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ABSTRACT 

 
Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing 

 
by 
 

Dekong Zeng 
 

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences 
 

University of California at Berkeley 
 

Professor Costas J. Spanos, Chair 

As semiconductor technology is aggressively scaling to finer feature sizes, manufacturing 
complexity increases dramatically. This drives the need for extensive control on processing 
equipment and on the efficiency of the associated metrology. Similarly, in the field of 
photovoltaic (PV) manufacturing, processing technology is driven by cost reduction while 
increasing output power per cell. In either case, the variability impact on the final performance is 
critical. 

In this thesis, we focus on the application of statistical methods for enhanced metrology 
in both semiconductor and PV manufacturing. The work falls into three main topics: Wafer-to-
Wafer (W2W) Virtual Metrology (VM) via predictive modeling, Site-to-Site (S2S) metrology 
modeling for Fault Detection and Classification (FDC), and predictive variability modeling for 
solar PV.  

The first topic is on creating predictive VM models for W2W control in plasma etching, 
one of the bottlenecked processes for technology node scaling. The idea is to utilize equipment 
sensor data to predict the wafer processing results, so that actual wafer measurements can be 
reduced or eliminated. VM comprises four main steps: data extraction, outlier removal, variable 
selection, and model creation. They aim to deal with the special characteristics of equipment 
sensor data which are high dimensional, collinear and non stationary. VM models are trained and 
tested with approximately one production year worth of wafer data collected from a single 
plasma etching tool. The best model result is obtained by a hybrid model that utilizes step-wsie 
parameter selection and Neural Network (NN) based prediction, which achieved a testing 𝑅2 ≈
0.75. 

The second topic aims to develop FDC schemes for wafer-level S2S metrology. We first 
focus on utilizing spatial and multivariate statistics for detecting outlier wafers. Spatial and 
multivariate methods are preferred given the temporal and spatial varying nature of wafer level 
metrology data. We then focus on selecting the optimal measurement sites for process 
monitoring. Various site selection schemes are evaluated within the FDC application, showing 
than more than 70% metrology savings with no discernable reduction in performance is possible. 
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The third topic addresses modeling the variability of solar cells. The impact of 
environmental and manufacturing variability is simulated and discussed. A predictive model for 
manufacturing variability-induced mismatch power loss is proposed and evaluated with various 
PV array configurations. Finally, spatial statistics are used to model the non-uniformities of solar 
cell properties. A SPICE-based distributive solar cell simulator is constructed to estimate 
electrical performance for various defect distribution patterns. Finally, a statistical model is 
created in order to correlate the spatial characteristics of defect patterns with the corresponding 
electrical performance. 
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Chapter 1  

Introduction 

1.1. Motivation 

Semiconductor processes and equipment have gone through tremendous amount of 
changeover time in order to meet the scaling required by the new technology nodes. The 
semiconductor industry has been driven to double the number of transistors on a wafer every two 
years. Thus, the ability to obtain good yield per wafer is critical for higher profit. In order to 
achieve good yield, numerous metrology steps along with advanced process control schemes 
have been implemented to ensure that the process stays in control. We show the typical process 
flow for CMOS along with key metrology measurements in figure 1.1. 

The cost of metrology required to meet control specs is increased over time. There is also 
increasing demand of statistical methodology for process control. Measurements must be 
sampled statistically to accommodate process dynamics and correlation among measured 
parameters.  

In current practice, it is difficult to measure wafer process results after each step for all the 
wafers since each wafer can go through hundreds of steps while equipment are operating in high 
volume manufacturing mode. Therefore, 1 to 3 wafers are typically sampled from each lot of 24 
or so in order to perform measurement. The sampled wafers might be different from step to step, 
thus it is rare to have exactly the same wafer measured across all the steps. The measurements 
results of these wafers then used as statistical inputs to construct statistical process control charts 
(SPC) for product quality and process capability monitoring.  

Run-to-run (R2R) control schemes are based on these measurements to adjust process 
recipes for each lot; however such lot-to-lot (L2L) control is not sufficient to reduce process 
excursions in a production environment. Therefore wafer-to-wafer (W2W) control is often 
necessary. The goal of W2W control is to adjust the incoming wafer recipe based on process 
results of previous wafers.  

In order to provide inference on process results, various types of sensors have been 
implemented on tool to extract information on equipment and wafer. The information carried by 
these sensors can infer the process chamber condition as well as wafer processing results. One 
can utilize the information provided by these sensors to predict the wafer metrology results 
immediately after processing; these predicted results can then be fed into W2W control to adjust 
the recipe for next wafer. We define the prediction of metrology variables with the process and 
chamber state information as W2W Virtual Metrology (VM). W2W VM can be used for 
reducing metrology measurement as well as fault detection and classification (FDC). 
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Figure 1.1 CMOS process flow showing key measurement points (denoted by M)[1.1] 

However, VM does not mean that actual measurements can be completely eliminated. Due 
to the time varying nature of process dynamics, malfunctioning of sensors and frequent 
equipment maintenance, one would need to constantly update the VM models with measured 
wafers.  

Metrology requirements and opportunities for different process steps vary. In table 1.1, we 
provide typical metrology operations for four main process steps. For all the measurements, 
several sites across wafer are usually measured. These locations are usually selected based on 
engineering knowledge. Thus, optimality of the selection is not guaranteed, and a portion of the 
measurements may be redundant in terms of the information they collect about the status of the 
process.  

Measurement redundancy is especially likely for process steps that tend to result in specific 
spatial patterns across wafer. Such patterns make the process deviations site-dependent. Thus, it 
is possible to sample only the most informative sites for measurement across wafer and reduce 
measurement cost.  

In plasma etching operation, for example, Scanning Electron Microscopy (SEM) has been 
used to measure the critical dimensions (CDs) of etched features. Typically, CDs of 9 to 14 sites 
across wafer are measured. It has been shown that these measured CDs are highly correlated with 
each other. Thus, one can really reduce the number of sites measured by selecting the ones with 
the highest predictive power. We define the process of selecting measurement set as Site-to-Site 
(S2S) VM. S2S VM can also be applied for electrical testing site selection, where there are 
hundreds of dies needed to be measured per wafer.  

Process step Measurement 
Lithography • Linewidth 

• Overlay 
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• Print bias 
• Resist profiles 

Etch • Etch rate 
• Selectivity 
• Uniformity 
• Anisotropy 
• Etch bias 

Deposition • Sheet resistance 
• Film thickness 
• Surface concentration 
• Dielectric constant 
• Refractive index 

Diffusion and Implantation • Sheet resistance 
• Junction depth 
• Surface concentration 

Table 1.1 Metrology for main CMOS process steps [1.1] 

Photovoltaic (PV) manufacturing, while simpler, shares similar processing technology with 
IC manufacturing. Unlike IC manufacturing, however, where yield and performance dominate, 
in the PV industry low production cost is paramount. Indeed, in order to have competitive cost 
for each KWh produced by a PV system, one must tend to manufacturing cost, installation cost, 
and solar conversion efficiency over the lifetime of the system. To achieve low manufacturing 
cost, various materials have been used for PV cell fabrication along with different system design. 
We present the up-to-date reported efficiency for different PV cells in figure 1.2, and the cost of 
different components in figure 1.3.  

The cost of PV components can vary depending on the market supply and demand 
circumstances. Additional variability comes from variations in manufacturing, in the balance of 
the system components, and in the environment in which the OPOV system will operate. 
Therefore, it is important to understand how these variability components will impact the final 
solar PV system. Once the relationship between these variability components and PV 
performance is understood, one can optimize the PV system to compensate the variability and 
maximize the power output.  

There have been many attempts to mitigate the impact of variability in PV systems. In the 
case of manufacturing variability, binning on cells has been applied to group cells into a class 
with more conformal performance. Thus, mismatch induced power loss can be reduced. 
Mismatch induced power loss happens when cells with different performance capability are 
combined, where the maximum total power output is less than the sum of the maximum power of 
individual cells. Accurate estimation of the mismatch induced power loss under different 
conditions allows a PV plant to forecast power output.  

Comprehending environmental variability is also needed in order to forecast the PV system 
performance. In current practice, uniform irradiance and temperature profiles are generally 
assumed across entire PV plant or array when calculating energy output. The assumption of 
uniform profiles can generally lead to over-estimation of energy output.  
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Besides the need of understanding variability impact at a macro-scale level, the introduction 
of thin-film PV cells is also driving more research towards understanding variability impact at a 
micro-scale level, such as non-uniform material properties across cell. These nonuniformities, 
including defect density variation, deposited layer thickness variation, and other material 
properties tend to diminish final cell performance. Therefore, it is important to establish the 
relationship between these nonuniformities and final cell performance.  

Multiple measurements have also been employed at different process steps to monitor 
quality of cells. In table 1.2, we summarize the standard set of metrology measurements for 
fabrication of Si-wafer PV cells [1.4].  

 

Figure 1.2 NREL compilations of best research solar cell efficiencies [1.2].  

 

Figure 1.3 Component cost of PV system and Price reduction over time [1.3] 

http://upload.wikimedia.org/wikipedia/commons/7/74/PVeff(rev100921).jpg
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Process or Monitoring 
step 

Parameters Technique 

Crystal growth (Ingot 
quality) 

𝜏=minority carrier 
lifetime 

PCD 

Wafer quality and 
cleaning 

Surface 
Roughness/residue 

NA 

Texturing Texture  Height SEM/Optical 
microscopy/Reflectance 

Electronic quality of 
wafers 

𝐿 𝜏� =diffusion 
length/minority carrier 
lifetime 

PCD 

Junction depth Sheet resistance 4 Point Probe 
Defect density Dislocation density TEM 
Impurity concentration  SPV 

AR-coating Thickness and refraction 
index 

Ellipsometer 

Metallization Line width SEM/Optical 
IV-of Cell Open circuit voltage and 

short circuit current 
Standard I-V 
measurement 

Table 1.2 Metrology for main PV process steps [1.4] 

1.2. Thesis organization 

This thesis starts with the overview of enhanced metrology in the semiconductor 
manufacturing industry in Chapter 2. Multivariate statistical methods for FDC and VM model 
prediction are discussed qualitatively in Chapter 2. Chapter 3 develops a VM model for 
semiconductor process and its application on plasma etching. We first present the model creation 
flow and discuss each of components in detail.  

Semiconductor manufacturing data are usually highly dimensional and collinear. Especially 
in the case of plasma etching process, each wafer generally goes through multiple recipe steps 
and each recipe step can have more than hundreds of sensor monitoring chamber and process 
conditions. Prior to applying a predictive method, we first describe how we compress these 
sensor data into statistical summaries that can capture most information at each recipe step. 
Given the collinear nature of sensor data, variable selection plays a critical role in creating a 
robust model with good performance. We present several variable selection schemes and 
evaluate their performances with different prediction methods.   

In order to accommodate process dynamics over longer production period, we also present 
several ways of constructing the prediction model. Chapter 4 focuses on developing FDC 
schemes and optimal site selection schemes for S2S metrology. We demonstrate the results with 
the application on a set of wafers with frequency of pattern sensitive ring oscillator measured at 
each die. In order to gain insights into data with such hierarchical and spatial nature, we have 
utilized conventional spatial statistics and multivariate methods for detecting abnormal wafers. 
Another aspect of Chapter 4 is to discuss how we can select the sites with most information for 
process monitoring, since many sites are highly correlated with each other.  
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In Chapter 5, we utilize statistical techniques with SPICE simulation to model variability 
components in a PV system. Monte Carlo (MC) simulation is first used to simulate cells with 
different physical and electrical characteristics to reflect manufacturing variability. Then we 
construct a mismatch estimation model for different PV interconnect configuration with these 
generated samples. To mitigate environmental and manufacturing variability, we then propose 
clustering techniques to bin cells rather than using a single metric. The binning performances are 
then evaluated under different PV interconnect configuration and degradation conditions.  

Nonuniformities of material properties across a cell also result in fabricated cells with 
different performance. These nonuniformities are introduced by manufacturing as well inherited 
from raw material. Especially in the case of thin film cell with large surface area, 
nonuniformities play s a critical role in final cell performance. Understanding the impact of 
different patterns of nonuniformities is critical for tuning process. We first generate different 
defect patterns to represent nonuniformities, then these patterns are simulated in SPICE as a 
distributive diode array.  Statistical methods are then applied to correlate these defect patterns 
with the corresponding simulated performance. Finally, we conclude the thesis and propose 
future work in Chapter 6. 
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Chapter 2  

Background on IC, PV Manufacturing and Relevant Statistical Methods 

In this chapter, we will briefly review the semiconductor and photovoltaic (PV) 
manufacturing process and provide an overview on the application of statistical methods in 
manufacturing control. In Section 2.1, we will provide a brief overview of the conventional 
CMOS fabrication process with a focus on the bottlenecked steps. In Section 2.2, we will discuss 
the process flow for crystalline Si solar cells and thin film solar cells and their underlying 
differences. Statistical techniques and their previous applications in the field of manufacturing 
control are then discussed in Section 2.3.  

2.1. Review of Semiconductor Manufacturing 

  There are typically 6 main groups of steps for CMOS manufacturing [2.1] including: 
diffusion, photolithography, etch, ion implant, thin films deposition, and polishing. A model for 
the typical wafer flow in Sub-Micron IC Fab is shown in figure 2.1. A blank silicon wafer 
generally goes through approximately 400 steps in 6 to 8 weeks to get patterned and then is sent 
for test and assembly, where electrical tests are performed for each die. A cross section view of a 
complete CMOS structure along with the main manufacturing steps is presented in figure 2.2. 
 
 Diffusion is generally applied to introduce impurities into pure silicon. Photolithography is a 
process that transfers the circuit pattern to the wafer with uses of photoresist and light exposure. 
Ion implantation is the process where dopants are implanted into silicon substrate to change its 
electrical characteristics.  
 
  Etching transfers patterns printed in photoresist into the wafer. Plasma etching is typically 
used in modern IC Fab. This is done by placing wafers into a vacuum chamber which is filled 
with chemical gas, and then a strong Radio Frequency (RF) electromagnetic field is applied to 
the wafer.  This RF field converts the chemical gas into chemically reactive ions.  The charged 
ions are accelerated toward the wafer surface by the electromagnetic field and where they 
chemically and physically remove the exposed material. For IC manufacturing, etching processes 
can be classified by the etched material: conductor etch and dielectric etch. Conductors include 
poly-silicon (p-Si), Silicon (Si) and metals. In both cases of Si and metal etching, high density 
plasmas operated at low pressure in the order of 10 mTorr in single wafer tools are employed.  
With low pressure, a long mean free path of reactive ions assures a high degree of ion sputtering 
and highly anisotropic etching. Metal and dielectric etchings are both for patterning, interconnect 
as well as active device features.  
 
 Thin film processes are used to interconnect the transistors on a chip and make them into a 
functional device. Chemical Vapor Deposition (CVD) is a class of thin film processing using 
controlled chemical reactions to create layers on wafers. There are many variants of CVD 
processes, such low pressure CVD (LPCVD), physical vapor deposition (PVD) and plasma 
enhanced CVD (PECVD). LPCVD is usually preferred for poly-Si deposition. PVD is also 
known as sputtering and is typically used for metal deposition. It uses a cathode to create Argon 
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plasma which bombards the source metal. The “knocked off” metal molecules are then focused 
by a collimator, and deposited on the surface of the wafer. PECVD uses gas plasma to lower the 
temperature required to obtain a chemical reaction and achieve film deposition. It is the preferred 
method for depositing inter-metal dielectric since it delivers the required high aspect ratio 
between metal lines.  
 
 Polishing, also known as planarization, is a combination of chemical and mechanical 
polishing (CMP). This process is used repeatedly in the fabrication flow for oxide and metal 
planarization. It provides planarity for oxide dielectric and tungsten plug used at the 
metallization level. The success of CMP depends on several factors, including the chemistry of 
slurry, the nature of the pad, and mechanics of the tool.   

 
Figure 2.1 Model for typical wafer flow in Sub-Micron CMOS IC Fab [2.2] 

 

Figure 2.2 CMOS manufacturing steps and cross section view of complete CMOS [2.3] 
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Each finished wafer may contain several hundred individual devices called “die.”  
Semiconductor device manufacturers use automated methods to test each device on the wafer 
before it is broken into “chips”. A probe tester uses needle shaped “probes” to contact the 
bonding pads (the circuit connection points) on each device and check its operation. Devices that 
fail the test are marked with a colored dye spot so they will not be carried further into the 
production process. The efficiency of a given Fab is determined by its yield: the ratio of 
functional die to total die. State-of-the-art Fab typically operates at more than 90% yield within 
18 months of startup [2.4]. After the electrical test, the wafer is sawed with a special diamond 
saw and broken into individual die. The marked (non-functional) die are discarded and functional 
die are passed on into the wire bonding process. In figure 2.3 (A) and (B), we show the die 
testing result and chip packaging for illustration. 

 

Figure 2.3 (A) Die testing (B) Chip packaging [2.5] 

2.2. Review of PV Manufacturing 

The fabrication process of PV cells is relatively simple in comparison to IC manufacturing 
since the PV cell does not have a complicated structure. However, there are many variants in 
terms of process due to different types of PV cells. PV cells can be classified into two categories 
broadly based on the cell material: crystalline silicon (C-Si) based cells and thin film cells. The 
chosen materials need to meet two criteria: high efficiency and low cost. The main focus of this 
section is to discuss manufacturing flow for PV cells, and we will discuss solar cell operation 
and electrical characteristics in detail in Section 5.  

Solar cell plants take the wafer through a high technology semiconductor processing 
sequence to create working solar cells. In C-Si, wafers typically undergo a process sequence of 
etching, diffusion, and screen-printing steps before they are tested and graded for incorporation 
into modules. For thin films, glass or stainless steel substrates are processed through steps of 
transparent conducting oxide deposition, semiconductor layer growth, laser scribing, and 
metallization. The sequence is dependent on the substrate being used. Today, thin film plants are 
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designed to handle large substrates in sheet or roll form. Therefore, the process equipment is 
much larger than for the wafer-based C-Si plants. 

2.2.1. Silicon Solar PV cell fabrication 

Most large-scale commercial solar cell factories today make screen-printed poly-
crystalline silicon (Poly-Si) solar cells. Single crystalline silicon (C-Si) wafers which are used in 
the semiconductor industry can be made in to excellent high efficiency solar cells, but they are 
generally considered to be too expensive for large-scale mass production. The fabrication of Si 
wafer based PV cells can be summarized into the following steps [2.6, 2.7]: 

 
1.  Poly-Si or C-Si wafers are made by wire-sawing block-cast silicon ingots into 
very thin (250 to 350 micrometer) slices or wafers. The wafers are usually lightly p-type 
doped.  
2. To make a PV cell from the wafer, n-type diffusion is performed on the front side 
of the wafer, forming a p-n junction a few hundred nanometers (nm) below the surface. 
Some cells can also have a textured surface to couple more light into the cell. 
Antireflection coatings (ARC) are typically applied on the front surface to increase light 
coupled into the solar cell. Silicon nitride is the typical ARC material because of its 
excellent surface passivity qualities, so that it can prevent carrier recombination at the 
surface of the solar cell. ARC is typically several hundred nm thick and applied by 
PECVD. 
3. The wafer is then metalized, whereby a full area metal contact is made on the 
back surface, and a grid-like metal contact made up of fine "fingers" and larger "bus bars" 
is screen-printed onto the front surface using a silver paste.  The rear contact is also formed 
by screen-printing a metal paste, typically aluminum. This contact usually covers the entire 
rear side of the cell, although in some cases this rear contact can also be printed in a grid-
pattern. The metal electrodes will then require some kind of heat treatment or "sintering" to 
make Ohmic contact with the silicon. 
4. After the metal contacts are made, the solar cells are interconnected in series 
(and/or parallel) by flat wires or metal ribbons, and assembled into modules or "solar 
panels". Solar panels have a sheet of tempered glass on the front, and a polymer 
encapsulation on the back. 
 

 In figure 2.4, we show the typical fabrication flow for C-Si wafer based solar cells.   
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Figure 2.4 Typical fabrication flow for C-Si wafer based solar cell  

[Courtesy of SUMCO CORPORATION] 

2.2.2. Thin Film Solar PV Cell fabrication 

Thin-film PV cells are the alternative for PV cell cost reduction. Thin-film PV cells use 
less than 1% of the raw material (silicon) compared to wafer-based PV cells, leading to a 
significant price drop per kWh. The reported thin-film cells with relative good efficiency and 
reasonable cost include: Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), 
Gallium Arsenide (GaAs) multi-junction, light-absorbing dyes, organic/polymer, and 
polycrystalline Si thin-film.  

 
The fabrication of thin-film PV cells is slightly different from the Si-wafer based one; 

thin-film cells are generally fabricated with monolithic integration where the entire PV module is 
fabricated. In figure 2.5, we present the fabrication flow of CIGS thin-film PV cell; this process 
is also similar to the one for CdTe cell. However, it can vary significantly for other thin-film 
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ones. Fabrication process for thin-film cells involves the deposition of different thin films in 
sequence on a large area substrate. A typical manufacturing process flow begins with cleaning 
the glass substrate, and then followed by transparent conducting oxide (TCO) deposition and 
window layer deposition, sequentially. Then, laser scribing is used to define, interconnect and 
isolate the cells. This manufacturing flow allows monolithic integration of cells in the module 
with minimum area losses. The production yield for thin-film cells depends on important factors 
such as uniformity of deposition and the laser scribing process for interconnect Since thin-film 
PV cells collect current laterally with spaced metal fingers, variability in material properties over 
a large area will lead to severe degradation in overall device performance parameters. Open 
circuit voltage (Voc) is known to be the most impacted parameter due to local material variation 
in layer thickness and bandgap fluctuations.  Therefore, it is important to understand the impact 
of non-uniformities in thin-film PV cells.  
  

 
Figure 2.5 CIGS based solar cell fabrication flow [2.8] 

2.2.3. Module Assembly and System Installation 

The assembly of Si-wafer based PV modules is most commonly carried out in the cell 
plant, but can be done in smaller plants closer to the end market. Smaller plants can be preferable 
because, while solar cells are relatively inexpensive to transport, modules with a glass front sheet 
and an aluminum frame are heavy and bulky. In general, thin-film PV modules must be 
assembled in the cell plant because the cells are too susceptible to mechanical damage during 
transport, unless they are packaged within a module. PV module assembly usually involves 
soldering cells together to produce a string of cells, and then laminating it between toughened 
glass on top and a polymeric backing sheet at the bottom. Frames are usually created to allow for 
mounting in the field. The laminates may also be separately integrated into a mounting system 
for a specific application, such as building integration. 

For system installation, an array structure is first chosen for the mechanical integration of 
the solar module. This array structure will depend on the final location of the system, which 
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could involve retrofitting onto a roof, integrating into building materials for roofs or vertical 
walls, or pole-mounting, ground-mounting, or attaching to an industrial structure. 

Second, the electrical components are integrated with other parts of the solar energy system. This 
will include the connection of elements such as inverters, batteries, wiring, and regulators 
(charge controllers). This process also requires matching the module array with the electrical 
load as required by the customer. Computer software, known as a sizing program, is typically 
used to make this calculation.  

2.3. Statistical Techniques for Semiconductor Manufacturing Control 

Two statistical techniques in the area of semiconductor manufacturing are of interest in 
this work: fault detection and classification (FDC) and predictive modeling.  

The goals of FDC are to detect process excursion and identify its  cause. Typical 
procedures for implementing a FDC model involve extensive off-line training of wafers with 
known specific fault signatures or wafers with abnormalities, and on-line testing of trained model 
and improvement of model by compensating for process dynamics.  The performance metric of 
any FDC model should minimize the type I (true alarm missing rate) and type II (false alarm 
rate) errors.  

Off-line FDC model training wafers can be obtained from two sources: using design of 
experiment (DOE) to get wafer with specific faults such as gas flow or RF power for plasma 
etching operation, and utilizing historical wafers from production. DOEs can provide much 
cleaner data for model training, but they are very costly and the number of training wafers is 
usually small. Sampling from production wafers often produces noisy data, but it can cover 
larger process space and a trained model can be more robust by capturing real process dynamics 
such as tool aging and process drifting. Equipment aging can cause a monitoring sensor to 
provide false readings and process drifting can either be introduced by changing of chamber 
condition due to aging or needed adjustments to compensate for process dynamics.  

Online implementation of an FDC model is usually done with either univariate or 
multivariate statistical process control (SPC) charts. The concept is to define upper and lower 
control specs on monitoring parameters. The trained FDC model is used to define the control 
specs. Monitoring parameters can be the ones with physical meaning such as pressure sensor 
readings, electrical metrology results, or statistics computed by utilizing available information 
from each wafer. We will discuss FDC methods in detail in Section 2.3.1. 

The goals of predictive modeling in semiconductor manufacturing can be inferring 
equipment condition based on equipment sensor data log, predicting typical process results such 
as etch bias after plasma etching or source/drain current after ion implantation, or sampling 
electrical measurement metrology. Different prediction methods are discussed in Section 2.3.2. 

