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Abstract

Learning the meaning of a novel noun from a few labeled objects is one of the
simplest aspects of learning a language, but approximating human performance
on this task is still a significant challenge for current machine learning systems.
Current methods typically fail to find the appropriate level of generalization in a
concept hierarchy for a given visual stimulus. Recent work in cognitive science
on Bayesian models of word learning partially addresses this challenge, but it as-
sumes that the labels of objects are given (hence no object recognition) and it has
only been evaluated in small domains. We present a system for learning nouns di-
rectly from images, using probabilistic predictions generated by visual classifiers
as the input to Bayesian word learning, and compare this system to human perfor-
mance in an automated, large-scale experiment. The system captures a significant
proportion of the variance in human responses. Combining the uncertain outputs
of the visual classifiers with the ability to identify an appropriate level of abstrac-
tion that comes from Bayesian word learning allows the system to outperform
alternatives that either cannot deal with visual stimuli or use a more conventional
computer vision approach.

1 Introduction

Learning a language is one of the classic problems that is solved better by the human mind than by
any computer. A four-year old child knows the meanings of thousands of words and can learn new
words accurately from just a handful of labeled examples [4]. Developing algorithms that approxi-
mate human performance on even one aspect of this problem – learning the meaning of a novel noun
– is thus a significant challenge. Bayesian word learning models [25] are a step towards answering
this challenge, using Bayesian inference to identify the intended level of abstraction referred to by
a novel noun (e.g., does the word refer to Dalmatians, dogs, or all mammals?) in a similar manner
to human word learning. However, these models do not have a perceptual component and, instead,
assume a fixed set of perfectly-recognized stimuli (e.g., it knows a given image is consistent with
Dalmatians, dogs, and mammals). We address this limitation by grounding Bayesian word learning
with computer vision to produce the first system capable of approximating how people learn nouns
directly from images.

Developing a system for determining the referent of a word from labeled images also has the po-
tential to extend the state of the art in computer vision. Over the last decade, computer vision re-
searchers have developed algorithms that can classify images and their contents into a large number
of categories [9, 6]. Despite such success, existing image classification algorithms still work in a bi-
nary fashion: given an image and a category (e.g. “dog”), the classifier predicts if the image belongs
to the category or not. The categories could be mutually exclusive (as in early problems such as digit
classification), or nested (as in the context of e.g. ImageNet [6]), in which case the classifier would
predict multiple categories that the image belongs to. However, given a set of categories that are all
true for an image or a set of images, existing algorithms are not able to further infer which level of
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the hierarchy is the true underlying concept (e.g., Dalmatian, dog, or all mammals). Although recent
work has proposed using hierarchical structures in object categories [24] or shared attributes [18],
learning which objects in an object hierarchy can be referred to by a word (e.g., just Dalmatians or
all dog species?) remains an open problem. Unlike other recent computer vision work inspired by
human word learning [21], we compare the proposed algorithms to human behavior using a novel
large-scale word learning experimental paradigm.

To formulate a visually grounded Bayesian word learning model, we use ImageNet to obtain a large
number of images that are used to train a perceptual vision component. In addition to describing
a model that replicates human performance in a previous word learning experiment, we present a
technique for performing large-scale experimental comparisons of machine and human word learn-
ing over a nested hierarchy that contains a broad and deep set of automatically generated domains.
We demonstrate that the grounded model and people learn words from small image sets in a simi-
lar fashion. Although there still remains room for improving performance, the human results form
a new ambitious, yet not impossible, benchmark that should inspire novel algorithms that behave
more like human word learners.

