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Abstract  

The construction of various of Klein bottles that belong to different regular homotopy classes, and which thus 

cannot be smoothly transformed into one another, is formally introduced. For all cases it is shown how these shapes 

can be partitioned into two Möbius bands and how the twistedness of these bands defines the homotopy type.  

 

1. Introduction 

This paper extends the study of the regular homotopies of tori presented last year in Tori Story [19] to the 

realm of non-orientable surfaces of low genus, in particular to the Projective Plane and to Klein bottles. 

Topologically, Boy’s surface (a compact, smooth, immersive model of the Projective Plane) is a single-

sided surface with Euler characteristic χ=1, while Klein bottles have Euler characteristic χ=0. Both 

surfaces have no boundaries or punctures. Surfaces are in the same regular homotopy class if they can be 

smoothly transformed into one another without ever experiencing any cuts, or tears, or creases with 

infinitely sharp curvature; however, a surface is allowed to pass through itself. The paper by Hass and 

Hughes [10] states (pg.103): Corollary 1.3 (James–Thomas): There are 2
2-χ

 distinct regular homotopy 

classes of immersions of a marked surface of Euler characteristic χ into R
3
. This tells us there should be 

two distinct models of Boy’s surface and four (decorated) Klein bottle types that cannot be transformed 

smoothly into one another. However, I have found no publication that shows what these four types might 

look like. The single-sidedness of these objects also makes it conceptually more difficult to visualize 

these shapes. But some good discussions and e-mail exchanges with Dan Asimov, Tom Banchoff, 

Matthias Goerner, Rob Kusner, and John Sullivan helped me clarify the situation.  All types of Klein 

bottles can be built from fusing together two Möbius strips, and the twistedness of these strips plays an 

important role in the determination of a Klein bottle type. Thus I include this decomposition in the images 

below and start this exposition with a discussion of these important building blocks. 

     
                (a)                                (b)                                    (c)                                    (d) 

Figure 1:   A left-twisting Möbius band (ML). Deforming its sweep path alters its apparent twist 

sweep from (a) +180° (ccw), to (b) 0°, to (c) –180°, and to (d) –540° (cw).  

 

2. Möbius Bands 

A Möbius band (Fig.1) can be constructed by taking a rectangular domain – for instance a paper strip – 

and connecting two opposite edges in reversed order, i.e., after executing a 180° flip. For any topological 

analysis the surface is permitted to pass through itself; thus we can always execute one or more of the 
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Figure-8 Sweep Cross-over Moves described in Tori Story [19]. This allows us to change twist (compared 

to a rotation-minimizing sweep) in increments of ±720°. The same applies to single-sided, non-orientable 

Möbius bands, and thus there are only two homotopically different Möbius bands, and they differ in their 

amount of twist by exactly 360°. Thus all the shapes depicted in Figure 1 belong into the same regular 

homotopy class. Mirroring, on the other hand, would turn the left-turning Möbius band (ML) of Figure 1a 

into a right-turning one (MR), and thus cast this surface into a different regular homotopy class. 

Several of the stages of different twistedness depicted in Figure 1 have been exploited by various 

artists: The almost circular shape (Fig.1a) can be found in a wedding band [14]. The shape shown in 

Figure 1b has been celebrated in a sculpture by Max Bill [2], and the configurations (1c) and (1d) appear 

in drawings by M.C. Escher [9][8]. 

          
             (a)                                        (b)                                          (c)                                     (d) 

Figure 2:   Artistic Möbius bands: (a) wedding band, (b) sculpture by Bill, (c,d) drawings by Escher. 

 

If we focus on the edge of the circular Möbius band (Fig.1a) and include a tiny sliver of the band’s 

surface with it, then this edge-band forms a double loop with a total twist of 360°. This double loop can 

be unfolded into a figure-8 shape without changing the built-in twist as explained in Figure 18 in [20]. 

This unfolding of the edge will widen the narrow Möbius band into an extended surface that resembles a 

two-pouch basket (Fig.3a), but which topologically is still a Möbius band. Further deformations can be 

applied to this edge band, creating different kinds of “baskets” or “goblets.” In particular, we can further 

un-warp the Möbius band edge into a circle. This deformation will change the edge band’s twist by 

±360°. If we let the twist add up to 720° then we obtain the Sudanese Möbius band [13] depicted in 

Figure 3b.  Alternatively we can let the twist cancel out to zero and then obtain another interesting warped 

surface – which happens to be equivalent to a Boy surface [3][4] minus a disk (Fig.3c). Some of these 

shapes will play an important role in our analysis of various Klein bottles. 

              
                            (a)                                                        (b)                                              (c) 

Figure 3:   Deforming the edge of a Möbius band: (a) into a figure-8 shape with 360° twist;  

or into a circular loop: (b) with 720° twist, or (c) with zero twist (when [4] is cut at red line). 
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3. Boy’s Surface and “Boy’s Cap” 

A Möbius band has just one continuous edge. If a (suitably warped) disk is “glued” to that edge, a single-

sided surface without edges and with Euler characteristic χ = 1 results; this is topologically equivalent to 

the projective plane. The simplest compact model of the projective plane in 3D Euclidean space is the 

cross cap surface (Fig.4a). Another model with higher symmetry is Steiner’s Roman surface [21] 

(Fig.4b). However, both these models have some singularities, so called Whitney Umbrellas, where the 

surface curvature goes to infinity [23]. It is much harder to find an immersive model without any 

singularities. Werner Boy found the first such solution [3]. This particularly nice immersion has 3-fold 

rotational symmetry (Fig.4c). This model has a clear sense of chirality, and indeed it appears in two 

enantiomorphic forms, which we will label BL and BR. The two versions belong to different regular 

homotopy classes; and, according to [10], these are the only two regular homotopy classes that we can 

expect for a surface of Euler characteristic χ = 1. 

                               
                          (a)                                                 (b)                                                      (c) 

Figure 4: (a) Cross cap surface; (b) Steiner’s Roman surface; (c) Boy surface. 

