
Automatic Generation Of Application-Specific

Accelerators for FPGAs from Python Loop Nests

David Sheffield
Michael Anderson
Kurt Keutzer

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-203

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-203.html

October 23, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

AUTOMATIC GENERATION OF APPLICATION-SPECIFIC ACCELERATORS FOR FPGAS
FROM PYTHON LOOP NESTS

David Sheffield, Michael Anderson, Kurt Keutzer

UC Berkeley: Department of Electrical Engineering and Computer Sciences
Berkeley, CA USA

{dsheffie,mjanders,keutzer}@eecs.berkeley.edu

ABSTRACT

We present Three Fingered Jack, a highly productive ap-
proach to mapping vectorizable applications to the FPGA.
Our system applies traditional dependence analysis and re-
ordering transformations to a restricted set of Python loop
nests. It does this to uncover parallelism and divide compu-
tation between multiple parallel processing elements (PEs)
that are automatically generated through high-level synthe-
sis of the optimized loop body. Design space exploration
on the FPGA proceeds by varying the number of PEs in the
system. Over four benchmark kernels, our system achieves
3× to 6× relative to soft-core C performance.

1 Introduction
The emergence of SoCs with tightly coupled FPGA fabric
and high-performance multicore CPUs encourages a new
way of building FPGA-accelerated systems. The FPGA +
multiprocessor SoC will allow the acceleration of select ker-
nels on the FPGA with lower overhead than previously pos-
sible. Portions of the program that cannot be easily acceler-
ated on FPGA still run with respectable efficiency and speed
on the high-performance CPUs. This motivates a selective
and embedded approach to design: the programmer selects
only certain computations for acceleration. These compu-
tations are embedded as a subset of a high-level language.
This enables the designer to use the same source code to
target both CPU and FPGA.

Such a system has benefits for both end-users and tool-
writers. Users take advantage of the productivity provided
by execution of non-performance critical software on a mul-
tiprocessor CPUs. They also gain performance and energy-
efficiency benefits of the FPGA fabric for essential kernels
through hardware acceleration. For the tool-writer, targeting
only a subset of the high-level language enables great flexi-
bility and optimization in high-level synthesis (HLS). Con-
ventional HLS systems often target C-like languages and
must support at least a subset of the C programming lan-
guage semantics. This often requires handling pointer alias-
ing and other unsavory features of the C language. In con-
trast, a selective compiler can be restricted to constructs that

LLVM IR generation

HLS flow + FPGA tools

Dependence testing

Loop transformations:
•  Distribution
•  Interchange

Python front-end

Fig. 1: Our compiler flow

can be handled efficiently.
We present Three Fingered Jack1, a vectorizing compiler

and HLS system embedded in the Python language. In our
system, the programmer selects dense loop nests in Python
using the ”decorator” syntax that redirects the Python run-
time to our compiler. Because our compiler is restricted to
dense loop nests, we can apply vectorizing compiler algo-
rithms to the loop nests and traditional HLS techniques to
automatically generate parallel processing elements.

Our approach has productivity, portability, and efficiency
benefits. Portability is guaranteed as all code is valid Python.
If a loop-nest cannot be compiled for the FPGA, it remains
valid Python and will be executed on the CPU. We demon-
strate the efficiency of our system by achieving 3× to 6× the
performance of a soft-core CPU on our benchmarks. The
benchmark kernels in Section 4 exemplify the productivity
benefits of our system as each kernel is less than 10 lines of
Python. We estimate a manual RTL implementation would
be at least 20× more code.

