
Long range dependent models in information theory

Barlas Oguz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-204

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-204.html

October 23, 2012



Copyright © 2012, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Long range dependent models in information theory

by

Barlas Oğuz
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Abstract

Long range dependent models in information theory

by

Barlas Oğuz

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Venkat Anantharam, Chair

Long range dependence refers to stochastic processes for which correlations persist

at much longer time scales as compared to traditional models. For such processes the

central limit theorem does not in general hold, and the smoothing effect of the law of

large numbers takes more time to settle in. Such phenomena have been observed in

many different fields including financial time series, DNA sequences, network traffic

and variable bit-rate video. The bursty nature and persistent correlation structure of

long range dependent processes make them tough to control and predict in practice,

and tough to analyze in theory. In this thesis we look at the origins of long range

dependence through the use of Markov models.

We first introduce a model of long range dependence using countable state Markov

chains. A positive recurrent, aperiodic Markov chain is said to be long range depen-

dent (LRD) when the indicator function of a particular state is LRD. This hap-

pens if and only if the return time distribution for that state has infinite variance.

We investigate the question of whether other instantaneous functions of the Markov

chain also inherit this property. We provide conditions under which the function
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has the same degree of long range dependence as the chain itself. We illustrate

our results through three examples in diverse fields: queuing networks, source com-

pression, and finance. We then prove information-theoretic pointwise lossless source

coding theorems for a class of sources constructed from this model. We are able

to show that the code length process at the output of an encoder inherits the long

range dependent nature of the source irrespective of the coding algorithm chosen.

We extend our results to lossy source coding under suitable conditions, demonstrat-

ing quite generally the information-theoretic relevance of long range dependence.

Professor Venkat Anantharam
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Long range dependence

When we refer to long range dependence, or a random process that exhibits long

memory we informally mean that the present behavior of the process is heavily de-

pendent on the preceding values even going back to the distant past of the process.

To turn this intuition into a mathematical definition, one needs to resolve two ambi-

guities. How do we quantify ‘dependent’, and how do we quantify ‘distant’?

Distortion measures abound; answering the first question is a matter of picking the

one that suits the application. Various mixing coefficients and information measures

have been used. In applications where partial sums of stationary processes are of

central interest, or when second order properties are most relevant, the simple covari-

ance function is most common. This approach is also appropriate for our discussion,

and so our choice of dependence measure will be the covariance. It might be argued

that a better name for this definition would be long range correlations instead of long

range dependence or long memory. This convention is indeed used in some places,

however we will stick with the more standard terms.
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Having picked a measure of dependence, it is now possible to discuss the long in

long memory. For instance one might reasonably argue that a moving average process

with window size 5 has longer memory than a moving average process with window

size 2, or that an AR(1) process has longer memory than either, since the correlation

function is always non-zero. In general one could say that a random process X

has longer memory than random process Y whenever the covariance function of X

asymptotically dominates that of Y .

While such approaches are feasible, our concern is not to think of long range

dependence as an ordering, but as a classification of random processes. We want

to divide the space of stationary random processes into two disjoint classes: long

range dependent and not long range dependent, and we will refer to the latter more

conveniently as short range dependent processes. The boundary line separating these

two classes should represent a phase transition where a qualitative change in behavior

takes place. In a way, the entire class of short range dependent processes should be

akin to an i.i.d. process, having qualitatively similar characteristics, where those

processes that cross the long range dependent line should exhibit behavior that is

completely absent in the other class.

To pinpoint where such a phase transition happens, we turn to the central limit

theorem. Let Fn = σ(Xn, n ≤ m) and ||Y ||2 =
√
EY 2.

Theorem 1.1.1. (Central limit theorem, (18) thm. 7.6)

Let (Xn) be a stationary sequence with EX0 = µ and

∑
n≥1

||E[X0|F−n]||2 <∞.

Then

var(X0) + 2
∞∑
r=1

cov(X0, Xr) := σ2 <∞,
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and ∑bntc
i=1 (Xi − µ)

σ
√
n

d→ Bt

where Bt is the standard Brownian motion.

What is interesting about this statement is that on the left hand side we have the

centralized partial sums of a somewhat general stationary process with memory, but

on the right hand side, we have Brownian motion, which is an independent increments

process. In other words, the dependence in the original process has disappeared under

the limit of scaling. Looking at the process at the level of larger and larger blocks,

we see that the dependence between blocks becomes negligible because of the finite

covariances condition, and the block-aggregated process looks like an i.i.d. process

with variance nσ2. We find it appropriate to call such ephemeral dependence as short

range.

Now let’s look at what happens when the finite correlations condition is violated:

lim sup
n→∞

var(X0) + 2
n∑
r=1

cov(X0, Xr) =∞.

Clearly, ∑bntc
i=1 Xi√
n

does not have a proper distributional limit with finite variance as n → ∞ for any

t > 0. To see this, take e.g. t = 1 and note that

var

(∑n
i=1 Xi√
n

)
=

1

n

(
n var(X0) +

n∑
r=1

r cov(X0, Xr)

)
→∞.

As an example, take a Gaussian process (Xn) with cov(X0, Xr) = r−α for 0 < α <

1, and with zero mean. (We can check that this is a valid covariance function by

observing that it has a positive Fourier transform.) Denoting Sn :=
∑n

i=1 Xi, we can
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write

cov(Sbnt1c, Sbnt2c) =

bnt1c∑
i=1

bnt2c∑
j=1

cov(Xi, Xj)

=

bnt1c∑
i=1

bnt2c∑
j=1

|i− j|−α

∼ n2−α(|t1|2−α + |t2|2−α − |t1 − t2|2−α),

from which we deduce that to get a meaningful limit the proper scaling is∑bntc
i=1 (Xi − µ)

(n)1−α
2

d→ fBt.

where fBt is a Gaussian process with covariance function equal to |t1|2−α + |t2|2−α−

|t1−t2|2−α. This process is called fractional Brownian motion with (Hurst) parameter

1− α
2
.

Fractional Brownian motion is a Gaussian process with stationary increments.

The increments process is called fractional Brownian noise, which is a Gaussian pro-

cess with correlation function

RfBn(r) =
1

2
(|r + 1|−α − 2|r|−α + |r + 1|−α) ∼ r−α as r →∞.

We see that the limiting increments process has a similar covariance function to the

original process. In particular, the dependence has not disappeared under scaling.

This behavior is in sharp contrast to the finite correlations case, and we deem it

appropriate to refer to it as long range dependence.

Definition 1.1.2. (29) A stationary real valued random process (Xn) is said to be

long range dependent whenever

lim sup
n→∞

n∑
r=1

cov(X0, Xr) =∞.

See also (29) for variants on second order definitions of long range dependence. As

suggested earlier, we will use long range dependence and long memory interchange-

ably.
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1.1.1 Regular variation, heavy tails

The most typical correlation function which satisfies 1.1.2 is a regularly varying

function:

R(r) = r−αL(r),

where L(r) is a slowly varying function, i.e.

lim
n→∞

L(cn)

L(n)
→ 1 for any c > 0.

In this case 0 < α < 1 implies long memory. While the treatment in this thesis will

be at the level of generality of definition 1.1.2, it is helpful to think about the results

in terms of regularly varying functions. Some of the examples will make use of this

definition.

We will refer to random variables with regularly varying distributions as heavy

tailed. This term is used in some places to refer to any distribution which decays

slower than an exponential. We adopt a narrower definition which further requires

infinite variance.

Definition 1.1.3. A random variable is heavy tailed if the cumulative distribution

can be written as

FX(t) = 1− t−α+1L(t),

for some slowly varying function L, and E[X2] =∞.

Here again, 0 < α < 1 implies infinite variance.

Heavy tailed distributions and long range dependence go hand in hand. For

instance, a renewal process with heavy tailed inter-arrival times will be long range

dependent (2.1.1). A single server queue with i.i.d. heavy tailed service times will

have a long range dependent busy-idle process (section 2.4). Conversely, a long range

dependent processes will cause heavy-tailed waiting times at a queue.
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1.1.2 Self similarity and the Hurst index

As we saw, the definition of long range dependence is motivated around scaling

laws for random processes in the form X(t) → 1
nH
X(nt). Distributions that are

stationary points of such scalings are referred to as self similar laws. The parameter

H is the index of self similarity.

Brownian motion is the unique process with stationary increments that is self

similar with parameter H = 1
2
. Fractional Brownian motion is the unique Gaussian

process with stationary increments that is self similar with parameter 0 < H < 1

((54), 7.2). Due to their natural appearance in central limit type theorems, fractional

Brownian motions have been the single most popular continuous time model for long

range dependence in the literature. Other self similar processes with stationary in-

crements are α-stable Lévy processes ((54), 7.5).

Self similarity can also be defined for deterministic functions, when they are re-

ferred to as fractals, which are functions that are invariant under similar joint scaling

of time and space. For this reason, self similar processes are sometimes also referred

to as fractal processes.

While it is possible to discuss long range dependence without reference to self

similarity, as a result of these connections and historical coupling of their development,

the two fields have come to be closely associated with each other.

The self similarity parameter can be alternatively defined in terms of the index

of the scaling law which governs the variance of the partial sums of (Xn). Let Sn =∑n
i=1 Xi. If Sn is self similar, then we know Sn

nH
has a meaningful limit as n→∞. In

particular, we have that

0 < lim
n→∞

var(Sn)

n2H
<∞.

For short range dependent processes, it can easily be verified that the variance of
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Sn scales at most linearly with n, therefore this limit will exist if we set H = 1
2
. A

higher H signifies a faster scaling of var(Sn), caused by ‘longer’ correlations in (Xn).

Thus the scaling index H can be regarded as a measure of long memory. Properly,

we define

Definition 1.1.4. (9) Let the Hurst index H (0 ≤ H ≤ 1) be defined as

H := inf

{
h : lim sup

n→∞

var(
∑n

i=1Xi)

n2h
<∞

}
.

While short range dependent processes all have Hurst index ≤ 1
2
, the converse is

not true. This is because the Hurst index only defines the polynomial order of the

growth of var(Sn), i.e. up to slowly varying terms. To avoid border cases, we will

sometimes assume H > 1
2
.

A Hurst index lower than 1
2

is possible, for instance in cases where the sum of the

absolute correlations diverge, nevertheless the signed sum remains finite. Take for

example a {−1, 1} valued process where Xn+1 = −Xn, P (X0 = 1) = 1
2
. This process

has Hurst index 0, since var(Sn) is always bounded. Again, we will not concern

ourselves with such processes in the remainder of this thesis. For our purposes, these

negatively correlated processes are short range dependent.

While it may be somewhat restrictive to define Hurst index for only processes

of finite variance, this will be adequate for our applications of interest where this is

often a natural assumption (e.g. network traffic has a bounded bit-rate). For a more

general discussion of self-similarity, the reader is referred to (54).

1.2 History and applications

The history of long range dependence starts with the studies of the hydrologist

Harold Edwin Hurst (1880-1978). Hurst investigated historical rainfall data and oc-
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Figure 1.1. Accumulated rainfall, New York. (30)

cupancy of water reservoirs on rivers in the hope of regulating water storage to avoid

droughts and floods. Figure 1.1, taken from his 1956 paper (30) shows the storage

levels which resulted from New York rainfall data. Hurst realized that this data se-

ries shows much more variability than would be expected if annual rainfall was an

independent series.

Denoting by R, the range of this data (the difference of the max and min storage

level) over N years, Hurst postulated that logR and logN are linearly related with

slope K (fig. 1.2).

For a short range dependent series, one would expect R to scale as
√
N , suggesting

K = 1
2
. However, Hurst notes that the mean value of K is in fact 0.73. He also noted

in this paper that the variances of the accumulated rainfalls is growing faster than

what could be explained by a short range dependent model. The observation has dire

implications for storage planning, in that the minimum reservoir capacity needed to

8



Figure 1.2. First appearance of a Hurst index. (30)

avoid drought and floods for a given time horizon is many times larger than what

would ordinarily be needed.

This was the first of many observations that showed long range dependence oc-

curring in natural time series. Subsequent work demonstrated that this phenomenon

is not limited to the field of hydrology, but in fact very common in financial series,

network traffic and variable bit-rate multimedia data streams.

1.2.1 Long memory in financial time series

The presence of persistent correlations in financial data first came to light in

the work of Granger (25) who noted that low frequency components were typically

dominant in the empirical power spectrum of economics data. This was interpreted

as the data having a ‘trend’ in the mean. It was not until the work of Mandelbrot

(40)(41)(42) however that the concept of long range dependence was popularized as

a modeling tool for financial time series.

While it is reasonable to expect that the prices of commodities will show strong

correlations over time, it is somewhat surprising that the returns on speculative assets

would have long memory. In fact, the price of a publicly traded good is assumed to be

arbitraged by the market so that the past returns do not have any value in predicting

the future returns. As a result, the aggregate returns are well modeled by a martingale

9



Figure 1.3. Percent returns of S&P 500. (23)

process, with next to zero correlations. The series of price returns is therefore not

long range dependent.

Arbitraging therefore erodes correlations in the data, making long range depen-

dence, which we defined solely in terms of correlations, disappear. Disappearing cor-

relations however, does not mean disappearing dependence. In fact the dependence

remains and shows up as long range dependence in the series of absolute returns.

Figure 1.3 plots the percent daily returns of the stock market (S&P 500) over a

decade (23). We see that the series looks like noise, but with varying amplitude. This

is a typical martingale sequence, with dependence showing up in the second order

statistics.

This kind of behavior can be directly modeled by a generalized autoregressive con-

ditional heteroskedasticity (GARCH, (8)) model, where (Xn) is a zero mean sequence

which is independent conditioned on the variance sequence. The variance (σ2
n) can

be based on an autoregressive moving average (ARMA(p,q)) model:

σ2
n = α0 +

q∑
i=1

αiεn−i +

p∑
j=1

βjσ
2
n−j,

resulting in a martingale sequence with persistent volatility.

Such parametric models are useful for inference, and have been employed in prac-

tice. However, if we want to explain the observed behavior, rather than just model it,

10



this approach falls short. For this, we can think of the price returns as resulting from

an operation (arbitraging by the market) performed on some underlying long range

dependent process. Then we can see how long range dependent volatility emerges

from this operation, and infer the characteristics of the resulting process from the

behavior of the underlying process.

We take this approach using a simple example in section 2.6. Our construction is

based on long range dependent Markov chains, the theory for which is developed in

chapter 2.

1.2.2 Long memory in network traffic

Note that the water reservoirs studied by Hurst are mathematically similar to a

queue. Rainfall corresponds to incoming packets to a queue, while draft corresponds

to service rate. A drought and flood correspond to empty or overflowing buffers re-

spectively. While these events may not have the same drastic consequences, they are

still undesirable, since overflowing buffers mean lost packets and empty buffers mean

lost service capacity. In practice, network engineers aim to minimize the probability

of these events happening by picking appropriate buffer sizes, leading to many of

the same issues that Hurst faced in looking for the optimum reservoir size. Queu-

ing networks form the basis for modeling communication systems, and interestingly,

communication flows in these networks turn out to have many statistical similarities

with water flow in rivers.

Interest in LRD processes in communication networks was sparked by several

empirical observations that showed such distributions were characteristic of network

traffic on the internet (36),(13),(49). Due to the fundamentally different qualities of

LRD processes mentioned in the first section, these discoveries have important, and of-

ten negative consequences for the modeling and analysis of communication networks.
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Among these are different asymptotics for queue sizes and packet drop probabilities

(51; 38; 37; 28; 63; 20), and a need for new optimal schedulers (2),(48),(53).

The mostly degrading effect of LRD traffic in networks has led to research efforts

for understanding the mechanisms by which such traffic is generated and whether

preventive measures are possible (48),(13). For instance, in a network of queues with

heterogeneous arrival traffic, one might be interested in scheduling long range depen-

dent traffic differently than short range dependent traffic. The choice of scheduling

strategy effects how the different flows get coupled, and to what extent the short

range dependent traffic is affected by the presence of long range dependence in the

network.

We will again illustrate the use of long range dependent Markov models in the

setting of queuing networks. In section 2.4 we discuss a simple queuing network of

two parallel queues, one of them being driven by a process with long memory. We

will show that under a fixed rate shared server with longest queue first scheduling,

long range dependence will spread so that the busy-idle process of both queues will

become long range dependent, (see also (43)).

1.2.3 Variable-bit-rate video

Variable-bit-rate traffic (mainly VBR video) is an important component of internet

traffic. In the hope of understanding such traffic better, there has been considerable

work on analyzing traces of VBR video ((5; 22; 52; 21) to cite a few). The common

observation that is the culmination of this work is that long range dependence is

omnipresent in VBR traffic, and persists across a wide variety of codecs. Coupled

with the discussion in the preceding section, this observation might shed some light

on why network traffic exhibits long memory.

Consider the plot in figure 1.4. The plot shows the number of bytes per frame that
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Figure 1.4. Bytes per frame resulting from MPEG4 encoding of Star Wars IV:A New
Hope (21).

was needed to encode a 1 hour long segment of the movie Star Wars IV using MPEG4

compression at two different distortion (quality) levels 1. The immediate observation

to be made is that the traces at different distortion levels have roughly the same

shape. It should not come as a surprise that both of these traces were estimated

(using R/S statistics) to have identical Hurst index of around 0.75 (21).