2.3.1. Fault Detection and Classification  

FDC (fault detection and classification) methods can be classified into two categories 
based on the number of inputs the model requires. 
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2.3.1.1. Univariate  Methods 
 

Univariate SPC for semiconductor manufacturing applications generally assumes the 
monitored parameters follow Normal distribution, and 3-sigma control charts with +/- 3 sigma 
for upper and lower limits are used to track if a monitored parameter stays within specs during 
production. The outliers are assumed to be a small number of observations randomly sampled 
from distributions differing from the original Normal distribution [2.9]. The probability density 
function (PDF) of the univariate Normal distribution is:  

 

𝑓(𝑥) =
1

(2𝜋𝜎2)
1
2
𝑒[(𝑥−𝜇) 𝜎⁄ ]2 2⁄  (2.1) 

 
where 𝑓(𝑥) > 0 and ∫ 𝑓(𝑥)𝑑𝑥+∞

−∞ = 1.  
To identify the regions where outliers are located in, confidence coefficient 𝛼 , 0 < 𝛼 < 1 is used 
to define the 𝛼-outlier region: 
 
                                      𝑜𝑢𝑡(𝛼, 𝜇,𝜎2) = �𝑥: |𝑥 − 𝜇| > 𝑧1−𝛼 2�

𝜎� (2.2) 

 
𝑧1−𝛼 2�

 is the 1 − 𝛼
2�  quintile of the 𝑁(0,1) . An observation 𝑥  is an 𝛼-outlier outlier if 𝑥 ∈

𝑜𝑢𝑡(𝛼, 𝜇,𝜎2)  . The area under the Normal distribution PDF between 𝜇 + 𝑘𝜎 and 𝜇 − 𝑘𝜎 are 
0.6827, 0.9545, and 0.9974. 𝑘 = 3 is often used as the threshold for outlier detection. That 
means the probability that a point lies outside 3 sigma away from the mean is just 0.0027. 

The definition in Equation 2.2 is for normal distribution, but it can be extended to any 
unimodal symmetric distribution.  In the case of non-normal distribution, Kernel density 
estimation is a popular empirical non-parametric method for density estimation [2.10]. The 
kernel estimator takes the form:  

𝑓(𝑡) =
1
𝑛
�𝐾�𝐻−1/2�𝑡 − 𝑇𝑗��
𝑛

𝑗=1

 
  (2.3) 

 
where 𝑓 is the probability density for a new observation,  and is estimated by taking a weighted 
summation of n kernels, each centered at an observation, 𝑇𝑗. The kernel function, K, provides the 
shapes of the underlying distribution are summed in order to give the overall density estimate. 
Most commonly, the kernel function is selected to be multivariate normal, yielding 
 

𝑓(𝑡) =
1

𝑛(2𝜋)𝑙/2
|𝐻|−1/2�𝑒−1/2�𝑡−𝑇𝑗�

𝑇𝐻−1�𝑡−𝑇𝑗�
𝑛

𝑗=1

 
(2.4) 

 
The bandwidth, 𝐻, defines the smoothness of the underlying distributions, which has a direct 
impact on the breadth of the final density estimate. In this thesis, we have swept the 𝐻 to obtain 
optimal value. Martin [2.11] applied kernel estimator to estimate the distribution of PCA scores 
where the underlying distribution is not normal. 
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2.3.1.2. Multivariate Methods 
 

Multivariate SPC charts utilize high dimensional data to compute a single statistical index  
(statistic) for each wafer, and monitor to ensure the statistic is within defined limits. The limits 
for a multivariate SPC chart can be defined with parametric assumption or empirical estimation. 
 
2.3.1.2.1. Principal Component Analysis (PCA) 
 

PCA [2.12] has been discussed in detail in literature as an effective technique for data 
compression and feature extraction, and it has been widely used in semiconductor manufacturing 
for process monitoring purposes. The methods focus on finding the main directions of data 
variations, reducing the analysis into a smaller dimensional space that is more suitable for real-
time application such as process monitoring where fewer variables are monitored. 

 
The common approach for applying PCA is to perform Eigen-decomposition on the 

empirical covariance matrix of the dataset. In order to ensure that the extracted principal 
components maximizing the variance of the entire dataset, mean centering and unit variance 
scaling is needed prior to compute covariance matrix in the following form: 

 

∑ =
1
n
�(xi − x�n)
n

i=1

(xi − x�n)T = �
1
n�

XTX       
(2.5) 

 
X is the n-by-p data matrix having each wafer as an observation. PCA decomposes the data 
matrix X as a sum of the outer product of the score vectors 𝒕𝒊  and loading vectors 𝒑𝒊   plus 
residual matrix E. 
 

X = 𝒕𝟏𝒑𝟏𝑻 + 𝒕𝟐𝒑𝟐𝑻 + ⋯𝒕𝒌𝒑𝒌𝑻 + E = TPT + E     (2.6) 
 
The loading matrix P contains all the loading vectors as column vectors, and the loading vectors 
are the eigenvectors of the covariance matrix ∑. The eigenvalues explain the variance of each 
direction defined by the corresponding loading vectors. The loading vector with the largest 
eigenvalues is the first principal component (PC) and the second largest as the second PC. The 
first PC aligns with the greatest variation in the data while the second PC aligns with the greatest 
amount of variation that is orthogonal to the first PC.  The score is obtained by projecting the X 
into the new space defined by P. 
 
 T = XP    (2.7) 
 
The score vector is a linear combination of p variables.  It contains the information where the 
data points are located in the new spaces. A formal criterion used to select the number of PCs is 
the total variation explained by the retained loadings. It is typically required that it is greater than 
90%.   
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Conventional PCA is sensitive to outliers due to its dependence on the covariance matrix. 
A robust version of PCA has been discussed in literature [2.13].  A group of robust PCA 
methods replaces the classical covariance matrix with a robust covariance estimated, such as the 
reweighted minimum covariance determinant (MCD) [2.14] estimator. Some methods also scale 
the data with depending on robust parameters such as the median and the quartile, rather than 
mean and variance. Unfortunately, the use of these affine equivariant covariance estimators is 
limited to small to moderate dimensions. When the dimension is larger than the sample size, the 
MCD estimator is not defined. A second problem is the computation of these robust estimators in 
high dimensions. A second approach to robust PCA uses projection pursuit techniques. These 
methods maximize a robust measure of variance to obtain consecutive directions on which the 
data points are projected. 
 

PCA model based Hotelling’s T2  and sum of squared residuals also known as SPE 
statistics [2.15] are the two most common metrics applied in semiconductor manufacturing for 
multivariate process monitoring.  Hotelling’s T2 measures the variation of each sample within 
the PCA model. T2 is the sum of normalized squared scores defined as: 

 
𝑇𝑖2 = 𝒕𝒊 ∧−1 𝒕𝒊𝑻 = 𝑥𝑖𝑃 ∧−1 𝑃𝑇𝑥𝑖𝑇 (2.8) 

 
where 𝑡𝑖 is the 𝑖𝑡ℎ column of T and ∧= 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, 𝜆3 … , 𝜆𝑘} with 𝜆𝑖 being the eigenvalues of 
the covariance matrix. The SPE statistic measures the projection of the sample vector on the 
residual space, indicating the amount of variation not captured by the PCA model.   
 

𝑆𝑃𝐸𝑖 = ‖𝑒𝑖‖2 = �𝑥𝑖(𝐼 − 𝑃𝑃𝑇)𝑥𝑖𝑇� (2.9) 
 
where 𝑒𝑖 is the 𝑖𝑡ℎ row of E, and I is the identity matrix.  
 

For both T2 and SPE statistics, an excursion is detected if  𝑇𝑖2 ≥ 𝜏2 or 𝑆𝑃𝐸𝑖 ≥ 𝛿2, where 
𝜏2and 𝛿2 are the control limits given a 1 − 𝛼 confidence level. 𝑇𝑖2 follows a 𝜒2distribution with  
k degrees of freedom , and SPE was derived by Jackson[2.11]  assuming that x follows a 
multivariate normal distribution. In practice, both control limits are set with confidence level 
= 95% : 
 

𝑇𝑙𝑖𝑚2 =
𝑘(𝑛 − 1)
𝑛 − 𝑘

𝐹(𝑘,𝑛 − 𝑘,𝛼) 
   (2.10) 

 
where 𝐹(𝑘,𝑛 − 𝑘,𝛼) corresponds to the probability point on the F-distribution with (𝑘,𝑛 − 𝑘) 
degrees of freedom and confidence level 𝛼, and n is the number of observations.  
The limit for SPE at confidence level 𝛼 = 95% is : 
 

𝑆𝑃𝐸𝛼 = Θ1 �
𝑐𝛼ℎ0�2Θ2

Θ1
+ 1 +
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(2.11) 
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where Θ1 = ∑ 𝜆𝑗𝑖
𝑝
𝑗=𝑘+1  and ℎ0 = 1 − 2Θ1Θ3

3Θ2
 . Θ1 is the second largest eigenvalue, and Θ2 and Θ3 , 

respectively, are the 2nd and 3rd power of the second eigenvalue. Kernel density estimation has 
previously been applied to deal with data that are non-normal.  Because the major correlations 
among variables are captured in the first few PCs, deviation from multivariate normality will 
strongly impact the frequency of type I and II errors when monitoring Hotelling’s T2. The impact 
on the SPE index and its limits will be less pronounced because the residual space, by definition, 
will mostly be made up of process noise and random fluctuations. We illustrate the PCA analysis 
results in figure 2.6 and 2.7. 
 

 
Figure 2.6 Scree plot for Number of PCs retained and Scatter of Scores 

 

 
 

Figure 2.7 Illustration of outlier detection with Hotelling’s T2 
 

Given that most manufacturing processes drift over time, monitoring statistic using a 
static model will lead to higher type I and II error rates. Therefore, recursive models have been 
proposed to update the inline model. Recursive PCA [2.16] was proposed to update the mean and 
covariance of PCA model with an adaptive weighting scheme on the new observations. To 
implement the RPCA algorithm it is necessary to first recursively calculate the correlation 
matrix. Given a new vector of unscaled measurements 𝑥𝑘+10 , the updating equation for the 
correlation matrix is given by: 
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𝑅𝑘+1 = 𝜇∑𝑘+1
−1 (∑𝑘𝑅𝑘∑𝑘 + ∆𝑏𝑘+1∆𝑏𝑘+1𝑇 )∑𝑘+1

−1 + (1 − 𝜇)𝑥𝑘+1𝑥𝑘+1𝑇  (2.12) 
 
Where 𝒙𝒌+𝟏𝑻  is the scaled vector of measurements, b is a vector of means of data and ∑ is the 
diagonal matrix with element I being the standard deviation of the variable i. The forgetting 
factor 𝜇 is used to weight recent data more than older data. A smaller 𝜇 discounts old data faster. 
After the correlation matrix is updated, calculation of the loading matrices is performed in the 
same manner as ordinary PCA.   
 
2.3.1.2.2. Independent Component Analysis 
 

The goal of independent component analysis (ICA) [2.17] is to find a linear 
representation of non-Gaussian data so that the components are statistically independent, or as 
independent as possible. ICA assumes the independent components 𝑠𝑖  are statistically 
independent, and must have non-Gaussian distributions. In the basic ICA, each measured 
variable can be represented as a linear combination of underlying independent components: 
 
 

𝑥(𝑡) = �𝑎𝑗𝑠𝑗(𝑡)
𝑛

𝑗=1

+ 𝑒(𝑡) 
(2.13a) 

 𝑋 = 𝐴𝑆 + 𝐸   (2.13b) 
 
where the 𝑋 is assumed to be a full rank matrix. Thus, the ICA model aims at finding a de-
mixing matrix W such that: 
 
 

𝑠(𝑡) = �𝑤𝑗𝑥𝑗(𝑡)
𝑛

𝑗=1

 
(2.14a) 

 𝑆 = 𝑊𝑋   (2.14b) 
 
where 𝑠(𝑡) is the IC vector. The ICs are then used to estimate the latent source components 
𝑠𝑗(𝑡). Process monitoring statistics with ICA can be extracted in a similar way as the PCA case. 
In the normal operating condition, we first obtain 𝑊  and 𝑆  from training data with the 
conventional ICA algorithm. Then the 𝑊 dimension is reduced by selecting a few rows of 𝑊 
based upon the assumption that the 𝑖𝑡ℎ row of 𝑊, 𝑤𝑖𝑇 with the largest sum of squares coefficient 
have the greatest effect on the variation of the corresponding element of the ICs. For a new data 
sample, the new ICs can be obtained by: 
 

𝑠𝑛𝑒𝑤(𝑡) = 𝑊𝑘𝑥𝑛𝑒𝑤(𝑡) (2.15) 
 
𝑊𝑘 is the retained k rows of  demixing matrix. Two monitoring statistics can then be extracted:  
 

𝐼2(𝑡) = 𝑠𝑛𝑒𝑤(𝑡)𝑇𝑠𝑛𝑒𝑤(𝑡) (2.16) 
𝑆𝑃𝐸(𝑡) = 𝑒(𝑘)𝑇𝑒(𝑘) = �𝑥𝑛𝑒𝑤(𝑡) − 𝑥�𝑛𝑒𝑤(𝑡)�  𝑇�𝑥𝑛𝑒𝑤(𝑡) − 𝑥�𝑛𝑒𝑤(𝑡)� (2.17) 

 
𝑥�𝑛𝑒𝑤(𝑡) = 𝐴𝑘𝑠𝑛𝑒𝑤(𝑡) is the estimated data from computed ICs and 𝑊𝑘 . 
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In ICA monitoring, the ICs do not necessarily conform to a multivariate Gaussian 

distribution, therefore, the confidence limits of the 𝐼2  and 𝑆𝑃𝐸  cannot be computed directly. 
Kernel density estimation can be used to obtain the control specs for these two monitoring 
statistics. Lee et al. (2003) [2.18] investigated the utilization of kernel density estimation to 
define the control limits of ICs that do not follow a Gaussian distribution. In order to monitor the 
batch processes which combine ICA and kernel estimation, Lee at al. extended their original 
method to multi-way PCA and multi-way ICA. Xia (2003) [2.19] developed a spectral ICA 
approach to transform the process measurements from time domain to the frequency domain and 
identify major oscillations. Shannon et al. (2003) [2.20] used ICA in monitoring a semiconductor 
manufacturing process. 
 
2.3.1.2.3. Clustering  
 

Clustering is another class of methods that is popular for fault detection in manufacturing 
control. It aims to group similar patterns or observations in the same groups so that within-group 
variation is minimized and between-group variation is maximized. The process used in our work 
is “unsupervised learning” since the nature of data is unknown. Clustering methods can be 
categorized into five groups: hierarchical clustering, pattern partitioning, density-based methods, 
grid-based methods, and model-based methods. We briefly discuss each group of methods in this 
section.  

 
Hierarchical clustering [2.21] methods work by grouping data samples into a tree of 

clusters. There are generally two types of hierarchical clustering methods; agglomerative and 
divisive. Agglomerative methods start by placing each object in its own cluster, and then merge 
clusters into larger and larger clusters, until all objects are in a single cluster or until certain 
stopping criterion is met. Divisive methods do just the opposite. Hierarchical clustering method 
generally suffers from its inability to perform adjustment once a merge or split decision has been 
made.  

Partitioning based clustering [2.22] starts with k random seed values, and then assigns 
observations into the k mutually exclusive clusters based on specified distance metric. K-means 
clustering [2.23] is the most popular  portioning based method for its low computational cost and 
good classification ability for large datasets (sample size>1000) .The procedure follows a simple 
and easy way to classify a given data set through a certain number of clusters (k) fixed a priori. 
The main idea is to define k centroids first; one for each cluster .These centroids should be 
placed far away from each other. The next step is to assign each point in the dataset to the nearest 
centroid. When no point is pending, the first step is completed and an early partitioning is done. 
At this point we need to re-calculate k new centroids of the clusters resulting from the previous 
step. After we have these k new centroids, a new assignment has to be done between the same 
data set points and the nearest new centroid. As a result of this iteration, the k centroids change 
their location step by step until no more changes are needed, and the centroids become fixed. The 
algorithm aims at minimizing an objective function, in this case a squared error function. The 
objective function is: 
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𝑂𝑏𝑗 = ���𝑥𝑖
𝑗 − 𝑐𝑗�

2
𝑛

𝑖=1

𝑘

𝑗=1

 
  (2.18) 

 
where �𝑥𝑖

𝑗 − 𝑐𝑗� is a chosen distance measure between a data point 𝑥𝑖
𝑗 and the cluster center 𝑐𝑗, 

as a measure of the distance of the n data points from their respective cluster centers. The result 
of k-means depends on the distance metric, so it is always better to normalize the variable to unit 
variance. There are also other distance metrics such as Manhattan distance or cosine distance. 
Although it can be proved that the procedure will always terminate, the k-means algorithm does 
not necessarily find the optimal configuration, corresponding to the global objective function 
minimum. The algorithm is also significantly sensitive to the initial randomly selected cluster 
centers. The k-means algorithm can be run multiple times to reduce this effect. There are other 
partitioning-based clustering methods with soft threshold such as fuzzy c-means.  
 
 The idea of density-based clustering methods such as DBSCAN [2.24] is to continue 
growing a cluster as long as the density or number of data points in the “neighborhood” exceeds 
some pre-defined threshold. Grid-based methods attempt to quantify the object space into a finite 
number of cells that form a grid structure on which all of the operations for clustering are 
performed. The popular grid-based method is STING [2.25], which uses several levels of 
rectangular cells corresponding to different levels of spatial resolution and store statistical 
information regarding each variable in each cell. Model-based clustering methods generally 
assume a model for each of the clusters and attempt to fit the data with the assumed model. 
There are two major approaches for model-based methods: the statistical approach and neural 
network approach. An example of statistical approach is Gaussian mixture modeling, which 
assumes each cluster follows a Gaussian distribution, and then the Expectation Maximization 
(EM) algorithm is used to estimate the cluster parameters. The popular neural network 
approaches are artificial resonance network (ART) and self-organizing maps (SOM).  
 
2.3.1.2.4. Mahalanobis Distance (Conventional and Robust version) 
 

To detect if an observation is located far from the center of data distribution in terms of 
distance, Mahalanobis Distance (MD) is an appropriate metric when the data is generated from 
multivariate distribution [2.26].  MD outperforms Euclidean distance by taking the variance of 
data into account. Given n observations from a p-dimensional space, the MD for each 
observation is defined as: 

𝑀𝐷𝑖 = ��(xi − x�n)T
n

i=1

∑n
−1(xi − x�n)�

1
2�

= �(X − X�)𝑇∑−1(X − X�)�
1
2�  

  (2.19) 

 
where 𝑋� is the center and ∑−1 is inverse of the covariance matrix of the targeting distribution.  
Observations with large MD are indicated as outliers.  However, masking and swamping effects 
of outliers can affect the empirical estimates of the mean vector and the covariance matrix. The 
masking effect decreases the MD of an outlier while the swamping effect might increase the MD 
of normal observation. Therefore, it is necessary to use robust estimates of mean and covariance 
in order to compute MD in the presence of outliers. 
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 In this thesis, MCD estimate [2.27] is used to compute the covariance matrix and the 

mean. The MCD looks for h observations in the dataset whose empirical covariance matrix has 
the lowest possible determinant. The MCD estimate of mean x�n is the average of these h points, 
where the MCD estimate of covariance ∑ is their covariance matrix multiplied with a reweighted 
factor. In this thesis, we have assigned the weights 𝑤𝑖  for each observation xi in the way by 
giving 𝑤𝑖 = 1 if (xi − x�n)T∑n

−1(xi − x�n) ≤ χp,0.975
2  and 𝑤𝑖 = 0 otherwise. The resulting center 

and covariance matrix are then defined as:  
 

x�n = ��𝑤𝑖

𝑛

𝑖=1

𝑥𝑖� ��𝑤𝑖

𝑛

𝑖=1

��      
(2.20) 

 

∑n = ��𝑤𝑖(xi − x�n)
n

i=1

(xi − x�n)T� ��𝑤𝑖

𝑛

𝑖=1

− 1��  
(2.21) 

 
It is clear that MCD results are determined by h, a value of 0.75𝑛 is recommended for h, whereas 
0.5𝑛 is preferred when a large number of outliers is expected. In this thesis, we have used 0.75𝑛 
consistently with the same weighting schemes for all MD computation. 
 

For a set of p-dimensional data points from Normal distribution, the square of the MD 
follows the 𝜒𝑝2 distribution with p degrees of freedom. However, MD also suffers from the curse 
of dimensionality, i.e., as distances between data points tend to become close as the dimensional 
increases. Outlier detection with MD can also be defined by isolating the sample points with MD 
greater than �𝜒𝑝2(𝛼) , where 𝛼 is usually set to 0.025. 
 
2.3.1.2.5. Discriminant Analysis 
 

In linear discriminant analysis (LDA), each class is assumed to have a common 
covariance matrix [2.28].  One can use the maximum likelihood rules to classify an observation x 
into k , it is equivalent to maximizing the determinant scores 𝑑𝑘(𝑥𝑖) : 

 

𝑑𝑘(𝑥𝑖) = 𝑥𝑇∑𝑘
−1𝜇𝑘 −

1
2
𝜇𝑘𝑇∑𝑘

−1𝜇𝑘 + ln 𝑝𝑘 (2.22)  

 
In practice, we have to estimate the 𝜇𝑘, ∑𝑘 and 𝑝𝑘 empirically. 𝜇𝑘 and ∑𝑘 can be estimated using 
all samples within the class. The class probabilities are estimated by the relative frequencies of 
the samples in each class.  
 
 
 𝜇𝑘 = � 𝑥𝑖 𝑛𝑘�

𝑔𝑖=𝑘

 (2.23) 
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∑𝑘 =
1

𝑛 − 𝑘
� � (𝑥𝑖 − 𝜇𝑘)(𝑥𝑖 − 𝜇𝑘)𝑇

𝑔𝑖=𝑘

𝐾

𝑘=1

 
(2.24) 

 𝜋𝑘 =
𝑛𝑘
𝑛

 (2.25) 

 
where 𝑁𝑘is the number of class 𝑘 samples and 𝑁 is the total number of samples. 
 
In the case of classes not sharing a common covariance matrix, quadratic discriminant analysis 
(QDA) [2.29] can be applied. 
 

𝑑𝑘(𝑥𝑖) =
1
2

ln|∑𝑘| −
1
2

(𝑥 − 𝜇𝑘)𝑇∑𝑘
−1(𝑥 − 𝜇𝑘) + ln 𝑝𝑘   (2.26) 

 
2.3.2. Prediction Methods  
 

In this section, we will review several statistical prediction methods including principal 
component regression (PCR), partial least square (PLSR), neural network (NN), LASSOLASSO, 
classification and regression tree (CART), and k-nearest neighbor (KNN) regression. 

 
2.3.2.1. PCR and PLS 
 

Principal component regression (PCR) [2.30] and Partial least squares regression (PLSR) 
[2.31] are two common methods used to build regression in high dimensions. PCR is an 
extension of PCA for regression, where the predictor variables are reduced to PCs.  PCR 
addresses the singularity and dimensionality problems for predictor variables, but does not 
leverage any dependencies among the response variables, nor does it optimize the scores with 
respect to response prediction.   

 
PLSR as another projection technique goes one step further to utilize information from 

both predictor and response variables. Projection to latent structures is a regression method based 
upon projecting the information from high dimensional space (𝑋,𝑌)  down onto a lower 
dimensional space. PLSR decomposes the variables in following forms: 

 
𝑋 = 𝒕𝟏𝒑𝟏𝑻 + 𝒕𝟐𝒑𝟐𝑻 + ⋯+ 𝒕𝒌𝒑𝒌𝑻 + 𝐸    (2.27) 

 𝑌 = 𝒖𝟏𝒒𝟏𝑻 + 𝒖𝟐𝒒𝟐𝑻 + ⋯+ 𝒖𝒌𝒒𝒌𝑻 + 𝐹   (2.28) 
 
where 𝑡𝑖  and 𝑢𝑖  are the latent score vectors for X and Y, and 𝒑𝒊 and 𝒒𝒊 are the corresponding 
loading vectors.  𝒕𝟏 and 𝒖𝟏 are evaluated as below: 
 
 𝒕𝟏 = 𝑋𝒘𝟏 (2.29) 
 𝒖𝟏 = 𝑌𝒒𝟏 (2.30) 
 
Equations 2.25 and 2.26 are referred to as the outer relations for the X and Y blocks. The vectors 
𝑤𝑖 and 𝑞𝑖 are the factor weights. PLSR finds the factor weights in such a way that maximize the 
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linear correlation between  𝒕𝟏 and 𝒖𝟏. A linear regression is then performed between the first 
pairs of factors 𝑡1 and 𝑢1 as inner model: 

 
 𝒖𝟏 = 𝒃𝟏𝒕𝟏 + 𝒓𝟏 (2.31) 
 
Equation 2.22 links the X and Y blocks together through latent variables 𝒕𝟏 and 𝒖𝟏 . The second 
pair of latent variables is calculated by decomposing the residuals:  
 
 𝐸1 = 𝑋 − 𝒕𝟏𝒑𝟏𝑻 (2.32) 
 𝐹1 = 𝑌 − 𝒖𝟏𝒒𝟏𝑻 (2.33) 
 
The coefficients 𝑝1 and 𝑞1 are found with least square estimation: 
 

𝒑𝟏𝑻 = �𝒕𝟏𝑻𝒕𝟏�
−1𝒕𝟏𝑻𝑋            𝒒𝟏𝑻 =  �𝒖𝟏𝑻𝒖�

−1𝒖𝟏𝑻𝑌    (2.34)    
 

Similar to PCA, we can compute up to p pairs of latent factors, but only the first k pairs 
contain the relevant information. The commonly used PLS method is the nonlinear iterative 
partial least squares (NIPALS) algorithm [2.32], which construct the weights vectors 𝑊 such 
that : 

 
[𝑐𝑜𝑣(𝑡𝑖 ,𝑢𝑖)]2 = max|wi|=1[𝑐𝑜𝑣(𝑋𝑤𝑖 ,𝑌)]2 (2.35) 

 
The difference between PLS and PCA is that the former creates orthogonal weight 

vectors by maximizing the covariance between elements in X and Y. Thus, PLS considers the 
variance of the input and output. 
 

