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Abstract—A multi-stage compilation framework transforms
portions of programs written in a productivity-level language into
an efficiency-level language, such as C, with explicit hardware-
specific optimizations. It is challenging for compiler programmers
to debug errors in the compilation because they must perform
complicated end-to-end reasoning, relating the programs across
the multiple stages of compilation. To simplify this debugging
effort, we present multi-level debugging, a novel combination
of error-checking algorithms in a multi-stage compilation en-
vironment. Our method particularly aims to model and check
sequential and parallel notions of nondeterminism and related
bugs introduced by the compilation. Using our method, the
programmer can systematically eliminate potential sources of
the bug in the compilation process and focus only on the real
source. We demonstrated on two real multi-stage compilers the
effectiveness of multi-stage debugging in simplifying the diagnosis
of manually-injected bugs as well as in an actual bug encountered
during compiler development.

I. INTRODUCTION

Domain-expert programmers using productivity-level lan-
guages (PLLs) desire scalable application performance, but
usually rely on experts in efficiency-level languages (ELLs)
and explicit optimizations such as parallel programming
to achieve it. Recently multi-stage compilation frameworks
(e.g., [7], [8]) have been proposed to maximize the reuse
of efficiency programmers’ work. Such frameworks transform
domain-specific portions of programs written in a PLL (with-
out explicit parallelism) into an ELL, such as C, C++, or Cuda,
with explicit hardware-specific optimizations. At each stage of
compilation either the program is optimized within the same
language (e.g., loop unrolling, cache blocking), the program
is translated to another language (e.g., from Python to C++),
or some sequential statements (e.g., for loops) are replaced
by their parallel versions, where the parallelism is exposed
via frameworks such as OpenMP, OpenCL, or Cilk Plus.
Moreover, during these stages, the compiler may introduce
into the program different notions of nondeterminism: either
by sequential constructs such as for loops with nondetermin-
istically ordered iterations or by parallel constructs that run
by nondeterministically scheduled threads. This sophisticated
process may introduce various nondeterminism and synchro-
nization related bugs into the optimized program.

If an execution of the program optimized by a multi-stage
compilation produces an unexpected outcome, e.g., violates
a test assertion or crashes, then debugging the error is a
significant challenge for the compiler writer. For instance, the
multi-stage compilation produces a sequence of intermediate
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Fig. 1. Overview of bugs that may occur in a multi-stage compilation and
related compilation stages. Our work focuses on gray-colored bugs and stages.

programs with different levels of abstraction and in different
languages. Debugging the problem across all these levels of
abstraction becomes complicated because of excessive amount
of code generated by the compiler or lack of enough semantic
information tracked along with the program to relate the
programs across the stages of the compilation.

In this work, we propose multi-level debugging, a novel
methodology that simplifies the overwhelming process of
debugging a multi-stage compiler. Our key observation is that,
instead of performing an end-to-end reasoning about the input
and final output of the compilation, one can directly identify
the specific type of the bug and its originating stage by in-
corporating additional runtime analyses over the intermediate
versions of the program. For this, we classify the bugs that
may occur in a multi-stage compilation environment (shown
in Figure 1) and combine a collection of runtime analysis
techniques to detect them, each technique running at a different
stage of the compilation and checking for a particular bug type.

Sequential and parallel notions of nondeterminism intro-
duced by multi-stage compilation exacerbates the reasoning
about the compiled program and imposes unique debugging
challenges to the compiler writer. Therefore, our contributions
primarily focus on understanding and checking the effects of
such nondeterminism.

First, we identify and tackle three types of bugs:
1) Nondeterminism-related bugs:

a) Wrong-assumption bugs are introduced when the PLL



programmer makes an incorrect assumption about the
(sequential) nondeterministic semantics of the optimized
computation. In this case, the PLL programmer expects
a specific deterministic execution of a construct, e.g., a
for loop implementing a left-to-right reduction of a list,
but the compiler treats the construct as a nondeterminis-
tic one, e.g., to a nondeterministic-for loop producing
unanticipated reduction orders.

b) Parallelism bugs are introduced when replacing se-
quential statements with their parallel versions in the
ELL code. They are caused by missing or incorrect
synchronization on shared variables, and often manifest
themselves as parallelism-related errors such as data
races and serializability violations.

2) Translation bugs are introduced when translating the PLL
code to ELL code (e.g., from Python to C++). Such a bug can
be due to a mistranslation of a single operator (e.g., using —
instead of +) or a high-level feature in the PLL (e.g., improper
translation of a list comprehension in Python to a while loop
in C++). In addition, we consider incorrect local optimizations
in the ELL code as translation bugs.

We do not address the case of bugs introduced in the PLL
application itself, since these bugs can be treated using the
debugging tools already available in the PLL, such as the
Python debugger. The bugs given above, however, cannot be
found or detected using PLL debuggers. ELL debuggers can
help to understand such bugs in the ELL code, but such
debuggers do not provide any support to correlate the root
cause of those bugs to the compilation stages.

Second, we present a formalism for modeling the various
intermediate representations of a program in a multi-stage
compilation (Section II). In order to reason about different
notions of nondeterminism, we model sequential nondeter-
minism with two constructs, nd_for and nd_i £, and parallel
nondeterminism with par_for loop. In multi-level debugging,
we expose these constructs to the multi-stage compiler and
track an explicit relationship between them across stages (e.g.,
which nd_for loops are parallelized to which par_for loops)
in order to enable interaction of our error-checking techniques
running at different stages. Using our formalism, we clearly
describe how each of the previously mentioned bugs can be
identified with respect to these transformations.