Allowing more distortion does not seem to reduce long range dependence. Is this

fact dependent on the choice of encoder, or a universal property of video traces? Are

there encoders that can reduce or eliminate long range dependence regardless of the

choice of distortion level? These are practical questions which may have implica-

tions for encoder design and bandwidth management. They are also fundamental

questions that ask whether long range dependence is an intrinsic property of some

information sources. We can attempt to answer such questions within the framework

of information theory.

1Data smoothed over 500 frames. Trace taken from
http://http://www-tkn.ee.tu-berlin.de/research/trace/ltvt.html
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1.3 Markov models and information theory

As we mentioned, in much of the prior work analyzing communication networks,

the distribution of network traffic at the source is given a priori. In the continuous

time setting the most popular model that is used is the fractional Brownian motion

(fBm) (see (54), chapter 7.2). In the discrete time case fractional ARIMA models

have been widely adopted (see e.g. (4), chapter 2.5). Although parametric models

such as these have their advantages in terms of model fitting and estimation, in many

cases they can only provide an approximation to the underlying system. Here we will

work with models based on countable state, long range dependent Markov chains,

which is a much more flexible class of models. We might want to model network

traffic, which is usually created at the output of an algorithm, that involves coding of

an information source. The traffic could for example be a stream of variable-bit-rate

video, as discussed in the preceding section.

Motivated by examining what effects encoding algorithms might have on the long

range dependence of the compressed bit rate process, we will prove source coding

theorems about information sources that can be represented in terms of long range

dependent Markov chains. The fundamental theorem of source coding, due to Shan-

non (56), says that the average bit-rate needed to represent an information source

cannot be smaller than the entropy rate of that source. Furthermore, optimal source

codes achieve on average the entropy rate. The work of Kontoyiannis (33; 35) at-

tempts to find similar fundamental bounds on the bit-rate process, but on the level

of second order statistics. In other words, what is the minimum variability the bit-

rate process can have, given that the average bit-rate is equal to the entropy rate?

Results are known mainly for i.i.d. sources and certain fast mixing sources. We pick

up this question for long range dependent processes, also providing partial answers

for lossy coding. We will show quite generally that independent of the choice of en-
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coder and distortion level, ‘optimal’ encoders preserve the Hurst index of the original

information source.

In one line, this thesis is about developing Markov chain models of long range

dependence, with applications in information theory. The models are described in

the next chapter, along with several applications to diverse fields. The information

theory results are explained in chapter 3.
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Chapter 2

Long range dependent Markov

models

2.1 Introduction

A stationary random process (Xn) with E[X2
n] < ∞ is said to be long range

dependent (LRD) if

lim sup
n→∞

n∑
r=1

cov(X0, Xr) =∞.

The degree of long range dependence is measured by the Hurst index H (1
2
≤ H ≤ 1).

H := inf

{
h : lim sup

n→∞

∑n
r=1 cov(X0, Xr)

n2h−1
<∞

}
.

Equivalently, we can write

H := inf

{
h : lim sup

n→∞

var(
∑n

i=1Xi)

n2h
<∞

}
.

Take (Mn), a positive-recurrent, aperiodic, discrete time, countable state Markov

chain. We will take the state space to be the natural numbers N, without loss of

generality. The chain is in stationarity with stationary distribution π. We will now
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define a notion of long range dependence for such chains. Since the choice of N as

the state space is a mere convenience, to apply the regular definition of long range

dependence directly to Mn would be quite arbitrary. For a more usable definition, we

first turn to a simpler long range dependent process.

2.1.1 Long range dependent renewal process

Take a discrete time, stationary renewal process (Xn) ∈ {0, 1}, characterized by

the inter-arrival time distribution T ∼ F(t). Here F(t) := P (T ≤ t). We define the

moment index κ of this distribution as

κ := sup{k : E[T k] <∞}.

The following theorem of Daley (15) relates the Hurst index of the renewal process

to the moment index of the inter-arrival time distribution, in the case when (Xn
1 ) is

long range dependent.

Theorem 2.1.1. A stationary renewal process with inter-arrival time distribution

function F(t) := P (T ≤ t) which has
∑∞

t=1 t(1−F(t)) =∞,
∑∞

t=1(1−F(t)) <∞ and

moment index κ, is long-range dependent and has Hurst index H = 1
2
(3− κ).

In particular, the renewal process is long range dependent if and only if the inter-

arrival time has infinite second moment.

Using the fact that an indicator function of a state of a Markov chain defines a

renewal process, we can attempt to define long range dependence for Markov chains

through the long range dependence of its indicator functions. Note that the Hurst

index of a renewal process has a one-to-one correspondence with the moment index

of its inter-arrival distribution. Recalling that, in an irreducible Markov chain, the

moment index of the return time to a state is identical for each state in the chain

(10), we conclude that the Hurst index of the indicator function 1(Mn = i) of state i
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of a Markov chain is a class property (9). Morover, the indicator function 1(Mn = i)

is LRD if and only if indicator functions of every state is LRD (9). Thus we adopt

the following natural, consistent definition:

Definition 2.1.2. A positive-recurrent, aperiodic, discrete time Markov chain Mn ∈

N is said to be long range dependent iff the indicator function 1(Mn = i) is long range

dependent for every i. The common Hurst index H of all such indicator functions is

said to be the Hurst index of the chain.

2.1.2 Functions of a Markov chain

In (9) it is proved that a Markov chain is LRD if and only if the return time

distribution of any state has infinite variance. It is also argued that finite weighted

sums of indicator functions on this chain also inherit this property. It is natural

to conjecture that this might be true for all functions of the chain. However, this

conjecture is easily disproved, most easily by considering a constant function (also

see the two counter examples in (9)). It is then of considerable interest to find which

functions of an LRD Markov chain are also LRD.

Let %n = ρ(Mn) be an L2 function of Mn. In this chapter, we provide conditions

under which one can infer the long range dependence of (%n) from that of (Mn).

It is instructive to consider the case where %n = 1(Mn = i), an indicator function.

We can write

n∑
r=1

cov(%0, %r) = πi

n∑
r=1

(p
(r)
ii − πi) =: πiQ

(n)
ii .

Here p
(r)
ii is the r-step return probability to state i.

Note that p
(r)
ii → πi, since the chain is ergodic, and the difference (p

(r)
ii −πi) repre-

sents how far the chain is from stationarity. In a finite state chain, these differences

would decay exponentially to zero, and we would have limn→∞Q
(n)
ii < ∞. In the
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long range dependent case, we have Q
(n)
ii → ∞ (9). In fact, when the return time

distribution satisfies P (T > t) ∼ t−α, for 1 < α ≤ 2, we will have (see example 1 in

(15))
n∑
r=1

cov(%0, %r) ∼ Q
(n)
ii ∼ n2−α.

Since var(
∑n

r=1 %r) =
∑n

r=1

∑n
s=1 cov(%r, %s)−nvar(%0), we can read off the Hurst

index in this case easily as being H = 1
2
(3− α), recovering the earlier result, since α

is equal to the moment index of T in this case.

Now let us consider a slightly more complicated function, composed of a finite

sum of indicator functions:

%n =
K∑
i=1

ρ(i)1(Mn = i).

Then the above expression becomes,

n∑
r=1

cov(%0, %r) =
n∑
r=1

K∑
i=1

K∑
j=1

ρ(i)ρ(j)πi(p
(r)
ij − πj)

=
K∑
i=1

K∑
j=1

πiρ(i)ρ(j)Q
(n)
ij .

where we defined Qn
ij :=

∑n
r=1(p

(r)
ij − πj). Now dividing both sides by Q

(n)
11 ,∑n

r=1 cov(%0, %r)

Q
(n)
11

=
K∑
i=1

K∑
j=1

πiρ(i)ρ(j)
Q

(n)
ij

Q
(n)
11

. (2.1)

It turns out that, since the quantities
∑n

r=1 p
(r)
ij asymptotically behave similarly for

each i and j (see (10) corollary 2 to theorem 9.4),
Q

(n)
ij

Q
(n)
11

has a finite, non-zero limit as

n→∞ (9):

lim
n→∞

Q
(n)
ij /πj

Q
(n)
11 /π1

= 1. (2.2)

Taking a limit as n→∞ in 2.1, and comparing with the result for the indicator

function, we see that for the two cases, the quantity
∑n

r=1 cov(%0, %r) is asymptotically

equivalent, up to a constant. Thus, in the slightly more general case of compound
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indicator functions, the conclusion remains that the Hurst index matches that of the

underlying Markov chain. It is tempting to attempt to generalize the above argument

for arbitrary functions. However, the difficulty is that the limit in 2.2 is unfortunately

not uniform in i and j, and therefore we cannot justify exchanging the double sum

in i and j with the limit in n in 2.1, when the double sum has infinitely many terms.

In this chapter, we work around this limitation under fairly general conditions on %.

The main result, given in section 2.3, provides a technical condition under which

the rate of growth of
∑n

r=1 cov(X0, Xr) is identical for Xn = %n and Xn = 1(Mn =

i). We set up the proof with a collection of lemmas presented in section 2.8. For

convenience, most of the notation is collected together in section 2.2.

There are many interesting scenarios where such a theorem might be useful. In

the second half of the chapter, we collect three such examples. Section 2.4 discusses

a simple queuing network of two parallel queues. One queue is driven by an LRD

process, whereas the other one is driven by a short range dependent process. We

model the inputs and queue lengths by countable state Markov chains, and show that

under longest queue first scheduling both queues are LRD.

An example from information theory is given in section 2.5, where we re-prove

a recent result in the source coding of LRD sequences (45). We show that the code

length process of any lossless encoder which is compressing an LRD renewal process

must dominate an LRD process with the same Hurst index as the source process.

This example is a precursor to the more general results that will be presented in

chapter 3.

The last example is about long range dependence in financial series. We dis-

cuss how the model can explain the LRD behavior observed in some instantaneous

functions of the absolute returns of some asset.
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2.2 Notation and setup

(Mn) is a positive-recurrent, discrete time, countable state Markov chain with

state space N and stationary distribution πi, i ∈ N. Most of the notation we use is

borrowed from (10).

ρ : N→ R is such that
∑

i∈N ρ(i)2πi <∞.

%n := ρ(Mn).

µ :=
∑

i ρ(i)πi, is the mean of ρ.

p
(n)
ij := P (Mn = j|M0 = i), n ≥ 0, is the n-step transition probability from i to j.

kp
(n)
ij := P (Mn = j;Ml 6= k, 0 < l < n|M0 = i), n > 0, is the n-step transition

probability from i to j with taboo state k.

kp
∗
ij :=

∑∞
n=1 kp

(n)
ij .

Hp
(n)
ij := P (Mn = j;Ml 6∈ H, 0 < l < n|M0 = i), n > 0, is the n-step transition

probability from i to j with taboo set H.

Hp
∗
ij :=

∑∞
n=1 Hp

(n)
ij .

f
(n)
ij := jp

(n)
ij , n > 0.

Q
(n)
ij :=

∑n
r=1(p

(r)
ij − πj), n > 0.

R
(n)
ij :=

∑n
r=1 Q

(r)
ij , n > 0.

Tj := inft{t > 0 : Mt = j} is the first time to state j at stationarity.

mij := Ei[Tj] is the mean time to state j starting from i.

H := inf
{
h : lim supn→∞

var(
∑n
i=1 1(Mi=1))

n2h <∞
}

, the Hurst index of (Mn).

H% := inf
{
h : lim supn→∞

var(
∑n
i=1 %i)

n2h <∞
}

, the Hurst index of (%n).
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To understand the results in the next section, it is useful to know the following

properties:

Lemma 2.2.1. For an LRD Markov chain,

lim
n→∞

Q
(n)
ij =∞, (2.3)

lim
n→∞

R
(n)
ij

n
=∞, (2.4)

lim
n→∞

Q
(n)
ij /πj

Q
(n)
11 /π1

= 1. (2.5)

Proof. (2.5) is eq. 8 in (9). (2.3) follows from eqs. 8 and 5 of (9). (2.4) follows from

(2.3).

We will assume henceforth that n is large enough s.t. Q
(n)
11 , R

(n)
11 > 1.

2.3 Main results

Theorem 2.3.1. Let

(condition 1)

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi(ρ(i)− c)(ρ(j)− c)Hp(r)
ij = 0

for some constant c, and non-empty, finite set H, and

(condition 2)

lim
L→∞

lim sup
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|1(|ρ(i)| > L, |ρ(j)| > L)Hp
(r)
ij = 0

Then,

lim
n→∞

var(
∑n

r=1 %i)

R
(n)
11 /π1

= (µ− c)2.

Moreover, if c 6= µ, then H% = H.
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Some remarks about the conditions are in order.

1. They fail to hold if limi ρ(i) exists and is not c. This shows that limi ρ(i) is the

unique choice for c in this case.

2. They will hold whenever limi(ρ(i)− c) = 0. Specifically when (ρ(i)− c) = 0 for

i greater than some value.

Both of these can be seen as direct consequences of lemma 2.8.6, which is stated

later in section 2.8.

3. They are implied by the considerably stronger condition

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi|ρ(i)− c||ρ(j)− c|1p(r)
ij → 0.

4. Choice of H is arbitrary, and we will often just pick H = {1}. This is due to

lemma 2.8.9

Condition 2 is trivially satisfied for bounded functions. When %n are not bounded,

condition 2 ensures that they can be truncated without affecting the long range

dependence discussions.

In light of remark 2, c can be interpreted as a ‘limiting mean’, in a weak sense,

of % as the return time to the compact set H becomes large. The deviance of %

from its average behavior in this limiting regime, given by (µ − c) determines the

limiting constant in the statement of the theorem. When (µ− c)2 = 0, the behavior

of % is similar to its average behavior even when Mn takes a long excursion before

returning to H. Therefore the long range dependence of M might not exhibit itself in

%. % might have a lower Hurst index in this case, or even be short range dependent.

What happens exactly depends on the detailed structure of M and ρ, and cannot

be captured by our formulation which only investigates the asymptotics at the scale

of the Hurst index of M . In this regard, (µ − c)2 > 0 is necessary for % to be LRD
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at the same scale as M , and examples can easily be constructed where % that fail

this condition fail to be LRD to the same degree. We give one such non-example in

section 2.7.

The following theorem extends the usefulness of the preceding theorem consider-

ably. It describes the case, when the state space of the Markov chain is divided into

a finite number of subsets, with communication between the sets happening almost

only through a finite set of states H. The canonical example for such a structure

would be the Markov chain representation of a semi-Markov process given by the

pair (S, T ), where S is described by a finite state Markov chain and T is the time

since the last transition, having an arbitrary distribution with E[T ] < ∞. In this

case, the state space would be divided into sets {S = k}, and transition between sets

is only possible by visiting (S, 0).

Theorem 2.3.2. Let {Ak}, 1 ≤ k ≤ K, be a finite partition of the state space N.

(condition 1) Let H be a non-empty finite set, and

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i∈Ak,j∈Al

πi|ρ(i)− µ||ρ(j)− µ|Hp(r)
ij = 0, ∀k 6= l.

Also suppose π∞Ak := limn→∞

∑
i,j∈Ak

πi
∑n
r=1 1p

(r)
ij∑

i,j πi
∑n
r=1 1p

(r)
ij

exists ∀k. Let there exist constants

ck, 1 ≤ k ≤ K, such that

(condition 2)

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi(ρ(i)− ck)(ρ(j)− ck)Hp(r)
ij = 0 ∀k,

and

(condition 3)

lim
L→∞

lim sup
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi|ρ(i)ρ(j)|1(|ρ(i)| > L, |ρ(j)| > L)Hp
(r)
ij = 0 ∀k.
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Then,

lim
n→∞

var(
∑n

r=1 %i)

R
(n)
11 /π1

=
K∑
k=1

π∞Ak(µ− ck)
2.

Moreover, if π∞Ak(ck − µ) 6= 0 for some k, then H% = H.

Remark. If ck = cl for a pair of subsets Ak,Al, then condition 1 is not needed for

this particular pair.

Here condition 2 defines a ‘limiting mean’ ck for % in each set Ak, as condition

1 did in theorem 2.3.1. Condition 3 is the analogue of condition 2 in theorem 2.3.1.

Condition 1 ensures that transition events across different sets Ak without visiting H

can be ignored. π∞Ak can be regarded as the limiting probability of Ak as the return

time back to H becomes large.

As before π∞Ak(ck − µ) 6= 0 for at least one k is necessary for the long range

dependence of % to be at the same scale as M .

For a sanity check, consider the trivial example of an indicator function.

Example 2.3.3. (Indicator functions) Let ρ be the indicator function of a finite set.

We take A1 = N and c1 = 0. Condition 1 is vacuous as there is only 1 partition.

Condition 2 holds since the inner sum is finite and Q
(n)
ij → ∞. Condition 3 holds

because ρ is a bounded function. Thus we have that

lim
n→∞

var(
∑n

r=1 ρi)

R
(n)
11 /π1

= π(S)2

where S is the set on which ρ is non-zero.

Now we illustrate the use of these tools with some applications. The first one uses

theorem 2.3.1 directly, while the last two examples use theorem 2.3.2.
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Figure 2.1. Parallel queues with fixed rate server.

2.4 Example 1: Longest queue first with mixed

heavy and light tailed inputs

This example replicates the conclusion in (43) that long range dependence might

spread under LQF scheduling in a parallel queue setting, using a general technique

based on the theorems of the preceding section.

There is a single server of rate R ∈ N with 2 parallel queues (fig. 2.1). The queues

are fed by independent random processes, each modeled by a discrete time, countable

state Markov chain. As an example, we investigate the scenario where X1 is i.i.d.

with heavy tailed (var(X1) =∞) arrival distribution on N. X2 ∈ N is either an i.i.d.

process with light tailed (var(X2) <∞) arrivals or X2 can be a finite state N-valued

Markov chain in stationarity. We assume E[X1(0)] + E[X2(0)] < R.