A polynomial expansion of the inner relationship, which is linear in the linear PLS is 
another way to model nonlinear relationships between X and Y. Quadratic PLS [2.33] is where 
the polynomial terms are of the second order. Instead of the linear relationship between the X 
and Y score matrices 𝑈 and 𝑇, the polynomial expression is used: 

 
 𝒖𝒊 = 𝒃𝒊𝟏𝒕𝒊 + 𝒃𝒊𝟐𝒕𝒊𝟐 + 𝒓𝒊 (2.36) 

 
The coefficients are also determined by least square estimation (LSE) in an iterative manner.  
 
2.3.2.2. Neural Network 

A Neural Network [2.34] is a data mapping tool that links input information to output. It 
has been applied in the field of classification and regression. NNs consist of neurons distributed 
across layers with defined structure. Each of the links between neurons is characterized by a 
weight value. A neuron is a processing unit that takes a number of inputs and gives a distinct 
output. Apart from the number of its inputs it is characterized by a function f known as transfer 
function. The most commonly used transfer functions are listed in table 2.1: pure linear, sigmoid 
and tansigmoid functions.  
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There are three types of layers: the input layer, the hidden layers, and the output layer. 
Each network has exactly one input layer and one output layer. The number of hidden layers can 
vary from 0 to any number. The input layer is the only layer that does not contain transfer 
functions. Once the architecture and the transfer function of each neuron have been defined for a 
network the values of its weights should be defined. The training procedure ‘fits’ the network to 
a set of samples (training set).  A standard NN structure is presented in figure 2.3. 

Pure linear Sigmoid Tansigmoid 
 
𝑓(𝑥) = 𝑥 ;𝑓(𝑥)𝜖(−∞, +∞) 

 
𝑓(𝑥) = 1

1+𝑒−𝑥
  ;𝑓(𝑥)𝜖[0,1] 

 
𝑓(𝑥) 2

1+𝑒−2𝑛
− 1 ; 𝑓(𝑥)𝜖[−1,1]  

Table 2.1. The activation functions for Neural Network. 

 

Figure 2.8 Neural Network structure  

We have chosen the back propagation Neural Network for the modeling method in this 
thesis due to its fast computation speed. Supervised Feed-forward BPNN (Back propagation 
Neural Network) [2.35] is more like a black box--even less transparent than PCA and PLS. The 
outputs of a neural network are weighted non-linear transformations of the inputs. There are no 
preset rules for training a neural network—that is, deciding the number of hidden nodes and 
number of layers, the training criteria etc. Each node in an FNN performs a non-linear 
transformation with a sigmoid function. At every node, weighted inputs are transformed to give 
an output whose weighted transformation is carried out at the nodes in the subsequent layer. 
Three layers (input, hidden, output) are sufficient for most tasks. For number of nodes in the 
hidden layer, too few will lower its fitting capability, and too many will over-specialize the net to 
the training data, limiting its ability to predict other data points.  

 In many Chemometrics cases, PCA is used in conjunction with NN for prediction. This 
takes advantage of dimensionality reduction via PCA and the inherent nonlinearity of NN model. 
Therefore, large number of predictor variables can be reduced to several PCs and reduce the 
complexity and computational cost of fitting and using a NN model. 
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2.3.3. LASSO 
 
 LASSO [2.36] is a shrinkage and selection method for linear regression. If one is looking 
for variable selection and stable regression coefficients, LASSO is recommended. It minimizes 
the sum of squared errors with a bound on the sum of the absolute value of the coefficients. The 
LASSO estimate can be defined as: 
 

β = argminβ ���yi − β0 −��xij�
p

j=1

βj�

2N

i=1

� 

(2.37) 

subject to ��βj�
P

i=1

 ≤ t 
(2.38) 

 
where βj  are the coefficients of  predictor variables and β0  is the intercept term.  If a larger 
threshold  t is chosen, the constraint has no effect and the solution is the same as that of the OLS.  
When t is smaller, the solutions are shrunken versions of the least squares estimates. Some of the 
coefficients are set to zero. Choosing t is similar as choosing the number of predictors to use in a 
regression model, and cross-validation is used to choose the optimal t. Thus, LASSO regression 
penalizes the 1-norm.   
 

In this thesis we use the least angle regression (LAR) [2.36] to solve the LASSO problem. 
The LAR procedure follows a similar strategy as forward stepwise regression. At the first step, it 
identifies the variable most correlated with the response. Rather than fit this variable completely, 
LAR moves the coefficient of this variable continuously, toward its least squares value (causing 
its correlation with the evolving residual to decrease in absolute value). As soon as another 
variable catches up in terms of correlation with the residual, the process is paused. The second 
variable then joins the active set, and their coefficients are moved together in way that keeps 
their correlations tied and decreasing. This process is continued until all the variables are in the 
model, and ends at the full least squares fit. In figure 2.9, we illustrate how to choose the 𝜆 from 
the coefficient stability plot and MSE of CV sets for LASSO regression. 
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Figure 2.9 Coefficient stability and MSE of CV 

Based on the plots in figure 2.9, we choose 𝜆 = |𝛽|
𝑚𝑎𝑥|𝛽|

=  0.1 for the LASSO. 

2.3.4. CART 
 

The Classification and Regression Tree (CART) [2.37] is a distribution-free method 
without any assumption about the distributional properties of the data.  Predictor variables are 
used to partition the data points into regions with similar response. This partitioning allows one 
to approximate more general response surface than standard regression methods. Typically a 
binary partitioning is used. At each partitioning step, trying to maximize the average purity of 
two child nodes during a partitioning process, the CART algorithm looks for the best predictor 
variable and the corresponding decision criterion by using a brute force method. For the selected 
predictor variable, a threshold is determined such that data points with the predictor below the 
threshold are placed in one subgroup, while the other data points form a second subgroup. The 
method continues by partitioning each of these subgroups by the same procedure. 

 
 If the response variable is continuous, then a regression tree is chosen to minimize the 

sum of square errors of prediction. The initial training stops when the tree cannot grow any more 
resulting in decreasing 𝑅2 of the testing data. In the second training, child nodes are pruned 
away, which increases the error of the training data.  Finally, the mean of the training samples, 
which are grouped under a specific terminal node, is assigned to the corresponding terminal 
node. The prediction of a new sample is performed by assigning the sample through the tree and 
assigning the value of the corresponding node as the predicted response value.   

 
If the response variable is categorical, then a classification tree is used to minimize the 

residual likelihood-ration chi-square, which is the change in total entropy of all samples. CART 
is favorable in categorical data application given its capability of handling nonlinearity and 
distribution free nature. We also adopt it for variable selection since CART proves a sparse set of 
predictor variable as solution.  
 
2.3.5.  KNN 

The k nearest-neighbor (KNN) [2.38] method is a nonparametric algorithm to predict the 
class of a test sample, and has been applied extensively in the field of fault classification for 
semiconductor manufacturing. In KNN, a data point is classified by majority votes of its k 
neighbors. These k neighbors are the data points with correct class labels. This makes KNN to be 
a supervised learning algorithm, where one cannot try to define classes based on results of 
grouping as in unsupervised clustering k-means.  

In KNN, each training point consists of independent variables and dependent variables. 
The independent and dependent variables can be either continuous or categorical. For continuous 
dependent variables, the task is regression; otherwise it is a classification. Thus, KNN can handle 
both regression and classification tasks. The training phase is trivial: simply store every training 
sample with its corresponding class label. To make a prediction for a test sample, we first 
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compute its distance to every training sample. The most used metric is the Euclidean distance as 
shown in Equation 2.35.  

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = ��(𝑥𝑖 − 𝑦𝑖)2
𝑝

𝑖=1

 

(2.39) 

where 𝑝 is the dimension of samples, 𝑥𝑖  and 𝑦𝑖  are samples.  

We then keep the k nearest training examples, where 𝑘 ≥ 1  is a fixed integer. The nearest 
neighbors are determined by the distance between points. Other distance metrics can also be 
explored depending on the nature of dataset. 

 Similar as k-means, the choice of k is essential in building the KNN model. For any 
given problem, a small value of k will lead to a large variance in modeling results. Alternatively, 
setting k to a large value may lead to a large model bias. Thus, k should be set to a value large 
enough to minimize the probability of misclassification and small enough for the training set 
result, so that the k nearest points are close enough to the classified  point. Cross-validation in 
often used to find the optimal k. Majority voting can be used to determine the class label or 
numerical result of the response variable of the test samples based on the most common class 
label among its k neighbors. For regression problems, KNN predictions are based on averaging 
the outcomes of the k nearest neighbors; for classification problems, a majority of voting is used. 
We show the model results for both regression and classification cases as follow: 

Regression case: 
 

𝑦�𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =
1
𝐾
�𝑦𝑘

𝐾

𝑘=1

 
(2.40) 

Classification case: 
 

𝑦�𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = most common class in set {𝑦1, … , 𝑦𝑘} (2.41) 
 

For binary classification, the most common choice of k is a small odd integer, such as 
𝑘 = 3. The obvious disadvantage of the KNN algorithm is that relatively high computation time 
is needed. Similar to all the methods using distance metric, KNN also suffers from the curse of 
dimensionality.  
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Chapter 3 

Virtual Metrology for Plasma Etching 

3.1  Introduction and Previous Work 

Traditional lot-to-lot process control with time-delayed external metrology is being 
replaced with wafer-to-wafer control due to the need to provide quick feedback onto process 
tools. Wafer-to-wafer control requires timely, no-lag metrology, and this is unavailable for 
several critical manufacturing steps. On the other hand, modern processing tools generate large 
amounts of real-time data streams and, historically, these data sets have been used for fault 
detection and classification purposes. In addition, assuming that the real-time tool data reflect 
actual processing conditions, they can be used to establish models that could predict wafer 
properties. This type of modeling has been referred to as Virtual Metrology (VM) [3.1]. An 
accurate VM model that describes the relationship between tool state variables and metrology 
results can contribute towards enhancing or even replacing direct metrology operations, thereby 
increasing manufacturing efficiency. 

VM deployment needs a model that links equipment and process data with wafer 
outcomes. This model has to be built using available sensor traces, and this involves several 
steps, such as data scaling, outlier removal, de-trending, dimensionality reduction, handling 
collinearities, and, finally, selecting the most useful subset of the available parameters. After 
that, a model is fitted to the training data and properly validated. This sequence is depicted in 
figure3.1. Once the appropriate model is created, is can then be used to “predict” wafer outcomes 
in lieu of performing actual, time-consuming measurements. In practice, VM is deployed in 
tandem with actual metrology, the latter being used at reduced frequency and needed for periodic 
model validation and update. 

The concept of VM has attracted great interest in recent years. Chen et al. (2005)[3.1] 
constructed a VM system for a 90nm chemical vapor deposition (CVD) process with 
experimental data, and achieved 𝑅2 over 0.98.  Besnard and Toprac (2006) [3.2] built a VM 
system based on context information, raw FDC data, and metrology measurements. Their system 
was designed to produce two types of outputs: model quality value (MQV) measured the 
confidence of the whole prediction and predicted quality value (PQV), a local estimator, 
measured the confidence of each prediction. Chen et al. tried to reduce the number of variables 
by removing non-normally distributed and highly correlated variables based on the statistical 
features. Then, a set of relevant variables were selected based on shared information between 
inputs and target metrology measurements. Using a regression tree-based model, their VM 
system was applied to predict the thickness in the SiGe epitaxial growth process. Yung-Cheng 
and Cheng (2005) [3.3] built a VM system based on 4-layer feed forward neural networks to 
predict three different metrology measurements (thickness mean, range, and uniformity) at once. 
The neural network consists of 2345, 11, 20 and 3 neurons in the input, first hidden, second 
hidden, and output layer.  Under TSMC’s advanced 300 mm FAB environment, wafers collected 
over a one-month period were used for training the neural networks while wafers collected over 
approximately two and half months were used for testing. Their VM system achieved 1.7% of 
MAE and 0.39% of maximum projection error (MAPE). Chen (2006)[3.4] addressed both high 
dimensionality and the lack of available wafers in their VM system with simulated wafer data 
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and concluded that abnormal wafers could be detected very well by depicting the predicted 
values of the generated wafers. Lin et al. (2006) [3.5] built a VM system based on radial basis 
function networks (RBFN). They also adopted the PCA in order to reduce the input 
dimensionality. Among a total of 20 process steps, five important steps were selected by process 
engineers. Then, 28 sensor parameters from each of the five steps were collected. Therefore, a 
total of 140 parameters from production equipment were used as model input, and the thickness 
means, range and uniformity were used as outputs.  

In this thesis, our studies of VM focus on developing a methodology to create a robust 
VM model and discuss its most challenging aspects: selecting the important predictor variables 
from existing high-dimensional sensor parameters and accommodating process dynamics. The 
following sections present the methodology that is proposed for creating the virtual metrology 
model and discuss the VM application results for the plasma etching operation with different 
approaches under the same framework. 

The organization of this chapter is as follows. Section 3.1 describes the hierarchical flow 
for creating a predictive metrology model for a plasma etching operation as shown in figure 
3.1.It includes detailed description of data extraction, missing value imputation, visualization, 
detrending, and variable selection for plasma etching operations. Section 3.2 presents several 
variable selection methods and their pros and cons. In section 3.3, we present the study of 
building predictive metrology modeling for a plasma etching operation with the proposed model 
building flow. The plasma etching operation is studied since it is considered as a bottleneck 
process in IC manufacturing. Linear regression methods including PCR, PLS, Lasso, and 
nonlinear methods including neural networks were compared with a combination of different 
variable selection schemes. In section 3.4, we conclude our results of VM models and propose a 
novel approach to building a virtual inference model with a classification approach. The concept 
is based on creating a classification model to infer whether an incoming wafer is needed for 
metrology measurement or not. This takes advantage of classification models that are generally 
easily to train and validate given the high-dimensional nature of our data set.   

 

Figure 3.1 VM model building flow 
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3.2  Data Preprocessing and Visualization 
 

Before attempting to build a VM model, and depending on the specific application, tool 
and process data needs to be preprocessed carefully to ensure that the built model will be robust. 
More specifically, and as it will be described next, long time-series need to be reduced to simple 
statistical descriptors, and overall, data might need to be de-tended and have occasional outlier 
identified and removed. In this section, we describe ways to preprocess tool sensor data and 
visualize it to gain insights from its high dimensional nature. The application for study is the 
plasma etching operation. The data preprocessing discussed here is most suited to plasma etching 
operation consisting of multiple recipe steps with non-linear behavior. 

 
3.2.1. Plasma Etching Data 
 

We will illustrate data pre-processing by focusing on a process that is eminently suitable 
for VM deployment, namely plasma etching. Plasma etching is a complex operation with 
numerous chemical reactions enhanced by the application of an RF field. Etching is usually 
carried out with preset recipes that optimize process parameters, including etch rate, selectivity, 
residue, micro-loading effects, and profile control. The plasma etch operation we studied in this 
case is ion energy-driven etching, where ion bombardment is combined with chemical etching. 
Ion bombardment can increase the chemical reaction rate by damaging the surface. The plasma 
etching operation is typically used in IC manufacturing to etch three types of material: 
polysilicon (poly-Si), dielectrics, and metal. Poly-Si etching is usually used to define the 
transistor gate profile, dielectrics etching is used for ILD oxide removal, and metal etching is 
used for interconnect patterning. Among these, poly-Si etching operations require the finest 
control since they directly impact transistor performance. That is why in this work we focus on 
a poly-Si etching, even though the methodology can be also be applied to other etching tools. 
The common plasma etchers can be classified into two areas based on their plasma sources: 
capacitive planar etchers and inductive or transformer coupled plasma etchers, the later being 
high density plasma etchers. Some details of plasma etcher and process can be found in 
reference [3.6]. We show a simplified schematic view of a plasma etcher in figure 3.2. 

 

Figure 3.2.A simplified schematic view of a plasma etcher (reproduced from [3.6]). 
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The resulting etching profiles with the same recipe can be quite different as the equipment 
conditions change with time. Changes of equipment condition can be due to aging and 
maintenance events. Equipment aging results from impurities from process gases and 
contaminants left in the reaction chamber, and natural wear of key mechanical components can 
be adjusted back to the normal state with a scheduled preventive maintenance (PM) event. The 
key objective for a manufacturing engineer is to keep delivering consistently etched profiles, 
especially in terms of maintaining precision in the so-called Critical Dimensions (CD) of the 
pattern of interest. Also, since the role of plasma etching is to transfer an existing pattern from 
photoresist (PR) into a pattern in a permanent layer, the quantity of interest is frequently the 
difference between the CDs of the two patterns, known as etch bias (EB). Unfortunately, EB is 
likely to drift, so there are many sensors installed to track equipment conditions and chamber 
states over time to ensure EB changes can be detected through identification of changes in 
equipment condition or chamber states. That is the concept of the VM model, according to which 
one can infer or predict the process results on the wafer with information provided by sensors 
monitoring the machine and process state, as defined next. 

In general, sensors fall into three categories: machine state sensors such as the ones 
monitoring the RF power source, gas flow, and pressure; process state sensors for plasma optical 
emissions, density and delivered power; and wafer state sensors for etch rate and film thickness.  

Machine state sensors are usually coupled with a feedback controller to adjust recipe-
setting variables. Process state sensors are in-situ, real time, and non-intrusive, such as the 
optical emission spectroscopy (OES) sensors shown in figure 3.3. OES sensors are used widely 
in end-point detection for etching operations. OES signals are generated by detecting emitted 
light when gas-phase chemical species collide with energetic electrons in the plasma [3.7]. 

Wafer state sensors (also known as direct metrology) are generally used for quality control 
and run-to-run control. This type of sensing is often deployed by means of large metrology tools 
that are separate from the processing tools. In general, wafer state sensors cannot be used in-
situ, introducing considerable lag in data availability. Due to cost and throughput 
considerations, it is also common that only a small subset of the produced wafers is tested in 
this fashion. As mentioned before, one of the key objectives of VM is to reduce or eliminate 
reliance to direct metrology. 

Table 3.1shows the existing sensors available on plasma etching equipment [3.8]. 

Monitoring Objectives Sensors 
Machine state 

Chamber temperature Thermocouple 
Pressure Ionization gauge 
Gas flow Mass flow controller 
RF power Capacitance sensor, RF sensor 
Bias voltage Voltage sensor 

Process state 
Chemical concentration OES 
Endpoint detection OES, residual gas analyzer (RGA) 
Ion density Langmuir probe 
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RF plasma parameters Voltage, current and phase sensors 
Wafer state 

Etch rate Ellipsometer 
CD Scanning electron microscopy (SEM) or 

scatterometer 
Table 3.1. Sensors in a plasma etching tool [3.8] 

As we can see in table 3.1, there can be multiple sensors monitoring similar mechanisms; 
this introduces collinearities into the collected sensor readings. Thus, many of these sensors are 
highly correlated to each other and carry significant levels of noise. For the purpose of VM 
modeling, one has to screen many of these sensors so as to not be included in the predictive VM 
model. 

 

Figure 3.3. OES sensors in a plasma chamber [3.9] 

 Machine state data is usually collected per wafer in time trace format. Each wafer can have 
up to 400 recording points given the sampling frequency of the sensors. Most equipment can be 
equipped with hundreds of sensors, and multiple sensors are used to monitor similar equipment 
conditions. Therefore, the data we have is highly dimensional and collinear. A graphical 
representation of collinear sensor data is shown in figure 3.4. Each wafer is also given a 
corresponding metrology result, which is the response variable in modeling. For plasma etching 
operations, CD bias, or etch bias, is the response variable. The CD/etch bias for each wafer is 
computed as the average of all the measured sites on the same wafer. Data preprocessing 
requires extraction of a statistical summary from a time trace, removing trends in data, and 
eliminating variables based on engineering knowledge and statistical selection criteria. The high 
dimensional nature of sensor data makes it difficult to visualize its overall structure. 
Dimensionality reduction prior to visualizing the overall data structure assumes that the 
reduction techniques capture the data structure well, while in many cases, techniques such as 
PCA underperform in the case of nonlinearity in the data. In this work, we have utilized a 
spectral heat-map plot to visualize the data in a high number of dimensions. 
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Figure 3.4.A collinear sensor parameter varying in similar patterns across different recipe steps for the 
same wafer 

For a plasma etching operation, each recipe contains approximately 25 steps, and recipe 
parameters are adjusted at each step to meet process yields. For each recipe step, there will be 
transient time and stable time for each sensor reading, and computing statistical summaries with 
entire time window would lead to noisy results. Figure 3.5 shows a time trace plot for four sensor 
parameters across the entire process internal to a single wafer. On top of each plot, the 
corresponding recipe step numbers are shown. The transient portion can be clearly seen for each 
step. 

 

Figure 3.5.Time trace plots of sensor parameters for a single wafer. The dotted lines designate transition 
points between recipe steps. 

We often truncate the time window of each recipe step by removing a certain percentage 
of data points at the beginning and the end, and then we compute the mean, median and standard 
deviation of each step for each sensor. With p as the number of recipe steps, and k as the number 
of equipment sensors, a wafer can be represented by a 1-by-pxk dimensional vector. The 



37 
 

dimension of variables can easily exceed 10,000, while the number of available wafers is 
relatively small. This can lead to a curse of dimensionality when statistical techniques are 
applied. We discuss extensively how to perform variable selection in Section 3.3  

3.2.2. Data Scaling and Outlier Removal 

Sensors often malfunction in production, and can lead to missing values in our data set.  
There have been extensive studies on imputing missing values in the area of DNA array data, 
and imputing missing values is not the focus of this thesis. Besides missing values, equipment 
sensors tend to give readings at different levels due to the chamber physics they are monitoring. 
Thus, it is necessary to scale the sensor data prior to any statistical analysis. In all the analysis 
performed in this chapter, we have applied Z-score standardization [3.10] to scale the data as 
shown: 

 𝑥𝑛𝑒𝑤 =
𝑥 − 𝑥̅
𝜎

   (3.1) 

 

where 𝑥̅ is the empirical mean of 𝑥 and 𝜎 and is the empirical sigma.  

There are several approaches to avoid skewing due to outlier effects when scaling the 
data, which involve using the robust summary statistics median and median absolute deviation 
(MAD) rather than the mean and standard deviation. 

Once data is scaled, it is also necessary to remove outliers form the training samples. 
Including outliers in the training set can affect the robustness of the resulting model since outlier 
data samples can be bad leverage points that skew the regression result, as shown in figure 3.6. 
In this thesis, we have focused on using PCA results to isolate outlier wafers and exclude them 
from model building. A scatter plot of the PCA score is an effective way to visualize outliers and 
isolate them, as shown in figure 3.7. 

 

Figure 3.6. Plot for bad leverage points affecting the regression line 
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Figure 3.7. Isolating outliers with PCA score scatter plot 

3.2.3. Data Detrending and Visualization 

Process tools are known to age over time, and aging is reflected in the drifting of sensor 
reading data. Sensors monitoring different chamber physics tend to drift in different patterns, but 
the patterns are mostly correlated to the timing sequence of the wafers. PM events are performed 
on chambers regularly, which can set the sensor reading back to the normal range. Therefore, 
sensors can display various types of wafer to wafer trending depending on their physical 
meaning. In figure 3.8, we illustrate parameter trending with OES sensors reading from plasma 
etching tools. We can observe the resetting of OES sensor reading after PM events. Trends need 
to be corrected before parameters can be incorporated into models.   

 
Figure 3.8. OES sensors plot for wafers covers 1 production year. 

There are two approaches to relieving the trending effect from modeling. The first 
approach is to assign weights to wafers based on their corresponding positions within production 
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cycles. The production cycle can time the window between PM events. Then, wafers at the end 
of the time window can be weighted less since their sensor readings tend to be corrupted more 
due to aging chamber conditions. A second approach is to remove the trends from sensors by 
applying a time series model to the parameters. This approach can be illustrated in this form: 
𝑥𝑖 = 𝑓(𝑡) + 𝑒𝑖. We first assign index variable t as the timing indicator of a specific wafer, then 
we model the trend pattern as a function of t. The residuals of the model will then be used as 
inputs into either FDC or predictive models. The function 𝑓(𝑡) can either be linear or nonlinear. 

 In figure 3.9, we show an example of applying Gaussian Process Regression (GPR) 
[3.11] as a nonlinear function to remove the long term wafer to wafer trend; we then compare the 
results against PC-based trend removal in figure 3.10. The PCA-based trend removal approach 
assumes there is a main trend across all the parameters that contribute most to the variance of the 
dataset, while the time series function approach assumes that every parameter has its own trend 
that is dependent on the position indicator. Equation shows how PCA decomposes the data 
matrix 𝑋 into corresponding scores matrix 𝑇 and loadings matrix 𝑃. For trend removal, we can 
assume that the main trends can be captured by the first k principal components. Then we retain 
the 𝐸 as an input f further modeling. 

 𝑋 = 𝑇𝑃𝑇 + 𝐸 (3.2) 
 

Where 𝑋 is 𝑛𝑥𝑝 matrix, 𝑇 is 𝑛𝑥𝑘 matrix, 𝑃𝑇 is 𝑘𝑥𝑝  matrix and 𝐸 is 𝑛𝑥𝑝 matrix. 𝑛 is number of 
samples, 𝑝 is number of dimension, and 𝑘 is number of principal components. 

 

Figure 3.9. GPR based trend removal 
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Figure 3.10. PCA-based trend removal after the first 3 PCs have been removed 

Given that there are multiple collinear structures among sensor parameters, it is highly 
recommended to individually de-trend the sensor parameters based on the pattern. 