2 Background

To explore how children and adults learn words at different levels of abstraction, Xu and Tenenbaum
[25] showed participants one or more positive examples of a novel word (e.g., “These three objects
are Feps”), while manipulating their taxonomic relationship and asked participants to find the other
“Feps” among a variety of both taxonomically related and unrelated objects. For example, a toy
Dalmatian could be labeled as a Fep, and people would be asked whether other Dalmatians, dogs,
and animals are Feps, along with other objects such as vegetables and vehicles. Xu and Tenenbaum
proposed a model of people’s responses in which Bayes’ rule is used to evaluate a set of hypotheses
about which objects are Feps (e.g., Dalmatians are Feps). The taxonomic relationships among the
objects define a rooted tree where each object is a leaf node. The space of hypotheses considered by
the Bayesian model corresponds to the internal nodes of the tree – for each hypothesis, the objects
that are descendants of that node would be identified as Feps. The tree itself was constructed by
applying hierarchical clustering [8] to people’s judgments of the similarity of all pairs of objects
(requiring O(N2) judgments per participant even though only N = 45 objects were used in the
experiment).

Relying on human similarity judgments to obtain a set of hypotheses limits the size of the domain
in which Bayesian word learning can be applied. To address these issues, recent work [1] proposed
automatically constructing a hypothesis space from WordNet, a large lexical database of English rep-
resented as a graph of words linked by directed edges denoting semantic relatedness [11, 16]. The
resulting model successfully predicted people’s generalization judgments in both a replication with
the taxonomically-organized domains (animals, vehicles, and vegetables) used by Xu and Tenen-
baum [25] and with a set of novel domains that were arranged hierarchically but had a less intuitive
taxonomy (clothing, containers, and seats). This WordNet-derived hypothesis space serves as our
starting point for developing perceptually grounded bayesian word learning, where inputs are taken
directly from the pixels of an image.

All existing Bayesian word learning models assume that people are able to perfectly identify which
leaf node of a taxonomy an object should be assigned to based on its appearance (e.g., it knows a
given image is consistent with Dalmatians, dogs, and mammals). This is a major limitation of these
models from the perspective of providing a solution to the problem of word learning that can be
implemented on a computer, as it requires hand-classification of images of objects at all levels of
abstraction. In addition, this assumption may not accurately reflect human behavior, as people also
perform word learning in a perceptual space that may generate uncertainty. Thus, the challenge for
making Bayesian word learning useful in real-world applications is to find a reliable way to connect
images (perceptual signals) to the hypotheses evaluated via Bayesian inference.

On the other hand, recent developments in category-level visual appearance modeling make it pos-
sible to classify objects into a large number of categories. Specifically, the state-of-the-art classi-
fication pipeline usually extracts dense feature from local image patches, using either hand-tuned
features such as SIFT [15] or features learned from certain dictionary learning approaches (e.g.,
17, 14) and spatially pools the local features [12, 26, 3] to get a vector representation of the input
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images. After feature extraction, standard classification methods such as support vector machines
(SVMs) or decision trees are learned on a set of training images. Algorithms following such a
pipeline have exhibited promising performance on a large number of object categories, such as the
Pascal VOC challenge [9] and the ImageNet challenge [6] which involves classifying images that
follow an ontology based on WordNet.

Recent work on object recognition has proposed sharing information across categories. Mid-level
representations based on attributes [10, 18] focus on extracting common attributes such as “fluffy”
and “aquatic” that could be used to semantically describe object categories better than low-level
features. Transfer learning approaches have been proposed that jointly learn classifiers sharing a
structured regularization term [19]. Of all these previous efforts, our paper is most closely related to
work that uses object hierarchies. Salakhutdinov et al. [21] proposed learning a set of object classi-
fiers with a hierarchical regularization term, which improves the classification of leaf node objects
by assuming that objects are hierarchically structured. However, they did not address the problem
of determining the level of abstraction within the hierarchy at which to make generalizations, which
is a key aspect of learning novel words. Deng et al. [7] proposed predicting object labels only to a
granularity that the classifier is confident enough with, but their goal was minimizing structured loss
instead of mimicking human word learning.

3 Visually-Grounded Bayesian Word Learning

In this section, we formally define the mathematical formulation of the Bayesian word learning
framework with vision input, and show its ability to perform word learning on a large number of
images.

