n = sk+ j , where m was the last residual replacement step, we can
write the deviation of the true and computed residuals as

δn(RR) = b−Axn − rn = b−A
(
xm + x′sk+j

)
− rn

= b−Axm −Ax̂′sk+j − r̂′sk+j

= −µm + δsk+j (4.11)

where we have used the results in (3.14). Using the above, we obtain

b−Axn = rn + δn(RR) = V k
(
ĉsk+j−1 − Tαsk+j−1ask+j−1 + ηn

)
+ δn(RR)

= rn−1 + V kηn + δn(RR) (4.12)

If we take this expression for b−Axn and substitute into (4.9), we obtain a recurrence
for the residual in finite precision CA-CG with residual replacement and group update
strategies:

r̂n = V k
(
ĉsk+j−1 − Tαsk+j−1ask+j−1

)
+ ηn(RR) (4.13)

where

ηsk+j (RR) ≡ ηn(RR) = V kηn + δn(RR) −Aζn + µn (4.14)

Substituting in the expression for δn(RR) in (4.11), we can write δn(RR) + V kηn =

−µm+δsk+j+V kηsk+j . Then, using the analysis in the previous section, namely (3.16)
and (3.17), we can bound the norm of this quantity as
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∥∥δn(RR) + V kηn
∥∥ ≤ ‖µm‖

+ε

k−1∑
l=0

(
‖A‖

∥∥x̂′sl+s∥∥+NV ‖A‖
∥∥∣∣V l∣∣ ∣∣êsl+s∣∣∥∥+NV

∥∥∣∣V l∣∣ ∣∣ĉsl+s∣∣∥∥)
+ε

k−1∑
l=0

s∑
i=1

[
(1 + 2NT ) ‖T‖

∥∥∣∣V l∣∣ ∣∣êsl+i∣∣∥∥+
∥∥∣∣V l∣∣ ∣∣ĉsl+i∣∣∥∥]

+ε

j∑
i=1

‖T‖
∥∥∣∣V k∣∣ ∣∣êsk+i∣∣∥∥

+ε

j−1∑
i=1

[
2NT ‖T‖

∥∥∣∣V k∣∣ ∣∣êsk+i∣∣∥∥+
∥∥∣∣V k∣∣ ∣∣ĉsk+i∣∣∥∥] (4.15)

Using (4.10), we can bound ‖µn‖ by

‖µn‖ ≤ ε
∥∥|rn|+NA |A| |xm|+NA |A|

∣∣x̂′sk∣∣+NA |A|
∣∣V kêsk+j∣∣∥∥

≤ ε
(
‖rn‖+NA ‖A‖ ‖xm‖+NA ‖A‖

∥∥x̂′sk∥∥+NA
∥∥|A| ∣∣V kêsk+j∣∣∥∥) (4.16)

and using (4.8), we can bound ‖Aζn‖ by

‖Aζn‖ ≤
∥∥∥|A| |xm|+ |A| ∣∣∣x′sk∣∣∣+ |A|

∣∣V kêsk+j∣∣∥∥∥
≤ ε

(
‖A‖ ‖xm‖+ ‖A‖

∥∥x̂′sk∥∥+
∥∥|A| ∣∣V kêsk+j∣∣∥∥) (4.17)

Because we can approximate quantities ‖rn‖ ≤
∥∥∣∣V k∣∣ ∣∣ĉsk+j∣∣∥∥ and

(1 +NA)
∥∥|A| ∣∣V kêsk+j∣∣∥∥ ≤ 2NT ‖T‖

∥∥∣∣V k∣∣ ∣∣êsk+j∣∣∥∥
the above can be simplified to

∥∥ηn(RR)

∥∥ ≤ ∥∥δn(RR) + V kηn
∥∥+ ‖Aζn‖+ ‖µn‖

≤ ε (‖rm‖+ (1 + 2NA) ‖A‖ ‖xm‖)

+ε

k−1∑
l=0

(
(2 +NA) ‖A‖

∥∥x̂′sl+s∥∥+NV ‖A‖
∥∥∣∣V l∣∣ ∣∣êsl+s∣∣∥∥+NV

∥∥∣∣V l∣∣ ∣∣ĉsl+s∣∣∥∥)
+ε

k−1∑
l=0

s∑
i=1

[
(1 + 2NT ) ‖T‖

∥∥∣∣V l∣∣ ∣∣êsl+i∣∣∥∥+
∥∥∣∣V l∣∣ ∣∣ĉsl+i∣∣∥∥]