After the time trace process data is compressed into one wafer per observation, with each 
observation being p-dimensional, it is difficult to visualize how each parameter varies temporally 
over all the wafers. Temporal parameters variation provides us with insights on how sensitive the 
equipment sensors are with respect to process excursions. In this thesis we have utilized the 
spectral heat map [3.12] for high-dimensional visualization. We find it extremely useful for 
wafer data sets from DOEs. In figure 3.11, we show a heatmap of a sampled set of the 
production wafer. The data includes wafers from same process and equipment. Each wafer has 
520 sensor parameters retained. The heat map allows an engineer to quickly visualize the sensor 
parameters corresponding to any fault. In this case, we can visualize the difference of OES 
sensor parameters for different production periods. 
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Figure 3.11. Heat map for high-dimensional visualization 

3.3  Variable Selection 

Once parameters have been pre-treated as described above, we can use them to build the 
predictive VM model. However, there are typically too many parameters available, with large 
subsets exhibiting co-linearity or lacking predictive meaning. The selection of which variables 
should go into the prediction model is a hard problem. In the case of semiconductor 
manufacturing, the highly collinear nature of equipment sensors results in many redundant 
variables for modeling.  In figure 3.12, we show the correlation heat map of variables extracted 
from the plasma etching tool sensor data. We can observe several blocks of variables having a 
Pearson correlation coefficient of nearly 1. Many approaches have been suggested in different 
applications, but there is still no general solution. Working solutions have been found only for a 
very specific subset of the problem space. The aim in this section is to generalize the variable 
selection schemes into two categories, and we discuss several methods based on applications for 
each category. The performance of variable selection is then evaluated with a plasma etching 
operation dataset. 

 

Figure 3.12. Correlation heat map for extracted variables set from the plasma etching tool sensodata 
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Variable selection in the field of semiconductor manufacturing can be classified into two 
categories: the domain knowledge-based approach and the statistical selection criterion-based 
approach. 

3.3.1. Domain Knowledge-based Approach 

Variable filtering with domain knowledge can improve the final results of models 
significantly, especially for the FDC model case. In both the FDC and predictive metrology 
cases, one should remove the control variables and noisy variables, and exclude variables from 
non-process steps. Thus, variable removal for this step is recipe-dependent. For most recipes, 
control variables are either constant or discrete values. Thus, variables carry near-zero variance, 
which does not explain any variation in the response variable. Noisy variables come from either 
miscalibration of equipment sensors or tool aging, and domain experience is often used in order 
to identify them. 

In this thesis, the study was carried out on the plasma-etching operation. We have filtered out 
(i.e. removed from further consideration) three types of variables: 

1) variables from non-critical process steps that are unlikely to relate to product outcomes 
2) variables that are largely constant (defined here as having more than 70% of their 

samples having the same value) 
3) control variables that simply reflect the intended process settings. 

Attempting to include those in the analysis would complicate the dimensionality reduction step 
and may also lead to misleading model results. 

For statistical selection criterion-based approaches, the concept is to select the variables 
based on a statistically-defined threshold. The approaches can be categorized as filter and 
wrapper approaches [3.13]. 

Filter approaches rely on selecting the variables that can explain the greatest variance in the 
dataset. The selected variables do not necessarily explain short range variation in response 
variables, but they often contribute to explaining any long range clustering of the data points. 
Therefore, filter approaches are more appropriate for FDC applications. Qin (2004) [3.14] used 
information-theoretic ranking criteria to select a subset of variables as input to the support vector 
machine (SVM) model for fault classification of RTA wafers. 

Wrapper approaches are common for predictive models. The concept is to select a subset of 
variables, and then evaluate how well the variable set can predict the response variable. Thus, 
wrapper approaches are biased by the applied evaluation methods, and nonlinear and linear 
methods can influence the final selected variables. We illustrate the difference between filter and 
wrapper methods in figure 3.13.  

In this thesis, we have pursued both approaches. Among filtering approaches, we have 
applied sequential PCA to find sensors traces with significant trends, since they can provide 
insight into the process. We have utilized wrapper approached such as bootstrapping [3.15] and 
stepwise frameworks in conjunction with multivariate methods to select predictive variables for 
the predictive metrology model. Since our objective in this study is to create a robust VM model 
with high predictive power, we focus more on wrapper approaches in the following sections. 
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Figure 3.13. Filter and wrapper methods 

3.3.2. Filter Methods 
 

Filter methods can be considered as preprocessing steps since they are independent of the 
response variable. The advantages of filter methods are that they make it possible to avoid over-
fitting and usually have a lower computational cost, since they do not require training. They are 
appropriate for FDC application, since the variables contain most of the information of the 
dataset and can distinguish well between “good” and “bad” sample clusters. Duda (2000) [3.16] 
used Fisher’s criterion to rank variables in a classification problem where the covariance matrix 
is diagonal, which is optimum for Fisher’s linear discriminant classifier. Statistically, filter 
methods are robust against wrapper methods in terms of over-fitting since they can introduce 
bias with less variance.   

 
In this study, we have used PCA heuristically for variable selection. The Pearson 

correlation coefficient  𝑟(𝑖)[3.16] is the selection statistic we used along with PCA: 
 

 
𝑟𝑖 =

𝑐𝑜𝑣(𝑥𝑖 ,𝑦𝑖)

�𝑣𝑎𝑟(𝑥𝑖)𝑣𝑎𝑟(𝑦𝑖)
      

(3.3) 

 
The coefficient is also the cosine of the angle between the two vectors x and y after they have 
been mean-centered. Its value ranges from 1.0 for perfect positive correlation to -1.0 for perfect 
negative correlation and is near 0 for uncorrelated variables. 
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3.3.2.1. PCA-based Variable Selection 

Conventional PCA has also been used for variable selection by comparing the loading 
coefficients for variables. The variables with higher loading coefficients are assumed to have 
more weights in the main direction of variances, and contain more information about the dataset.  
This is similar to the method proposed by Jollife [3.17], who uses the loading vectors of the first 
k PCs for variable selection. The total number of variables selected is equal to the number of 
retained PCs. The algorithm begins by finding the variable that has highest absolute loading 
coefficient on the first PC. That variable is then placed in the selected set. The algorithm 
continues into loadings of the second PC, and finds the variable with the highest absolute loading 
coefficient. The algorithm stops until the k most important PCs are checked. The method 
assumes that the 𝑖𝑡ℎ loading coefficient of one PC indicates that the 𝑖𝑡ℎ element is the dominant 
one in that PC. By choosing the variables corresponding to the highest coefficients of each of the 
first k PCs, the majority of the information for the dataset can be captured. The shortcoming of 
this method is that it considers each PC independently, whereas variables with similar 
information content might be chosen. Sparse PCA [3.18] tries to find a sparse set of variables 
that explain the PCs. Lu [3.19] used the loadings of the first several PCs as inputs for k-means 
clustering, selecting the features that are closest to the cluster’s centroid. 

In this section, we utilize a sequential scheme to perform PCA and use extracted scores to 
identify the set of sensors have different trends. The method can be described below: 

1) Let us suppose we have 𝑛 wafers with 𝑝 sensor trace parameters extracted. Thus the input 
matrix 𝑋𝑘 has 𝑛 × 𝑝 dimensions. We first perform PCA on 𝑋𝑡: 
 
 𝑋𝑟𝑒𝑘 = 𝒕𝟏𝒑𝟏𝑻 + 𝐸𝑘 (3.4) 

 
where 𝒕𝟏 is the score computed by retaining the first loading vector, 𝑋𝑟𝑒𝑘  is the 
reconstructed matrix with the first PC, and 𝐸𝑘 is the residual after reconstruction. 

2) 𝒕𝟏 is a column vector and is used as the basis to select sensor parameters. We compute the 
Pearson correlation coefficient for 𝑡1 vs 𝑋𝑘. Let us denote the sensor parameter with the 
highest correlation coefficient as 𝑓𝑗𝑘. 

3) Repeat Step 1 and 2 with input matrix as 𝐸𝑘. Find the sensor parameter with the highest 
correlation coefficient with respect to the retained score vector  𝒕𝟏. 
 

We can repeat the above steps until the variance explained by the first PC is less than 10% of 
total variance. This means the data is becoming sparse and there is not a dominant variation 
direction for the samples. We demonstrate the application of this method for finding sensors with 
trends.  
 

The dataset used in this case is collected from 1043 wafers processed in Poly-Si etchers. 
After preprocessing a total of 143 sensor parameters remain. In figure 3.14a, the scree plot of the 
PCA result is plotted after every iteration (run). For up to the eighth iteration, there is still a 
single component that dominates the variation. We highlighted the sensors with the highest 
correlation coefficients with respect to the first score in figure 3.14b, and the sensor parameters 
exhibiting trends are identified and shown in figure 3.14c.  
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Figure 3.14a. Scree plot of PCA for first 8th iterations. 
 

 
 

Figure 3.14b. Identifying sensors with highest correlation coefficient to 1st PCA score  
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Figure 3.14c. Sensors have highest absolute correlation with respect to 1st PCA score 
 

3.3.3. Wrapper Methods 

Wrapper methods generally utilize a framework to select a subset of variables based on 
their predictive power. For these methods, one needs to define: (1) how to search all the possible 
subsets; (2) how to evaluate the prediction performance of a variable subset; (3) which predictor 
to use. The problem is NP-hard. The popular methods for performance evaluation include tree-
based regression or classification and the least square regression method. In this thesis, we 
combine greedy search algorithms such as a stepwise, heuristic genetic algorithm and 
bootstrapping along with multivariate regression methods such as Lasso, PLS, and CART for 
predictive variable selection. 

Stepwise selection [3.20] can be either through forward selection, backward elimination, 
or a combination of the two. Forward selection methods start with one or a few features selected 
according to a method-specific selection criteria. More features are iteratively added until a 
stopping criterion is met. Backward elimination methods start with all features and iteratively 
remove one feature or several features at a time until stopping criterion is met. For mixed 
selection methods, features can be added as well as removed from the data during iterations. 
Since stepwise approaches are heuristic in nature, they are often incapable in handling 
collinearity, and the resulted 𝑅2 values highly depend on the various often arbitrary choices 
made when constructing the selection algorithm. In the stepwise variable selection case, we have 
utilized a bootstrapping framework on a sample space to reduce the shortcomings of the stepwise 
approach.  

Bootstrap is a simulation approach to estimating the distribution of test statistics. The 
method is to create “bootstrap” samples by resampling the data randomly, and then estimate the 
distribution of an estimator or test statistic. In this section, we explore bootstrapping regression 
models to select important variables. Given 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑁] ∈ 𝑅𝑝 and = [𝑦1,𝑦2, … , 𝑦𝑁] ∈
𝑅1, we simply select k bootstrap samples of size n from the 𝑥𝑖𝑠 and corresponding 𝑦𝑖𝑠 , fit the 
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model and save the coefficients from each bootstrap sample. We can then obtain distributions for 
regression coefficients of each predictor variable. Critical variables can then be selected based on 
distribution of the regression coefficient. 

3.3.3.1. Bootstrapping with Stepwise Regression 
 

1) For a given X as an n-by-(p+1) sample matrix with the last column vector as the response 
variable, we select b independent bootstrapped samples, each consisting of n data 
samples drawn with replacement from X. 

2) Constructing stepwise linear regression with each bootstrapped samples, we obtain b 
stepwise regression models. 

3) For each of the stepwise regression models, we select the top 𝑘𝑠 predictor variables out 
from 𝑝 predictor variables that result into an 𝑅2 value of at least 0.9 for the fitted model.  
𝑘𝑠 denotes the number of predictor variables retained for a specific trained stepwise 
model. 

4) A “1” is assigned to the predictor variable if it is selected; otherwise, a “0” is assigned.  
5) Frequency counts are obtained for all predictor variables from the b bootstrapped models. 
6) We retain the top 𝑘 predictor variables, where 𝑘 is the smallest of all the 𝑘𝑠 values. 

 
3.3.3.2. Bootstrapping with Lasso  
 

1) For a given X as an n-by-(p+1) sample matrix with the last column vector as the response 
variable, we select b independent bootstrap samples, each consisting of n data samples 
drawn with replacement from X. 

2) Constructing Lasso model with each bootstrapped sample, we obtain b Lasso regression 
models. 

3) For each Lasso regression model, a sparse set of predictor variable is obtained. 𝑘𝑙 denotes 
the number of predictor variables for a specific sparse solution set. 

4) A “1” is assigned to the predictor variable if it is selected; otherwise, a “0” is assigned.  
5) Frequency counts are obtained for all predictor variables from the b Lasso regression 

models. 
6) We retain the top 𝑘 predictor variables, where 𝑘 is the smallest of all the 𝑘𝑠 values. 

 
3.3.3.3. Bootstrapping with PLS (VIP)  

PLS-based variable selection is done in two ways: variable importance upon projection 
(VIP) [3.21] and the interval of each coefficient. VIP provides a score for each feature, so that it 
is possible to rank the features according to their predictive power in the PLS model (the higher 
the score the more important a variable is). VIP for j-th variable is defined as : 

 

𝑉𝐼𝑃𝑗 = �𝑝�𝑏𝑗2𝑤𝑘𝑗2
𝑘

𝑗=1

/�𝑏𝑗2
𝑘

𝑗=1

 

  (3.5) 
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where 𝑝 is the number of variables, 𝑤𝑘𝑗 is the j-th element of vector of 𝑤𝑘 , and 𝑏𝑗 is the 
regression weight for the k-th latent vector, 𝑏𝑗 = 𝑢𝑗𝑇𝑡𝑗 . We adopt VIP with bootstrapping in this 
thesis as one of variable selection schemes. 

1) For a given X as an n-by-(p+1) sample matrix with the last column vector as the response 
variable, we select b independent bootstrap samples, each consisting of n data samples 
drawn with replacement from X. 

2) Constructing a PLS model with each bootstrapped sample, we obtain b PLS regression 
models. 

3) For each of the PLS regression models, we compute the VIP for each predictor variable.  
4) From all bootstrapped PLS models, we obtain distributions of VIPs for each predictor 

variable.  
5) The median for each distribution of values VIPs is computed and used as the selection 

statistic. 
6) Predictor variables with median statistics above 2 are retained as important predictor 

variables. 
 

3.3.3.4. Bootstrapping with CART 
 

(1) For a given X as an n-by-(p+1) sample matrix with the last column vector as the response 
variable, we select b independent bootstrap samples, each consisting of n data samples 
drawn with replacement from X. 

(2) Constructing CART with each bootstrapped sample, we obtain b CART models. 
(3) For each of the CART regression models, a sparse set of predictor variables is obtained. 

We denote the number of predictor variables for each sparse set as 𝑐𝑖. 
(4) If a predictor variable is selected for one model, we then compute its contribution to the 

model.   
(5) From all bootstrapped CART models, we obtain distributions of the variable contribution 

for each predictor variable.  
(6) The median for each distribution of the variable contribution is computed and used as the 

selection statistic. 
(7) Each variable is then sorted in descending order based on the extracted median statistics. 

The number of predictor variables retaining is the max𝑖∈𝐵[𝑐𝑖]. 
 
3.3.3.5. Genetic Algorithm with PLS 

Genetic Algorithm (GA) [3.22] is a popular optimization method that imitates the natural 
selection process in biological evolution with selection, mating reproduction, and mutation. The 
algorithm flow is shown in figure 3.15. In GA, the parameters to be optimized are represented by 
a chromosome where each parameter is encoded in a binary string called a gene. Thus, a 
chromosome consists of as many genes as parameters to be optimized. A population consists of a 
certain number of chromosomes, and is initially created by randomly assigning “1” or “0” to all 
genes. The best chromosomes are the ones with the highest probability to survive evaluation by 
the fitness function. The next generation is obtained by selecting the best chromosomes, mating 
the chromosomes to produce an offspring population, and by a probabilistic mutation. The 
evaluation and reproduction steps are repeated for a certain number of generations, or until a 
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convergence criterion of the population is met.  The theory and benefits of GA in variable 
selection have been described in the literature [3.23] and will not be discussed here. In this 
thesis, we describe the implementation of the GA framework with PLS as the fitness function. 
The evaluation of fitness is defined by the 𝑅2 of the testing dataset. Random noise is an 
important issue that affects the result of a GAPLS model. If the predictors are very noisy and 
sample size is small (predictor #/sample #), the GA will model the noise rather than information.  

 

Figure 3.15. GAPLS 

Another result of GAPLS is that only a few variables are present in the final model; this 
might not utilize the full power of PLS. Some randomly correlated variables might be selected in 
the final resulting model and carry less information on the dataset. One would have to run GA 
many times to obtain clear information on the dataset; we often use 100 as the optimal run 
number. The critical variables defined are based on the frequency with which each variable 
appears in the top chromosome of each run. A stepwise selection can also be performed on the 
ranked variables; the results of this stepwise procedure can provide the optimum variable 
selection. This stepwise selection step is highly recommended if the predictor size or sample size 
is large, and if the random correlation is higher in the dataset. 

The variable screening is done on all the wafers rather than on the chambers separately. 
Artificial “predictor” variables are added into the model; they are randomly generated numbers 
from Gaussian distribution. Predictor variables with a selection frequency less than the 
maximum frequency of noise factors can be considered irrelevant for further modeling. 

3.4  Model Creation  

After critical predictor variables are selected based on training data, we can then apply 
prediction methods to train a VM model. There are multiple ways to construct a VM model in 
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terms of splitting the training and testing dataset.  In this section, we compare four approaches 
for constructing prediction models: (1) prediction with serial correlation; (2) the operation state-
driven approach; (3) the moving window approach; (4) chronological splitting, with 70% 
training and 30% testing in temporal order.   

In the first approach, a new data matrix X that combines consecutive samples is 
constructed to consider the time series correlation among samples. In the second approach, we 
consider the fact that samples are collected over a long production period which contains 
multiple operation states. The third approach employs frequent updates and short-term prediction 
to create a robust model. The fourth approach is the conventional approach, where one trains a 
model on a historical dataset, and uses this model to forecast the remaining dataset. The 
robustness of the model can be observed in the variation of the temporal residuals. A 
combination of these model creation approaches with variable selection schemes are evaluated 
with different statistical modeling methods. 

3.4.1. Dynamic Prediction with Serial Correlation Consideration 

Directly applying regression methods on the data matrix X constructs a static linear 
model while the data might be generated from a dynamic process, which takes into account any 
autocorrelation in the participating data series. The static model assumes that the observations 
are not correlated serially; i.e., current observation is independent of previous ones. However, 
this might not be true for real world processes. In this section, we transform the data matrix X to 
contain previous observations. We indicate this matrix as lagged X.  For a n x p data matrix X, 
the lagged-k symbolized by XL (k) is defined as:  

XL(k) = [X(t) X(t − 1) … X(t − k)] (3.6) 
 

where X(t - k) is an (n-k) x p matrix, obtained by removing the last k samples from the original n 
x p data matrix X. The lagged data matrix XL(k) is then used with the regression method we 
mentioned above. In this study, we used XL(1) as the input data matrix since most industrial 
processes data exhibit 1st order autocorrelation. That is, we modeled the Y-response variables as 
a function of Xt and Xt−1, and for a single prediction at one time point: 

 𝑦𝑡 = 𝑓(𝑥, 𝑥𝑡−1) + 𝑒𝑡 (3.7) 
 

 It is clear that this approach will suffer from the curse of dimensionality given that the 
number of the predictor variable is doubled. In the section 3.5, we have utilized wrapper methods 
to select an optimal set of predictor variables. 

3.4.2. State-driven Prediction Approach 

Given that the data are collected over a long production period, it is expected that there are 
multiple operation modes. Each operation mode tends to have a different data structure; thus 
different prediction models are needed for different modes. A predictor variable might not have a 
high correlation with response variables across the entire dataset, but it can have a higher 
correlation within a certain operations mode. The multi-mode nature of the data can be reflected 
in a multimodal distribution of predictor variables and clustering in the projected subspace.  
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In this study, the wafer data we collected covers approximately one production year. We 
show distribution plots of several predictor variables in figure 3.16, and clustering behavior of 
data structure in the PCA subspace is shown in figure 3.17. Both figures validate the fact that 
there are at least two operation modes in the data. Once we identified those states with 
unsupervised clustering methods such as k-means clustering, we then create prediction models 
corresponding to specific tool states. And once we obtained the tool state labels with clustering, 
we then create classification models of the training dataset with KNN methods. In this way, each 
incoming wafer is classified into the corresponding operation state before the corresponding 
metrology results are predicted. 

 

Figure 3.16.Multimodal distribution of predictor variables 

 

Figure 3.17.Clustering in PCA subspace 
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In figure 3.17, the “red” cluster at the lower right of the graph contains approximately 31 points 
that are actually corrupted data points. They are removed in the preprocessing phase of all 
modeling analysis. 

3.4.3. Moving Window Approach 

The moving window approach is depicted in figure 3.18. The idea is to constantly update 
the trained model with newly-measured wafer metrology to capture process dynamics. There are 
three critical parameters to define: 𝑛 as the number of training samples, 𝑘 as the number of 
predicted samples, and 𝑚 as the number of measured samples for the model update. 

 

Figure 3.18.The moving window approach 

This moving window approach can be combined with several prediction methods to obtain the 
best appropriate VM model. The optimal (𝑛,𝑘,𝑚) is generally determined in multiple trials with 
consideration of the number of predictor parameters and available data samples. 

3.5 . Prediction Results  

In this section we summarize model prediction results for a combination of different 
variable selection schemes with different prediction methods. The dataset used here is collected 
from a single poly-Si plasma etching tool running with the same recipe which includes 1115 
wafers that cover approximately one production year. The recipe contains 25 process steps with 
47 sensor parameters monitored for each step. Sensor parameters from three critical steps, 
corresponding to pre-etch, main etch, and post-processing have been retained to extract the initial 
set of predictor variables. Median statistics for the sensor parameter for each step are extracted as 
initial set predictor variables. The single response variable is the difference in Critical Dimension 
from the photoresist pattern to the finally etched pattern, also known as Etch Bias (EB. 
Therefore, after preprocessing and removing of corrupted samples, we are left with 1080 wafers 
and 145 possible explanatory variables, which consist of the 3x47=141 parameter traces plus the 
process time1 for each of the three steps plus the hard mask trim time. So the input matrix X 

                                                            
1 In these etch steps the duration is determined for each wafer through automatic, Optical Emission based 
endpointing. 
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1080-by-145, and the output matrix consists of the mean values of the EB on each wafer so that 
Y is 1080-by-1. The performance measure for VM model is 𝑅2 defined as follow: 

𝑅2 = 1 −
∑ �𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙�

2𝑛
𝑖=1

∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

 
(3.8) 

 
where 𝑦𝑝𝑟𝑒𝑑 is the predicted EB, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 is the actual EB, and the 𝑦𝑚𝑒𝑎𝑛 is the mean of 
metrology for all the actual ones. Detrending in this study was only done on OES sensor 
parameters given that their trending patterns are strongly correlated to PM event cycles.  

 In table 3.2, we summarize the prediction results building VM with dynamic prediction. 
For the dynamic prediction case, where the lag-1 autocorrelation is taken into account, the input 
data matrix doubles in size by including both present-time and lag-1 past values of the input 
parameters, so that 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is 1080-by-290 and the output matrix is 𝑌𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is 1080-by-1. 
Outlier removal is done with PCA-based Hotelling 𝑇2 statistics. The PCA model in this case is 
trained using 60% of the produced wafers 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐. Hotelling 𝑇2 is then computed for each 
training and testing wafer, and wafers with 𝑇2 statistics above the upper bound of the 97.5% 
confidence interval are excluded. The Hotelling 𝑇2 is computed by retaining the number of PCs 
explaining more than 95% of the total variance of the training set. The remaining 40% of the 
wafers serve as testing data points.  

 

Figure 3.19. Outlier detection with PCA  

Based on the 𝑇2 statistics, 30 wafers from the training set and 36 wafers from the testing 
set are excluded from further modeling. After outlier removal, the variable selection based on 
wrapper methods that we discussed in Section 3.3.2 is applied to the training dataset since our 
objective is to predict the response variable-EB. 

 Dynamic prediction with serial correlation consideration 
Variable 
selection 

# of 
predictor 
variables 

PCR 
Adjusted 𝑅2 

PLS 
Adjusted 𝑅2 

BPNN 
Adjusted 𝑅2 

KNN 
Adjusted 𝑅2 

CART 
Adjusted 𝑅2 

Bootstrapped 88 0.54 0.66 0.68 0.49 0.55 
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stepwise 
Bootstrapped 

Lasso 
65 0.42 0.50 0.63 0.42 0.54 

Bootstrapped 
PLS 

80 0.53 0.65 0.69 0.45 0.55 

Bootstrapped 
CART 

58 0.54 0.55 0.58 0.41 0.54 

GA 
PLS 

78 0.55 0.63 0.73 0.45 0.53 

Table 3.2. VM prediction results for the testing dataset with dynamic prediction 

In table 3.3, we summarize the prediction results building VM with the operation state-
driven approach. For the operation state-driven prediction case, the input data matrix 𝑋𝑜𝑠 is 
1080-by-145 and the output matrix 𝑌𝑜𝑠 is 1080-by-1. The first step is to see whether the wafers 
needed to be treated all together or separated into clusters and then k-means clustering was 
applied to group the wafers into clusters. Optimal value for k is determined to be 2 based on the 
distribution of pairwise distances for all the wafers. The distribution of pairwise distances 
computed with the Euclidean distance metric is shown in figure 3.20. The bimodal shape 
suggests a higher possibility of clustering among the samples.  