Third, we combine, for the first time in a multi-stage
compilation environment, a collection of runtime analysis
techniques (Section III). These techniques add more thorough
checking over the compilation process in order to help the
compiler writer to distinguish nondeterminism-related bugs
from other kinds of bugs. Techniques for parallelism-error
detection: We exploit active testing [29] and serializability-
violation detection algorithms [4] originally developed for
single-stage debugging of programs with structured paral-
lelism. Our algorithms make use of relationship between
the nondeterministic sequential constructs in the intermediate
version of the program and their parallelized forms in the final
program in order to separate checking of parallelism errors

from other kinds of errors. Techniques for replaying programs
with nondeterminism: We propose an algorithm for checking
translation and wrong-assumption bugs. The algorithm replays
an intermediate program with nondeterministic sequential
constructs using the resolution of this nondeterminism from
a more optimized version of the program—i.e., the former
program mimics the nondeterministic choices made in an
execution of the latter program. This allows the compiler
writer to correlate the executions of programs generated at
different stages of the compilation. By comparing the result
of the replayed execution with the original execution, the
programmer can distinguish between (i) errors due to unan-
ticipated introduction of nondeterminism by the earlier stages
of the compilation and (ii) errors due to incorrect translation
of other, deterministic constructs in the later stages.

Finally, we evaluated the usability of our multi-level de-
bugging method by implementing our method in two different
multi-stage compilers in a Selective Embedded Just-In-Time
Specialization (SEJITS) framework [7] (Section IV) and de-
tecting manually-injected bugs comprising the types described
above. We first confirmed that these compilers are bug-free by
applying them on a number of test programs and enabling
our tools to check for errors during the testing. Then, we
conducted two case studies in which we manually injected
typical examples to nondeterminism-related and translation
bugs, in order to evaluate the effectiveness of our method for
identifying the correct type and cause of the inserted bug.
For each bug, our tools successfully detected violations due
to the bug and reported sufficient information to quickly find
the actual cause of the bug. We present the case studies in
Sections V and VI and discuss the results in Section VII.

II. BACKGROUND: MULTI-STAGE COMPILATION

In this section, we present a formalism for modeling the
various intermediate representations of a program in a multi-
stage compilation, common to embedded DSL frameworks.
Then, in the next section, we explain on this model the
techniques we use in our multi-level debugging method.

We denote a program under multi-stage compilation by P
and distinguish the versions of a program at different stages of
the compilation using subscripts, €.g., Popt. We model each
program as a function of type T1;, — Ty, i.€., it takes a
single argument of type 7;,, and returns a single value of type
Tout- We assume that the program is closed except for this
input argument. Let P(v) denote the set of all possible values
that can be produced by an execution of P given input value
v. A program P is said to be deterministic if for each input
v, every execution of P produces the same output value, i.e.,
P(v) is singleton.

A compiler translates a program Pp in an iterative process:
it generates different versions of the program P4q, ..., P, and
finally executes the most optimized program P,. We denote
each compilation stage by P; --» Piir1, where Pjyq is ob-
tained from P; by applying a domain-specific transformation
or a performance optimization.
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class SimpleKernel (StencilKernel) :
def kernel (self, in_grid, out_grid):
for p in out_grid.interior_points():
for g in in_grid.neighbors(p, 1):
out_grid([p] = out_grid[p] + in_grid[qg]

Fig. 2. A simple stencil kernel in Python.

class SimpleKernel (StencilKernel) :
def kernel (self, in_grid, out_grid):
nd_for x in out_grid.interior_x_indices():
nd_for y in out_grid.interior_y_indices():
nd_for nx in [x-1, x, x+1]:
nd_for ny in [y-1, y, y+1]:
out_grid[x,y] = out_grid[x,y] + in_grid[nx, ny]

Fig. 3. A simplified semantic model for SimpleKernel.

void kernel_unroll_ 4 (PyObject %in_grid, PyObject *out_grid) {

#pragma omp parallel for

for (int x = 1; (x <= 8); x = (x + 1)) {
for (int y = 1; (y <= (8 = 3)); v = (v + (1 = 4))) {
z = _to_array_index(x, y); // an inner point

// combine neighbor values
_my_out_grid[z] = _my_out_grid[z] -
_my_in_grid[_to_array_index(x, y-1)1;
z = _to_array_index(x,
_my_out_grid[z] =

y+1); // next inner point
..... // combine neighbor values

z = _to_array_index (x,
_my_out_grid[z] =

y+2); // next inner point
..... // combine neighbor values

z = _to_array_index(x,
_my_out_grid[z] =

y+3); // next inner point
// combine neighbor values

P}

Fig. 4. C++ code after unrolling and parallelizing loops in the semantic
model. Shaded lines are used in Section V to explain the bugs in the compiler.

To simplify our presentation and comply with the following
sections, in which we demonstrate the use of our method in
SEJITS, we consider a representative, three-stage compilation
in SENTS: Papp -+ Psem - Popt - Ppar

Each stage of the compilation exhibits a different common
transformation pattern we observed in our experiments with
real SEJITS compilers. However, a compiler may contain more
stages than given here (by applying each pattern multiple
times). We next present the programs obtained during this rep-
resentative compilation (marked in Figure 1). To be concrete,
we also overview an example compilation of a stencil kernel.

A. Application-level program

Papp represents the application-level program written by a
user of SEJITS. Pupp uses a restricted, domain-specific subset
of the language that describes the high-level computation with-
out expressing how this computation is carried out in detail.
We assume that Pypp, is sequential and deterministic; that is,
it does not contain nondeterministic or parallel constructs.

Example. Figure 2 shows an example to P,pp, Python
code containing a stencil kernel called SimpleKernel.
SimpleKernel takes a two-dimensional input grid in_grid.
For each point p in the grid, it applies a function (in our case
sum) of that point and its neighborhood (over which g ranges),
and writes the result of that function to the corresponding
point in an output grid (out_grid). Notice that the interior

points and the neighborhood of a point (and their traversals)
are specified in a high-level, abstract way. ]

B. Semantic model

In program Psem, the high-level computation in Pupp
is mapped to more detailed constructs for carrying out the
computation. The stage Papp sem performs a global,
domain-specific transformation in the structure of the program.