 

If we puncture a hole into any of the models shown in Figure 4, i.e., remove a topological disk from the 

surface, we obtain a structure that is equivalent to a Möbius band. This is not easy to visualize, but 

Indiana University has a web site [5] based on a parameterization by Bryant and Kusner that gives a 

beautiful visualization of how a triply (right-twisted) Möbius band (ML) can be gradually widened to 

cover almost all of a (left-twisting) Boy surface, except for a small disk missing at the 3-fold symmetric 

pole (Fig.5). I like to call the final structure a “Boy cap.” Smooth and well-formed Klein bottles can also 

be constructed from pairs of such Boy caps (see Section 13). 
 

         

Figure 5:  Transformation of a Möbius band (M3R=ML) into a “Boy cap” (BcL) – a Boy surface 

minus a disk – through a gradual widening of the band [5].   
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4. The Classical Klein Bottle 

We begin our investigation of the realm of Klein bottles with a formal construction of the well-known 

“inverted sock” shape. We start with the parameterized, decorated, rectangular domain shown in Figure 

6a.  As for the case of torus construction, we first merge the two (horizontal) edges marked with parallel 

cyan arrows to form a generalized cylinder. For now we give this tube simply a round or oval profile (O) 

(Fig.6b). We then close this tube into a J-shaped loop (Fig.6c), so that its two ends can be joined with the 

reversed orientation indicated by the labelling and by the two anti-parallel brown arrows in Figure 6a.  

Since we are now dealing with single-sided surfaces, I will use a somewhat different coloring 

scheme from the one I had used for tori [20]. While I maintain the color red for the meridian bands, I 

split the domain into two halves with different background colors and give their center bands a fully 

saturated color, either blue or yellow, to mark the parallel parameter lines; these two regions will always 

form the two Möbius bands into which a Klein bottle can be partitioned. Parallel to these central bands I 

draw lines of less saturated color (olive, purple) that will wrap twice around the Klein-bottle loop, thereby 

executing an even number of 180° flips. Thus a key difference to Tori Story is that not all parallels are the 

same any more. Because of the reverse labelling along the two vertical edges of the rectangular domain, 

there are only exactly two parallels that meet up with themselves; those form the center-lines of two 

Möbius bands with ±180° twist. All other parallel parameter lines form double loops with a ±360° twist.  

 
                     (a)                                               (b)                                                   (c) 

Figure 6:  Formal construction of a Klein bottle: (a) its rectangular domain; (b) the domain rolled 

 into a tube; (c) the tube bent into a J-formation with its two ends lined up in a concentric manner. 

      
                        (a)                                               (b)                                           (c) 

Figure 7:   The ordinary “inverted sock” Klein bottle resulting from the construction in Figure 6:  

(a) the complete Klein bottle KOJ; (b) the lower half of it is a right-handed Möbius band (MR); 

 (c) the upper, left-handed Möbius band (ML) shown flipped over.   
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For the tube with the O-profile, the closing of the loop is most conveniently done by narrowing one end 

and inserting it sideways into the larger end of the tube – forming some kind of J-shape (Fig.6c); this 

configuration properly lines up all the numbered labels.  The two concentric ends are merged by turning 

the smaller one inside out to yield the classical “inverted sock” Klein bottle, named KOJ (Fig.7a). 

In this case, both “special” parallels form two Möbius bands of opposite handedness. 

Correspondingly, the KOJ Klein bottle can be partitioned into two Möbius bands (yellow and blue) 

having opposite handedness as shown in Figures 7b and 7c. We can denote this symbolically as: 

MR + ML = KOJ. 

The Tori Story paper [19] spent much effort to analyze the amount of twist built into the toroidal 

ring, because tori that differ in their amount of built-in twist by 360° belong to different regular homotopy 

classes. Interestingly, for the classical Klein bottle twist is a non-issue! By rotating the handle around the 

symmetry axis of the “inverted-sock” turn-back mouth, any amount of twist can be added to or removed 

from this J-loop [16]. This is a consequence of the fact that in Figure 6a the labeling at the left and right 

sides of the fundamental rectangular domain can be shifted up or down in a cyclic manner by any 

arbitrary amount, and there will always be exactly two labels that are lying on the same parallel 

parameter lines. These two parameter lines then form the center-lines of the two Möbius bands of 

opposite handedness into which this Klein bottle can be decomposed. 

 

 

5. Figure-8 Klein Bottles 

When merging the two parallel edges marked by cyan arrows in Figure 6a to form an initial tube, we are 

not forced to form a round, circular O-profile. Instead we may form a figure-8 cross section (Fig.8a) or an 

even more complicated, multiply-rolled generalized cylinder as was discussed for tori [19]. This results in 

various Klein bottles that may belong to different regular homotopy classes and which thus cannot be 

smoothly deformed into the classical “inverted-sock” shape. 

   
                            (a)                                                         (b)                                               (c) 

Figure 8:  Construction of figure-8 Klein bottles: (a) figure-8 tube; (b) tube twisted through 180° 

so that the two ends can be merged into a toroidal loop; (c) a new way to line-up the number labels. 

 

For the tube with the figure-8 profile, there are a few different ways in which we can fuse the tube ends 

with the required reversed orientation, and they will result in different Klein bottles. For instance, we can 

bend the tube into a simple toroidal loop (an O-shaped path) and give the figure-8 cross-section a 180° 

torsional flip (Fig.8b). This flip can either be clockwise (right-handed: R) or counter-clockwise (left-

handed: L) and this will result in two figure-8 Klein bottles that belong to two different regular homotopy 

classes – for the same reason that the Möbius band shown in Figure 1 cannot be smoothly transformed 

into its own mirror image. We call the resulting two Klein-bottle classes K8R-O (Fig.9) and K8L-O 

(Fig.10), respectively. For both classes the two Möbius bands that form the Klein bottle, and which 

happen to intersect along their center lines, are also shown separately in Figures 9 and 10 (a, b). 
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(a)  (b)  (c) 

Figure 9: Two right-handed Möbius bands MR (a,b) form a right-handed Klein bottle K8R-O (c). 