3.1 The Bayesian Word Learning Framework

The Bayesian word learning framework [25] assumes that we are given a set of N objects X =
{x1, x2, . . . , xN} that are examples of the concept defined by a novel word, and extend the label to
a new object xnew with probability given by Bayesian inference in the following manner: Assuming
that C is the set of objects a word can refer to (from which X is a random sample), the probability
that xnew is also in C is given by

P (xnew ∈ C|X ) =
K∑

k=1

P (xnew ∈ C|hk)P (hk|X ), (1)

where H is a set of K hypotheses of the objects referred to by the word, P (xnew ∈ C|hk) is 1 if
xnew is in the set denoted by hk and 0 otherwise, and P (hk|X ) is the posterior probability of hk

given the examples X . We assume the objects form a taxonomic hierarchy, where each object xn

belongs to one leaf node in a rooted tree and hypotheses hk are internal nodes such that xn ∈ hk if
xn is a descendant of hk.

The posterior distribution over hypotheses is computed using Bayes rule. It is proportional to the
product of the likelihood, P (X|hk), the probability of drawing these examples from hk uniformly
at random and the prior probability of hk, P (hk). As xn is drawn uniformly at random from the set
of objects picked out by hk the likelihood is P (X|hk) = (1/|hk|N )I(X ⊆ hk), giving weight to a
hypothesis inversely proportional to the number of objects that could be drawn from the hypothesis
(with the effect of size increasing with more examples). This “size principle” [22, 23] compares
hypotheses at different levels of abstraction that are all consistent with the labeled examples – as
the number of examples of a word that are all Dalmatians increases, it becomes increasingly likely
that the word applies just to Dalmatians and not to dogs in general, even though both are logically
possible. The prior distribution P (hk) captures biases due to prior knowledge, particular hypotheses
with medium granularity or at the basic level (e.g., dogs over Dalmatians or mammals) [20].

3.2 Word Learning with Perceptual Uncertainty

When learning from images, the examples are presented as a set of images I = [I1, I2, · · · , IN ]. If
recognition is perfect, each image In maps directly to a leaf node xn. We thus seek to build a set of
classifiers that can identify the leaf node xn for each image In. Specifically, given an image In, the
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classifier predicts a score fx(In) for each leaf node x. A single leaf node can be selected as x̂n =
argmaxx fx(In). However, since the classifier prediction usually contains errors, it is beneficial
to obtain a probabilistic output P (xn = x|In) from the classifiers. We obtained this probabilistic
output by computing the confusion matrix A by performing cross-validation on the training data,
where Ai,j is the probability that the true leaf node is i given the classifier output being j.1 The use
of the confusion matrix incorporates the visual ambiguity into the word learning framework: given
an image In, the probability that the true leaf node is xn = x is P (xn = x|In) = Ax,x̂n where
x̂n = argmaxx fx(In).

Given the probabilistic output from the vision component, the probability of observing In as an
example of hypothesis hk now becomes the expectation of P (xn|hk) over P (xn|In),

P (In|hk) = EP (xn|In) [P (xn|hk)] =

L∑
x=1

Ax,x̂nP (xn|hk). (2)

The posterior probability of hypothesis hk given a set of N images I is then

P (hk|I) ∝ P (hk)

N∏
n=1

P (In|hk), (3)

from which we can adopt the standard Bayesian word learning framework (Equation 1) to infer
generalization probabilities for new objects.

To obtain the classifiers and the visual ambiguity, we learned a convolutional neural network (fol-
lowing 5) to extract visual features from images obtained from the ImageNet [6]. Specifically, we
scale each image to size 32 × 32 for computational efficiency, densely extract overlapping image
patches of size 6 × 6, and encode ZCA-whitened patches using threshold coding, with a dictionary
of size 400 trained by orthogonal matching pursuit. After coding, the local features are average
pooled over a 2×2 regular spatial grid to form an 800-dimensional global feature representation for
each image. After feature extraction, a standard one-vs-all L2-SVM is adopted to predict labels for
the images (where the weights resulting from the SVM are treated as a vector of noisy labels for an
image). We refer the reader to [5] for details about the feature extraction and classification pipeline.