Let Q1(n), Q2(n) be the stationary queue lengths. We assume that the queue is

work conserving, and moreover the scheduling decision at time n (number of packets

to be served from each queue at time slot n) is a function of (Q1(n), Q2(n)), the

queue sizes at time n. Given such a scheduling strategy, it is easily verified that

(X1(n), X2(n), Q1(n), Q2(n)) is a countable state Markov chain.

Lemma 2.4.1. (X1(n), X2(n), Q1(n), Q2(n)) is positive recurrent.
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Proof. E[X1(0)] + E[X2(0)] < R implies that the queue process (Q1(n), Q2(n)) is

positive recurrent. Pick M1 > 0 and define the set S1 = {Q1(n) +Q2(n) < M1}. The

return times to this set have finite mean (say ν). Also define S2 = {X1(n) +X2(n) <

M2} (or in the case X2 is a finite state chain, S2 = {X1(n) < M2}) where M2 is large

enough such that S2 is nonempty. S1 ∩ S2 is a nonempty compact set. We claim the

return times to this set have a finite mean. Since 1n(S2) is i.i.d, there is a positive

probability (say at least p) of visiting S2 each time there is a visit to S1 (independent

of previous visits). It is easily seen that the mean return time to S1 ∩ S2 is at most

ν/p (Expectation of a sum of geometrically many i.i.d variables).

We will look at long range dependence through the Hurst indices of the busy-idle

processes of the queues. Let (X1, Q
′
1) be the Markov chain if all the capacity were to

be allocated to queue 1. Denote by 1(Q′1(n) = 0), the busy-idle process of this queue.

We know that the busy periods of Q′1 have infinite variance (see e.g. (7) theorem

8.10.3). Therefore both the Markov chain (X1, Q
′
1) and the function 1(Q′1(n) = 0)

are LRD. (X2, Q
′
2), similarly defined, is a short range dependent chain.

Lemma 2.4.2. (X1(n), X2(n), Q1(n), Q2(n)) is LRD.

Proof. Consider the chain (X1(n), Q′1(n), X2(n), Q′2(n)). This chain is LRD because

it is a combination of two independent chains (X1, Q
′
1) and (X2, Q

′
2), one of which

we assume to be LRD. Let t1 be the return time to a nonempty compact set S1 =

{X1(n), Q1(n), X2(n), Q2(n) < M}. Similarly t2 is the return time to the set S2 =

{X1(n), Q′1(n), X2(n), Q′2(n) < M}. Since Q′1(n) ≤ Q1(n) and Q′2(n) ≤ Q2(n), t1

stochastically dominates t2, and therefore (X1(n), X2(n), Q1(n), Q2(n)) is also LRD.

The question we want to ask then is whether 1(Q2(n) = 0), the busy-idle process of

the second queue (fed by short range dependent traffic), is also long range dependent.
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%n := 1(Q2(n) = 0) is an L2 function of the chain (X1(n), X2(n), Q1(n), Q2(n)).

Take c = 0 in theorem 2.3.1. H = {X1(n), X2(n), Q1(n), Q2(n) ≤ R}. Condition

2 holds trivially for bounded functions. Thus we are left with having to check the

condition

lim
n→∞

1

Q
(n)
11 /π1

∑
i,j:Q2,j=0,Q2,i=0

πi

n∑
r=1

Hp
(r)
ij = 0.

To see why this is true, note that
∑

i,j:Q2,j=0Q2,i=0 πi
∑∞

r=1 Hp
(r)
ij is bounded above by

1 plus the stationary time spent in the states {Q2 = 0} before the chain visits H.

Note that the length of an idle period for Q2 has finite expectation. Also note, if an

idle period begins at time n+ 1, this implies due to the LQF policy that Q1(n) ≤ R,

Q2(n) ≤ R, X1(n) ≤ R, and X2(n) ≤ R. Thus between successive idle periods of

Q2, the chain must visit H. The stationary expected time spent in {Q2 = 0} without

visiting H is therefore finite. Since Q
(n)
11 →∞ (by (2.3)), the above limit holds. Using

theorem 2.3.1, we conclude that 1(Q2(n) = 0) has the same Hurst index as the chain

(X1(n), X2(n), Q1(n), Q2(n)).

The advantage of this approach is that in general the input processes need not be

i.i.d. Dependencies can easily be modeled, as long as the sources can be represented

as countable state Markov.

2.5 Example 2: Compressing a long range depen-

dent renewal process

This section provides an alternative proof for the result in (45).

Let (Xn) ∈ {0, 1} be a discrete, stationary, ergodic renewal process. Denote by

τ1, τ2 the times of the first two arrivals. Then we denote by T
d
= τ2 − τ1, a random

variable having the inter-arrival distribution. We assume E[T ] <∞ and E[T 2] =∞.
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As discussed in section 2.1.1, this is equivalent to stating that the renewal process is

LRD . We begin by introducing the function

%n(Xn
−∞) = − logP (Xn|Xn−1

−∞ ),

which is of central importance to coding theory. The behavior of (%n) restricts the

minimum code length of lossless compression algorithms by the following lemma, (3),

which is also proved in (33).

Lemma 2.5.1 (Barron’s Lemma). Given {c(n), n ≥ 1}, positive constants with∑
n 2−c(n) <∞, we have

ln(Xn
1 ) ≥ − logP (Xn

1 |X0
−∞)− c(n), eventually, a.s. . (2.6)

Here ln(Xn
1 ) is the code length for the first n symbols of the source for some

lossless coding algorithm that produces bit strings. (i.e. let ln(Xn
1 ) be the length of

φ(Xn
1 ) where φ(xn1 ) : {0, 1}n → {0, 1}∗ is a one to one mapping.) c(n) can be made

logarithmic in n.

By the ergodic theorem, the limit of 1
n

∑n
i=1 %i as n → ∞ exists a.s. and equals

η := E[− logP (X1|X0
−∞)], i.e. the entropy rate of (Xn). This implies the following

well known first order converse source coding theorem for such sources.

Theorem 2.5.2.

lim inf
n

1

n
ln(Xn

1 ) ≥ η, a.s. .

Lemma 2.5.1 is strong enough to permit second order refinements to theorem 2.5.2

once we know more about the process (%n). For example, in (33), it is shown that for

certain short range dependent classes of sources (e.g. finite state Markov chains), and

appropriate coding schemes (e.g. Shannon codebooks, Huffman coding etc.), (ln−nη)

satisfies a central limit theorem.
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Here, we will prove a second order converse source coding theorem, stating that

the bit length process (ln) will eventually dominate a long range dependent process

the growth of whose variance is identical to that of (Xn), so that, in particular, it has

the same Hurst index as (Xn). The proof relies on our general theorem 2.3.2. This

result provides partial theoretical justification to existing empirical work in the field

of variable bit-rate (VBR) video traffic ((5; 22; 52; 21) to cite a few). A conclusion

resulting from this work is that long range dependence is omnipresent in VBR video

traffic, and persists across a wide variety of codecs. Combined with these observa-

tions, the result backs the intuition that for many information sources long range

dependence persists under compression. We generalize this result considerably in the

next chapter.

Theorem 2.5.3. Let (Xn) be an aperiodic, long range dependent, stationary, ergodic

renewal process. Then, there exists a long range dependent random process (γn) such

that

Ln(Xn
1 ) ≥ γn, eventually, a.s.

for all uniquely decodable source codes. Moreover, (γn) has the same Hurst index as

(Xn).

Proof. This immediately follows from Barron’s lemma once we show (%n) are LRD

with the same Hurst index as (Xn). This will follow from theorem 2.3.2 if we can set

up (%n) as a function of a Markov chain.

We construct the following Markov chain (Mn) from the renewal process (Xn)

(fig. 2.2):

• Mn ∈ {0, 1, 2, 3, . . .}.

• {Mn = 0} = {Xn
n−1 = 11}.

• For k ∈ {1, 2, . . .}
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– {Mn = 2k − 1} =

{Xn = 0 and k zeros since last arrival },

– {Mn = 2k} =

{Xn = 1 and k zeros since last arrival in Xn}.

Note that this Markov chain is equivalent to the characterization (Xn, tn) (where tn

is the time since the last transition), only states are numbered such that the state

space is N.

We establish some notation:

(Xn), stationary renewal process,

interval-arrival lengths having the law of T + 1;

fT (k) := P (T = k);

FT (k) := P (T ≤ k);

%n(Xn
−∞) := − logP (Xn|Xn−1

−∞ );

η := E[logP (X1|X0
−∞)].

One can easily check %n = ρ(Mn), with

• ρ(0) = − log fT (0),

• ρ(2k − 1) = − logP (T > k − 1|T ≥ k − 1),

• ρ(2k) = − logP (T = k|T ≥ k).

We verify:

Lemma 2.5.4. %n is an L2 function of Mn.

Proof. Let πi be the stationary distribution of (Mn). Note that πi > 0 =⇒ ρ(i) <∞.

We want to prove ∑
ρ(i)2πi <∞.
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Figure 2.2. Construction of the Markov chain, with an example sequence showing the
correspondence with Xn

Note that π2k+1 = π2k−1P (T > k|T ≥ k), and π2k = π2k−1P (T = k|T ≥ k) for

k = 1, 2, . . .. This gives∑
ρ(i)2πi = π0ρ(0)2 + π1ρ(1)2

+
∞∑
k=1

π2k−1P (T = k|T ≥ k) log2 P (T = k|T ≥ k)

+
∞∑
k=1

π2k−1P (T > k|T ≥ k) log2 P (T > k|T ≥ k),

π0ρ(0)2 = (
∞∑
k=1

π2k)fT (0) log2 fT (0),

π1ρ(1)2 = (
∞∑
k=1

π2k)(1− fT (0)) log2(1− fT (0)).

Since the p log2 p terms are bounded above by 1,
∑
ρ(i)2πi ≤ 4.

Now, to apply theorem 2.3.2 we partition the state space into 3 sets as follows:

A1 = {i > 0, i even}, A2 = {0} ∪ {i odd : ρ(i) ≤ − log(1 − εi)}, and A3 = {i odd :

ρ(i) > − log(1− εi)}. Here we will will choose εi ↓ 0 later. Take c1 = c2 = c3 = 0 and
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H = {1} in that theorem. By the remark to the theorem, we don’t need condition 1.

We will check conditions 2 and 3 of theorem 2.3.2 for each of the sets.

When i, j ∈ A1 notice 1p
(r)
ij = 0, so both conditions hold automatically. For

i, j ∈ A2, condition 2 holds due to remark no. 2 because the limit of ρ(i) as i → ∞

is zero, and condition 3 holds because ρ is bounded on this set. Thus we focus on

i, j ∈ A3. Define ρ(i) =: − log(1− ε̃i). Let subsequence {ik} = A3. We have ε̃ik ≥ εik .

πik ≤ π1

∏k
l=1(1− ε̃ik), and

∑∞
1 1p

(r)
ikij

= πij/πik . We have

∑
i

ρ(i)πi
∑
j

ρ(j)
n∑
r=1

1p
(r)
ij

≤
∑
k

k∏
l=1

(1− ε̃il)(− log(1− ε̃ik))
∑
j>k

− log(1− ε̃ij)
j∏

l=k+1

(1− ε̃il)

=
∑
j

∑
k<j

(1− ε̃ik) log(1− ε̃ik)(1− ε̃ij) log(1− ε̃ij)
j∏

l=1,l 6=k,j

(1− ε̃il)

<
∑
j

j

j∏
l=3

(1− ε̃il).

We can easily choose εi ↓ 0 such that this is finite. Dividing by Q
(n)
11 , both

conditions in theorem 2.3.2 will be satisfied.

2.6 Example 3: Long range dependence in finan-

cial time series

Let (Pn,−∞ < n <∞) be the price of some financial asset, and Xn = logPn. It

is an established assumption that the log returns, rn = Xn − Xn−1 is well modeled

by a martingale difference process. Such a model accounts for the fact that the log

returns exhibit little correlation. Nevertheless, it is also a widely observed fact that
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some instantaneous functions of the log returns, such as |rn|d, exhibit long memory.

(see e.g. (11))

The popular approach to modeling this behavior has been to explicitly write the

dependence of the absolute log returns into the statistical description of the model.

The result is the various long-memory autoregressive conditional heteroskedasticity

(ARCH) process models of financial time series. ((24) for an example)

We want to show in this example that, given a martingale difference sequence

(rn) that can be represented as a function of a long range dependent Markov chain,

the outcome that |rn|d will exhibit long range dependence should not be considered

surprising.

We want to illustrate this with a very simple example based on Mandelbrot’s

model for wheat prices ((40)). We should note that this simple model is for purposes

of illustration only, and does not account for all known properties of financial time

series. For instance, it has been observed in many situations that (rn) has a finite

variance, despite having a polynomially decaying marginal distribution. The (rn)

in this example has infinite variance. Nevertheless, the proof scheme used here to

establish the long range dependence of |rn|d should be applicable much more generally.

Let (Wn) be a stationary random process which models the weather. (Wn) can

take on 3 values: good, bad, and neutral {g, b, n}. The length of a good period, T ,

(number of consecutive good days) has the same distribution as the length of a bad,

or a neutral period. Let P (T ≥ t) = t−α. T has finite mean but infinite variance

(i.e. 1 < α ≤ 2). A good or bad period is followed necessarily by a neutral period. A

neutral period is followed by a good or bad period with equal probabilities.

Let X̂n be the fundamental (log) price of the asset (which can be thought of as

summarizing exogenous variables that affect the real price). X̂n varies as follows:

increases by 1 for every good day, decreases by 1 for every bad day, and stays the
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same for every neutral day. The market calculates the real (log) price by projecting

the expected future fundamental price: Xn = limt→∞E[X̂n+t|X̂n
−∞].

By construction, (rn) itself is a martingale difference sequence. We will now show

that %n = |rn|d is LRD with Hurst index 1
2
(3 − α). (0 < d < α/2 for var(%0) to be

finite.)

It can be verified that (also see the calculations in Mandelbrot’s original paper

(40)) Xn changes as follows: jumps by E[T ] on the first good day. Jumps by −E[T ]

on the first bad day. Increases by E[T |T ≥ t] − E[T |T ≥ t − 1] on the tth good

day (t ≥ 2). Decreases by E[T |T ≥ t] − E[T |T ≥ t − 1] on the tth bad day. The

first neutral following t good days decreases Xn by E[T |T ≥ t]− t. The first neutral

following t bad days increases Xn by E[T |T ≥ t]− t.

Let Jn = 1(there is a transition at time n). Let Tn := inft{t ≥ 0 : Wn−t−1 6=

Wn−t−2} be the number of days since the last transition (0 on the first day following).

Then Mn = (Wn, Jn, Tn) is a countable state, long range dependent Markov chain,

with Hurst index 1
2
(3− α). Moreover, %n = |rn|d is a function of Mn:

• ρ({g, b}, 0, t) = (E[T |T ≥ t+ 2]− E[T |T ≥ t+ 1])d

• ρ({n}, 0, ·) = 0

• ρ({g, b}, 1, ·) = (E[T ])d

• ρ({n}, 1, t) = (E[T |T ≥ t+ 1]− (t+ 1))d

Lemma 2.6.1.

E[T |T ≥ t+ 2]− E[T |T ≥ t+ 1]→ α

α− 1
, t→∞.

Proof.

P (T ≥ s|T ≥ t) =
s−α

t−α
, s ≥ t
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E[T |T ≥ t+ 1]− E[T |T ≥ t] =
∞∑

s=t+1

P (T ≥ s|T ≥ t+ 1)− P (T ≥ s|T ≥ t)

= ((t+ 1)α − tα)
∞∑

s=t+1

s−α → α

α− 1

since 1
α−1

(t + 2)−α+1 =
∫∞
t+2

s−αds <
∑∞

s=t+1 s
−α <

∫∞
t+1

s−αds = 1
α−1

(t + 1)−α+1 and

((t+ 1)α − tα) /tα−1 → α.

Lemma 2.6.2.

E[T |T ≥ t]− t ≤ t

α− 1
.

Proof.

E[T |T ≥ t]− t =
∞∑
s=t

s−α

t−α
≤
∫ ∞
t

s−αds =
t

α− 1
.

We will utilize theorem 2.3.2 with A1 = ({g, b}, 0, ·),A2 = ({n}, 0, ·),A3 =

({g, b}, 1, ·), A4 = ({n}, 1, ·). c1 = c4 =
(

α
α−1

)d
, c2 = c3 = 0. H = (·, ·, 0). We

have

var(%0) ≤ E%2
0 =

∑
i

πiρ(i)2

=
∑
i 6∈A4

πiρ(i)2 +
∑
i∈A4

πiρ(i)2 ≤ C +
∞∑
t=1

1

2
P (T = t)(

t

α− 1
)2d <∞

by lemma 2.6.2. As ρ(i) is bounded when i 6∈ A4, the contribution to the sum is a

constant C. We also used the fact that if i = ({n}, 1, t − 1), then πi = P (W−t =

n)P (T = t) = 1
2
P (T = t).

We need to first show that condition 1 holds:

lim
n→∞

1

Q
(n)
11

n∑
r=1

∑
i∈Ak,j∈Al

πi|ρ(i)− µ||ρ(j)− µ|Hp(r)
ij → 0 ∀k 6= l.