(a)    (b)  (c) 

Figure 10: Two left-handed Möbius bands ML (a,b) form left-handed figure-8 Klein bottle K8L-O (c).   

 
 

But there is even a third way in which the 8-profile tube can be closed into a Klein bottle (Fig.11): 

(a)     (b)   (c) 

Figure 11: A Klein-bottle based on an “inverted double sock”: (a) without end-caps to show the 

nesting of the figure-8 tube profiles; (b) completed Klein bottle of type K8L-JJ;  

(c) one of its two ML Möbius bands.  
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This new type of Klein bottle is constructed by forming the same kind of J-shaped sweep path as for the 

classical Klein bottle and fusing the two nested figure-8 profiles by turning one of them inside out. To do 

this smoothly, we use an asymmetrical figure-8 profile in which one lobe is larger than the other one. As 

we sweep from one end of the tube to the other one, the larger lobe shrinks and the smaller one grows, so 

that the end-profiles can be nested as shown in Figures 8c and 11a. Now a nicely rounded, 8-shaped end 

cap can smoothly close off this Klein bottle (Fig.11b). I have not seen this particular Klein bottle depicted 

previously. It is rather special, since it does not just have a single self-intersection line like all the other 

models, but features two triple points. These triple points occur where the self-intersection line of the 

figure-8 cross section passes through the wall of the other tube near the mouth of the Klein bottle. If we 

split this Klein bottle into its two constituent Möbius bands, they can be separated cleanly along the 

closed self-intersection loop passing through both triple points. Each component on its own then forms an 

“inverted sock” Klein bottle shape with a sharp crease line, which itself experiences a 90° twist (Fig.11c). 

 

6. Looking for the 4
th

 Type of Klein Bottle 

When I first found the Klein bottle shown in Figure 11b I thought it might be the 4
th
 type of bottle that the 

paper by Hass and Hughes [10] predicted. However, an analysis of the twistedness of its meridians and of 

its two Möbius bands quickly showed that this shape has C2 rotational symmetry and is composed of two 

Möbius bands of the same type. If this shape were different from the three types of Klein bottles already 

identified, then the mirror image of this new shape would also have to be a separate, different type. But 

there can only be four different Klein bottles. Thus the two mirror-image versions of this double-sock 

type must also belong to the classes K8L and K8R. To distinguish their geometries from K8L-O and 

K8R-O we name them K8L-JJ and K8R-JJ. 

So now that we have two attractive representatives for each of these two K8? classes, which one 

should we choose as the most natural one? Can we find a more objective measure for defining the “best” 

shape? Perhaps the shape with a minimal amount of mean bending energy could be used in this context. 

This measure, known as Willmore energy [24], and which integrates the square of mean curvature over 

the whole surface, is scale-independent and thus well-suited for this purpose. 

 

 

7. Minimum Energy Klein Bottle 

Lawson [12] has defined the minimum energy forms for many topological shapes. Among others he has 

introduced the intriguing shape shown in Figure 12, nicely illustrated by Polthier (Fig.12a) and well 

explained on his web page [15]. Kusner [11] has conjectured that the Willmore energy [24] of several 

Klein bottles described by Lawson is indeed minimized by this particular shape.  

        
                 (a)                                               (b)                                                           (c) 

Figure 12: Lawson minimum-energy Klein bottle: (a) Shell with center portions of Möbius bands [15] 

(top cut off); (b) an FDM model in which the parallel parameter lines have been hand-colored;  

(c) the set of circular, but twisted meridians.  
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Could this be a candidate for the sought-after 4
th
 Klein bottle type? -- No, it is not a candidate. This 

surface clearly displays a sense of chirality: Along the circular intersection line, we find two Möbius 

bands of the same twistedness, shown in green and brown in Figure 12a. Because of the limited number 

of Klein bottles of differing regular homotopy (four), the two mirror versions of the Lawson Klein bottle 

must again be in the same regular homotopy classes as K8L-O and K8R-O. To single out these shapes, 

we denote them as K8L-Lawson and K8R-Lawson, respectively. 

In this case it was not too difficult to convince myself that the two Lawson Klein bottles (K8?-

Lawson) are in the K8?-O classes, and that there is a smooth regular homotopy move that will bring 

about the conversion between the two geometries. My conceptual model starts from two identical Möbius 

bands passing through one another at right angles along a circular intersection line. Both bands show 

rainbow coloring in their longitudinal direction (Fig.13). To form a Klein bottle of type K8R-O, one can 

add figure-8-shaped meridians that cross themselves on this intersection line. Three such meridional 

bands are shown in Figure 13a, and their color has been matched to the color of the Möbius bands at that 

cross-over point. Now we shift the two Möbius bands against one another along the intersection circle and 

let the ends of the two meridional half-loops remain attached to the Möbius bands into which they merge 

tangentially. This circular shift operation pulls the figure-8 shapes apart and deforms them into warped 

loops that appear to become more and more twisted as the shifting process proceeds. When the shifting 

has progressed around half the circle, the meridional bands start to look very much like the bands depicted 

in Figure 12c. Note, however, that this is not the exact transformation needed to obtain the Lawson Klein 

bottle. To obtain that exact shape, the shifting would have to be non-linear and result in some 

compression of the density of the meridional bands along some sector of the intersection circle. 

Nevertheless, this model made it plausible for me that the shapes are indeed transformable into one 

another by a relatively simple regular homotopy move. 

    

Figure 13: Conceptual conversion of K8R-O into a minimum-energy Lawson Klein bottle. 

 

Even though the Lawson Klein bottle is an elegant minimum-energy shape, this configuration is still 

rather difficult to understand. I thus prefer to use K8?-O as the representatives for the two figure-8 classes 

of Klein bottles. But in any case, the search for Klein bottle type #4 needs to continue. 
 