Our work is inspired by the Selective Embedded Just-in-
time Specialization (SEJITS) methodology, which uses em-
bedded domain-specific languages (EDSLs) to help main-
stream programmers target Nvidia GPUs and multiproces-
sor CPUs [4]. We extend the SEJITS ideas to target FP-
GAs. Additionally, our compiler is extensible and can sup-
port multiple backends. Though they are not the focus of
this work, we also have a CPU backend and limited support

1http://www.eecs.berkeley.edu/˜dsheffie/
threeFingeredJack

 for(i=0;i<n;i++)
 for(j=0;j<n;j++)

for(k=0;k<n;k++)

Y[i][j] += A[i][k]*B[k][j]

 for(j=0;j<n;j++)
 for(k=0;k<n;k++)

for(i=0;i<n;i++)

Y[i][j] += A[i][k]*B[k][j]

 for(k=0;k<n;k++)
 for(j=0;j<n;j++)

for(i=0;i<n;i++)

Y[i][j] += A[i][k]*B[k][j]

Nesting A Nesting B Nesting C

Fig. 2: Examples of matrix multiply loop interchange

for GPUs with an OpenCL backend.
To summarize, the main contributions of this work are:

• An implementation of a compiler framework that uses
vectorizing compiler algorithms for optimization of a re-
stricted set of Python loop nests

• A FPGA backend that generates clusters of application-
specific parallel processing elements (PEs)

2 Background
Data dependence gives constraints on the possible ordering
of statements in a program. The order in which statements
are executed can have a profound impact on performance,
which further depends on the target platform. For exam-
ple, consider the example of matrix-matrix multiply that is
shown with three different orderings in Figure 2. In Nest-
ing A, dependence theory tells us that the k loop must run
sequentially because it reads and writes the same memory
location (C[i][j]) in every iteration. The theory also tells us
that the i and j loops carry no dependence. Therefore, they
can be executed in parallel, allowing us to shift the loops
inward, as is shown in Nesting B and C.

How we choose to execute these loops will vary for each
platform. On a CPU with vector units, we may choose Nest-
ing C. With this configuration, we can vectorize over the
inner j loop and parallelize over the outer i loop.

We can even consider directly mapping these loops to
custom parallel processing elements (PEs) on FPGAs. For
this consideration, we take Nesting B and parallelize over
the i loop. On other platforms, Nesting B may be disadvan-
tageous due to synchronizing n times throughout the pro-
gram. However, synchronization on the FPGA is very fast
due to custom barrier networks.

Dependence sometimes also allows us to expose paral-
lelism in inner loops by sequentially executing outer loops.
In the code below, all three loops carry dependences. How-
ever, if the i loop is executed sequentially, then both the j and
k loops may be done in any order, including in parallel. This
is allowed because sequentially executing the i loop ensures
that the left side of the statement will never point to the same
memory location as the right side of the statement does.

for i in range(1,10):
for j in range(1,10):
for k in range(1,10):

A[i+1][j+1][k+1] = A[i][j][k] + B

The previous example demonstrates a commonly used
optimization strategy in which loops that carry dependences

are pushed to the outermost position in order to expose par-
allelism in the inner loops. We use this general strategy
when targeting FPGA parallel PE generation.

3 Compiler Implementation
Our compilation process begins with a dense loop nest spec-
ified in Python using NumPy arrays, as illustrated in Fig-
ure 3. Our front-end then generates an intermediate XML
representation that is interpretable by our optimizing com-
piler. The optimizing compiler analyzes the loop nest using
dependence and does source-level transformations such as
loop reordering, blocking, and unrolling. Finally, separate
backends generate application-specific FPGA multiproces-
sors, as well as more traditional targets such as CPUs with
vector units, and OpenCL-programmable GPUs.

The Python front-end is based on the Copperhead [3]
framework. Copperhead compiles a small data-parallel sub-
set of Python to Nvidia CUDA for execution on the GPU.
To support compilation on GPUs, Copperhead makes sev-
eral restrictions required for compilation. It requires ker-
nels be statically well-typed and enforce this restriction us-
ing a Hindley-Milner type system. Copperhead’s type sys-
tem has special importance in Three Fingered Jack because,
while dynamic typing on GPU would have been cumber-
some and limit the applicability of compilation techniques,
fully supporting the run-time dispatch required for a dynam-
ically typed language on the FPGA would be impractical,
if not impossible. For the purposes of this paper, we fur-
ther restrict the Copperhead type system to support only 32-
bit NumPy data types (integers and single-precision floating
point).