By inspection, the following transitions require visiting H:
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(k, l) or (l, k) = (1, 2), (1, 3), (2, 4), (3, 4). The sum is zero for these pairs. For (k, l)

or (l, k) = (1, 4), (2, 3), the condition is not needed due to the remark to theorem 2.3.2.

Condition 2 reads

lim
n→∞

1

Q
(n)
11

∑
i,j∈Ak

πi(ρ(i)− ck)(ρ(j)− ck)
n∑
r=1

Hp
(r)
ij = 0 ∀k.

For k = 3, 4, Hp
(r)
ij = 0 because these states must go to H in one step. For k = 1, 2,

we have chosen ck such that (ρ(i)− ck)→ 0 by lemma 2.6.1. The condition holds by

remark no. 2.

Condition 3 also holds for A1, A2, and A3 because ρ is bounded on these sets.

On A4, it holds because Hp
(r)
ij = 0 as argued earlier. We finally have the conclusion:

lim
n→∞

∑n
r=1 cov(|r0|d, |rn|d)

Q
(n)
11 /π1

=
K∑
k=1

π∞k (µ− ck)2 > 0.

2.7 A non-example

Consider an LRD Markov chain with p
(1)
12 = 1 and p

(1)
i2 = 0 for i > 1. Set ρ(1) = 1,

ρ(2) = −1 and ρ(i) = 0 for i > 2. We have for this chain π1 = π2 and µ = 0. Since

ρ(i) = 0 for i > 2, the conditions of theorem 2.3.1 hold with c = 0 and H = {1}.

However, since µ = c, the conclusion about the equality of Hurst indices does not

follow. In fact we can show % to be short range dependent. From (10), section 3 we

know
n∑
r=1

cov(%0, %r) =
∑
i,j

ρ(i)ρ(j)πiQ
(n)
ij .

The RHS is a finite sum, giving

n∑
r=1

cov(%0, %r) = π1(Q
(n)
11 +Q

(n)
22 )− π1(Q

(n)
12 +Q

(n)
21 ),
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where we used π1 = π2. Since p
(1)
12 = 1 and p

(1)
i2 = 0 for i > 1, we also know p

(r+1)
12 = p

(r)
11

and p
(r+1)
22 = p

(r)
21 . Expanding the Q(n) as sums, we get

n∑
r=1

cov(%0, %r) = π1

n∑
r=1

(p
(r+1)
12 − π1)− (p

(r)
12 − π1) + π1

n∑
r=1

(p
(r)
22 − π1)− (p

(r+1)
22 − π1)

= π1[(p
(n+1)
12 − π1) + (p

(1)
22 − π1)− (p

(1)
12 − π1)− (p

(n+1)
22 − π1)]

which remains bounded, demonstrating that (%n) is a short range dependent process.

2.8 Proof of theorems

For the proofs, we will rely on several lemmas, most of which are already known.

Lemma 2.8.1. (Chung (10), chapter 11, Corollary 1.) For p ≥ 0,

E1T
p
1 =∞ ⇐⇒ EiT

p
i =∞, ∀i ∈ N.

Lemma 2.8.2. Let (an) be an arbitrary sequence and bn → ∞. c is a finite real

number. If

an
bn
→ c,

then ∑n
r=1 ar∑n
r=1 br

→ c.

Proof. This elementary result follows from the discrete analogue of l’Hôpital’s rule,

referred to as the Stolz-Cesàro theorem. See e.g. 3.1.7 in (44).

Lemma 2.8.3. (i)

cov(%0, %r) =
∑
i,j

πip
(r)
ij (ρ(i)− µ)(ρ(j)− µ).

(ii)
n∑
r=1

cov(%0, %r) =
∑
i,j

ρ(i)ρ(j)πiQ
(n)
ij .
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(iii)

var(%0 + . . .+ %n)− (n+ 1)var(%0) = 2
∑
i,j

ρ(i)ρ(j)πiR
(n)
ij .

Proof. (i) is a simple expansion. (ii) is derived from (i), and (iii) can be found in (9),

section 3.

Lemma 2.8.4. (Eq. (1) in Chung (10), theorem 9.1.)

p
(r)
ij = 1p

(r)
ij +

r−1∑
m=1

1p
(m)
i1 p

(r−m)
1j , r ≥ 1. (2.7)

Lemma 2.8.5. (Carpio & Daley (9), 2.12.)

Q
(n)
11 ∼ (π1)2

∞∑
u=1

min(u, n)
∞∑

s=u+1

f
(s)
11

= (π1)2

∞∑
u=1

min(u,n)∑
r=1

∞∑
s=u+1

f
(s)
11

= (π1)2

n∑
r=1

∞∑
u=r

∞∑
s=u+1

f
(s)
11 .

Lemma 2.8.6.

lim
n→∞

1

Q
(n)
11 /π1

∑
i,j

πi

n∑
r=1

1p
(r)
ij = 1.

Proof. ∑
i,j

πi

n∑
r=1

1p
(r)
ij =

n∑
r=1

∑
i,j

πi 1p
(r)
ij

=a

n∑
r=1

∑
i

πi

∞∑
u=r

f
(r)
i1

=b

n∑
r=1

∞∑
u=r

1

m11

∞∑
s=u

f
(s)
11

=
1

m11

n∑
r=1

∞∑
u=r

fu11 +
n∑
r=1

∞∑
u=r

1

m11

∞∑
s=u+1

f
(s)
11

=
1

m11

n∑
r=1

P1(T1 ≥ r) +
n∑
r=1

∞∑
u=r

1

m11

∞∑
s=u+1

f
(s)
11

∼ 1

π2
1m11

Q
(n)
11 =

Q
(n)
11

π1
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since
∑n

r=1 P1(T1 ≥ r) ≤ m11 and by lemma (2.8.5). Here (a) uses
∑

j 1p
(r)
ij =∑∞

r f
(r)
i1 , which are equivalent ways of expressing the probability of going from i to

any other state without going to 1 in r steps. This expression also appears chapter

9 of (10) (proof of thm. 6). (b) uses the fact Pπ(T1 = r) = P1(T1≥r)
m11

, where T1 is the

first return time to 1 at stationarity.

Lemma 2.8.7. Let M > 0 be a finite number,

lim
n→∞

1

Q
(n)
11 /π1

∑
{i<M}∪{j<M}

πi

n∑
r=1

1p
(r)
ij = 0.

Proof. Pick m s.t. 1p
(m)
1i > 0, then

1p
(m)
1i 1p

∗
ij ≤ 1p

∗
1j = πj/π1.

Thus, there exists a finite constant CM s.t. 1p
∗
ij < CMπj for all i < M . Conclude

∑
i<M,j

πi

n∑
r=1

1p
(r)
ij ≤ CM

∑
i<M,j

πiπj ≤ CM .

Similarly, there exists a finite constant DM s.t. 1p
∗
ij ≤ 1 + 1p

∗
jj ≤ DM for all j < M .

∑
j<M,i

πi

n∑
r=1

1p
(r)
ij ≤ DM

∑
j<M,i

πi ≤MDM .

Using (2.3) we conclude the proof.

Lemma 2.8.8. ((9), pg 1051.) ∣∣∣∣∣Q
(n)
1j /πj

Q
(n)
11 /π1

∣∣∣∣∣ ≤ 1.

Lemma 2.8.9.∣∣∣∣∣
n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|1p(r)
ij −

n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|Hp(r)
ij

∣∣∣∣∣ ≤ (|H|+ 1)CH
∑
i,j

πiπj|ρ(i)ρ(j)|,

where H is any non-empty set with a finite number of states and CH is a constant

that depends only on H.
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Proof. Let H′ = H ∪ {k}, k 6∈ H. We will argue by induction. We write

n∑
r=1

Hp
(r)
ij −H′p

(r)
ij =

n∑
r=1

P (Mr = j;Ml 6∈ H, 1 ≤ l < r;Ml = k, for some 1 ≤ l < r|M0 = i)

=
n∑
r=1

r−1∑
m=1

H′p
(m)
ik Hp

(r−m)
kj

=
n−1∑
m=1

H′p
(m)
ik

n∑
r=m+1

Hp
(r−m)
kj

≤

(
∞∑
m=1

H′p
(m)
ik

)
︸ ︷︷ ︸

C1

(
∞∑
r=1

Hp
(r)
kj

)
︸ ︷︷ ︸

Hp
∗
kj

.

C1 is bounded above by 1 since

∞∑
m=1

H′p
(m)
ik ≤

∞∑
m=1

kp
(m)
ik = 1.

Let h ∈ H. m is s.t. hp
(m)
hk > 0.

hp
(m)
hk Hp

∗
kj ≤ hp

∗
hj = πj/πh.

Thus Hp
∗
kj ≤ πj/(hp

(m)
hk πh) = CH′ .

n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|Hp(r)
ij −

n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|H′p(r)
ij ≤ CH′

∑
i,j

πiπj|ρ(i)ρ(j)|.

Therefore adding or subtracting a state from the set H (as long as the resulting

set is non-empty) only affects the sum in question by a bounded amount. As a result,

replacing H by {1} can change the sum by at most (1 + |H|)CH
∑

i,j πiπj|ρ(i)ρ(j)|.

(Add state 1 if it is not already in set H. Then subtract all other states until only

state 1 is left.)

2.8.1 Proof of theorem 2.3.1

Proof. By (2.3) and lemma (2.8.9) the conditions are equivalent to
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(condition 1)

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi(ρ(i)− c)(ρ(j)− c)1p
(r)
ij = 0

for some constant c, and

(condition 2)

lim
L→∞

lim sup
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|1(|ρ(i)|, |ρ(j)| > L)1p
(r)
ij = 0.

Define

ρM(i) =

 ρ(i) , i ≤M

c , i > M
.

µM = E[%Mn ], ρM(i) = ρ(i) − ρM(i), and µM = E[%M
n

]. We adopt the shorthand

notation:

φn =
(%0 + . . .+ %n)− (n+ 1)µ√

2R
(n)
11 /π1

,

φ
M

n =
(%̄M0 + . . .+ %̄Mn )− (n+ 1)µM√

2R
(n)
11 /π1

,

φM
n

= φn − φ
M

n .

We will be referring to the reverse triangle inequality for random variables:∣∣∣∣√var(φn)−
√

var(φ
M

n )

∣∣∣∣ ≤√var(φM
n

). (2.8)

This follows directly from the triangle inequlity. Using lemma 2.8.4, write 2.8.3(i) as

n∑
r=1

cov(%0,%r) =
∑
i,j

πi(ρ(i)− µ)(ρ(j)− µ)
n∑
r=1

1p
(r)
ij + (2.9)

∑
i,j

πi

n∑
r=1

r−1∑
m=1

1p
(m)
i1 p

(r−m)
1j (ρ(i)− µ)(ρ(j)− µ).

The second term can be rewritten∑
i,j

πi

n∑
r=1

r−1∑
m=1

1p
(m)
i1 p

(r−m)
1j (ρ(i)− µ)(ρ(j)− µ) =

∑
i,j

πi

n−1∑
m=1

1p
(m)
i1

n∑
r=m+1

p
(r−m)
1j (ρ(i)− µ)(ρ(j)− µ)
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=
n−1∑
m=1

(
n∑

r=m+1

∑
i,j

1p
(m)
i1 πi(p

(r−m)
1j − πj)(ρ(i)− µ)(ρ(j)− µ)+

n∑
r=m+1

∑
i,j

1p
(m)
i1 πiπj(ρ(i)− µ)(ρ(j)− µ)︸ ︷︷ ︸

0


=

n−1∑
m=1

∑
i,j

πi1p
(m)
i1 Q

(n−m)
1j (ρ(i)− µ)(ρ(j)− µ).

Dividing by Q
(n)
11 /π1 we get

=
n−1∑
m=1

∑
i,j

πi1p
(m)
i1 πj

Q
(n−m)
1j /πj

Q
(n)
11 /π1

(ρ(i)− µ)(ρ(j)− µ).

By lemma 2.8.8 we have

∑
j

πj|
Q

(n−m)
1j /πj

Q
(n)
11 /π1

||(ρ(j)− µ)| <∞.

We also know
∑

i πi
∑n−1

m=1 1p
(m)
i1 (ρ(i)− µ)→ 0. Therefore

lim
n→∞

n−1∑
m=1

∑
i,j

πi1p
(m)
i1 πj

Q
(n−m)
1j /πj

Q
(n)
11 /π1

(ρ(i)− µ)(ρ(j)− µ) = 0.

(Dominated convergence) The result has the interpretation that the sum of the

covariances between %0 and %n on the event that the chain visits state 1 at least once

before time n, is negligible compared to Q
(n)
11 .

We want to use these results to conclude var(φM
n

)→ 0. For this we write eq. 2.9

for ρM , c = 0. The first term in eq. 2.9 reads after a little manipulation

∑
i,j

πi[ρ
M(i)ρM(j)− µM(ρM(i) + ρM(j)) + (µM)2]

n∑
r=1

1p
(r)
ij . (2.10)

Now assume ρ is bounded. After dividing by Q
(n)
11 /π1, the second and third terms

are O(µM) as µM → 0 by lemma 2.8.6. Since µM → 0 with M , these terms go to 0

as M →∞ uniformly in n.
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For the first term in (2.10), write condition 1 as follows for comparison:

lim
n→∞

1

Q
(n)
11 /π1

(
n∑
r=1

∑
i≤M,j≤M

πi(ρ(i)− c)(ρ(j)− c)1p
(r)
ij

+
n∑
r=1

∑
i≤M,j>M

πi(ρ(i)− c)(ρ(j)− c)1p
(r)
ij

+
n∑
r=1

∑
i>M,j≤M

πi(ρ(i)− c)(ρ(j)− c)1p
(r)
ij

+
n∑
r=1

∑
i>M,j>M

πi(ρ(i)− c)(ρ(j)− c)1p
(r)
ij

)
= 0.

The first three sums have limit 0 because ρ is assumed to be bounded, and by

lemma 2.8.7. The last sum is identical to the first term in (2.10). Therefore di-

viding eq. 2.9 by Q
(n)
11 /π1 and applying lemma 2.8.2 while observing lemma 2.8.3 (ii)

and (iii), we conclude that limM→∞ limn→∞ var(φM
n

) = 0, and by eq. (2.8), also that

limM→∞ limn→∞ var(φ
M

n ) = limn→∞ var(φn).

To calculate var(φ
M

n ), rewrite eq. 2.9 for ρM :

∑
i,j

πi[(ρ
M(i)− c)(ρM(j)− c)− (µM − c)(ρM(i) + ρM(j)− 2c) + (µM − c)2]

n∑
r=1

1p
(r)
ij .

The first two sums will go to zero when dividing by Q
(n)
11 /π1, by the boundedness of

ρ and lemma 2.8.7 because of truncation. The last term will read:

(µM − c)2 1

Q
(n)
11 /π1

∑
i,j

πi

n∑
r=1

1p
(r)
ij → (µM − c)2, n→∞

by lemma 2.8.6. By lemma 2.8.3 (ii) and (iii), and lemma 2.8.2 this concludes the

proof when (%n) is bounded.

When (%n) is not bounded, we truncate by value, i.e. ρ̃L(i) = ρ(i)1(ρ(i) ≤ L),

µ̃L = E[%̃Ln ], ρ˜L(i) = ρ(i)− ρ̃L(i), and µ˜L = E[%˜Ln ]. Also define:

φ̃Ln =
(%̃L0 + . . .+ %̃Ln)− (n+ 1)µ̃L√

2R
(n)
11 /π1

,
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φ˜Ln = φn − φ̃Ln .

We can express
∑n

r=1 cov(%˜L0 , %˜Lr ) as in eq. 2.9, and argue there that the second term

has limit 0 as n → ∞ when divided by Q
(n)
11 /π1. The first term also has limit 0

due to the assumed condition 2. We appeal again to lemma 2.8.3 (ii) and (iii), and

lemma 2.8.2 to argue that limL→∞ limn→∞ var(φ˜Ln) = 0. By eq. (2.8), we also get

limL→∞ limn→∞ var(φ̃Ln) = limn→∞ var(φn). We conclude:

lim
n→∞

var(
∑n

r=1 %i)

R
(n)
11 /π1

= lim
L→∞

lim
n→∞

var(φ̃Ln) = lim
L→∞

(µ̃− c)2 = (µ− c)2.

The claim about the Hurst indices can be argued as follows. Consider the ex-

pression in lemma 2.8.3 (ii) for %n = 1(Mn = 1). Dividing by Q
(n)
11 /π1, we see that

the right hand side has limit π2
1 > 0. From the above argument it follows that

(
∑n

r=1 cov(1(M0 = 1), 1(Mr = 1))) / (
∑n

r=1 cov(%0, %r)) has a finite, non-zero limit if

µ 6= c. It is easily seen from the definition of H that ρ has the same Hurst index as

the indicator function 1(Mn = 1).

2.8.2 Proof of theorem 2.3.2

Proof. By (2.3) and lemma (2.8.9) the conditions are equivalent to

(condition 1)

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i∈Ak,j∈Al

πi|ρ(i)− µ||ρ(j)− µ|1p(r)
ij = 0, ∀k 6= l,

(condition 2)

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi(ρ(i)− ck)(ρ(j)− ck)1p
(r)
ij = 0, ∀k,

(condition 3)

lim
L→∞

lim sup
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi|ρ(i)ρ(j)|1(|ρ(i)|, |ρ(j)| > L)1p
(r)
ij = 0, ∀k.
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We truncate as follows:

ρM(i) =

 ρ(i) , i < M

ck , i ≥M, i ∈ Ak
.

