
Cake: Enabling High-level SLOs on Shared Storage

Systems

Andrew Wang
Shivaram Venkataraman
Sara Alspaugh
Randy H. Katz
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-208

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-208.html

November 7, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Cake: Enabling High-level SLOs on Shared Storage Systems

by Andrew Wang

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, in partial satisfaction of the requirements for

the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor I. Stoica

Research Advisor

(Date)

* * * * * * *

Professor R. Katz

Second Reader

(Date)

Cake: Enabling High-level SLOs on Shared Storage Systems

Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz, Ion Stoica
University of California, Berkeley

{awang, shivaram, alspaugh, randy, istoica}@cs.berkeley.edu

Abstract

Cake is a coordinated, multi-resource scheduler for shared dis-
tributed storage environments with the goal of achieving both high
throughput and bounded latency. Cake uses a two-level scheduling
scheme to enforce high-level service-level objectives (SLOs). First-
level schedulers control consumption of resources such as disk and
CPU. These schedulers (1) provide mechanisms for differentiated
scheduling, (2) split large requests into smaller chunks, and (3)
limit the number of outstanding device requests, which together
allow for effective control over multi-resource consumption within
the storage system. Cake’s second-level scheduler coordinates the
first-level schedulers to map high-level SLO requirements into ac-
tual scheduling parameters. These parameters are dynamically ad-
justed over time to enforce high-level performance specifications
for changing workloads. We evaluate Cake using multiple work-
loads derived from real-world traces. Our results show that Cake al-
lows application programmers to explore the latency vs. throughput
trade-off by setting different high-level performance requirements
on their workloads. Furthermore, we show that using Cake has
concrete economic and business advantages, reducing provisioning
costs by up to 50% for a consolidated workload and reducing the
completion time of an analytics cycle by up to 40%.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance attributes

General Terms

Performance, Measurement, Design

Keywords

Consolidation, Storage Systems, Service-Level Objectives, Two-
level Scheduling

1. INTRODUCTION
Datacenter applications can be grouped into two broad classes:

user-facing, latency-sensitive front-end applications, and internal,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’12, October 14-17, 2012, San Jose, CA USA
Copyright 2012 ACM 978-1-4503-1761-0/12/10 ...$15.00.

throughput-oriented batch analytics frameworks. These applica-
tions access distributed storage systems like HBase [2], Cassan-
dra [3], and HDFS [1]. Storage systems are typically not shared be-
tween these classes of applications because of an inability to mul-
tiplex latency-sensitive and throughput-oriented workloads with-
out violating application performance requirements. These perfor-
mance requirements are normally expressed as service-level objec-

tives (SLOs) on throughput or latency. For instance, a web client
might require a 99th percentile latency SLO of 100ms for key-value
writes, and a batch job might require a throughput SLO of 100 scan
requests per second. SLOs reflect the performance expectations
of end users, and Amazon, Google, and Microsoft have identified
SLO violations as a major cause of user dissatisfaction [32, 24].

To satisfy the SLOs of both latency-sensitive and throughput-
oriented applications, businesses typically operate separate, phys-
ically distinct storage systems for each type of application. This
has significant economic costs. First, separate storage systems
must each be provisioned individually for peak load. This requires
a higher degree of overprovisioning and contributes to underuti-

lization of the cluster, both problems in datacenter environments
where cost is a major consideration [6]. Second, segregation of
data leads to degraded user experience from a delayed processing
cycle between front-end and back-end systems. For instance, com-
puting the “friends-of-friends” relation on Facebook might require
loading the current friend list into a back-end storage system, per-
forming the friends-of-friends analysis, and then loading the results
back into the front-end storage system. The necessity of copying
data back and forth prolongs the analytics cycle, directly leading
to degraded user experience [7]. Finally, there is increased opera-

tional complexity from requiring additional staff and expertise, and
greater exposure to software bugs and configuration errors [25].

Consolidating latency-sensitive and throughput-oriented work-
loads onto a single storage system solves these problems. Ide-
ally, both classes of workloads could be consolidated without
sacrificing the dual goals of low latency and high throughput.
Latency-sensitive and throughput-oriented requests would both re-
ceive same performance as if they were running in isolation on a
dedicated system.

However, if a system is not aware of each client’s performance
requirements, a naïve approach to consolidation results in un-
acceptable SLO violations, especially for high-percentile latency
SLOs. An example of this is quantified in Figure 1, where we see
that 99th percentile HBase latency increases from 44ms to 538ms
(~12x) with a naïve consolidation scheme. Furthermore, there ex-
ists a fundamental trade-off between throughput and latency with
rotational media that makes it impossible to simultaneously achieve
both low latency and high throughput. Achieving low latency re-
quires that request queues within the storage system remain short,

while achieving high throughput requires long queues to maximize
utilization and minimize disk head movement.

Many existing solutions for the storage layer operate within the
hypervisor or storage controller, and focus solely on controlling
disk-level resources [23, 29, 21]. However, there is a disconnect
between the high-level SLOs specified for distributed storage sys-
tem operations and disk-level scheduling and performance param-
eters like MB/s and IOPS. Translating between the two requires
tedious, manual tuning by the programmer or system operator. Fur-
thermore, providing high-level storage SLOs require consideration
of resources beyond the disk. Distributed storage systems perform
CPU and memory intensive tasks like decompression, checksum
verification, and deserialization. These tasks can significantly con-
tribute to overall request latency, and need to be considered as part
of a multi-resource scheduling paradigm.

In this paper, we present Cake, a coordinated, two-level schedul-
ing approach for shared storage systems. Cake takes a more holis-
tic view of resource consumption, and enables consolidation of
latency-sensitive and batch workloads onto the same storage sys-
tem. Cake lets users specify their performance requirements as
high-level, end-to-end SLOs on storage system operations, and
does not require manual tuning or knowledge of low-level system
parameters. This is done with a two-level scheduling approach.
First-level schedulers are placed at different points within the sys-
tem to provide effective control over resource consumption. As part
of this, we identify and implement three precepts that are essen-
tial for effective scheduling at a resource: (1) provide mechanisms
for differentiated scheduling, (2) split large requests into smaller
chunks, and (3) limit the number of outstanding device requests.
Cake’s second-level scheduler is a feedback loop which continu-
ally adjusts resource allocation at each of the first-level schedulers
to maximize SLO compliance of the system while also attempting
to increase utilization.

We applied the ideas from Cake to HBase, a distributed stor-
age system that operates on top of HDFS, a distributed file system.
We evaluated Cake using real-world front-end and batch work-
load traces, and found that Cake’s two-level scheduling approach
is effective at enforcing 99th percentile latency SLOs of a front-
end running simultaneously alongside a throughput-oriented batch
workload. This allows users to flexibly move within the latency vs.
throughput trade-off space by specifying different high-level SLOs
on their workloads. We also demonstrate that Cake has concrete
economic and business benefits. By consolidating batch and front-
end workloads onto a shared storage system, Cake can reduce pro-
visioning costs by up to 50% and can reduce the completion time
of an analytics processing cycle by up to 40%.

2. RELATED WORK
Much prior work has examined issues related to sharing

of storage systems, service-level objectives, and multi-resource
scheduling. We address how these bodies of work differ from Cake.

Block-level approaches. Many solutions in this area operate at the
block-level by modifying the storage controller, the hypervisor, or
the operating system. These solutions differ from Cake in that they
only provide block-level guarantees, only consider disk resources,
and tend to focus on throughput rather than high-percentile latency.
Argon provides performance isolation for shared storage clients
using cache partitioning, request amortization, and quanta-based
disk time scheduling [37]. PARDA enables fair sharing among
distributed hosts using a FAST TCP-like mechanism to detect
congestion on a shared storage array [21]. However, these systems
focus on providing guarantees on disk throughput, and PARDA

0 100 200 300 400 500 600

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request latency (ms)

P
e

rc
e

n
ta

g
e

Figure 1: A latency-sensitive front-end application’s 99th per-

centile latency increases from 44ms to 538ms (~12x) when

run concurrently with a throughput-oriented batch applica-

tion. This is because the naïve consolidation strategy results

in unmediated resource contention within the storage system.

concerns itself only with fair sharing, not absolute performance
SLOs. mClock and Maestro use adaptive mechanisms to enforce
storage SLOs in the context of virtual machines and storage arrays
respectively [23, 29]. These systems provide latency guarantees,
but not for 99th percentile latency. There are also many other
systems which focus on fair sharing and quality-of-service in the
storage context [10, 33, 27, 20, 9, 30].