 

8. Change of Parameterization 

In the case of tori, some discrete changes in the parameterization grid can yield tori that belong to 

different regular homotopy classes. In particular, the introduction of a Dehn twist [7] of 360° in the 

meridional direction (M-twist) converts a torus of type TOO into TO8, and a longitudinal (or 

“equatorial”) Dehn twist (E-twist) takes TOO into T8O [19] [20]. Thus we will try this approach with 

Klein bottles, too. Let’s investigate what kinds of parameter transformations make sense for Klein bottles.  

 

8.1  The Role of Twist in Klein Bottles 

Determining the twist of the characteristic bands, and predicting the result of Dehn twist added along 

characteristic parameter lines is much trickier for Klein bottles than it is for tori. Yet understanding the 

effects of parametrization changes is crucial to analyze how the domain of all decorated Klein bottles is 
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partitioned into four regular homotopy classes. We will start by looking at the effects of twist along 

meridians and along longitudes for Klein bottles with circular as well as figure-8 shaped profiles. 

 

Meridional Twist on a Figure-8 Profile 

Let’s take a Klein bottle of type K8R-O (Fig.14a) and cut it along its figure-8 meridian indicated by the 

black&white double line. Now we focus on a characteristic longitudinal ribbon, e.g., the central portion of 

one of the two Möbius bands (which follows the intersection line). We hold one of its ends in place while 

we move its other end once around the whole figure-8 cut line until it comes back to its starting position. 

This corresponds to adding 360° of meridional Dehn twist; the cut is along the black double line in 

Figure14b. Now let’s analyze how the twistedness of the modified ribbon has been affected. Since the 

figure-8 loop in the meridional plane has a turning number of zero, the orientation of the moving end of 

the longitudinal ribbon experiences no net rotation, and thus the twistedness of such a ribbon remains the 

same. Since the twistedness of meridional ribbons does not change either, the classification of the Klein 

bottle does not change in response to this addition of M-twist. This also indicates that there must be a 

regular homotopy move that transforms the initial state into the twisted state, and vice versa. 

 (a)   (b)   (c) 

Figure 14:  (a) Klein bottle of type K8R-O with one of its meridional bands enhanced with a 

black&white double line.; (b) the same shape with a meridional Dehn twist of 360°;  

(c) the same shape with a longitudinal Dehn twist. (For texture map see Fig.17a.) 

 

Longitudinal Twist on K8?-O Klein Bottles 

Now we cut the K8R-O bottle along a longitudinal line (the line of self-intersection in Figure 14c). A 

general instance of such a line goes around the loop of the Klein bottle twice before it joins up again with 

itself.  Thus, if we sever a meridional ribbon on this longitudinal cut line, hold one end of it fixed in place, 

and send the other one traveling once along the whole longitudinal path, then the latter will make two laps 

around the circular sweep path and thus experience a net change in twistedness of 720°. Since twist is 

counted modulo 720°, this is again a transformation that does not change the regular homotopy class of 

the Klein bottle. 

 

Meridional Twist on the KOJ Klein Bottle 

Next we take a KOJ Klein bottle (Fig.15a) and cut it along a circular meridian, e.g., right at the rim of the 

mouth. At this location we take the inner branch of the tube and twist it 360° with respect to the other end. 

This will add a twist of 360° into any longitudinal ribbon crossing the cut (Fig.13b). Since a complete, 

general longitudinal path crosses this cut-line twice, the net increment in twistedness is again 720°, a 

value that will not change the classification of the Klein bottle. – This should come as no surprise, since it 

has already been established that twist in KOJ Klein bottles is a mute concept [16], because we can 

always remove any such twist by rotating the handle around an axis aligned with the cylindrical symmetry 
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axis of the Klein bottle mouth, thereby changing the reference plane that indicates the edges of the two 

Möbius bands. 

 

Longitudinal Twist on the KOJ Klein Bottle 

The last case to be analyzed involves a cut along a longitudinal path on the classical KOJ Klein bottle. 

Such a path will in general pass twice through the loopy handle and through the turn-back mouth. If we 

focus on a KOJ bottle with a planar sweep path and then analyze the turning number of the equatorial 

line, we find that it has a turning number of 1 (Fig.15d). Thus a meridional ribbon cut at one of the 

crossings with this line, with one end traveling around the longitudinal path, while the other end stays in 

place will experience the addition of 360° of twist. This amount of change in twistedness does make a 

change, and thus this twisted Klein bottle (Fig.15d) seems to be no longer in the same regular homotopy 

class for marked surfaces after the addition of 360° of longitudinal Dehn twist. 

                  
                       (a)                                        (b)                                         (c)                                (d) 

Figure 15:  (a) Classical Klein bottle with one of its meridional rings enhanced; (b) the same shape 

 with a meridional Dehn twist of 360°; (c) the same shape with a longitudinal Dehn twist.  

(d) Analysis of the turning number of a longitudinal ribbon on a KOJ Klein bottle. 

 

However, Figures 15b and 15c clearly show that something is wrong with a twisted (sheared) texture on a 

Klein bottle. At some point there is a seam where the tube joins back onto itself with an inside-out 

reversal. When we look at the effect of introducing twist on the texture map itself (Fig.16) we can see that  

         
               (a)                              (b)                             (c)                             (d)                             (e) 

Figure 16: Dehn twists as seen on the texture map for the Klein bottle: (a) untwisted texture map,  

(b) with 36° of meridional shift added,  (c) with 360° of meridional twist added, (d) with 360°  

of  longitudinal twist,  (e) with both meridional and longitudinal twist. 
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any kind of twist is simply inconsistent with the Klein bottle surface. Since the rectangular domain of the 

surface needs to connect to its “backs-side” with features reversed along the x-axis, in Figure 16, we show 

two repetitions of the texture map: the upper, darker one is the back-side, reversed left-to-right. Any M-

shift applied to the texture will move features in opposite directions along the junction line (Fig.16b). An 

M-twist will result in opposite slope lines that produce kinks in the texture along the junction (Fig.16c); 

and a longitudinal L-twist (a.k.a. E-twist) will also result in kinks where the now diagonal meridians 

come together and also exhibit the intersected features in reverse order (Fig.16d). Thus addition of any 

kind of Dehn twist is not an operation through which we can expect to obtain a novel, yet still legal, Klein 

bottle that belongs to a different regular homotopy class. 