As the images in ImageNet are relatively noisy (e.g., “Dalmatian” may contain the image of a small
Dalmatian in a large pumpkin field), we used the Bayesian representativeness approach [see 2] with
discretized image features to prune noisy images from each leaf node class, and retain the 400 most
representative images. To fairly evaluate our approach, we use 80% of the images as training data
to train the classifiers, and use the remaining 20% as testing data to evaluate the performance of
concept learning with unseen image input. Additionally, our algorithm is capable of predicting
generalization on new, unseen images outside of ImageNet because of the visual model. While the
image classifiers are not tuned for specific object classes, we observe an average accuracy rate of
around 60% in most domains we tested below.

We believe that the above pipeline is a fair representation of the state-of-the-art computer vision
approach. Algorithms using similar approaches have reported competitive performance in image
classification on a large number of classes (on the scale of tens of thousands) [13], which provides
reassurance about the possibility of learning words using computer vision.

4 Experiments

We now demonstrate the ability of our model to learn the level of generalization of a novel concept
in a given hierarchy, in agreement with human performance. We first use a small-scale domain from
a previous word learning study [1], but with a much larger number of images (13,200 images as
opposed to the 45 images used in the previous experiment). We then propose an automated, large-
scale word learning experiment directly from pixel inputs, and show that our model agrees with
ground truth performance as given by human behavior.

1We also tried converting the classifier output to probabilities via an additional logistic regressor, but found
the confusion matrix approach to provide more robust results.
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Figure 1: Generalization results for previously studied domains. (a) Human responses from [1]; (b)
Bayesian model assuming perfect labels (R2 = 0.981); (c) Bayesian model with vision input (prob-
abilistic label output) (R2 = 0.833); (d) the conventional vision baseline (R2 = 0.570). Results are
grouped in trials denoted by xLy, where x is the number of examples and y is the level from which
the examples are sampled. For each trial, the three bars represent the probability that the word can
refer to Levels 0, 1, and 2, respectively.

4.1 Initial Experiment

The experiment in [1] involves three object taxonomies (animals, vehicles, and vegetables), with a
total of 33 object classes (leaf nodes in the ground-truth concept tree). The set of example images
shown to the human participants correspond to four types of trials, expressed at three different levels
of abstraction which we will refer to as Levels 0-2 (higher numbers being more abstract). The
trial types were: a single Level 0 example (e.g. a Dalmatian); three Level 0 examples (e.g. three
Dalmatians); three Level 1 examples, being the single Level 0 example and two examples that share
a parent with the Level 0 example (e.g. a Dalmatian, a beagle and a Shih-Tzu); and three Level 2
examples, being the single Level 0 example and two examples sharing a grandparent with the Level
0 example (e.g. a Dalmatian, a toucan and a bear).2 For the word learning models incorporating
image classification, the examples are always selected from test images that are not used to train
the classifier. The word learning models then produce generalization probabilities for the examples
at Levels 0, 1, and 2 for each test case. We then compare the results against aggregated human
subject responses for these domains as reported in [1]. As a quantitative evaluation, we fit a linear
model between the per-trial-type per-level probabilities given by each model and the human data,
and report the R2 score.

To the best of our knowledge, there is no vision algorithm that identifies the level of abstraction at
which to generalize based on a set of examples. To show the difference between the conventional
object classification pipeline and our word learning model, we propose a naı̈ve extension of the
conventional 1-vs-all image classifier to predict the level of generalization: the posterior probability
of a hypothesis hk given an example image I is simply defined as the sum of probabilities (given by
the confusion matrix) of each leaf nodes in the subtree given I . When there are multiple examples,
we take the product of the posterior probabilities computed with each image (i.e., a probabilistic
version of the logical AND), and do re-normalization to give the final posterior probability of the
hypotheses. Note that no size constraint is utilized in this naive model, so one would expect such a
model to prefer high-level concepts (as every example belongs to the root hypothesis - “an object”),
and would then generalize to all leaf nodes without much discretion.