-

Example. Figure 3 shows a simplified Python-like code for the
semantic model of our stencil kernel in Figure 2 (for nd_for
loops see below). In essence, this model is an intermediate rep-
resentation that maps the kernel function to another function
describing in more detail how the stencil computation defined
at a high level in Pypp, will be carried out. In particular, the
semantic model expands the loop over abstract interior points
(at line 3 of Figure 2) to two loops over the x and y dimensions
of the input grid (lines 3-4 of Figure 3). Moreover, the loop
over neighbors of an interior point (at line 4 of Figure 2) is
expanded to two loops (over nx and ny) traversing the specific
indices in the neighborhood of an interior point. ]

In the semantic model Pgey, some computations are de-
scribed using nondeterministic constructs in order to enable
further optimizations. This nondeterminism is resolved by the
latter, more refined versions of the program in a way that yields
the best performance. For example, nondeterminism allows
opportunity for parallelization, because each nondeterministic
task can be executed by a separate thread. To specify the
nondeterminism, our methodology exposes to the SEJITS
compiler two nondeterministic constructs:

e nd_for: A nondeterministic-for (nd_for) loop allows
its iterations to run in a different order than the default,
deterministic order dictated by regular for loops.

o nd_if: A nondeterministic conditional nd_if does not
evaluate a boolean expression but choses which branch to
execute nondeterministically, useful for modeling boolean
expressions which depend on state shared between mul-
tiple threads.

For all these statements, the nondeterminism is resolved
independently at each runtime invocation of the statement.
We assume that, under a mechanism that resolves all the
nondeterministic choices in the execution, the semantic model
Psem 18 executable. Section III-B presents such a mechanism.

As explained in Section III-A, program Pgsen, With con-
structs nd_for and nd_if becomes a sequential (specifica-
tion) artifact for checking the correctness of the succeeding,
parallelized versions of the program. Such sequential programs
with explicit nondeterminism allows our algorithms to check
independently (i) the correctness of the modifications on
the sequential aspects of the program by former stages of
the compilation and (ii) the correctness of the parallelism
introduced at later stages of the compilation.

Example. In Figure 3 the semantic model marks all the
loops (at lines 3-6) as nd_for loops. Thus, Psem leaves the
order in which internal points and their neighbor points are
traversed nondeterministic. This nondeterminism allows later



stages to perform optimizations on these loops, e.g., unrolling
or parallelizing, that alter the default ordering of iterations and
would otherwise be invalid for a deterministic for loop. W

C. Optimized program

While stage Papp --* Psem performs domain-specific,
global transformations and optimizations, stage Psem --*
Popt performs domain-independent, local optimizations, sim-
ilar to compiler optimizations or JIT compilations. This in-
cludes rewriting program Pgen, in an efficiency language and
further optimizations within the statements, e.g., rewriting
numerical expressions on arrays to vector instructions.

Example. For our stencil example, the stage Psem --* Popt
translates the semantic model in Python (Figure 3) to sequen-
tial C++ code shown in Figure 4 without the OpenMP pragma
at line 4. Program Pgp resolves the nondeterminism in Psem,
i.e., the order of nd_for iterations, as follows. The compiler
unrolls (i) every consecutive four iterations of the loop at line
4 traversing the y dimension of the grid and (ii) the loops at
lines 5-6 traversing the neighborhood of the current point. This
optimization is allowed because the nd_for loops specify that
any ordering is valid. The fixed order in which these loops are
unrolled and the remaining, deterministic part of the loop over
v at line 6 resolve the nondeterminism in the nd_for loops
at lines 4-6 of the semantic model. |

D. Parallelized program

Ppar represents the most optimized program generated by
the compiler. It adds to Pop¢ parallelism by translating some
sequential statements to parallel constructs to be executed by
multiple threads. We assume that Pp,, introduces parallelism
in a structured way as follows: A for loop (regular or
nd_for) is transformed to a parallel-for (par_for) statement.
At runtime, some or all iterations of the loop may be executed
concurrently by multiple threads.

Running some statements in parallel introduces a second
source of nondeterminism, since threads are interleaved under
a nondeterministic scheduler. In fact, parallelizing an nd_for
loop in Pept to a par_for loop is a way to resolve the
nondeterminism in programs; that is the runtime scheduling
of the threads determines the order in which the iterations
of the nd_for loop are executed. In Section III, we use this
runtime order to replay nd_for loops sequentially.

Example. The final program Pp,, for our stencil example is
obtained by parallelizing the loop over x at line 5 in Figure 4.
For this, the compiler appends the pragma omp parallel
for right before the loop. (In Section III, we will use par_for
to represent such parallel loops.) In the parallel version, the
iterations of the loop are run by multiple threads concurrently.
In this case, the runtime schedule of threads executing loop
iterations gives the same effect of nondeterministically reorder-
ing the iterations in the corresponding nd_for loop (over
dimension x at line 3) in the semantic model. |

In summary, as a result of the SEJITS compilation, the
three-line body of kernel code in Figure 2 becomes a long,
complicated C++ function (consisting of 30 LOC) in Figure 4,

and now includes parallelism. Moreover, while not modeled
here, the compiler can generate multiple variants of C++ code
as a result of applying different sets of optimizations for tuning
for the most efficient variant. Debugging a problem under this
multi-stage compilation is a challenge, and our multi-level
debugging method aims to tackle this challenge.

III. MULTI-LEVEL DEBUGGING OF COMPILERS

Having introduced different versions of the program during
the multi-stage compilation, the correctness condition of the
compilation is as follows:

C: Assume that Papp is correct, i.e., it passes all tests. Then,
for each input value I, Ppar(I) = Papp().

Recall that, Papp is assumed to be deterministic. Thus,
the condition C implies that the parallel program is also
deterministic: for each input I, it always produces the same
output independent of the scheduling of threads. This condition
ensures that the compiled program (Ppar) cannot exhibit a
behavior (i.e., an input-output relation) that is not allowed
by the original program (Papp). Since we assume that Pupp
passes all tests, Ppar failing a test indicates that Ppa, con-
tains an extra, unintended behavior introduced by one of
the compilation stages. Identifying the real cause of this
unintended behavior by considering all these stages together is
a challenge. In this paper, we reduce the testing of condition
C by applying a set of checking algorithms at different stages
of the compilation. Section IV explains how these algorithms
are applied in practice within the SEJITS framework.