 

8.2  Other Parameterization Changes 

Parameter Swap 

We can also rule out the parameter swap that exchanges the roles of meridians and longitudes. On tori this 

was a permissible and interesting operation. For Klein bottles this operation must also be disallowed, 

since meridians exhibit twist in integer multiples of 360° and thus form two-sided bands; while there are 

some longitudes that exhibit 180° of twist and thus form single-sided entities. 

 

Eversion Operation 

For tori there was also an evert operation. It is somewhat misleading for this discussion to assume that tori 

were painted with two different colors, one for the “inside” and the other for the “outside.” One should 

rather depict these mathematical surfaces as infinitely thin glass surfaces that carry the chosen texture 

within them so that it can be seen from both sides. In order to know which side we are facing at any 

particular moment, we give the surface texture some directionality along both coordinate axes. The 

relationship between the viewing direction and the cross-product of the meridional and longitudinal 

direction vectors then determines which side faces the camera. Because of the issues discussed in the 

previous section, meridians cannot be assigned a consistent direction. Thus no consistent cross-product 

can be formed, and the surface becomes indeed non-orientable. Thus the evert operation is also 

meaningless for Klein bottles. 

 

Reversing Directionality 

However, directionality in the longitudinal direction still makes sense for the KOJ bottle, because the 

Klein bottle mouth is asymmetrical in the direction of travel along the tube first formed in Figure 6b. 

Thus reversing a texture with directionality in the longitudinal direction is a non-trivial operation on 

KOJ. This seems to be the only parameterization change that has a chance of affecting the regular 

homotopy class of the Klein bottle subjected to it! 

 

 

9. Grafting Folds onto Klein Bottles 

In our analysis the regular homotopy classes of tori [20] we have seen that we can also obtain all four 

different representatives by starting with a simple torus and then in turn graft a folded-over surface strip 

onto one of the three characteristic lines (meridians, parallels, and diagonals). It seems worthwhile trying 

the same operation with Klein bottles.  

 

Meridional Grafts on KOJ 

We can apply a meridional graft anywhere along the tube forming the Klein bottle. In particular we can 

use the meridian at the rim of the mouth (Fig.17b), which then results in the collared structure KOJ-C 

shown in Figure 17c. The extra fold of this graft forces the tube to undergo an extra reversal and thus 
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changes the directionality by which the texture passes through the mouth. While in Figure 17b the arrows 

seem to flow out of the mouth, in Figure 17c they flow into it. It turns out that we can easily eliminate the 

additional circular intersection line created by the grafted-on fold by inflating the blue/purple part of the 

tube; we then simply obtain a Klein bottle in which the thin and the thick arm emerging from the mouth 

have been switched. Structurally, this makes no difference, since the original KOJ could simply be 

rotated 180° around the mouth axis to coincide with the new shape. However, if we place a texture on the 

surface that exhibits directionality in the longitudinal direction, then the result is indeed in a different 

regular homotopy class. – Thus we have found the elusive #4 representative, as conjectured at the end of 

the previous section!  Here is the analysis of the twistedness of the various characteristic ribbons in 

response to the added meridional graft: The meridional ribbons are not affected. But the longitudinal 

Möbius bands, which pass through the grafted collar exactly once, experience an extra twist of 360° 

which reverses their chirality; the left twisting Möbius band becomes right-twisting, and vice versa. 
 

            
                  (a)                                        (b)                                    (c)                                        (d) 

Figure 17:  (a) A new texture with longitudinal directionality; (b) classical KOJ with this texture 

applied;  (c) KOJ-C with a collar at the mouth;  (d) KOJ-C with inflated blue/purple branch.  

 

Meridional Grafts on K8?-O 

We can also graft a fold onto a meridian of a Klein bottle with a figure-8 cross section. Such a fold travels 

on the outside for half the figure-8 and on the inside for the other half of the profile, but it closes smoothly 

onto itself. Each Möbius band – a characteristic line of this surface – crosses this fold exactly once and 

thus changes its twist by 360°, which reverses its twistedness. Other longitudinal lines pass the grafted 

folds twice and thus do not change their twistedness – as is true for all but the Möbius center lines when a 

Möbius band is turned into its mirror image. Also, meridional bands are not affected. Thus, adding the 

figure-8 shaped meridional graft will turn K8R-O into K8L-O and vice versa. 

Let’s check what happens when we simply reverse the directionality in the longitudinal direction on 

a textured Klein bottle of type K8?-O. With a 180° flip through 3D space we can negate the effect of such 

a reversal. But this rotation does not affect the twistedness of the structure. Thus it does not change the 

regular homotopy class of the Klein bottle. 

 

Longitudinal and Diagonal Grafts 

Now let’s try a graft along a longitudinal line. First we pick a general longitudinal that runs twice around 

the Klein bottle loop, so that the grafted fold ends up on the same side that it started on and thus merges 

nicely with itself. It is hard to visualize such grafts on the Klein bottle itself. Therefore let’s look at these 

grafting operations on the texture map of the Klein bottle.  
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In Figure 18a a meridional graft line is shown, and we can see that the center lines of the two Möbius 

bands, indicated with chains of black and white arrows respectively, cross this line exactly once, which 

causes them to flip their chirality, as already discussed above. 

(a)       (b)       (c) 

Figure 18: Graft lines shown on the texture map: (a) meridional graft line, (b) a longitudinal graft 

line travelling around the loop twice;  (c) a single diagonal graft line. 

 

Next, Figures 18b and 18c show longitudinal and diagonal graft lines in arbitrary positions. Every 

meridian crosses such a graft line twice and thus its twistedness is not affected. Neighboring longitudes 

also remain un-affected, and thus the regular homotopy class remains the same. 
 

