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Abstract

Private Media Search on Public Databases

by

Giulia Cecilia Fanti

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Kannan Ramchandran, Chair

Automated media classification techniques like speech processing and face recognition are
becoming increasingly commonplace and sophisticated. While such tools can add great
value to the public sphere, media searches often process sensitive information, leading to a
potential breach of client privacy. Thus, there is great potential for applications involving
privacy-preserving searches on public databases like Google Images, Flickr, or “Wanted
Persons” directories put forth by various police agencies. The objective of this thesis is
to argue that private media searches masking the client’s query from the server are both
important and practically feasible. The main contributions include an audio search tool
that uses private queries to identify a noisy sound clip from a database without giving the
database information about the query. The proposed scheme is shown to have computation
and communication costs that are sublinear in database size. An important message of this
work is that good private search schemes will typically require special algorithms that are
designed for the private domain. To that end, some techniques used in the private audio
search tool are generalized to adapt nearest-neighbor searches to the private domain. The
resulting private nearest-neighbor algorithm is demonstrated in the context of a privacy-

preserving face recognition tool.
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Chapter 1

Introduction

Content-based media searches are growing to be a key component of many emerging
applications, and they have the potential to change the way people interact with their
environments (see e.g. [1], [2]). Examples of these technologies include voice and face
recognition, location estimation, mood classification from videos or images, and internet
searches that find images similar to an uploaded query (query by example). Recognition
and classification are critical components of the decision-making process; as automated
media recognition grows increasingly sophisticated, so too grows the ability of machines
to make intelligent choices. However, practical automated recognition systems typically
compare queries to existing databases that are stored remotely by necessity; small devices
like cell phones cannot possibly store databases as large and comprehensive as those of

major web services like Google or Facebook.

However, if a user wishes to classify a media file containing user-specific details, the
server can often deduce information about the client, giving rise to significant privacy con-
cerns [3]. For instance, in a photo-tagging service, the server could fairly easily use the
tagged names of photograph subjects to map facial images to personal information like so-
cial security numbers [4]. This particular scenario may not be an imminent threat, but the
fact that it is possible could give rise to security threats like fraud and identity theft, not to

mention less malicious forms of manipulation in the form of advertising, for instance [5], [6].



Given the relative frequency with which websites are hacked, the public vulnerability stems
not only from server-side attacks, but also from external attackers who somehow access the
server’s information [7]. Moreover, there are situations in which a server should not have
any information about the client, such as when the client does not trust the server, or when

the server does not wish to be liable for access to clients’ private data.

The appropriate privacy settings in a system depend entirely on the problem definition.
Broadly speaking, private media searches typically fall in one of two main categories: ei-
ther the server and the client wish to keep their data secret, or only the client wishes to
protect his/her data. A significant amount of work has been done on the former category.
Specifically, advances have been made in a variety of biometric authentication/matching
scenarios like facial image and fingerprint recognition on private databases, e.g. [8]-[11].
However, comparatively little work has been done on the latter scenario, which corresponds
to one-way private queries on public databases. This may be partially due to the fact
that large-scale public media databases like YouTube and Google Images have only recently

become commonplace. This topic will be discussed in greater depth in Section 2.3.2.

Client
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Figure 1.1: High-level diagram for a one-way-private face-recognition system. The client
wishes to classify a media file in such a way that the server cannot learn information about
the client’s query. Red solid arrows signify data provided by the client, blue dotted arrows

by the server, and purple dashed by a combination thereof.

To clarify the high-level picture, Figure 1.1 displays a sample one-way-private face-



recognition system, in which a client wishes to identify an image of Abraham Lincoln. From
a design perspective, there are three major black boxes that must be addressed: masking
the query, processing the query at the server, and deciphering the server’s results. We will

explore different ways to realize these functions later.

Despite the relative lack of attention from the research community to one-way privacy,
content-based media similarity searches on public databases could enable many commercial
applications, such as automatic subject- or location-tagging on private photo collections,
or identification of suspected criminals in airports [12], [13]. The amount of publicly avail-
able media data is tremendous, ranging from Flickr and Facebook to video collections like
YouTube and Vimeo to databases of wanted or missing persons published by various police
agencies. In the commercial sphere, one could envision services in the healthcare domain
that automatically classify medical data like DNA sequences or ECG signals. Patient mon-
itoring devices could automatically and privately compare accumulated data against public
databases of classification parameters; such tools could be useful in areas where medical

access is sparse.

In a different vein, privacy-preserving recommendation systems could improve users’
shopping experiences without revealing their preferences to companies that are likely to sell
that information. For instance, companies like Redpepper [14] are starting to offer services
that run face recognition software on every client that enters a network of subscribing
stores—if a client is registered for Redpepper’s service, he or she will receive personalized
offers upon entering the store. We can think of this as a scenario warranting one-way privacy;
if a store subscribes to the service, it has access to the individuals in Redpepper’s database,
making the database effectively public (from the store’s point of view). However, Redpepper
should not be able to track customers that are not enrolled in the database. These examples
indicate that as collective public privacy concerns grow, it is important to be able to search
public media databases in a way that does not compromise clients’ private data; however,
this can happen only if the associated performance losses (i.e. communication, computation)

are minimal.

This technology has not yet been developed (in part) because traditional media recog-



nition techniques are difficult to adapt to the private domain. Cryptography tools are
typically exact and intolerant of any loss in representation, while media objects are in-
herently distortion-tolerant, giving media classification algorithms considerable freedom to
exploit this tolerance for performance gains. Offhand, the notion of media content recogni-
tion in the encrypted domain seems difficult, to say the least. Currently, the main obstacle
to the adoption of private content matching is the severe inefliciency of known algorithms.
The area has nonetheless received increasing attention as researchers continue to overcome
technical limitations by exploring new mathematical tools and cleverly applying old ones.

This trend will only strengthen as privacy concerns grow.

The goal of this work, at a broad level, is to examine more closely the potential of
private queries as a tool for user-private content media searches. Specifically, we will present
a private audio search tool that operates on a public database but keeps the user’s query
private. This system is meant largely as a proof of concept, since the application is somewhat
contrived. The broader impact is that we will subsequently demonstrate how to generalize
the concepts used in our audio search tool to think about the requirements of arbitrary
private media recognition tools. Specifically, we will focus on privacy-preserving nearest-
neighbor searches, and implement such a search in a face-recognition system based on the

Fisherfaces algorithm.

The key observations of this research are threefold. First, private queries can be useful as
a cryptographic primitive even when the client does not know offthand which file is desired.
Second, even in a private search domain, private media searches can achieve adequate
recognition rates with equal or only slightly degraded performance compared to public
searches. Third and most important, private media-matching problems are often well suited
to a signal processing perspective. That is, it is often suboptimal to use existing signal
processing algorithms in the private domain by fitting cryptographic tools to non-private
operations like computing the distance between two vectors; instead, it may make sense
to actively modify existing algorithms or create new ones to be more suitable for privacy-
preserving applications. We will explore this design philosophy in some detail and show

how it can significantly reduce the costs of privacy-preserving media searches.



1.1 Outline

It is important to make a clear case why one-way private searches should be distinguished
from two-way private ones. Chapter 2 opens with a discussion on this topic, including some
speculation on the reasons for the engineering community’s relative silence on this topic
until very recently, and some historical perspective on relevant prior work. We will then
discuss some important one-way privacy primitives like private information retrieval and
private stream search in Chapter 3. Chapter 4 subsequently presents a proof-of-concept
audio search tool based on private queries. The system takes a noisy sound clip of a song
and identifies the song title by matching the clip to an external database of songs. All
this is done without giving the server any information about the client’s query. While
the system is primarily intended as a building block for other categories of private media
recognition (e.g. image, video), audio matching itself can be useful in certain applications,
like location identification in images or videos [13]. Chapter 6 will then explain one method
of generalizing the techniques used in the audio search system to other forms of media. As
a demonstration of this generalization, we will present a sample private facial recognition

system.



Chapter 2

Related Work

Privacy-preserving media-matching represents the intersection of many related research
areas. On the cryptographic side, our system relies upon important tools in the field of pri-
vate queries. On the signal processing side, these systems can be built only using content-
recognition algorithms that are suitable for the private domain. We will describe some
known media recognition algorithms that are commonly modified for privacy-preserving
applications. Combining these signal processing and cryptography tools, most existing
work on private media recognition is restricted to the symmetrically private domain. That
is, the server learns nothing about the client’s query, and the client learns nothing about
the contents of the database except for the query result. This two-way variety of private
media search is slightly different from our problem, but we will nonetheless provide a brief
overview for completeness. Finally, in the area of one-way privacy, there are some practi-
cal applications in the literature, but they are largely unrelated to the media recognition

problem.

2.1 Cryptographic advances

The relevant cryptographic tools for one-way privacy have been in development for

decades. Search tools that protect the privacy of only the client are known as private



queries, and they span a number of capabilities. There are two types of privacy that can
be achieved by these tools: information theoretic and computational. In the context of a
private query, information theoretic security implies that even given infinite computational
power, an adversary could never definitively learn the identity of the query. Meanwhile,
computational security implies that an adversary cannot uniquely identify the query with
bounded computational resources. Schemes offering both kinds of security will be consid-

ered.

The best-known variety of private query is called Private Information Retrieval (PIR);
PIR allows a user to privately retrieve data at a known index in a database. This concept
was first proposed in 1995 when Chor et al. presented an information-theoretically secure
PIR algorithm with computation and communication costs linear in the database size [15].
The scheme, which will be explained in detail in Chapter 3, also requires at least two non-
colluding servers to have identical copies of the database. Non-communicating servers is
a weighty but plausible assumption, particularly given the emerging prominence of cloud
data storage. The assumption is that if data is stored on cloud infrastructures managed
by different services, those services are unlikely to cooperate with one another to correlate

user behavior.

The work of Chor et al. in [15] spawned two main branches of research. One such branch
attempted to find ways to efficiently execute PIR on a single server [16]. However, Beimel
et al. subsequently showed that any single-server PIR scheme more efficient that simply
transferring the whole database must rely on one-way functions, implying that only compu-
tational security can be achieved with a single server (barring full database transfer) [17].
Related to this, Sion et al. found that single-server PIR schemes are orders of magnitude
less efficient than trivial database transfer on existing hardware [18]. Another branch of
PIR research has focused more on reducing communication and computation costs by using
multiple servers combined with database preprocessing [19], [20]; these schemes addition-
ally achieve information theoretic security. Currently, there exist multi-server schemes that
are sublinear in both computation and communication, but adding more elements to the

database is quite inefficient [20]. In a related vein, Olumofin’s and Goldberg’s 2012 work



demonstrated that existing PIR schemes can be 2-3 orders of magnitude more efficient than

simple database transfer in practice [21].

Another important branch of private queries is called Private Stream Search (PSS). PSS
allows a client to search a database for all documents that contain at least one instance of a
user-specified list of keywords. A scheme was first proposed by Ostrovsky and Skeith, and
it also provides only computational security [22]. PSS relies on properties of homomorphic
cryptosystems, which will be described later. In general, computationally secure systems
tend to be impractical from a computational standpoint, and sometimes communication
as well. However, recent work has significantly improved the efficiency of the original PSS
scheme [23]; in fact, it was recently shown that the downlink communication cost of PSS can
be made asymptotically equal to the downlink cost of the corresponding public search [24];
we will use such a construction in our audio search implementation in Chapter 4. We
observe that PSS can be used as a computationally secure PIR scheme, as we will show in

greater detail in Chapter 3.

2.2 Media recognition algorithms

As mentioned earlier, privacy tools tend to be intolerant of approximate matching and
also quite inefficient. Because of this, sophisticated media recognition algorithms involv-
ing techniques like convex optimization are often poor candidates for privacy-preserving
applications. Instead, most existing private media-matching research relies on well-known
nearest neighbor methods for the signal processing aspect of the algorithm [9], [10], [25].
Nearest neighbor methods compute a feature vector for a query and then find the closest
feature vector in the database by some metric—usually Euclidean distance. The nearest

neighbor in the database is subsequently chosen as the most likely match.

The most prevalent example of such an algorithm in the media-matching sphere is
Eigenfaces [26]. This algorithm represents images (both from the database and query) as
linear combinations of basis vectors extracted from the facial training data. These basis

vectors are found via singular value decomposition on a matrix representation of all the
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Figure 2.1: Training face data (left) and corresponding eigenfaces (right). Images cour-
tesy of Santiago Serrano with Drexel University, http://www.pages.drexel.edu/~sis26/

Eigenface’,20Tutorial.htm

images in the training set. The name ‘eigenfaces’ stems from the fact that the basis vectors,
when rearranged into the rectangular dimensions of the training images, look like distorted
facial features. See Figure 2.1 for some examples of database faces and the corresponding
eigenfaces. By projecting each face onto this basis, the facial images are mapped to a lower-
dimensional vector than the original image vector, which contained all the pixel intensities.
That new vector acts as a feature vector, enabling a nearest-neighbor search. This nearest-
neighbor search tends to be the most computationally and communication intensive portion
of private adaptations [9], [10]. Nonetheless, Eigenfaces is one of the most common face-
recognition algorithms used in the private domain, and we will use an extension of it in

Chapter 6 to build a one-way private face recognition system.

While nearest-neighbor techniques can be difficult to adapt to the private domain, there
do exist signal processing algorithms that inherently rely on finding exact matches, thereby
rendering them very conducive to privacy-protection. We utilize such an algorithm for
our audio search; the scheme was originally proposed by Haitsma and Kalker [27]. We
will describe this scheme in much greater detail in Chapter 4, but the general idea is the
following: Instead of searching for feature vectors that are close to the query vector in
distance, find feature vectors that match the query vector exactly in at least one location

(i.e. substrings of the corresponding bitstreams are identical), then compute the distance
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of the resulting vectors. One can either select the closest such vector as a match, or choose

the first vector whose distance from the query is below a certain threshold.
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Figure 2.2: Media search techniques categorized in terms of privacy level, computational

efficiency, and communication requirements.

2.3 Private Media-matching

At the intersection of these signal processing algorithms and cryptography techniques,
we have private media searches. Private media searches ask for more from a search al-
gorithm than public searches do. As such, they also cost more in terms of resources like
communication and computation. Although the notion of private computing is garnering
significant public interest, users are ultimately unlikely to tolerate the associated drawbacks
if those drawbacks manifest themselves as significant delay and/or increased communication
charges. Thus the primary goal of much private media matching research is to reduce the

total resource demands of private search systems [10], [28].

One major obstacle to reducing resource costs is the fact that there is often a trade-
off between computation and communication costs in private media search schemes. For
instance, consider algorithms that rely on homomorphic encryption [9], [29]. In these algo-
rithms, the client sends an encrypted query to a server, and due to mathematical properties
of the cryptosystem, the server is able to do computations on the query despite not knowing

the content of the query. Such algorithms are typically quite computionally heavy but the

10



communication costs can be fairly low. On the other hand, there are schemes that rely
on garbled circuits, in which the server effectively sends a garbled version of the database
to the client, and the client can extract a single desired element [10], [25]. These schemes
require far less computation, but the communication costs are quite high for most practical

circuit sizes.

To illustrate this point, some existing private media search techniques are displayed in
Figure 2.2, depicted as a function of computation and communication costs. In practice,
existing algorithms often combine several privacy primitives, so the schematic is only meant
as a qualitative guide to the distribution and magnitude of costs for each approach. As
mentioned earlier, most of the existing schemes fall into the outer band of this figure, offering
two-way privacy protection. Since this variety of private media matching has received far
more attention than the one-way variety used in our work, we will briefly present some

primary contributions in the two-way area.

2.3.1 Two-way private media matching

Practical implementations of private media searches are usually presented in the context
of two-way private biometric recognition; this can be for the purpose of user authentica-
tion or surveillance, among other possibilities. To the best of our knowledge, the first
work specifically addressing privacy-preserving media recognition was conducted by Avidan
and Butman in 2006 [30], in which they built a private face-matching system. This paper
spawned a significant amount of related research using different techniques to do private
media matching. The bulk of these works are related to private facial recognition [9], [10],
[25], [31], [32], but there are also branches that are more focused on fingerprint image iden-
tification [29], speech processing [11], [33], and ECG signal classification [34]. These works
(as well as others in the field) collectively managed to significantly reduce the computa-
tional and communication costs of running a two-way private media recognition system.
For instance, subsequent papers like [25] are able to condense certain portions of the face
recognition algorithm by as much as an order of magnitude in computation time and band-

width compared to other private schemes. Other schemes, like the SCiFI system, build
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an entire facial recognition search algorithm with built-in compatibility for privacy primi-
tives [32]; we will discuss the need for this kind of design philosophy in Chapter 6. In any
case, we will see later that even though these systems can achieve fairly low runtimes, their
computational and communication loads are still linear in database size, which limits how

efficient such systems can be on a large scale.