+ε

j∑
i=1

[
(1 + 2NT ) ‖T‖

∥∥∣∣V k∣∣ ∣∣êsk+i∣∣∥∥+
∥∥∣∣V k∣∣ ∣∣ĉsk+i∣∣∥∥]

≡ dsk+j (4.18)

where dsk+j is a scalar that will upper bound the perturbation term ηn(RR) in our
algorithm. Again, it is beneficial to compute the componentwise product before taking
norms when

∥∥V k∥∥ is very large. Therefore we use the quantities
∥∥∣∣V k∣∣ ∣∣êsk+j∣∣∥∥ and∥∥∣∣V k∣∣ ∣∣ĉsk+j∣∣∥∥ in (4.18). The additional communication and computation costs of

computing these tighter bounds is discussed in the following section.
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4.3. Avoiding communication in computing the upper bound. In each
iteration, we will update dsk+j , the deviation of the true and computed residual, given
by (4.18). We show that dsk+j can be estimated in each iteration in a communication-
avoiding way for little extra computational cost. Notice in (4.18) that dsk+j is com-
putable in each iteration with quantities already available (either local to each pro-
cessor or in fast memory). We can iteratively update dsk+j according to

dsk+j = dsk+j−1 + ε
[
(1 + 2NT ) ‖T‖

∥∥∣∣V k∣∣ ∣∣êsk+j∣∣∥∥+
∥∥∣∣V k∣∣ ∣∣ĉsk+j∣∣∥∥]

+ε


(2 +NA) ‖A‖

∥∥x̂′sk+s∥∥+NV ‖A‖
∥∥∣∣V k∣∣ ∣∣êsk+s∣∣∥∥

+NV
∥∥∣∣V k∣∣ ∣∣ĉsk+s∣∣∥∥ j = s

0 otherwise

(4.19)

where we set d0 = ε (‖rm‖+ (1 + 2NA) ‖A‖ ‖xm‖) when residual replacement occurs
at iteration m.

We therefore need estimates for the quantities
∥∥∣∣V k∣∣ ∣∣êsk+j∣∣∥∥,

∥∥∣∣V k∣∣ ∣∣ĉsk+j∣∣∥∥,

‖T‖, ‖A‖, ‖rm‖, ‖xm‖, and
∥∥x̂′sk+s∥∥ in order to compute dsk+j . We discuss how to

estimate each of these quantities without increasing the asymptotic computation or
communication cost of the CA-KSM iterations.

We can assume that we have estimates for ‖A‖ and ‖T‖. These need only be
computed once, since A and T remain the same throughout the iterations (note that
if we were to iteratively update our basis parameters every s steps, T would change
between outer iterations. In this case, we can still approximate ‖T‖ cheaply, since it
is small and tridiagonal.

To compute
∥∥∣∣V k∣∣ ∣∣êsk+j∣∣∥∥ and

∥∥∣∣V k∣∣ ∣∣ĉsk+j∣∣∥∥ locally, we need to define a new

quantity, G̃k =
∣∣V k∣∣T ∣∣V k∣∣. Computing G̃k requires an all-to-all reduction, which

adds O(ns2) operations and requires moving O(s2) words per outer loop. Because
these are the same costs as computing Gk in each outer loop, using G̃k does not affect
the asymptotic cost of communication or computation. Using this quantity,∥∥∣∣V k∣∣ ∣∣êsk+j∣∣∥∥

2
=

√
|êsk+j |T G̃k |êsk+j |

∥∥∣∣V k∣∣ ∣∣ĉsk+j∣∣∥∥
2

=

√
|ĉsk+j |T G̃k |ĉsk+j |

which can be computed locally in O(s3) operations per s steps. Note that, until now,
we have not assumed a specific norm for the bound. Although (4.18) holds generally
for any p-norm, in practice we use the 2-norm, since this allows the use of shortened
dot products between basis vectors, and thus maintains the communication-avoiding
properties of the original CA-KSM.