Multi-resource scheduling. Related work has also examined the
domain of multi-resource scheduling for fairness and performance.
Databases bear many similarities in that they also seek to provide
high-level guarantees on storage operations, but differ from our
work in the applied techniques, goals, and setting. Soundarara-
jan et al. used sampling to build application cache and disk perfor-
mance models, and used these models to determine efficient disk
bandwidth and cache partitioning [35]. Cake differs from this work
in that it ties resource allocation back to client SLOs, focuses on
high-percentile latency, and attempts to do this for a layered soft-
ware architecture, not a monolithic database.

Soundararajan and Amza and Padala et al. share our goal of
providing application-level SLOs for layered software architec-
tures [34, 31]. However, these approaches require making modifi-
cations to the kernel or hypervisor, whereas our approach operates
purely from userspace.

Dominant Resource Fairness (DRF) provides a generalization
of fair scheduling to multiple resources [19, 18]. Although not
directly relevant to Cake, DRF could potentially be used as one of
the underlying mechanisms used to adjust end-to-end performance
of clients interfacing with Cake.

Distributed storage systems. A number of papers have examined
techniques for automatically scaling, provisioning, and load
balancing distributed storage system [5, 36, 16, 17, 22, 28, 39].
Some distributed systems, such as Dynamo, have explored the
use of quorum-based request replication to reduce 99th percentile
latency [4, 13]. Many other distributed storage systems have
also been designed for predictable low latency [12, 11]. These
ideas and techniques are complementary to our work with Cake,
which focuses on providing predictable performance on individual
storage nodes in a distributed storage system.

SLOs in the datacenter. Connecting resource allocation to SLOs
takes place at many places within the datacenter. Jockey uses
feedback control and offline performance models to enforce la-
tency SLOs on MapReduce-style jobs [14]. D3 uses deadline in-
formation to allocate bandwidth among network flows more effi-
ciently [40]. DeTail tries to reduce high-percentile latency for net-
work flows [41].

3. BACKGROUND
With the growing popularity of rich web applications, high-

percentile latency SLOs on storage operations are becoming in-
creasingly important. This is because rich web applications display
a request fan-out pattern, where rendering a single page might re-
quire making making many requests to the storage system. In this
scenario, a single slow storage request can dominate the overall re-
sponse time of the page load. For example, constructing a page of
search results might involve making 10 requests in parallel to the
storage system. If the probability of a slow storage request is 10%,
the probability of a slow overall response is 65%. If the probabil-
ity of a slow storage request can be reduced to 1%, the probability
of a slow overall response falls to 10%. Dealing with the latency
tail present at the 95th or 99th percentile is thus one of the more
important considerations of a user-facing storage system [4, 13].

High-level SLOs are specified by three parameters: the priority

of the client sending the request, the client’s performance goal, and
a throughput contract that specifies the amount of load that will be
sent by the client. Performance goals are specified in terms of ei-
ther percentile latency or average throughput. A client could ask
for 99th percentile latency of 100ms on get requests, or ask for a
throughput of 50 scan requests a second. The throughput contract
prevents a client from starving other clients by flooding the sys-
tem with requests. If a client sends more load than its throughput
contract, the extra load can be handled without any performance
guarantees in a best-effort fashion.

Cake addresses the problem of enforcing SLOs in a shared stor-
age environment. To do this, we make the following simplifying
assumptions:

1. We consider a simplified workload model with just two
classes of requests: small, high-priority, latency-sensitive
requests issued by a front-end application and large, low-
priority, throughput-oriented requests issued by a batch ap-
plication. This captures the two broad categories of real-life
datacenter workloads, and examines the problem of consoli-
dating latency-sensitive and throughput-oriented workloads.

2. We do not deal with the problem of SLO admission control,
which requires the system to judge if a workload’s SLO is
attainable based on provisioned hardware resources and the
SLOs of already admitted workloads. Instead, we assume
that the system is provisioned to meet the throughput contract
required by the front-end application, such that in the limit,
the front-end application’s SLO can be met by running no
load from the batch application.

High-level SLO specification in Cake is thus simplified as fol-
lows. The front-end client is set to high priority, and specifies a
percentile latency performance goal. We assume that it is possible
for this performance goal and throughput contract to be met by the
system. The batch client is set to low priority, and specifies a very
high average throughput target. This means the batch client is al-
lowed to use as much capacity of the system as is possible without
impacting the front-end client’s performance.

Figure 2: Architecture of the Cake software stack on a single

storage node. Cake adds first-level schedulers to the RPC lay-

ers of HBase and HDFS. The first-level schedulers are coordi-

nated by Cake’s SLO-aware second-level scheduler.

Making these assumptions allows us to demonstrate Cake’s abil-
ity to enforce SLOs of realistic consolidated workloads without be-
ing hindered by the full scope of providing performance guarantees
for storage systems.

4. ARCHITECTURE
Storage systems are often designed as a number of software com-

ponents that communicate over RPC interfaces. This is true for the
architecture of HBase, a distributed storage system that builds on
top of HDFS, a distributed filesystem. HBase lets client applica-
tions make single and multi-row requests on columns in a table.
When a client request arrives at an HBase slave, the request waits
in a queue until it is assigned an RPC handler. The HBase han-
dler then parses the request and does an index lookup to locate the
HDFS slave with the requested data. HBase then issues a series of
RPCs to the HDFS slave, which is usually colocated on the same
physical machine. The requests to HDFS again wait in a queue un-
til handled, at which point HDFS uses standard file I/O methods to
read the data off disk. This data is returned to the HBase slave, and
then finally to the client application.

This presents a clean separation of resource consumption dur-
ing request processing. The distributed storage system (HBase) is
responsible for CPU and memory intensive operations like main-
taining an index, caching rows, performing checksum verifications,
and decompressing stored data. The distributed filesystem (HDFS)
is essentially a thin layer over the block device, and is responsible
for I/O operations involving the disk. Because these software com-
ponents interact solely over RPC, the RPC layer at each component
is a powerful and practical place to do resource scheduling.

Cake’s two-level scheduling scheme exploits the clean separa-
tion of resource consumption in systems like HBase (Figure 2). We
start by identifying three properties that are necessary for effective
scheduling at a single resource. Cake provides these properties by
adding a first-level scheduler to the RPC layer of each software
component in the storage system. Next, we generalize to the multi-
resource situation. Cake’s second-level scheduler coordinates al-

(a) Using a single, shared
FIFO queue leads to head-
of-line blocking of high-
priority requests.

(b) Lack of preemption
means large requests can
block access to a resource
when scheduled.

(c) Chunking large requests
enables some preemption,
but can lead to decreased
throughput.

(d) Limiting the number of out-
standing requests reduces resource
contention, but can also limit per-
formance.

Figure 3: Many issues arise when attempting to do request scheduling at a resource. First-level schedulers at each resource need to

support differentiated scheduling, chunking of large requests, and limiting the number of outstanding requests to be effective.

location at each of the first-level schedulers to enforce high-level
SLOs of a consolidated front-end and batch workload.

4.1 First-level Resource Scheduling
Resource consumption at a single resource can be modeled as a

software component that issues requests to a hardware device. The
software component issues multiple concurrent requests to the de-
vice as part of processing a higher-level operation like a key-value
read or scan. These requests potentially wait in an on-device queue
to be processed, and the device can potentially process multiple
requests in parallel.

We identified three scheduler properties that are necessary for
effective first-level resource scheduling.

Differentiated scheduling. Figure 3(a) depicts the problem with
putting all incoming requests into a single FIFO queue. High-
priority requests can suffer from head-of-line blocking when they
arrive behind low-priority requests. This is solved by separating
requests to each resource into different queues based on priority
(Figure 3(b)). The first-level scheduler chooses amongst these
queues based on proportional shares and reservations set by the
second-level scheduler [38]. Here, a reservation means assigning
a client a guaranteed slice of a resource by setting aside either an
execution unit or an outstanding I/O slot.

Split large requests. Even with different queues, large requests
can still block small requests if the hardware resource is not pre-

emptible. Here, when a large request is scheduled, it holds the
resource until it completes. Requests can be non-preemptible be-
cause of restrictions of the hardware resource (e.g. I/O issued to the
disk controller), or the structure of the software component (e.g. a
blocking thread pool).