 

Figure 3.20. Distribution plot of pairwise distance (Euclidean) 
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Figure 3.21. Clustering index vs. clustering visualization in PCA a subspace 

Based on the clustering results, we labeled 169 wafers as “state 1” wafers, and 911 as 
“state 2” wafers. Outlier removal was then done with PCA-based Hotelling𝑇2 statistics within 
each cluster. Wafers with 𝑇2 statistics above the upper bound of the 97.5% confidence interval 
are excluded. The Hotelling 𝑇2 is computed by retaining the number of PCs explaining more 
than 95% of the total variance of the training set. The remaining 40% of wafers serve as testing 
data points. The final testing 𝑅2 is computed over all testing wafers from both clusters and 
presented in table 2.  

The outlier results are shown in figures 3.22 and 3.23. For “state 1” wafers, there are only 
4 outlier wafers.  For “state 2” wafers, there are 19 outlier wafers. They are all excluded from 
model building and testing. After outlier removal, the variable selection based on wrapper 
methods that we discussed in Section 3.2.2 is applied to the training dataset within each cluster.  

 

Figure 3.22. Outlier isolating for “state 1”wafers 
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Figure 3.23. Outlier isolating for “state 2” wafers 
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 Operation state driven approach 
Variable 
selection 

# of 
predictor 
variables 

PCR 
Adjusted 𝑅2 

PLS 
Adjusted 𝑅2 

BPNN 
Adjusted 𝑅2 

KNN 
Adjusted 𝑅2 

CART 
Adjusted 𝑅2 

Bootstrapped 
stepwise 

58 0.53 0.69 0.73 0.46 0.54 

Bootstrapped 
Lasso 

45 0.51 0.55 0.49 0.51 0.45 

Bootstrapped 
PLS 

50 0.54 0.69 0.69 0.42 0.53 

Bootstrapped 
CART 

45 0.47 0.58 0.65 0.54 0.58 

GA 
PLS 

46 0.51 0.65 0.70 0.39 0.48 

Table 3.3. VM prediction results for testing wafers with operation state approach 

In table 3.4, we summarize the prediction results of different VM models with the 
moving window approach. For the moving window case, the input data matrix 𝑋𝑚𝑤 is 1080-by-
145 and the output matrix is 𝑌𝑚𝑤 is 1080-by-1. Given that the number of predictor variables in 
the initial set is 145, we start with window size 𝑛 = 290 to ensure that we have enough degrees 
of freedom for model training. Variable selection with wrapper methods is then applied on the 
first window. Selected predictor variables are then retained for the rest of the windows. A 
combination of (𝑛,𝑘,𝑚) was tested to construct the best VM. The Adjusted 𝑅2shown in table 3 
is averaged over the predicted results of all windows. The selected (𝑛,𝑘,𝑚) in this case is (290, 
30, and 15).  

 Moving window approach 
Variable 
selection 

# of 
predictor 
variables 

PCR 
Adjusted 𝑅2 

PLS 
Adjusted 𝑅2 

BPNN 
Adjusted 𝑅2 

KNN 
Adjusted 𝑅2 

CART 
Adjusted 𝑅2 

Bootstrapped 
stepwise 

48 0.54 0.69 0.73 0.59 0.61 

Bootstrapped 
Lasso 

35 0.52 0.60 0.61 0.42 0.54 

Bootstrapped 
PLS 

45 0.60 0.66 0.71 0.52 0.61 

Bootstrapped 
CART 

41 0.53 0.55 0.58 0.44 0.59 

GA 
PLS 

39 0.59 0.65 0.72 0.55 0.60 

Table 3.4. VM prediction results for testing wafers with moving window approach 

In table 3.5, we summarize the prediction results building VM in chronological order. For 
the moving window case, the input data matrix 𝑋𝐶𝑂 is 1080-by-145 and the output matrix 𝑌𝐶𝑂 is 
1080-by-1. In this case, a static model is built with the first 60% of wafer data, and then the 
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remaining 40% of wafers provide testing data. Outlier removal is done with PCA-based 
Hotelling𝑇2 statistics. The PCA model in this case is trained with 60% of 𝑋𝐶𝑂. Hotelling𝑇2 is 
then computed for each of the training and testing wafers, and wafers with 𝑇2 statistics above the 
upper bound of 97.5% confidence interval are excluded. Hotelling 𝑇2 is computed by retaining 
the number of PCs explaining more than 95% of the total variance of the training set. Variable 
selection with wrapper methods is applied on the training dataset only.  

 

Figure 3.24. Outlier isolation with PCA for the chronological order model 

 Chronological order  
Variable 
selection 

# of 
predictor 
variables 

PCR 
Adjusted 𝑅2 

PLS 
Adjusted 𝑅2 

BPNN 
Adjusted 𝑅2 

KNN 
Adjusted 𝑅2 

CART 
Adjusted 𝑅2 

Bootstrapped 
stepwise 

58 0.53 0.71 0.75 0.53 0.55 

Bootstrapped 
Lasso 

40 0.45 0.59 0.59 0.42 0.54 

Bootstrapped 
PLS 

52 0.50 0.65 0.72 0.45 0.55 

Bootstrapped 
CART 

49 0.52 0.53 0.59 0.41 0.54 

GA 
PLS 

45 0.51 0.64 0.75 0.45 0.53 

Table 3.5. VM prediction results for testing wafers with chronological order 

3.6  Conclusion and Future Work 

The best VM model was the one created with the operation state approach. The best 
model, with testing 𝑅2 = 0.75, was achieved with BPNN with the following setting in 
combination with a bootstrapped stepwise variable selection scheme. 
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Number of nodes in the input layer 58 
Number of nodes in the hidden layer 3 
Number of nodes in the output layer 1 

Over-fit penalty 0.005 
Number of tours 20 
Max. iterations 100 

Converge criterion 0.00001 
Table 3.6. Parameter setting for NN 

The success of virtual metrology prediction models relies on careful selection, outlier 
isolation, clustering and de-trending of sensor parameters. In practice, engineers can reduce the 
cost of metrology by utilizing statistical indicators to infer which wafers need metrology 
measurements rather than selecting the measured wafers based on experience. It takes advantage 
of classification methods to create a robust virtual inference system. The concept of virtual 
inference to classify a wafer is based on corresponding tool sensor data into different classes, 
where in each class we have upper and lower performance bounds. By this classification, an 
engineer can have an indicator for possible metrology results of the wafers or an indicator can be 
generated to signal if a wafer needs metrology measurement or not. This can be shown as 
follows: 

1) We first construct the distribution function of wafer metrology from historical 
wafers. 

2) We then bin the wafers into different performance classes based on metrology. 

1) Hard control specs defined by engineers as: good wafers within specs (+/- 
3 sigma), bad wafers outside of +/- 3 sigma. 

 

Figure 3.25. Hard specs defined by engineer 

2) Statistical clustering approach: Gaussian mixture modeling is used for 
demonstration in this case. 
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Figure 3.26. Statistical clustering 

3) We then train a classification model with the wafer class labels as response and 
equipment sensor as inputs. 

4) We classify the new wafer into different bins (metrology is measured for a wafer 
only if it is classified in way that makes it ambiguous as to whether the wafers 
meets or fails the specifications. ). We will call those categories “ambiguous 
bins”. VM will prove to be beneficial if only a small subset of wafer will fall into 
a ambiguous bin and will therefore need to be subjected to actual metrology. 

 

Figure 3.27. Virtual Inference. While wafers actually fit into one of the three bins illustrated above 
(middle), due to noisy inference, some of them maybe misclassified into the in-between ambiguous bins 

(right) and therefore require actual metrology. 
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 Chapter 4 

Enhanced Metrology for Process Monitoring with site-to-site Metrology Data 

While Virtual Metrology, as introduced in the previous chapter performs model-based 
extrapolation across production time, there is also an interest to perform extrapolation across 
production space (i.e. across wafers and wafer lots). 

 
In this chapter, we present a statistical framework for creating an FDC model for wafer 

and die level electrical metrology data. Our work goes beyond tradition SPC methods that focus 
primarily on change point detection for process monitoring, as we also present methods for 
optimal measurement site selection for process monitoring and wafer map interpolation. In this 
manner, engineers can reduce the cost of metrology measurements by measuring selected sites 
only.  

 
In process monitoring, selecting the most informative sites can provide enough 

information for process control monitoring, since there are redundant sites due to the existence of 
highly collinear structures among sites. The goal of process monitoring in this work is to detect 
wafers with disrupted spatial patterns. By this we mean a wafer containing a large portion of dies 
having significantly different electrical metrology results from other wafers. Such is the 
definition of outlier wafer in this work. For wafer map interpolation, it is desirable to measure a 
few sites and interpolate the entire wafer map for further yield analysis. Tyrone and Kameshwar 
[4.1] performed a selection of measurement sites for CD metrology after a litho-etch process. In 
their work, they were able to reduce the number of measurement sites down to 2 of 14, while 
maintaining acceptable prediction error rates.  

 
In this thesis, we have focused on developing FDC schemes for electrical metrology data 

and an optimal selection of sites for such data structures. The performance of site selection is 
evaluated with developed FDC schemes. The electrical metrology data is spatially distributed 
across all the dies within the same wafer and temporally distributed across wafers. The spatial 
and temporal variation in the data can provide us insights into the impact of process variation on 
transistors.  

 
In Section 4.1, we first discuss the nature of the process variation induced by different 

semiconductor process steps. In section 4.2, we offer a brief discussion of how spatial statistics 
are used to characterize the spatial variation of wafers. In section 4.3, we explore the data 
structure of electrical metrology results. In section 4.4, we review the application of formal and 
graphical statistical methods to detect global and local outliers. Global outliers are measurements 
deviate that significantly from the rest of measurements across all the wafers, whereas local 
outliers are ones that have values that deviate significantly from their neighbors within the same 
wafer. In Section 4.5, we construct FDC models that can capture entire wafer information using 
transistors’ performances varying spatially and temporally from wafer to wafer. SPC charts can 
then be produce based on computed statistics and alarm thresholds. Kernel density estimation 
was applied to estimate the empirical PDF and CDF of similarity factors, after which alarm 
thresholds were obtained based on defined confidence levels. Section 4.6 then discusses methods 
for optimal selection of measurement sites for multivariate process control monitoring. The 
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selection sets from different methods are then evaluated using the constructed FDC models 
discussed in Section 4.5. 

 
 

4.1. Introduction on Source of Spatial Variation in Semiconductor Process 

It has been shown in the literature that metrology results such as physical CDs, electrical 
performance such as threshold voltage, or the driven current of transistors tend to have spatial 
structures across wafer. Such spatial structures can be described using statistical quantities such 
spatial correlation [4.2]. In a sense, transistors that are located close to each other on the same 
wafers will have more similar performances than ones far away. Consequently, one can fit a 
deterministic function to describe how the transistor performance depends on its x and y 
locations on a wafer [4.3].  

The spatial variation of transistor performance is introduced by the nature of the 
fabrication processes, along with pattern dependent effects. Most semiconductor processes 
exhibit spatially revolved variation, where the edges of wafers tend to result in different 
conditions after processes. For example, the lithography step can introduce overlay error, which 
includes errors in the position and rotation of the wafer stage during exposure, wafer stage 
vibration and the distortion of the wafer with respect to the exposure pattern. Magnification and 
rotation components of overlay error increase from the center of the wafer outwards [4.4]. For 
the CVD step, species depletion and temperature non-uniformity on the wafer at lower 
temperatures may cause thickness non-uniformity. In plasma etching operations, the center peak 
shape of RF electric field distribution also leads to a center peak shape of etch rate, while 
chamber wall conditions also cause etch rate non-uniformity. Etch rate also varies radially across 
the wafer; it is higher at the center and decreases toward the edges. In figure 4.1, we show two 
wafer CD maps after plasma etching, where we can clearly see the radial shape for CD variation 
across wafers.  

 

Figure 4.1 Illustration of CD map after plasma etching [Courtesy of Lam Research Corporation] 

All these process effects are convoluted by the fabrication flow and impact the final 
transistor performance spatially along with the temporal variation introduced by process drifting.  
The effects of process variation can also be decomposed hierarchically: Lot-to-Lot, Wafer-to-
Wafer, Die-to-Die and within-Die. Lot-to-lot refers to process variation existing in different lots. 
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Wafer-to-wafer process variations are those affecting different wafers within a lot. Die-to-die 
means variation in different dies within a wafer. Within-die denotes variation within an identical 
device or circuit within a die. This hierarchical decomposition is shown in figure 4.2. 

 

Figure 4.2 Hierarchical decomposition of process variation [4.5] 

Given strong spatial correlation for metrology results observed across the wafer, it is 
desirable to just measure the most informative sites that can capture process variation 
information. The information contained by these sites can then be fed into a Fault Detection / 
Characterization (FDC) model for process monitoring [5.1]. Thus, the problem becomes that of 
selecting the right sites and interpolation methods.  

In this section, we utilize variable selections schemes to perform optimal selection of 
metrology sites and evaluate the performance of different selections for FDC and interpolation 
purpose. The objective of optimal metrology selection is shown in figure 4.3. In this work, the 
selected sites from different methods are evaluated using the developed FDC schemes. The 
performance results are compared against results in which all the sites are measured.  

 

Figure 4.3 Objective of site selection 
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4.2. Spatial Statistics and Kriging 

Given the nature of process variations, it is common to observe a radial spatial pattern 
across wafer. Given the assumption that electrical metrology data is normally distributed and 
stationary (mean and variance do not vary significantly in space), we can characterize each wafer 
using a spatial variogram and correlogram [4.6] based on the spatial variation across different 
performance parameters. Normality of data can be checked using a histogram, graphically with a 
normal probability plot, or with hypothesis testing. 

 A spatial variogram characterizes the spatial smoothness and pattern of a dataset; it is 
defined as the expected squared difference of attribute values between two locations [4.7]. Given 
the assumption of data is coming from a weak stationary process, the relationship between the 
values of the process at any two locations can be summarized by a covariance function 𝐶(h), and 
this function depends only on the separation vector h. Then we can express the variogram in the 
form of equation 4.1: 

𝐸[𝑦(𝑢 + ℎ) − 𝑦(𝑢)]2 = 𝑉𝑎𝑟�𝑦(𝑢 + ℎ) − 𝑦(𝑢)� = 2𝛾(ℎ) (4.1) 
2𝛾(ℎ) = 𝑉𝑎𝑟�𝑦(𝑢 + ℎ)� + 𝑉𝑎𝑟�𝑦(𝑢)� − 2𝐶𝑜𝑣�𝑦(𝑢 + ℎ),𝑦(𝑢)�  

= 𝐶(0) + 𝐶(0) − 2𝐶(ℎ)  
= 2[𝐶(0) − 𝐶(ℎ)]           

 

The 2𝛾(ℎ) is called the variogram and 𝛾(ℎ) is called the semivariogram. 𝑢 is the vector of 
spatial coordinates, and 𝑦(𝑢) and 𝑦(𝑢 + ℎ) are the associated attribute value separated by vector 
h. The empirical estimation of variogram is shown in Equation 4.2: 

𝛾�(ℎ) =
1

2|𝑛(ℎ)| �
[𝑦(𝑢𝛼 + ℎ) − 𝑦(𝑢𝛼)]2

𝑛(ℎ)

𝛼=1

 
(4.2) 

 

𝑛(ℎ) is the set of pairs of sample points such that the distance between them is ℎ, and |𝑛(ℎ)| is 
the number of pairs in this set. An empirical semivariogram estimate can be plotted and an 
appropriately shaped theoretical variogram model can be fitted to the data.  

Similarly, robust estimators of variograms were also introduced by Cressie and Hawkins 
(1983) [4.8]. They estimate the variogram in two alternative ways: 

𝛾�(ℎ) =
� 1
|𝑁(ℎ)|∑ [𝑌(𝑢𝛼 + ℎ) − 𝑌(𝑢𝛼)]1 2�𝑁(ℎ)

𝛼=1 �
4

2 �0.457 + 0.494
|𝑁(ℎ)|�

      

(4.3) 

 

and 
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𝛾�(ℎ) =
�𝑚𝑒𝑑 �|𝑌(𝑢𝛼 + ℎ) − 𝑌(𝑢𝛼)|1 2� :𝛼 ∈ 𝑁(ℎ)��

4

2 �0.457 + 0.494
|𝑁(ℎ)|�

 
(4.4) 

 

The spatial correlogram employs covariance between values at two different locations for 
empirical estimation. The covariance function 𝐶(ℎ) is empirically estimated as follows: 

𝐶(ℎ) =
1

𝑁(ℎ) � 𝑌(𝑢𝛼) ∙ 𝑌(𝑢𝛼 + ℎ) −𝑚0 ∙ 𝑚+ℎ

𝑁(ℎ)

𝛼=1

 
(4.5) 

 

where 𝑚0 and 𝑚+ℎ is the means estimated as: 

 
𝑚0 =

1
𝑁(ℎ) � 𝑌(𝑢𝛼)

𝑁(ℎ)

𝛼=1

 
(4.6) 

 
𝑚+ℎ =

1
𝑁(ℎ) � 𝑌(𝑢𝛼 + ℎ)

𝑁(ℎ)

𝛼=1

 
(4.7) 

 

The spatial correlogram is computed as: 

 
𝜌(ℎ) =

𝐶(ℎ)

�𝜎02 ∙ 𝜎+ℎ2
 

(4.8) 

 

where 𝜎02 and 𝜎+ℎ2  are the estimated corresponding variances: 

𝜎02 =
1

𝑁(ℎ) �
[𝑌(𝑢𝛼) −𝑚0]2

𝑁(ℎ)

𝛼=1

 
(4.9) 

𝜎+ℎ2 =
1

𝑁(ℎ) �
[𝑌(𝑢𝛼 + ℎ) −𝑚+ℎ]2

𝑁(ℎ)

𝛼=1

 
(4.10) 
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Figure 4.4 Spatial correlogram and semivariogram difference 

Spatial correlograms measure the similarity at different locations while a spatial 
variogram is a measure of dissimilarity. Figure 4.4 shows the statistics of a correlogram and 
semivariogram for same dataset. For time series analysis, it is preferable to work with 
correlograms, while in spatial statistical analysis, variograms are to be preferred. This is due to 
the fact that a variogram averages the squared difference of the spatial attribute and tends to filter 
the influence of a spatially varying mean.  

In our work, we have assumed that spatial correlation structure is isotropic, that is, the 
same in all directions. By that, we mean the correlogram and variogram depend on the 
magnitude of the lag vector and not the direction, and the empirical variogram or correlogram 
can be computed by pooling data pairs separated by the specific lag distances, regardless of 
direction. The applications of spatial variograms and correlograms to disrupted wafer detection 
are discussed in Sections 4.4 and 4.5. 

4.3. Site-to-Site Metrology Data Description 

The data we used consist of measurements from 348 wafers that span 23 lots as shown in 
figure 4.5, with an uneven number of wafers for each lot. Each wafer contains 117 dies, and the 
reticle field consists of only one die. Each die contains 14 values, which are frequency 
measurements of ring oscillators (PSROs) at different locations within the die. There are some 
missing dies for most of the wafers. It is necessary to impute such missing measurements prior to 
analysis.  
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Figure 4.5 Wafer allocations for lot  

There are many methods for imputing missing values in the literature. Singular value 
decomposition (SVD) and k-nearest neighbors (KNN) imputation methods are two popular ones. 
SVD imputation incorporates an EM algorithm and PCA concept, because SVD is identical to 
standard PCA when applied to a matrix normalized so that row-wise mean is zero [4.9]. For 
KNN imputation, the missing value is estimated as the average of the corresponding entries in 
the selected k expression vectors. The selected k vectors are obtained by computing similarity 
between two vectors with their non-missing values [4.9]. In this work, we have used Kriging to 
interpolate the missing values for each wafer prior to further analysis. Then a set of wafers with 
“complete” measurements are used for optimal metrology sampling.  

In figure 4.6, we show mosaic plots of a wafer before and after wafer-to-wafer and lot-to-
lot mean removals. The left plot shows raw data, while the right shows the data after wafer-level 
and lot-level mean removal for every measurement. We can observe the radial variation of 
PSROs across wafers.  

 

Figure 4.6 Mosaic plot of wafer#16 in lot#23, showing raw (left) and lot-to-lot centered data (right).  

In figure 4.6, we can also see that dies share similar performances with their neighbors. 
Such spatial correlation has been discussed extensively in the literature. It is suggested that 
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spatial correlation is largely contributed by the systematic variation from wafer-to-wafer and lot-
to-lot. In figure 4.7, we show correlation of a specific die with the rest of dies across the wafers 
before and after wafer-to-wafer and lot-to-lot mean removals. The correlation statistics are 
computed as Pearson linear correlation coefficients. Rather than showing spatial correlation for 
all the PSROs, we only the show the correlation of PSRO_00 for better visualization purposes. 
PSRO_00 indicates the measured ring oscillator frequency at a specific location on a die. 

 
Figure 4.7 Spatial correlation heat map before and after mean removal 

We can observe that spatial correlation is weakened after wafer-level and lot-level mean 
removal. In figure 4.8, we observe a trend in the value of PSRO_00 from lot-to-lot in the left 
plot, while the systematic variation disappears after the mean removal. We first performed K-
means clustering with k=4 to cluster all the PSRO_00s into 4 groups. Then we visualized the 
positions of these PSRO_00 across wafers and lots with histogram plot. ChipX and ChipY are 
the x and y coordinates of the PSRO_00 on wafer. The PSRO_00 with higher values are coded 
with green color and also highlighted in the histogram plot. It tells us there is no spatial 
dependency for the higher values of PSRO_00. 

  

 

Figure 4.8 PSRO_00 values for each die across wafer and lot after and before mean removal.    
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Nassif [4.10] has also studied this dataset; They assumed that the underlying distribution 
of the data is a multivariate normal distribution (MVN), and then constructed a matrix of n-by-
(dxr), where n is the total number of wafers, d is the number of dies per wafer and r is the 
number of measurements per die. The EM algorithm was then applied with objective of 
estimating the 𝜇 and ∑. 

This first initializes the MLEs of distribution parameters 𝜇 and ∑ from complete data, and 
then repeats the following steps until convergence: 

a) E-step: estimate the expected value of the missing measurements, given the current MLEs 

b) M-step: given the expected estimates of the missing measurements, re-estimate the 
distribution parameters to maximize the likelihood of the data  

This method makes use of the entire dataset for missing values imputation. The objective 
of their work was to estimate the missing measurement with adequate confidence level for the 
estimation. Our objective is to optimally select measurement sites for process monitoring 
purposes. Given that our data consists of electrical metrology results, each site refers to a single 
die in this work. Prior to further analysis, we first labeled the sites in a spiral order shape as 
shown in figure 4.9, such that edge sites are assigned a lower index while center sites are 
assigned a higher index. The spiral ordering also makes it easy to visualize the radial spatial 
pattern across the wafer. 

 

Figure 4.9 Ordering of site on wafer 

 

4.4. Outlier Wafer Detection 

Outlier detection based on multivariate space has been done in on CDs for wafers after 
plasma etching. However, the hierarchical structure of wafer level metrology data makes it 
harder to apply such multivariate detection methods where the spatial information can be lost. In 
this section, we first review the common spatial outlier detection methods, and then discuss the 
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application of a neighborhood based outlier detection scheme and MCD Mahalanobis distance to 
detect outlier wafers heuristically. 

4.4.1. Spatial outlier (local outlier) 

Spatial outliers represent locations that are significantly different from their 
neighborhoods even though they may not be significantly different from the entire population.  
Spatial outlier detection in the literature of spatial statistics can be grouped into two categories, 
the graphic approach and quantitative tests.  

Graphic approaches are based on visualization of spatial data that highlights spatial 
outliers. Variogram cloud is one example [4.11]. A variogram cloud is an extension of the spatial 
variogram model designed for spatial outlier visualization; it displays data points related by 
neighborhood relationships. For each pair of locations, the square root of the absolute difference 
between attribute values at the locations is plotted against the Euclidean distance between the 
locations. In data sets exhibiting strong spatial dependence, the variance in the attribute 
differences will increase with increasing distance between locations. Locations that are near to 
one another, but have large attribute differences, can indicate a spatial outlier, even though the 
values at both locations may appear to be reasonable when the dataset is examined spatially. In 
figure 4.10, we show the variogram cloud for a single wafer on the left, with the corresponding 
wafer-level heat map shown on the right.  

 

Figure 4.10 Variogram cloud for wafer 01 from lot 1, showing potential outliers. 

The outliers based on variogram cloud are the pairs of locations that have higher semivariance. 
As we show in figure 4.10, we can see that the dies at the center tend to have higher PSRO 
values, significantly different from other dies. However, it is relatively hard to determine the 
threshold for outliers using the variogram cloud and it requires postprocessing of the results.   

Quantitative methods provide tests to distinguish spatial outliers from the remainder of 
data. The Moran scatter plot is one example [4.12]. A Moran scatterplot is a plot of normalized 
attribute values against the neighborhood average of normalized attribute values. A scatter plot 
shows the attribute values on the X-axis and the average of the attribute values in the 
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neighborhood on the Y-axis. A least square fit can be used to detect spatial outliers. A scatter 
sloping upward to the right indicates a positive spatial autocorrelation (adjacent values tend to be 
similar), and a scatter sloping upward to the left indicates a negative spatial autocorrelation. The 
residual is defined as the vertical distance from a point P with location (𝑥, 𝑦) to the regression 
line. In this work, we have applied the King’s move for neighborhood. King’s move and Rook’s 
move are the two common neighborhood definitions used in spatial statistics [4.13]. Both moves 
are shown in figure 4.11 below. 

 

Figure 4.11 King’s and Rook’s moves. 