Our most significant modifications to Copperhead are
the addition of for-loops to the grammar and removal of
the data-parallel primitives. We only support for-loops with
fixed bounds, no control-flow in the loop body, and affine ar-
ray indexing functions. These restrictions simplify compiler
construction and enable fast dependence checking heuris-
tics. Copperhead was designed to show the applicability
of map-reduce style functional programming on the GPU.
In contrast, we assert focusing on iterative constructs us-
ing dependence analysis is a better approach for construct-
ing FPGA accelerators. However, previous work has shown
success with restricted map-reduce support on FPGAs [11].

Figure 3 shows an example of the compilation process.
When the Python interpreter encounters a function wrapped
with the @fpga decorator, execution is redirected to our
handler. As shown in subplot A of Figure 3, the @fpga dec-
orator declares that the example kernel should be processed
for FPGA compilation. After applying the syntax and se-
mantic checking features of the Copperhead framework, we
rewrite the GMM kernel abstract-syntax tree in XML so that
we can export the kernel to our compiler. This process is
shown in subplot B of Figure 3. We include the intermedi-
ate XML format so that our system will be able to support

@fpga!
def GMM(In, Mean, Var, Out):!
 for f in range(0,39):!
 for i in range(0,5300):!
 for m in range(0,16):!
 Out[i][m] += Var[i][f][m] * \!
 (In[f] – Mean[i][f][m])**2!

(a) Original Python loop nest

...!
<ForStmt>!
 <LoopHeader>!
 <Induction>f</Induction>!
 <Start>0</Start>!
 <Stop>39</Stop>!
...!

(b) XML intermediate representation

for i!
 for f!
 for m!

(c) Loop transformation

Fig. 3: Stages in the frontend.

other scripting languages in addition to Python.
The algorithms used to generate parallel PEs are simi-

lar to vectorization algorithms presented by Allen [1]. We
focus on algorithms designed for vectorization instead of
those for multiprocessor parallelization because vector in-
struction semantics are more desirable given our ultimate
goal of hardware implementation. When a loop is vector-
ized, we guarantee it carries no dependence; therefore, each
iteration of the loop proceeds in parallel. Our automatically
generated processing engines operate in the spirit of vector
processors. Instead of executing generic vector instructions
(such as vector-add or vector-load), our PEs execute the en-
tire body of loop as an application-specific vector instruc-
tion.

To enable vectorization, our compiler performs two key
optimizations. First, it applies loop distribution to split the
body of a multiple-statement loop into multiple smaller loops.
Second, if a loop carries dependence, loop interchange shifts
it to the outer-most legal loop position. This enhances vec-
torization opportunities. Subplot C of Figure 3 shows the
application of loop interchange to a sample loop-nest. As
shown, our compiler interchanges the m loop-nest to the
outer-most loop in the example. After applying reordering
transformations, our framework passes dependence analy-
sis along with an intermediate representation to the FPGA
backend.

PE cluster architecture As shown in Figure 4, the FPGA
back-end generates PEs similar to vector-lanes from a tra-
ditional vector processor. As our PEs execute a single “vir-
tual” vector instruction that potentially encompasses several
dependence-free loops, we allow a limited amount of slip
between PEs to tolerate memory latency effects. Slip refers
to the case when PEs are running out of lockstep. Without
a limited amount of slip, we would have to prevision signif-
icantly more memory bandwidth to tolerate multiple mem-
ory instructions occurring at the same cycle. We could have
added a global stall network between PEs to handle memory
request conflicts. Instead, we decided on PE cluster archi-
tecture that closely matches the structure of the regular code
generated by our front-end.

In the dense kernels we use with our system, we have
found that memory instructions occur approximately every 4

PE	
 0	

PE	
 N	
 Sy
nc
hr
on

iz
a0

on
	
 a
nd

	

co
nt
ro
l	

G
lo
ba
l	
 m

em
or
y	

sy
st
em

	

(C
ac
he

s	

an
d	

D
RA

M
)	

PE	
 1	

…..