Because both of these circumstances arise in storage systems,
the first-level scheduler needs to split large requests into multiple
smaller chunks (Figure 3(c)). This allows for a degree of preemp-
tion, since latency-sensitive requests now only need to wait for a
small chunk rather than an entire large request. However, deciding
on an appropriate chunk size presents a trade-off between latency
and throughput. Smaller chunks allow finer-grained preemption
and better latency, but result in lower throughput from increased
disk seeks and context switches.

Control number of outstanding requests. A resource can typi-
cally process some number of concurrent requests in parallel (Fig-

ure 3(d)). This number should be chosen to limit queueing at lower
levels, where scheduling decisions are arbitrarily made outside of
Cake by the OS or disk controller. With too many outstanding re-
quests, queuing will increase at lower levels. With too few out-
standing requests, the hardware device is underutilized.

It is not sufficient to choose the number of outstanding requests
based on hardware properties such as the number of disk spindles
or the number of CPU cores. This is because requests can differ
greatly in their resource consumption. A resource might be able to
admit many small requests without becoming oversubscribed, but
a few large requests might saturate the same resource. The level
of concurrency needs to be adjusted dynamically to straddle under-
and overload based on the composition of the workload.

To address this, we borrow ideas from TCP congestion control.
TCP Vegas [8] uses packet RTT measurements as an early indicator
of congestion in the network. Higher than normal RTTs are indica-
tive of long queues at intermediate switches within the network.
Applied to our situation, network congestion is analogous to over-
subscription of a resource. In both cases, latency increases when
additional queuing happens in lower levels.

The first-level scheduler dynamically adjusts the number of out-
standing requests based on measured device latency. As in TCP,
we use an additive-increase, multiplicative-decrease (AIMD) pol-
icy to adjust this number. AIMD provably converges in the general
case [26]. This method is described in further detail in §5.2.

4.2 Second-level Scheduling
Next, we examine the challenges of scheduling in the multi-

resource case, and provide an overview of how Cake’s second-level
scheduler coordinates resource allocation at each first-level sched-
uler to enforce high-level SLOs. Further implementation-specific
details of second-level scheduling are provided in §5.3.

4.2.1 Multi-resource Request Lifecycle

Request processing in a storage system involves far more than
just accessing disk, necessitating a coordinated, multi-resource
approach to scheduling. Figure 4 depicts an example of multi-
resource request processing in a storage system. A read request
arrives at a storage node where it waits to be admitted (1). Once
admitted, the read request uses CPU to deserialize the request body
and find the location of the requested data on disk. Next, the read
request issues a series of reads to the disk, using the time between
disk requests to decompress data in a streaming fashion with the

Figure 4: Processing a single storage system request can lead

to concurrent usage of multiple resources. Enforcing high-level

latency SLOs requires coordinated scheduling at each resource.

CPU (2). Finally, it uses a burst of CPU to verify the integrity of
the data, and then to compress, serialize and send a response (3).

When request processing requires using multiple resources, end-
to-end latency is affected by dependencies between stages of re-
quest processing and also resource contention within the system. A
single stage suffering from resource contention can starve subse-
quent stages of processing of useful work. If this bottleneck can be
identified, reducing resource contention at this stage will improve
performance, but also shifts the bottleneck elsewhere. Improving
overall performance thus requires coordinated measurement and
scheduling at multiple resources.

4.2.2 High-level SLO Enforcement

Scheduling policies can be designed to achieve different goals:
high throughput, real-time deadlines, proportional fairness, max-
min fairness, etc. Cake’s second-level scheduler is designed to
first satisfy the latency requirements of latency-sensitive front-end
clients, then maximize the throughput of throughput-oriented batch
clients. The second-level scheduler does this by collecting per-
formance and utilization metrics at each resource, and then using
this information to make resource allocation decisions at each of
the first-level schedulers. This forms a feedback loop that lets the
second-level scheduler adapt to changes in the workload. Second-
level scheduling decisions are made in two phases: first for disk in
the SLO compliance-based phase and then for non-disk resources
in the queue occupancy-based phase.

The SLO compliance-based phase adjusts disk scheduling allo-
cation based on the performance of the front-end client. This is
because I/O queue time tends to dominate overall latency in stor-
age systems, so meaningful changes in end-to-end latency must
be driven by changes in disk scheduling allocation [21]. If the
latency-sensitive client fails fails to meet its SLO target over the
previous time interval, the second-level scheduler increases the
latency-sensitive client’s disk allocation. Conversely, if the latency-
sensitive client is safely meeting its SLO, the second-level sched-
uler reduces the latency-sensitive client’s disk allocation to increase
batch throughput.

The queue occupancy-based phase balances allocation at other
resources to make full use of a client’s disk allocation. This is nec-
essary because of the inter-stage dependencies described in §4.2.1;
a client could be incorrectly throttled at a non-disk resource. Queue

occupancy is defined as the percentage of time over the scheduling
interval that at least one request from the client was present in the
queue. For instance, a queue occupancy of 100% means that there

SLO performance Action Justification

perf≫ SLO ↓ disk alloc SLO safely met
perf < SLO ↑ disk alloc SLO is not met

Queue occ. at r Action Justification

r > disk ↑ alloc at r bottleneck at r, not disk
r ≪ disk ↓ alloc at r r is underutilized

Table 1: Scheduling rules for the SLO compliance-based and

queue occupancy-based second-level scheduling phases. SLO

compliance-based changes apply to disk. Queue occupancy-

based changes apply to non-disk resources.

was always a request from the client present in the queue over the
interval. Note that low absolute queue occupancy is not necessarily
indicative of over-allocation. If a client has a bursty arrival pattern,
its queue occupancy might never rise above a small percentage.
However, it might still require full use of its allocation during a
burst to meet its SLO.

Examining queue occupancy at each resource allows us to iden-
tify bottlenecks and incorporate the nature of the workload into our
scheduling decisions. We size allocations at non-disk resources us-
ing relative comparisons of queue occupancy. If a resource’s queue
occupancy is the highest across all resources, its allocation is in-
creased additively. This indicates that the client is bottlenecked on
this resource rather than disk, and that the disk allocation is not be-
ing fully utilized. Alternatively, if a resource’s queue occupancy
is substantially lower than the disk’s queue occupancy, its alloca-
tion is decreased additively. This indicates that that the resource is
underutilized and allocation can be decreased.

Together, the two phases of second-level scheduling harmonize
to enforce high-level SLOs (summarized in Table 1). The initial
SLO compliance-based phase decides on disk allocations based on
client performance. The queue occupancy-based phase balances
allocation in the rest of the system to keep the disk utilized and
improve overall performance.

5. IMPLEMENTATION
We applied the Cake multi-resource scheduling model to a con-

crete implementation on HBase 0.90.3 and HDFS 0.20.2 (Figure 2).
We interposed at the RPC layers in both HDFS and HBase, adding
new per-client queues and a first-level scheduler which provides
the three properties described in §4.1. Client requests were sepa-
rated out into different queues based on a “client name” field in the
HBase and HDFS RPC format. HBase and HDFS were also modi-
fied to use a dynamically-sizable thread pool rather than a fixed-size
thread pool or spawning a new thread per incoming request.

We start by describing how we implemented the three first-level
scheduling properties from §4.1 at HBase and HDFS. Implement-
ing the first-level schedulers required choosing appropriate values
for some system parameters; namely, the chunking factor for large
requests at HDFS and the lower and upper latency bounds used to
dynamically size the number of outstanding requests at HBase. We
briefly discuss the sensitivity of these parameters to our tested sys-
tem configuration of c1.xlarge instances on Amazon EC2 with 8
CPU cores, 7GB of RAM, and 4 local disks.

Finally, we describe the operation of the two second-level
scheduling phases outlined in §4.2.2. We cover how the second-
level scheduler adjusts shares and reservations at the first-level
schedulers based on measured performance and queue occupancy,
and the steps taken to improve stability of the algorithm, avoid
under-utilization, and avoid bottlenecks on non-disk resources.

0
2

0
4

0
6

0
8

0
1

0
0

Chunk size

9
9

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

m
s
)

●
●

● ●
●

● ●

●
●

● ●

0
5

1
0

1
5

2
0

2
5

3
0

M
B

p
s

●

DeviceTime

QueueTime

MBps

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Figure 5: We measured the queue time, device processing time,

and throughput of a constant workload with different chunk

sizes. Device time is dominated by seek latency, and remains

fairly constant. Queue time and throughput increase as the

chunk size increases. To achieve low latency at high percentiles,

we split requests into smaller chunks.