 (a)       (b)  (c) 

Figure 19: Klein-bottle-grafts along Möbius center lines: (a) Klein-bottle-graft line on texture map, 

(b) K8L-JJ cut open along the rim of its left-twisting Möbius band, ready to be grafted  

with a copy of itself;  (c) the boundary zone of the merged Möbius ribbons and  

an analysis of the  resulting graph of intersection lines and triple points. 

 

Klein-Bottle Grafts on KOJ 

However, the longitudinal graft lines should really follow the characteristic lines represented by the 

centers of the Möbius bands, as shown in Figure 19a. The difficulty is that when we swing the graft loop 

once around such a Möbius line, it ends up on the other side of the surface and cannot readily close on 

itself. However, we can use the same trick that KOJ uses itself to let the tube close on its own back-face. 
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In the same way we let the graft loop pass through a Klein bottle mouth inversion and then nicely close on 

itself. That is what happens in Figure 11. We can look upon Figure 11c as an ordinary KOJ Klein bottle 

with the B&W dashed line marking the center of its right-twisting Möbius band. We now turn this line 

into a crease and then graft on it another Klein-bottle-graft (of type ML) to produce the shape in Figure 

11b. Figure 19b shows the blue left-twisting Möbius band (ML) of the KOJ bottle split open along this 

crease line; and Figure 19c shows the geometry of the intersection zone after this “KbL-graft.” Note that 

in this process the intersecting surface strips crossing along the graft line have merged into one another at 

the cross-over at the mouth of the Klein bottle and now form a single double-sided band. Figure 19c 

further analyzes the resulting graph of intersection lines and triple points. The black labels "1" through 

"4" mark the dominant vertical portions of this band. The red labels then mark various segments of the 

graph of intersection lines connecting the two triple points with the pair of ribbon parts involved. 

Meridians pass only once through this grafted loop and thereby change their twistedness by ±360°, 

i.e. going from a circular band to a figure-8 band. This changes the regular homotopy class. The grafted 

KOJ bottle has transformed into type K8L. 
 

 

10. Map of the Regular Homotopy Classes of Klein Bottles 

With the insights gained in the previous sections, we are now ready to draw the complete map of the 

regular homotopy classes for Klein bottles as was done for tori last year [20]. In summary we see that 

there are now three structural domains, one of which splits into two parts when the surface 

parameterization is taken into account (Fig.20). 

 

 

Figure 20: Complete map of the effects of re-parameterization on the different Klein bottle classes. 
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Regular homotopy transformations cannot perform simple mirroring operations; they cannot turn a left-

twisting Möbius band into a right-twisting one. Thus we can immediately identify three different classes 

represented by:  K8L = ML+ML,  K8R = MR+MR,  and by  KOJ = ML+MR. These three regular 

homotopy classes are thus structurally different; they do not depend on any markings of the surface. This 

exposes yet another difference to the world of tori [19][20], where there are only two structural classes: 

one formed by the tori  TOO,  TO8, and  T8O, and the other one by  T88 by itself. 

For K8L and K8R we have encountered several interesting geometrical realizations: the twisted 

figure-8 geometry of K8L-O (Fig.10c), the “inverted double sock” configuration K8L-JJ (Fig.11b), the 

Lawson minimum-energy bottle K8L-Lawson (Fig.12), and their respective mirror images. As the 

generic representatives for these classes, I prefer the twisted figure-8 geometry; it is structurally very 

simple and easy to reconstruct mentally. 

For marked Klein bottles we expect to see one more disparate regular homotopy class. It has to be 

composed of two Möbius bands of the same twistedness; thus structurally it belongs into the same class as 

KOJ and it can only be distinguished from the classical KOJ if we place some markings (e.g., a partly 

directional coordinate grid) on its surface, as discussed in Figure 17. 

 

 

11. Analyzing and Classifying Complex Bottles  

Alan Bennet has constructed some elaborate glass sculptures, which are exhibited at the Science Museum 

in South Kensington, UK [1]. These models range from an “inverted sock” type with multiply looped 

(Fig.21a) or helically twisted (Fig.21b) handles to contraptions that exhibit multiple “cross-handles” 

(Fig.21c) or nest several Klein bottle shapes inside one another (Fig.21d). The latter are topologically no 

longer simple Klein bottles, since they may be of higher genus or they may form multiple, individual, but 

interpenetrating surfaces. Other interesting examples of Klein bottles can be found on the home page of 

Cliff Stoll [22]. All these examples serve as good study object to train one’s skills in determining the 

regular homotopy class of a particular glass sculpture. 

       
                    (a)                                   (b)                                         (c)                                      (d) 

Figure 21: Glass work by Alan Bennet exhibited at the Science Museum in South Kensington, UK.  

 

Figure 20 gives us an idea how we might determine the type of such a fancy, twisted or knotted Klein 

bottle. For objects with no directional surface decorations, we only need to figure out into which 

structural class they belong. First we make sure that the surface is indeed single-sided and has Euler 

characteristic χ = V – E + F = 0;  i.e., that it is essentially a single, contorted, self-intersecting “tube,” 

possibly with some “inverted sock” turn-backs – but with no branching. Then we start drawing a set of 

three “parallel” lanes and wind this “highway” over the surface until it joins itself again. If each of the 

three lanes joins itself and exhibits a twist that is an even multiple of 180°, then we have found a set of 

meridians, and based on whether it is twisted or not, we can readily determine whether the surface is in 

one of the K8R/L classes or in KOJ. If only the center lane joins itself, and the other two lanes form a 
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double-loop over the surface, then we have found one of the two Möbius bands. The portion of the 

surface not yet covered must then form the other Möbius band. We need to determine the twist of both of 

them! To find a representative meridian strip, we start a second “3-lane highway” roughly perpendicular 

to the first one and look for a way to let it close on itself after only a single intersection with each of the 

two Möbius bands. The twistedness of these three bands uniquely characterizes the structural regular 

homotopy class of the shape in question. 
 