Each algorithm in our method considers a particular stage,
P; --» Pj11. First, we treat P; as a specification, i.e., assume
that P; is correct. Then, we adapt C to that particular stage:

C’: Assume that P; is correct, i.e., it passes all tests. Then,
for each input value I, Piy1(I) = Pi(I).

To test the condition C’, the algorithm performs one or more
specific checks over programs P; and Pji1. If the compiled
program fails a test and the algorithm (running at stage P; --»
Pi+1) detects a violation of a condition it checks, then the
compiler writer can directly focus on the code that transforms
P; to Pit1 to debug the problem. The algorithm also provides
diagnostic information so that the cause of the bug can be
localized within the suspicious stage.

A. Checking for parallelism errors

Our first tool runs at the final translation stage Popy --»
Ppar and helps to debug parallelism bugs. In previous work [4]
we showed that under the parallelization scheme in which a
nd_for loop is transformed to a par_for loop, condition C’
can be tested by checking serializability violations [24] within
bodies of these parallel statements. During this, we use Popt as
a nondeterministic sequential (NDSeq) specification of Ppar.
That is, we assume that, for a fixed input I, output Pop (1) is
correct and deterministic (independent of how the sequential
nondeterminism in Pgypy is resolved). Thus, the interleavings
of threads in Ppa, should not introduce any extra output for
input I, which is showed in [4] to hold when all the parallel
statements are serializable.



To check for the serializability violations, our tool combines
active testing-based atomicity checking [25] and our notion of
improved serializability checking in [4]. For this, we define a
transaction as each execution of a loop body in a par_for
statement. During an execution of Py, transactions run by
different threads may interleave with each other.

Given an execution £ of Ppar, our tool works on E in two
phases. In the first phase, it finds data races in E. A data race
occurs when two different threads access a common variable
and at least one of these accesses is a write and there is no
synchronization between the two accesses. Our tool uses these
data races for two purposes: First, they allow us to identify
the variables shared across different threads (i.e., transactions).
Let ShrVars be the set of such shared variables. Second, we
identify the code locations at which a variable from ShrVar
is accessed as potential buggy points. We automatically add to
these points perturbations in the thread schedule. This makes
a parallelism bug more likely to occur.

In the second phase, we apply the algorithm in [4] to
check if execution E is serializable. Execution F is said to be
serializable if there exists a single-threaded execution E' of
Ppar (i) with the same input as £ and (ii) consisting of the
same operations as E (with the same side effects, but possibly
in a different order of execution). If so, both executions £ and
E’ produce the same output for the given input.

To show that F is serializable, our algorithm tracks the
accesses to variables in ShrVars by different transactions. It
records all the accesses in a graph structure where each vertex
is a separate transaction. We add an edge to this graph from
a transaction t1 to t2 (by different threads) whenever there
is a data race between two accesses by t1 and ¢2 and the
access by t1 is performed earlier than ¢2 in the execution. A
cycle in this graph signals a parallelization problem causing
a serializability violation involving the transactions in the
cycle. The programmer can analyze these transactions and
their accesses involved in the cycle to diagnose the problem. In
general, a parallelization problem is caused by (1) incorrectly
sharing a variable which is supposed to be local, or (2) in-
sufficient synchronization of accesses to shared variables. The
parallelization errors presented in Section V and Section VI
are examples to cases (1) and (2), respectively.

Absence of cycles (i.e., serializability violations) in E
implies that F is serializable. For real and complex programs,
the standard serializability checking algorithm [24] may report
a large number of false alarms, i.e., the checks by the algorithm
fails, even though the transactions are serializable and thus
there is no parallelism error. Our algorithm in [4] improves
the precision of the standard algorithm by relaxing condition
(ii) above. For this, we use nondeterministic nd_i f statements
in the program Popt to rule out benign data races between
threads that does not affect the output of the computation, and
thus, can be safely ignored by the analysis. This allow us to
rule out cycles in the transaction graph that do not correspond
to real serializability violations and report fewer false alarms.

B. Checking for translation and wrong-assumption bugs

Suppose that an execution E of Ppae fails a test, but
the algorithm described above for parallelism errors gives
no warning for E. Thus, the corresponding single-threaded
execution of P,p¢ also fails the test, and the bug should be
introduced before the last (parallelizing) compilation stage:

either Papp --* Psem OF Psem —-* Popt.

To identify the stage introducing the bug, our second
algorithm replays execution E of Ppar by program Psem.
Let E’ be the replayed execution of Psem. Note that, all
nondeterministic constructs in Pgem (nd_if and nd_for)
are either replaced with equivalent deterministic operations
in Pyp¢ or translated to parallel constructs in Ppar. While
generating the replayed execution E’ of Pgem, We use the
resolution of the nondeterminism in execution E. For this, we
require that for each nondeterministic (nd_for and nd_if)
statement in Psem, there exists a corresponding loop or con-
ditional statement in Ppq,, so that we can execute the former
statements in E’ by replaying the same order of iterations and
branches in the latter. Since the stage Psem --* Popt makes
only local transformations and the stage Popt ~-* Ppar makes
well-formed parallelizations of loops and straight code, this
correspondence is straightforward.

« When an nd_for statement is invoked in E’, we use
the order of iterations in the corresponding instance of
the loop in execution E. For example, if the loop is
parallelized in Ppayr, then the order of transactions in
E gives the order in which the iterations are executed
during the replay. This order is obtained by our paral-
lelization checker by computing a topological sorting of
the (directed) transaction graph.

« When an nd_if statement is invoked in E’, we execute
the same branch in the corresponding instance of the
statement in E.

Next, we make a case split by comparing the outputs
produced by E and E:

« If the output values are equal, then we conclude that
the translation Papp --+ Psem is problematic, because
Psem can produce the same (incorrect) output produced
by Popt in E. Then, the compiler writer needs to search
for the cause of this output by focusing on the domain-
specific transformations, especially how the nondetermin-
ism is introduced, when generating Psem-

o If the output values are different (and the output of
Psem is correct), then we conclude that the translation
Psem ——* Popt is problematic, because even though the
executions resolve the nondeterminism in the same way,
they compute different results. Then, the compiler writer
can rule out problems due to nondeterminism and focus
on the translation of the deterministic statements.