We illustrate the concept of local outlier detection with Moran I scatterplot [4.14]. In the 
left plot of figure 4.12, we show the fit of neighbor average vs. attribute value at each die. The 
normalized residual for each wafer is shown in the right plot. Any die with a normalized residual 
value higher than 3 is considered an outlier, assuming that normalized residual follows a 
standard distribution. 

 

Figure 4.12 Wafers from Lot 7 using Moran scatter plot. 

It is also clear that wafer 07 and wafer 03 do not have smooth spatial patterns across the wafer 
based on the scatter plot in figure 4.10. This is confirmed by the mosaic plot of the wafers we 
show in figure 4.13. Thus one can detect an outlier wafer with Moran’s I scatter plot by 
capturing how good the least square fit is for each wafer. A fit resulting in lower 𝑅2, like the 
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circled one in figure 4.12 clearly indicates there is lack of strong spatial autocorrelation across 
the wafer, and thus a disrupted spatial pattern is expected.  

 

Figure 4.13 Mosaic plots of wafers from Lot 7 

The major drawback of existing detection approaches is that their application requires 
extensive post processing and will lead to some true spatial outliers being ignored and some false 
outliers being identified. We utilized an algorithm that employs the median as the neighborhood 
function, thus reducing the negative impact caused by the presence of neighboring points with 
very high/low attribute values. 

1. Given a set of spatial points 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} in a space with dimension 𝑝 ≥ 1, an 
attribute function F is defined as a mapping from X to R .  

2. Let 𝑁𝑁𝐾(𝑥𝑖) denote the k nearest neighbors of point 𝑥𝑖 , where 𝑔(𝑥𝑖) returns summary 
statistics for attribute values of all the spatial points inside 𝑁𝑁𝐾(𝑥𝑖).  

3. To detect spatial outliers, we compare the attribute values of each point 𝑥𝑖 with the 
attribute values of its 𝑁𝑁𝐾(𝑥𝑖).  

4. Comparison is then made in the form of a comparison of h, which is a function of f and g. 
h can be difference or ratios of f and g. In this work, h is defined as the ratio 𝑓 𝑔⁄ . 

5. g is median of defined neighbors and f is the median of 14 PSROs at X. 
 
Once ℎ(𝑥𝑖) is computed for every die within a specific wafer, we can then scale ℎ(𝑥𝑖) within the 
same wafer so it follows a univariate normal distribution. PDF for univariate normal distribution 
is: 

𝑓(𝑥) =
1

(2𝜋𝜎2)1/2 𝑒
−[(𝑥−𝜇)/𝜎]2

2  
(4.11) 

 
𝑓(𝑥)>0, and its integral is equal to 1. The probability that a data point lies beyond 3 sigmas from 
the mean is just 0.0027. Thus, 3-sigma is often the cut-off threshold [4.15]. If a die within a 
wafer has ℎ(𝑥𝑖) higher than 3, we can flag it as an outlier for the specific wafer. Both King’s and 
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Rook’s move based neighborhood construction rules were studied in this work. They tend to 
provide similar results for this data set. 

 
 In figure 4.14, we again used Lot 7 wafers for illustration. Figure 4.12 shows the mosaic 

plot of 𝑔(𝑥𝑖) for all Lot 7 wafers. We can observe the smoothing effect introduced by this 
method. If the wafer contains many extreme outlier dies, that indicates the spatial pattern across 
wafer is not smooth and we can flag it as an outlier. 

 
Figure 4.14 King’s move based G computed for Lot 7 wafers 

 
 

In figure 4.15, we show the results of computing ℎ(𝑥𝑖) using both neighborhood 
construction rules. It appears that they yield very similar results in terms of outlier detection 
where the number of dies with Z-score values outside of +/-3 boundary are very close: wafer 07 
and wafer 03.   
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Figure 4.15 King’s move and Rook’s move for neighborhood based outlier detection 

 
The neighborhood approach is affected by choice of the size of neighborhood as well as the 
selection of appropriate 𝐻 and 𝐺 functions. For application on this set of data, this approach is 
not robust enough, as shown in figure 4.12.  

4.4.2. MCD based Multivariate Mahalanobis distance for Global outliers 

The spatial outlier detection methods we have discussed do not take into account all 14 
PSROs. They require first computing the statistical summary for each die, and then using these 
statistics for further analysis. To use all 14 PSROs’ information, we adopted the MCD based 
Mahalanobis distance (MD) [4.16] for outlier wafer detection in this case. MD is a preferred 
distance metric when multivariate normal distributions are expected in the data. In this section, 
we illustrate the application of this concept for detecting outlier wafers and possible grouping of 
dies based on their similar performance. For outlier wafer detection, the idea is to observe which 
wafer contributes the most number of outlier dies, inferring that this indicates the wafer has 
disrupted spatial patterns. The steps are described below: 

1) A specific die within a wafer is represented by a 1-by-14 dimension vector, since 
each die has 14 PSROs. Given that there are 348 wafers available, we have a 348-
by-14 matrix for each specific die.   

2) We compute the Mahalanobis distance for each wafer; each wafer is a 1x14 vector.  
3) Statistical threshold is set to define outliers, given that the Mahalanobis distance 

follows 𝜒2distribution. The statistical threshold used in this work is the 0.99 
quantile of  𝑙𝑜𝑔�𝜒142  .  

4) If a wafer has distance value above the threshold, we assign a “1” otherwise “0.” 
5) We then go through all the dies, and obtain a frequency count of being outlier or not 

for each wafer.  
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Results for the die at location (9, 6) are shown in figure 4.16. About 10 wafers of the 348 are 
considered outliers. 

 
Figure 4.16 Mahalanobis distance for outlier wafer detection 

 
We then show the frequency plot in figure 4.17, along with corresponding mosaic plots 

for wafers with high numbers of “1.” It is clear that the wafers with higher frequencies have 
disrupted spatial patterns. Therefore, this type of chart can be applied in practice for detecting 
abnormal wafers. 

 
Figure 4.17 Frequency plot for disrupted wafers 
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There is also the possibility of die grouping, as described below: 

1) For a specific die within a wafer, the die is represented by a 1-by-14 dimension 
vector, given each die has 14 PSROs. Therefore, each wafer is a matrix of 117-by-
14, as there are 117 dies per wafer. 

2) We compute the Mahalanobis distance for each die within the same wafer. 
3) Statistical threshold is set to define outliers given that Mahalanobis distance follows 

𝜒2distribution. The statistical threshold used in this work is the 0.99 quantile of 
 𝑙𝑜𝑔�𝜒142  .  

4) If a die is above the threshold, we assign a “1” otherwise “0.” 
5) We then go through all the wafers, and obtain a frequency count of outliers for each 

die.  
 

We then show the frequency plot in figure 4.18. The frequency plot tells us the dies at the 
edge and center tend to have extreme values compared to the rest of dies across all wafers. 
 

 
Figure 4.18 Frequency counts for dies. 

 
The results in figure 4.18 suggest that there is a common main radial pattern across wafers. This 
can be validated by performing PCA for die-to-die decomposition. The concept is to observe die-
to-die variation by representing each die with a 1-by-348 dimensional vector. In this work, we 
replace the 14 PSROs of the die with median PSROs. Then PCA is performed on a 117-by-348 
matrix. The first 4 scores are shown in Figure 4.19 below, where one main PC dominates the 
variation, based on the scree plot. The cyclical pattern on PC2, PC3 and PC4 indicates the 
existence of a radial pattern for performance variation. 
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Figure 4.19 Die-to-Die PCA results. 

 
In figure 4.20, we then overlay the scores onto a wafer map to observe how the scores 

vary radially. It is clear that the bulk of variation is contributed by dies at the center. 
 

 
Figure 4.20 Scores for Die-to-Die PCA 

 
One can also combine all the discussed methods together to provide robust outlier wafer 

detection, where the wafer contains the most number of outlier dies defined by all 4 methods: 
MCD MD by wafer, MCD MD by die, neighborhood based Z-score and Moran standardized 
residuals.  We again use lot 7 wafers for illustration, as shown in figure 4.21. The dies denoted as 
outliers by each of the 4 methods are marked with different signs across the wafer in figure 4.21. 
The combined results easily identify the outlier wafers in this case. Wafer 07 and Wafer 03 from 
lot 7 are identified to be outlier wafers here.  



80 
 

 

Figure 4.21 Combination of results from 4 methods 

4.5. Multivariate Similarity Index based Wafer-level FDC 

Given that there are usually multiple chips to test on the same die and hundreds of dies on 
the same wafer, multivariate statistics can provide great insight into wafer conditions. In the 
following sections, we present techniques utilizing PCA, ICA and MD to detect outlier wafers.  

4.5.1. Extraction of Similarity Index 

In section 4.4, we discussed heuristic ways to detect outliers based on visualizations. 
Most of these cannot be used as monitoring statistics to signal alarms. In this section, we develop 
a wafer-to-wafer similarity index based on multivariate statistics and empirically estimate its 
probability density distribution (PDF) using a kernel method. The similarity index must also be 
able to capture all 14 PSROs information rather than using a compressed statistical summary for 
each die. There are two statistics we want to employ for FDC: similarity for all wafers vs. 
reference wafer, and consecutive wafer-to-wafer similarity. In this work, we have computed a 
“Median” wafer as a reference wafer: 

𝑊𝑖∈117 = 𝑀𝑒𝑑𝑖𝑎𝑛�𝑤𝑖𝑗 , 𝑗 ∈ 348� (4.12) 
 

Each die on the “Median” wafer is attributed the median statistics of that specific die 
across all 348 wafers. Kernel density estimator is then applied to estimate the empirical PDF and 
CDF of the computed similarity index, and then a statistical threshold is set based on 
corresponding probability extracted from a CDF plot. The threshold for alarm in this work is 
defined by the 95% quantile of the distribution of computed statistics.  

 
The first similarity index we compute is based on PCA [4.17]. The concept is to represent 

each wafer with a 117-by-14 matrix, since each wafer has 117 dies and each die has 14PSROs. 



81 
 

An individual PCA model is created for each wafer. Then a monitoring statistic can be computed 
to track the how the PCA subspace for each wafer varies in temporal space. The concept is 
illustrated in figure 4.22 below where 2 PSROs are plotted as a scatterplot for two different 
wafers. We can observe that these two wafers have very similar spatial patterns, and thus that the 
spatial orientations of PSROs for each wafer are very similar. The spatial orientation can be 
extracted from PCA subspace, since the PCs indicate the main direction of variations. Thus, this 
similarity statistic can be applied to track spatial orientation of how the covariance structure 
among PSROs varies from wafer to wafer.  

 

Figure 4.22 Scatterplot of PSR_00 vs. PSR_01 for 2 wafers. 

The computation steps for the PCA based similarity index are described below: 
1) Each wafer is represented by a 117-to-14 matrix and scaled by the reference wafer. 
2) PCA is performed on each wafer matrix.  
3) First 3 PCs retained (explained above 90% variance). 
4) Compute the similarity matrix as shown in Equation 4.12:  

 

SPCAλ =
∑ ∑ �λi1λj2�cos2θijk

j=1
k
i=1

∑ �λi1λj2�k
j=1

 
(4.12) 

 
 The 𝜃𝑖𝑗 is the angle between PC𝑖 from wafer 𝒊 and PC𝑗 from wafer 𝒋. λi1 is the 
corresponding eigen-value of PC𝑖 and λj2 is the corresponding eigen-value of PC𝑗. By including 
the eigen-value, we weight different subspace of the PCA model. The results of similarity for all 
wafers vs. reference wafer are shown in figure 4.23.  
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Figure 4.23 Similarity index from PCA 

The distribution of the similarity index is estimated using all samples, and one can set a tighter 
alarm by using only a few training samples. Such training samples can be set in chronological 
order, or using random sampling. 

The second similarity index we compute is based on ICA combined with PCA [4.18]. 
There are two variants to this method. The first is to perform PCA on the residual matrix after 
ICA decomposition, since ICA decomposition can remove the Non-Gaussian components. 

 𝑋 = 𝐴𝑆̂ + 𝐸 (4.13) 
 𝐸 = 𝑇𝑃𝑇 + 𝐹 (4.14) 

 
where 𝐴𝑆̂ is the reconstructed component of the original, 𝑋 and 𝐸 is the residual. The similarity 
statistics can then be computed in the same way shown in equation 4.12. We demonstrate this 
concept with data from a single wafer and show the results of PCA prior to and after ICA 
decomposition in figure 4.24, where we can observe that the data tends to be more Gaussian after 
ICA removal since the dominant 1st PC explains 20% more variance than the one prior to ICA 
removal. 
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Figure 4.24 Die values and Scree plot of PCA prior and after ICA removal of non-Gaussian components 

 

Figure 4.25 ICA-PCA similarity indexes 
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The second variant is to perform ICA on the residual matrix after PCA decomposition is 
done since PCA decomposition can remove the Gaussian components. Then the similarity index 
is computed in a slightly different way from the one in PCA case since ICs do not have 
corresponding variance associated with them. The computation of the similarity index for this 
variant is shown below: 

1) Each wafer is represented by 117 by 14 matrix. 
2) ICA is performed on each wafer matrix after PCA removal. 
3) All ICs retained (ICs don’t have associated variance).  
4) Compute the similarity matrix according to Equation 4.15. 

a. We first search for the pair of ICs that have the smallest angle.  
b. Remove the extracted 1st pair of ICs. 
c. Search for 2nd pair again.  
d. Continue until all ICs are paired. 

 
 

𝑆𝐼𝐶𝐴 =
∑ ∑ 𝑐𝑜𝑠2𝜃𝑖𝑗𝑘

𝑗=1
𝑘
𝑖=1

𝑘
 

(4.15) 

 
𝜃𝑖𝑗 is the angle between IC𝑖 from wafer 𝒊 and IC𝑗 from wafer 𝒋. The results of similarity for all 
wafers vs. the reference wafer are shown in figure 4.27. A Kernel density estimator is applied to 
estimate the empirical PDF and CDF, then a statistical threshold is set based on corresponding 
probability extracted from the CDF plot.  
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Figure 4.26 Die values and Scree plot of PCA prior and after PCA removal of Gaussian components 

 

Figure 4.27 Similarity index from PCA-ICA 

Wafers can have similar spatial orientations for their subspaces, but can have different 
magnitudes due to process drifting. Mahalanobis distance (MD) between the means of two 
classes is adopted in this section to compute the MD based similarity index [4.19]. The MCD 
version of MD is computed by the equation: 

𝑀𝐷 = �(𝑋�2 − 𝑋�1)𝑇∑∗−1(𝑋�2 − 𝑋�1) 
(4.16) 

 
where 𝑋�2 and 𝑋�1 are the centers of wafer 2 and wafer 1, and MD is here the distance between 
wafer 1 and wafer 2. In this work, to ensure robust measure, a robust estimate of center and 
covariance is used as discussed in Chapter 2. ∑∗ is the common covariance matrix, the weighted 
mean of empirical covariance matrices of wafer 1 and wafer 2, such that:  
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∑∗ =

𝑛1∑1∗ + 𝑛2∑2
∗

𝑛 − 2
 

(4.17) 

 
where = 𝑛1 + 𝑛2 , 𝑛1 and 𝑛2 are the sample sizes of wafer 1 and wafer 2. ∑1∗  and ∑2

∗  are 
empirical covariance matrices of wafer 1 and wafer 2. Each wafer is represented by a 117-14 
matrix. The similarity index for the reference wafer vs. all the wafers is shown in figure 4.28.  
 

 

Figure 4.28 Similarity index from MD 

 The spatial variogram and correlogram discussed in section 4.2 are adopted here to 
compute a similarity index for wafer-to-wafer. The goal is to detect wafers with spatial patterns 
significantly different from the reference wafer. Each wafer is represented as a map with 117 
entries; each entry is represented by (𝑥,𝑦) coordinates on the wafer. At each (𝑥, 𝑦) coordinate, 
the median of 14 PSROs is used as the attribute value. The spatial variograms and correlograms 
of wafers from lot 1, 2, 3 and 4 are shown in figure 4.29. The left plots with blue curves are 
spatial variograms and the right plots are for spatial correlograms. 

  
Figure 4.29 Spatial variogram(left) and correlogram (right)  
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It is possible to visually pinpoint the wafers with disrupted spatial patterns based on the 
variogram, while the correlogram is not very informative. In figure 4.30, we demonstrate 
detecting wafers with disrupted patterns with spatial variogram. The variograms of the first wafer 
from all 23 lots are shown in the left plot of figure 4.30; here we can see that wafer 01 from Lot 
22 has significantly higher semivariance than other wafers. The disrupted spatial pattern for this 
wafer can be confirmed by a mosaic plot of all Lot 22 wafers shown in the right panel of figure 
4.31. 
 

 
Figure 4.30 Left: Spatial variogram for wafer 1 from all Lots (Lot 1 to Lot 23); Right: Median of each die 

shown for all wafers within Lot 22. 
 
 In order to construct a FDC model using spatial variograms or correlograms, one needs to 
characterize the spatial variogram or correlogram as input vectors per wafer, and then train the 
FDC model to capture the similarity index between disrupted wafers and the good “reference 
wafer.” If the similarity index extracted for a new wafer falls below certain threshold, an alarm 
will be raised. 
 
  Given the curved nature and high dimensionality of spatial variogram and correlograms, 
dynamic time warping (DTW) is adopted for similarity computing along with angle measures 
[4.20]. DTW is for comparing discrete sequences to sequences of continuous values. DTW in 
this paper aligns the two spatial variogram or correlogram curves so that the Euclidean distance 
between them is minimized. The result of the matching is analyzed through a warping path 𝑊 
that connects the mapping points of the two time series data in two-dimensional Euclidean space. 
The optimal warping path that minimizes the distance, expressed as 𝑊, consists of a total of 𝐾 
elements, while the measured distance 𝐷𝑇𝑊(𝑆,𝑇) is the magnitude of dissimilarity between the 
elements of 𝑆 and 𝑇, where 𝑆 and 𝑇 are the two curves for comparison. Final dissimilarity is 
defined as the mean distance determined by the curves:  
 

𝐷𝑇𝑊(𝑆,𝑇) = 𝑚𝑖𝑛𝑤 ��𝛿(𝑖𝑘, 𝑗𝑘)/𝐾
𝐾

𝑘=1

� 
(4.18) 

𝛿(𝑖𝑘 , 𝑗𝑘) = �𝑠𝑖𝑘 − 𝑡𝑗𝑘�
2
   (4.19) 
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 Dynamic programming can be used to effectively find this path by evaluating the 
following recurrence, which defines the cumulative distance as the sum of the distance of the 
current element and the minimum cumulative distances of the adjacent elements. The recursive 
formula that searches an optimal warping path with the dynamic programming technique is 
expressed as: 

𝑦(𝑖𝑘 , 𝑗𝑘) = 𝛿(𝑖𝑘 , 𝑗𝑘) + 𝑚𝑖𝑛{𝑦(𝑖𝑘−1, 𝑗𝑘),𝑦(𝑖𝑘−1, 𝑗𝑘−1),𝑦(𝑖𝑘 , 𝑗𝑘−1)} (4.20) 
 
The more linear the 𝑊, the higher the degree of similarity between the two patterns’ shapes. 
 

In figure 4.31 and figure 4.32, we show the results of computing a similarity index with 
variograms and correlograms along with DTW and angle approaches. To avoid the noisy nature 
of spatial variogram and correlograms, we have used the smoothed wafers as input data. By 
smoothed wafer, we mean that a King’s move based neighborhood construction rule and median 
are used. The results from the DTW approach indicate that this distance-based approach does not 
work well with higher numbers of lags and is not suitable for outlier wafer detection or this 
specific dataset. The comparison of similarity using correlation between variogram and 
correlogram does show the drifting of similarity within each lot. However, detection of extreme 
outlier wafer using spatial variograms and correlograms does not work well for this specific 
dataset. This is due to the fact that spatial variogram and correlograms are both characterized by 
attribute difference at each lag and number of lags used. At larger lag distance, more pairs of 
coordinates are used for computation, thus the noise level is also increased. This makes the 
spatial variogram and correlogram not suitable for detecting outlier wafers for this specific 
dataset.  

 

Figure 4.31 Similarity index for spatial variogram with smoothed wafers 
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Figure 4.32 Similarity index for spatial variogram with smoothed wafers 

4.5.2. Detecting Outlier Wafers with PCA and ICA-PCA  

In this section, PCA and ICA-PCA are both applied to the 348-by-117 data matrix 
denoted 𝑋, which contains 348 wafers from all 25 lots. At each site on the wafer, the median 
14PSROs are used as the attribute value of the site. Thus, a wafer is characterized by a 117-by-1 
dimension vector. 𝑋 is first normalized against the reference wafer. Since we do not have a set of 
“normal” wafers to train a PCA or ICA-PCA model, the entire dataset is used for constructing 
the PCA or ICA-PCA model. Results for both approaches are shown in Figure 4.33 and Figure 
4.34. The top 10 PCs explaining above 90% of total variance are retained to compute 𝑇2 
statistics in both cases. A Kernel density estimator is adopted to select the threshold for outlier 
wafer detection. However, in this case, the distribution of 𝑇2 statistics is skewed by several 
outlier wafers with extreme high 𝑇2 values. In real practice, one can train an SPC chart based on 
historical wafers for better detection accuracy. 
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(A) 𝑇2 Statistics with extreme wafers 

 
(B) PCA variance plot                                                     (C) CDF plot 

Figure 4.33 PCA based Hotelling’s T2 statistics for outlier wafer detection 

 

(A) 𝑇2 Statistics with extreme wafer 



91 
 

 

(B) PCA variance plot                                                     (C) CDF plot 

Figure 4.34 ICA-PCA based Hotelling’s T2 statistics for outlier wafer detection 

 

4.5.3. FDC Results Comparison 

In this section, we compare the performance of different extreme wafer detection 
methods. Only the multivariate statistics-based similarity indices are used for testing here, since 
Moran I plot and MCD by Dies do not provide statistical alarms.  Since there are 348 wafers 
available and no labeling information regarding which wafers are considered outliers or normal, 
the median wafer described in Equation 4.12 is referred to as a “normal” wafer. We first 
manually labeled the wafers that appear to have disrupted spatial patterns as “outlier” wafers. 
There are 36 wafers labeled “outliers”; the remaining 308 are considered “normal.” The 
definition of an “outlier” is that the wafer has disrupted spatial patterns in comparison to the 
median wafer used for “normal” definition. Then, we randomly selected 50% of the wafers as 
our training set, while the remaining 50% wafers were used for validation. The final combination 
of training and validation sets was chosen to retain 20 “outlier” wafers in the training set and 18 
“outlier” wafers in the validation set. We present the results of different detection methods in 
table 4.1. Each method is first applied to the training set wafers. A statistical threshold based on a 
certain percentage of cumulative probability from the training set is then selected to detect if a 
wafer is an outlier or normal. This threshold is then applied to classified wafers of the testing set.  

The evaluated detection methods include the following: PCA based similarity index, ICA 
based similarity index, and Mahalanobis distance and Hotelling’s 𝑇2 from PCA models. DTW 
based variogram and correlogram were not applied due to high level noise associated with larger 
lag distance. In table 4.1, the misclassified rate is defined as the number of wafers being 
classified wrongly. The true alarm rate indicates the number of actual “outlier” wafers classified 
as “normal.” The false alarm rate indicates the number of actual “normal” wafers classified as 
“outliers.” 

Methods 
Training: 174 20 

    Validation: 174 18 

Training  model accuracy Testing  set accuracy 
Misclassified True 

Alarm 
False 
Alarm 

Misclassified True 
Alarm 

False 
Alarm 
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SPCA 
λ (95%) 7/174 1/20 6/154 13/174 1/18 12/156 

𝑆𝐼𝐶𝐴  (95%) 12/174 2/20 10/154 20/174 3/18 17/156 
MD (95%) 8/174 3/20 5/154 18/174 5/18 13/156 
PCA (95%) 15/174 2/20 13/154 20/174 4/18 16/156 

ICA-PCA (95%) 12/174 2/20 10/154 16/174 3/18 13/156 
Table 4.1 Evaluation results 

The method that best performed is the SPCA 
λ based approach, where the statistical threshold is 

selected to be 95% of cumulative probability.  

4.6. Optimal Site Selection for Process Monitoring  

Given the strong spatial correlation among dies, it is insightful to group dies with similar 
performances together, and characterize the process according to such groupings. This assumes 
that different process can result in different spatial correlation structure among dies. Changes in 
spatial correlation structure can indicate variations in process. It is also beneficial to know what 
dies or sites on wafers tend to have similar performances, then process engineers can perform 
metrology optimally across wafers based on the grouping patterns. Metrology results are either 
used for process monitoring or for interpolating wafer yield. In the process monitoring case, the 
high collinear structure among sites allows us to extract a few sites that carry the most 
information for process variation and only measure these extracted sites in the future. In the case 
of wafer yield interpolation, the spatial correlation structure allows us to extract the sites that 
provide the most capability for interpolating the entire wafer map with the smallest error. Thus 
metrology costs can be significantly reduced by selecting optimal sites for different objectives, 
especially in the case of electrical measurements, where engineers often need to measure all the 
dies across an entire wafer.   

In this section, we present several filter and wrapper based variable selection methods for 
selecting optimal sites adapted to both process monitoring and wafer map interpolation 
objectives. The performance of selection results is then evaluated by the FDC and prediction 
methods discussed in Section 4.5 and Chapter 2.  