When we replace the residual, we must communicate the computed values of xm

and rm between processors, so we can compute ‖xm‖ and ‖rm‖ at the same time
for O(n) total operations per outer loop. The same applies for

∥∥x̂′sk+s∥∥ since x̂′sk+s

is already computed and communicated between processors at the end of each inner
loop when j = s.

Accounting for all the terms above, the total cost of computing dsk+j in each iter-
ation is O(ns2) flops and requires moving O(s2 + n) words per s iterations, assuming
s� n. In the CA-KSM without residual replacement, the computation cost is Ω(ns2)
and the communication cost is Ω(s2 + n). The lower bounds here represent the cost
of the dense work. The communication and computation performed by the matrix
powers kernel is dependent on the structure of A. From this, we see that if we combine
the computation of dsk+j with the CA-KSM as in our residual replacement strategy,
the asymptotic communication and computation costs of s steps of the algorithm are
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the same as for the CA-KSM alone. Therefore, we conclude that we can update the
quantity dsk+j in each iteration efficiently.

4.4. Residual replacement algorithm for CA-KSMs. Based on (4.4), Van
der Vorst and Ye [24] use the following residual replacement condition in their imple-
mentation:

dsk+j−1 ≤ τ
∥∥r̂sk+j−1∥∥ and dsk+j > τ

∥∥r̂sk+j∥∥ and dsk+j > 1.1dinit (4.20)

where they initially set d0 = dinit = ε(
∥∥r0∥∥+ NA ‖A‖

∥∥x0∥∥) = ε ‖b‖, and reset dinit =
ε(‖rm‖+NA ‖A‖ ‖xm‖ when replacement occurs. The third added constraint avoids
unnecessary replacements and ensures there has been a nontrivial increase in error
since the last replacement step [24].

In our case, in the inner loop, we do not know the actual values of r̂sk+j−1 and
r̂sk+j as they are not computed, but we can use the Gram matrix Gk to estimate their
2-norms as

∥∥r̂sk+j−1∥∥
2
≈
∥∥V k ĉsk+j−1∥∥

2
≈
√

(ĉsk+j−1)TGk(ĉsk+j−1) and
∥∥r̂sk+j∥∥

2
≈∥∥V k ĉsk+j∥∥

2
≈
√

(ĉsk+j)TGk(ĉsk+j). This again suggests the use of the 2-norm in
efficient implementation of the residual replacement algorithm. We note that using
the Gram matrix to compute inner products locally does result in an extra O(ε)
error term. However, since we will multiply this term by τ = ε1/2 in the residual
replacement condition, we can ignore this higher power of ε.

Our condition for residual replacement in CA-KSMs will then be

dsk+j−1 ≤ τ
∥∥V k ĉsk+j−1∥∥ and dsk+j > τ

∥∥V k ĉsk+j∥∥ and dsk+j > 1.1dinit (4.21)

where we use the same initial condition as in [24] and update dinit = ε(‖rm‖ +
NA ‖A‖ ‖xm‖ at replacement step m by (4.18). If this statement is true, we accu-

mulate the current value of x′
sk+j

into vector z, as z = fl(z + x′
sk+j

), and we set
rsk+j = r̂sk+j = fl(b−Az).

To perform a residual replacement in CA-KSMs, all processors must communicate
their elements of x′

sk+j
to compute b − Az, and we must break out of the inner

loop (potentially before completing s steps) and continue with computing the next
matrix powers kernel with the new residual in the next outer loop. This means our
communication costs could potentially increase if the number of replacements is high
(i.e., we compute the true residual every iteration), but our experimental results in the
next section indicate that the number of replacements is low compared to the total
number of iterations. Therefore the communication cost does not asymptotically
increase versus the CA-KSM without residual replacement.

We can now write CA-CG with residual replacement, shown in Alg. 2.

5. Numerical experiments. We evaluated our residual replacement strategy
on a number of matrices from the University of Florida Sparse Matrix Collection [6].
We present a subset of our experiments here which demonstrate the general trends
observed. The selected matrices, listed along with their properties in Table 5.1, are
representative of a variety of problem domains, including thermal problems, structural
problems, finite element models, acoustics problems, and circuit simulations. We
tested both symmetric and unsymmetric matrices, using the CA-CG and CA-BICG
methods, respectively.