IV. IMPLEMENTATION IN SEJITS

We have implemented our multi-level debugging method
as a plug-in' to the Asp SEJITS framework [7]. The SEJITS
approach enables building small, domain-specific compilers
embedded in high-level languages; the Python framework that
implements this approach is BSD-licensed open source and
is called Asp®. Users write their programs in these embedded
DSLs and, invisibly, the compilers translate user-supplied code
using phased compilation as described in Section II, compile
the resulting code, and execute it, returning values to the
Python interpreter. The framework provides mechanisms to
simplify development, including a unified tree transformation
framework and infrastructure to define typed intermediate
forms, as well as common code transformations used in
compilers (e.g. loop unrolling and blocking) to be used in opti-
mization passes. A number of embedded DSLs across a variety
of domains, targeting multiple backends, have been developed
using the framework, which is under active development.

Our checking tools are enabled/disabled by setting an envi-
ronment flag MULTI_LEVEL_DEBUG before running the com-
piler on the input program. Once enabled, each tool is triggered
at the relevant stage of the compilation and instruments the
intermediate program using an API provided by Asp. During
the execution of the compiled program, the instrumentation
records information about various events (e.g., memory ac-
cesses, function calls) required by the checking algorithm.
While the parallelism checker runs online (i.e., checks errors
while the program is still executing) the replay mechanism
runs offline (i.e., checks errors after the compiled program
terminates). The errors detected are reported to the user at the
end of the execution and relevant detailed error descriptions
are written to files to be used during the debugging. We next
give tool-specific details.

A. Implementing the parallelism checker

We implemented our parallelism checker as an extra trans-
formation stage within the SEJITS compilers after the paral-
lelized program (Ppar) is generated. In the SEJITS compilers
in our study, the parallelism is introduced by using OpenMP
pragmas omp parallel and omp parallel for before
statements to be parallelized. Thus, our tool instruments the
statements annotated by these pragmas to check for parallelism
errors. For other parallelism paradigms (such as Pthreads or
Cilk Plus), similar annotations would be introduced during
parallelization. The instrumentation consists of (1) marking the
beginning and end of each parallel statement, (2) marking the
beginning and end of each transaction, a statement executed by
a separate thread, and (3) reads and writes from every possibly-
shared variable. The granularity of instrumentation for (3) can
be adjusted as needed: while the tool can track every individual
memory-access instruction, it can also be configured to treat
data structures (e.g., a list of doubles) as shared variables
and track coarse-grained operations on these structures (e.g.,

IThe version of the framework containing the multi-level debugging tools
is available at https://github.com/richardxia/asp-multilevel-debug.
2Asp is SEJITS for Python, available at http://www.sejits.com.

add/lookup/remove operations of the list) as variable accesses.
We follow the former approach in the stencil compiler and the
latter in the TinyCU compiler described later.

During the execution of the compiled program, our tool
analyzes each invocation of a parallel statement separately,
since these invocations are separated from each other using
implicit barriers at the end of the statement. As discussed
in Section III-A, our tool works in two phases. For every
execution of a parallel statement, our tool first records the
variables on which at least one data race is detected. In this
way, our tool identifies the variables to be tracked for the
second phase of the checking (for serializability violations).
In the second phase, the tool collects the accesses performed
by transactions and constructs the transaction graph. When
the currently-running parallel statement ends, the tool checks
for cycles in the transaction graph and writes any cycles
to a report file in a human-readable form. The report lists
the shared variables and the source code locations accessing
these variables. For each serializability violation, the report
contains the exact thread schedule and the statements involved
in the violation. If there is no parallelism error is detected, the
tool produces a trace file containing the accesses to certain
variables in the parallel loops, e.g., loop-index variables. This
trace is used to compute the (total) order of iterations in
parallel loops, which is used by the replay mechanism to guide
the execution of nd_for loops as discussed below.

B. Implementing the replay mechanism

The replay mechanism checks for translation errors by
resolving nondeterminism in the semantic model (Psem) using
execution traces of the compiled program (Ppar). In the case
that no parallelization optimizations are performed, the Popt
is equivalent to Ppar. The replay mechanism executes Psem
using a recorded execution trace of the compiled program con-
taining information about how the nondeterministic statements
in Psem are resolved, for example, loop-iteration ordering. Our
parallelism checker, which instruments Ppq,, generates this
execution trace as described in Section IV-A. Note that we
assume that Pgem iS executable once all the nondeterministic
choices in the execution is given.

In order to replay Psern with information from Ppar, we
first require the compiler writer to annotate certain statements
to explicitly correlate them to traced statements. The compiler
writer annotates nondeterministic statements within the Pgem
(e.g., nd_for), indicating to our replay tool that a reordering
is valid and that it should determine the reordering from
the trace. In addition, assignment statements may optionally
be annotated in order to indicate to the tool that it should
check whether values match between traced and the replayed
executions, allowing for finer granularity of debugging output.

For annotated loops, the tool replaces the default Python
iterators with an iterator that returns loop iterations in the
same order as the traced execution. Annotated assignment
statements are replaced with statements that both perform the
assignment and compare the replayed value with the traced
value. While replaying, if any intermediate assignment values
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class SimpleTest (unittest.TestCase) :
def testl (self):

kernel = TestKernel ()
in_grid = StencilGrid([10,10])
out_grid = StencilGrid([10,10])
in_grid([2, 3] 1
in_grid[4, 3] 2
in_grid[3, 2] 3
in_grid[3, 4] 4
# COMPILE AND RUN KERNEL
kernel.kernel (in_grid, out_grid)
# CHECK SOME CONDITION ON OUTPUT
self.assertEqual (out_grid([3,3], 10)

Fig. 5. A simple stencil kernel and a unit test for the kernel. When called
at line 11, the code from Fig 2 is compiled to parallel C++ code and run.

do not match traced values, then the tool will report an error
and indicate which intermediate values mismatch. In addition,
if the traced loop iterations are inconsistent with the iterations
available in the replayed execution (e.g. number of iterations
do not match), the tool will also report an error.