Fig. 4: FPGA processing cluster

for	
 i	
 in	
 range(0,1325):	

	
 	
 for	
 m	
 in	
 range(0,16):	

Out[i][m]	
 =	
 ….	

for	
 i	
 in	
 range(1325,2650):	

	
 	
 for	
 m	
 in	
 range(0,16):	

Out[i][m]	
 =	
 ….	

for	
 i	
 in	
 range(2650,3975):	

	
 	
 for	
 m	
 in	
 range(0,16):	

Out[i][m]	
 =	
 ….	

for	
 i	
 in	
 range(3975,5300):	

	
 	
 for	
 m	
 in	
 range(0,16):	

Out[i][m]	
 =	
 ….	

fo
r	

f	
 i
n	

ra
ng
e(
0,
39
)	

Fig. 5: GMM benchmark mapped onto FPGA PE template

to 8 instructions. The current implementation of our LLVM
to Verilog flow generates PEs with blocking memory oper-
ations, thereby simplifying the interaction with variable la-
tency cached memory. Given that each PE has a blocking
memory interface and executes a memory instruction every
4 to 8 instructions, a single PE cannot saturate our simple
memory subsystem. Therefore, a cluster of PEs shares a
global memory interface for maximal efficiency. We eval-
uate our automatically generated PEs with a relatively sim-
ple global memory subsystem. We use a 16 kByte, direct-
mapped, write-back cache with 128-byte cache-lines to back
a cluster of PEs.

To illustrate how computation occurs within a cluster of
PEs, Figure 5 shows a mapping of a sample kernel. Note
that the f loop is mapped to the synchronization and control
component of the processing cluster and each of the 4 PEs
executes a 1350-entry slice of the i iteration space.

FPGA back-end Our FPGA back-end uses the LLVM [7]
framework because it enables straightforward code optimiza-
tion and machine code generation passes. In addition, LLVM
includes a vast repertoire of traditional compiler transforma-

tions that we apply to the intermediate representation gen-
erated by our vectorizing front-end. In particular, we ap-
ply dead-code elimination, loop-invariant code motion, and
peephole optimization to optimize the IR generated by our
front-end. We also exploit the ability to generate machine
code for our x86 desktop CPUs in LLVM framework. We
use this ability to check the correctness of our front-end.

To generate PEs, we map LLVM IR to Verilog RTL. Al-
though our RTL generator is similar in principle to C-To-
Verilog [12] and other systems that use LLVM for RTL gen-
eration, the architecture of the PE cluster requires a slightly
different set of features than those provide. Above all, we
need stalling memory support because contention for the
shared memory interface and cache access introduces non-
deterministic memory access times. We did consider manual
modification of the RTL generated by an existing system,
but this approach would have defeated our goal of auto-
matically generating FPGA implementations from Python.
We also briefly considered using an automatic clock gating
scheme with C-To-Verilog to support stalling memory oper-
ations, but we decided it was simpler to implement our own
tool.

Our RTL generation system uses conventional HLS al-
gorithms [8].The user specifies the mix of functional units,
latency, and support for pipelined operation. The system
schedules the data-path using either list scheduling or an in-
teger programming formulation [13]. A small library of op-
erations supports single precision floating-point operations.
Integer operations are generated behaviorally to support ar-
bitrary pipelining depths.

4 Benchmarks
We evaluate our system on the following benchmarks. The
benchmark sizes are implied in the loop-bounds. As our
system is designed to handle regular dense loop nests, it is a
natural fit for data parallel applications. We use kernels from
complete applications instead of entire applications because
we do not have access to a FPGA + multiprocessor SoC cur-
rently.
Vector-vector add (VV) A canonical data-parallel bench-
mark is the bandwidth-bound vector-vector addition routine:
for i in range(0,1024):

c[i] = a[i] + b[i]