ρM , µM , µM , φ
M

, and φM are defined as before.

The first sum in eq. 2.9 can be decomposed as:

∑
i,j

πi(ρ(i)− µ)(ρ(j)− µ)
n∑
r=1

1p
(r)
ij =

K∑
k=1

∑
i,j∈Ak

πi(ρ(i)− µ)(ρ(j)− µ)
n∑
r=1

1p
(r)
ij

+
∑

k,l∈{1,...,K},k 6=l

∑
i∈Ak,j∈Al

πi(ρ(i)− µ)(ρ(j)− µ)
n∑
r=1

1p
(r)
ij . (2.11)

The first condition ensures that the cross terms on the right are insignificant. There-

fore we can work with each subset separately.

We will argue as in the proof of theorem 2.3.1 to show var(φM
n

)→ 0. The analogue

of eq. 2.10 for each of the remaining sums reads

∑
i,j∈Ak

πi[ρ
M(i)ρM(j)− µM(ρM(i) + ρM(j)) + (µM)2]

n∑
r=1

1p
(r)
ij .

Assume ρ is bounded. After dividing by Q
(n)
11 /π1, the second and third terms are

O(µM) as µM → 0 by lemma 2.8.6. Since µM → 0 as M →∞, these terms tend to 0

as M →∞ uniformly in n.

For the first term, we argue exactly as in the proof of theorem 2.3.1 that condi-

tion 1, together with lemma 2.8.7 implies that this term, when divided by Q
(n)
11 /π1

goes to 0 as n → ∞. Applying lemma 2.8.2 while observing lemma 2.8.3 (ii) and

(iii), we conclude that limM→∞ limn→∞ var(φM
n

) = 0, and by eq. (2.8), also that

limM→∞ limn→∞ var(φ
M

n ) = limn→∞ var(φn).
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To calculate var(φ
M

n ), rewrite eq. 2.9 for ρM . We again omit the cross sums:∑
i,j∈Ak

πi[(ρ
M(i)−ck)(ρM(j)−ck)−(µM−ck)(ρM(i)+ρM(j)−2ck)+(µM−ck)2]

n∑
r=1

1p
(r)
ij .

The first two sums will go to zero due to truncation, boundedness of ρ, and by lemma

2.8.7, when dividing by Q
(n)
11 /π1. The last term will read:

(µM − ck)2 1

Q11/π1

∑
i,j∈Ak

πi

n∑
r=1

1p
(r)
ij → π∞Ak(µ

M − ck)2

by lemma 2.8.6 and the definition of π∞Ak . This concludes the proof when (%n) is

bounded.

When (%n) is not bounded, we truncate by value, i.e. ρ̃L(i) = ρ(i)1(ρ(i) ≤ L),

µ̃L = E[%̃Ln ], ρ˜L(i) = ρ(i)− ρ̃L(i), and µ˜L = E[%˜Ln ]. Also define:

φ̃Ln =
(%̃L0 + . . .+ %̃Ln)− (n+ 1)µ̃L√

2R
(n)
11 /π1

,

φ˜Ln = φn − φ̃Ln .

We also partition %˜Ln as
∑K

k=1 %˜Ln1(%˜Ln ∈ Ak). Define:

kφ˜Ln =
%˜L0 1(%˜L0 ∈ Ak) + . . .+ %˜Ln1(%˜Ln ∈ Ak)− (n+ 1)E(%˜L0 1(%˜L0 ∈ Ak))√

2R
(n)
11 /π1

.

We can express
∑n

r=1 cov(%˜L0 1(%˜L0 ∈ Ak), %˜Lr 1(%˜Lr ∈ Ak)) by writing eq. 2.9 for

ρ˜L(i)1(ρ˜L(i) ∈ Ak), and argue there that the second term has limit 0 as n → ∞

when divided by Q
(n)
11 /π1. The first term also has limit 0 due to the assumed condi-

tion 3. We appeal again to lemma 2.8.3 (ii) and (iii), and lemma 2.8.2 to argue that

limL→∞ limn→∞ var(kφ˜Ln) = 0. Applying eq. (2.8), we conclude that:

lim
L→∞

lim
n→∞

var(φ˜Ln) = lim
L→∞

lim
n→∞

var

(
K∑
k=1

kφ˜Ln
)

= 0.

One more application of eq. (2.8) gives limL→∞ limn→∞ var(φ̃Ln) = limn→∞ var(φn).

We conclude:

lim
n→∞

var(
∑n

r=1 %i)

R
(n)
11 /π1

= lim
M→∞

lim
n→∞

var(φ
M

n ) =a lim
M→∞

K∑
k=1

π∞Ak(µ
M−ck)2 =

K∑
k=1

π∞Ak(µ−ck)
2,
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where (a) follows from the bounded version of the theorem proved above.

To prove the remark, consider Ak ∪ Al as one subset. We can safely ignore the

cross terms in eq. 2.11, without needing to use condition 1 for the pair Ak,Al. We

do not use condition 1 in the remaining part of the proof.

All that remains is to note:

(µM − ck)2 1

Q11/π1

∑
i,j∈Ak∪Al

πi

n∑
r=1

1p
(r)
ij → π∞Ak∪Al(µ

M − ck)2

where π∞Ak∪Al = π∞Ak + π∞Al .
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Chapter 3

Source coding

3.1 Introduction

We are interested in both lossless and lossy source coding. Let us first consider

the lossless case.

Let (Xn) be a discrete, ergodic source taking values in a finite set K. For each n,

we consider the problem of efficiently representing (Xn) using variable length block

codes ψ(xn1 ) : {0, 1}n → {0, 1}∗/{∅}, which map Xn
1 to a variable length binary string.

Let ln(Xn
1 ) be the length of ψ(Xn

1 ) (i.e. the description length at block size n). We

allow any mapping that constitutes a valid code, i.e. any invertible mapping ψ. The

source coding theorem in Shannon’s original paper (57) states that the average coding

rate 1
n
E[ln(Xn

1 )] of a memoryless information source cannot be made smaller than its

entropy. A stronger, pointwise version of this theorem (32) can be stated as:

Theorem 3.1.1. For a memoryless source (Xn),

lim inf
1

n
ln(Xn

1 ) ≥ H(X1) a.s.

where the entropy is defined by H(X1) = E[− logP (X1)].

49



Despite its simplicity, this theorem can be made remarkably general by only replac-

ing the entropy H(X) with the entropy rate ν = lim 1
n
H(Xn

1 ) := lim 1
n
E[− logP (Xn

1 )].

Then the result holds for any source for which the limit exists:

Theorem 3.1.2.

lim inf
1

n
ln(Xn

1 ) ≥ ν a.s.

whenever ν = lim 1
n
H(Xn

1 ) is well defined.

The Shannon-McMillan-Breiman theorem ensures that this is true for all ergodic

sources (1):

Theorem 3.1.3.

lim− 1

n
logP (Xn

1 ) = E[− logP (Xn|Xn
−∞)] a.s.

for all ergodic information sources (Xn).

Therefore, the literature around theorem 3.1.1 is fairly complete. Unfortunately,

the same cannot be said about rates of convergence questions regarding theorem

3.1.1. The behavior of the quantity ln(Xn
1 ) − nν has been discussed in the work

of Kontoyiannis (33) under the title ‘pointwise redundancy’ in source coding. This

work is limited mostly to the memoryless case, where it has been demonstrated that

ln(Xn
1 ) − nν behaves like a random walk, and a one sided central limit theorem can

be stated for the code length sequence:

Theorem 3.1.4.

ln(Xn
1 )− nν√
n

≥ σ2gn,

where gn is a sequence of random variables with gn →d N(0, 1).

This theorem is a result of ‘Barron’s lemma’, which gives a lower bound on ln for

any encoding sequence:

50



Lemma 3.1.5 (Barron’s Lemma). For any sequence {c(n)} of positive constants with∑
2−c(n) <∞ we have

ln(Xn
1 ) ≥ − logP (Xn

1 |X0
−∞)− c(n), eventually, a.s. (3.1)

Here ln(Xn
1 ) is a code length sequence for the first n symbols of the source, the

distribution of which is conditioned on the infinite past, for some lossless coding

algorithm. c(n) is a deficit term that can be made logarithmic in n (e.g. c(n) =

2 log n).

The first term on the right hand side in 3.1.5 can be written as:

− logP (Xn
1 |X0

−∞) =
n∑
i=1

− logP (Xi|X i−1
−∞) :=

n∑
i=1

ρi

where we refer to the process (ρn) as the information density.

In the memoryless case, clearly (ρn) is an i.i.d. sequence, from which the result in

theorem 3.1.4 follows immediately. When the process (Xn) has memory, the result is

less immediate, as one needs to deduce properties of the function (ρn) from the process

(Xn). It has been shown that the redundancy process exhibits similar asymptotics

in the case of a fast mixing Markov chain (33). Here, we take up this question for

a class of slower mixing processes, where memory effects are much more prominent.

This is the class of long range dependent sources.

3.1.1 The lossy case

We now discuss lossy source coding. Needless to say, the lossy case has deeper

technical challenges, mostly due to the fact that the reconstruction distribution is

different than the source distribution and is now an optimization parameter. As a

result, even though analogues of lossless theorems exist, they are much less useful and

difficult to evaluate.
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Consider a mapping φn(Xn
1 ) : Kn → K̂n, where K̂ denotes an output alphabet.

We define a distortion function dn(xn1 ; yn1 ) = 1
n

∑n
1 d(xi; yi) with xi ∈ K and yi ∈ K̂.

We consider the problem of finding efficient mappings φn(Xn
1 ) with the property

dn(Xn
1 ;φn(Xn

1 )) ≤ D. Let ψn(φn(xn1 )) : {0, 1}n → {0, 1}∗/{∅} map φn(Xn
1 ) to a

variable length binary string. Let ln(Xn
1 ) be the length of ψn(φn(Xn

1 )) (i.e. the

description length at block size n). We allow any mapping that constitutes a valid

code, i.e. any invertible mapping ψn.

Consider a random code construction where codewords are picked from an infinite

i.i.d. codebook drawn from a n-symbol codebook distribution Qn on K̂n. φn maps

Xn
1 to the first codeword in the codebook which is within distortion D of Xn

1 . The

index of this match is subsequently sent to the receiver and ψn is the Elias encoding

of this index. It is shown in (35) that for this code construction:

Lemma 3.1.6. For any sequence {c(n)} of positive constants with
∑

2−c(n) <∞ we

have

ln(Xn
1 ) ≥ − logQn(B(Xn

1 , D))− c(n), eventually, a.s. (3.2)

Here Qn(B(Xn
1 , D)) is the probability of a distortion ball B(Xn

1 , D) := {yn1 ∈ K̂n :

dn(Xn
1 ; yn1 ) ≤ D} of radius D around Xn

1 under the n-letter codebook distribution

Qn. Picking the codebook distribution to optimize expected code length, we get

Q∗n := arg maxQn E[− logQn(B(Xn
1 , D))], giving us a tighter bound for the above

class of codes. It can also be shown, however, that this class of random codes are

optimal, and so the optimized bound is valid not just for this class of codes, but in

general (35):

Lemma 3.1.7. For any sequence {c(n)} of positive constants with
∑

2−c(n) <∞ we

have

ln(Xn
1 ) ≥ − logQ∗n(B(Xn

1 , D))− c(n), eventually, a.s. (3.3)

for any code which operates under fixed distortion D.
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In the memoryless case, the output distribution with minimal E[ln] is a product

distribution Q∗n = (Q∗)n, where Q∗ is the single letter optimal output distribution

that minimizes the information between the input and output subject to the distortion

constraint. In this case, − logQn(B(Xn
1 , D)) can again be approximated as a sum of

i.i.d. variables, and analogues of theorem 3.1.4 can be proved (35). Unfortunately,

for sources with memory, very little is known about the optimal output distribution.

In fact, rate distortion functions can be calculated exactly only in a few special

cases (strongly connected finite state Markov chains (27), Gaussian autoregressive

processes (26) ) and even for those, only for a small range of low distortion. For all

other processes with memory, one needs to work with bounds, which is useless for

second order discussions.

Consequently we will only be able to extend our results to the lossy case in a

limited manner. In section 3.3, we prove an alternative lossy Barron’s lemma which

is more usable and intuitive than (3.1.7), but only tight when the rate distortion

function equals the Shannon lower bound (47). This leads to a second order converse

lossy coding theorem for this class of information sources. We demonstrate a class

of LRD processes for which the rate distortion function matches the Shannon lower

bound, and thus can be calculated exactly, for a non-zero range of distortions. For this

class of sources, we are able to conclude that the bit length process at the output of

any lossy coder operating at the rate distortion function must exhibit LRD behavior.

3.1.2 Summary of results

Recall that a stationary random process (Xn) with E[X2
n] <∞ is said to be long

range dependent (LRD) if

lim sup
n→∞

n∑
r=1

cov(X0, Xr) =∞. (3.4)
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The degree of long range dependence is measured by the Hurst index H (1
2
≤ H ≤ 1).

H := inf

{
h : lim sup

n→∞

∑n
r=1 cov(X0, Xr)

n2h−1
<∞

}
.

Equivalently, we can write:

H := inf

{
h : lim sup

n→∞

var(
∑n

i=1Xi)

n2h
<∞

}
.

A process that is not LRD is said to be short range dependent (SRD). The justifi-

cation for this division is as follows. Although SRD processes may have memory, the

effect of this memory can be ignored in asymptotic discussions by taking long blocks

of the original source and treating these blocks as a meta process. If the process is

SRD, for many practical purposes, the block process can be well approximated by

an i.i.d. process. As a result, SRD processes behave similarly to an i.i.d. process

in many asymptotic settings. Indeed, the complement of the condition in (3.4) is

necessary for a central limit theorem to hold.

On the other hand, the effect of memory in an LRD process does not disappear

even asymptotically under any scaling. LRD processes do not satisfy the central limit

theorem, and the limit of their scaled sums is not in general Gaussian. In fact, as

the definitions suggest, the scaling required to obtain a meaningful limit is different

than
√
n, and is related to the Hurst index of the process. The limiting processes,

when they exist, are described by stable distributions and self similar processes. For a

detailed description of these results and other properties of LRD processes, the reader

is referred to the references (54)(17).

Interest in LRD processes was sparked by several empirical observations that

showed such distributions were characteristic of network traffic on the internet

(36)(13)(49). Due to the fundamentally different qualities of LRD processes men-

tioned above, these discoveries have important, and often negative consequences for

the modeling and analysis of communication networks. Among these are different
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asymptotics for queue sizes and packet drop probabilities (51; 38; 37; 28; 63; 20), and

a need for new optimal schedulers (2)(48)(53). The mostly degrading effect of LRD

traffic in networks has led to research efforts for understanding the mechanisms by

which such traffic is generated and whether preventive measures are possible (48)(13).

In section 3.2, first we describe a general model of an LRD information source,

which can be written as an instantaneous function of an LRD Markov chain. Our

source model includes renewal processes and semi-Markov processes as special in-

stances. We then seek to prove second order converse lossless source coding theorems

for these sources. This is done by first interpreting the information density of the

source as a function of a Markov chain that is related to that which underlies the

source, and then applying theorems stated in chapter 2 to characterize the Hurst

index of the information density process. An application of Barron’s lemma leads

to the main result in this section, which is that the code length process of an LRD

information source (one which can be described in our model) necessarily dominates

an LRD process with the same Hurst index as the original source, under any loss-

less coding scheme. Moreover, this second order asymptotics is achievable to within

O(log n).

As mentioned below, the application of Barron’s lemma in the lossy case requires

the characterization of the optimal output distribution. This problem is notoriously

difficult for sources with memory, even in the simplest case of a binary symmetric

Markov chain (31). Nevertheless, in section 3.3, we are able to find a class of LRD

sources, for which we are able do this for a constrained range of distortions. We prove

second order pointwise lossy source coding theorems for this class of sources. We also

demonstrate achievability of this bound within O(
√
n log n), which is sufficient to

prove long range dependence at the output of an optimal encoder.
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3.2 Lossless coding

(Xn) ∈ K is a discrete, ergodic source. ψ(xn1 ) : {0, 1}n → {0, 1}∗/{∅} maps Xn
1 to

a variable length binary string in an invertible fashion. Let ln(Xn
1 ) be the length of

ψ(Xn
1 ). Source coding is primarily concerned with obtaining the ‘shortest possible’

ln(Xn
1 ). We know from 3.1.3 that the optimal description length in the mean sense

is given by average entropy density ν = E[ρn] = E[− logP (Xn|Xn
−∞)]. Here we are

concerned with the asymptotic pointwise redundancy ln(Xn
1 )− νn.

When (Xn) are i.i.d. or sufficiently short range dependent, this difference process

is well approximated by a random walk, exhibiting fluctuations of order O(
√
n) (33).

When (Xn) is an LRD process, one would expect that the difference process would

be at least as variable as the source process, exhibiting fluctuations at the scale of

O(nH), where H is the Hurst index of (Xn). The first such result for LRD renewal

processes was given in (45). This result states the following:

Theorem 3.2.1. Let (Xn) be a long range dependent ergodic renewal process. Assume

κ = sup{k : E[|T |k] <∞} > 1 (3.5)

Then, there exists a long range dependent random process (ξn) such that

ln(Xn
1 ) ≥

n∑
i=1

ξi, eventually, a.s.

for all uniquely decodable source codes. Moreover, (ξn) has the same Hurst index as

(Xn).