In the experiments, we compare classical (BI)CG with CA-(BI)CG, both with and
without residual replacement. For the CA-KSMs, tests were run for s = [4, 8, 12],
with the monomial, Newton and Chebyshev bases. We used row and column scaling
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Algorithm 2 CA-CG with Residual Replacement

1: Compute ‖A‖
2: x0 = 0, r0 = b−Ax0, p0 = r0, z = 0, k = 0, reset = 0
3: d0 = dinit = ε(

∥∥r0∥∥+NA ‖A‖
∥∥x0∥∥)

4: while not converged do
5: Calculate P k, Rk, T by (2.1) and (2.3)
6: if k == 0 then compute ‖T‖ end if

7: Let V k = [P k, Rk], Gk = (V k)TV k, G̃k =
∣∣V k∣∣T ∣∣V k∣∣

8: ask = [1, 02s]
T

,csk = [0s+1, 1, 0s−1]
T

, esk = [02s+1]
9: for j = 1 : s do

10: αsk+j−1 = [(csk+j−1)TGk(csk+j−1)]/[(ask+j−1)TGk(Task+j−1)]
11: esk+j = esk+j−1 + αsk+j−1a

sk+j−1

12: csk+j = csk+j−1 − αsk+j−1Task+j−1
13: βsk+j−1 = ((csk+j)TGk(csk+j))/((csk+j−1)TGk(csk+j−1))
14: ask+j = csk+j + βsk+j−1a

sk+j−1

15: Update dsk+j by (4.19)
16: if condition (4.21) holds then
17: z = z + xsk+j , rsk+j = b−Az, xsk+j = 0
18: dinit = dsk+j = ε(

∥∥rsk+j∥∥+ (1 + 2NA) ‖A‖ ‖z‖)
19: reset = 1, break
20: end if
21: end for
22: if reset ! = 1 then
23: Update dsk+s by (4.19)
24: xsk+s = [P k, Rk]esk+s + xsk, rsk+s = [P k, Rk]csk+s

25: end if
26: psk+s = [P k, Rk]ask+s, k = k + 1, reset = 0
27: end while
28: return z + xsk

of the input matrix A as an equilibration routine, preserving symmetry for the SPD
case, as described in [11]. For each matrix, we selected a right hand side b such that
‖x‖2 = 1, xi = 1/

√
N . All experiments were performed in double precision.

Van der Vorst and Ye [24] use τ = 10−8 ≈
√
ε and NA = 1 in their experiments

(under the assumption that A is very sparse). We use τ = 10−8 for most experiments;
for tests using the monomial basis with s = 12, using τ = 10−8 causes restarts to
occur more frequently or sooner than necessary, likely due to an overestimate of the
quantity ηsk+j(RR) by dsk+j as defined in (4.18). To balance this overestimate, we use
the slightly lower value τ = s · 10−8, which achieves the desired effect. As in [24], we
set NA = 1. We also set NV = NT = 1, which are adequate approximations since s is
small.

Note that our bounds hold regardless of the polynomial basis or algorithm used
in constructing V k, so our algorithm requires no modification for use of the Newton
and Chebyshev bases. The quality of the computed basis does, however, affect the
convergence rate of the CA-KSM, as our experiments show. In the extreme case of
a degenerate basis, the Lanczos process break downs, causing divergence of the com-
puted residual. In this case, we do not expect to benefit from maintaining agreement
between the true and computed residual, as the computed residual does not converge.
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Matrix Domain N nnz cond 2-norm SPD?

bundle graphics/3D vision 1.1 · 104 7.7 · 105 4.1 · 101 2.9 Y
consph 2D/3D problem 8.3 · 104 6.0 · 106 9.7 · 103 9.7 Y
FEM 3D FEM 1.5 · 105 3.5 · 106 2.1 · 101 3.5 N
circuit circuit simulation 1.5 · 105 7.3 · 105 2.3 · 105 2.0 Y
ship structural 1.4 · 105 3.6 · 106 3.2 · 105 4.9 Y

thermal thermal 8.3 · 104 5.7 · 105 3.0 · 105 1.9 Y
xenon materials 4.9 · 104 1.2 · 106 3.3 · 104 3.2 N

Table 5.1
Matrices used in test cases. From the University of Florida Sparse Matrix Collection [6]. Norm

and condition numbers reflect the equilibrated system.