If the replayed execution differs from the traced execution
in any way or if the final result differs, then the tool reports a
translation bug and provides information about the mismatch.
Otherwise, if the replayed execution exactly matches traced
execution and returns the same value as the Ppar, the tool
reports the error as a wrong-assumption bug and warns the
programmer about a possible problem about the nondetermin-
ism in the semantic model.

V. CASE STUDY: DEBUGGING OF A STENCIL COMPILER

Figure 5 shows a class named StencilTest to unit test
the stencil kernel shown in Figure 2. To test this kernel, we
fix an input grid (lines 6-9), invoke the kernel on this input
grid (line 11), and check using an assertion whether the kernel
has computed the correct output (line 13). Note that, when the
kernel is called at line 11, the stencil compiler framework first
translates the kernel to a semantic model in Python (shown
in Figure 3) and then translates the kernel to highly-efficient,
parallelized C++ code (shown in Figure 4). Then, the resulting
C++ function is called, and the return value of the function is
mapped back to a Python-level object before the kernel returns.

Now suppose that the assertion at line 13 fails when the
kernel is compiled by SEJITS. Given the complexity of the
multi-stage translation from Python to C++ code outlined
in Section II, it is a tedious job to debug the problem.
We next explain how we apply our multi-level debugging
tools to simplify this process, in particular to identify the
type of a bug and focus on the relevant stage of the stencil
compiler. We present the debugging process, in the bottom-up
fashion similarly to Section III, where the programmer starts
with focusing on errors introduced at the latter stages of the
compilation. Ruling out errors in this way allows us to use
information and guarantees from the algorithms in the latter
stages while checking errors at the former stages.

A. Parallelization bug

Consider the C++ fragment in Figure 4 after parallelizing
a loop in the C++ code. In this code, the two-dimensional
(input and output) grids in the Python code are mapped to
a one-dimensional C++ array. At each iteration of the inner
loop, the variables x and y are used to compute indices into

the input array (to read from) and an index z into the output
array (to write to). Line 4 is added to the sequential C++
code to add parallelism to the kernel. The OpenMP directive
#pragma omp parallel for indicates that the for loop
after the pragma may be executed by multiple threads, each
running a separate iteration of the loop.

Adding the directive at line 4 results in an incorrect paral-
lelization as described next. Before adding the parallelization
directive, the variable z is intended to be a local variable:
every loop iteration computes a different value for z and
accesses a distinct location in the output grid. However, adding
the directive affer the definition of z makes it shared by the
OpenMP threads executing the loop iterations. This sharing of
z does not cause a problem if the OpenMP threads executing
iterations are not interleaved with each other. Otherwise, two
different threads may access the same location in the output
grid, causing one of the threads to overwrite the value written
by the other and produce an incorrect grid at the end.

Unfortunately, for two reasons, it is very likely that the
compiler writer deploys her code without even noticing that
such a bug exists. First, such erroneous interleavings are very
sensitive to the timings of threads and occur once in thousands
of executions. Thus, one may conclude that the parallelization
is correct after testing many times without observing an error.
Second, since the only change between the sequential and
parallel variants of the C++ code is a single-line #pragma
directive, the effect of parallelizing the loop on z is not obvious
from the static code (i.e., there is no sign of this sharing). Thus,
during code review one could easily miss this detail. Therefore,
such nondeterministic bugs due to thread interleavings are
insidious, and tools for detecting them are essential.

For our running example, our parallelism checker (explained
in Section III-A) detects data races on the points of output grid
and reports that the iterations of the loop are not serializable.
That is, in between a thread t1 reading from and updating
a point in the output grid, another thread ¢2 accesses (reads
and/or writes) the same point. This indicates that points in the
output grid are unexpectedly shared among threads. Since we
were not expecting this sharing, the accesses to the grid are
not properly synchronized, resulting in the parallelism errors
detected by the tool. Further inspection of our tool’s report
reveals why points of the output grid have become shared:
Our tool also detects data races on (shared) variable z, which
was intended to be local, but is now shared by threads.

We correct the compiler by moving the definition of variable
z inside the parallelized loop body (right after line 5). This
change makes the variable z thread-local, and after that our
tool does not report any parallelism-related errors.

B. Translation bug

The next type of bug is introduced when translating the
Python semantic model to (sequential) C++ code. Now sup-
pose that our tool for checking parallelization errors introduced
above is enabled and the tool does not give any warnings.
In this case, we can safely rule out parallelization-related
problems and search for the cause of the bug in the former,
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class SimpleKernel (StencilKernel) :
def kernel (self, in_grid, out_grid):
for x in out_grid.interior_points():
for v in in_grid.neighbors(x, 0):
out_grid([x] = (2 x out_grid[x]) + in_grid[y]
class SimpleTest (unittest.TestCase) :
def testl (self):
kernel = TestKernel ()
in_grid = StencilGrid([10,10])
in_grid.neighbor_definition=[[(-1,0), (1,0), (0,-1), (0,1)]]
out_grid = StencilGrid([10,10])
in_grid[2, 3] 1
in_grid(4, 3] 2
in_grid[3,2] 3
in_grid[3,4] 4
# COMPILE AND RUN KERNEL
kernel.kernel (in_grid, out_grid)
# CHECK SOME CONDITION ON OUTPUT
self.assertEqual (out_grid[3, 3],

26)

Fig. 6. Another kernel using the same stencil compiler in SEJITS. In this case,
the function at line 5 is not associative, thus the nondeterminism introduced
by the transformations causes the compiled program to fail the test.

sequential versions of the program. To improve this search, we
use the replay mechanism explained in Section III-B to debug
the problem. The mechanism helps to distinguish translation
bugs from wrong-assumption bugs by checking whether a bug
is caused by the nondeterminism introduced by the compiler
or by the incorrect translation of statements.