The theorem is derived from the following result for the entropy density process

ρ of an LRD renewal process:

Lemma 3.2.2. Let (Xn) be a long range dependent ergodic renewal process and ρn =
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− logP (Xn|Xn−1
−∞ ). Then

lim
n→∞

var(ρ0 + . . .+ ρn)

var(X0 + . . .+Xn)
= C

for some 0 < C <∞.

Asymptotically, the behavior of the aggregate entropy density is identical to the

original process, up to a constant factor. Applying Barron’s lemma, we get the

theorem. In fact, we also know that codes exist which can achieve within O(log n)

of
∑n

i=1 ρi (33). Therefore, from lemma 3.2.2, we can also deduce that the bound in

theorem 3.2.1 is achievable, giving us a complete second order source coding theorem

for an LRD information source.

We will now replicate the same arguments to generalize these theorems further.

Definition 3.2.3. A process (Xn) is said to have countable memory if L(X∞n |Xn−1
−∞ ) =

L(X∞n |g(Xn−1
−∞ )) where L(X∞n |Xn−1

−∞ ) denotes the regular conditional distribution of

X∞n given Xn−1
−∞ , g is a deterministic function that maps to the integers and g(Xn

−∞) =

f(Xn, g(Xn−1
−∞ )) for some deterministic function f .

Let (Xn) be a discrete, ergodic, finite state information source with countable

memory. Pick M̃n, a stationary, ergodic, countable state Markov chain with F(M̃n) ⊃

F(Xn, g(Xn
−∞)). The pair (Xn, g(Xn

−∞)) itself is one such Markov chain. Define

Mn = (M̃n−1, M̃n) to be an extended Markov chain on the product space. Then it is

easy to show

Lemma 3.2.4. ρn = − logP (Xn|Xn−1
−∞ ) is an instantaneous function of Mn. i.e.

ρn = h(Mn) where h is a deterministic function.

Proof. ρn = − logP (Xn|Xn−1
−∞ ) = − logP (Xn|g(Xn−1

−∞ )), which is clearly a function of

Mn.
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We are now ready to state our first theorem.

Theorem 3.2.5. Let (Xn) be a discrete, ergodic, finite state information source with

countable memory with associated extended Markov chain Mn and information density

ρn. If ρn = ρ(Mn) satisfies the conditions of theorem 2.3.2 for a suitable numbering

of the state space, then there exists an LRD process (ξn) with mean ν such that the

code length process of any lossless code satisfies

ln(Xn
1 ) ≥

n∑
i=1

ξi −O(log n) eventually a.s.

Moreover, (ξn) has the same Hurst index as (Xn).

Proof. From lemma 3.1.5 we know that

ln(Xn
1 ) ≥ − logP (Xn

1 |X0
−∞)−O(log n), eventually, a.s.

Since − logP (Xn
1 |X0

−∞) =
∑n

i=1 ρi, it remains to show that (ρn) is LRD with the same

Hurst index as Mn. We get this by applying theorem 2.3.2, as we already assumed

that the conditions for this theorem are satisfied.

At this point, with the countable memory assumption and the rather cryptic

conditions of theorem 2.3.2, it is not clear whether this theorem is useful. Therefore,

we now demonstrate that fairly general classes of processes with wide applicability

can be regarded as special cases of this formulation.

3.2.1 Semi-Markov processes

A semi-Markov process (Xn) is defined in terms of a transition probability matrix

q(k, l) and renewal process An. Xn is equal to Xn−1 when An = 0. Transitions in (Xn)

occur when there is an arrival in An according to the transition probability matrix.
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Formally, let k, l ∈ K for some finite set K and An ∈ {0, 1}. Then (Xn) is a

semi-Markov process (SMP) if P (Xn = l|Xn−1 = k,An = 0) = δ(k = l), P (Xn =

l|Xn−1 = k,An = 1) = q(k, l). We assume q(k, k) = 0.

Define a Markov chain in terms of the pair (Xn, Tn), where Xn ∈ K and Tn denotes

the time since the last transition in An (i.e. {Tn = j} = {infi{i ≥ 0, An−i = 1} = j}).

We will say that a semi-Markov process is LRD whenever the associated Markov

chain (Xn, Tn) is LRD. Define Mn = (Xn, Xn−1, Tn−1) to be another Markov chain.

We have that ρn = − logP (Xn|Xn−1
−∞ ) = − logP (Xn|Xn−1, Tn−1) is a function of Mn.

Assume a numbering of the states (Xn, Xn−1, Tn−1) on N. We will be using the index

i to refer to this numbering. Given an LRD SMP, we will attempt to show that ρn is

also LRD with the same Hurst index.

To make this statement meaningful, we first show

Lemma 3.2.6. E[ρ2
n] <∞.

Proof. Denote Pm|kl = P (Xn = m|Xn−1 = k, Tn−1 = l) and Pkl = P (Xn−1 =

k, Tn−1 = l).

E[ρ2
n] =

∑
k,l,m

PklPm|kl log2 Pm|kl ≤
∑
k,l,m

2Pkl = 2K

since P log2 P terms are bounded above by 2.

Lemma 3.2.7.

lim
n→∞

var(
∑n

r=1 ρr)

R
(n)
11 /π1

= C

where C is a finite, non-zero constant.

Proof. We will apply theorem 2.3.2 with the following partitions , A1 = {Tn = 0},

A2 = {Tn > 0, ρ(i) ≤ − log εi}, and A3,m = {Tn > 0, ρ(i) > − log(εi), Xn = m},m ∈

K. Here we will choose εi ↑ 1 later. Take c1 = c2 = 0, c3,m = 0,∀m and H = {Tn−1 =
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0} in the theorem. By the remark to the theorem, we don’t need condition 1. We

will check conditions 2 and 3 of theorem 2.3.2 for each of the sets.

When i, j ∈ A1 notice Hp
(r)
ij = 0, so both conditions hold automatically. For

i, j ∈ A2, condition 2 holds because the limit of ρ(i) as i→∞ is zero, (see the remarks

to theorem 3.1 in (46)) and condition 3 holds because ρ is bounded on this set. Thus

we focus on i, j ∈ A3,m. Define ρ(i) =: − log(ε̃i). Let subsequence {ik} = A3,m,

ordered such that if ik = (m,m, T1) and ij = (m,m, T2), T1 > T2 ⇐⇒ k > j. We

have ε̃ik ≤ εik . πik ≤
∏k

l=1 ε̃ik , and
∑∞

1 1p
(r)
ikij

= πij/πik . We have

∑
i∈A3,m

ρ(i)πi
∑

j∈A3,m

ρ(j)
n∑
r=1

1p
(r)
ij

≤
∑
k

−(
k∏
l=1

ε̃il) log ε̃ik
∑
j>k

(− log ε̃ij)

j∏
l=k+1

ε̃il

≤
∑
j

∑
k<j

j∏
l=1

ε̃il(1− log ε̃il)

<
∑
j

j

j∏
l=1

ε̃il(1− log ε̃il).

We can easily choose εi ↑ 1 such that this is finite. Dividing by Q
(n)
11 , we will obtain

a 0 limit (since Q
(n)
11 →∞, 2.3) satisfying both conditions in theorem 2.3.2.

Now we state our theorem for LRD SMPs.

Theorem 3.2.8. Let (Xn) be a long range dependent semi-Markov process. Then,

there exists a long range dependent random process (ξn) such that

ln(Xn
1 ) ≥

n∑
i=1

ξi −O(log n), eventually, a.s.

for all uniquely decodable source codes. Moreover, (ξn) has the same Hurst index as

(Xn).
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Proof. The LRD process (ξn) in the theorem is essentially (ρn). This is seen directly

from lemma 3.1.5. The fact that (ρn) is LRD with the same Hurst index as (Xn)

follows from lemma 3.2.7.

3.2.2 Generalized semi-Markov processes

The definition of the SMP can be generalized substantially by allowing the tran-

sition matrix q(k, l) to depend on Tn. This construction is equivalent to a class of

generalized semi-Markov processes (GSMPs), for which the set of living events is

disjoint for each state (also see e.g. (55) for a description of a GSMP). In this con-

struction, with each state k in the finite set K is associated a set of events Ek each

with its own timer which expires after a time Te for every e ∈ Ek. Assume each timer

has a distribution Te ∼ Fe, which is continuous, so that no two timers expire at the

same time. Let e be the event for which the first timer expires. Then the process

(Xn) will jump at time n = dTee according to a transition matrix qe(k, l) which is

allowed to depend on e. We again assume that qe(k, k) = 0. At this point all timers

are reset, and new timers are generated for each event in El corresponding to the new

state l.

We can reframe this construction as follows. Let (Xn) be a semi-Markov process,

where the transition probability matrix q(k, l, T ) depends on the time since the last

transition. Set T to have the (integer valued) distribution defined as follows: P (T =

n) = P (n − 1 ≤ minTe < n). Also define q(k, l, n) =
∑

e∈Ek qe(k, l)P (argminTe =

e|T = n).

Note again that the tuple (Xn, Tn) is a Markov chain. We say that the GSMP is

long range dependent, when this Markov chain is long range dependent. We prove

the following theorem for this construction.

Theorem 3.2.9. Let (Xn) be a long range dependent GSMP. Then, there exists a
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long range dependent random process (ξn) such that

ln(Xn
1 ) ≥

n∑
i=1

ξi −O(log n), eventually, a.s.

for all uniquely decodable source codes. Moreover, (ξn) has the same Hurst index as

(Xn).

Proof. Simply use the same partitioning of the state space as was done in the proof

of lemma 3.2.7, and observe that the proof does not depend on the transition proba-

bilities.

3.2.3 Achievability and Wyner-Ziv waiting times

It is well known that the above lower bounds are achievable by many classes of

optimum lossless codes. e.g. Huffman coding achieves ln(Xn
1 ) ≤ − logP (Xn

1 ) +O(1).

It is interesting to also consider the performance of algorithms based on the popular

Lempel-Ziv compressor.

Lempel-Ziv type lossless compression schemes (62) have been immensely popular

due to their practicality and universality. The central idea in these schemes is to

use the past realization of the random process as a codebook for compression. The

input string is incrementally partitioned into phrases, each phrase corresponding to

the shortest substring that has not so far occurred in the past phrases. The encoder

then sends an index of the matched phrase to describe the new phrase. Matched

phrases are likely to get longer as more of the string is partitioned in this way, since

more phrases are continually added to the codebook.

In an idealized version of this scheme, we may imagine that a two sided stationary

process is being compressed, with the infinite past of the process already decoded and

available at the receiver (58; 59). To communicate the string Xn
1 to the receiver, the
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encoder looks for the closest index i in the past where this string appears exactly, i.e.

min{i : Xn−i+1
−i = Xn

1 }.

This index is then sent to the receiver, using the Elias encoding for integers (19) using

only log i+ log log i+ 1 bits.

The index i is referred to as the ‘recurrence time’ of the string Xn
1 . The recurrence

time is related to the probability P (Xn
1 ) using the following result.

Theorem 3.2.10 ((34), theorem 1(i)). Let (Xn) be a finite-valued stationary ergodic

process, and cn an arbitrary sequence of non-negative constants such that
∑
n2−cn <

∞. For the recurrence times Rn we have

logRnP (Xn
1 ) ≤ cn ev. as.

Pick e.g. cn = 3 log n and note that the code lengths satisfy ln(Xn
1 ) ≤ logRn(Xn

1 )+

log logRn(Xn
1 ) + 1. We can easily modify this scheme to transmit (Xn

1 ) exactly using

at most n log |K| bits whenever logRn(Xn
1 ) > n log |K|. This ensures that the code

length is at most logRn(Xn
1 ) + O(log n). Combining this with the last theorem, we

conclude that for the idealized Lempel-Ziv scheme,

ln(Xn
1 ) = − logP (Xn

1 ) +O(log n).

3.3 Lossy coding

We consider the problem of representing Xn
1 within distortion Dn, i.e.

1
n

∑n
i=1 d(Xi;Yi) ≤ Dn. Define φn(Xn

1 ) = Y n
1 to be the code at block length n,

and ln(Xn
1 ) be the corresponding representation length defined by the invertible

mapping ψ : K̂n → {0, 1}∗/{∅}. We can show that
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Lemma 3.3.1. Let cn satisfy
∑

2−cn <∞.

ln(Xn
1 ) ≥ − logP (φn(Xn

1 ))− cn ev. a.s.

Proof.

P (ln < − logP (φn(Xn
1 ))− cn) = P (

2−ln

P (φn(Xn
1 ))

> 2cn)

≤ 2−cnE

[
2−ln

P (φn(Xn
1 ))

]
= 2−cn

∑
xn1

2−ln(xn1 )

≤ 2−cn .

Here the second equality follows simply by expanding the expectation, and the last

inequality is a result of Kraft’s inequality. The lemma follows through Borel-Cantelli

lemma using the assumption on cn.

Rewriting the first term on the RHS,

− logP (φn(Xn
1 )) = − log

P (Xn
1 , φn(Xn

1 ))

P (Xn
1 |Y n

1 )
(3.6)

= − logP (Xn
1 ) + logP (Xn

1 |Y n
1 ). (3.7)

This equation relates the aggregate entropy density process − logP (Xn
1 ) to two other

quantities. The first one, − logP (φn(Xn
1 )), is closely related to the bit-length process

as we just argued. The second one, − logP (Xn
1 |Y n

1 ), will turn out to be related to

the distortion process dn = d(Xn;Yn). Consider for instance a distortion function

such that Xn is recoverable from dn and Yn. Then, we would have − logP (Xn
1 |Y n

1 ) =

− logP (dn1 |Y n
1 ), which we can interpret as ‘the information lost in distortion’.

Now, assuming that the source has LRD entropy density (e.g. it belongs to the

class of sources described in section 3.2), this induces long range dependence in at

least one of these two objects. Qualitatively, a tradeoff is revealed between rate (as
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tied to the bit-length process) and distortion in the context of long range dependence.

In this work, we will investigate a fixed distortion scenario, and show that the code

length process must exhibit LRD.

To make this more concrete, assume d(k; j) is a balanced distortion measure. Let

(Xn) be a discrete, stationary, ergodic source taking values in a finite set K. For each

n consider a mapping φn(Xn
1 ) : Kn → K̂n where the output alphabet K̂ is also finite.

We consider balanced distortion measures dn(xn1 ; yn1 ) = 1
n

∑n
1 d(xi; yi) with xi ∈ K,

yi ∈ K̂.

Definition 3.3.2. d(x; y) is said to be a balanced distortion measure whenever the

set of possible values d(·; y) takes is identical for each y ∈ K̂.

We are concerned with the problem of finding “minimum length” mappings

φn(Xn
1 ) with the property dn(Xn

1 ;φn(Xn
1 )) ≤ D for each n. Let ψn : K̂n →

{0, 1}∗/{∅}, which maps φn(Xn
1 ) to a variable length binary string. Let ln(Xn

1 ) be

the length of ψn(φn(Xn
1 )) (i.e. the description length at block size n). We allow any

mapping that constitutes a valid code, i.e. any invertible mapping ψn.

It is well known (32) that the average behavior of ln(Xn
1 ) is bounded by the rate

distortion function.

Definition 3.3.3. (Rate distortion function)

Rn(D) := min
P (Xn

1 ,Y
n
1 ):Ed(Xn

1 ;Y n1 )≤D

1

n
I(Xn

1 ;Y n
1 ),

R(D) := lim
n→∞

Rn(D).

Theorem 3.3.4. ((32), prop. 4)

lim inf
1

n
ln(Xn

1 ) ≥ R(D) a.s. .

Going beyond average behavior, one might be interested in the more fine grained

problem of how close the code lengths can get to the rate distortion function. This

65



problem is referred to as the redundancy problem of lossy source coding. The average

redundancy of code lengths E[ln(Xn
1 )] − nR(D) has been studied in the works of

(61; 60). There, the minimum average redundancy has been shown quite generally to

be O(log n).

Here we are concerned with the pointwise redundancy ln(Xn
1 ) − nR(D). This

problem was considered in the work (35), where it was proved that:

Theorem 3.3.5. ((35), theorem 6(ii) ) For any sequence {cn} of positive constants

with
∑

2−cn <∞,

ln(Xn
1 ) ≥ − log Q̃n(B(Xn

1 , D))− cn eventually a.s. .

Here B(Xn
1 , D) is the distortion ball defined by

B(Xn
1 , D) := {yn1 ∈ K̂n : dn(Xn

1 ; yn1 ) ≤ D},

and Q̃n is the probability measure that minimizes E[− logQn(B(Xn
1 , D))] under all

probability measures Qn on K̂n.

Unfortunately, very little can be said about the measures Q̃n, except when (Xn) is

i.i.d, in which case − log Q̃n(B(Xn
1 , D)) = − logQ∗n(B(Xn

1 , D))−O(log n) a.s. where

Q∗n is a product distribution. We aim to produce a more workable lower bound to

ln(Xn
1 )− nR(D).

Our main result will be the following.

Theorem 3.3.6. Let ν = E[− logP (X1|X0
−∞)] be the entropy rate of (Xn). Then

ln(Xn
1 ) ≥ − logP (Xn

1 |X0
−∞)− n(ν −Rl(D))−O(log n) ev. a.s.