 

12. Klein Knottles 

Inspired by the creative bottle shapes shown above, I searched for other intriguing geometries that 

topologically are proper Klein bottles.  Given my investigation of knotted shapes in the past [17] [18], it 

was natural for me to look for knotted varieties of Klein bottles; I call these geometries “Klein Knottles.” 

A simple way to enhance the visual complexity of a Klein bottle is to put more than one – but typically an 

odd number – of “inverted sock” turn-backs in series (Fig.22a). All of these surfaces belong in class 

KOJ; pairs of subsequent turn-backs can always be created or eliminated by doing an inversion of the 

segment in between using the Cheritat eversion move [6], which is also illustrated in Figure 5 in [19]. 

Any chain of such turn-backs can readily be deformed into a knotted geometry, such as the simple trefoil 

shown in Figure 22b, since tube branches are allowed to slide through one another. Of course, any 

intermediate state in such a knotting process may also be the final target of an artistic representation of a 

Klein bottle, since there is no limit on the number of self-intersections allowed (Fig.22c). 

 

     
                           (a)                                                        (b)                                               (c) 

Figure 22: Examples of Klein Knottles: (a) ring of five KOJ; (b) three KOJ forming a trefoil knot;  

(c) five KOJ forming an interpenetrating Knottle. 

 

We can also form Knottles with figure-8 profiles. The toroidal Klein bottles of type K8R-O and K8L-O 

can readily be deformed into any knot desired (Fig.23a) – just as long as we make sure that the cross 

section makes an odd number of 180° flips overall, so that we obtain the inside/outside switch-over 

needed to make a Klein bottle. We can also form chains with multiple figure-8 turn-backs; each one of 

them acts as an inside/outside switchover. However, the figure-8 profile gives us another degree of 

freedom. It allows us also to accomplish a surface reversal by giving the figure-8 tube a 180° flip – or an 

odd multiple thereof. These two mechanisms of surface reversals can be combined: We may use an even 

number of 180° flips together with an odd number of Klein bottle mouths, or, alternatively, an even 

number of mouths together with an odd number of flips. Figure 23c displays a very “compact” Klein 
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bottle geometry, K8R-zz, with two Klein bottle mouths, combined with an overall twist of 180°. This 

twist is applied in two portions of 90° each, as the figure-8 profile travels once up and down a portion of 

the z-axis. In one of these two passes, the profile also morphs into its twin shape, in which the sizes of the 

two lobes are exchanged. 
 

      
                          (a)                                                       (b)                                                     (c) 

Figure 23: Klein Knottles with figure-8 cross sections: (a) K8OR wound into a trefoil knot;  

(b) six K8J turn-backs with suitable twist;  (c) two K8J turn-backs with 90° twist each. 

 

Figure 24 displays some physical models of these novel Klein bottles shapes. First there is a gridded 

version of the “inverted double sock” Klein bottle, K8L-JJ, already introduced in Figure 11b. This 

gridded, semi-transparent” model allows a better inspection of how the figure-8 cross section turns inside 

out at the Klein bottle mouth and then morphs from one asymmetrical configuration to another one, in 

which the uneven sizes of the two lobes are reversed. Figure 24b allows a similar “transparent look at the 

very “compact” Klein bottle geometry, K8R-zz, with two Klein bottle mouths, combined with an overall 

twist of 180°, introduced in Figure 23c. 
 

      
                                                  (a)                                                                              (b) 

Figure 24: Unusual, heavily self-intersecting Klein bottle models: (a) The left-turning K8L-JJ;   

(b) a right-turning Klein bottle with figure-8 profile and a zig-zag sweep path, K8R-zz. 
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13. Decomposition of Klein Bottles into Two Boy Caps 

As mentioned in Sections 3, any model of the projective plane with a disk removed is topologically 

equivalent to a Möbius band. In particular, when we remove a disk from Boy’s Surface, we obtain a nice, 

smooth building block with 3-fold symmetry, which I will call a Boy cap (Bc) that can be used to form 

interesting novel Klein bottles with 3-fold rotational symmetry. This special Möbius band also comes in 

two enantiomorphic forms, denoted  BcL and BcR, respectively. I have taken care of defining a geometry 

that results in a perfectly circular rim (Fig.25). Two such Boy caps can then be joined at their boundaries 

(resulting from the removal of a disk) with a rotational degree of freedom. Joining two Boy caps of equal 

chirality (Fig.25b) results in one of the figure-8 Klein bottles (Fig.25a):  

BcL + BcL = K8L  and  BcR + BcR = K8R. 

    
                             (a)                                                                                 (b) 

Figure 25:  (a) Two Boy caps (BcR) of the same chirality form a Klein bottle of type K8R; (b) the two 

Boy caps (BcR) separated to show the complimentary sense of texture flow at the two ends. 

 

Joining Boy surfaces of opposite chirality (Fig.26b) yields a Klein bottle of the same structural type as the 

“inverted sock” model (Fig.26a). 

BcL + BcR = KOJ. 

       
                               (a)                                                                                 (b) 

Figure 26: (a) Two Boy caps of opposite chirality form a Klein bottle of type KOJ; (b) the two Boy 

caps (BcL, BcR) separated to show identical direction of texture flow into the triple point. 

 

Here the surface markings make a difference! We now employ the texture map shown in Figure 28a. If on 

the Klein bottle shown in Figure 25a the direction of texture flow, as given by the black, white, and gray 
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arrows, is reversed, we will still observe these arrows to flow into one of the two triple points and out of 

the other one. We can thus simply flip the Klein bottle end-to-end and bring the new texture flow again in 

alignment with the original one. On the other hand, in the Klein bottle depicted in Figure 26 the texture 

flows into the triple points at both ends. If the texture flow is reversed it then flows out of the triple points 

at both ends and there is no smooth transformation that brings these two geometries into alignment. 