Our replay tool tracks the execution of the parallel C++
version of the program and collects information how the
nondeterminism in the semantic model is resolved in the
parallel program. For each parallel loop (at line 5 of Figure 4),
the tool computes the total order of threads running the
loop, giving the order of iterations for the corresponding
loop marked nondeterministic in the semantic model. Then,
it replays the semantic model (in Python) in Figure 3, but
resolving the nondeterminism in the nd_for loops in the
same way as the parallel execution. That is, iterations of a
nd_for loop are executed by following a serial ordering that
is conflict-equivalent to the parallel execution. For this, we
compute the order of nd_for iterations by using the order of
accesses to the loop-index variables in the parallel execution
and mapping this information back to the semantic model.
Finally, the tool compares the output (out_grid) produced
by the semantic model with that of the parallel C++ program.
If the outputs match, then this means the body of Python
loop is translated to C++ correctly. Otherwise, a mismatch
indicates that even after following the same order of iterations
in both executions, the C++ code produces a different output.
Therefore, we understand that the bug is not related to the
nondeterminism introduced by the compiler but the translation
of each loop iteration. In our example, the shaded line 8 of
Figure 4 contains the bug: incorrectly replacing + with —.

C. Wrong-assumption bug

Wrong-assumption bugs occur because a user of the com-
piler makes incorrect assumptions about the nondeterministic
semantics introduced by the compiler. In this case, the original
Python code runs with by-default-deterministic statements and
passes a test case, but the compiled code fails the test, as it
contains nondeterministic computations.

To demonstrate such bugs, we modify the kernel code in
Figure 2 to the one in Figure 6. At line 5, we replace the
(associative) + operation with a non-associative one. Since the
new function is non-associative, we also specify at line 10 our
own neighbor definition, i.e., an explicit order to traverse the
neighborhood of each point. We expect the loop enumerating
the neighbors of the current point to follow this order; visiting
the neighbors in a different order will result in a different result
and make the test fail.

However, the C++ code in Figure 4 does not follow this
assumption by unrolling the loop over the neighbors in a
different order. (Since we change the kernel function, the C++
at lines 7-20 may differ.) Recall that the semantic model in
Figure 3 expands the abstract loop in Figure 2 for traversing
the neighborhood of an interior point to two nondeterministic-
for (nd_for) loops. This allows the stage Psem —-* Popt t0
unroll these loops in the C++ version in Figure 4, but following
a different order of iterations than the one we expected (line
10 Figure 6). As a result, the C++ code produces an incorrect
output and violates the assertion.

Our replaying mechanism described above helps us to
identify the cause of the bug as nondeterminism introduced by
the semantic model. In particular, the execution of Ppar and
the replayed execution of the Psem (guided by the ordering
of iterations from Ppar) produce the same output, indicating
that the translation from Python model to C++ is correct. This
result, together with the absence of parallelism errors, implies
that the problem is at an earlier stage: Papp -+ Psem-

Next, we compare the replayed execution of Pgen, With an
expected execution of the pure Python program. Our tools
helps in this phase by showing the recorded order of the loops
and the intermediate results of the loops used during the replay.
Then, we easily notice that the loop over the neighbors in
Psem €xecution is different from the order specified at line 10
of Figure 6. To fix the bug, we must either rewrite the program
without relying on a specific ordering of the neighborhood
iteration or we must extend the semantics of the compiler to
allow the PLL programmer to give an explicit order to traverse
the neighborhood.

VI. CASE STUDY: DEBUGGING OF A TINYCU COMPILER

We now consider a compiler based on the Copperhead [6]
framework, which maps a data-parallel subset of Python to
parallel platforms including CUDA and OpenMP. In Copper-
head, the programmer writes Python code using predefined
procedures such as map, reduce, and scatter. The pro-
gram is then dynamically compiled to an underlying paral-
lel platform using the platform’s own efficient data-parallel
constructs. We implemented a subset of the Copperhead op-
erations as a SEJITS compiler called TinyCU.

A. TinyCU compiler

TinyCU implements the map, sum, and reduce functions
on simple lists and emits parallel OpenMP code. TinyCU
transforms an input program (P,pp) into a semantic model
(Psem) consisting of the previous three functions, arithmetic
operations, and function calls. Fig 7 shows an example
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TinyCU program. During the parallelization stage, TinyCU
transforms calls to map into data-parallel loops annotated with
a pragma omp parallel for, as shown in Fig 8. Similarly,
for reduce TinyCU emits a parallel tree reduction which
operates on each pair of elements in parallel and recursively
reduces the results into a single value. This requires the
reduction function to be associative.

class ReduceKernel (TinyCU) :

def doubler (self, x):
return 2 * x

def reducer(self, x,
return x + 2 x y

y):

def run(self, in):
return reduce (self.reducer, map (self.doubler, in))

class ReduceTest (unittest.TestCase) :
def testl (self):
kernel = ReduceKernel (
output = kernel.run([1l, 2, 3,
self.assertEqual (output, 54)

Fig. 7. A simplified TinyCU kernel and a unit test for the kernel.

4])

B. Parallelization bug

The TinyCU kernel parallelizes loops in C++ using omp
parallel for pragmas. Consider the following fragment of
the generated program implementing a sum reduction over a
vector of double values.

double accum = 0.0; # accum is shared by threads

#pragma omp parallel for reduction (+:accum)
for (int sum_i = 0; sum_i <= tmpO->size(); sum_i++) {

accum = (accum + (*tmpO) [sum_1i]);

The code accumulates the values of in the vector in a shared
variable accum. Using the attribute reduction (+:accum)
ensures that each update of accum in the loop is atomic. That
is, the OpenMP runtime will emit code to ensure that each
iteration of the for loop will run without harmfully interfering
with concurrently running iterations. Thus, we do not have to
use any synchronization operations to protect accum.

Suppose that we forget to use reduction (+:accum) and
think that OpenMP will impose sufficient synchronization to
ensure the correctness of the reduction. We are wrong in this
assumption because without this pragma attribute, OpenMP
does not add any synchronization to the loop body. As a result,
threads may be interleaved with each other before and after
accessing accum. This breaks our intention that each iteration
of the loop updates accum atomically.