4.6.1. Site Clustering 

In this section, we address how to partition sites into subclasses where they share similar 
performance using a clustering algorithm. Given the high dimensionality of our dataset, we have 
adopted the spectral clustering concept to partition the dies into different classes based on the 
extracted spatial correlation matrix. Given that there are 117 dies per wafer, we have a similarity 
matrix of 117-by-117. In this case, we have represented each die using the median value of 14 
PSROs on the die. In figure 4.35, the heat map of die-to-die similarity matrix along with its 
histogram is shown. In this work, we have computed the similarity index for die-to-die as 
Pearson correlation coefficients without removing the lot-level and wafer-level averages from 
each die. 
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Figure 4.35 Die-to-Die similarity matrix and corresponding histogram 

The spectral clustering algorithm [4.21] can be described as follows:  

1) Given a set of N samples, 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛} , 𝑥𝑖 is usually highly dimensional  
2) Compute the positive definite similarity matrix 𝑆 ∈ 𝑅𝑛𝑥𝑛, where 𝑠𝑖𝑗 is the similarity 

between the 𝑥𝑖 and 𝑥𝑗. The most general similarity function is the Gaussian function, 
𝑆�𝑥𝑖 , 𝑥𝑗� = 𝑒𝑥𝑝 �−�𝑥𝑖 − 𝑥𝑗�

2 2𝜎2⁄ � (4.20) 

 
where the parameter 𝜎 controls the width of the neighborhood in the graph.  

3) Normalize the affinity matrix 𝑆 to obtain the Laplacian matrix:  
 
 𝑆̅ = 𝐿−

1
2𝑆𝐿−

1
2 (4.21) 

 
𝐿 = 𝐿𝑖𝑗 is N x N diagonal matrix with 𝐿𝑖𝑖 = ∑ 𝑆𝑖𝑗𝑗  . 
 

4) Compute the first j generalized eigenvectors 𝑢1,𝑢2, … ,𝑢𝑘 of 𝑆̅  
5) Retain the first k eigenvectors with smallest eigenvalues, and then we can represent each 

observation in eigenspace with k-dimensions. 
6) Cluster the observations with the chosen clustering technique; the common ones are k-

means and GMM. 

The first 4 eigenvectors with smallest eigenvalues are retained. They are shown in figure 4.36 for 
all the dies. There are many variants of spectral clustering, where different sets of eigenvectors 
are retained to partition the dataset [4.22]. 
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Figure 4.36 First 4 Eigenvalues and Eigenvectors 

In this work, K-means clustering is then applied to the 117-by-4 input matrix. Due to 
variation of the K-means clustering algorithm, multiple runs of K-means are performed, after 
which a majority voting scheme is applied to assign the final class label to the dies. K-means 
clustering with an optimal 𝑘 equal to 4 was chosen. 50 variations of K-means and final result of 
voting schemes are shown in figure 4.37. 

 

Figure 4.37 Variation of K-means and result of segmentation 

As shown in figure 4.37, the 117 sites are partitioned into 4 clusters. The partition results 
indicate that sites at the bottom of wafers tend to share similar performance temporally, whereas 
sites near the center also share similar performances. The partition results match the PCA 
decomposition results shown in figure 4.20, where the main variations are contributed by dies at 
bottom edge and center of wafers. The clustering of sites can provide engineers with insights as 
to spatial correlation among sites, and also can become a preliminary phase leading engineers to 
sample where on a wafer to measure optimally for process information. 
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4.6.2. Site Selection for Process Monitoring 

In this section, we present sites selection methods for process monitoring purposes. The 
objective is to select sites carrying the most information about the process. The assumption here 
is that information contained in selected sites is robust enough to be used for FDC model input. 
The highly collinear structure of the sites makes it possible for a few sites to preserve the 
multivariate structure and information carried by a complete set of sites. 

 Let us assume we have 𝑛 observations with 𝑝 dimensional measurement vectors for each 
observation, thus the data matrix is of dimensions 𝑛 × 𝑝. We can then partition the 𝑝 × 𝑝 
dimension sample covariance matrix ∑ as follow [4.23]: 

 ∑ = �∑11 ∑12
∑21 ∑22

� (4.22) 

 
where ∑11 is the 𝑘 × 𝑘 covariance matrix of selected 𝑘 measurements and  ∑22 is the covariance 
matrix of the remaining set. The selection criterion for finding sites containing the most 
information [4.24] is: 
 max

𝑘∈𝑝
|∑11|  𝑜𝑟 min

𝑘∈𝑝
�∑22|11� (4.23) 

 
where |∙| denotes the determinant of matrix and ∑22|11 is the conditional covariance matrix of 
the remaining set, given the selected ones. ∑22|11 can be computed as: 
 
 

∑22|11 = ∑22 −
∑21

∑11
∑12 

(4.24) 

 
There are 2𝑝 − 1 choices to select �𝑝𝑘�, thus it is not possible to find the global optimal set of 
variables in most applications. In this work, heuristic methods are explored to find the near-
optimal set of sites. We tackle this as a variable selection problem with filter methods, since 
there is no need for an evaluation method.  
 

There are many variants of filter methods for variable selection, such as selecting 
variables sequentially to maximize entropy. The filter method we propose is a two-stage 
Clustering-PCA based selection method. We compare this approach with wrapper methods based 
on site selections done with stepwise QDA and CART. The first method does not require a 
response variable as the later ones do, since it assumes the most informative sites can provide 
discriminative power for detecting “good” or “bad” wafers. In stepwise QDA and CART, our 
response variable is the class label of wafers, where the labels are the  categorical values “good” 
and “bad.” The “good” and “bad” labels are assigned according to results from Section 4.5.  

4.6.2.1. Clustering-PCA based Variable Selection 

The concept of the two-stage approach is to first cluster the sites into subclasses, and then 
to perform PCA based variable selection within each class to select the most informative sites. 
PCA is preferred here given the highly collinear structure observed among the sites. 
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 In this work, we have 348 wafers and 117 sites per wafer, thus it is desirable to select the 
appropriate clustering method for the clustering phase, since most distance metrics used in 
clustering suffer from the curse of dimensionality. In this work, spectral clustering is first applied 
as we described in section 4.6.1. A total of 4 classes of sites are retained. In the second phase, 
PCA based variable selection is then applied within each class. We denote this heuristic PCA 
based variable selection as an orthogonal sequential PCA approach. The details are as follows: 

1) Given input matrix 𝑋𝑘 of dimensions 𝑛 × 𝑝𝑘 for each class, 𝑛 is the total number of 
wafers, and  𝑝𝑘 is the number of sites in each 𝑘𝑡ℎ class resulting from clustering. We first 
transpose the 𝑋𝑘 to 𝑋𝑘𝑇 with dimensions 𝑝𝑘 × 𝑛.  

2) We then perform PCA on 𝑋𝑘𝑇 to obtain a set of loadings. The first loading vector 
corresponding to the first eigenvector of sample covariance matrix is retained as a 
selection basis, since it is the direction of largest variance among samples. The sample 
covariance matrix in this case is 𝑛 × 𝑛 rather than 𝑝𝑘 × 𝑝𝑘. Thus, the first loading vector 
is the 𝑛 × 1 dimension. 

3) The retained loading vectors are then used to select the site that has highest Pearson 
correlation coefficient from the original input matrix 𝑋𝑘. We denote the selected site 
denoted as 𝑝𝑘𝑗. 

4) To ensure the remaining sites do not the carry same information as the selected 𝑝𝑘𝑗 have, 
we project the 𝑋𝑘 onto the subspace orthogonal to the 𝑝𝑘𝑗, and the projected matrix is 
denoted as 𝑋𝑘𝑖   𝑖 ∈ 𝑝𝑘. The projection matrix 𝑃 and 𝑋𝑘𝑖  can be computed as follows: 
 
 𝑃 = 𝐼 − 𝑝𝑘𝑗𝑝𝑘𝑗𝑇 𝑝𝑘𝑗𝑇𝑝𝑘𝑗�  (4.24) 
 𝑋𝑘𝑖 = 𝑋𝑘𝑃𝑇 (4.25) 
 
This projection removes the component in the remaining sites that can be linearly 
explained by selected sites. 

5)  Steps 1 and 4 are iterated until all the sites within each class are ranked. The sites within 
each class are ranked in their selection order from 1 to 𝑝𝑘 with 𝑝𝑘 being the total number 
of sites available in the class. 
 
The selection of top ranked sites from all 4 classes can be chosen based the number of 

PCs needed to explain more than 95% of variance for samples in each class. In this work, we 
have retained the top 30 of 117 sites as the ones carrying significant amounts of information.  

 

4.6.2.2. Selecting Sites for Wafer and Lot Identification  

In this section, we utilize QDA and CART to select sites for two objectives: our first 
objective is to select sites that can discriminate a wafer’s relative position within a lot, and the 
second is to select sites that can discriminate the relative lot position the wafer is allocated.  

As concerns the first objective, the idea is that some sites may have significantly different 
performance from wafer to wafer while other sites within the same wafer tend to remain similar 
performance from wafer to wafer. This concept is visualized in figure 4.38 using the dataset 
discussed in section 4.3, where the die averages for wafers with same Wafer ID are overlaid on a 
wafer map. From the plot, we can observe that the center dies for wafers with Wafer ID 25 tend 
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to have different performances from the ones with Wafer IDs 1, 10 and 20. In a sense, the 
selected sites are the ones that contribute the most to variance at the wafer level, and they can 
capture wafer-to-wafer process variations after the lot effect is removed. The response variable in 
this case is the wafer ID for each wafer, while the predictor variables are the sites on wafer.  

 

Figure 4.38 wafer average for all the wafers with same Wafer ID 

For the second objective, the idea is that some sites may have significantly different 
performances from lot–to-lot, while other sites remain relatively similar from lot-to-lot. This 
concept is visualized in figure 4.39, where the die averages of wafers sharing the same Lot ID 
are overlaid on a wafer map. We can observe that some dies near the center of the wafer for Lot 
23 have different performances from Lots 1, 10 and 20. Thus, these selected sites are the ones 
that contribute most to variance at the lot level and capture lot-to-lot process variations. The 
success of identifying such sites depends on the nature of the applied dataset.  
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Figure 4.39 wafer average for all the wafers with same Lot ID 

As we have discussed concerning the available dataset in section 4.3, there are a total of 
348 wafers that span 23 lots. For each lot, there can be a maximum of 25 wafers. However, the 
number of wafers for our dataset is uneven. Therefore, we used the entire dataset of 348 wafers 
as a training set to extract the top 30 sites for Wafer ID discrimination and Lot ID discrimination. 
In a general application, one could collect more wafers to ensure that there are enough wafers for 
validation. 

For the objective of Wafer ID discrimination, we will need to remove the lot effect first. 
To remove the lot effect for each site, we first define 𝑝𝑖𝑗𝑘 as the median of the original 14PSROs 
at 𝑖𝑡ℎ site of 𝑗𝑡ℎ wafer of 𝑘𝑡ℎ lot and process the data as follows: 

 𝑝�𝑖𝑗𝑘 = 𝑝𝑖𝑗𝑘 − 𝑝̅𝑖𝑗∙ (4.26) 
 

where 𝑝̅𝑖𝑗∙ denotes the average values of all the sites within the same lot and 𝑝�𝑖𝑗𝑘 is the site value 
after lot average is removed. The input matrix 𝑋 has dimensions of 348 × 117 and outputs 1-
dimensional vector with categorical values from 1 to 25. Here, we denote the output as Wafer 
ID, and we have 25 classes of wafers. CART is applied to select the sites that provide 
discriminative power to Wafer ID.  
 

For the second objective, 𝑝𝑖𝑗𝑘 is used as input without any processing. Forward 
regularized QDA and CART are applied to select relevant sites for this objective. In this work, 
due to the small number of wafers available for each class and the high number of sites per 
wafer, we adopted a regularized QDA to avoid the curse of dimensionality. QDA assumes the 
117 sites from each wafer class follow multivariate Normal distributions with different 
covariance matrices. Thus QDA seeks to perform dimensionality reduction where the objective 
is to minimize within-wafer class scatter and maximize between-class scatter [4.25].  
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For both objectives, the 30 top-ranked sites are retained as measure sites. The performance 
of selected sets is evaluated using the FDC schemes discussed in section 4.5. 

4.6.3. Site selection for Wafer Map Interpolation with Wrapper methods 

The objective of site selection for wafer map interpolation is to select sites that offer the 
highest predictive power over the remaining sites. This is different from the case of site selection 
for process monitoring, where sites explaining the most variances about the dataset are selected. 
Suppose we also have 𝑛 wafers with 𝑝 dimensional measurement vectors, we can slip the 
available 𝑝 sites into two sets, 𝑈 and 𝑀, where U contains the sites not selected, and M contains 
the selected sites for measurement. The objective is then to minimize the sum of the square of 
prediction error for all unselected sites across all wafers: 

 
min��𝑦�𝑖𝑈 − 𝑦𝑖𝑈�

2
𝑛

𝑘

 
   (4.27) 

where 𝑦�𝑖𝑈 is the predicted site measurement value for the unselected set, and 𝑦𝑖𝑈 is the actual 
value. Thus, it is intuitive to use wrapper-based methods to perform site selection, since the 
selected set is dependent on the applied evaluation methods. We have adopted bootstrapping 
with a stepwise framework using prediction methods including PLS, and BPNN for site selection 
in this section. 

4.6.3.1. Bootstrapped stepwise PLS 

The combination of bootstrapping with stepwise is to reduce the high variance associated 
with stepwise models. Due to the high collinear structure of sites introduced by spatial 
correlation, PLS is the preferred prediction method, as it is capable of projecting high 
dimensional input and output variables onto lower subspace while maintaining the multivariate 
structure. The details of this approach are as follows: 

1) Suppose we have an input matrix 𝑋 of dimensions 𝑛 × 𝑝, 𝑛 is the number of wafers, and 
𝑝 is the total number of sites per wafer. We first bootstrapped out a sample set 𝑋𝑏having 
dimensions 𝑛 × 𝑝.   

a. Let us define U as the set of unmeasured sites and M as the set of measured sites 
and where 𝑝𝑗 denotes a site on wafer.  

b. Setting M = 0 and U = {𝑝1, 𝑝2,𝑝3, … ,𝑝117}, we first compute 𝑝 number of PLS 
model, where input is 1-dimensional vector 𝑝𝑗 and output is a 𝑛 × (𝑝 − 1) matrix 
with column vectors �𝑝𝑗+1,𝑝𝑗+2, … ,𝑝𝑗+116�. The 𝑝𝑗 giving the best prediction 
error as shown in equation 4.26 is selected as the first measured site. This 𝑝𝑗 is 
then removed from the U and added to M.  

c. Setting M = 1 and U = �𝑝𝑗+1,𝑝𝑗+2, … ,𝑝𝑗+116�, we then compute (𝑝 − 1) number 
of PLS model, where input is a 𝑛 × 2 matrix  and output is a 𝑛 × (𝑝 − 2) matrix 
with column vectors �𝑝𝑗+2,𝑝𝑗+3, … ,𝑝𝑗+116� . The 𝑝𝑗+1 offering the best 
prediction error as shown in equation 4.26 is selected as the first measured site. 
This 𝑝𝑗+1 is then removed from the U and added to M.  

d. The forward selection procedure stops when M = 30, since we limit the 
maximum number of measured site to  30 of the 117 available sites. 
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2) We perform 𝐵 number of bootstrapped models. For each bootstrapped model, we obtain 
30 sites with rankings from 30 to 1. To unselected sites, we assign a “0”. Thus we can 
have distributions of ranks for each site; the median statistics for each distribution are 
then extracted to rank the predictive power of each site. The top 30 sites with higher 
median statistics are retained as selected sites. 

4.6.4. Selected Sites Visualization and Performance Comparison 

In this section, we visualize the selected top 30 sites for five selection schemes on the 
wafer map in figure 4.40. The color indicates the importance and selection order of selected sites 
where “1” indicates the first selected one and “30” indicated the last selected one. The five 
selection schemes are: (A) Clustering-PCA variable selection; (B) CART on wafer ID; (C) 
Stepwise QDA on wafer ID; (D) CART on Lot ID; (E) Bootstrapped stepwise PLS. 

 
Figure 4.40 Visualization of site selection schemes 

The majority of sites selected by each scheme are located at the edge of the wafer. This 
indicates that wafers manufactured using this specific process have performance variations at the 
edges from wafer to wafer and lot-to-lot. The selected sites are used as inputs for outlier wafer 
detection with the multivariate methods discussed in Section 4.5. The results are presented in 
table 4.2.  For each method, we compare its training model accuracy and its testing set accuracy. 
The same training and testing sets are applied, in which the training set contains 20 “outlier” 
wafers and the testing set contains 18 “outlier” wafers. 

 (A) Clustering-PCA variable selection 
Methods 

Training: 174 20 
    Validation: 174 18 

Training  model accuracy Testing  set accuracy 
Misclassified True 

Alarm 
False 
Alarm 

Misclassified True 
Alarm 

False 
Alarm 

SPCA 
λ (95%) 10/174 1/20 9/154 13/174 1/18 12/156 
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𝑆𝐼𝐶𝐴  (95%) 15/174 3/20 12/154 18/174 2/18 15/156 

MD (95%) 12/174 3/20 9/154 15/174 2/18 13/156 

PCA (95%) 14/174 2/20 12/154 14/174 2/18 11/156 

ICA-PCA (95%) 13/174 2/20 11/154 16/174    1/18 12/156 

(B)CART on wafer ID 

Methods 
Training: 174 20 

    Validation: 174 18 

Training  model accuracy Testing  set accuracy 

Misclassified True 
Alarm 

False 
Alarm 

Misclassified True 
Alarm 

False 
Alarm 

SPCA 
λ (95%) 15/174 2/20 13/154 16/174 1/18 15/156 

𝑆𝐼𝐶𝐴  (95%) 17/174 4/20 13/154 19/174 3/18 16/156 

MD (95%) 18/174 3/20 15/154 20/174 4/18 16/156 

PCA (95%) 16/174 2/20 14/154 18/174 3/18 15/156 

ICA-PCA (95%) 14/174 1/20 13/154 17/174    3/18 14/156 

(C)Stepwise QDA on wafer ID 

Methods 
Training: 174 20 

    Validation: 174 18 

Training  model accuracy Testing  set accuracy 

Misclassified True 
Alarm 

False 
Alarm 

Misclassified True 
Alarm 

False 
Alarm 

SPCA 
λ (95%) 15/174 0/20 15/154 16/174 1/18 15/156 

𝑆𝐼𝐶𝐴  (95%) 19/174 3/20 16/154 20/174 2/18 18/156 

MD (95%) 18/174 3/20 15/154 18/174 3/18 15/156 

PCA (95%) 16/174 2/20 14/154 17/174 2/18 15/156 

ICA-PCA (95%) 15/174 2/20 13/154 15/174 2/18 13/156 

(D) CART on Lot ID 

Methods 
Training: 174 20 

    Validation: 174 18 

Training  model accuracy Testing  set accuracy 

Misclassified True 
Alarm 

False 
Alarm 

Misclassified True 
Alarm 

False 
Alarm 
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SPCA 
λ (95%) 14/174 1/20 13/154 14/174 1/18 13/156 

𝑆𝐼𝐶𝐴  (95%) 16/174 4/20 12/154 16/174 3/18 13/156 

MD (95%) 17/174 3/20 14/154 16/174 2/18 14/156 

PCA (95%) 14/174 2/20 12/154 15/174 2/18 13/156 

ICA-PCA (95%) 13/174 1/20 12/154 13/174 1/18 12/156 

(E) Bootstrapped stepwise PLS 

Methods 
Training: 174 20 

    Validation: 174 18 

Training  model accuracy Testing  set accuracy 

Misclassified True 
Alarm 

False 
Alarm 

Misclassified True 
Alarm 

False 
Alarm 

SPCA 
λ (95%) 14/174 1/20 13/154 13/174 1/18 12/156 

𝑆𝐼𝐶𝐴  (95%) 16/174 3/20 13/154 16/174 3/18 13/156 

MD (95%) 15/174 2/20 13/154 16/174 2/18 14/156 

PCA (95%) 15/174 3/20 10/154 15/174 4/18 11/156 

ICA-PCA (95%) 15/174 2/20 13/154 14/174 2/18 13/156 
Table 4.2 Evaluation of site selection using FDC models 

The results of our analysis presented in table 4.2 suggest that clustering-PCA based site 
selection tends to outperform other methods. The sites selected using the clustering-PCA based 
method provide monitoring capabilities more or less equivalent to measuring all the sites across 
the wafer. 

4.7. Conclusion and Future work 

In this Chapter, we have discussed a variety of methods to explore FDC model creation 
using hierarchical wafer data. These methods were then explored employing different site 
selection approaches to reduce manufacturing costs by allowing engineers to measure fewer sites 
while achieving the same process monitoring capability at the production line level. Similarity 
factors based on PCA SPCA 

λ  tend to perform best among the described techniques. Similarity 
factor for consecutive wafers can also be derived to track within-lot variation as shown in figure 
4.41, where there is a spike in statistic values when the lot is changed. Future work can be 
extended to create an online FDC model that employs a state space approach in which the 
selected sites can be robust enough to capture process dynamics. 
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Figure 4.41 Consecutive Wafer Similarity index from MD 
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Chapter 5 

Predictive Modeling of Solar Cell Variability 

Photovoltaic (PV) cells manufactured with different technologies and process flows are 
expected to exhibit variability in performance. Variations in the current and voltage 
characteristics lead to power loss known as mismatch when the cells are connected in series and 
in parallel within a network. The result of mismatch is that the maximum output power of the 
network will be less than the sum of the maximum output powers of the individual cells in the 
network [5.1].   

It is essential to characterize such performance distribution in order to reduce mismatch 
induced power losses. If the distributions of cell characteristics such as short circuit current (𝐼𝑠𝑐), 
open circuit voltage (𝑉𝑜𝑐) and maximum power output (𝑃𝑚𝑝) are known, then one can design a 
cost effective PV plant layout with the help of a PV array performance simulation produced 
using a SPICE simulator. In figure 5.1, we show a performance distribution plot obtained from 
BP solar. It is clear that the performance of cells follows a Gaussian distribution. 

 

Figure 5.1 Distribution of finished cells at BP solar [source: BP solar] 

In this chapter, our goals are to combine statistical techniques and the SPICE simulator to 
understand how environmental effects and process variations can impact final solar power 
output.  

In Section 5.1, we briefly describe how solar cells operate and their dependence on 
material properties and environmental conditions. The dependencies are shown using simulation 
results from SPICE and PC1D. In Section 5.2, we perform a simulation in SPICE to understand 
how mismatch depends on variations in cell’s characteristics. Then a statistical model is created 
to predict mismatch power loss, given cell network configuration and cell performance. The 
model results are compared with the results from a Bucciarelli [5.11] model. The possible 
binning of cells using a multivariate technique is also discussed alongside the simulation results.  
In Section 5.3, a SPICE based diode array simulator is implemented to understand how 
nonuniformities at the cell level can impact final cell electrical performance. The 
nonuniformities considered in this thesis are defect concentration dependent. A variety of defect 
patterns are created according to different spatial probability classes. Then, spatial statistics are 
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extracted for each pattern, and a statistical model is created to capture the how spatial 
nonuniformities can affect cell performance. In figure 5.2, we show how different variability 
components get lumped into the solar power system. 

 

Figure 5.2 Solar power system components 

From figure 5.2, we can see there are three primary types of variability source 
contributing to PV power output variability. Environmental variability includes weather, PV 
module layout orientation and site locations. Manufacturing variability includes fluctuations in 
electrical properties and the reliability of PV modules resulting from process variations. Balance 
of system variability includes variations in inverter performance, power cable resistance 
fluctuations and instability of maximum power point tracking (MPPT) control algorithms. 

5.1.  Solar Cell Characteristics and Operation 

Figure 5.3 represents a typical silicon based solar cell structure with its corresponding 
operation under irradiation. 
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Figure 5.3 Typical silicon based solar cells [5.2] 

In order to understand the behavior of solar power output under different operating 
conditions, it is necessary for a PV power plant designer to simulate solar cell performance in a 
circuit simulator for optimal design. The common equivalent circuit model applied to represent a 
solar cell is a single-diode model, but increased understanding of current loss due to 
recombination mechanisms has led to a 2-diode model being adopted for modeling. Especially in 
the case of thin film solar cells, the 2-diodes model is commonly chosen, since thin films are rich 
in grains and defects, and current loss due to recombination is more dominant [5.3]. The standard 
testing conditions (STC) for solar cell measurement are 1kW/m2 irradiation and Air Mass 1.5 
[5.4] spectrum at 25°C. For all existing PV technologies, it is common to observe a substantial 
discrepancy, around 30 to 40%, between “best of breed” laboratory cell efficiency and 
production cells. In figure 5.4, we show the IV curve of solar cells with critical performance 
parameters labeled.  

 

Figure 5.4 IV curve for solar cell 

As shown in figure 5.4, the electrical performance of a solar cell can be characterized by 
five electrical parameters: Isc, Voc, Imp, Vmp, FF [5.4]. To model the electrical behavior of a solar 
cell, an equivalent circuit model is needed. In this work, we have employed the 2-diode model 
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for modeling individual cells. The 2-diode model shown in figure 5.5 comprises two diodes to 
represent the loss of current due to the physical properties of PV cells, one lumped series resistor 
(𝑅𝑠) to account for resistive loss of photo-generated current due to bulk resistivity, contact 
resistance, a metal grid and current collection bus bar.  

The lumped series resistor might work well for assuming uniformity across the solar cell, 
but decomposition of this resistor into a distributive network of resistors for different loss 
mechanisms might be necessary for an accurate modeling of thin film solar cells. 𝑅𝑠 needs to be 
as small as possible. Another lump parameter is 𝑅𝑠ℎ, which is used to account for the leakage 
currents and shunt connection of PN junctions of the cell. The value of 𝑅𝑠ℎ needs to be as large 
as possible.    