Figures 26 and 27 thus depict two representatives of different regular homotopy classes corresponding to 

the two classes in the upper half of Figure 20. Figure 28b provides a look into the internal structure of a 

Klein bottle of type KOJ with an overall symmetry of S6 composed of two enanthiomorphics Boy caps. 

  
                             (a)                                                                                 (b) 

Figure 27: (a) Two Boy caps of opposite chirality (BcL, BcR) form a Klein bottle of type KOJ; in this 

case the texture flow has been reversed with respect to Figure 26; this results in a reversed 

direction of texture flow at both triple points (b). 
 

(a)                (b) 

Figure 28: (a) Texture map used in the above models. (b) A gridded model of a Klein bottle (KOJ) 

composed from two enanthimorphic Boy caps (BcL, BcR). 
 

 

14. Conclusions 

Klein bottles are fascinating geometric objects. Most people are familiar with only the “inverted sock” 

type (KOJ). Many mathematical texts also refer to “the other” Klein bottle – the twisted figure-8 shape – 

which actually comes in two different chiral versions (K8OL, K8OR). Only a few papers or web pages 

also present Lawson’s minimum-energy Klein bottle, which also comes in two chiral forms that belong to 
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the same two homotopy classes.  But there is also the possibility of forming turn-backs with a figure-8 

profile and I have not seen this one depicted beforehand (Fig.11).  

Of course, there are infinitely many possible geometries that constitute Klein bottles, i.e., single-

sided surfaces with Euler characteristic zero.  Even with marked surfaces, all of these can be smoothly 

deformed into one of the four representatives presented in this paper. I have presented two untwisted, 

marked Klein bottles to distinguish the two versions of the “inverted sock” type, consisting of two 

Möbius bands of opposite handedness. 

Finding the most elegant transformation that will actually accomplish the reduction of an arbitrary 

Klein bottle into one of these four representatives is a much harder task; it deserves more study. In the 

meantime the reader may simply enjoy the beautiful glass models created by Alan Bennet and Cliff Stoll, 

as well as the wild Klein knottles introduced in the last part of the paper. 
 

 

Acknowledgements 

I would like to express my thanks to Dan Asimov, Tom Banchoff, Matthias Goerner, Rob Kusner, and 

John Sullivan for stimulating discussions and various illuminating e-mail exchanges. 

This work is supported in part by the National Science Foundation: NSF award #CMMI-1029662 (EDI). 
 

 

References 

[1] A. Bennet, Surface Model. – http://www.sciencemuseum.org.uk/objects/mathematics/1996-544.aspx 

[2] M. Bill, Endless Ribbon (1935).  In Mathematics Calendar. Springer, Berlin, 1979. 

[3] W. Boy, Über die Curvatura integra und die Topologie geschlossener Flächen. Math. Ann 57, pp.151-184, 

1903. 

[4] Boy Surface at Oberwolfach.  – http://www.mfo.de/about-the-institute/history/Boy-Surface 

[5] R. Bryant and R.Kusner, Animated Boy Surface.  – 

http://www.indiana.edu/~minimal/archive/NonOrientable/NonOrientable/Bryant-anim/web/index.html 

[6] A. Cheritat, The torus inside out.  – http://www.mat.univ-toulouse.fr/~cheritat/lab/e_lano.html 

[7] Dehn Twist:  – http://en.wikipedia.org/wiki/Dehn_twist 

[8] M. C. Escher, Möbius Band, I (1961). In The Graphic Work of M. C. Escher. MacDonald, London 1967. 

[9] M. C. Escher, Möbius Band, II (1963). In The Graphic Work of M. C. Escher. MacDonald, London 1967. 

[10] J. Hass and J. Hughes, Immersions of Surfaces in 3-Manifolds. Topology, Vol 24, No.1, pp 97-112, 1985.  

[11] R. Kusner, Comparison Surfaces for the Willmore problem. Pacific J. Math. Vol.138, No.2, pp 317-345, 1989.  

[12] H. B. Lawson, Complete minimal surfaces in S
3
. Ann. of Math., Vol. 92, pp. 335-374, 1970. 

[13] D. Lerner and D. Asimov, The Sudanese Mobius Band. SIGGRAPH Electronic Theatre, 1984. 

[14] Möbius Wedding Band.  – http://scn.wikipedia.org/wiki/File:M%C3%B6biusWeddingBand.JPG 

[15] K. Polthier, Imaging math: Inside the Klein bottle. – 

http://plus.maths.org/issue26/features/mathart/index.html#LawsonKlein 

[16] C. H. Séquin, Twisted Prismatic Klein Bottles. The American Mathematical Monthly, Vol.87, No.4, pp 269-

277, April 1980. 

[17] C. H. Séquin, Tangled Knots, Proceedings of "Art+Math=X" Intnl. Conf., Boulder CO, June 2005, pp 161-165. 

[18] C. H. Séquin, Knotty Sculptures. Knotting Math and Art, USF, Tampa, November 2007. 

[19] C. H. Séquin, Tori Story. Bridges Conf. Proc., pp 121-130, Coimbra, Portugal, July 27-31, 2011. 

[20] C. H. Séquin,  Torus Immersions and Transformations. UCB Tech Report (EECS-2011-83). 

[21] Steiner’s Roman surface. – http://www.geom.uiuc.edu/zoo/toptype/pplane/roman/ 

[22] C. Stoll, ACME Klein Bottles. Home page.  – http://www.kleinbottle.com/index.htm 

[23] Whitney’s Umbrella. –  http://www.geom.uiuc.edu/zoo/features/whitney/ 

[24] T. J. Willmore, Note on embedded surfaces. An. Stiint. Univ. “AI. I. Cusd” Iasi Sect.I, a Mat. Vol.11, pp 443-

496, (1965).  

http://www.indiana.edu/~minimal/archive/NonOrientable/NonOrientable/Bryant-anim/web/index.html
http://scn.wikipedia.org/wiki/File:M%C3%B6biusWeddingBand.JPG
http://plus.maths.org/issue26/features/mathart/index.html#LawsonKlein
http://www.geom.uiuc.edu/zoo/features/whitney/