2.3.2 Omne-way private applications

We start by pointing out that two-way private searches are a generalization of one-
way private searches. As such, symmetric private algorithms will always work when the
database is public. However, the comparatively high cost of two-way private algorithms is
our motivation for treating one-way private search algorithms as a separate entity. To our
knowledge, there are no theoretical guarantees on the relative efficiencies of asymmetric and
symmetric private search schemes, but in practice there are gains to be had by exploiting
unilateral privacy. Applications of one-way privacy primitives are most common in the
area of location-based services [35]. Location-based services are applications that use a
client’s physical location to provide services like displaying an appropriate map, or giving
directions to the nearest bank. Such applications are particularly well suited to the user-
private domain because the client’s location is already known, meaning that the client is
able to precisely describe what data it desires from the database. This fact melds nicely with
the PIR setup described earlier, in which the client must know exactly which index it wishes
to retrieve from the database [15]. Even in situations where the client requests all files in
a database containing a list of keywords [22], the client must somehow know exactly which

keyword to search for, which is typically a reasonable request in location-based services.

On the other hand, content-based media identification is a fundamentally different prob-
lem because the client has no prior information telling where in the database to search for
the query. Along with some other factors, this is presumably why the topic has received so
little attention in the signal processing community. In the past, a few authors of two-way
private systems have briefly addressed the case when databases are partially or fully public;

for instance, Erkin et al. discuss some small variations to their face recognition system if
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the Eigenvectors for a database are public [9]. Similarly, Barni et al. briefly address this
issue in their privacy-preserving ECG-classification system, giving small improvements if
the server is willing to leak some information [34]. However, Shashank et al. built a fully
one-way private image similarity search tool that requires a tree-structured database with
files clustered by image similarity [28]. This work appears to be a fairly direct extension
of [36], but to our knowledge, it is the only published work to date dealing exclusively and
pointedly with one-way private media similarity searches. Indeed, their system manages
to obtain satisfactory results at a much lower cost than comparable two-way private algo-
rithms. In our research we present an alternate method of framing the one-way private

media matching problems.

Temporal relevance

Despite the relative lack of attention to this area, we believe the time is ripe to pur-
sue this research area. Cryptographically, the required tools have only recently matured
enough to be considered viable. For a long time it was thought that practically-speaking,
one-way privacy primitives are as inefficient as sending the whole database to the client.
The issue was largely ignored until 2011, when Olumofin and Goldberg demonstrated that
private queries can be as much as three orders of magnitude more efficient than database
transmission in practice [37]. Many of the currently available multiserver PIR schemes
have sublinear communication and computation costs, and the field is still active [19], [20].
There may very well come new innovations rendering private queries efficient enough to be

practical.

On the other hand, public media databases have become commonplace only within the
last decade (e.g. YouTube, Flickr, Facebook, Google Images), and these services did not use
similarity searches until even more recently. The tremendous growth of public databases has
proved increasingly useful for media matching applications and also heightened the potential
privacy threat to the average user [13]. While the constant monitoring of people’s online
identities is perhaps not noticeable to the average user, it is absolutely constant, and varying

in the degree of invasiveness. At least in the United States, the federal government and
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private companies are actively monitoring mobile users, particularly with respect to location
[38]. Just within the last two years, both Google and Facebook have had to settle lawsuits
with the FTC for violating the privacy of users [39], and several companies (including
Facebook) are moving steadily toward automated, ubiquitous face recognition [14]. In an
orthogonal direction, a major search engine (Yahoo) has been the victim of a security breach,
exposing the login credentials of many users—and this incident is by no means a unique
case [7]. In short, online behavior gives an intimate understanding of people’s daily lives.
Whether this information is used with malicious intent or not, the issue of user privacy is
a very relevant one, both from the client’s and the server’s perspective. The combination
of these factors with the cryptographic advances mentioned earlier strongly suggest that

user-private media searches can and should receive increased attention in coming years.
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Chapter 3

Private Queries

We will start by explaining the fundamentals of one-way-private cryptographic tools,
collectively termed ‘private queries.” Private queries are searches on a database in which
both the query and the result are masked from the server. The caveats are twofold: the
client must know exactly what data is desired from the database, and the client may learn
information about the database besides just the desired file during the search process. The
latter condition is unimportant on public databases, but the fact that the user must know
precisely what to request is problematic since media searches are inherently inexact. We
will discuss ways to get around this stringent requirement in Section 4 and 6. The current
section describes two representative private query methods used to privately retrieve items

from a database.

3.0.3 Multi-Server Private Information Retrieval

Private Information Retrieval (PIR) allows a client to retrieve data at a particular index
in a database without revealing the query (or the results) to the server. As mentioned above,
there exist PIR implementations that require only one server [40], though in practice they
are significantly less efficient than trivial database transfer [18]. We will emphasize multi-
server schemes, which can achieve communication and computation that is sublinear in

database size [19], [20]. Multi-server PIR schemes require the existence of at least two non-
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colluding servers, each with a duplicate copy of the database. This assumption is strong, but
not unreasonable; for instance, one could store data on clouds run by competing services,

e.g. Amazon and Google.

We describe the basic PIR scheme from [15]. Both servers have copies of a database
comprised of a binary string « € {0,1}", and the user wishes to retrieve the ith bit, z;. The
user’s request can be represented by e; € {0,1}", the indicator vector with a 1 at index 14
and 0’s elsewhere. To disguise this query, the user generates a random string a € {0,1}"
with each entry a Bernoulli(1/2) random variable. The queries sent to servers 1 and 2 are
a @ e; and a, respectively. Each server computes the inner product of its received query
vector with the database x using bitwise addition (XOR) and returns a single-bit result.
The user XORs the results from the two servers to get precisely x;. The scheme is illustrated
in Figure 3.1; if the database consists of indexed files rather than bits, the same process is

carried out on each bit plane.

Toy Example Bit P General
aUsere Servers X A %
a e i A . |1 Database
1] [o (a® &, x )10 b oo
aseg ; | L —
g g ' 0 ) ;—(1)/0//1/ Each file
' ) . RS has f bits
. Xj: 2. . e
1 0 : i e e
1 1 le—ith % I I I 2/ | Process each
0 position B T | bit plane as in the
o 0 (a,x) 1 H . _1/0//0/ toy example
n L |~

Figure 3.1: Basic PIR scheme. Each of two servers computes the bitwise sum of a user-
specified subset of database files. (-,-) denotes the inner product of two vectors. Because
the two user-sepcified subsets differ only at the ith index, the binary addition of the results

from both servers gives the original desired file.

This multi-server PIR scheme is information theoretically secure, meaning that an ad-
versary cannot break the scheme even with unlimited computing power. This is proved in
Section 5.2. Communication-wise, it is also relatively light, even in the general case where
the database is a list of files rather than a list of bits. The total communication cost in
that case is only 2(n + f) bits. n bits are sent to each server, and two sets of f bits are

received, where f is the file size (in the example above, f = 1 since the database is just
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a binary string). When more servers are added, this technique has a general extension,
which reduces the total number of communicated bits. For a general number of databases
¢, the total communication cost can be reduced to 2¢(1 + d</n), where d = log, ¢ [15]. The
communication reduction comes from embedding the databases in d—dimensional cubes
and sending randomized subsets to the various databases to be XOR’ed, much like the
two-server example. From a practical standpoint, it is unclear where large public databases
are likely to be duplicated on many non-colluding servers. Perhaps in a distributed storage
situation, servers may be less likely to collude, but for databases as large as Google Images,
this seems like a difficult condition to satisfy. In this paper, we will focus on the two-server
case, though we consider a possible peer-to-peer PIR system relying on many proxy servers

in Section 7.2.

3.0.4 Private Stream Search

We previously noted that PIR can be done with a single server at the expense of com-
putation and communication; moreover, the resulting level of security is computational
rather than information-theoretic, meaning that the scheme cannot be broken with known
practical methods. We will start by presenting a single-server computationally-secure PIR
scheme based on [22] for completeness, since it is similar in spirit to the privacy tools used

in many two-way private schemes.

Private Stream Search (PSS) was originally designed to perform private keyword
searches on databases [22]. For instance, one might want to privately retrieve all files
in a text document database that contain the word “red”. The problem statement is a
bit different from that of a PIR query, since the client is no longer searching for a specific
file by index. However, this setup can easily be framed as PIR by making the dictionary
of keywords equal the list of document indices. We will explain the scheme from [22] in
the context of PIR for ease of comprehension, though the original framing of PSS is also
useful and represents a different variety of private query. Before detailing the algorithm, we

introduce an important preliminary concept known as homomorphic encryption.
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Homomorphic Encryption

Additively homomorphic cryptosystems are utilized to varying degrees in almost every
current private media content retrieval scheme. In the general case, a public-key cryptosys-
tem comprised of encryption function £(-) and decryption function D(-) is homomorphic
if there exist operations fi(-) and fa(-) such that fi(x,y) = D(f2(E(z),E(y))) [41]. There
are several cryptosystems with this property, but the additively homomorphic Paillier cryp-
tosystem is used in most existing private media content retrieval applications [42]; it is

homomorphic with f; corresponding to addition and fo to multiplication, i.e.
E(x+y) =E(x)E(Y) (3.1)
This implies that multiplication by a constant c takes a particularly simple form:
E(cx) = E(x)° (3.2)

One important point is that the Paillier cryptosystem is a randomized mapping from a set
of numbers to a larger set of numbers. Therefore, successive encryptions of a single number

can take on different values, even if the same public key is used for all the encryptions.

PSS as Single-Server PIR

Now we apply this to the single-server PIR problem. Consider an ordered list of possible
file indices, from 1 to n, with ¢ being the desired index. Using an additively homomorphic
cryptosystem, the client generates an encrypted query vector ¢ of length n, with £(1) at
index i and £(0) at the remaining indices. Because the Paillier cryptosystem is randomized,
all the entries in this encrypted vector will be different with high probability. The encrypted
query vector is sent to the server, as shown in Figure 3.2. Now the server goes through its
database; for every file index, the server checks the corresponding entry in the encrypted
query vector. This entry, which is either £(0) or £(1), is raised to the power of the whole
file represented as a number. So if i = 1, then ¢; = £(1), giving £(1)/1; by equation 3.2,
this quantity is equivalent to the encryption of fi. The same procedure is also done for all

the other files f;, j # i, but in that case, £(0)% = £(0). After going through the whole
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database, the results of these exponentiations are multiplied together and returned to the
client. Because of the homomorphic cryptosystem, multiplying ciphertexts corresponds to
adding their arguments, so we get £(0+ ... +0+ fi + 0+ ... +0) = £(f;). Thus the client
decrypts precisely the file at the desired index, but the server learns nothing about the

client’s desired index.

Client ! Server
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Figure 3.2: Example of PSS search in which the user wants the ith file from a database.

The server, which has only the public encryption key, computes n modular exponentiations
and returns the product of all of these. The client then uses the private key to decrypt the

results and obtain the desired file.

PSS for Stream Search

Now let us consider the slightly more complicated original intent of PSS—keyword
search—as it is presented in [22]. For this example, we wish to retrieve all files containing
the word “red”. Suppose there is an ordered list of possible search keywords. This list would
include the word “red”, among other keywords. The client generates an encrypted query
vector, with £(1) at the indices of the desired keywords and £(0) at the remaining indices.
Because the Paillier cryptosystem is randomized, all the entries in this encrypted vector will
look different with high probability, even though each entry in the vector is either £(0) or
E(1). This encrypted query vector is sent to the server along with the public key, as shown

in Figure 3.3.

The server starts with a full database and a buffer, whose size is chosen according to
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the expected number of matching documents per query; all buffer entries are initialized to
the value 1. Upon receiving the encrypted query and public key from the client, the server
goes through each file in its database. For every keyword in a given file, the server checks
the entry in the encrypted query vector corresponding to that keyword, and multiplies the
encrypted query entries for all the keywords in the file. By equation 3.1, the result is an
encryption of the sum of the arguments. So if the word “red” is contained once in the
document, we get £(0+0+...+1+...4+0+0) = E(1) (the zeros represent other keywords
in the documents that were not “red”). If the file does not contain the desired keyword,
the product of these query entries will be equivalent to £(0). This product is raised to
the power of the whole file represented as a number. So if file 1 contains the word “red”
once, we would get £(1)71, which is the encryption of f; by equation 3.2. This quantity is
added (in plaintext) to a fixed number of randomly selected buffer bins (e.g. three bins per
file). Here ‘addition to the buffer’ corresponds to modular multiplication in the encrypted
domain, so the arguments get added. The same procedure is also done if the file does not
contain the keyword, but £(0)/1 = £(0), so adding it to the buffer is essentially transparent.

After going through the whole database, the buffer is returned to the client.

. _ Server
Cllent o pted File 0 (fo) File 1 (f1)
Dictionary Query : q the the
the] [E©)] i MEQ) dog red
R
is E(0) '
red l
red| |E() :brown EE;; (AneTdogTisdbrown)0 (GtheGredddog)
brown| | E(0) i = E(0+0+0+0)fo = E(0+1+0) %0
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V\éz:i:ii |frl1lg ) ! E(0)foE(1)f
the word 'red' i Buffer EOR [y 1 E(1)f

Figure 3.3: Example of PSS search in which the user wants all files containing the word
“red”. When the server returns the buffer, the user can decrypt bins 2 and 4 to determine

the desired file.

Once the client receives the buffer, it must decrypt all the buffer bins. For simplicity,
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we assume that only one keyword was sought in the query, e.g. “red”. First of all, we
note that files in which the query keyword(s) do not appear are effectively invisible to the
client, as stated before. Second, suppose that two different files each contain the keyword
once and (by chance) get added to the same buffer bin. Then when the client decrypts
that buffer bin, the result will be the plaintext sum of those two files, so the client cannot
recover the individual files. Therefore, the client must search for singleton bins, or bins that
were assigned only one nonzero file by the server. When the client decrypts such a bin, it

will obtain exactly that nonzero file.

In the PSS implementation of [22], only singletons can be decrypted, so the buffer size
must be selected as O(log(n)) in order to retrieve all results with high probability, where
n is the number of documents. However, a scheme proposed by Finiasz and Ramchandran
achieves optimal (i.e. identical to nonprivate) downlink communication by using techniques
analogous to LDPC decoding [24]; each time a singleton file is decoded, all the other in-
stances of that particular file in the buffer are removed by the client. This requires the
client to know which bins contain a file, given the file content. One way to achieve this is
by having the server seed its random number generator with the content of the file. In that
way, the client can reproduce the “randomness” of the server, while preserving decodability
in a probabilistic sense. We utilized this technique in our PSS implementation in Chapter

4.
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Chapter 4

Privacy-Preserving Audio Search

As we briefly mentioned in Chapter 1, a practically viable private media search system
will generally feature a customised search algorithm. In the early days of privacy-preserving
signal processing research, the focus was mostly on pairing cryptography techniques with
existing search algorithms [9], [10]. This approach can add unnecessary costs if the underly-
ing search algorithm is not inherently privacy-accordant, but there do exist accurate search
algorithms that are already compatible with private searches. We will start by presenting
a private audio search tool based on precisely such an algorithm, i.e. the audio search of
Haitsma and Kalker [27]. In this system, the client possesses a noisy sample of a song, such
as what one might hear on the radio. The user wishes to identify the sample without giving
any information about the noisy query to the server. The key idea is to integrate interdis-
ciplinary techniques from both the cryptographic and signal processing communities. We

begin by providing a brief overview of the non-private search algorithm.