Color conversion (CC) We evaluate a simple color space
conversion benchmark for a 128x128 pixel image. Color
conversion can be expressed as a 3x3 matrix-transform ap-
plied to each pixel in an image. As the color conversion
matrix is reused for each pixel, this benchmark has better
memory reuse than vector-vector add does. Our implemen-
tation is shown below.
for p in range(0,16384):
for i in range(0,3):
for j in range(0,3):
img_out[p][i] = img_out[p][i] +

img_in[p][j]*mat[i][j]

Matrix-matrix multiply (MM) Matrix-matrix multiply is a
widely used kernel in dense linear algebra libraries. It serves
as the workhorse for many higher-level algorithms, such as
solving a system of linear equations, and it stresses the com-
pute capability of most devices. Our matrix-matrix multiply
is expressed as a triply nested loop:

for i in range(0,1024):
for j in range(0,1024):

for k in range(0,1024):
c[i][j] += a[i][k]*b[k][j]

Gaussian mixture model evaluation (GMM) Modern sp-
eech recognition systems model the probability of a sound
occurrence using a mixture of multivariate Gaussian distri-
butions. It is common to use a mixture of 16 39-dimensional
Gaussians per speech sound (phone). As noted in previous
work [6], GMM evaluation accounts for greater than 50%
of the run-time in the Sphinx3 system. The code used to
evaluate a 5300 phone GMM is shown below:

for f in range(0,39):
for i in range(0,5300):

for m in range(0,16):
LogProb[i][m] = LogProb[i][m] +
(In[f] - Mean[i][f][m])*
(In[f] - Mean[i][f][m])*
(InvVar[i][f][m])

5 Results and analysis
FPGA statistics For evaluation of our PE generation sys-
tem, we used a Xilinx XC6VLX240T-1FFG1156 FPGA for
our study, as Xilinx Zynq SoCs evaluation boards are not
currently available to us. We fully intend to use the Zynq
with our system when an evaluation board becomes avail-
able. To implement our designs, we used Synopsys Syn-
plify Premier F-2011.09-SP1 for synthesis and Xilinx ISE
13.4 for mapping and place-and-route.

LUTs DSP48s BRAMs Max Freq
5570 3 5 91 MHz

Table 1: RISC-V Soft-core statistics (including memory subsys-
tem)

We use an in-order 5-stage RISC-V processor [14] with
a 4 kB instruction cache to compare with our automatically
generated PEs. The relevant FPGA statistics of the RISC-V
design are listed in Table 1. We used our compiler to gener-
ate optimized C implementations for the soft-core CPU. We
compiled to the RISC-V ISA using GCC 4.4.0.

The FPGA LUT usage statistics of the automatically gen-
erated PEs for each kernel are shown in Table 2. The cor-
responding DSP48 usage and system frequency are shown
in Table 3. Resource usage grows linearly with number of
PEs for all kernels. We use the same memory subsystem

VVADD CC MM GMM
1 PE 3989 4057 5342 5666
2 PEs 4219 4772 7452 8178
3 PEs 4568 5474 9592 10657
4 PEs 4879 6115 11641 13538
5 PEs 5135 6824 13670 15758
6 PEs 4832 7560 15554 17967
7 PEs 5134 8414 18022 20743
8 PEs 5414 9134 19522 22743

Table 2: FPGA LUT Statistics (including memory subsystem)
VVADD CC MM GMM

Max Freq (MHz) 165 160 166 169
DSP48s per PE 0 3 3 3

Table 3: FPGA Freq and DSP48 Statistics

for both the soft-core CPU and the automatically generated
PEs, so we can directly compare LUT utilization between
the two implementations. The vector-vector add kernel uses
fewer LUTs than the soft-core CPU does for all configura-
tions as multiplication is not required for address compu-
tation with a one-dimensional array. In contrast, a single
matrix-multiply or GMM PE with memory subsystem re-
quires approximately the same number of LUTs as our soft-
core CPU does. The color conversion kernel falls between
the extremes, as 4 color conversion PEs require approxi-
mately the same number of LUTs as the soft-core does.
Performance We present results for single-cycle global mem-
ory (Figure 6) and global memory backed by a 16kB shared
write-back cache with 128-byte cache lines. We evaluate the
cache-based systems with 1-cycle (Figure 7) and 11-cycle
(Figure 8) cache reload to show the impact of conflict misses
and DRAM latency, respectively. We use 11-cycle reloads
because we expect approximately 44 cycle DRAM latency
[16] (assuming PEs run at 91 MHz and memory interface
runs at 400 MHz). We compute speed-up by comparing the
number of execution cycles on the soft-core to the number
of execution cycles on the PE engine. This does not account
for the different in obtainable frequency between the soft-
core and the PEs.