Table 5.2 shows the number of replacement iterations which occurred, as well
as the total number of iterations for each test. Table 5.3 gives the total number of
communication steps (a multiple of the latency cost) that were needed in each residual
replacement experiment to converge to O(ε) ‖A‖ ‖x‖, along with the communication
step ratio, or the number of communication steps in the classical method divided by
the CA variant, both with residual replacement. The 2-norm was used for calculating
all quantities in dsk+j , as described in Sec. 4.3.
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Fig. 5.1. Convergence of true residual, bundle. Note the x-axis for s = 12 differs from s = [4, 8].
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Fig. 5.2. Convergence of true residual, consph. Note the x-axis for s = 12 differs from s = [4, 8].
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Fig. 5.3. Convergence of true residual, FEM.
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Fig. 5.4. Convergence of true residual, circuit. Note the x-axis for s = 12 differs from s = [4, 8].
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Fig. 5.5. Convergence of true residual, ship. Note the x-axis for s = 12 differs from s = [4, 8].



20 ERIN CARSON AND JAMES DEMMEL

0 1000 2000 3000 4000

10
−16

10
−12

10
−8

10
−4

10
0

10
4

s =4

Iteration

T
ru

e 
R

es
id

ua
l (

2−
no

rm
)

 

 

Monomial
Newton
Chebyshev
Monomial+RR
Newton+RR
Chebyshev+RR
Classical CG
Classical CG+RR

0 1000 2000 3000 4000

10
−16

10
−12

10
−8

10
−4

10
0

10
4

s =8

Iteration

T
ru

e 
R

es
id

ua
l (

2−
no

rm
)

0 1000 2000 3000 4000

10
−16

10
−12

10
−8

10
−4

10
0

10
4

s =12

Iteration

T
ru

e 
R

es
id

ua
l (

2−
no

rm
)

s=4 s=8 s=12
0

4

8

12

16

C
om

m
. s

te
p 

ra
tio

 

 

Monomial Newton Chebyshev

Fig. 5.6. Convergence of true residual, thermal.
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Fig. 5.7. Convergence of true residual, xenon.
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5.1. Improvement in maximum attainable accuracy. Our results show
that the residual replacement scheme for CA-KSMs succeeds in maintains an O(ε)
agreement between the true and computed residuals for the monomial, Newton, and
Chebyshev bases in both CA-CG and CA-BICG. For the matrices in Figs. 5.3 and 5.6,
using the monomial basis with s = 12 causes divergence of the computed residual due
to a numerically rank deficient Krylov basis. In these cases, because the computed
residual does not converge, we do not expect that maintaining agreement between
residuals will improve convergence of the true residual. Indeed, running these tests
with the residual replacement strategy resulted in no residual replacements.

Furthermore, the convergence plots for all tests show that the residual replacement
strategy also meets the second constraint of leaving the Lanczos process undisturbed.
It is evident in all cases that the convergence rate of the CA-KSM is not decreased by
the residual replacements steps. In Fig. 5.1, for the monomial basis with s = 12, we
even see a slight increase in convergence rate using the residual replacement scheme.

In all cases, as shown in Table 5.2, the number of residual replacement steps
is very small relative to the total number of iterations; we therefore claim that the
additional communication cost of the residual replacement scheme (potentially an
extra reduction for each replacement step) is negligible.

It is worth mentioning that if we have a very well-conditioned polynomial basis,
the CA-KSM can achieve higher accuracy than the classical method (see, e.g.,the
Newton and Chebyshev bases in Figs. 5.4 and 5.6). This is possible because our
computations are now O(s) rather than O(n), which can result in slightly smaller
local error.

5.2. Practical communication savings. The plots in the lower right of each
figure show the communication step ratio, or the number of communication steps in
the classical method divided by the CA variant, both with residual replacement (the
same data is presented in Table 5.3). Ideally, for CA-CG and CA-BICG, this ratio
should be around s; this would be the case if the CA method converges at around the
same rate as the classical method with few required residual replacement steps. This
is not performance data, but rather gives an upper bound on speedup we can expect
from practical implementations – this upper bound would then be attained if we had
a CA-KSM implementation that was O(s) times faster than the classical method over
s steps.