4.1 Audio search algorithm

The underlying audio search algorithm we build upon was first proposed by Haitsma
and Kalker [27]. This search tool relies on quantizing audio features and looking for exact

matches between the query and the database. Their scheme represents audio files as collec-
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tions of time-dependent, quantized audio features called subfingerprints. The quantization
in these features allows different, noisy renditions of the same clip to map to the same sub-
fingerprint, thereby adding robustness. Subfingerprints are found by first computing the
spectrogram of a fixed-length audio segment. For example, for a 10-bit subfingerprint, the
spectrum is divided into 11 frequency bands, and the total energy in each of these bands is
integrated over the time interval of the audio segment. Each band is then compared to the
frequency band below it; if the ith band has less total energy than the (i 4+ 1)th band, then
the ith bit of the subfingerprint is assigned the value ‘0’; otherwise, it gets assigned the
value ‘1°. This procedure is illustrated in Figure 4.1. An important point is that once the
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Figure 4.1: Audio feature generation. The spectrogram of an audio clip is used to calculate
the sum energy in frequency bands, and the band energy values are compared to one another.
This same process is done on successive, overlapping time segments of audio to get a feature

representation of an entire audio file.

feature vectors are calculated, the rest of the algorithm is agnostic to the type of feature
vector used. This speaks to the broader applicability of the private search scheme; our
modular approach allows one to substitute images or video for audio, as long as there exists
an appropriate feature vector extraction scheme for that media class. We will see later how
to avail of this modularity by describing a scheme for nearest-neighbor matching, which we

apply to the face-recognition problem.



Each song in the database is represented as a list of subfingerprints, which are found
by executing the steps in Figure 4.1 on successive, overlapping, fixed-length time intervals.
The longer a song is, the more subfingerprints are required to describe it. On the client
end, a three-second query audio clip, potentially corrupted by noise or other distortions,
is also converted to this subfingerprint representation—three seconds of audio map to 256

subfingerprints total, which are collectively termed a ‘fingerprint block’.

The client sequentially sends each of the 256 noisy query subfingerprints to the server;
for each one, it receives all fingerprint blocks in the database that contain the desired
value at the desired position. For example, if the first query subfingerprint has the value
0x0003, then the algorithm will first find all fingerprint blocks in the database that start
with the value 0x0003. If one of the returned blocks is very similar to the query block
in Hamming distance, a match is declared. Otherwise, the algorithm submits the second
query subfingerprint to the server, and so forth until it has tried all 256 query prints. This
scheme is illustrated in Figure 4.2. Note that each time we search for the ith of the 256
query subfingerprints, the server returns all fingerprint blocks in the database that exactly
match the query prints in the ith location; this property allows for modularity and sets the

stage for an easy transition to the private domain.

4.2 Private audio search

In order to make the scheme private, we convert every query subfingerprint search to
a private query, thereby hiding all information from the server. Two versions were im-
plemented: one using two-server PIR, and one using single-server PSS. That being said,
multi-server PIR is far more likely than single-server PSS to gain traction as a practi-
cal privacy tool. Computationally private schemes require the use of asymmetric encryp-
tion operations which, when used with secure key sizes, are very expensive. In practice,

information-theoretically secure PIR can be at least 1000 times faster.
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Figure 4.2: Diagram of public audio search algorithm. The client successively sends each
subfingerprint to the server, which returns all fingerprint blocks that match the query exactly
at the specified position. The client checks the bit error rate (BER) between the query and

the returned fingerprint block and declares a match if the BER is below a threshold.

4.2.1 PIR Version

We will begin by describing a slightly simplified version of the PIR-reliant algorithm,
dubbed ‘AudioSearchPIR’, for the sake of clarity. The search could use any PIR imple-
mentation, information-theoretically secure or computationally secure. The client begins
by converting the noisy query to a list of 256 subfingerprints, just as before. Recall that
in the non-private version of the algorithm, the client would send the first subfingerprint
q1 to the server to be matched (suppose again that the first subfingerprint takes the value
q1 ='0x0003’). Ideally, the client would know where in the database to search for instances
of the subfingerprint 0x0003 and use PIR to retrieve all the corresponding chunks. However,

the client does not know where in the database to find the desired subfingerprint.

There are many ways to address this, and search efficiency can be altered by using
various database indexing schemes. One method to reduce the communication cost is to
use an inverted database, which is indexed by subfingerprint. Essentially the database
becomes a list in which the content at the ¢,th index is the set of all fingerprint blocks that
contain subfingerprint ¢,,. Now, if the client wishes to retrieve the fingerprint blocks in the

database that start with subfingerprint 0x0003, it submits a PIR query to the server for the
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data at index 0x0003. It receives all the fingerprint blocks containing 0x0003. These steps

are outlined in Algorithm 4.1.

At this point, we consider two possible endings to the algorithm. The first possibility
is dubbed ‘AudioSearchPIR:FullSearch’; this approach compares the bit-error rate (BER)
of each returned fingerprint block to the running minimum BER. So if a block has a lower
BER than the running minimum, then that block becomes the new optimal solution. This
approach implies that a PIR query is executed for each of the 256 query subfingerprints,

giving the closest match possible. AudioSearchPIR:FullSearch is detailed in Algorithm 4.1.

Algorithm 4.1 AudioSearchPIR:FullSearch

1: function EXTRACTFEATURES(NoisyAudio)
2 Input: Noisy audio clip, at least 3 seconds long (NoisyAudio)
3 Output: Vector of 256 query subfingerprints (q)
4: end function

5. function PIR(Q, S, P)
6 Input: Server ID (S§), PIR protocol (P), PIR query (Q)

7 Output: Mixed database contents (ScrambledResult)

8: end function

9: function COMPUTEBITERRORRATE(q, )

10: Input: query fingerprint block (g), scrambled fingerprint block output of PIR (r)

11: Output: Bit error rate between the two vectors (BitErrorRate)
12: end function
13:

14: Input: Noisy audio clip (NoisyAudio)

15: Output: ID, content of closest match in Hamming distance (ClosestMatch)
16: MinBitErrorRate < 1

17: q + EXTRACTFEATURES(NoisyAudio)

18: for w =0 — 255 do

19: Result <~ 0

20: for all non-colluding server S, do

21: C generate PIR query Q, for subfingerprint q,,, to be sent to server S,
22: ScrambledResult + PIR(Q,, Sy, P)

23: Result < Result & ScrambledResult

24: end for

25: BitErrorRate +— COMPUTEBITERRORRATE(g, Result)
26: if BitErrorRate < MinBitErrorRate then

27: MinBitErrorRate <+ BitErrorRate

28: ClosestMatch < Result

29: end if

30: end for

Note that if the utilized PIR scheme P is information-theoretically secure, ’AudioSearch-
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PIR:FullSearch’ leaks no information whatsoever to any of the servers &, provided the
servers do not collude. We will prove this in Section 5.2. However, information theoretic
security comes at the cost of inefficiency. For instance, we could avoid submitting all 256
PIR queries, and instead stop searching as soon as a fingerprint block is found with a BER
below some threshold ¢, as is done in the non-private algorithm. This approach is denoted
‘AudioSearchPIR:ThresholdSearch’, and is presented in full in Appendix B as Algorithm
B.1. This modification impacts neither asymptotic nor worst-case communication and com-
putation costs, but it does reduce average costs in practice. In Section 5.2, we will also show
that this modification does not leak any ‘significant’ information to the sever. By ‘signifi-
cant’, we mean information relevant to the semantic content of the audio file (as opposed
to Gaussian noise). We will also discuss the security properties of this scheme in Section

5.2

Further refinement

The algorithms above have some inefficiencies built in. For instance, the downlink
communication is higher than strictly necessary—even if the client only wants all fingerprint
blocks that start with 0x0003, it will receive all blocks that contain 0x0003. This is done
for a simple reason: if the first subfingerprint is not an exact match, then the client must
search for all blocks that contain g¢» at the second subfingerprint, and so forth. Thus,
having a separate database for all 256 subfingerprint positions is undesirable. One way to
circumvent this issue is by using a dual database structure comprised of a lookup table and
a song directory; this technique, dubbed ‘AudioSearchPIR:LookupTable’, is the approach
we used in our implementation. We have included this Algorithm B.3 in Appendix B since

it is similar in concept to the algorithms already listed.

In this new database structure of AudioSearchPIR:LookupTable, the song directory is
just a list indexed by song number. Each song has an associated sequence of subfingerprints,
as described earlier. If there are r songs in the database, this song directory will have r
entries, and each entry will contain a different number of subfingerprints depending on the
length of that particular song. The lookup table, on the other hand, is a list indexed by

216

subfingerprint. So if each subfingerprint is 16 bits, the lookup table will have entries.

The ith entry of the lookup table is a list of all the locations where subfingerprint ¢ can be
found in the database. A figure depicting this database setup is shown in Figure 4.3.

If the client is trying to find matches for the first subfingerprint 0x0003, it starts by

27



Sub- Lookup Table Song Directory
fingerprint (Song Index: Print Index)

0x0000 | 0:24.0:46, 1:0

-
0x0001 | 0:0,0:122,1:16,1:20 8;‘(88‘1):‘ 8)(8822
00002 | 0:56, TA———— X

Song 0 Song 1

0x0000 0x0203

0x02a2 0x009b

0x0135| |  0x0002
— 1 - T .

Oxffff | 1:34, 1:223

Figure 4.3: Dual database structure consisting of a lookup table and a song directory.

submitting a private query to the lookup table for index 0x0003. In return, the client
will get a list of exact locations of 0x0003 in the database. Now if the client wants all
fingerprint blocks that start with 0x0003, it will submit a series of new PIR queries, each
of which retrieves a fingerprint block that starts precisely at one of the indices in the list
of locations. This reduces the downlink communication cost, but it can also significantly
increase the uplink cost, because the client has to submit a new private query for every
instance of the desired subfingerprint in the database. Specifically, this becomes detrimental
when the database is large and uplink communication in a given PIR query dominates over

downlink.

4.2.2 PSS Version

As mentioned earlier, single-server PSS can also be used as a computationally secure
PIR scheme by treating file indices as keywords. Using such a scheme, any of the algorithms

listed above would work fine since they do not rely on a particular implementation of PIR.

However, one can also use PSS in the way it was originally designed, by designating
keywords that reflect the content of an audio segment. We also chose to implement this latter
version. Each subfingerprint can be thought of as a keyword, just as each subfingerprint
block can be thought of as a document. Then we can do one of two things: One option is to
submit a single PSS query for all documents that contain at least one of the subfingerprints
from the query fingerprint block. For instance, if all 256 of the query subfingerprints
happened to be either ‘0x0003’, ‘0x0000’°, or ‘0x0001’, then we would submit a single PSS
query total with £(1) at the Oth, 1st, and 3rd indices, while the rest of the indices would
contain £(0). PSS returns all documents that contain at least one of the desired keywords,

so the client would receive all fingerprint blocks containing 0x0003, 0x0001, 0x0000, or any
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combination thereof. This approach is appealing because there is only one PSS query for
all 256 subprints, thereby significantly reducing uplink communication, which can be high
for PSS. However, for reasons that will be explained shortly, it is difficult in this framework
to implement partial privacy, in which a few bits from each subfingerprint are revealed to

the server for efficiency gains.

Since partial privacy can give large efficiency gains overall, it is a feature we want to
enable. To this end, we propose a different option dubbed ‘AudioSearchPSS’ —closer in
spirit to the PIR implementations. This approach submits a separate PSS query for each of
the 256 query subfingerprints and retrieves all fingerprint blocks that contain ¢, at index
w. The client has to send index w in plaintext to the server, but this doesn’t leak any
information. In our system, we chose to implement AudioSearchPSS, which is illustrated

in Figure 4.4.

In this figure, the server receives 1) a PSS query @ generated for subfingerprint
qo =0x0003, and 2) a plaintext value indicating that w = 0. Given this information, the
server cycles through every fingerprint block in the database. For a given block, it retrieves
the subfingerprint at w = 0 (suppose it is 0x0018, as in the figure), and finds the index of
@ that corresponds to that subfingerprint (in our example, this would be Qoxoo1s = £(0)).
As in the description of PSS in Section 3.0.4, the server takes this value and raises it to
the power of the numeric representation of the fingerprint block, modulo the public key. In
our depicted example, this would be £(0)/. This quantity randomly gets added to some
number of buffer bins. Again, adding a value to a buffer bin corresponds multiplication
modulo the public key in the encrypted domain. This process is done for every fingerprint

block in the database, after which the buffer is returned to the client.

It is unclear offhand which method is better—the first technique has an increased down-
link communication cost because the client ends up downloading all matches for all 256
subfingerprints, even if there was actually an exact match for gg. Thus the buffer has to be
very large for correct decoding, to fit all the expected matches. The amount of overhead
in this case will depend on database size and the expected number of exact matches per
subfingerprint. On the other hand, AudioSearchPSS, depicted in Figure 4.4, has a signif-
icantly increased uplink communication cost. If the subfingerprints are 16 bits long, each
uplink query will require 2'6 encrypted bits. Since around 3000 bit public encryption keys
are needed for computational security [32], this yields about 195 MB per query. Since the
latter approach can require up to 256 private queries, the client could upload as much as

50 GB in the worst case. Clearly neither of these options are desirable. However, at low
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Figure 4.4: Private audio search using PSS. The client submits a new PSS query for each
¢w in the query fingerprint block. This figure shows the client’s PSS query for go =0x0003.
The server cycles through all the fingerprint blocks in the database and checks the first
subfingerprint in the block. Two successive fingerprint blocks from the same song are just

shifted by one subfingerprint, so they have 255 subfingerprints in common.

noise levels, it is likely that the system will find an exact subfingerprint match in one of
the first subfingerprints. Indeed, our application space has relatively high SNR (FM radio
typically has SNR levels around 70 dB [43]), so we chose to implement AudioSearchPSS.
This Algorithm B.4 is also detailed in Appendix B.
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Chapter 5

Audio Search Tool Results

There are three main areas of evaluation in a privacy-preserving media search system.
The first is related to the accuracy of the algorithm—independently of the privacy aspect, we
wish to evaluate how well the algorithm is able to identify media objects. In this chapter,
we will explain why our algorithm gives recognition rates identical to those of the non-
private algorithm and discuss what parameters affect those recognition rates. The second
area of evaluation is the security of the system. That is, how much does the server learn
from executing the protocol? We will show that our PIR-based algorithms are information
theoretically secure. The third area is the efficiency of the system. We would like to
identify a media file with sublinear communication and computation costs, ideally as close
as possible to the non-private costs. We will show that by carefully selecting the size of
our subfingerprints, we can reduce the overall communication and computation costs to be
sublinear. However, this performance is still less efficient order-wise than the communication
costs of the underlying non-private PIR scheme. Note that this scheme is presented in
the context of audio matching, but as mentioned earlier, the actual search algorithm is
agnostic to the type of feature vectors used. Therefore, the efficiency- and security-related

performance characteristics can be thought of in more general terms.

We implemented both AudioSearchPIR:ThresholdSearch (Section 4.2.1) and Au-
dioSearchPSS (Section 4.2.2) to empirically test the accuracy and practical efficiency. The
search systems were written in Python, while various interfaces and test scripts were written
in MATLAB. Tests were run on an Intel Core i7 machine with four 2.67 GHz processing
cores and 3.86 GB of RAM. Our database consisted of 100 songs, representing a variety
of music styles. However, because the algorithm divides songs into fingerprint blocks, we

are actually dealing with upwards of 60,000 feature vectors (or fingerprint blocks). So if
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we were dealing with images with one feature vector per image, this database size would

correspond to about 60,000 images.

5.1 Audio Search Accuracy

The recognition rate of the algorithm is totally unrelated to the privacy aspect, at
least for the version that uses PIR. This is because PIR schemes deterministically return
the desired information, irrespective of implementation. As such, the success rate of the
search algorithm is solely a function of parameters like bit error rate threshold and temporal
overlap between successive feature vectors. We will begin by discussing the impact of these

two factors.

Recall that subsequent subfingerprints are calculated from highly overlapping time win-
dows. This property is good for recognition rates, but it also makes the system more
inefficient, since each song is represented by a higher number of subfingerprints. As will be
discussed later, the communication and computation costs in this scheme are very heavily
impacted by the number of subfingerprints per song; adding more subfingerprints increases
both the expected number of exact matches and the number of full fingerprints in the
database, which in turn increases the cost of privately querying the database. Thus it is

ideal to reduce the number of subfingerprints needed to represent a song as much as possible.

In Haitsma’s original scheme the overlap between successive subfingerprints was a factor
of 31/32 (i.e. if each subfingerprint lasts 0.37s, then the subfingerprints are separated in
time by 3% -0.37s ~ 11.6 ms). However, we found experimentally that much lower levels
of overlap yield equally good recognition while significantly speeding up the search. Figure
5.1 shows average precision-recall curves for a variety of overlap factors and query SNRs;
these curves are obtained by varying the BER threshold between 0.1 and 0.5. Here we can
see that even overlap factors as low as 1/16 do not significantly impact the recognition rate.
Rather, the SNR has a much more pronounced effect on the recognition rates. From this
data, we also find that BER thresholds of 0.45 or 0.46 tend to give optimal precision-recall

performance.