As shown in Figure 6, our PEs are highly scalable with
single-cycle memory. The vector-vector add kernel scales
to nearly 7× soft-core performance with 8 PEs. In addi-
tion, both vector-vector add and matrix-multiply scale to
slightly greater than 6× soft-core performance with 8 PES.
The GMM kernel has the poorest scaling, limited to a maxi-
mum of approximately 3× soft-core performance. The GMM
kernel is limited by shared cluster memory bandwidth for
configurations greater than 4 PEs. The scalability results
with single-cycle memories are encouraging because they
confirm our decision to multiplex the global memory access
port. In addition, while single-cycle memory access is infea-
sible for large memories, selectively partitioning data to take
advantage of block RAMs on FPGAs appears favorable.

 0

 1

 2

 3

 4

 5

 6

 7

 8

RISCV 1 2 3 4 5 6 7 8

C
yc

le
 s

pe
ed

up
 n

or
m

al
iz

ed
 to

 R
IS

C
V

Number of Processing Elements (PEs)

Performance with Ideal Memory

Vector Add
Color Conversion

Integer MM
Integer GMM

Fig. 6: Scaling with single-cycle global memory

 0

 1

 2

 3

 4

 5

 6

 7

 8

RISCV 1 2 3 4 5 6 7 8

C
yc

le
 s

pe
ed

up
 n

or
m

al
iz

ed
 to

 R
IS

C
V

Number of Processing Elements (PEs)

Performance with 1-Cycle Writeback Cache

Vector Add
Color Conversion

Integer MM
Integer GMM

Fig. 7: Scaling with a writeback cache with 1-cycle reloads

Figures 7 and 8 show performance with the shared cache
for 1-cycle and 11-cycle reloads, respectively. Maximum
performance is obtained with 7 PEs due to cache conflict
misses for both reload delays.

With 7 PEs and 1-cycle reloads, we obtain nearly 5×
soft-core performance on the color conversion kernel. The
other kernels achieve 2× and 3× performance increases with
the same cache configuration.

The color conversion achieves greater than 5× soft-core
performance with 11-cycle reloads due to reuse of the con-
version matrix. The other kernels scale from 1× to nearly
4× with 11-cycle reloads. While scalability with cached
memory is reduced compared with single-cycle memory;
nevertheless, adding PEs increases performance. The ad-
dition of private caches to each PE would reduce conflict
misses and improve performance. A LUT-efficient design
would use less than 8 PEs as nearly peak performance is
achieved with a smaller number of PEs.

6 Related Work
The theory of dependence and loop optimizations originated
in the field of optimizing FORTRAN compilers for high-

 0

 1

 2

 3

 4

 5

 6

 7

 8

RISCV 1 2 3 4 5 6 7 8

C
yc

le
 s

pe
ed

up
 n

or
m

al
iz

ed
 to

 R
IS

C
V

Number of Processing Elements (PEs)

Performance with 11-Cycle Writeback Cache

Vector Add
Color Conversion

Integer MM
Integer GMM

Fig. 8: Scaling with a writeback cache with 11-cycle reloads

performance computing in the 70s and 80s. Since then, sev-
eral works have attempted to integrate these ideas into tra-
ditional high-level synthesis systems. Weinhardt [15] used
dependence analysis on FPGA designs to enhance perfor-
mance by executing independent iterations of a loop-nest
through a heavily pipelined circuit. Dependence analysis
enabled temporal multiplexing of a single data path to in-
crease throughput. Work on the DEFACTO system [5] used
dependence analysis in a similar fashion. In contrast, we
use dependence analysis to generate parallel processing ele-
ments.