Here Rl(D) is the Shannon lower bound to the rate-distortion function, to be

defined in the next section. The advantage of this bound over that in theorem 3.3.5 is
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that the quantity − logP (Xn
1 |X0

−∞) can be written as a running sum of a stationary

random process as

− logP (Xn
1 |X0

−∞) =
n∑
i=1

− logP (Xi|X i−1
−∞). (3.8)

The random process ρn = − logP (Xn|Xn−1
−∞ ) is referred to as the entropy density

process. Consequently, the asymptotic (second order) behavior of ln(Xn
1 ) can gener-

ally be inferred from limit theorems on
∑
ρi, as the stationary ergodic process (ρn)

typically inherits the mixing properties of the source (Xn). The caveat is that the

RHS of 3.3.6 has mean nRl(D)−O(log n), meaning that if the Shannon lower bound

is not tight, the bound is of little interest.

To put this restriction in context, we point out that in the literature of rate-

distortion theory for sources with memory, complete results are rare even in first

order discussions (i.e. calculation of R(D)). In fact, rate distortion functions can be

calculated exactly only in a few special cases (finite state Markov chains with strictly

positive transition matrices (27), Gaussian autoregressive processes (26) ) and even

for those, only for a small range of low distortion. These examples have the property

that the Shannon bound to the rate-distortion function is tight. For all other processes

with memory, one needs to work with bounds on the rate-distortion function, which

is useless for second order discussions.

In the next section we will define the Shannon lower bound to the rate distortion

function for balanced distortion measures, and discuss the conditions under which it

is tight. In section 3.5, we present the proof of our main theorem 3.3.6. Then we

discuss applications of this theorem to fast mixing sources in section 3.6. A one sided

central limit theorem for such sources is given, as well as a discussion of minimum

coding variance. In section 3.7, we proceed to discuss long range dependent sources.

We show through an example that there exist information sources which exhibit long
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range dependent code lengths under any coding scheme operating at the Shannon

lower bound with fixed distortion.

3.4 Shannon lower bound

The Shannon lower bound (SLB) to the rate-distortion function is defined as

follows, (see e.g. (12), problem 10.6.):

Definition 3.4.1 (Shannon lower bound).

Rl(D) := ν − max
X:Ed(X;0)≤D

H(X).

Lemma 3.4.2.

Rn(D) ≥ nRl(D)

Proof. Let Xn
1 ∼ Pxn1 .

min
Xn

1 ∼Pxn1
Edn(Xn

1 ;Y n1 )≤D

I(Xn
1 ;Y n

1 ) = H(Xn
1 )− max

Xn
1 ∼Pxn1 ,

Edn(Xn
1 ;Y n1 )≤D

H(Xn
1 |Y n

1 )

≥ nν − max
Edn(Xn

1 ;Y n1 )≤D
H(Xn

1 |Y n
1 )

(a)
= nν − max

Edn(Xn
1 ;yn1 )≤D

H(Xn
1 |Y n

1 = yn1 )

= nν − n max
X:Ed(X;y)≤D

H(X)

Where the min and max are over joint distributions P (Xn
1 , Y

n
1 ). (a) follows because

the distortion is balanced. The last equality follows because H(Xn
1 ) is maximized by

a product distribution on Xn
1 , and by the concavity of entropy.

3.4.1 Tightness of the SLB

Let x, y ∈ K where K is an additive group. If the distortion can be written as

d(x; y) = d(x − y) for some function d : K → R, then d is referred to as a difference
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distortion measure. For difference distortion measures, the case in which the SLB is

tight is characterized by the following theorem:

Theorem 3.4.3. (Theorem 4.3.1 in (6))

Rl(D) = R(D) iff the source r.v. X can be expressed as the sum of two statistically

independent random variables one of which is distributed according to the probability

distribution that maximizes the expression in 3.4.1. i.e Xn = Yn + Zn where H(Zn)

= maxX:Ed(X,0)≤DH(X).

Proof. We will produce a summary of the proof in (6) as it will be useful later.

We find the rate distortion function by maximizing I(Xn
1 , Y

n
1 ) subject to Xn

1 ∼ Pn

over all joint distributions Qn(Y n
1 |Xn

1 ). For a given Qn(Y n
1 |Xn

1 ), we can also define

Qn(Y n
1 ) =

∑
xn1
Pn(xn1 )Qn(Y n

1 |xn1 ). For most of the proof, we regard the sequences Xn
1

and Y n
1 as discrete random variables. To keep notation uncluttered, we will simply

write X for Xn
1 and Y for Y n

1 . We will use the time indices when they are necessary.

We are given the following optimization problem:

max
Q(y|x)

I(X;Y ) =
∑
x,y

P (x)Q(y|x) log
Q(y|x)

Q(y)
(3.9)

s.t. Q(y|x) ≥ 0 (3.10)∑
y

Q(y|x) = 1 ∀x (3.11)

∑
x,y

P (x)Q(y|x)d(x; y) ≤ D. (3.12)

This is a convex optimization problem. To solve it analytically, we ignore the first

set of constraints, and introduce Lagrange multipliers µx and s < 0 for the next two,

giving the Lagrangian,

J(Q) =
∑
x,y

P (x)Q(y|x) log
Q(y|x)

Q(y)
−
∑
x

µx
∑
y

Q(y|x)− s
∑
x,y

P (x)Q(y|x)d(x; y).

(3.13)
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At this point, we make the substitution log λx = µx
P (x)

. Now taking derivatives with

respect to the Q(y|x) and setting them equal to zero, we find that the optimal solution

should satisfy

Q(y|x) = λxQ(y)esd(x;y) (3.14)

λx = (
∑
y

Q(y)esd(x;y))−1 (3.15)

Q(y|x) =
Q(y)esd(x;y)∑
yQ(y)esd(x;y)

. (3.16)

Assuming for the moment that the solution to the optimization problem gives a vector

Q(y|x) > 0,∀x, y (we skip here the argument that this entails no loss of generality,

see (6) chapter 2, lemma 1), we can eliminate Q(y|x) and write the R(D) curve

parametrically in terms of Q(y) > 0, λx, and s as

D =
∑
x,y

λxP (x)Q(y)esd(x;y)d(x; y), (3.17)

R = sD +
∑
x

P (x) log λx (3.18)

with ∑
x

λxP (x)esd(x;y) = 1. (3.19)

The multiplier s turns out to have a natural interpretation as the slope of the R(Ds)

curve which it parametrizes ((6), theorem 2.5.1). Note that the existence of a solution

Q(y|x) > 0,∀x, y is necessary and sufficient for this formulation.

Now let d(x; y) = d(xn1 ; yn1 ) =
∑n

1 d(xi − yi) :=
∑n

1 d(zi) := d(z) be a difference

distortion measure. We will pick λx = 1
KP (x)

to give a bound on R(D):

R(D) ≥ sD −
∑
x

P (x) logP (x)− logK. (3.20)

We set K =
∑

x e
sd(x;y) =

∑
z e

sd(z) so that (3.19) is satisfied. Note that we are able

to do this because the sum is now independent of y. Maximizing the bound with
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respect to s, we see that

D =
∑
z

d(z)
esd(z)∑
z′ e

sd(z′)
. (3.21)

Combining (3.20) and (3.21) we can rewrite the bound as

R(D) ≥ H(X) +
∑
z

esd(z)∑
z′ e

sd(z′)
log

esd(z)∑
z′ e

sd(z′)
(3.22)

= H(X)−H(Z) (3.23)

where Z = Zn
1 is the random variable having distribution g(z) = gn(zn1 ) = es

∑
d(zi)

K
.

We note that this is the maximum entropy distribution subject to Ed(Z) < D, giving

the expression for the Shannon lower bound.

To summarize, we observe that the SLB is tight if and only if there is a positive

vector Q(y), summing up to 1 and satisfying 3.14 with the given choice of λx, which

can now be written as

Qn(yn1 |xn1 )Pn(xn1 ) = Qn(yn1 )
1

K

n∏
1

esd(xi−yi). (3.24)

We recognize this as the construction described in the statement of the theorem,

namely that Xn
1 can be constructed from Y n

1 ∼ Qn by passing it through an i.i.d.

channel with transition probability esd(xi−yi)

K
.

Although the theorem is stated for difference distortion measures, the proof gen-

eralizes to balanced distortion measures without alteration (also see (27) for a partial

discussion). To state the general version, let Φy, y ∈ K̂, be the permutation function

with d(x; y) = d(Φy(x); 0), ∀x ∈ K, for a balanced distortion d. K and K̂ are now

arbitrary finite sets. Then we have:

Theorem 3.4.4. Rl(D) = R(D) iff the source r.v. X admits the following charac-

terization.

Xn = ΦYn(Zn)
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where Zn ∈ K are i.i.d and independent from Yn with H(Zn) = maxX:Ed(X;0)≤DH(X).

Proof. Following the preceding proof where for difference distortion measures it is

defined d(z) := d(x − y) = d(x; y), for balanced distortions, we similarly define

d(z) := d(Φ−1
y (x)) = d(x; y). Equation 3.24 becomes:

Qn(yn1 |xn1 )Pn(xn1 ) = Qn(yn1 )
1

K

n∏
1

esd(Φ−1
yi

(xi)).

This is equivalent to requiring that there exist a random variable Y n
1 such that the

above construction is possible - Xn = ΦYn(Zn), with Zn i.i.d. distributed accord-

ing to esd(z)∑
z e
sd(z) . But this is the distribution which results from the maximization

maxX:Ed(X;0)≤DH(X) (with D parametrized by the value of s), proving the theo-

rem.

Immediate examples of information sources which admit such a characterization

are explicit constructions where an underlying process is observed through a memo-

ryless, time invariant channel (e.g. hidden Markov models). There also exist more

surprising examples however, for instance some finite state Markov chains (27) and

autoregressive processes (26).

While the Shannon lower bound is known to be asymptotically tight for small

distortions quite generally (39), it is in general a difficult question as to when such a

decomposition will exist.

3.5 Pointwise lower bound

Once the mapping φn has been chosen, the following lemma (33) provides a point-

wise lower bound on the code length process.

Recall that by (3.3.1), for any sequence {c(n)} of positive constants with
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∑
2−c(n) <∞ we have:

ln(Xn
1 ) ≥ − logP (φn(Xn

1 ))− c(n), eventually, a.s. . (3.25)

Rewriting the first term on the RHS,

− logP (φn(Xn
1 )) = − log

P (Xn
1 , φn(Xn

1 ))

P (Xn
1 |φn(Xn

1 ))
(3.26)

= − logP (Xn
1 ) + logP (Xn

1 |φn(Xn
1 )). (3.27)

Theorem 3.5.1. Let φn be a series of codes operating at fixed distortion level Dn ≤

D, ∀n for some balanced distortion measure d. Then

ln(Xn
1 ) ≥ − logP (Xn

1 )− n(ν −Rl(D))−O(log n) ev. a.s.

Proof. Combining (3.25) and equation (3.27), we have

ln(Xn
1 ) ≥ − logP (Xn

1 ) + logP (Xn
1 |φn(Xn

1 ))−O(log n), ev. a.s. (3.28)

Define S(yn1 ) = {xn1 : dn(xn1 ; yn1 ) ≤ D}. For balanced distortion measures, |S|n :=

|S(yn1 )| does not depend on yn1 . We will argue that:

Lemma 3.5.2.

log |S|n ≥ − logP (Xn
1 |φn(Xn

1 ))−O(log n) eventually, a.s. .

Proof.

P (− logP (Xn
1 |φn(Xn

1 )) ≥ log |S|n + cn) (3.29)

= P (
1

|S|nP (Xn
1 |φn(Xn

1 ))
≥ 2cn) (3.30)

≤ 2−cnE

[
1

|S|nP (Xn
1 |φn(Xn

1 ))

]
. (3.31)
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For any pair of random variables Xn
1 , Y

n
1 with Xn

1 ∈ S(Y n
1 ) we have

E

[
1

P (Xn
1 |Y n

1 )

]
=
∑
yn1

∑
xn1∈S(yn1 )

P (xn1 , y
n
1 )

P (xn1 |yn1 )

=
∑
yn1

P (yn1 )
∑

xn1∈S(yn1 )

P (xn1 |yn1 )

P (xn1 |yn1 )

≤
∑
yn1

P (yn1 )|S(yn1 )| = |S|n,

where the inequality is due to the fact that only those xn1 with P (xn1 |yn1 ) > 0 contribute

to the inner sum.

We conclude that:

P (− logP (Xn
1 |φn(Xn

1 )) ≥ log |S|n + cn) ≤ 2−cn .

Applying the Borel-Cantelli lemma with e.g. cn = 2 log n, we get the desired result.

Define R∗n(D) = ν+ 1
n

log 1
|S|n . Lemma 3.5.2 combined with equation (3.28) gives:

ln(Xn
1 ) ≥ − logP (Xn

1 ) + n(R∗n(D)− ν)−O(log n), ev. a.s. (3.32)

Lastly, we prove:

Lemma 3.5.3.

n|R∗n(D)−Rl(D)| = O(log n).

Proof. Since d is balanced, notice that dn(xn1 ; yn1 ) only depends on the ‘type’ (the type

of a string is a vector of counts of the appearances of each symbol in the string) of

Φyn1
(xn1 ). (Recall that Φ is the permutation with the property d(x; y) = d(Φy(x), 0).)

By well known arguments resulting from the combinatorics of types (see e.g. chapter

2 of (14)), we know

(n+ 1)−|K|2nH(X) ≤ |S|n ≤ (n+ 1)|K|2nH(X),
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where X has the distribution that maximizes H(X) subject to Ed(X, 0) ≤ D. Taking

logarithms, we get

| log |S|n − max
Ed(X,0)≤D

nH(X)| = O(log n).

The result follows by the definitions of R∗n(D) and Rl(D).

Combining lemma 3.5.3 with eq. 3.32 we conclude the proof of the theorem.

3.5.1 Proof of theorem 3.3.6

Having proved theorem 3.5.1, it only remains to show that:

Lemma 3.5.4.

− logP (Xn
1 ) ≥ − logP (Xn

1 |X0
−∞)−O(log n), ev. a.s. .

Proof. We argue as in (1) that

E

[
P (Xn

1 )

P (Xn
1 |X0

−∞)

]
≤ 1, (3.33)

and thus

P (− logP (Xn
1 |X0

−∞) ≥ − logP (Xn
1 ) + cn) (3.34)

= P (
P (Xn

1 )

P (Xn
1 |X0

−∞)
) ≥ 2cn) (3.35)

≤ 2−cnE

[
P (Xn

1 )

P (Xn
1 |X0

−∞)

]
≤ 2−cn . (3.36)

Picking cn = 2 log n and invoking the Borel-Cantelli lemma completes the proof.

3.6 Mixing sources

Define the function ρn = − logP (Xn|Xn−1
−∞ ). Theorem 3.3.6 can be re-written as

ln(Xn
1 ) ≥

n∑
i=1

(ρi − ν) + nRl(D)−O(log n) ev. a.s. .
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This allows us to bound the limiting behavior of the code length sequence by applying

well known limit theorems to the stationary sequence ρn. For instance, when (Xn)

are i.i.d., it follows that (ρn) is also an i.i.d. sequence. It can easily be shown that

the variance of ρn = − logP (Xn|Xn−1
−∞ ) is bounded:

Lemma 3.6.1. E[ρ2
1] <∞.

Proof.

E[ρ2
1] = lim

N→∞

∑
x1−N

P (x0
−N)P (x1|x0

−N) log2 P (x1|x0
−N)

≤ lim
N→∞

2
∑
x1−N

P (x0
−N) = 2K,

since P log2 P terms are bounded above by 2.

Therefore (ρn) satisfies a central limit theorem with limiting variance var[ρ0]. It

follows that for memoryless, finite state sources (Xn):

Corollary 3.6.2. There exists a sequence of random variables (zn) s.t.

ln(Xn
1 )− nRl(D)√

n
≥ zn

with zn
d→ N(0, var[ρ0]).

When (Xn) are not i.i.d, but sufficiently fast mixing, one would expect that the

same holds for the sequence (ρn). In general, suppose that the sequence

σ2 = var(ρ0) + 2
∞∑
i=1

cov(ρ0, ρi) (3.37)

converges. Sufficient conditions for this to hold have been studied in (33). The

convergence holds, for instance, when (Xn) is a finite state, finite order Markov source,

or more generally when (Xn) has the following mixing properties (50):

α(k) = O(k−336) and γ(k) = O(k−48)
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with

α(k) := sup{|P (B ∩ A)− P (B)P (A)|;

A ∈ F(X0
−∞), B ∈ F(X∞k )},

γ(k) := max
x∈K

E| logP (X1 = x|X0
−∞)− logP (X1 = x|X0

−k)|.

An easy corollary to theorem 3.3.6 for the above cases is the following one sided

central limit theorem.

Corollary 3.6.3. There exists a sequence of random variables (zn) s.t.

ln(Xn
1 )− nRl(D)√

n
≥ zn

with zn
d→ N(0, σ2).

We refer to lim inf 1
n
E[(ln(Xn

1 ) − nRl(D))2] as the coding variance. Then σ2 is a

lower bound on the minimum coding variance. In the memoryless case, this can easily

be calculated as var(− logP (X0)). In general, for sources that meet the Shannon

lower bound, and for which the sum in (3.37) is absolutely summable, we conclude that

the minimum coding variance is strictly positive unless ρn is equal to a deterministic

constant. This confirms the conjecture raised in (35) in a more general setting.