In order to generate these precision-recall plots, we slightly modified the algorithm so
that it would always do a worst-case search; that is, instead of recording only the first
match below threshold, the system searched through all 256 of the query subfingerprints
and recorded the identity of every song that was within the BER threshold. Since the
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precision recall curves seem to be much more sensitive to SNR than to overlap factor in
subfingerprint generation, we used a coarser subfingerprint (overlap factor of Tlcs) in order

to reduce the total amount of data in the database.
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Figure 5.1: Precision-recall curves for subfingerprints with an overlap factor of %, marked
with blue stars, % shown with red circles, and % shown with green squares, at SNR = 15
(solid lines), and SNR =5 (dotted line). We observe that the recognition rates appear to

be much more sensitive to SNR than overlap factor.

Once the subfingerprints and BER threshold are fixed, a query can be recognized only if
there is at least one exact subfingerprint match. Figure 5.2 gives the empirically determined
average number of exact matches and the BER between noisy queries and clean audio
samples as a function of query SNR. As expected, the BER depends exclusively on SNR,
not the number of bits per subfingerprint. On the other hand, the number of exact matches
depends on subfingerprint length as well as SNR—a shorter subfingerprint is more likely to
result in an exact match since fewer bits must remain uncorrupted, so the expected number

of exact matches is higher.

The average BER allows us to estimate the overall algorithm’s recognition rate. The

noisy query ¢ can be thought of as the output of a noisy channel. That is, we treat the
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Figure 5.2: Impact of AWGN noise on error rate between the noisy query and the original
song. As expected, the bit error rate curve is essentially the same for 16- and 32-bit
fingerprints. However, 16-bit fingerprints have a higher number of exact subfingerprint

matches.

clean audio fingerprint block as a message f* that gets passed through a binary symmetric
channel (BSC). The transition rate in this BSC is exactly the average BER, denoted by pe.
Note that we can also think of this as ¢ = f* & 7, where 1 denotes noise in the form of
a Bern(p,) random process that corrupts the fingerprint block. Then the probability that
the source audio track matches the query in at least one subfingerprint is a function of the
subfingerprint bit length k& € {16,32}, the number of subfingerprints in a query fingerprint
ns = 256, and p.. Define Sim(q, f*) as the number of subfingerprints that match exactly
between fingerprint blocks ¢ and f*. So 0 < Sim(q, f*) < 256. Then the probability of

finding at least one exact match between the query and the true match is

P(Sim(q, f*) > 1) = 1 — (1 — (1 — p)")™. (5.1)

Recall that having at least one exact subfingerprint match in the query means that the

true source audio will be returned by the server as a possible source fingerprint, along with
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many other false fingerprint matches. If the total BER between the query and a source audio
fingerprint is below the error threshold €, then a match is declared. Given that the query
contains at least one exact subfingerprint match, we treat the remaining subfingerprint bits
in the fingerprint as independent of those in the exact-match subfingerprint. Each of the
remaining bits is independently corrupted with probability p., so we must check that the
total proportion of corrupted bits is less than the threshold e. Since one full subfingerprint
(comprised of k bits) is uncorrupted, the remaining (ns — 1)k bits can tolerate at most
x = engk errors. For € < ng/(ns — 1) (i.e. essentially always, since € is strictly less than

0.5), it will hold that
z < (ng—1)k.

So if we define dy(q, f*) as the number of bit errors between ¢ and f*, then the probability

that the remaining (ns — 1)k bits contain at most z errors is precisely

L]
P(dta ) < aisimla. ) 1) = 3 (TP pe v e

i=0 !
Combining expressions 5.1 and 5.2, we get the probability that the true source can be
identified as a match by the algorithm. In these calculations, we assume that the BER
threshold is low enough that the probability of false matches is negligible. This gives

=]
P(recognition) = (1 —(1-(1- pe)k)ns) 3 <(”S . ”"“) pi(1— o) DE=i (53

i=0
The threshold € is encapsulated in the maximum allowable number of bit errors, . Equation
5.3 represents an upper bound on the probability of finding an exact match, since there is
always the possibility of a false match being found before the true match gets returned to
the client. Note that for practical purposes, the binomial cdf can be replaced by a Gaussian

approximation without much loss of accuracy, since the number of total bits is quite high.

If € is set high, our model loses some accuracy because the probability of a false match
is high, whereas we assumed it to be negligible. This is clear in Figure 5.3, which illustrates
empirical and theoretical recognition rates as a function of SNR for € = 0.45. This threshold
is chosen as the optimal threshold in our precision-recall curves from earlier (Figure 5.1);
however, it turns out that at such a high threshold and low SNR, the noise in the system
occasionally maps the wrong fingerprint block to the query, but the BER is still within
threshold. Interestingly, this phenomenon usually gives a correct answer, despite matching

the query to the wrong subfingerprint block. We explain this by observing that most
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music contains patterns, meaning that there may be several similar audio segments in a
song. Demonstrating the extent of this phenomenon, the ‘Experimental, Adjusted’ curve
in Figure 5.3 represents the recognition rate when the query was matched to the correct
fingerprint block in the database. At higher SNR levels, this is always the case for a given
match, and indeed we observe that our theoretical estimate of recognition rates represent

an upper bound on the observed rates.
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Figure 5.3: Recognition rate as a function of SNR. The experimental results, plotted in red,
illustrate the recognition rates from 95 trials, with 16-bit subfingerprints and € = 0.45. The
adjusted experimental results, plotted in green, show the recognition rates if we strip off
the ‘false matches’, i.e. the instances of an incorrect fingerprint block being matched to the
query, but giving the correct result nonetheless because the incorrect block comes from the

correct song.

5.1.1 PSS Recognition Rates

In the PSS scheme discussed earlier, the probability of successfully recovering all match-
ing documents is lower than 1 if there is more than one match in the database. However,
the probability of successfully returning all files can be made arbitrarily close to one at the

expense of increased downlink communication. Specifically, if we expect to see m matches
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in the database, then the return buffer must be of size ym where - is a reliability parameter;
Finiasz and Ramchandran showed that v can be chosen as order O(1) while still recover-
ing all matches with high probability [22]. Note that if one elects to use the PSS scheme
as a proxy for single-server PIR, there is never more than one result, so full recovery is

guaranteed with a single buffer bin.

5.2 Security

We now provide a security proof for a two-server PIR implementation of algorithm
AudioSearchPIR:FullSearch (Section 4.2.1). We will then show that under certain con-
ditions, AudioSearchPIR:ThresholdSearch is also information theoretically secure. The
proofs for the other modifications we’ve mentioned (like AudioSearchPIR:LookupTable or
AudioSearchPSS) are analogous, though the PSS version can at most be computationally
secure. As with most privacy-preserving search systems of this variety, we assume a semi-
honest, passive adversary, who follows protocol exactly, but may attempt to gain additional
knowledge by analyzing received information. As one might expect, the proof stems entirely
from the security of PIR. In this case, we have two parties: the client C and the servers S,,

where v € 1, 2.

Observation 1. The 2-server PIR Scheme in Section 3.0.3 is information-theoretically

Secure.

The proof of this is quite straightforward, but it is provided in Appendix A for com-

pleteness. This observation allows us to show the following:

Observation 2. Under a semi-honest adversary model, AudioSearchPIR:FullSearch (Al-

gorithm 4.1) evaluates without leaking any information about the query to any server S,.

The proof of this is also included in appendix A.

As we saw earlier, the approach of AudioSearchPIR:FullSearch is somewhat ineffi-
cient, since in practice we can stop searching once a match within a threshold BER is
found. Recall that we called this alternate approach of threshold matching ‘AudioSearch-
PIR:ThresholdSearch’. However, threshold-matching does leak some information because
each server learns how many query subfingerprints were sent by the client before finding
an exact match. This is reflective of the amount of noise in the system, as well as the
susceptibility of the client to noise. Such information may not be important in practice,

but it is nonetheless leaked, so we should give it full consideration.
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For instance, for a given SNR level (which the server might know from other sources),
suppose a client does not find an exact match until the 254th subfingerprint. The server
might deduce that the frequency content of the client’s noise-free audio clip was particularly
uniform over the frequency bands, thereby causing the system noise to alter the relative
energies in the different bands more than usual, and skewing the query subfingerprints.
Knowing the frequency-domain characteristics of the client’s sound clip could in turn help

the server identify the query song from the database.

We will now show that under AudioSearchPIR:ThresholdSearch, no semantic informa-
tion is leaked if a prior assumption about the robustness of subfingerprints is met: For a
given noise level, the probability a client sees an exact match on a given subfingerprint
should be independent of the underlying audio file. Of course, this assumption is unlikely
to hold in practice, since it would imply a perfect feature representation. However, we
experimentally observe this property to hold on average—that is, there may be individual
fingerprint blocks that are noticeably more or less robust than the majority, but on aver-
age, noise resistance is constant. In any case, if this assumption is too stringent and the
leaked information is unacceptable, one can always revert to AudioSearchPIR:FullSearch

for information theoretic security.

Definition Let fingerprint block f* be the closest match in database DB to query fin-
gerprint block ¢. Then we define semantic information as any information X such that

I(X, f*|DB) > 0.

Observation 3. Suppose that for a given noise level, the probability a noisy query subfin-
gerprint is an exact match is independent of the original (non-noisy) audio segment. Then
under a semi-honest adversary model, AudioSearchPIR:ThresholdSearch (Algorithm B.1)

evaluates without leaking any semantic information about the query to any server S,.

Proof. Any semi-honest server S, in the system is able to view each input message Q"
from the client, as well the full database. We wish to prove that given this information,
each server S, learns no semantic information from C. From observation 1, we know an
information-theoretically secure PIR scheme exists; let P denote such a scheme. From

observation 2, we know that each individual PIR query leaks no information to the server.

Once a match is found with BER below threshold € (at query subfingerprint index w* <
255), S, does learn that the first w* — 1 of C’s query subfingerprints are not exact matches.
We call this information Y and show that Y is disjoint from the semantic information of

the query signal, i.e. that I(Y, f*|DB) = 0.
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It holds that I(f*,Y|DB) = H(f*|DB) — H(f*|Y,DB). Recall our model, in which we
represent the query vector as ¢ = f*@®n. We will not use this model to prove security because
we want to be more general, but we will retain the notion of independent noise. Suppose
that ngr is some independent, real-valued noise of arbitrary distribution that gets added to
the noise-free audio file f;. Note that fr is the underlying audio signal, not the feature
representation of the audio signal. Then the client generates a quantized feature vector ¢
by doing some signal processing on the received signal f5; + 7g. This more general model
of the system better reflects what is happening in real life, though our simplified model was

experimentally shown to adequately upper bound system performance in practice.

Then we have H(f*|Y,DB) > H(f*|nr,Y, DB) because conditioning on more variables

reduces entropy, so

I(f*,Y|DB) < H(f*|DB) — H(f*|nr,Y, DB) (5-4)
= H(f*|DB) — H(f"|nr, DB) (5.5)
=1I(f",nr|IDB) =0 (5.6)

where 5.5 results because Y can be completely reconstructed from nr and DB, and 5.6
results because np is independent of f*. Note that DB consists of all the information
accessible to the server, including the original audio files of all the songs. This is an upper
bound on the server’s information, since it would most likely only store the feature vectors

for each song. Thus we have

0 < I(f*,Y|DB) < I(f*,nz|DB) =0
— I(f*,Y|DB) =0,

and S, learns no semantic information from the client in the process of operating Au-

dioSearchPIR:ThresholdSearch. O

5.3 Resource Consumption

The point of implementing this system is to show that it is possible to obtain good
results without accruing computation and communication costs linear in database size.
The previous section illustrated that we can achieve recognition rates comparable to the

non-private algorithm; in this section we will examine the associated additional costs.
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5.3.1 Feature Distribution

The speed of this algorithm as a private media search tool will depend in part on the
distribution of features in the appropriate vector space. In the public domain, an algorithm
can handle searching through a larger pool of feature vectors with relative ease, but in
the private domain, each query takes a much longer time. If most of the files have similar
feature vectors, then the expected number of exact matches per subfingerprint will be O(n),
with a leading constant tending to 1; in the limit as the distribution of feature vectors
converges to an impulse, the number of false exact matches will be exactly n — 1, which
is the worst efficiency possible. For this reason it is critical that each subfingerprint have
the lowest number of matches possible, and the distribution that minimizes the maximum
pmf value is the uniform distribution. Figure 5.4 shows the distribution of the 2! possible
subfingerprints in our database. This histogram indicates that the subfingerprints are not
biased at a large scale, but there are certainly some subfingerprints that happen much more
often than others, and this can lead to long search times. In designing such a system, it is
worth spending some time to make sure that whatever feature vectors are being used have

a distribution that is as uniform as possible.
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Figure 5.4: Histogram showing how often each print occurs in the database of 96 songs. For
this histogram, each print is chosen to overlap by a factor of % Ideally, we would like this

distribution to be uniform.
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5.3.2 Communication Costs

Once we select operating parameters for the audio search scheme, the goal is to make
the search as efficient as possible. For PIR, we will constrain the theoretical discussion
to AudioSearchPIR:FullSearch, with the understanding that one can improve efficiency by

leaking some noise-related information.

In its basic form, the privacy-preserving schemes that rely on PIR have a worst-case (and
average) communication complexity that is O(max(p(k), m(n)), where n is the database size
and m(n) is the expected number of exact subfingerprint matches in the database; k is the
number of bits in each subfingerprint, and p(k) is the total communication complexity of a
PIR search on a list of k-bit subfingerprints. If k is constant, then the expected number of
matches will be O(n) assuming subfingerprints are distributed uniformly; in this case the
total communication is dominated by the downlink cost of sending matching fingerprints
back to the client. That being said, it is even better to choose k according to database size;
if k is chosen as O(logn), then the expected number of matches will scale as O(1) with
database size, and the dominant communication cost will come from the uplink private
queries. Note that even in the non-private domain, this is useful because it means that the
server need only process a constant-order number of files, which is a very desirable property
for low latency. Thus we will use this assumption in all of our successive cost calculations.
Using the two-server PIR scheme from 3.0.3, p(k) has complexity O(2¥). That means the
total communication is still linear in n, but the point is that more efficient PIR schemes can
reduce the communication to polynomial levels of degree strictly less than one. A similar

effect is exploited in [28], leading to their sublinear communication complexity.

The communication in the PSS scheme is much higher than that in the PIR scheme.
However, as we have mentioned earlier, [24] shows that it is possible to frame the PSS
problem in such a way that the downlink communication cost is asymptotically equal to the
non-private downlink communication, i.e. O(m(n)). We will use the communication costs
from [24] for our analysis, though our implementation used a slightly suboptimal version of

their scheme (regular LDPC codes rather than irregular).

On the communication side, the worst-case scenario is if we search through all the
subfingerprints. In that case, assuming we have a public key with N = 4096 bits and k = 16
bit subfingerprints, our uplink communication will be 4096 - 216 . 256 = 68 gigabits. Note
that for practical security, we would need encryptions of 3000 bits [32]. On the downlink,

the expected number of matches per subfingerprint is m(n) = n/2*, assuming a uniform
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distribution of subfingerprints in the database. If we then use Finiasz and Ramchandran’s
scheme, the communication cost reduces to (N - ng - 2% + ng - n/2¥). The dominant factor
here depends on the database size n and how k is selected. If the number of subfingerprint
bits k is kept constant, the linear dependence on n will dominate, giving O(n/2¥). On the
other hand, if we choose the number of subfingerprint bits as order logn as before, then
m(n) will be O(1), causing uplink costs to dominate. This gives a total communication
cost of O(2%) = O(n). As before, we get a communication cost linear in n, but in this case,
the constant factor IV is extremely large and adds at least three orders of magnitude to the

cost.