For the Newton and Chebyshev bases, we generally see the communication sav-
ings ratio increasing linearly with s, as we expect. This is because the Newton and
Chebyshev bases remain well conditioned for higher s values (see, e.g., [2, 11, 19]),
and thus the CA methods with these bases can maintain convergence similar to the
classical method. Note that in Figs. 5.1, 5.2, 5.4, and 5.5, the Newton and Chebyshev
data for s = 12 is less discernible, as the x-axis is compressed to show the slower
but eventual convergence of the monomial basis; the behavior of the Newton and
Chebyshev bases with s = 12 was similar to s = 8 in these cases, with only a modest
increase in the number of iterations needed to converge (less than 9% in all cases, as
can be deduced from Table 5.2).

For every test matrix, the CA-KSM with the monomial basis results shows an
increase in communication savings ratio from s = 4 to s = 8, but the communication
savings significantly decreases from s = 8 to s = 12 (for tests where the CA-KSM
with s = 12 converges). For the test matrices shown in Figs. 5.1, 5.4 and 5.5, this
decrease is so drastic that the resulting communication savings ratio is less than 1.
Therefore, even if practical implementations of CA-KSMs achieve an O(s) speedup
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over s iterations versus the classical method, the run-time of the CA-KSM with the
monomial basis for s = 12 will be worse than the classical method. In these cases, it
is thus essential to use a well-conditioned basis such as Newton or Chebyshev, which
still demonstrate O(s) savings in communication for high s values.

This important observation indicates that, depending on the quality of the Krylov
basis, a higher s value does not necessarily correspond to a faster algorithm or even less
communication. For example, in our tests with the monomial basis, the convergence
rate is slowed by finite precision error in computing the basis vectors for high values
of s. Therefore, selecting a lower value of s which yields a higher convergence rate
will result in fewer total communication steps, and thus faster run-time. It would
therefore be useful to have an a priori estimate for the s value which maximizes the
communication savings ratio. Developing heuristics to perform such an estimate based
on properties of A and the computed Krylov basis is considered future work.

6. Conclusions and future work. In this work, we give the first analysis of
maximum attainable accuracy in finite precision CA-KSMs. We bound the norm
of the deviation of the true and computed residual and demonstrate that we can
iteratively compute this bound within the CA-KSM for minimal additional cost. This
computable bound enables an implicit residual replacement strategy which maintains
the agreement of the true and computed residuals to O(ε). Numerical experiments
demonstrate that if the finite precision computed residual converges, accuracy of order
O(ε) ‖A‖ ‖x‖ can be achieved with a small number of residual replacement steps using
the residual replacement scheme.

Much work remains to be done on the analysis of finite precision CA-KSMs.
We plan to extend the analysis here to other CA-KSMs, such as CA-BICGSTAB,
following the same general process. We note that we could also apply similar analyses
to communication-avoiding variants of other recursively computed residual methods
(see [9]).

We can also extend our error analysis to improve the convergence rate of CA-
KSMs by taking into account error in the computation of the basis vectors and Lanczos
coefficients. In other words, we could monitor when our computed residual deviates
from what the true residual would be in the classical algorithm. For ill-conditioned
bases, preliminary results indicate that this results in frequent restarts, often less than
every s steps. This negates the benefits of using a higher s value.

We note that we could easily adapt our scheme to avoid breakdowns due to
numerically rank-deficient bases by performing condition estimation on Gk in each
outer loop. If a numerical rank deficiency is detected, we can schedule a residual
replacement in the appropriate inner loop iteration. This will cause the method to
begin a new outer loop and avoid computation with the degenerate basis vectors. We
could also use this information to allow for the dynamic adjustment of s; if numerical
rank deficiency is detected in a number of consecutive outer loop iterations, s could
be decreased to reduce the basis condition number. Future work will investigate the
effectiveness and practicality of this approach.

A primary direction for future work is heuristically determining the optimal s
value based on properties of the matrix. As described above, the relationship between
s and the total number of communication steps is no longer linear in finite precision
arithmetic. The highest s value permitted by the structure of the matrix might require
significantly more iterations to converge than a lower s value, resulting in more total
communication steps and thus longer algorithm run-time.
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