What is perhaps more interesting is that minimum coding variance for lossy coding

that meets the Shannon lower bound admits a lower bound that is independent of

the distortion level D and is equal to the minimum lossless coding variance. 1 This is

surprising, because it implies that the minimum coding variance can be discontinuous

at distortion level Dmax := infd{R(d) = 0}. Consider an information source for

which the Shannon lower bound holds with equality for the entire range of distortions

0 ≤ D ≤ Dmax. The i.i.d. Xn ∼ Bernoulli(p) process with Hamming distortion

measure is one such source. It is easy to show that:

1For the lossless case see (45),(46).
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Lemma 3.6.4. For D = Dmax + ε, there exists an achievable coding scheme with

ln(Xn
1 ) ≤ 1 eventually a.s. .

Proof. Without loss of generality, let p ≤ 1
2
. Note that Dmax = p. We code as follows.

If
∑n

i=1Xi < n(p + ε), we map to all zeros. This is within distortion Dmax + ε.

Otherwise, we transmit the exact string Xn
1 . We use a 1 bit flag to indicate which

event happens. Since we know

P (
n∑
i=1

Xi ≥ n(p+ ε)) ≤ e−O(n),

the error event stops happening eventually almost surely by Borel-Cantelli, thus prov-

ing the lemma.

This shows that the minimum coding variance is 0 when D = Dmax + ε for any ε,

while it is strictly non-zero when D = Dmax.

3.7 Long range dependent sources

The results in the previous section imply that for sufficiently fast mixing informa-

tion sources, the optimal pointwise redundancy in the code length process is bounded

below by an order
√
n random process. In this section, we investigate the case when

the memory in the source decays much more slowly.

Assume that the entropy density (ρn) is LRD with Hurst index 1
2
≤ H ≤ 1. From

theorem 3.3.6, we conclude that the process ln(Xn
1 ) − Rl(D) is lower bounded by

the partial sums of a zero-mean LRD process with Hurst index H and therefore the

pointwise redundancy in code length is lower bounded by a process that is at least

of order nH . The result is true for any coding algorithm with fixed distortion that

has average code length equal to the Shannon lower bound. In other words, long

78



range dependence is an information-theoretic quantity that persists under any coding

scheme. This result was first suggested in (45) in the context of lossless coding of

an LRD renewal process. The extension to the lossy case is important, because in

practice, long range dependence is observed in the context of coding with distortion

(e.g. at the output of a variable bit-rate video coder (5; 22; 52; 21)).

Therefore efforts to mitigate long range dependence using clever coding might be

futile, at least in the constant distortion case. To maintain a less bursty rate, one

might try to use codes with variable quality, in which case we conjecture that the

distortion function will likely end up being long range dependent.

This entire discussion hinges on the fact that there exists information sources for

which the entropy density (ρn) is LRD, and for which the Shannon lower bound is

tight. Below we construct an example process with these properties, demonstrating

that the above discussion is not vacuous.

3.7.1 Example

The first example of a concrete information source which has (ρn) LRD was pre-

sented in (45). There it is proved that if (Xn) is a stationary discrete time LRD

renewal process with Hurst index H, then ρn = − logP (Xn|Xn−1
−∞ ) is also LRD with

identical Hurst index H.

Here we demonstrate an information source such that (ρn) is LRD with Hurst in-

dex H for which the Shannon lower bound is tight for some strictly non-zero distortion

D > 0.

Let X1(n) ∈ {0, 1} be an LRD renewal process with Hurst index H. Let X2(n) ∈

{0, 1} be an i.i.d. Bernoulli(p) process. Let X1 be independent of X2. Define

Xn = (X1(n), X2(n)) ∈ {0, 1}2,
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with d(x; y) = 1− δ(x = y) for x, y ∈ {0, 1}2.

Note that we are able to write

Xn = (X1(n), X2(n)) = (X1(n), 0)⊕ (0, X2(n))

for the appropriate addition operation defined on {0, 1}2. Since d is a difference

distortion measure, and the source can be decomposed into a group sum of i.i.d.

components, by theorem 3.4.3, we conclude that the Shannon lower bound holds for

this source for a strictly non-zero distortion level D.

By construction, we also have:

ρn = − logP (Xn|Xn−1
−∞ )

= − logP (X1(n)|(X1)n−1
−∞ )P (X2(n))

= − logP (X1(n)|(X1)n−1
−∞ )− logP (X2(n))

:= ρ1(n) + ρ2(n),

which is LRD with Hurst index H by virtue of (ρ1) having this property.

3.8 Achievability for LRD sources

For achievability we will use the well known random code construction. Let Qn

be a distribution on K̂n. An infinite random codebook C drawn i.i.d. from Qn is

known both to the transmitter and the receiver. Let Wn(xn1 ) be the index of the first

yn1 ∈ C such that d(xn1 ; yn1 ) ≤ D (Wn(xn1 ) =∞ if no such match is found). The index

Wn(xn1 ) is transmitted using Elias coding of the integers whenever Wn(xn1 ) <∞. Xn
1

is transmitted as it is using ndlogKe bits otherwise. A 1 bit flag is used to indicate

which has occurred. The performance of this scheme is known to obey the following

((35), theorem 8):
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Theorem 3.8.1.

ln(Xn
1 ) ≤ − logQn(B(Xn

1 , D))

+ 2 log log
2n2

Qn(B(Xn
1 , D))

+O(log n) ev. a.s.

where B(Xn
1 , D) = {yn1 ∈ K̂n : d(xn1 ; yn1 ) ≤ D}.

We can tweak this by sending the exact representation of (Xn
1 ) whenever

− logQn(B(Xn
1 , D)) > ndlogKe, which ensures that

Theorem 3.8.2.

ln(Xn
1 ) ≤ − logQn(B(Xn

1 , D)) +O(log n) ev. a.s.

where B(Xn
1 , D) = {yn1 ∈ K̂n : d(xn1 ; yn1 ) ≤ D}.

We will prove that − logQn(B(Xn
1 , D)) is well approximated by − logP (Xn

1 ) −

n(ν −Rl(D)) given the right choice of output distribution Qn.

Theorem 3.8.3. Let (Xn) ∈ K be a stationary sequence for which Rl(D
′) = R(D′)

for some balanced distortion measure d, for a range of distortions D−ε < D′ ≤ D for

some ε > 0. Then there exists a sequence of codes φn(Xn
1 ) operating at fixed distortion

level Dn ≤ D s.t.

ln(Xn
1 ) ≤ − logP (Xn

1 )− n(ν −Rl(D))−O(
√
n log n) ev. a.s.

We remark that the theorem is true for any source that meets the Shannon lower

bound at distortion level D, however, the error term O(
√
n log n) is too loose to be

meaningful in the fast mixing case, where the fluctuations of − logP (Xn
1 ) are of order

O(
√
n).

Also the condition that the SLB holds for all average distortions in a small range

D − ε ≤ Ed(x; y) ≤ D is usually implied by the slightly weaker condition Rl(D) =

R(D). This claim is discussed in the appendix.
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Proof. By theorem 3.4.4 the source admits the decomposition

Xn = ΦYn(Zn)

where Zn are i.i.d and independent from Yn with H(Zn) = maxX:Ed(X,0)≤DH(X) and

Φy, y ∈ K̂, is the permutation function with d(x; y) = d(Φy(x), 0), ∀x ∈ K, for a

balanced distortion d.

In this construction, we pick Qn to be equal to the distribution of Y n
1 , correspond-

ing to an expected distortion of D− := D− logn√
n

. We assume n sufficiently large such

that logn√
n
< ε, and so that such a decomposition exists. The distribution maximizing

H(X) subject to Ed(X, 0) ≤ D− has the form

Zn ∼
esd(z,0)

K
(3.38)

with K =
∑

x∈K e
sd(x,0), where s < 0 is chosen such that E[d(Zn, 0)] = D−. This can

be seen by introducing the Lagrange multiplier s for the condition Ed(X, 0) ≤ D−

and then solving the unconstrained optimization. Let δn := D −D−. We note that

KnP (xn1 ) =
∑
ŷn1

esd(xn1 ;ŷn1 )Qn(ŷn1 ) (3.39)

and

P (yn1 |xn1 ) =
esd(xn1 ;yn1 )Qn(yn1 )∑
ŷn1
esd(xn1 ;ŷn1 )Qn(ŷn1 )

. (3.40)
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Qn(B(xn1 , D)) =
∑

B(xn1 ,D)

Qn(yn1 ) (3.41)

=
∑

B(xn1 ,D)

e−sd(xn1 ;yn1 )esd(xn1 ;yn1 )Qn(yn1 ) (3.42)

≥
∑

B(xn1 ,D)−B(xn1 ,D−2δn)

(3.43)

∑
ŷn1

esd(xn1 ;ŷn1 )Qn(ŷn1 ) (3.44)

e−sd(xn1 ;yn1 ) esd(xn1 ;yn1 )Qn(yn1 )∑
ŷn1
esd(xn1 ;ŷn1 )Qn(ŷn1 )

(3.45)

≥ KnP (xn1 )e−nsD+2snδn (3.46)∑
B(xn1 ,D)−B(xn1 ,D−2δn)

esd(xn1 ;yn1 )Qn(yn1 )∑
ŷn1
esd(xn1 ;ŷn1 )Qn(ŷn1 )

(3.47)

= KnP (xn1 )e−nsD+2snδn
∑

B(xn1 ,D)−B(xn1 ,D−2δn)

P (yn1 |xn1 ). (3.48)

We can re-write the last term as:

∑
yn1 ∈B(xn1 ,D)−B(xn1 ,D−2δ)

P (yn1 |xn1 ) = (3.49)

∑
zn1 :D−−δn≤ 1

n
d(zn1 ,0)≤D−+δn

P (Zn
1 = zn1 |xn1 ) (3.50)

:= P (Bδ|xn1 ) (3.51)

where Bδ := {zn1 : D− − δn ≤ 1
n
d(zn1 , 0) ≤ D− + δn}.

We show

Lemma 3.8.4.

P (Zn
1 ∈ Bδ|xn1 ) ≥ 1

2
ev. a.s.
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Proof.

P (P (Zn
1 /∈ Bδ|xn1 ) ≥ 1

2
) = (3.52)

P (P (Zn
1 /∈ Bδ|xn1 )P (xn1 ) ≥ 1

2
P (xn1 )) (3.53)

=
∑

xn1 :P (xn1 )≤2P (Zn1 /∈Bδ,xn1 )

P (xn1 ) (3.54)

≤
∑
xn1

2P (Zn
1 /∈ Bδ, x

n
1 ) ≤ 2P (Zn

1 /∈ Bδ) (3.55)

Since d(Zn
1 , 0) is a sum of i.i.d. bounded variables with mean D−, we can bound

P (Zn
1 /∈ Bδ) by a moderate deviations argument. From (16) (1.2) we have for Sn, the

sum of i.i.d. variables,

lim sup
n

n

b2
n

logP (|Sn
bn
| > 1) ≤ −C.

Picking Sn = d(Zn
1 , 0)− nD, bn =

√
n log n gives

P (Zn
1 /∈ Bδ) ≤ e−C log2 n

for some constant C > 0. Since the sequence on the RHS is summable, we deduce by

Borell-Cantelli lemma that

1− P (Zn
1 /∈ Bδ|xn1 ) = P (Zn

1 ∈ Bδ|xn1 ) ≥ 1

2
ev. a.s. . (3.56)

Combining 3.48 with this lemma and noting that logK − sD = ν −Rl(D) (3.20)

gives

Qn(B(xn1 , D)) ≥ 1

2
KnP (xn1 )e−nsD+2nsδ ev. a.s. , (3.57)

− logQn(B(xn1 , D)) ≤ − logP (xn1 )− n(ν −Rl(D)) (3.58)

+O(
√
n log n) ev. a.s. . (3.59)
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Appendix

Let Dc equal the supremum of distortion values such that the Shannon lower

bound is tight. i.e. Dc := sup{d : Rl(d) = R(d)}. Then, assuming balanced distortion

measures, according to 3.4.4, the source admits the decomposition

Xn = ΦYn(Zn) (3.60)

where Zn are i.i.d and independent from Yn with H(Zn) = maxX:Ed(X,0)≤Dc H(X).

One would expect that a similar decomposition exists for all 0 ≤ D ≤ Dc. Indeed,

this is shown to be true for finite state Markov sources under balanced distortion in

(26),(27). Here we will argue that this behavior is quite generally true.

Let xn be the vector in RKn consisting of the probabilities P (xn1 ) for each xn1 ∈ Kn.

Assume K̂ = K and similarly define yn ∈ Kn. Take a balanced distortion function

d(·; ·) with d(x;x) = 0 and d(x; y) > 0 whenever x 6= y. Define matrix Zn ∈ RKnxKn

as having entries {esd(xn1 ;yn1 )}. Now (3.60) can be written as

xn =
1

Kn
Znyn.

In other words, the Shannon lower bound is tight whenever the vector Z−1
n xn has

non-negative entries.

Note that Zn = Z⊗n where Z ∈ RK consists of the entries {esd(x;y)}. Thus Z−1
n =

(Z−1)⊗n. Further note that for any distortion value 0 ≤ D̃ ≤ Dc, the transition

matrix Z̃n will have entries {es̃d(xn1 ;yn1 )} where s̃ ≤ s < 0. i.e. we can write Z̃n = Z◦rn

where r ≥ 1 and ◦ denotes element-wise exponentiation.

Theorem 3.8.5. Let Ds correspond to the value of distortion parametrized by s. If

Rl(Ds) = R(Ds) and (Z◦r)−1Z ≥ 0, then Rl(Dsr) = R(Dsr)

Proof. Let yn = Z−1
n xn ≥ 0 by the assumption Rl(Ds) = R(Ds). Then (Z◦rn )−1xn =

(Z◦rn )−1Znyn ≥ 0 since we assume (Z◦r)−1Z ≥ 0 and yn ≥ 0.
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The condition (Z◦r)−1Z ≥ 0 holds for all r ≥ 1 quite generally. For example

Corollary 3.8.6. (Binary alphabet) Let |K| = 2. Then the Shannon lower bound is

tight for all 0 ≤ D ≤ Dc.

Proof. Let

Z =

 1 a

b 1

 .

Then

Z◦r−1 =
1

∆

 1 −ar

−br 1

 .

Since a, b < 1 and r ≥ 1, one can easily verify that Z◦r−1Z ≥ 0.

Corollary 3.8.7. (Probability of error distortion) Let d(x; y) = δ(x 6= y). Then the

Shannon lower bound is tight for all 0 ≤ D ≤ Dc.

Proof. We can write Z◦r as (1 − esr)I + esr11T. This is a Bose-Mesner Matrix, the

inverse of which can be calculated as

(Z◦r)−1 =
(1 + (|K| − 1)esrI− esr11T

1 + esr(|K| − 2)− e2sr(|K| − 1)
.

We get

(1 + esr(|K| − 2)− e2sr(|K| − 1))(Z◦r)−1Z = (3.61)

(1− es)(1 + (|K| − 1)esr)I (3.62)

+ 11T(es(1 + (|K| − 1)esr) (3.63)

− es(r+1) − esr(1− es)) (3.64)

It can be verified that 1 + esr(|K| − 2)− e2sr(|K| − 1) ≥ 0 and es(1 + (|K| − 1)esr)−

es(r+1) − esr(1− es) ≥ 0 for all r ≥ 1.

In general we have
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Corollary 3.8.8. Let Dc > δ > 0 exist. Then there exists ε > 0 such that Rl(D) =

R(D) for all 0 ≤ D ≤ ε.

Proof. Since d(x;x) = 0 and d(x; y) > 0 whenever x 6= y, limr→∞(Z◦r)−1 = I. Since

Z > 0, there exists sc > −∞ such that Z◦r−1Z ≥ 0 for all s ≥ sc. Since Ds is

monotonically decreasing in s, we have the result.
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Chapter 4

Concluding remarks

Long range dependence shows up surprisingly often in real world data. Here,

we tried to understand how long range dependence arises, in what way long range

dependent processes are transformed as they pass through natural and engineered

systems, and whether it is possible to suppress this property in systems when we

don’t want it.

We adopted a versatile model for long range dependence based on countable state

Markov chains. We have provided conditions under which the growth rate of the

variance of a function of a Markov chain is identical to that of the chain itself. The

theorem implies that many instantaneous functions of such chains share the same

Hurst index. Our results are widely applicable, however there is considerable art in

using them.

In finance, our results imply that while market forces mold prices into roughly a

martingale process, long range dependence still persists in the higher order statistics

of price returns. In queuing networks, we saw that if long range dependent traffic

enters a system, then no choice of routing/scheduling algorithms will alleviate this
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problem. In fact, long range dependence might spread to other nodes in the network

through coupling at shared service points if enough care is not taken.

We made similar observations for variable-length source codes that operate on

information sources which exhibit long memory. As expected, the fluctuations of

the rate function of a coder is lower bounded by the fluctuations of the information

source. The results generalize to lossy source coding, in the case where the codec is

forced to operate at fixed distortion under a balanced distortion measure. The results

collectively suggest that long range dependence is fundamental in an information-

theoretic sense, persisting under all feasible coding algorithms. Therefore efforts to

mitigate long range dependence using clever coding might be futile, at least in the

constant distortion case. To maintain a less variable bit-rate, one might try to use

codes with variable quality, in which case we conjecture that the distortion function

will likely end up being long range dependent.

An overall conclusion from the results of this thesis is that long range dependence

is difficult both to create and to destroy. It acts largely as an invariant under fairly

general classes of transformations. The source of long range dependence should prob-

ably be sought in human actions (as in the case of finance), or complicated natural

systems (such as weather patterns) rather than the simpler systems which process

and manipulate raw data created by such sources.
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