We can lower bound the communication costs of the privacy-preserving scheme by think-
ing about the communication complexity of a non-private scheme. Irrespective of imple-
mentation, any non-private scheme (using these features) must ask the client to transmit
enough information uplink about the query fingerprint block to allow the server to find
a corresponding match in its database with BER below the threshold. The server must
then transmit enough information downlink to tell the client which song corresponds to the
client’s query. The dowlink cost can be thought of as constant—the length of a song title
does not vary with database size. In [27], the uplink cost is 256k bits; however, under the
assumption that the query is highly correlated with a fingerprint block in the database,
information theory tells us that the uplink cost can be reduced. Recall that we modeled
the query fingerprint block ¢ as the result of passing a fingerprint block f* in the database
through a BSC with bit transition probability p.. In this case, the Slepian-Wolf theorem
implies that the uplink communication need only be H(q|f*) = H(pe) - k - ns. Again, this
assumes that successive bits in the fingerprint block are iid, which is not the case in practice;
as such, the required communication could theoretically be reduced even further. However,
lacking a good model of the fingerprint block statistics, this estimate is an upper bound on
the minimum possible uplink communication. In any case, the order of required total com-
munication remains unchanged: the non-private scheme must transmit O(k) bits. For a fair
comparison with the private scheme, we again assume that k is again chosen as O(log(n)).
A logarithmic scaling may be superfluous in the non-private scheme, but at the very least,
k should scale with database size in order to retain the discriminative power of features.
That is, if k¥ remains constant as the database grows, at a certain point, the feature space

will become too densely populated with database entries for accurate classification.

A comparison of the communication (and computation) costs in the PIR, PSS, and

public cases is shown in Table 5.1. The key observation is that using current technology,
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Privacy | Privacy Scheme Communication | Computation
2-server PIR, basic [15] O(n) O(n)
PIR 2-server PIR, covering codes [15] | O(/n) O(n)
2-server PIR, [19] O(y/n) O <10g”2n>
PSS Single-server PSS [24] O(n) O(nlog®nloglogn)
Public n/a [27] O(logn) O(logn)

Table 5.1: Comparison of communication and computation costs for privacy-preserving
schemes and the original non-private version in [27]. For consistency, we choose k = logn
in both the private and non-private versions. We note that current PIR schemes have
communication costs at best polynomial in n compared to logarithmic scaling in the non-

private case.

neither of the privacy-preserving schemes can approach the O(logn) communication costs
of the non-private scheme, even order-wise. However, the communication in PIR schemes is
dominated by the cost of PIR, so the existence of PIR schemes with very slow polynomial
growth could allow privacy-preserving searches to be viable on relatively small scales. The

computation complexities provided are explained in greater detail in Section 5.3.3.

5.3.3 Computation Costs

The computation in PIR-based schemes is dominated by server-side operations. This
is better than high client-side computation for two reasons. First, servers are better suited
than clients to handle heavy computation, particularly because the required computations
can be easily parallelized. Second, weighty private queries can be made more efficient with
better PIR schemes, whereas portions of the algorithm unrelated to privacy cannot be
trimmed as easily. Since PIR schemes are an active area of research, it makes sense to try
to offload as many resources as possible to the private query portion of the algorithm, under

the assumption that these algorithms are likely to improve with time.

The total computation cost using PIR is O(max(p.(n),m(n) - k)), where p.(n) is the
computational cost of the PIR scheme used, and m(n) is still the expected number of exact
matches per subfingerprint. The latter term reflects client-side computation; the client
must calculate the BER between each returned fingerprint block and the query fingerprint
block. For each private query, the client receives m(n) expanded fingerprint blocks of size
2ns — 1, where m(n) € O(1) when k € O(log(n)). Extracting the correct fingerprint block

from the expanded fingerprint block requires only memory access because the client knows
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exactly where in the expanded fingerprint block the desired subfingerprint should appear
(i.e. it will always be precisely in the middle, by construction of the database). Computing
the BER between two fingerprint blocks is an operation requiring O(2nsk) FLOPS, so the
total client-side computation is O(k) = O(logn). The value of p.(n) depends on which
PIR scheme is used. For the basic one presented in Section 3.0.3, the computation arises
from projecting the length-2* query vector onto the database contents, which requires the
bitwise addiction of about half the files in the database. This gives a complexity of O(n).
However, schemes such as those proposed in [19] provide lower-complexity PIR schemes
that preserver sublinear computation (in addition to sublinear communication), as shown

in Table 5.1.

The real bottleneck in PSS comes from the computational costs. Where the PIR scheme
executes an XOR operation, the PSS scheme executes an expensive modular exponentia-
tion. We estimate the cost of a modular multiplication as O(N?) for an N-bit public
key, and a modular exponentiation as O(N?logn). Our PSS scheme requires one modular
exponentiation per fingerprint block, and each fingerprint block contains ng¢k bits. In our
implementation, we divided fingerprint into chunks of 2 subfingerprints to make the modular
exponentiation more manageable; these separate chunks were stored in aligned sub-buffers.
This gives 128 modular exponentiations on items of length 2k bits. Thus, adding a single
fingerprint block to the buffer requires (4k?log(2k) - ns/2) FLOPS. There are n fingerprint
blocks in the database, so each private query requires O(k?log(2k)n), of which there are n,
in the worst case scenario. If we again assume that & € O(logn), then the total server-side
computation is O (n log? nloglog n) As in the PIR scheme, the client-side computation is
O(logn). This is clearly heavily outweighed by the server side computation, so the total
PSS computation is O (n log? nloglog n)

Now we compare this computation to the non-private case. Non-private computation
costs occur entirely at the server side. We expect to see m(n) matches per query subfin-
gerprint, which is reduced to O(1) by the same argument as before, and the BER must be
calculated between the query and each match. As we saw in the PSS case, calculating BER
is O(k) in complexity, and this operation is expected to occur a constant number of times.

Thus the complexity of the public scheme is O(k), which is O(logn) by our assumption .
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Trading Privacy for Performance

As one might expect, there is a tradeoff between cost and privacy, and we can obtain
efficiency gains by reducing privacy and revealing a number of subfingerprint bits to the
server. This effectively reduces the size of the database by reducing the number of possible
query targets, which in turn reduces both the communication and computation required. For
instance, reconsider the example of AudioSearchPIR:ThresholdSearch from Section 4.2.1,
in which our first query subfingerprint was ‘0x0003’. We can reduce the privacy of the PIR
query by telling the server in plaintext that the first two hexadecimal digits of our desired
subfingerprint are ‘00’. Then the effective size of the database is reduced to 2%, since the
server only needs to search through subfingerprints of the form ‘0x0077’. This reduces the
size of the uplink PIR query to a search for the last two symbols ‘0x03’, which is good
because uplink PIR is the overall communication bottleneck, as we saw in Section 5.3.2.
Since the effective size of the database is reduced, the server also has to do less computation

to process each PIR query, so the computation costs are also dramatically reduced.

Figure 5.5 shows the worst-case communication and computation in AudioSearch-
PIR:ThresholdSearch (the values are the same for AudioSearchPIR:FullSearch) as a function
of the proportion of private bits to total bits in each subfingerprint. Both communication
and computation are normalized by the worst-case cost of running the non-private algo-
rithm. It is important to note that we can achieve communication and computation costs
that are within an order of magnitude of a public search by keeping only a fraction of the
bits private. This fraction will vary with the application, but the point is that we do not
necessarily always need full privacy. For instance, in Figure 5.5, we see that the total sys-
tem computation is the same order of magnitude as non-private computation if we reveal

at least half the bits to the system.

Now we will briefly mention the impact of this technique on the PSS implementation.
Partial bit-sharing motivated our design for AudioSearchPSS; recall that the algorithm
submits a separate PSS query for each of the 256 noisy subfingerprints instead of just
submitting one big PSS query for all the subfingerprints at once. This is because all the
subfingerprints will almost certainly have different leading bits, so revealing them to the
server would not allow the server to execute the private search on a subset of the database—
it would essentially just leak information. That is, the server would still be forced to
search through the entire database sequentially, which is very inefficient. For this reason,

AudioSearchPSS just submits one partially masked PSS query for each subfingerprint until
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(a) Worst-case communication cost as a function of private bits.
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(b) Worst-case computation cost as a function of private bits.

Figure 5.5: Worst-case resource consumption in AudioSearchPIR:FullSearch as a function

of the proportion of subfingerprint bits kept private.
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it finds a match. Each of these masked queries can be comparatively cheap because the

server only needs to search in a small subset of the database.

To illustrate the benefits of this approach in practice, Figure 5.6 gives mean experimental
run times from 10 trials of both AudioSearchPIR:ThresholdSearch and AudioSearchPSS as
the proportion of private subfingerprint bits grows. The results in Figure 5.6 clearly reinforce
the notion that PIR-based schemes are significantly more efficient than PSS-based schemes
in practice. However, the most salient point of this figure is that the PIR scheme’s runtime
is within one order of magnitude of the public runtime when the proportion of private bits
is kept below about 0.7. From a practical standpoint, this already starts to suggest ultimate
feasibility, via better PIR schemes, for example. However, this technique should be applied
with extreme caution. As we will see shortly, even revealing a few bits in plaintext can have
a significant (negative) impact on information-theoretic privacy, though the threat may be

negligible in practice.

10°

I
— PIR Version
—— PSS Version

10" E

10 E

Runtime (s)

B S e o e i I A I

10 I I I I I
0 0.2 0.4 0.6 0.8

Proportion of private bits

[

Figure 5.6: Mean runtime as a function of proportion of bits kept private. The times
are normalized by the mean time for a non-private search. We see that PIR drastically
outperforms PSS as the percentage of private bits increases. More importantly, for relatively
low proportions of private bits (below about 0.7), the PIR scheme’s runtime is within an
order of magnitude of the non-private query. In these trials, SNR = 15, and averages are

taken over 10 trials.
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Impact of bit-sharing on privacy

Note that reducing the number of private bits has an unclear effect on overall privacy,
because the fingerprint blocks will most likely not be uniformly distributed for real datasets.
It could be the case that certain fingerprint blocks are completely defined by their leading
bits, and this will ultimately depend on the database and the type of feature used (since this
algorithm can also be used on media that is not audio). We can derive bounds on system
parameters in order to ensure a certain level of client privacy by using our prior model.
Again, think of each noise-free fingerprint block in the database as a distinct codeword in
a code, and the client’s query block as a noise-corrupted version of that codeword that it
sends to the server. Then we can use results from coding theory to think about the ability of
the server to accurately decode f* based on leaked bits. The server will treat received bits
as a (possibly noisy) subset of codeword bits, and it will treat the private bits as channel
erasures. This interpretation is shown in Figure 5.7 for a toy example in which there are
two subfingerprints of four bits each. C reveals two bits per subfingerprint to the client,
so the client receives a partial codeword. Given that there is no noise in the system, i.e.

pe = 0, the number of codewords that could have generated ¢ are 2* = 16.

Decoding Space

24 possible

Client | Server for 00xx1 OXX\ codewords if pe=0
{0,1)% | Codewords
Reveal Received .0 0007000
Bits Query ' - #00001010
060011 | [ 2 pits / | 0b00xx
0b1001] [sub-print| | 7 0b10xx
€000071001

Figure 5.7: Toy example of server decoding partially revealed bits with infinite SNR, i.e.
pe = 0. The received codeword has four ‘erasures’, so the server can narrow down the
possible matches to 2* = 16 equally likely codewords in the decoding space, assuming

codewords are drawn uniformly.

An (nsk,logn) code C' is defined as a subspace of ngk-dimensional space in which we
embed a logn-dimensional message; 2'°¢” = n is the number of possible messages in the

code, and 2" is the total number of possible strings in the space available for our code.

Definition The minimal distance (dmn) associated with code C' is defined as the smallest
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distance between any two codewords:
i = min{d(v,w) : v,w € C,v # w}.

Observation 4. Suppose ¢ = f* ®n, with q, f*,n € {0,1}"** and binary noise vector 7
having some probability mass function Py,(n). Suppose r plaintext bits of query q are leaked

%
to server S. Define d},.. as

*

in (= mazimize  dyn

dminf]-
. nsk k—1
subject to g < QnsTlogn
’ i=0 < ? > a

Then as long asr <nsk+1—d’ . = S cannot decode f*.

min’

Proof. S receives some subset of r bits from ¢, and the rest are unknown. Independently
of the decoding algorithm, S can decode any number of errors v and erasures e as long as
the condition

dpmin > 20 +e+1 (5.7)

is satisfied. This is because a code with nik-bit codewords and minimal distance d that
undergoes e erasures can be thought of as a shorter codeword with ngk — e bits and minimal
distance d — e. Then by geometry, the shortened code can only correct (d —e — 1)/2

transmission errors.

Now, there are ngk — r erasures total. We also have a distribution on the number of
errors v. Given dp,, we can learn exactly how many revealed bits r are sufficient for &
to decode f* with a given probability; that probability stems entirely from the randomness
of n. However, we wish to make the system immune to n; S should always be unable to
decode. To this end, we should keep enough erasures in the query print that & can never
correct the codeword, regardless of the number of bit errors. To do so, we choose dnp
as large as possible, since that is a worst-case scenario for privacy; the codewords are far
apart, so each leaked bit gives maximal information about the underlying codeword. The
distribution of codewords that maximizes the minimum distance between codewords is the
uniform distribution. Thus we have 2"* — n strings that are not occupied by codewords.
We can find an upper bound on d,,;, for any code by simply counting the number of items
at Hamming distance 1, 2, etc. from each uniformly spaced codeword, until all the unused

strings are accounted for. For instance, there are ("ik)n strings at a distance of 1 from some

49



codeword, and so forth. This gives

*

S in, = aximize  dpin

dmin
dmin_l n k‘
subject to Z ( 8 > < gnsk—logn
1=0 L

0 < dmin < nsk.

Since we want to prevent decoding even in the absence of noise, we choose v = 0 and get
that as long as

r<nsk+1—d.,, (5.8)
S can never decode f*. This holds for any code, which means that there are no restrictions

on the distribution of fingerprint blocks or the nature of the noise 7. O

Computing the solution to this optimization problem for practical system parameters
(k = 16, ng = 256, n = 1 x 10°) is somewhat tricky because the combinatorials get very
large very quickly. However, we can approximate the solution with Stirling’s Approximation,
which states that logn! ~ nlogn—n. Since a sum of combinatorials will be dominated by the
largest term in the summation, we can apply this aproximation to the largest combinatorial

term. This gives a different optimization problem that is computationally tractable:

dy in &~ maximize  dpin

dmin
subject to nsklog(nsk) — nsk + logn >
(nsk — dmin + 1) log(nsk — dmin + 1) + (dpmin — 1) log(dpmin — 1)

0 < dmin < nsk.

For the suggested system parameters, this approximation gives d,,.. ~ 1881, so we take
r < ngk+ 1 — dmn, = 2216. That is, as long as we leak r < 2216 bits total or 8.6 bits per
subfingerprint, then the server can never decode f*, irrespective of the number of bit errors
in the shared bits. In our 16-bit subfingerprint, sacrificing 8 bits per subfingerprint is more
than enough to reap significant practical gains in both computation and communication. If
the client sends more bits than this bound, it is not necessarily true that the server will be
able to determine f*. There may be too many bit errors for S, to decode, especially if p,
is close to 0.5, and this probability is easy to compute. However, this will depend on the

noise distribution.

Now, even if the server cannot decode exactly, it may have a good and narrow idea of

which codewords could be the possible sources. To briefly address this, we assume that 7 is
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a Bern(pe) random process. Suppose that 0 < p. < 0.5. Then using a maximum-likelihood
decoder (since we assume the channel is BSC), S,’s best estimate of f* is any element from
the set of codewords with minimum Hamming distance from the received vector. The server
obtains from all this a likelihood function for ¢ parameterized by f*. Let ¢ denote the bits
of ¢ that get sent in plaintext, and let i and f denote the bits of n and f, respectively, at
indices corresponding to the plaintext bits of ¢. Let w(-) be the weight function of a binary

vector, or the sum of all the elements in the vector. Then

L(fla) = Przli = f @4
= (po)?UBD (1 — po)r—w(fED),

]

The server can estimate f* with the maximum likelihood codeword (at least in principle—
this is a very computation-intensive operation in practice), and also determine the likeli-
hoods of all the other codewords. In particular, all codewords f resulting in the same value
of w(7) have the same likelihood, so the server cannot distinguish between them. For each
value of w(7), there are (wgﬁ))2(”5k_7") binary strings f that give the same likelihood; for
optimal server confusion, the sets with higher likelihood should contain as many codewords

as possible. But this corresponds to grouping codewords closer together, which reduces the

discriminative power of the algorithm.