5.1 Chunking Large Requests
The Cake first-level scheduler at HDFS splits large read requests

into multiple, smaller chunks. Splitting is not performed at HBase
because it would have required extensive modification of its thread
management. In our evaluation in §6, we found that splitting at
HDFS alone was sufficient because disk access tends to dominate
end-to-end latency.

To determine the proper chunk size in HDFS, we measured how
disk device time, queue time, and throughput varies with the chunk
size using the blktrace tool (Figure 5). We ran a constant batch
workload issuing 4MB read requests to HDFS, which were then
split into smaller chunks at the specified chunk size. We plot the
99th percentile latency of device processing and queue times for the
chunked requests, and the average throughput.

Note that queue time increases as the chunk size increases. The
device processing time remains fairly constant since 99th percentile
latency is dominated by seek time, not rotational latency. Per-
request throughput plateaus after 16KB.

Based on this, we chose to use a chunk size of 64KB for HDFS.
This is because the throughput of an entire 4MB read request is
affected when it is split into more chunks at smaller chunk sizes.
Even though a 4KB chunk size has excellent queue time, it requires
16 times more I/Os than a 64KB chunk size. This makes the sum
of queue time and device time much higher at small request sizes.

We believe that 64KB is an appropriate chunk size for most ro-
tational storage media, since seek time will always be an important
factor for 99th percentile latency. Solid-state storage could likely
support a larger chunk size because of its more efficient random
read performance, but we have not tested this configuration.

5.2 Number of Outstanding Requests
We modified HBase and HDFS to use a dynamically-sized thread

pool for processing requests. Each thread is responsible for a sin-
gle request at a time. The size of each thread pool is adjusted dy-
namically to minimize resource contention at each resource, which
keeps processing time constant.

HBase uses the dynamic sizing mechanism based on TCP Vegas
described in §4.1. Every ten seconds, Cake examines the average
processing latency within HBase over the last interval for single-
row get requests. If the latency is below 6ms, it additively increases
the size of the thread pool by 1. If the latency is above 8ms, it
multiplicatively decreases the size of the thread pool by 25%.

We determined these lower and upper latency bounds empiri-
cally by measuring how the latency of a constant front-end client
workload changes as batch load increases (Figure 6). Batch load

10 20 30 40 50 60 70

0
1

0
3

0

Scan load (# of threads)

A
ve

ra
g

e
 l
a

te
n

c
y
 (

m
s
)

Figure 6: Front-end client latency in HBase increases sharply

after concurrent batch load increases above 40. To avoid this

region, we chose conservative lower and upper latency bounds

of 6ms and 8ms for sizing the HBase thread pool. The 8ms

upper bound is plotted.

0 50 100 150 200 250 300 350

0
1
0

2
0

3
0

4
0

5
0

6
0

Time (seconds)

#
 H

B
a
s
e
 t
h
re

a
d
s

0
5
0

1
0
0

1
5
0

#
 S

c
a
n
 c

lie
n
t
th

re
a
d
s

HBase Pool Size

Scan Load

Figure 7: HBase thread pool size initially increases as the sys-

tem warms up, but decreases as the batch workload steps up

and CPU contention increases. The pool size begins to con-

verge at t = 100, ultimately settling at 8̃ threads by the end of

the experiment.

was increased by adding additional batch client threads making
scan requests, without a throughput limit. We see that front-end
latency increases sharply after 40 threads of scan load. 6ms and
8ms were conservative bounds chosen to avoid this region.

In Figure 7, we show how the dynamic thread pool sizing al-
gorithm responds as batch load changes. We allowed HBase to
dynamically vary its thread pool size between 4 and 72 based on
the above policy. An additional 8 batch client threads were turned
on every 40 seconds. The thread pool size initially increases as the
system warms up, but begins to decrease as batch load increases.
After t = 100, the pool size begins to converge due to AIMD ad-
justments, ultimately settling on a pool size of approximately 8 at
maximum batch load.

These latency bounds will potentially have to be readjusted for
different system configurations, as the configuration affects the
baseline processing latency of the single-row get requests we use
to estimate CPU contention. With faster processors and HBase
software improvements, the appropriate latency bounds might be
lower. However, slightly reducing the bounds is unlikely to mean-
ingfully change 99th percentile latency, especially if the workload
remains disk-bound.

For HDFS, we found that a simple pool sizing policy based on
soft limits worked well. This is because chunking large requests al-
ready gives Cake adequate scheduling control over disk access. We
set a soft-limit on the HDFS thread pool size of 6, which is approx-

imately equal to the number of disks in our system. The pool size is
allowed to temporarily increase by one when a thread blocks on a
non-disk operation, such as reading or writing to a network socket.
This improves utilization while still enforcing the soft-limit on the
number of threads concurrently accessing disk. Using a TCP-like
scheme for determining the HDFS pool size could allow for better
throughput by accurately probing the queue depth on each disk, but
our evaluation in §6.6 shows that the soft-limit policy still achieves
reasonable throughput.

5.3 Cake Second-level Scheduler
The second-level scheduler collects performance and queue oc-

cupancy metrics from HBase and HDFS. Every 10 seconds, it uses
these metrics to decide on new scheduling allocations at each re-
source. This allocation happens in two phases. First, in the SLO
compliance-based phase, it adjusts allocations at HDFS based on
how the latency-sensitive client’s performance over the last inter-
val compares to its stated SLO. Next, in the queue occupancy-based
phase, it balances HBase allocation based on the measured queue
occupancy at HDFS and HBase. We describe in detail the operation
of these two scheduling phases.

5.3.1 SLO Compliance-based Scheduling

Each client’s performance is normalized based on its SLO target
to derive the client’s normalized SLO performance. For instance, if
a client specifies a latency SLO on gets of 100ms but is currently
experiencing latency of 50ms, its normalized performance is 2.0.

The second-level scheduler’s SLO compliance-based allocation
phase is described in Algorithm 1. The second-level scheduler ad-
justs HDFS allocation if the latency-sensitive client’s normalized
performance is significantly below (lines 4-9) or above (lines 10-
15) the performance target specified in its SLO. The lower bound
was necessarily chosen at 1.0 because it indicates that the client
is not meeting its SLO and needs additional allocation. The upper
bound was chosen conservatively at 1.2. This lets other clients use
excess allocation while also preventing the scheduler from prema-
turely releasing allocation due to small fluctuations in performance.
We found that this upper bound worked well in practice and was not
a meaningful tuning parameter for latency SLO compliance.

A simple linear performance model is used to make adjust-
ments to each client’s proportional share (lines 16-20). In both
the perf < 1.0 and perf > 1.2 cases, the linear model targets
an allocation to achieve a normalized performance of 1.0. We also
bound the actual change in allocation to at most 10% of the client’s
current share. This is because the actual behavior of the system
is non-linear, but can be approximated by a linear model over re-
stricted regions. Bounding the step size has the potential effect of
increasing convergence time, but is necessary to improve the sta-
bility of the algorithm.

Reservations are a stronger mechanism than proportional share,
and are set if shares are found to be insufficient. If a client’s
perf < 1.0 and share exceeds 99%, the scheduler will allocate
a reserved handler thread from the shared handler pool and take
away a proportional amount of share (lines 6-7). For instance, if a
client reserves one of two handlers in the shared pool, it releases
50% of share. If perf > 1.2 and share is less than 1%, the sched-
uler will try to return a reserved handler to the shared pool and
again compensate with a proportional amount of share (lines 12-
13). For instance, if a client releases a reserved handler to bring the
shared pool up to three handlers, its proportional share is increased
by 33%. Cake prevents the last shared handler at HDFS from being
reserved to prevent indefinitely blocking control messages such as
heartbeat responses.