Recent work on Irregular Code Energy Reducers [2] (IC-
ERs) provides a system for compiling existing irregular C
code to specialized processing units. This tool uses a com-
bination of compiler frameworks, including LLVM. There
are two main differences between our work and the earlier
work. First, we target dense loop nests and optimize for per-
formance by generating parallel processing units, while the
ICERs exclusively focus on energy and irregular serial code.
Second, our high-level starting point is Python and our focus
is programmer productivity.

FCUDA [9] is a HLS flow that maps the NVIDIA CUDA
programming language to FPGAs. CUDA is an explicitly
parallel language and requires the programmer to find paral-
lelism. In contrast, we extract parallelism from a Python, a
sequential language.

Our system is most similar to the non-programmable ac-
celerators generated by the PICO system [10]. PICO uses
dependence analysis to generate a systolic array of process-
ing elements. Since the PICO system is proprietary, it is not
available to the research community. Furthermore, we use
Python as our source language instead of C.

7 Conclusions
We have evaluated the application of vectorizing transfor-
mations to automatically generate PEs from Python loop-
nests and shown our approach is productive, portable, and
efficient. Portability was guaranteed as all code remains

valid Python while productivity was demonstrated by the
brevity of our test kernels. Finally, efficiency was demon-
strated by performance improvements from 3× to 6× rela-
tive to a soft-core CPU.

References
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern

Architectures. Morgan Kaufmann, 2002.
[2] M. Arora, J. Sampson, N. Goulding-Hotta, J. Babb,

G. Venkatesh, M.B. Taylor, and S. Swanson. Reducing the
energy cost of irregular code bases in soft processor systems.
In FCCM, 2011.

[3] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead:
compiling an embedded data parallel language. In PPoPP,
2011.

[4] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel,
K. Keutzer, J. Shalf, K. Yelick, and A. Fox. Sejits: Get-
ting productivity and performance with selective embedded
jit specialization. In PMEA, 2009.

[5] P. Diniz, M. Hall, J. Park, B. So, and H. Ziegler. Auto-
matic mapping of c to fpgas with the defacto compilation and
synthesis system. Microprocessors and Microsystems, 29(2-
3):51–62, 2005.

[6] R. Iyer, S. Srinivasan, O. Tickoo, Zhen Fang, R. Illikkal,
S. Zhang, V. Chadha, P.M. Stillwell, and Seung Eun Lee.
Cogniserve: Heterogeneous server architecture for large-
scale recognition. Micro, IEEE, 31(3):20 –31, may-june
2011.

[7] C. Lattner and V. Adve. Llvm: a compilation framework for
lifelong program analysis transformation. In CGO, 2004.

[8] A. McFarland, M. Parker and R. Camposano. Tutorial on
high-level synthesis. In DAC, 1988.

[9] A. Papakonstantinou, K. Gururaj, J.A. Stratton, D. Chen,
J. Cong, and W.-M.W. Hwu. Fcuda: Enabling efficient com-
pilation of cuda kernels onto fpgas. In SASP, 2009.

[10] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B.R. Rau,
D. Cronquist, and M. Sivaraman. Pico-npa. Journal of VLSI
Signal Processing, 2002.

[11] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang.
Fpmr. In FPGA. ACM, 2010.

[12] C to Verilog. Automating circuit design. http://www.
c-to-verilog.com.

[13] R.A. Walker and S. Chaudhuri. Introduction to the schedul-
ing problem. Design Test of Computers, IEEE, 12(2):60 –69,
summer 1995.

[14] A. Waterman, Y. Lee, D. Patterson, and K. Asanović. The
risc-v isa manual, volume i. Technical Report UCB/EECS-
2011-62, May 2011.

[15] M. Weinhardt and W. Luk. Pipeline vectorization. IEEE
TCAD, pages 234 –248, 2001.

[16] Xilinx. Ug406: Virtex-6 fpga memory interface solutions.