It may be worthwhile to sacrifice this extra bit of privacy in favor of practically viable
run-times. Broadly, the privacy threat we are considering is that servers (or third parties
with access to server records) will deduce private information about users, essentially by
mining search data from clients. Because these searches collectively represent a tremendous
amount of data, even partial masking can be useful in practice. That is, it may not be
necessary to completely block the server from knowing the nature of the query; rather, it may
be sufficient to simply render the task of deducing the client’s query very expensive. This
is the ultimate justification for partial privacy. For instance, maximum likelihood decoding
in this case reduces to a nearest-neighbor problem, which currently has solutions that are
at best exponential in the dimension of the space. This offers some form of computational

security, even when theoretical guarantees may be too weak to be satisfactory.
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Chapter 6

Generalized Privacy-Preserving

Media Matching

The Haitsma and Kalker search algorithm is a useful example because only minimal
changes are required to make the algorithm privacy-preserving. This situation is by no
means typical, and good systems will usually require special search algorithms offering both
private-domain compatibility and resource efficiency. Designing such algorithms can involve
introducing quantized features that are conducive to exact comparison, changing actual
search mechanisms, or both. In this chapter, we will start by discussing some techniques of
feature vector and search algorithm modifications that can make media search algorithms
easier in the private domain; this is followed by a sample face recognition tool that relies

on these techniques and also meshes nicely with the audio search tool just presented.

As discussed in Chapter 2, many feature-based media recognition algorithms search for
nearest-neighbor feature vectors in a database [9], [10], [25]. Our private audio search took
the slightly different approach of searching for all database feature vectors that match the
query vector exactly in at least one index. Exact matches are convenient for the private
query aspect of the algorithm, but it is intuitively clear that nearest-neighbor searches
will generally give better recognition results. This is because for most nearest-neighbor
searches, the optimal vector will almost never match the query vector exactly at any of its
indices. This raises an important question: Since nearest-neighbor search algorithms are
not naturally suitable for the private domain, is it possible to slightly alter them for private
query compatibility without suffering in performance? It turns out that the answer is yes, to

some extent. In [9], [10], [25], the most computationally intensive portion of the algorithm is
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the Euclidean distance calculation and comparison. In the user-private scenario, we could
(in principle) let the client execute all these computations, since the database is public.
However, the client will most likely have limited computational capabilities compared to

the server, making this solution impractical.

A potential solution to this question originates from the signal processing community.
A popular research topic in recent years aims to represent arbitrary feature vectors in a way
that reduces nearest-neighbor searches to a Hamming distance comparison, which is com-
putationally lighter in both the private and non-private domain. A lot of this work relies on
locality-sensitive hashing techniques that provide probabilistic noise resistance. There are
different ways to implement these hashes. For instance, [44] and [45] have explored a simple
but effective hashing technique: Given two normalized vectors with some distance between
them, project both vectors onto a set of random hyperplanes and record the sign (4/-) of
each projection for each vector. It turns out that the Hamming distance of these binary
hash vectors is a probabilistic estimate of Euclidean distance. Indeed, Min et al. found
this technique to give 95 percent accurate nearest-neighbor estimates at a fraction of the
cost for high-dimensional features like GIST [45]. We will examine this technique in greater
detail shortly. Other less-studied feature modifications may be introduced specifically for a
given application; examples include the quantization techniques used in [34] and distance-
preserving hashing in [33] These examples are drawn from the two-way privacy literature

since there are not many one-way private systems in existence.

Another (complementary) tactic for improving privacy-preserving media searches is to
modify or specifically design search algorithms for private search. This is done to varying
degrees in most privacy-preserving media search systems [9], [10], [25]. An excellent exam-
ple of an algorithm that was fully designed specifically for the private domain is the SCiFI
system by Osadchy et al. [32]. By defining faces as a collection of items from dictionaries
of face parts and part locations, the authors facilitate comparison in the encrypted domain.
Specifically, the recognition step is defined by whether a set difference (a Hamming dis-
tance calculation) is above or below a threshold. This kind of search algorithm overhaul
can lead to better recognition rates and fewer unnecessary algorithm inefficiencies. One
important point is that the SCiFI algorithm is tailored to a particular domain, i.e. face
recognition. From a global point of view, designing algorithms for general media recogni-
tion will most likely involve a combination of 1) transforming arbitrary media information
to a privacy-conducive format (e.g. hashed feature vectors) and 2) finding efficient ways

to search through transformed data. While SCiFI is not a general purpose media search
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tool, its underlying principles are similarly aligned with this design philosophy. We will
now present an example of a potentially more general application for the one-way private
domain, implemented in the form of a nearest-neighbor face recognition system. Before
presenting that system, we will examine the distance-preserving hash of [44] in greater

detail.

6.1 Distance-preserving hashes via random projections

Suppose we want to hash two vectors v and vy, with v; € RY, i € {1,2}, and a Euclidean
distance between the normalized vectors of d12. The goal is to set up a system in which
we have noise-resistant “subfingerprints” just as in the audio search tool, so we will try
to obtain ns subfingerprints with k& bits in each, as before. We begin by projecting both
vectors onto a set of ngk random hyperplanes h;, with i € {1, ...,nsk} and h; € R’. We then

record the sign (+/-) of each projection. It is straightforward to show that the probability
2

2 —1 91,2
= ==,

that v; and vy have different hash bits for a single random projection is p1 2 = = sin 5

After nsk projections onto random hyperplanes, each original vector v; is hashed to a new

nsk-bit feature (H(v1) and H(vg)).

The overall objective is to use this hash to determine which feature vector from the set
{vili =1, ...,n} is closest in Euclidean distance to query feature vector vg; recall that n is the
database size. By projecting both the database and the query hash vectors onto the same
nsk random hyperplanes, the ratio of Hamming distance to total number of projections is

a probabilistic estimate of p; 4, call it p; 4.

. Hamm(H (v;), H(vg))

Diq =

ok , ie{l,..,n}

With some manipulation, we see that our best estimate of d; ; given p; 4 is

™

5z~7q = 2sin( 5

Pig) (6.1)

In Equation 6.1, &-g is monotonically increasing on the interval p; , € [0,1], so it must hold
that if the pairs of vectors (v, v4) and (v;,vq) have different separation distances 6; 4 # d; 4,
then p; ¢ > pjq < &,q > Sj,q. This is convenient for our private search, because it means
we can simply compare Hamming distances of hashes rather than estimated Fuclidean

distances, without altered results.

After determining the ngk hash bits for all images in the system, we can rearrange these

bits into a matrix by subdividing the hashes into ns subfingerprints of length k£ bits each,
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and search for exact matches. It can be ensured that there will be at least one exact match
with a given probability by choosing ns; and & appropriately, as discussed in Section 6.3.1.
As before, the distance metric is Hamming distance, thanks to our distance-preserving
hashing. So Haitsma and Kalker’s algorithm can be used just as before to conduct private
face recognition. A graphical representation of this hashing process is provided in Figure

6.1.

Random

Extract Projections Hash

Input Feature Reshape Fingerprint
Image Vector Vector Block
0b10...0
[ 0b11...0 ‘j
. | .. | ngsub-
0b00...1] fingerprints

Figure 6.1: Method for converting arbitrary feature vectors into “subfingerprints”. This
facilitates a private search similar to the one used in the previously-described audio search.
h; denotes a randomly-drawn ¢-dimensional hyperplane, where £ is the the original feature

vector length.

6.2 Case Study: Face Recognition

This hashing and subfingerprinting technique can be used on any algorithm that requires
a nearest-neighbor search on a feature vector space. To demonstrate this, we implemented
a basic face recognition system that relies on random projection hashes in the context of
the Fisherfaces algorithm [46]. This system was executed on a smaller scale than the audio
search tool and meant primarily as a proof of concept, so a MATLAB implementation
was sufficient for both desired speed and database size. We implemented only a PIR-based

version, and our algorithm is analogous to AudioSearch:ThresholdSearch from Section 4.2.1.

6.2.1 Fisherfaces

We will start by describing the implementation and motivation for Fisherfaces. The
Fisherfaces algorithm was designed because Eigenfaces has poor performance on varied
lighting conditions, facial expressions, and occlusions like hair and glasses. Ideally, we
would like a facial recognition algorithm to classify the same person consistently, even

under different circumstances.
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To do this, first of all, the training data in Fisherfaces should contain multiple images
from each individual under different conditions. Next, recall that the Eigenfaces algorithm
determined the basis of eigenfaces by taking the singular value decomposition of the train-
ing data. Mathematically, this gives the projection directions that maximize the scatter
across all images, and is identical in concept to principal component analysis (PCA). We
will provide here the explanation given in [46]. Consider N sample images {z1,...,zn}

belonging to C classes {X1,..., X¢}. Define the total scatter matrix St as
Sp = N(wr — p)(wr — )"

where 1 € RY is the mean image for the samples. In Eigenfaces, these image vectors
are projected onto a projection matrix W, giving dimensionality reduction. This matrix is
chosen as that which maximizes the determinant of the total scatter of the features, i.e. it

must solve the optimization problem
Wopt = argmax| W7 SpW|.
w

However, in practice, we observe that the appearance of a face varies much more across
different lighting conditions than across people. Therefore, Fisherfaces proposes a slightly
different projection matrix, that maximizes the scatter between classes. To do this, the
algorithm tracks the means of the training data in each class u1, ..., uc, as well as the total

mean p. Then it defines scatter matrices for within-class scatter Sy, and between-class

scatter Sp:
c
Sw = Ni(pi — p) (i — )"
k=1
C
Z Z (2 — i) (zr, — )"
k=1xzpeX

where N; is the number of items in class . Then the projection matrix for Fisherfaces is

chosen as follows:
]WTS sW|
(WTSyW|

The basis W, has the property of minimizing the within-class variance while maximizing

Wopt = argmax

the between-class variance, which is exactly what we want. This approach has been shown
to increase the recognition rate significantly with respect to Eigenfaces [46]. However, we
want to point out that once the new basis is found, the algorithm is identical to Eigenfaces—
all images are projected onto this basis, after which the server conducts a nearest-neighbor

search in the database.
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6.2.2 Privacy-preserving adaptation

For our privacy-preserving version, we extract the Fisherfaces feature vectors and hash
them as shown in Figure 6.1. Note that this essentially gives us fingerprint blocks just as
in the audio search tool. With these features, we use the same search technique, relying on
AudioSearchPIR:FullSearch. The choice to use a full search rather than a threshold search
was made because the noise in a face recognition system is less regular than in the audio
application; some people’s appearances are more homogeneous than others’ in the training
set. If we were to use a threshold, we would have to train different thresholds for different
classes. For this reason, we simply cycle through all the subfingerprints and choose the

closest match.

For the face recognition tool, we only implemented the PIR version by modifiying the
Face Recognition Evaluator Toolbox for MATLAB written by Brian Becker and Enrique
Ortiz '. This was applied to the AT&T database of faces [47], which contains a database

of 40 faces over a spread of 10 images each, totaling 400 images in the database.

6.3 Results

Once the feature vectors are hashed, the computation and communication demands
of the privacy-preserving face recognition scheme are identical to those of the privacy-
preserving audio search tool, so we will not cover those concepts again. However, unlike the
PIR-based audio search tool, our privacy-preserving algorithm does not guarantee equivalent
recognition rates to the non-private version. The random projection technique can be
probabilistically driven to obtain recognition rates that are close—but not identical—to
the nearest-neighbor approach; this is done by increasing the total number of random
projections nsk. After executing the random projections, we are also subdividing the hashes
into k—bit subfingerprints and then searching for exact matches. Using the properties of
the random hashes, we can consider the probability of finding an exact match as a function
of the number of subfingerprints and subfingerprint length k. In this section, we will discuss

the factors that impact both the accuracy of our hashed scheme and the overall runtime.

"http://www.briancbecker.com/bcbems/site/proj/facerec/fbeval .html
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6.3.1 Accuracy of Hashing Scheme

Stepping back to the random hashing scheme, the accuracy of the algorithm depends
entirely on how good our estimate of p; ; is. To some extent, we can quantify the quality of

this estimate. The XOR of hash vectors H(v;), i € {1,...,n} and H(v,) can be thought of
2

™

. 1054 : 2 _ . .
sin™" =% and variance 0% = p; ¢(1 — piq)-

as a Bernoulli random process with mean p; ; =
Thus we can use the Central Limit Theorem (CLT) to determine how good our estimate
of p;q is for a given number ngk of realizations. Again, Hamm(H (v;), H(v,)) denotes the

Hamming distance between the two hashes; then the CLT tells us that
~ Hamm(H(v), H(v,))

Diq =

ig(1 — i
N.j\[(pi7q’ W) (6.2)

ngk
Due to the variable nature of p; 4, the variance (and mean) of this random variable will
depend on the original distance between the two vectors, so the same number of hashes nsk
will yield tighter confidence intervals for certain distance estimates than others. However,
we can upper bound the variance with the quantity oy, = ﬁ, which is obtained by
setting p; 4 = %, thereby maximizing the quantity p; (1 — pi4). For the database vectors
closest to the query vector, the separation distances will be relatively small, so p; 4 will most
likely be much smaller than %, yielding an even tighter confidence interval. It is unclear

how this translates into a distribution on ¢; 4 in general. However, for sufficiently small p; 4,

we can approximate that

which in turn implies that

1
diq = DigT, for p; 4 < 5

Thus for database feature vectors close to the query feature vector in Euclidean distance,
we can approximate the distribution of the distance estimate as follows, using an upper

bound on variance:

7T2

dngk

This expression indicates that we can estimate the Euclidean distances between normalized

2 1
Oiq ~ N (mpig, ) forpig <

feature vectors as accurately as desired, at least for database vectors that are close to the
query. However, this model does not allow a direct theoretical comparison between the
hashed and unhashed Fisherfaces algorithms, because in the original Fisherfaces algorithm,
the projected vectors are not normalized. Normalization does not significantly affect the
results, since scaled versions of the same feature vector simply reflect different intensities

in the original image; in practice, it is ultimately the angle of the feature vector that gives
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the most information about an image’s composition. This is easily observed by running
the Fisherfaces algorithm on both unnormalized and normalized projection vectors, and
observing that the recognition rates are almost identical. However, the small difference in
recognition rates makes direct comparison difficult. It also ensures that even as the number
of hashed bits grows unboundedly, the hashed Fisherfaces algorithm will never perform

quite as well as the regular Fisherfaces algorithm.
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Figure 6.2: Mean recognition rate as a function of total number of hash bits, parameterized

by subfingerprint length k.

Figure 6.2 shows the empirically-determined probabilities of finding the correct match
using both the original Fisherfaces and hashed Fisherfaces algorithms. We randomly divided
the dataset into 70 percent training data and 30 percent test data. The circled data points
are markers to facilitate comparison between the accuracy plots in Figure 6.2 and the time
plots in Figure 6.4. As expected, increasing the number of total hash bits drives recognition
rates toward the non-private, normalized rates. For a fixed number of hash bits ngk, larger
subfingerprints (i.e. larger values of k) drive down the recognition rate by reducing the
probability of finding an exact match. However, as will be shown later, it can be useful
to increase k in order to reduce the runtime. One important point is that given enough
subfingerprints, these random projections can actually achieve comparable performance to

the original Fisherfaces algorithm with a notable overall reduction in the number of bits per
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feature. For instance, in our setup when k = 8 and ngk = 112, we achieve average accuracy
levels within 4 percentage points of the public scheme, while using only 8.9 percent of the
bits per feature vector (112 hash bits per feature, versus 39 Fisherfaces x 32 bits each =

1248 bits per feature for the unhashed version).

Choosing fingerprint block dimensions

In the audio search tool, the fingerprint block dimensions were chosen according to the
Haitsma and Kalker specifications. However, in the hashing scheme, the designer must
choose subfingerprint size £ and number ngs. As illustrated in Figure 6.2, these choices do

affect overall accuracy.

Observation 5. Let N = ngk, and suppose we want the probability of getting no exact

matches to be at most € > 0. This holds if and only if

1 — De —
> (€ RIN _ )Lk, (6.3)

This is easy to show using the probability expression from equation 5.1. One way to
use this expression in practice is to solve the inequality graphically for a given N. This
approach is shown in Figure 6.3 for ¢ = 0.0001, the probability of error p. = 0.25, and the
number of total hash bits N = 120. The figure indicates that in order to satisfy the desired
error probability, it must hold that £ <'5.

6.3.2 runtime

The theoretical computational and communication complexity is the same as before,
since the search algorithm itself remains unchanged. The results from Chapter 5 still apply.
However, we would like to provide a very brief comparison with some benchmark privacy-
preserving face recognition benchmark systems. Table 6.1 gives asymptotic communication
and computation costs for this face recognition scheme as well as two benchmark two-way
privacy schemes [10], [32]. Strictly speaking, this comparison is not fair since the two-way
private schemes solve a fundamentally harder problem than ours. In addition, the SCiFI
system also has much higher accuracy than the eigenfaces algorithm. Nonetheless, we wish
to highlight that order-level gains in asymptotic efficiency can be had by exploiting one-way

privacy.