Algorithm 1 SLO compliance-based scheduling phase

1: function SLOSCHEDULING()
2: Client l is latency-sensitive client
3: Client b is batch client
4: if l .perf < 1.0 then ⊲ SLO not met
5: if l .hdfs_share > 99% and more handlers then

6: Give (1 / shared pool size) of share to b
7: Reserve additional HDFS handler for l
8: else

9: Give LinearModel() share from b to l
10: else if l .perf > 1.2 then ⊲ SLO exceeded
11: if l .hdfs_share < 1% and l has a reservation then

12: Release one of l’s reserved HDFS handlers
13: Take (1 / shared pool size) of share from b
14: else

15: Give LinearModel() share from l to b
16: function LINEARMODEL()
17: target← min(l.hdfs_share/l .perf , 100%)
18: change← absV al(l.hdfs_share− target)
19: bounded← min(change, l.hdfs_share ∗ 10%)
20: return bounded

Algorithm 2 Queue Occupancy-based scheduling phase

1: function QUEUEOCCUPANCYSCHEDULING()
2: Client l is latency-sensitive client
3: Client b is batch client
4: l .hbase_share ← l .hdfs_share
5: b.hbase_share ← b.hdfs_share
6: if l .hdfs_occ < l.hbase_occ then

7: if more handlers then

8: Reserve an additional HBase handler for l
9: else if l .hdfs_occ > 1.5 ∗ l.hbase_occ then

10: if l.hbase_reservation > l .hdfs_reservation then

11: Release one of l’s reserved HBase handlers

The second-level scheduler will thus adjust both proportional
shares and reservations at the first-level scheduler at HDFS when
making changes in allocation. It tries to first satisfy the SLO
through use of the work-conserving proportional share mechanism,
but will resort to assigning reservations if share alone is insuffi-
cient. The use of both of these mechanisms is important for han-
dling different types of workloads; this will be examined further in
the evaluation in §6.1.

5.3.2 Queue Occupancy-based Scheduling

The queue occupancy-based scheduling phase sizes the latency-
sensitive client’s HBase allocation to fully utilize the client’s
HDFS allocation, while also attempting to avoid underutilization
at HBase. The goal is to quickly balance HBase allocation against
the current HDFS allocation so that changes made in the SLO
compliance-based phase are reflected in end-to-end SLO perfor-
mance. The intuition for comparing the queue occupancy at differ-
ent resources was provided in §4.2.

Queue occupancy-based allocation is described in Algorithm 2.
An initial attempt at balancing allocation is made by setting HBase
shares equal to HDFS shares (lines 4-5) and ensuring that the
latency-sensitive client’s HBase reservation is not reduced below
its HDFS reservation (line 10). However, if an imbalance is de-
tected, the second-level scheduler will take further action by adjust-
ing the latency-sensitive client’s HBase reservation. If the client’s
queue occupancy at HDFS is lower than at HBase, this indicates
that the client is incorrectly bottlenecked at HBase. The second-

level scheduler will increase the client’s HBase allocation to correct
this (lines 6-8). Conversely, if queue occupancy at HDFS is signifi-
cantly greater than occupancy at HBase, the client’s HBase alloca-
tion is decreased (lines 9-11). Cake also prevents the last handler
at HBase from being reserved to avoid blocking control messages
like schema changes or replication updates.

The coefficient of 1.5 on line 10 used for relative queue occu-
pancy comparisons was chosen conservatively. Reducing this co-
efficient could potentially improve batch throughput. However, our
evaluation shows that Cake still achieves reasonable batch through-
put when running a consolidated workload, and that the queue
occupancy-based phase does step reservation down as the workload
varies. We did not find this coefficient to be a significant tuning pa-
rameter in our experiments.

6. EVALUATION
In our evaluation, we start by first examining the dual utility of

both proportional shares and reservations for different workload
scenarios. Then, we demonstrate the need for coordinated, multi-
resource scheduling to meet end-to-end 99th percentile latency tar-
gets. Next, we evaluate the behavior of the second-level scheduler’s
ability to adapt to a range of challenging consolidated workload
scenarios and different latency SLOs. Finally, we demonstrate how
consolidating front-end and batch workloads with Cake can lead to
significant reductions in total analytics time, improving utilization
while still meeting specified front-end latency SLOs.

As stated in §3, we make a number of simplifying assumptions
with Cake. Our evaluation focuses on the setting of a single front-
end workload with a 99th percentile SLO contending with a lower
priority batch workload. While this is sufficient for many real-
world applications, extending Cake to enforce multiple, potentially
contending SLOs is a direction of potential future work (§7).

Cake supports enforcement of throughput SLOs, which is use-
ful in shared batch processing environments. However, throughput
SLOs are significantly easier to enforce than latency SLOs, and this
problem has been examined before in prior work (§2). We omit
these results for space reasons.

All experiments were run on an Amazon EC2 cluster using
c1.xlarge instances. These instances had 8 CPU cores and 7GB
of RAM. HDFS was configured to use the four local disks on each
instance. Unless otherwise noted, we used Yahoo! Cloud Serv-
ing Benchmark (YCSB) clients to generate simulated front-end and
batch load. Front-end clients were configured to make single-row
requests for 8KB of data, with a variety of workload patterns. Batch
clients were configured to make 500-row requests for 4MB of data,
with unthrottled throughput.

6.1 Proportional Shares and Reservations
In this series of experiments, we evaluated the effectiveness of

proportional shares and reservations at controlling latency at a sin-
gle resource. HDFS was set to use a soft-limit of 6 handler threads
in its thread pool. HBase was set to effectively a thread-per-request
model by fixing the size of the HBase thread pool to be greater
than the number of client threads, such that no queuing happened
at HBase. This made HDFS the sole point of scheduling within
the system. We evaluated these mechanisms by fixing different
proportional share and reservation values at HDFS, and tested at
different levels of constant front-end load contending with an un-
throttled batch load.

Figure 8 plots the 99th percentile latency of the front-end client
when varying the HDFS reservation and amount of front-end load.
At low front-end load (x = 50), front-end latency suffers with-
out a reservation. This is because the proportional share scheduler

Front−end load (queries/s)

9
9

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

m
s
)

●
●

●
●

●

●

●

●

●

●

Res−0 Share 50−50

Res−1 Share 50−50

Res−2 Share 50−50

Res−3 Share 50−50

Res−4 Share 50−50

50 100 150 200

0
1

0
3

0
5

0
7

0

Figure 8: When the front-end client is sending low through-

put, reservations are an effective way of reducing queue time

at HDFS. Proportional share is insufficient because it will run

batch requests when the front-end queue at HDFS is empty,

forcing newly arriving front-end requests to wait in the queue.

0
1

0
3

0
5

0
7

0

Reservations

9
9

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

m
s
)

● ● ● ●
●

●

Share−50−50

Share−75−25

Share−90−10

Share−99−1

Res−0 Res−1 Res−2 Res−3 Res−4

0
1

0
3

0
5

0
7

0

Figure 9: When the front-end is sending high throughput, the

front-end queue at HDFS remains full and proportional share

is an effective mechanism at reducing latency. Reservations are

not as effective for this type of workload.

is work conserving and will choose to run a batch request when
the front-end queue is empty, which happens frequently with low
front-end load. However, as reservation is increased, front-end la-
tency progressively improves. This is because reserved handlers
will idle rather than running a batch request, allowing newly arriv-
ing front-end requests to be handled sooner. At high front-end load,
the latency values converge since both batch and front-end queues
remain full and front-end latency is now dominated by waiting for
other front-end requests, not batch requests.

Figure 9 shows the effectiveness of shares in these high-load sce-
narios. We fixed front-end load at 200 queries per second and ran
different combinations of share and reservations. First, we again
observe that reservations do not have a significant effect on latency
at high load. However, proportional share does have a measurable
effect: changing share from an even 50-50 to a more lopsided 90-10
improved the front-end’s latency by approximately 20%.

In short, both shares and reservations have useful properties de-
pending on the workload. Reservations are necessary at low load
when arrival patterns are bursty and queues often become empty.
Proportional share becomes effective at high load and allows for
more granular adjustments in performance. Cake leverages both
for different workload scenarios, allocating reservations when nec-
essary but otherwise using proportional share.

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Front−end load (queries/s)

9
9
th

 p
e
rc

e
n
ti
le

 l
a
te

n
c
y
 (

m
s
)

● ● ●
●

●

●

●
●

● ●
● ●

Scheduling only at HDFS

●

Thread−per−Request HBase

Thread−per−Request HDFS

Baseline HBase

●

FIFO HBase

FIFO HDFS

40 80 120 160 200 240

Figure 10: A thread-per-request policy at HBase leads to

increased latency at both HBase and HDFS. FIFO has un-

bounded HBase queue time as load increases, but HDFS con-

tinues to provide good latency. This can be improved upon by

non-FIFO scheduling policies.