Figure 1 shows the generalization probabilities given by people and different models. The word
learning model with vision (Figure 1(c)) generalizes in a similar manner to people (Figure 1(a)),
but is more conservative than the model assuming perfect labels (Figure 1(b)). For example, when
given one Level 0 example, the model with vision is uncertain whether the unknown concept is
Level 0 or Level 1, while providing more examples (e.g. three examples) assures the generalization
of the Level 0 hypothesis. When provided with three Level 2 examples, the model with vision
favors lower-level hypotheses because of the extreme low prior probability of large hypotheses and
there is typically at least one lower-level hypothesis that contains classes for each example with
non-negligible probability from the vision input.

2In this experiment Levels 0, 1, and 2 corresponded to what psychologists identify as subordinate, basic,
and superordinate levels [20].
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Figure 2: Generalization results as a function of the number of input images, using the Bayesian
model with vision input. (a)-(c) list three different trial types, and (d) shows the barplot when
m = 5.
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Figure 3: One of the 50 automatically constructed domain used in the experiment that was created
by the method detailed in the text. For each level, the root of the corresponding subtree is designated
by a star of the appropriate color. Testing leaf nodes are then sampled from the subtree to generate
trials.

Without perfect labeling, the additional visual ambiguity (e.g. “is this image a red pepper or a fire
truck?”) plays an important role. The fact that the visual model does not perfectly classify images
causes the generalization probability to “flatten out”, and generally, to be lower than the perfect label
case. To empirically show this trend, we reduce the visual ambiguity by providing more images in
the stimuli to the model with vision. For example, when we provided three Level 1 examples (one
example per leaf node), we now provide 3m examples (m examples per leaf node, with the same
leaf nodes as in the previous experiment). The generalization of our model with respect to m are
plotted in Figure 2(a)-(c). It can be observed that using more images as exemplars help to assure
the model about the underlying generalization level. For example when m = 5 the behavior of
our model is very similar to the human subject responses and the Bayesian model assuming perfect
labels (Figure 2(d)). As a final note, the conventional vision baseline generalizes poorly, focusing
on high-level generalizations as anticipated.

Although the Bayesian word learning model with vision captures human word learning behavior
in these three domains, it is unclear if this is due to handpicking the three domains that happen
to work with our method. It is also unclear whether our method scales well when there are more
realistic numbers of hypotheses involved. In addition, it is worth pointing out that the behavioral
experiment reported in [1] was carried out only on a small, manually selected set of images that
people recognize easily. This partially explains the observation that the existing Bayesian model
assuming perfect labels closely matches human behavior. It is thus beneficial to examine human
behavior on a larger scale and determine the effects of visual ambiguity on word learning, as shown
next.
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4.2 An Automated Large-scale Word Learning Experiment

To perform a large-scale test of word learning from real images, we need to be able to automatically
generate a large number of hierarchically nested concepts (domains). Previous methods for testing
human word learning use handcrafted domains and images [25] or handpicked domains and images
from WordNet and ImageNet [1]. To perform a large-scale evaluation of a computational model,
generating the necessary components for testing each domain should be automated. In what follows,
we outline a method for automatically constructing four-level hierarchical domains and the images
from each object category that can be used in human and machine learning experiments.

To construct a domain, we choose a leaf node in ImageNet uniformly at random from a reduced
subset of leaves with at least 800 images in ImageNet. This ensures that each leaf has enough
images for training the visual classifier and this initial randomly selected leaf node serves as the
most specific category that is to be learned (Level 0). We use an image from the Level 0 category
as one of the examples for each of the five trial types. At each increasingly broad trial type, we
sample five categories: two categories that are used to create example images shown to participants
and three categories that are used to create example images for testing. The test set for a given
domain is the same for every trial type and is a randomly ordered set of twenty-four images: twelve
in-domain images (three images from the most specific category, and one image from each of the
nine broader test categories) and twelve out-of-domain images (four randomly chosen test images
from three other automatically generated domains). This results in 21 images in each domain.