When executing the loop without reduction (+:accum),
our tool reported serializability violations when reading and
writing accum. By examining the trace of a violation, we
were able to see that threads are accessing accum arbitrarily
without any synchronization. Adding reduction (+:accum)
back solved the problem, and our tool reported no parallelism-
related errors, indicating that the interleavings of threads cause
no unintended nondeterminism in the parallelized program.

C. Translation bug

In implementing TinyCU, we discovered that we had actu-
ally introduced a bug in the compilation of the map function.
Fig 8 shows the compiled code containing the error. The
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shaded portion of line 6 shows the error, in which the upper
array bound is one greater than the correct bound. This bug
was introduced due to a misunderstanding of the loop bounds
of the For constructor, incorrectly assuming that the upper
bound was exclusive rather than inclusive. When executing
the replay tool, it reports that the traced execution has too
many iterations, indicating a translation error.

::vector<double>x run() {

::vector<double>* tmpO_inner =

new std::vector<double> (xtmp0) ;

#pragma omp parallel for

for (int i = 0; 1 <= tmpO->size() ; 1 = (1 + 1)) {
(xtmp0_inner) [i] = doubler ((xtmp0) [1i]);

Fig. 8. Parallelized C++ code representing the map operation with a bug
shaded. The loop bound check is incorrect and ignores the last array element.

D. Wrong-assumption bug

To demonstrate a wrong-assumption bug, we used the
reduce operator. In TinyCU, reduce requires that the re-
duction function be commutative and associative, allowing the
compiler to execute reductions in any order it chooses. The un-
derlying implementation of reduce in the optimized TinyCU
code is a tree-reduction, which allows multiple elements of the
reduction to be run in parallel. However, the default Python
reduce function performs a left-to-right reduction. In Fig 7,
the programmer has defined a reduction function which is
not associative, but the programmer has assumed that the
reduction function operates on elements in left-to-right order.
When executing the replay tool, the replayed execution iterates
over the reduction in the same tree-reduction order and obtains
the same intermediate assignment values but still fails the test
case. The tool reports a wrong-assumption bug because the
replayed execution matches the optimized execution.

VII. DISCUSSION

We now highlight common results from our case studies.
When implementing a compiler, bugs are likely to fall into
one of the categories: parallelization, translation, and wrong-
assumption bugs. Thus, the effect of such a bug on the
behavior of the program can be detected by focusing on the
behavior of intermediate programs, rather than a complicated,
end-to-end reasoning about the input and final output programs
of the entire compilation. Identifying the right algorithms and
properties to check on the intermediate programs is crucial
to simplify this end-to-end reasoning without resorting to
equivalence checking between each stage, which may be
fragile given that the compilers use specialization, rendering
their results correct only for the given input. Furthermore,
because of the multi-stage nature of the compilers we study,
applying existing debugging algorithms without accounting for
the staged compilation will not assist in isolating the buggy
code as well as our approach since the algorithms will only
identify the bug in the final output of the compiler.

All of the bugs we study manifest themselves at the very
end of the execution as incorrect output. Thus, all stages



of the compilation are equally likely to be buggy and it is
therefore difficult to identify the buggy stage. Our method
helps the user in this difficult task by applying checking
algorithms to intermediate programs, eliminating each as the
source of the bug in turn. Moreover, our method makes the
parallelism-related bugs more visible to the programmer (by
perturbing the thread schedule to force bugs to manifest). For
example, while the buggy thread schedules in our stencil and
TinyCU examples occur in only a fraction of test runs, the
instrumentation causes the error to happen in every execution.
This avoids incorrectly declaring the tests successful and
deploying the compilers with bugs in them.

Completeness Our method is not complete: Our tools may not
detect a violation even though the compiled program fails a
test. Such cases indicate the need for additional techniques to
focus on other properties of the program, e.g., memory-leak
detection [10], to integrate into the multi-level debugging.

VIII. RELATED WORK

DSEL Compilers Domain-specific embedded languages [18]
attempt to override the limitations of traditional DSLs by
embedding them in a high-level language. Like Asp, the Delite
framework [8] enables writing embedded DSL compilers in
a host language, in their case Scala. Delite also uses phased
compilation, with a unified intermediate form across DSLs; its
structure is amenable to the debugging methodologies in this
work. For compilers that use language macro systems such as
those in Lisp and Racket [26], instrumentation as used here
may be inserted in the transformation macros.

Parallelism correctness We use the NDSeq approach [4]
to specify and check parallelism correctness, which uses as
specification a sequential version of the program with explicit
nondeterminism generated by former stages of the compi-
lation. Several other parallel correctness criteria have been
studied for parallel programs. These criteria include data-race
freedom [22], [30], atomicity [15], and linearizability [17].
Among all, NDSeq is the most appropriate approach for multi-
level debugging, because it provides a complete separation of
concerns about the parallelism and other sequential aspects of
the program. NDSeq specification differs from determinism
specification and checking [5], [3], [27] in that NDSeq not
only allows one to specify that the final state is independent
of the thread schedule, but also allows one to specify that the
final state that depends on thread schedule is equivalent to the
state arising due to nondeterministic choices in the NDSeq.
Fixing bugs In this work we do not focus on fixing the bugs,
which can be incorporated to the compilation environment to
identify fixes to certain problems. For example, there exist lock
allocation-based approaches [14], [21], [20] to infer efficient
locking schemes for parallel code regions and refactoring
techniques [12], [28] that help the programmer in writing code
with efficient-but-tricky locking techniques.

Fault diagnosis For complicated bug scenarios, the identifying
the real cause of the bug, even after categorizing the bug
and relating its causes to particular compilation stage, may
still be a challenge. In such cases, more advanced techniques

on software fault localization [1], [11], [13], bug reproduc-
tion [2], [19], and code inspection [16] can be integrated into
our method to identify the root cause of the bug—i.e., the
particular components or code regions in the compiler—by
exploiting the recorded trace of the failing execution.
Replay The method of tracing and replaying applications has
been used in other techniques for debugging nondeterministic
code [23], [9]. Our technique is novel in that we trace
an execution of an optimized program to replay on less-
optimized versions of the same program to locate errors in
the compilation process.
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