6.2 Single vs. Multi-resource Scheduling
Next, we ran experiments to demonstrate the importance of co-

ordinated, multi-resource scheduling. We tested the extent of the
scheduling ability of the two possible single-resource configura-
tions: (1) only scheduling at HDFS and (2) only scheduling at
HBase. We again used YCSB to simulate front-end and batch
clients. Front-end load was varied by adding an additional thread
for each additional 10 queries per second increase.

We measured the 99th percentile of the front-end client in two
places: the overall latency of requests to HBase (which includes
time spent waiting for HDFS), and the latency of requests made
to HDFS on behalf of the front-end. We compare these against
the baseline total latency of a front-end client running without a
contending batch workload.

First, we examine scheduling just at HDFS, without HBase
scheduling. HDFS was configured to use a strong scheduling pol-
icy favoring the front-end client, with a reservation of 5 and share
of 90-10 for the front-end. HBase was configured to not schedule,
using either a thread-per-request model or a fixed-size thread pool
with a single FIFO request queue.

The results are shown in Figure 10. With thread-per-request, la-
tency increases when front-end load goes beyond approximately
160 queries/s. This is indicative of increased CPU contention
within HBase when running many concurrent threads. With FIFO,
latency increases greatly as additional front-end load is added. This
is due to head-of-line blocking in HBase; without separate queues
and differentiated scheduling, front-end requests must wait behind
batch requests to run.

Next, we examine scheduling just at HBase, without HDFS
scheduling. HBase was configured to use a proportional share of
99-1 strongly favoring the front-end client. HDFS was configured
either with a thread-per-request model or FIFO with a fixed size
thread pool and splitting of large requests.

The results are shown in Figure 11. With thread-per-request,
latency increases greatly since the number of outstanding requests
to disk is not limited. Interestingly, performance improves slightly
at higher front-end load because of a higher proportion of front-end

Front−end load (queries/s)

9
9
th

 p
e
rc

e
n
ti
le

 l
a
te

n
c
y
 (

m
s
)

●

●

●
●

●

●

● ● ● ● ●
●

Scheduling only at HBase

●

Thread−per−Request HBase

Thread−per−Request HDFS

Baseline HBase

●

FIFO HBase

FIFO HDFS

40 80 120 160 200 240

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Figure 11: A thread-per-request policy at HDFS displays

greatly increased latency compared to a basic FIFO policy with

chunked request sizes.

0 50 100 150 200

0
1

0
0

2
0

0
3

0
0

4
0

0

Time (seconds)

9
9

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

m
s
)

Figure 12: Cake quickly brings latency below the specified SLO

of 150ms after approximately 40 seconds. Afterwards, Cake

conservatively decreases the front-end’s allocation when it sees

the SLO is safely being met until it converges at t = 150.

requests arriving at HDFS, but is still poor in absolute terms. With
FIFO and chunking of large requests, latency is fairly constant at
around 200ms, but still much higher than baseline, or the 100ms
achieved by scheduling at just HDFS. This is because, even with
chunking, front-end and batch requests still wait in a single queue.

Together, these results demonstrate that neither single-resource
scheduling option can provide the latency control we require.
Thread-per-request models fail to limit the number of outstanding
requests, leading to severe resource contention and high latency.
Using FIFO with a thread pool reduces resource contention, but is
still unable to effectively control latency because all requests still
wait in a single queue.

6.3 Convergence Time
In this experiment, we evaluate the ability of the second-level

Cake scheduler to converge to a specified latency SLO. We used
YCSB to simulate a fixed front-end workload of 100 queries per
second running alongside an unthrottled batch client. At the start
of the experiment, both clients had 50% share and no reservation
at each resource. A 150ms 99th percentile SLO was placed on the
front-end workload.

0 500 1000 1500

0
5
0

1
0
0

1
5
0

Time (seconds)

T
h
ro

u
g
h
p
u
t
(q

u
e
ri

e
s
/s

)

Diurnal workload

Figure 13: Front-end get throughput varies according to the di-

urnal pattern from a one-day trace of a real web-serving work-

load. The workload shows a 3x peak-to-trough difference.

Figure 12 depicts the front-end client’s 99th percentile latency
over time. We observe that latency is initially around 400ms, then
decreases rapidly due to the changes made by the second-level
scheduler. The 99th percentile latency falls below the SLO after ap-
proximately 40 seconds, or four second-level scheduler intervals.
When Cake detects that the front-end is easily meeting its SLO,
the front-end’s allocation is gradually reduced as described in §5.3.
Latency gradually increases over time, until it eventually converges
to the SLO value at approximately t = 150. This convergence time
could potentially be reduced by decreasing the scheduling interval
from 10 seconds, but appears sufficient.

6.4 Diurnal Workload
To evaluate Cake’s ability to adapt to changing workload pat-

terns, we used an hourly trace from a user-facing web-serving
workload from one of our industrial partners (Figure 13). The trace
was sped up to run the full one-day trace in a 24 minute period,
resulting in a highly dynamic pattern. Note that there is roughly a
3x difference in peak-to-trough load, with the front-end load peak-
ing at around 140 queries/s. We used YCSB to generate load in
this experiment, with the front-end client running the diurnal trace
alongside a batch client with unthrottled throughput.

We ran this experiment with three different 99th percentile la-
tency SLOs to illustrate the latency vs. throughput trade-off. Fig-
ure 14 depicts the CDF request latency of each run over the entire
interval. We see that Cake’s empirical 99th percentile performance
met the target for the 150ms and 200ms SLOs. Cake narrowly
misses meeting the 100ms SLO target, providing an actual 99th per-
centile latency of 105ms. This is somewhat expected given that the
100ms SLO is only 2x the baseline 99th percentile latency of the
system. Even minor degrees of queuing greatly affect request la-
tency and leads to SLO violations. Additionally, the compressed
diurnal workload is changing quite rapidly. This means latency can
suffer while the second-level scheduler converges to a new alloca-
tion. This could be ameliorated by looking for additional ways to
drive down latency in the first-level schedulers and improve conver-
gence time of the second-level scheduler. However, in light of the
generally good SLO compliance of the system, we did not further
pursue these changes.

Table 2 shows the batch throughput for the same three diurnal
experiments. As expected, batch throughput increases significantly
when the front-end SLO is weakened from 100ms to 150ms. How-
ever, throughput does not increase when the SLO is further weak-
ened from 150ms to 200ms. This is for a number of reasons. First,
the attained throughput comes close to the maximum scan through-
put of the system (approximately 50 queries/s). Second, the rapid

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request latency (ms)

P
e

rc
e

n
ta

g
e

Figure 14: CDF of front-end latency for 100ms, 150ms, and

200ms 99th percentile latency SLOs for the diurnal workload.

The 150ms and 200ms SLOs were met. Cake barely misses the

100ms SLO, with the actual 99th percentile latency at 105ms.

Front-end SLO Batch throughput

100ms 24.6 queries/s
150ms 41.2 queries/s
200ms 41.2 queries/s

Table 2: Average batch throughput for the diurnal workload.

0 200 400 600

0
5
0

1
0
0

1
5
0

2
0
0

Time (seconds)

T
h
ro

u
g
h
p
u
t
(q

u
e
ri

e
s
/s

)

Figure 16: Front-end get throughput starts out at 20 queries/s,

spikes up to 200 queries/s, then falls back to 20 queries/s. This

spike is a 10x difference in peak-to-trough load, and represents

a difficult case for scheduling.

changes in front-end load mean the scheduler is forced to take a
conservative approach and never converges to the best allocation.

Figure 15 illustrates the allocation decisions made by the second-
level scheduler during the 100ms run. We see that the SLO
compliance-based phase gradually steps the front-end’s reservation
up to 5, at which point the SLO is met. Note that the scheduler
decreases the front-end’s share when normalized performance is
> 1.2, which allows additional batch requests to run. The queue
occupancy-based phase moves HBase share in lockstep with HDFS
share, and makes small adjustments in HBase reservation when
queue occupancy at the two becomes unbalanced.