For each domain, there are five trial types we show to the human participants:

1. One example from the most specific (Level 0) category.
2. Three examples from the most specific (Level 0) category.
3. Three examples from categories that are 10% of the path to the root of ImageNet (Level 1).
4. Three examples from categories that are 25% of the path to the root (Level 2).
5. Three examples from categories that are 50% of the path to the root (Level 3).

Figure 3 shows the training and test categories for one automatically generated domain.

Using this method, we created fifty domains, each with five trial types (resulting in 1050 images
shown to participants). Each trial type was completed by 10 unique participants (resulting in 2500
trials, 250 of which were unique), who were recruited online through Amazon Mechanical Turk
(http://www.mturk.com) and were compensated $0.05 USD for each completed trial (and
were allowed to complete as many unique trials as they wished). The images used as examples in a
domain were the same for every replication (the same Level 0 image appeared in every trial type),
and the test images of a domain were the same for every trial type and replication. The same random
ordering of the example and test images was used for replications.

To learn the perceptual classifiers, we collected images from the corresponding ImageNet categories,
and performed feature extraction and per-domain classifier training as previously described. Note
that every image used in the human behavior experiment (as examples or test images) was randomly
sampled from the set of held-out images that were not used to train any portion of the perceptual
model.

4.3 Human and Computational Results on the Large Scale Data

We show the generalization probabilities for people and the different models in Figure 4. The first
thing to notice is that people exhibit different behavior from that observed in previous smaller-scale
experiments. Specifically, the generalization probabilities are lower than the “cleaner”, smaller-scale
case discussed in the previous subsection, where identifying objects was easier. Values tend to be
farther from the two extremes (zero or one), possibly because the randomly sampled images make
the visual input more ambiguous than manually picked ones.

The Bayesian model assuming perfect labeling does not take visual ambiguity into consideration,
and still tends to give extreme values to the generalization probabilities. In contrast, human word
learning behavior is more similar to our model, which combines image classification and Bayesian
word learning components. For example, in both Figure 4 (a) and Figure 4 (c), the response for
each level peaks when the given examples are drawn from the same level. The conventional vision
baseline still fails to perform generalization, giving high generalization scores to most of the trial
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Figure 4: Generalization proabilities given by various models: (a) Human word learning, (b)
Bayesian model with perfect label, (c) Bayesian model with vision input, and (d) Conventional
vision baseline. Results are first grouped by trial types, and within each group, probabilities from
the most specific (Level 0) to the most general (out of domain, OOD) responses are listed.
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Figure 5: Correlation between the human word learning and the word learning models. The red line
shows the fitted linear regression model, and the corresponding R2 scores are 0.71, 0.77 and 0.59
respectively.

and response types. In summary, our result shows the importance of modeling visual ambiguity in
explaining human generalization behavior in a larger scale, more realistic context, which is missing
in previous work.

To quantitatively evaluate the performance difference, we show the correlation between human word
learning and the different models by comparing the per trial type per response type generalization
probabilities. The scatter plots are shown in Figure 5. The model with vision input yields a better
R2 score when we perform a linear fit, with a slope very close to 1 and a positive bias. In contrast,
the Bayesian model with perfect label produces more extreme probability values either close to 0 or
to 1, and the conventional vision baseline has a large bias towards higher probabilities.
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5 Conclusions

In this paper, we proposed a visually grounded Bayesian word learning framework that models hu-
man word learning behavior given a set of visual stimuli. By developing a novel visually grounded
Bayesian word learning model that accounts for perceptual uncertainty, our approach addresses lim-
itations in the existing word learning and image classification algorithms: the former only being able
to use a limited number of stimuli, and the latter not being able to infer the level of generalization.
We believe that our work is the first to present a model that learns a visual concept from sets of raw
image input, and to empirically show the resemblance of human generalization behavior on a large
scale. We hope that this work provides common ground for computer vision, machine learning,
and cognitive science researchers, and provides a step towards developing novel object recognition
algorithms that better mimic with human behavior.
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