Finally, we demonstrate the effect of feature hashing on the query time. The test runtime

is primarily limited by two main factors: the expected number of matches per PIR query,
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Figure 6.3: Graphical selection of subfingerprint size for a fixed number of hash bits. The
selection technique shows how to choose k in order to upper bound by e the probability of

not getting any exact matches in the subfingerprint search.

and the uplink size of the PIR query. A high expected number of matches will increase
the downlink communication of false matches to the client, which increases the amount of
unnecessary computation. The expected number of exact matches is a function of both
database size and subfingerprint size, since smaller subfingerprints increase the likelihood
of finding an exact match, whether correct or otherwise. To reduce these inefficiencies, one
can use larger subfingerprints in order to make each subfingerprint more discriminative.
However, this has the effect of reducing the expected number of exact matches, but it also
increases the size of the PIR query exponentially. The larger the PIR query, the more XORs
that the server must execute, which increases the computational loads on the server. Thus,
for a given number of total hash bits, inefficiencies result from overly large or overly small
subfingerprints; the key is to choose k between the two extremities. Also, recall that larger

subfingerprints can drive down recognition rates for a fixed number of hash bits.

The average normalized runtime over 10 trials is shown in Figure 6.4 for different levels of
constant total hash bits. The times are normalized by the runtime for the public algorithm.
To give an idea of the actual runtimes, each non-private query took an average of 2.92 x 10~*
s to run, so even private tests running 3 orders of magnitude slower still required less than

a second to run. We can clearly see the trend mentioned above; very small and very
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Algorithm Privacy Scheme Communication | Computation
Hashed Eigenfaces | 2-server PIR, [19] O(/n) 0 <log”2n>
Eigenfaces [10] HE, Garb. Circ. [10] O(n) O(n)

SCiFT [32] Oblivious Transfer [48] | O(n) O(n)

Table 6.1: Face recognition asymptotic communication and computation costs for privacy-
preserving face recognition; ‘Hashed Eigenfaces’ refers to our suggested scheme, and we also
compare this to the online complexities of two benchmark face recognition systems [10], [32].
We chose k& = logn in the hashed scheme, where k is subfingerprint length and n is the

number of faces in the database.

large subfingerprints drive up the runtimes significantly. The circled data points represent
the same fingerprint block configurations as the circled points in Figure 6.2; under these
conditions, we can expect a level of accuracy within 5 percentage points of the unmodified
Fisherfaces algorithm. Note that for a given plot line in Figure 6.4 (i.e. for a fixed number of
hash bits nsk), moving to the left—using smaller subfingerprints—will improve the accuracy
by increasing the probability of finding exact matches. Thus for a fixed number of total
hash bits, it is best to use the smallest subfingerprints possible while maintaining runtimes
within tolerance. As demonstrated in Chapter 5, these runtimes can be further reduced by
allowing only partial privacy, i.e. by revealing some bits to the server, while masking the
rest. Again, the effects of partial privacy are the same as in the audio scenario, since the
search algorithm on the hashed image feature vectors is identical to the search algorithm

on the audio feature vectors.
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Figure 6.4: Mean runtime as a function of subfingerprint size k, parameterized by the total
number of hash bits nsk. The circled data points correspond to the circled points in Figure

6.2, to give an idea of the computational costs associated with a particular level of accuracy.
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Chapter 7

Conclusion

This work features a variety of privacy-preserving media recognition tools that rely
on private queries. The first contribution is a privacy-preserving audio recognition tool
that adapts an existing audio search algorithm to operate with one-way privacy tools.
Specifically, it was demonstrated that such a tool can operate within an order of magnitude
as fast as a non-private scheme by using partial privacy settings—that is, by slightly reducing
the privacy afforded to the client. Subsequently, themes from this audio search tool were
used to design a general scheme for privacy-preserving nearest-neighbor searches. This
approach was implemented in a sample face-recognition tool relying on the Fisherfaces
algorithm. We demonstrated that our privacy-preserving nearest-neighbor search can lead
to relatively efficient search times, with only small degradations to detection accuracy. The
current section will first describe two potential directions for the continuation of this work,
related to the notion of making these techniques practically viable. Then we will conclude
with a discussion of challenges that remain in the area of one-way privacy-preserving media

searches, with a brief overview of some interesting research directions with promising results.

7.1 Computationally Efficient Two-Way Privacy

A good portion of this thesis was spent describing the importance of one-way privacy.
However, there are certainly many applications for two-way privacy as well. The approach
proposed in this work could easily be extended to give two way privacy, as long as the basis
vectors are public. Recall that in the audio search algorithm, the server only leaks infor-
mation to the client by sending falsely matching fingerprint blocks to the client. However,

suppose one could prevent the client from reading a fingerprint block unless it was within
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the specified threshold of the client’s noisy query. This setup lends itself well to a coding

solution.

The Slepian-Wolf theorem tells us that we can encode correlated sources with fewer
than the bits required to encode each source individually. In fact, in the language of the
model from before, if f* is the optimal matching fingerprint block in the database, then
there exists a code that allows the server to transmit as few as H(f*|q) = H(n) bits while
still achieving reliable communication. To achieve such rates, capacity-approaching codes
like LDPC codes can come arbitrarily close to this bound. Meanwhile, the client can (with
high probability) only decode a block efficiently if it is within a specified BER from the

client’s own query block. This offers the server security in a probabilistic sense.

This approach is particularly appealing, because it allows for harnessing the improved
efficiencies of PIR schemes, but it nonetheless gives two-way privacy. Recall from Table
6.1 that the proposed PIR-based scheme achieves asymptotically lower communication and
computation than existing two-way private schemes. While existing schemes are linear in
database size, our scheme can achieve sublinear communication and computation by using

more efficient varieties of PIR.

7.2 Making PIR Practically Viable: A P2P Approach

A major and valid criticism of privacy-preserving searches is that currently, there is little
to no incentive for web servers to alter their systems to accommodate private queries. In fact,
there is a disincentive for them to do so, because servers presumably increase advertising
revenue by knowing what clients search for. Given this situation, is there any hope for
introducing PIR on a wide scale? To address this question, we should mention a fact that
was omitted earlier. Most PIR schemes with many servers do not require zero collusion.
Instead, they typically guarantee information-theoretic security as long as no more than
s of the d servers collude [15]. Given the rise of distributed peer-to-peer networks, one
could imagine many small, client-run proxy nodes acting as PIR servers, with guarantees
of information-theoretic security as long as no more than s of these proxies collude. For
the moment, let’s consider a system that deals with text-based queries, unrelated to media

searches.

The first obvious question is how to get the relevant data on the cache servers. The

search databases are tremendously large, and one cannot hope to store all that information
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on a cache node. However, caches can use existing servers like Google, Bing, and Yahoo
to field queries for files they do not possess. For instance, Figure 7.1 illustrates how this
might work in a two-cache system. For instance, consider a 3-item database, and the client
wants the i=1 index. The client generates a normal PIR request for the ‘1’ index, just as in
the PIR example from Section 3.0.3. However, the masked requests go to two proxy servers
rather than two main servers. If the proxy node already has all the files specified by the
query vector, it just returns the appropriate XOR of those files. Otherwise, it requests the
missing files from the main servers, then computes the XOR.

Query

0 |
1
n 1 .

e

]

] -

! Main Servers
E

]

kitt

:

P2P Nodes

Client

Figure 7.1: Peer-to-peer service providing search anonymity.

The main question, of course, is how to deal with the heavy bandwidth and computation
requirements, from the viewpoints of the client, proxy nodes, and main servers. The broad
scheme described above is not an adequate solution on its own—if each proxy node had to
query half the database contents each time, the bandwidth usage would quickly overwhelm
the system. However, it would be possible to split up the database into smaller chunks and
assigning each proxy node to one such chunk. For instance, one proxy might be in charge of
all queries about movies, while another might receive all queries about medical conditions.
This reduces the privacy level per query, but is likely sufficient in most cases, especially if
these chunks contain documents spanning a variety of topics. Such a splitting mechanism
would require well-thought-out load management. If one file in a chunk is more popular
than all the others, then the proxy server can guess which file is desired by the client.
However, if all the popular files are given to a single proxy node, then that node will have
to use more resources than the other nodes. Database segment allocation to proxy nodes is

an interesting question with many implications for the overall fairness and efficiency of the

System.

Another source of significant gains depends on the number of proxy PIR servers; a
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peer-to-peer system is well-suited to exploit the communication and computation gains
resulting from having many servers. For instance, if the database has n files, the client-
side communication can scale with /n, where d is the number of total servers [15]. There
are similar gains that can be had computationally, using schemes like [19], though the
scaling laws are different. Thus it would be possible to significantly reduce the client-side

communication and server-side computation by having a very large number of servers.

It is not clear whether such a P2P setup could ultimately be practical. However, varia-
tions of this idea have been considered in the past by Papadopoulos et al. [49] and Miiller et
al. [50], for instance. However, [50] addresses the fairly specific use case of ‘privacy of ideas’;
that is, if a client searches a database for a unique or uncommon combination of keywords,
the server could infer the client’s thoughts regarding a new patent or stock market trading,
for example. The resulting PIR scheme is designed around this notion. While this may
be a valid concern, we would ideally like to make a system that is more general, along the
lines of [49]. However, even Papadoloulos et al. rely on computational PIR schemes, which
ultimately are much less efficient than information-theoretic schemes and do not harness the
order-level gains that can be had with multiple servers. Specifically, it would be interesting
to explore the possibility of a system in which the communication and computation costs

are as far sublinear as possible.

7.3 Remaining challenges

One-way privacy techniques in general are still a long way away from public use, due
primarily to the inefficiency of known one-way privacy techniques. However, as media recog-
nition becomes a mainstream feature and privacy concerns grow, this increasingly relevant
area of study is likely to grow in demand [14], [51]. Two major remaining issues include
1) designing good cryptographic techniques for private signal processing and 2) building
good algorithms to utilize them. On the cryptographic front, there are a few research areas
that would facilitate the commercialization of one-way private queries. One of the most ap-
pealing is the development of fully homomorphic encryption schemes. Fully homomorphic
schemes would permit computation of encrypted domain functions involving multiplications
and additions, rather than just one operation [52]. This option is currently far from viable
due to efficiency limitations, but it is nonetheless an active field. There is also ongoing
work on improving classical private queries through techniques like preprocessing [19] and

distance-preserving encryption [53]. In a completely different vein, recent research on quan-
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tum private queries has suggested as much as an exponential reduction in computational
and communication efficiency with respect to existing classical implementations [54]. Quan-
tum private queries are still in the very early stages of development, but there have been

some physical experiments in the optical domain with positive results [55].

On the other hand, efficient privacy primitives are only useful in the media-recognition
domain if there exist efficient signal processing techniques that can utilize the primitives.
Given current technical limitations, this translates into algorithms that can be made to
rely on private queries. For instance, several existing private face-matching schemes rely on
nearest-neighbor feature vector searches. As shown in this thesis, this approach can be re-
cast for the one-way private domain by hashing feature vectors via projections onto random
hyperplanes and then searching for exact partial matches within the database. That being
said, many of the most successful media-matching algorithms are computationally complex
and require tools that are too heavy for the encrypted domain, like ¢1-optimization. If the
engineering community wishes to pursue private media search as a viable technology—and
there is strong incentive to do so—then there must exist sufficiently accurate classification
algorithms that can be easily adapted to the encrypted domain. This compatibility re-
quirement will play a large role in determining what kinds of applications can actually be

supported in a private setting.

Aside from the performance of our particular approach, the most important message of
this work is that while privacy tools can be difficult to mesh with existing search algorithms,
a signal processing approach to the problem can simplify matters significantly. In this
case, our modification of the original Fisherfaces algorithm with random projection hashing
made the problem much more tractable from a privacy standpoint, allowing the search
to be framed as a set of PIR queries. It is uncommon in the literature to find schemes
that modify the signal processing portion of a privacy-preserving media search in order to
facilitate adaptation to the private domain. However, the presented results suggest that this

is an approach worth considering, particularly given the inefficiency of existing techniques.

68



References

1]

(10]

(11]
(12]
(13]

(14]

(17]

(18]
(19]
20]

21]

N. Singer, “The human voice, as game changer,” New York Times http://www.nytimes.com/2012/
04/01/technology /nuance-communications-wants-a-world-of-voice-recognition.html?pagewanted=all,
march 2012.

T. Singer, “New police scanner raises facial profiling concerns,” NPR http://www.npr.org/2011/08/
11/138769662 /new-police-scanner-raises-facial-profiling-concerns, August 2011.

M. Barbaro and T. Zeller, “A face is exposed for user 4417749,” New York Times Technology, August
2006, retrieved from http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all.

A. Acquisti and R. Gross, “Predicting social security numbers from public data,” preprint. [Online].
Available: http://www.pnas.org/content/106/27/10975.short

G. Friedland, “Privacy concerns in multimedia and their solutions,” in Tutorial at the 20th ACM
International Conference on Multimedia (slides), 2012.

J.  Valentino and J. Singer-Vine, “They know what you're shopping for,” The
Wall  Street  Journal,  December 2012,  retrieved from  http://online.wsj.com/article/
SB10001424127887324784404578143144132736214.html.

N. Perlroth, “Yahoo breach extends beyond yahoo to gmail, hotmail, aol wusers,” New
York Times Technology, July 2012, retrieved from http://bits.blogs.nytimes.com/2012/07/12/
yahoo-breach-extends-beyond-yahoo-to-gmail-hotmail-aol-users/.

M. Barni, T. Bianchi, D. Catalano, M. D. Raimondo, R. Labati, P. Failla, D. Fiore, R. Lazzeretti, V. Pi-
uri, A. Piva, and F. Scotti, “A privacy-compliant fingerprint recognition system based on homomorphic
encryption and fingercode templates,” in Proc. IEEE Intl. Conf. on Biometrics: Theory Applications
and Systems, 2010, pp. 1-7.

Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft, “Privacy-preserving face
recognition,” in Privacy Enhancing Technologies, ser. Lecture Notes in Computer Science, I. Goldberg
and M. Atallah, Eds., 2009, vol. 5672, pp. 235-253.

A. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-preserving face recognition,” in Infor-
mation, Security and Cryptology ICISC 2009, ser. Lecture Notes in Computer Science, D. Lee and
S. Hong, Eds., 2010, vol. 5984, pp. 229-244.

P. Smaragdis and M. Shashanka, “A framework for secure speech recognition,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 15, no. 4, pp. 1404-1413, 2007.

O. Bowcott, “Interpol wants facial recognition database to catch suspects,” The Guardian, October
2008.

G. Friedland and R. Sommer, “Cybercasing the joint: Privacy implications of geo-tagging,” in Proc.
USENIX Workshop on Hot Topics in Security, 2010.

S. Sengupta and K. O’Brien, “Facebook can ID faces, but using them grows tricky,” New
York Times, September 21 2012, retrieved from http://www.nytimes.com/2012/09/22/technology/
facebook-backs-down-on-face-recognition-in-europe.html.

B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information retrieval,” in IEEE Sym-
posium on Foundations of Computer Science, 1995, pp. 41-50.

E. Kushilevitz and R. Ostrovsky, “Replication is not needed: single database, computationally-private
information retrieval,” in Annual Symposium on IEEE Symposium on Foundations of Computer Science,
2012, pp. 364-373.

A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin, “One-way functions are essential for single-server
private information retrieval,” in Thirty first annual ACM symposium on theory of computing, 1999,
pp- 89-98.

R. Sion and B. Carbunar, “On the computational practicality of private information retrieval,” in Proc.
Network and Distributed System Security Symposium, 2007.

A. Beimel, Y. Ishai, and T. Malkin, “Reducing the servers’ computation in private information retrieval:
PIR with preprocessing,” J. Cryptology, vol. 17, no. 2, pp. 125-151, 2004.

D. Woodruff and S. Yekhanin, “A geometric approach to information theoretic private information
retrieval,” in Proc. IEEE Conf. on Computational Complexity, 2005, pp. 275—284.