6.5 Spike Workload
Next, we tested Cake’s ability to deal with sudden traffic spikes.

The front-end YCSB client was configured to run the synthetic
spike workload depicted in Figure 16. In this workload, the front-

0
.4

0
.8

1
.2

N
o

rm
.

p
e

rf
o

rm
a

n
c
e

0
.0

0
.4

0
.8

H
D

F
S

 s
h

a
re

200 400 600 800 1000 1200 1400

0
2

4
6

8

H
D

F
S

 r
e

s
e

rv
a

ti
o

n

Time (seconds)

0
.0

0
0

.1
0

0
.2

0

Q
u

e
u

e
 o

c
c
u

p
a

n
c
y

HBase

HDFS

0
.0

0
.4

0
.8

H
B

a
s
e

 s
h

a
re

200 400 600 800 1000 1200 1400

0
2

4
6

8

H
B

a
s
e

 r
e

s
e

rv
a

ti
o

n

Time (seconds)

Figure 15: Second-level scheduler actions at HBase and HDFS for the diurnal workload with a 100ms SLO. Figure 15(a) shows that

the SLO compliance-based algorithm keeps normalized performance around the set SLO value. Figure 15(b) shows that the queue

occupancy-based algorithm adjusts reservations to keep HBase and HDFS in balance.

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request latency (ms)

P
e

rc
e

n
ta

g
e

Figure 17: CDF of front-end latency for 100ms, 150ms, and

200ms 99th percentile latency SLOs for the spike workload.

Again, Cake satisfies the 150ms and 200ms SLOs, and the 99th

percentile latency for the 100ms SLO is 107ms

end’s throughput starts out at 20 queries/s for four minutes, spikes
up to 200 queries/s for four minutes, and then returns to 20 queries/s
for another four minutes. During the spike, the front-end is sending
close to the maximum attainable get throughput of the system.

The CDF of front-end request latency for 100ms, 150ms, and
200ms SLOs is shown in Figure 17. We see that Cake successfully
enforces the 150ms and 200ms SLOs, indicating that it is able to
adapt its scheduling even when dealing with a rapid change in the
workload. The 100ms SLO is barely missed, with the measured
99th percentile latency at 107ms. Similar to the diurnal workload
results in §6.4, this is caused by the convergence time of the second-
level scheduler.

Average batch throughput for the interval shows a clear trade-off
between the three SLOs. Since the interval is dominated by periods
of low load, the 200ms SLO achieves higher batch throughput than
in the diurnal case. The 100ms and 150ms experiments have similar
throughput to the diurnal workload, slightly lessened due to the
extreme nature of the spike.

Front-end SLO Batch throughput

100ms 22.9 queries/s
150ms 38.4 queries/s
200ms 45.0 queries/s

Table 3: Average batch throughput for the spike workload.

6.6 Latency Throughput Trade-off
Cake enables its operators to trade-off between the latency SLO

of a front-end client and the throughput of a batch client. To quan-
tify the nature of this trade-off, we measured the throughput ob-
tained by the batch client as we varied the latency SLO of the front-
end client with a constant workload.

Figure 18 shows that as the latency SLO is relaxed from 80ms
to 200ms, the batch throughput obtained doubles from around
20 queries/s to 40 queries/s. However, the maximum throughput
achieved by Cake is only 67% of the baseline of a batch client run-
ning in isolation. This is because we chose to conservatively soft-
limit the number of HDFS handlers at 6. This low number allows
Cake to satisfy a wide range of latency SLOs, but means that it fails
to fully saturate disk queues when trying to achieve high through-
put. Experiments run with a higher soft-limit show that Cake can
achieve up to 84% of the baseline throughout with a higher latency
SLO of 300ms.

The latency vs. throughput trade-off is a fundamental property
of rotational storage media. Achieving low latency requires short
queues on the device, since queue time is a large contributor to
high-percentile latency. Conversely, achieving high throughput re-
quires long queues on the device since it maximizes utilization and
allows the OS and disk controller to more effectively merge and
reorder requests. This trade-off is also partially defined by differ-
ences in random and sequential throughput.

80 100 120 140 160 180 200

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Front−end SLO (ms)

S
c
a
n
 t

h
ro

u
g
h
p
u
t

(q
u
e
ri

e
s
/s

)

Figure 18: Batch throughput obtained increases from around

20 qps to 40 qps as the latency SLO for the front-end is relaxed

from 80ms to 200ms.

6.7 Quantifying Benefits of Consolidation
To quantify the benefits of consolidating separate front-end and

batch storage clusters, we simulated running an analytics report
generation cycle on a 20-node Cake cluster on EC2. We created
20 tables in HBase containing a total of 386 GB of data. Front-end
load was generated by an additional 20 nodes running the same
diurnal trace from §6.4. We set a 99th percentile latency SLO of
100ms for the front-end. To generate our simulated report, we ran
a set of MapReduce wordcount jobs which scanned over all the data
in the tables. We ended each trial of the experiment when the last
MapReduce job completed.

We compared report generation time in two scenarios: a con-
solidated front-end and batch cluster with Cake, and a traditional
“copy-then-process” analytics cycle where the data needs to be
copied between separate front-end and batch clusters before being
analyzed. We estimated the time it would take a copy-then-process
analytics cycle by doubling the baseline time it took to generate the
report on a cluster running only the batch workload. The results are
shown in Table 4. Each experiment was run five times, and we list
the mean and standard deviation for each.

We see that Cake is very effective at reducing the analytics time
through consolidation. Report generation takes 16% longer than
the baseline comparison against a batch-only cluster, but runs in
60% of the estimated copy-then-process time. Averaged across all
five consolidated runs, 99.5% of front-end requests met the 100ms
99th percentile latency SLO. In this scenario, provisioning costs can
also be reduced by up to 50% since Cake allows separate front-end
and batch clusters to be consolidated into a single cluster of half
the total size, while still meeting existing latency and throughput
performance requirements.

These results indicate that consolidation has increased benefits
for a cluster than for a single machine. This is because actual batch
loads do not have a uniform access pattern across the cluster. Indi-
vidual nodes can experience significant periods of low batch load,
during which they can provide excellent latency performance. This
is especially true towards the end of the MapReduce job, when
straggling tasks mean that only a small fraction of nodes are serving
batch requests. This skew is caused by interplay between how data
is distributed across HBase nodes and MapReduce task scheduling.
One direction of future work is analyzing real-world MapReduce
workload traces to better understand load skew and per-node uti-
lization in batch clusters, and how this affects multiplexing batch
and front-end workloads.

Scenario Time (seconds)

Baseline analysis 886.27±35.22
Estimated copy-then-process 1722±70.45

Consolidated analysis 1030±70.07

Table 4: We measured the time taken to analyze a set of 20 ta-

bles using MapReduce under different scenarios. We compare

the baseline of MapReduce running by itself against MapRe-

duce running concurrently with a front-end client with a 99th

percentile latency SLO of 100ms. The total analysis time of the

consolidated workload is only 16% greater than the baseline.

7. FUTURE WORK

SLO admission control. SLO admission control requires mod-
eling the effect of composing multiple, heterogeneous client
workloads on system performance based on the current level of
hardware provisioning. This is complicated by how hard drives
suffer from non-linearities performance when random and sequen-
tial workloads are combined. While Cake’s existing scheduling
mechanisms provide SLO enforcement, we also plan to investigate
admission control techniques that can help Cake provide stronger
guarantees on performance. This also involves being able to
express how each client’s performance should degrade when the
system is overloaded.

Influence of DRAM and SSDs Industry trends indicate that
solid state devices (SSDs) are emerging as a new tier in the
datacenter storage hierarchy. Coupled with the use of large DRAM
caches [15] in the datacenter, storage systems can use a combina-
tion of memory, SSDs and hard disks to satisfy user requests. We
are interested in the ability of SSDs and DRAM to overcome the
latency vs. throughput trade-off inherent in rotational media.

Composable application-level SLOs. For Cake, we chose to
extend HBase, which allowed us to support a large class of
front-end applications as well as MapReduce-style batch analytics.
However, HBase is far from a common storage abstraction for
the datacenter. Applications may desire direct disk access, an
SQL interface, or some other storage API, yet still desire ap-
propriate application-level performance guarantees. We believe
that application-level performance guarantees can be built by
composing guarantees provided by lower-level systems, allowing
applications interacting at different levels of abstraction to all
benefit from application-level end-to-end SLOs.

Automatic parameter tuning. Operating Cake involves choosing
a number of system parameters, which can be dependent on the
underlying hardware, workload, and performance requirements.
This parameter space could potentially be reduced through more
systematic and automatic means, making the system both more
robust and simpler to configure.

Generalization to multiple SLOs. Cake currently only supports
enforcement of a single client SLO. While this is sufficient for a
large number of realistic deployment scenarios, Cake does not cur-
rently handle the case of multiple, potentially contending, latency
and throughput SLOs from an array of clients. We feel that the core
scheduling principles and ideas in Cake can be extended to the gen-
eral case, but there are challenges involved from the consolidation
of a large number of client workloads.

8. CONCLUSION
In conclusion, we have presented Cake, a coordinated, multi-

resource scheduling framework for shared storage systems. Cake
coordinates resource allocation across multiple software layers,
and allows application programmers to specify their high-level
SLOs directly to the storage system. Cake allows consolidation of
latency-sensitive and throughput-oriented workloads while ensur-
ing that 99th percentile latency SLOs of front-end clients are met.
We evaluated Cake with a number of workloads derived from real-
world traces, and show that Cake allows users to flexibly move
within the storage latency vs. throughput trade-off by choosing
different high-level SLOs. Furthermore, we show that consolida-
tion with Cake has significant performance and economic improve-
ments over copy-then-process analytics cycles, showing that we
can reduce completion times by 40% while also reducing provi-
sioning costs by up to 50%.

9. ACKNOWLEDGEMENTS
We would like to thank our colleagues in the AMP Lab at UC

Berkeley and our three anonymous SOCC reviewers for their help-
ful comments and suggestions.

This research is supported in part by NSF CISE Expedi-
tions award CCF-1139158, gifts from Amazon Web Services,
Google, SAP, Blue Goji, Cisco, Cloudera, Ericsson, General Elec-
tric, Hewlett Packard, Huawei, Intel, Microsoft, NetApp, Oracle,
Quanta, Splunk, VMware and by DARPA (contract #FA8650-11-
C-7136).

10. REFERENCES

[1] Hadoop distributed file system.
http://hadoop.apache.org/hdfs.

[2] Hbase. http://hbase.apache.org.

[3] The Apache Cassandra Project.
http://cassandra.apache.org/.

[4] J. Appavoo, A. Waterland, D. Da Silva, V. Uhlig,
B. Rosenburg, E. Van Hensbergen, J. Stoess, R. Wisniewski,
and U. Steinberg. Providing a cloud network infrastructure
on a supercomputer. In HPDC ’10, Chicago, IL.

[5] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,
B. Trushkowsky, J. Trutna, and H. Oh. SCADS:
Scale-Independent Storage for Social Computing
Applications. In CIDR, Asilomar, CA, 2009.

[6] L. A. Barroso. Warehouse-Scale Computing: Entering the
Teenage Decade. In ISCA ’11, San Jose, USA.

[7] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, R. Schmidt, and A. Aiyer. Apache
Hadoop goes Realtime at Facebook. In SIGMOD ’11,
Athens, Greece.

[8] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End
congestion avoidance on a global Internet. IEEE Journal on

Selected Areas in Communications, 13(8):1465–1480, Oct.
1995.

[9] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and
A. Silberschatz. Disk Scheduling with Quality of Service
Guarantees. In IEEE International Conference on

Multimedia Computing an Systems (ICMCS ’99), pages
400–405, 1999.

[10] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu,
R. Menon, and T. P. Lee. Performance virtualization for
large-scale storage systems. In 22th International Symposium

on Reliable Distributed Systems (SRDS03), pages 109–118,
2003.

[11] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable:
A distributed storage system for structured data. ACM

Transactions on Computer Systems, 26(2):4, 2008.

[12] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. PNUTS: Yahoo!’s hosted data serving platform.
In VLDB 2008, Auckland, NZ.

[13] J. Dean and L. Barroso. http://research.google.
com/people/jeff/latency.html, March 26, 2012.

[14] A. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: Guaranteed Job Latency in Data Parallel
Clusters. In EuroSys ’12, Bern, Switzerland.

[15] G. Ananthanarayanan, A. Ghodsi, A. Wang, S. Shenker, I.
Stoica. PACMan: Coordinated Memory Caching for Parallel
Jobs. In NSDI ’12, San Jose, CA, 2012.

[16] A. Ganapathi, Y. Chen, A. Fox, R. H. Katz, and D. A.
Patterson. Statistics-driven workload modeling for the cloud.
In ICDE ’10, Long Beach, CA.

[17] G. Ganger, J. Strunk, and A. Klosterman. Self-* storage:
Brick-based storage with automated administration.
Technical Report CMU-CS-03-178, Carnegie Mellon
University, 2003.

[18] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica.
Multi-resource fair queuing for packet processing. In
SIGCOMM’12, Helsinki, Finland, 2012.

[19] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: fair
allocation of multiple resource types. In NSDI’11, Boston,
MA, 2011.

[20] P. Goyal, H. Vin, and H. Cheng. Start-time fair queueing: A
Scheduling Algorithm for Integrated services Packet
Switching Networks. Networking, IEEE/ACM Transactions

on, 5(5):690–704, Oct 1997.

[21] A. Gulati, I. Ahmad, and C. Waldspurger. PARDA:
Proportional allocation of resources for distributed storage
access. In FAST’09, pages 85–98, San Jose, CA, 2009.

[22] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar. BASIL:
Automated IO load balancing across storage devices. In
FAST ’10, San Jose.

[23] A. Gulati, A. Merchant, and P. Varman. mClock: Handling
Throughput Variability for Hypervisor IO Scheduling. In
OSDI ’10, Vancouver, Canada.

[24] J. Hamilton. The cost of latency.
http://perspectives.mvdirona.com/2009/

10/31/TheCostOfLatency.aspx.

[25] Y. Izrailevsky. NoSQL at Netflix.
http://techblog.netflix.com/2011/01/

nosql-at-netflix.html.

[26] V. Jacobson. Congestion avoidance and control. SIGCOMM

Computer Communication Review, 25(1):157–187, Jan.
1995.

[27] C. R. Lumb, A. Merchant, and G. A. Alvarez. Facade:
Virtual storage devices with performance guarantees. In
FAST’03, pages 131–144, San Francisco, CA, 2003.

[28] H. V. Madhyastha, J. C. McCullough, G. Porter, R. Kapoor,
S. Savage, A. C. Snoeren, and A. Vahdat. scc: Cluster
Storage Provisining Informed by Application Characteristics
and SLAs . In FAST’12, San Jose, USA.

[29] A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Singhal, and
K. Shin. Maestro: Quality-of-Service in Large Disk Arrays.
In ICAC ’11, pages 245–254, Karlsruhe, Germany.

[30] M. P. Mesnier and J. B. Akers. Differentiated storage
services. SIGOPS Operating Systems Review, 45(1):45–53,
Feb. 2011.

[31] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem. Adaptive control of
virtualized resources in utility computing environments. In
EuroSys ’07, pages 289–302, Lisbon, Portugal, 2007.

[32] E. Schurman and J. Brutlag. The user and business impact of
server delays, additional bytes, and http chunking in web
search, 2009.

[33] P. J. Shenoy and H. M. Vin. Cello: A disk scheduling
framework for next generation operating systems. In ACM

SIGMETRICS 1997, pages 44–55.

[34] G. Soundararajan and C. Amza. Towards End-to-End Quality
of Service: Controlling I/O Interference in Shared Storage
Servers. In Middleware 2008, volume 5346, pages 287–305.

[35] G. Soundararajan, D. Lupei, S. Ghanbari, A. D. Popescu,
J. Chen, and C. Amza. Dynamic resource allocation for
database servers running on virtual storage. In FAST ’09,
pages 71–84, San Francisco, California, 2009.

[36] B. Trushkowsky, P. Bodık, A. Fox, M. Franklin, M. Jordan,
and D. Patterson. The SCADS Director: Scaling a distributed
storage system under stringent performance requirements. In
FAST 2011, pages 163–176.

[37] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: performance insulation for shared storage
servers. In FAST ’07, San Jose, CA, 2007.

[38] C. A. Waldspurger. Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management. Technical Report
MIT-LCS-TR-667, MIT, Laboratory for Computer Science,
1995.

[39] A. Wang, S. Venkataraman, S. Alspaugh, I. Stoica, and
R. Katz. Sweet storage SLOs with Frosting. In HotCloud

2012, Boston, MA.

[40] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron.
Better never than late: meeting deadlines in datacenter
networks. In ACM SIGCOMM 2011, pages 50–61.

[41] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz.
DeTail: reducing the flow completion time tail in datacenter
networks. In ACM SIGCOMM 2012, pages 139–150,
Helsinki, Finland.