F. Olumofin, “Practical private information retrieval,” Ph.D. dissertation, University of Waterloo, Au-
gust 2011.

69


http://www.nytimes.com/2012/04/01/technology/nuance-communications-wants-a-world-of-voice-recognition.html?pagewanted=all
http://www.nytimes.com/2012/04/01/technology/nuance-communications-wants-a-world-of-voice-recognition.html?pagewanted=all
http://www.npr.org/2011/08/11/138769662/new-police-scanner-raises-facial-profiling-concerns
http://www.npr.org/2011/08/11/138769662/new-police-scanner-raises-facial-profiling-concerns
http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all
http://www.pnas.org/content/106/27/10975.short
http://online.wsj.com/article/SB10001424127887324784404578143144132736214.html
http://online.wsj.com/article/SB10001424127887324784404578143144132736214.html
http://bits.blogs.nytimes.com/2012/07/12/yahoo-breach-extends-beyond-yahoo-to-gmail-hotmail-aol-users/
http://bits.blogs.nytimes.com/2012/07/12/yahoo-breach-extends-beyond-yahoo-to-gmail-hotmail-aol-users/
http://www.nytimes.com/2012/09/22/technology/facebook-backs-down-on-face-recognition-in-europe.html
http://www.nytimes.com/2012/09/22/technology/facebook-backs-down-on-face-recognition-in-europe.html

(22]

R. Ostrovsky, W. Skeith, and O. Patashnik, “Private searching on streaming data,” Journal of Cryp-
tology, vol. 20, pp. 397430, 2007.

J. Bethencourt, D. Song, and B. Waters, “New constructions and practical applications for private
stream searching,” in Security and Privacy, 2006 IEEE Symposium on, may 2006, pp. 134 —139.

M. Finiasz and K. Ramchandran, “Private stream search at the same communication cost as a regular
search: Role of Idpc codes,” in Proc. IEEE Int. Symposium on Information Theory, 2012, pp. 2556—2560.
Y. Huang, L. Malka, D. Evans, and J. Katz, “Efficient privacy-preserving biometric identification,” in
Proc. Network and Distributed System Security Symposium, 2011.

M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, vol. 3, no. 1,
p. 7186, 1991.

J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system,’
on Music Information Retrieval, 2002, pp. 107-115.

J. Shashank, P. Kowshik, K. Srinathan, and C. Jawahar, “Private content based image retrieval,” in
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2008, pp. 1-8.

M. Barni, T. Bianchi, D. Catalano, M. di Raimondo, R. D. Labati, and P. Failla, “Privacy preserving
fingercode authentication,” in Proc. ACM Workshop on Multimedia and Security, 2010.

S. Avidan and M. Butman, “Blind vision,” in LNCS, vol. 3953, no. 2006, 2006, pp. 1-13.

B. Moskovich and M. Osadchy, “Illumination invariant representation for privacy-preserving face iden-
tification,” in Computer Vision and Pattern Recognition Workshops, 2010, pp. 154—161.

M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich, “SCiFI - a system for secure face identification,”
in IEEE Symposium on Security and Privacy, 2010, pp. 239-254.

M. Pathak and B. Raj, “Privacy-preserving speaker verification as password matching,” in Proc. Intl.
Conf. on Acoustics, Speech, and Signal Processing, 2012.

" in Proc. the Intl. Symposium

M. Barni, P. Failla, R. Lazzeretti, A. Sadeghi, and T. Schneider, “Privacy-preserving ECG classification
with branching programs and neural networks,” IEEE Trans. on Information Forensics and Security,
vol. 6, no. 2, pp. 452-468, 2011.

G. Ghinita, “Private queries and trajectory anonymization: a dual perspective on location privacy,”
Trans. on Data Privacy, vol. 2, no. 1, 2009.

P. Lin and S. Candan, “Secure and privacy-preserving outsourcing of tree structured data,” vol. 3178,
no. 2004, pp. 155-176, 2004.

F. Olumofin and I. Goldberg, “Revisiting the computational practicality of private information re-
trieval,” in Financial Cryptography and Data Security, ser. Lecture Notes in Computer Science,
G. Danezis, Ed., 2012, vol. 7035, pp. 158-172.

P. Maass and M. Rajagopalan, “That’s no phone. that’s my tracker.” New York
Times, July 13 2012, retrieved from http://www.nytimes.com/2012/07/15/sunday-review/
thats-not-my-phone-its-my-tracker.html.

J. Pepitone, “Facebook settles FTC charges over 2009 privacy breaches,” CNN, Online Edition, Novem-
ber 10, 2011, retrieved from http://money.cnn.com/2011/11/29/technology/facebook_settlement/
index.htm?iid=EL.

R. Ostrovsky and W. Skeith, “A survey of single-database private information retrieval: Techniques
and applications,” in Public Key Cryptography PKC 2007, ser. Lecture Notes in Computer Science,
T. Okamoto and X. Wang, Eds., 2007, vol. 4450, pp. 393—411.

R. Rivest, L. Adleman, and M. Dertouzos, “On data banks and privacy homomorphisms,” in Founda-
tions of Secure Computation, R. DeMillo, D. Dobkin, A. Jones, and R. Lipton, Eds. Academic Press,
1978.

P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Advances in
Cryptology EUROCRYPT 99, ser. Lecture Notes in Computer Science, S. Jacques, Ed., 1999, vol.
1592, pp. 223-238.

A. Aude, “Audio quality measurement primer,” http://www.intersil.com/content/dam/Intersil/
documents/an97/an9789.pdf, 1998.

C. Yeo, P. Ahammad, H. Zhang, and K. Ramchandran, “Rate-efficient visual correspondences using
random projections,” in Proc. IEEFE Intl. Conf. on Image Processing, 2008, pp. 217-220.

K. Min, L. Yang, J. Wright, L. Wu, X. Hua, and Y. Ma, “Compact projection: Simple and efficient
near neighbor search with practical memory requirements,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2010, pp. 3477-3484.

70


http://www.nytimes.com/2012/07/15/sunday-review/thats-not-my-phone-its-my-tracker.html
http://www.nytimes.com/2012/07/15/sunday-review/thats-not-my-phone-its-my-tracker.html
http://money.cnn.com/2011/11/29/technology/facebook_settlement/index.htm?iid=EL
http://money.cnn.com/2011/11/29/technology/facebook_settlement/index.htm?iid=EL
http://www.intersil.com/content/dam/Intersil/documents/an97/an9789.pdf
http://www.intersil.com/content/dam/Intersil/documents/an97/an9789.pdf

P. Belhumeur, J. Hespanha, , and D. Kriegman, “Eigenfaces vs. fisherfaces: recognition using class
specific linear projection,” Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp.
711-720, 1997.

A. L. Cambridge, “The database of faces,” Retrieved from http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html, 2002.

M. Rabin, “How to exchange secrets with oblivious transfer,” Technical report TR-81, Aiken Compu-
tation Lab, Harvard University, 1981.

S. Papadopoulos, S. Bakiras, and D. Papadias, “pCloud: A distributed system for practical PIR,”
Dependable and Secure Computing, IEEE Transactions on, vol. 9, no. 1, pp. 115 —127, jan.-feb. 2012.

W. Muller, A. Heinrich, and M. Eisenhardt, “Privacy of ideas in P2P networks,” Tech. Rep.

S.  Sengupta, “Parenting  dilemmas in the age of facial recognition,” New
York  Times, July 2012, retrieved  from  http://bits.blogs.nytimes.com/2012/07/23/
parenting-dilemmas-in-the-age-of-facial-recognition/.

C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford University, 2009.

W. Lu, A. Varna, A. Swaminathan, and M. Wu, “Secure image retrieval through feature protection,”
in Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, 2009, pp. 1533-1536.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum private queries: Security analysis,” Information
Theory, IEEE Transactions on, vol. 56, no. 7, pp. 3465 —3477, July 2010.

F. DeMartini, V. Giovanetti, S. Lloyd, E. Nagali, L.. Sansoni, and F. Sciarrino, “Experimental quantum
private queries with linear optics,” Phys. Rev. A, vol. 80, no. 1, 2009.

71


http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://bits.blogs.nytimes.com/2012/07/23/parenting-dilemmas-in-the-age-of-facial-recognition/
http://bits.blogs.nytimes.com/2012/07/23/parenting-dilemmas-in-the-age-of-facial-recognition/

Appendix A

Proofs for Claims

A.1 Proof of Observation 1

Proof. Let QU denote the PIR query vector to the vth server S,. A sufficient condition for
information-theoretic security is that the mutual information between the client’s queries
(Q' and @?) to the two servers and the client’s desired file index (i) given the database
contents is zero, i.e.

1(Q°,i|DB) = H(Q"|DB) — H(Q"|i,DB) =0  forvel,2

where H(-) denotes the entropy function. Recall that the query vectors are generated as
Q" = (¢! -r)®a and Q' = (e'-(1—7)) @ a, where a is a Bernoulli random process of length n
with parameter % and 7 ~ Bern(%) is a random flag indicating which server gets e’ @ a and
which gets a. e* is the ¢th canonical vector, with a 1 at the ¢th index and zeros elsewhere.
Thus it suffices to show that I(a ® €,i|DB) = 0 and I(a,i|DB) = 0. For the latter we have

I(a,i|DB) = H(a|DB) — H(ali, DB)
=H(a)— H(a) =0

because the entries of a are generated independently of i. The same is true for I(a @

e',i|DB) = 0, since the bitwise sum of a Bern(3) random process with any other bi-

nary random process is an iid Bern(3) random process. So I(a & €',i|DB) = 0. Thus
I(QY,i|DB) = I(Q',i|DB) = 0; without collusion, S, cannot possibly learn any informa-
tion about the desired query index ¢ from (. Since this is the only information received

by the server, the scheme is information-theoretically secure. ]

Note that the server may have side information, as mentioned in the proof—the point
is that the client’s message to the server does not leak any additional information.
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A.2 Proof of Observation 2

Proof. Any semi-honest server S, in the system is able to view each input query vector Q"
from the client, as well the full database. We wish to prove that given this information, each
server S, learns no information from C. Let QY% denote C’s PIR query vector to S, for the
wth noisy subfingerprint ¢, and let {Q""" }o<w<255 denote the set of all PIR queries sent
to S, during AudioSearchPIR:FullSearch; we will abbreviate this {Q"*}. To show that S,
gains no information about ¢, we must show that I(g, {Q""}|DB) = 0.

Starting with w = 0 and using scheme P, C sends query Q% to S,. By Observation 1,
S, learns nothing about the nature of g,. More precisely, I(Q"", q,|DB) = 0. Since QV"°
was generated independently of all the other subfingerprints in ¢, we have by extension that
I(Q¥!, q|DB) = 0. The same is true for all the remaining w > 0. Since Q' was generated
independently of Qv for all i # j, we have that

H({Q""}DB) = H(Q"°|DB) + ...+ H(Q"**°|DB).
This in turn implies
I(g.{Q""}|DB) = H ({Q""}DB) — H ({Q""}|¢, DB)
= H(Q"|DB) + ...+ H(Q"**|DB) — H(Q"’|q,DB) — ... — H(Q"**|q, DB)

= H(Q"|DB) — H(Q""|q, DB) + ... + H(Q"**|DB) — H(Q"**|q, DB)
=1(¢,Q"°|DB) + ...+ I(q, Q"**°|DB)
=0

i

since we already showed that I(g,Q"") = 0 for all 0 < w < 255. Thus AudioSearch-
PIR:FullSearch leaks no information to the server about the client’s query. O
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Appendix B

Additional Algorithm Detalils

Algorithm B.1 AudioSearchPIR:ThresholdSearch

1: function EXTRACTFEATURES(NoisyAudio)
2 Input: Noisy audio clip, at least 3 seconds long (NoisyAudio)
3 Output: Vector of 256 query subfingerprints (q)
4: end function

5. function PIR(Q, S, P)
6 Input: Server ID (S§), PIR protocol (P), PIR query (Q)

7 Output: Mixed database contents (ScrambledResult)

8: end function

9: function COMPUTEBITERRORRATE(q, )

10: Input: query fingerprint block (g), scrambled fingerprint block output of PIR (r)

11: Output: Bit error rate between the two vectors (BitErrorRate)
12: end function
13:

14: Input: Noisy audio clip (NoisyAudio)

15: Output: ID, content of closest match in Hamming distance (ClosestMatch)
16:

17: MinBitErrorRate < 1

18: ¢ < EXTRACTFEATURES(NoisyAudio)

19: for w =0 — 255 do

20: ResultList < 0

21: for all non-colluding server S, do

22: C generate PIR query Q, for subfingerprint q,,, to be sent to server S,
23: ScrambledResult + PIR(Q,,S,, P)

24: ResultList + ResultList @& ScrambledResult

25: end for

26: for all Result in ResultList do
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Algorithm B.2 AudioSearchPIR:ThresholdSearch, Continued

27 BitErrorRate «+— COMPUTEBITERRORRATE(g, Result)
28: if BitErrorRate < ¢ then

29: MinBitErrorRate <+ BitErrorRate

30: ClosestMatch < Result

31: break

32: end if

33: end for
34: if MinBitErrorRate < 1 then

35: break
36: end if
37: end for

75



Algorithm B.3 AudioSearchPIR:LookupTable

1:
2:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

function PIR(Q, S, P, LocationFlag)

Input: Server ID (S), PIR protocol (P), PIR query (Q), Flag indicating whether
the PIR query is for a subfingerprint location list (1) or a fingerprint block (0) (Loca-
tionFlag)

Output: Scrambled database contents of either the lookup table entries or fingerprint
blocks (ScrambledResult)
end function

Input: Noisy audio clip (NoisyAudio)
Output: ID, content of closest match in Hamming distance (ClosestMatch)

MinBitErrorRate + 1
q < EXTRACTFEATURES(NoisyAudio)
for w =0 — 255 do
Result «+ 0
for all non-colluding server S, do
C generate PIR query Q, for subfingerprint g,,, to be sent to server S,
ScrambledLocationResult < PIR(Q,,S,, P)
LocationResult < LocationResult ¢ ScrambledLocationResult
end for
for all Location of ¢, in LocationResult do
for all non-colluding server S, do
C generate PIR query Q, for Location, to be sent to server S,
ScrambledResult < PIR(Q,, Sy, P)
Result <+ Result & ScrambledResult
end for
BitErrorRate <~ COMPUTEBITERRORRATE(q, Result)
if BitErrorRate < Threshold then
MinBitErrorRate <— BitErrorRate
ClosestMatch < Result
break
end if
end for
if MinBitErrorRate < 1 then
break
end if
end for
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Algorithm B.4 AudioSearchPSS

10:

11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:

1
2
3
4
5:
6
7
8
9

: function EXTRACTFEATURES(NoisyAudio)
Input: Noisy audio clip, at least 3 seconds long (NoisyAudio)
Output: Vector of 256 query subfingerprints (q)
: end function
function Pss(Q,S)
Input: PSS query (Q), Single server (S)
Output: Buffer with mixed results (Buffer)
: end function
: function DECRYPTBUFFERBIN(BufferPosition,PrivateKey)
Input: Index of buffer to decrypt (BufferPosition), Private encryption key (Pri-
vateKey)
Output: Decypted buffer bin contents (Result)
end function
function ISSINGLETON(Result)
Input: Decrypted buffer bin contents (Result)
Output: Indicator reflecting whether Result was a singleton (1) or a superposition
of several fingerprint blocks (0)
end function
function COMPUTEBITERRORRATE(q, r)
Input: query fingerprint block (g), scrambled fingerprint block output of PSS (r)
Output: Bit error rate between the two vectors (BitErrorRate)
end function
function REMOVESINGLETON(Result, &Buffer)
Input: Plaintext fingerprint block (Result), Result buffer (Buffer)
All instances of Result are removed from Buffer
end function

25:

26:
27:

Input: Noisy audio clip (NoisyAudio)
Output: ID, content of closest match in Hamming distance (ClosestMatch)

28:

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

MinBitErrorRate < 1
q + EXTRACTFEATURES(NoisyAudio)
for w =0 — 255 do
C generate PSS query Q for subfingerprint g,
Buffer < Pss(Q,S)
BufferPosition « 0
while BufferPosition < length(Buffer) do
Result <~ DECRYPTBUFFERBIN(BufferPosition,PrivateKey)
if not ISSINGLETON(Result) then
BufferPosition < BufferPosition + 1
continue

end if
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Algorithm B.5 AudioSearchPSS, Continued

41: BitErrorRate <~ COMPUTEBITERRORRATE(q, Result)
42: if BitErrorRate < Threshold then
43: MinBitErrorRate <+ BitErrorRate
44: ClosestMatch < Result

45: break

46: end if

47: REMOVESINGLETON(Result, Buffer)
48: BufferPosition + 0

49: end while

50: if MinBitErrorRate < 1 then

51: break

52: end if

53: end for
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