 

Figure 5.5 2-diode equivalent circuit model for solar cell 

The diode D1 represents the diffusion current loss of a solar cell; the relative non-ideality 
of a solar cell compared to an ideal diode is accounted for by adding an n factor to the diode 
current equation. The diode D2 represents the current loss due to recombination at the space 
charge region for a solar cell. The recombination loss is more severe for thin film cells.  

The IV curve for solar cells can be described with following equations [5.5]. 

I = Iph − I01 �e
q(V+IRs)

nkT − 1� − I02 �e
q(V+IRs)

nkT − 1� −
V + IRs

Rsh
 (5.1) 

FF =
Imp ∗ Vmp

Pin
 

(5.2) 

𝜂 =
Imp ∗ Vmp

Pin
=

VocIscFF
Pin

 
(5.3) 

 
Parameter definitions for a solar cell are listed below: 
𝜂     Efficiency of the solar cell (%) 

Pin   Total incident power (W) 

Isc   Short circuit current (A) 

Iph   Photo-generated current (A) 

I01   Saturation current of Diode 1 (diffusion diode) (A) 

I02    Saturation current of Diode 2 (recombination diode) (A) 
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Imp   Current at the maximum power point (A) 

Voc   Open circuit voltage is also a function of temperature (V) 

Vmp  Voltage at the maximum power point (V) 

Pmp  Power at maximum power point (W) 

FF    Fill factor (dimensionless)  

K     Boltzmann’s constant, 1.381E-23(J/K) 

Q     Electron charge, 1.60218E-19 (coulomb) 

The illumination of PV cells generates a free charge carrier, which allows current flow 
through the connected load. The 𝐼𝑝ℎ is proportional to the incident irradiance and ambient 
temperature of the cell, and thus, PV modules are subjected to environmental variability, which 
can be characterized by spatial variations of 𝐼𝑝ℎ for individual cells across entire PV array. 𝐼𝑝ℎ is 
also directly proportional to Isc, and they are ideally identical. Isc and Voc are both material 
properties dependent, while Voc can be also expressed in terms of 𝐼𝑝ℎ [5.6], 

 
Voc =

nkt
𝑞

ln �
Iph
I01

+ 1� 
(5.4) 

 

where we have assumed the current loss due to the recombination diode, and where series and 
shunt resistances are relatively small. This is generally true in practice, given that I02 is often 
smaller than I01 by several orders of magnitude. 

Manufacturing induced variability for solar cells is reflected in the variation of a cell’s 
physical properties. To understand how variation in physical material properties can impact final 
cell efficiency, we employed a PC1D [5.7] device simulator to model the impact of physical 
properties on solar cell efficiency. The simulation was done with an N+PP+ single crystalline 
silicon-based solar cell with an aluminum back surface field [5.7]. The area was kept at 100 cm2, 
and front internal reflectance was set to 10%, to indicate that only 90% of incident light would 
pass through the interface. Texture height was kept at 1µm to trap more light. The emitter sheet 
resistivity of all simulated devices was 1.4 ohm-cm2. Five physical parameters were varied 
across a large range: thickness, background doping concentration, bulk lifetime, front surface 
recombination velocity (FSRV) and back surface recombination velocity (BSRV).   

The simulation results are shown in figure 5.6. The left table in figure 5.6 shows the 
baseline cell parameters, while the right plots are the simulation results of varying each physical 
property independently. We plot the efficiency vs. thickness of cell due to the fact that one of the 
limiting costs for Si-wafer based PV cells is the wafer thickness. 
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Figure 5.6 Effect of device parameter on solar cell efficiency 

The simulation results shown in figure 5.6 indicate that the bulk minority carrier lifetime 
is directly proportional to the final cell efficiency in the higher thickness region, and that BSRV 
is inversely proportional to final cell efficiency in the lower thickness region. Higher bulk 
minority carrier lifetime refers to material of higher purity, and lower BSRV means the back 
contact surface of the cell has a lower defect density. We have summarized the relationship 
between physical properties and electrical performance of cells in table 5.1 below, where + sign 
indicates directly proportional relationship and – sign indicates inversely proportional 
relationship.  

Physical 
parameter 

Isc Voc Pmax FF Efficiency 

Cell thickness + + + + + 

Device area + + + + + 

Background 
doping 

_ + + + + 

Texturing + NA + + + 

Junction depth _ _ _ _ _ 

Bulk lifetime + + + + + 

FSRV/BSRV + + + + + 

Metal Contact + + + + + 

 
Table 5.1 Material properties of solar cell vs. electrical performance 
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In order to understand the dependence of cell performance on equivalent circuit 
parameters, the effects of series resistance, shunt resistance, temperature, and irradiance profiles 
are investigated by performing a simulation in SPICE with the 2-diode model mentioned above.  
In Figure 5.7, we show the IV and PV curves of a solar cell when we sweep 𝑅𝑠ℎ from 1000 Ω to 
1 Ω and 𝑅𝑠 from 0.001 Ω to 1 Ω. And in figure 5.8, we show the IV and PV curves of a solar cell 
when sweeping 𝐼𝑝ℎ from 1.34A to 4.35A and sweeping 𝐼01 from 1𝑒−5 𝐴 to 1𝑒−8𝐴. Other 
parameters are assumed as follows for all sweeping conditions: 𝐼01 = 1𝑒−6𝐴, 𝐼02 = 1𝑒−12 𝐴, 
𝑅𝑠 = 0.001 Ω, 𝑅𝑠ℎ = 1000 Ω and 𝐼𝑝ℎ = 4.35 𝐴. The simulation results suggest that contact 
resistance related to 𝑅𝑠 and 𝐼𝑝ℎ has the most significant impact on final power output. 

 

Figure 5.7 Effect of 𝑅𝑠ℎ and 𝑅𝑠 on IV curve 

 

Figure 5.8 Effect of saturation current and photo-current on IV curve  



113 
 

The final output power of a solar cell is the result of different loss mechanisms, including 
limitations of material properties and environmental conditions. The summarized efficiency loss 
mechanisms are presented in figure 5.9. The loss of efficiency for a typical solar cell can be 
categorized into three factors: loss in 𝑉𝑜𝑐, loss in 𝐼𝑠𝑐, and loss due to parasitic resistance. 𝑉𝑜𝑐 is 
highly correlated to the defect density across cells and thickness of cell, while 𝐼𝑠𝑐 is dependent on 
how well the cell material can absorb sunlight. Parasitic resistance accounts for contact 
resistance and shunt path across junction. 

 

Figure 5.9 Efficiency losses mechanisms for solar cell [5.8] 

5.2. Investigation of Mismatch for Solar PVs 

As we have shown in figure 5.1, the performance of cells coming from the same 
production line can vary significantly. Even though binning has been done to group cells with 
similar performance together in order to construct a solar array, mismatch is still inevitable, 
given the statistical nature of cell characteristics. In addition to the manufacturing mismatch, 

Solar Spectrum (AM1.5) 
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environmental conditions also impose mismatch loss on cell arrays. It is important to have full 
insight as to how these variations can impact final power output performance when forecasting 
the energy output of solar power facilities.   

To reduce the effects of mismatch induced losses, PV engineers have focused primarily 
on three alternatives. The first is to perform binning to reduce the variation of cell characteristics 
due to production. The second one is to utilize different PV interconnect configurations for cell 
arrays. The third alternative is to create prediction models that can capture the relationship 
between cell characteristics and final PV power output. Kaushika [5.10] investigated the 
mismatch losses of a network of cells with experimental measurements of series cell strings and 
parallel strings where the number of cells connected in a series string varies, as does the number 
of cells connected in a parallel string. Bucciarelli’s model [5.11] was used to estimate the 
mismatch losses of fresh and aging cells. In this section, we investigate the mismatch induced 
power loss at the array level for different cell network configurations, as well as varying 
environmental conditions and propose a statistical model for predicting the mismatch induced 
power loss. We also explore statistical methods, including Kriging and NN, for accurate 
irradiance profile interpolation where the environmental variations can be coupled into PV power 
output forecasting cost effectively. 

5.2.1. Concept of Mismatch for Solar Cells 

In this section, we illustrate how cell variation can impact the final performance of 
parallel and series arrays using a SPICE simulation. The electrical parameters tuned to reflect 
changes in cell characteristics include: 𝐼𝑝ℎ, 𝑅𝑠ℎ, 𝑅𝑠𝑟, and 𝑉𝑜𝑐. For serial array simulation, we 
have two cells connected in series, one with higher Iph and one with lower Iph. The other 
electrical parameters were carefully tuned to ensure that we have significantly different Isc and 
similar Voc. For the parallel array simulation, we have two cells connected in parallel, where the 
electrical parameters were tuned to ensure we have significantly different Voc and similar Isc. 
The results are shown in figure 5.10.  

 

Figure 5.10 IV curves for mismatched combinations of two solar cells 
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In figure 5.10, the top two plots represent the serial array, while the bottom two plots 
depict the parallel array. In the serial array, we can see that the main limiting factor for mismatch 
induced power loss is the minimum maximum current of cells. In the parallel array, the main 
limiting factor of mismatch effects is the minimum maximum voltage of cells. Therefore, various 
configurations of cell networks have been constructed to address mismatch effects, as well as to 
maintain specific levels of output voltage and current to meet regulations. The most common PV 
interconnect configurations are shown in a later section. 

5.2.2. Environmental Variation  

In addition to the mismatch effect originating in process variation, environmental 
variations also impose mismatch losses. Such environmental variations include uneven 
distribution of the solar irradiance profile, and the degradation of cell properties over time due to 
field exposure. Uneven distribution of the solar irradiance profile generally results from the 
shading of cell surfaces as well as distributive nature of incident solar beams.  

Mismatch induced power loss due to degradation of cells generally increases with the 
amount of time the solar cells are used in the field. There are four main causes of the degradation 
of solar cells, including: material property-related, hot spot heating, surface soiling, and optical 
degradation of the module. It is difficult to obtain field data on degradation, because most 
investigations have been done using accelerated field tests in a laboratory. However, Ries [5.9], 
at the Schatz Energy research center, CA, compared PV module performance before and after 11 
years of field exposure. In that study, 191 PV modules were measured at normal operating cell 
temperature (NOCT) in 1990 and 2001. The data indicated that the variability in PV module 
performance increases after 11 years of field exposure. The results of this experiment are shown 
in figure 5.9. From the distribution of Pmp in figure 5.11, we can see that the variance of 
distribution becomes larger for 𝑝𝑚𝑝; this is mainly due to increased variance in the Isc. There 
have also been several review papers discussing how the performances of in-field solar panels 
vary over time and evoking possible causes for this variability. These findings suggest that PV 
modules do not fail catastrophically, but tend to degrade over time in a two stage process: rapid 
degradation ranging from 1% to 3% within the first couple years after exposure to sunlight, and 
then a slower degradation rate ranging between 0.25 to 1%/year. Based on this observation, one 
can propose a probabilistic approach to the model to predict the degradation of PV modules in 
the field and its impact on mismatch-induced power loss over time.  
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Figure 5.11 In-field measurement of solar cell characteristic over time [5.9] 

5.2.3. Simulation of Mismatch Losses for Lumped Variations 

In this section, we use MC simulations to show that that it is necessary to combine 
manufacturing and environmental variability at the small level to obtain accurate power output. 
The simulation contains 2000 runs of a 21x41-cells array, 21 cells for each series string and 41 
parallel strings. Environmental variability is introduced for every run by imposing a diffused 
irradiance profile generated by a uniform distribution with upper and lower bounds at 
[0.64 𝑠𝑢𝑛 1 𝑠𝑢𝑛], while temperature at each cell level is interpolated based on a linear 
relationship with the cell-level irradiation. Manufacturing variability is introduced by sampling 
each equivalent circuit parameter 𝐼𝑝ℎ, 𝐼01, 𝐼02,𝑅𝑠𝑟 , and 𝑅𝑠ℎ from Normal distributions. The 𝑃𝑚𝑝 
of the 21x41-cells array is then computed using the SPICE simulator. The results are then 
compared against simulation results with a uniform irradiance profile [0.8 sun] across the array, 
and identical manufacturing variability. The simulation concept is shown in figure 5.12 and 
distributions of output 𝑃𝑚𝑝 are shown for both cases in figure 5.13. 
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Figure 5.12 Simulation of manufacturing variability and irradiation variability 

 

Figure 5.13 Distribution of electrical performance of arrays 

We can observe, looking at figure 5.13, that without consideration for environmental 
variability, the 𝑃𝑚𝑝 is overestimated by 10% power. This significant reduction in output power 
suggests one should consider such irradiance profile changes when forecasting the energy power 
output for PV arrays. 

5.2.4. Simulation of Alternative Interconnect Configuration  

To increase tolerance for mismatch-induced loss, different PV configurations can be 
adopted, subject to cost considerations. Bridge-link and Total-Cross-Tied are two common 
alternate interconnect configurations.  

In figure 5.14, we present the IV curves of several configurations for partially shaded and 
unshaded cells, to illustrate how electrical performance can be protected using alternative 
configuration. All unshaded cells are assumed to have the same characteristics, with 𝐼𝑝ℎ =
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4.35𝐴, 𝑅𝑠ℎ = 1000 ohm, 𝑅𝑠 = 0.001 ohm and 𝑉𝑜𝑐 = 0.58𝑉, while shaded cells are assumed to 
have 𝐼𝑝ℎ = 2.18𝐴 and all other characteristics remaining the same. It is clear that the Bridge-link 
alternative offers slightly higher 𝑃𝑚𝑝 in the presence of shaded cells. For a large PV plant, such a 
configuration can avoid a significant amount of mismatch loss caused by the presence of 
shading. 

 In this thesis, we have also simulated 12 common configurations that have been 
discussed in the literature. Instead of simulating at the module level, we simulated at the cell 
level, where each unit in the configuration is a cell rather than module. The 12 configurations are 
shown in figure 5.15.  

 

Figure 5.14 IV curves for different network configurations 
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Figure 5.15 PV interconnect configuration or mismatch loss reduction 

In order to simulate the effects of mismatch for each configuration, we have sampled 
each cell characteristic randomly from among the following normal distributions with [𝜇 𝜎] as: 
𝐼𝑝ℎ = [4.35𝐴  0.435𝐴],𝐼01 = [1𝑒−6𝐴 1𝑒−7𝐴],𝑅𝑠 = [0.001 𝑜ℎ𝑚 0.0001𝑜ℎ𝑚],𝑅𝑠ℎ =
[1000𝑜ℎ𝑚 100𝑜ℎ𝑚], 𝑉𝑜𝑐 = [0.58𝑉 0.058𝑉]. Each PV configuration was sampled 2000 times; 
the means of the performance parameters for each PV array are shown in table 5.2 below. 

Interconnect 
configuration 

𝐼𝑆𝐶 𝑉𝑂𝐶 𝑃𝑚𝑝 % 
Mismatch 

(A) 23.9𝐴 1.04𝑉 19.8W 10.5% 
(B) 24.9𝐴 1.09𝑉 21.4W 11.1% 
(C) 24.5𝐴 1.08𝑉 20.3W 10.7% 
(D) 7.5𝐴 3.15𝑉 18.9W    13.2% 
(E) 7.9𝐴 3.38𝑉 20.0W 10.3% 
(F) 8.1𝐴 3.41V 21.5W 9.9% 
(G) 12.1𝐴 2.11V 20.6W 10.4% 
(H) 13.9𝐴 2.32V 23.2W 8.5% 
(I) 13.1𝐴 2.42V 22.5W 9.3% 
(J) 16.4𝐴 1.58V 22.8W 9.2% 
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(K) 17.1𝐴 1.69V 23.6W 9.1% 
(L) 17.5𝐴 1.71V 23.3W 9.3% 

Table 5.2. Electrical performance of different PV interconnect configurations 

The results in table 5.2 suggest that serial connections cause PV performance to 
deteriorate most when there is mismatch among cells. In practice, it is often necessary to reach a 
certain level of open circuit voltage to meet regulations, and thus serial connection is often used 
at the module level to connect cells. 

5.2.5. Statistical Model for Mismatch Prediction 

Given the variations in cell characteristics that result from production and environmental 
variations, it is desirable to be able to predict the mismatch induced power loss of solar arrays for 
specific networks. 

 Bucciarelli [5.11] estimated the mismatch losses of series string, parallel string and 
derived an explicit equation for more complex networks. In the Bucciarelli model, the variation 
between cell characteristics and their mean values is assumed to be very small. Also, a constant, 
𝒄, related to FF, was introduced to estimate mismatch induced power loss. The equation 5.5 
below explains the relationship between 𝒄 and FF. A graphic plot is also used to illustrate the 
nonlinear relationship between 𝒄 and FF in figure 5.16. 

𝐹𝐹 =
𝑃𝑚𝑝

𝐼𝑠𝑐𝑉𝑜𝑐
=

𝑐2

(1 + 𝑐)[𝑐 + ln(1 + 𝑐)] 
(5.5) 

 

 

Figure 5.16 c vs. FF 

Bucciarelli then derived the estimates of the expected values of maximum power and fractional 
power loss for a series string, parallel string and complex networks. The estimate equations are 
shown below. 

𝐸[∆𝑃]𝑠𝑒𝑟𝑖𝑒𝑠 =
(𝑐 + 2)

2
𝜎𝜂2 �1 −

1
𝑁�

 
(5.6) 



121 
 

𝐸[∆𝑃]𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
(𝑐 + 2)

2
𝜎𝜉2 �1 −

1
𝑀�

 
(5.7) 

𝑇 = 𝐿𝑀𝑁   (5.8) 

 𝐸[∆𝑃]𝑛𝑒𝑡𝑤𝑜𝑟𝑘 =
(𝑐 + 2)

2
�𝜎𝜂2 �1 −

1
𝑇�

− �𝜎𝜂2 − 𝜎𝜉2�
𝑁
𝑇

(𝑀 − 1)� 
(5.9) 

                                          

∆𝑃 is the mismatch loss, 𝜎𝜂2 is the variance of Imp, 𝜎𝜉2 is the variance of Vmp, 𝐿 is the number of 
cells in a single string, 𝑁 is the number of cells in the series string, and M is number of cells in 
the parallel string. In the Bucciarelli series array model, individual cells are assumed to exhibit a 
Gaussian probability density for Imp, with no variations in Vmp. For the parallel array mode, 
Bucciarelli assumes that the cells exhibit variations in Vmp with no variation in Imp. In practice, 
cells can have variations in both Imp and Vmp, as well as variations in other electrical parameters. 
Therefore our goal in this section is to create a statistical model that can capture the relationship 
between variations to electrical parameters and corresponding mismatch losses.   

In this work, we have used a Monte Carlo simulation to randomly sample cell 
characteristics from a defined Gaussian distribution. The samples were generated to ensure that 
we can cover a range of mismatch loss between 0 % and 95%. In practice, the mismatch loss for 
a solar array after binning is less than 10%. The variations in cell characteristics can be 
introduced by imposing a Gaussian distribution on Iph, I01, I02, Rsh, and Rsr. We then defined 
several metrics for cell variation, and mismatch loss as a function of these variation metrics; 

𝑀𝑃𝐿 =
∑ 𝑃𝑚𝑝_𝑖
𝑁
𝑖=1 − ∑ 𝑃𝑚𝑝_𝑎𝑟𝑟𝑎𝑦

𝑁
𝑖=1

∑ 𝑃𝑚𝑝_𝑖
𝑁
𝑖=1

 
(5.10) 

  

∆𝑋𝑚𝑎𝑥 =
𝑀𝑎𝑥(𝑋𝑚𝑎𝑥) −𝑀𝑖𝑛(𝑋𝑚𝑎𝑥)
𝑀𝑎𝑥(𝑋𝑚𝑎𝑥) + 𝑀𝑖𝑛(𝑋𝑚𝑎𝑥)   

(5.11) 

  
𝑀𝑃𝐿𝑠𝑒𝑟𝑖𝑎𝑙 = 𝑓(∆𝐼𝑚𝑎𝑥,∆𝑉𝑚𝑎𝑥,∆𝑃𝑚𝑎𝑥,∆𝐼𝑠𝑐,∆𝑉𝑜𝑐) (5.12) 

  
ln�𝑀𝑃𝐿𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙� = 𝑓(∆𝐼𝑚𝑎𝑥,∆𝑉𝑚𝑎𝑥,∆𝑃𝑚𝑎𝑥,∆𝐼𝑠𝑐,∆𝑉𝑜𝑐) (5.13) 

 
 Equation 5.10 defines the mismatch loss of a solar array in %. ∆𝑋𝑚𝑎𝑥 indicates the variation of 
cell characteristics. For a parallel array, logarithmic transformation of the mismatch loss % is 
used as a response variable. This is due to heteroscedasticity in the generated data, specifically, 
the tendency for higher value responses to have more variation. Log transform can stabilize the 
variance of response variables.   
 

In this work, we have utilized linear regression and neural network as our modeling 
techniques. We first show the results of linear regressions for serial and parallel arrays in figure 
5.13. For the proposed linear models, we simulated 2000 samples with MC; 1000 samples are 
used as a training set, while the other 1000 are designated as a validation set. Each set of samples 
consists of two cells connected in serial or parallel. As shown in figure 5.17, the validation 
results of the proposed linear models suggest better prediction power with the new extracted 
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metrics, in comparison to Bucciarelli model, especially when the mismatch loss is located in a 
small range, which is where most commercial cell arrays would exhibit mismatch loss after the 
binning process. 

 

Figure 5.17 Results of linear models for serial (Left) and parallel (Right) array 

BPNN was also applied with the new extracted metrics to capture nonlinearity in a PV 
system. To demonstrate the relative performances of NN and linear models against the 
Bucciarelli model, we simulated 10,000 samples with MC, of which 5000 samples were used as 
a training set while the other 5000 were used as a validation set. Each set of samples consisted of 
two cells connected in serial or parallel. The results of the NN, linear and the Bucciarelli models 
are shown in figure 5.18.  

 

Figure 5.18 Results of NN models for serial and parallel array (2-cells case) 

The results of both the linear and NN models, as shown in figure 5.14, compare favorably 
with results of the Bucciarelli model, especially in the region of small mismatch loss, which is 
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the most frequent actual case in practice. In table 5.3, we show the relative performance of each 
model with relatively simple interconnects. In table 5.4, we show the relative performance of 
each model with the alternative PV interconnect configuration discussed in Section 5.2.4. Each 
prediction model is based on 10,000 generated samples, with 5000 being a training set and the 
remainder designated as testing. 𝑅2 is chosen as the performance index in this case. 

PV interconnect Serial Parallel 
Linear NN Bucciarelli Linear NN Bucciarelli 

2 cells 0.99 0.96 0.92 0.99 0.97 0.65 
3 cells 0.97 0.96 0.89 0.98 0.96 0.62 
4 cells 0.96 0.96 0.86 0.96 0.95 0.62 
5 cells 0.95 0.95 0.83 0.94 0.95 0.59 
6 cells  0.95 0.95 0.83 0.92 0.95 0.58 

Table 5.3. Performance of Mismatch prediction models for serial and parallel PV interconnect configuration 

PV interconnect 
(parallel cases) 

Methods 
Linear NN Bucciarelli 

A 0.92 0.91 0.67 
B 0.91 0.92 0.63 
C 0.88 0.88 0.61 
D 0.87 0.91 0.58 
E  0.84 0.91 0.59 
F 0.87 0.87 0.58 
G 0.85 0.90 0.56 
H 0.86 0.89 0.57 
I 0.84 0.91 0.53 
J 0.83 0.88 0.54 
K 0.82 0.87 0.53 
L 0.83 0.85 0.53 

Table 5.4. Performance of Mismatch prediction models for alternative PV interconnect configuration 
 

The results shown in tables 2 and 3 indicate that we can achieve a relatively good 
prediction of mismatch with linear and NN models. This suggests that one can adopt simulation 
for creating a statistical prediction model for mismatch and achieve acceptable performance 
rather than using analytical equations such as the Bucciarelli model. In the case of alternative PV 
interconnection configurations, the Bucciarelli model is not able to capture the differences 
between Serial-parallel, Bridge-link and Total-cross-tied networks. 

5.2.6. Interpolate Solar Irradiance Profile 

To be able to predict the mismatch of PV arrays under operating conditions, one would 
need to characterize the individual cell submitted to environmental variations. Since most 
environmental variations result in changes to irradiance profiles across PV arrays, it is essential 
to incorporate accurate irradiance profile into the simulation when forecasting energy output for 
PV arrays.  
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The common approaches for quantifying solar irradiance during array performance 
measurements have thus far entailed using solar irradiance sensors such as thermopile-based 
pyranometers and pyrheliometers. However, such approaches come with high costs, require 
rigorous calibration, produce lumped spectral and optical effects, and installation procedures 
have often introduced difficulty in deploying the sensors densely across entire PV arrays or 
large-scale plants. Thus, it is desirable to be able to install a few irradiance sensors in a 
systematic way, and then interpolate an irradiance profile across entire PV arrays or plants using 
the measured irradiance locations. Accurate estimation of irradiance profiles can lead to better 
optimization of MPPT and correct forecasting of PV system energy output.  

Given the diffusive nature of irradiance profiles, one can apply statistical models to 
predict the diffused irradiance as function of locations. In this section, we utilize the Kriging and 
NN methods to interpolate a simulated irradiance profile. A spatially varying irradiance profile 
was first generated with a bimodal Gaussian function where the irradiance is dependent on (𝑥,𝑦) 
coordinates [5.14]: 

𝐺(𝑥, 𝑦) = 1 − �𝑒𝑥𝑝 �−
(𝑥 − 𝑥𝑐)2

𝜎𝑥
−

(𝑦 − 𝑦𝑐)2

𝜎𝑦
�� 

(5.14) 

 
where  (𝑥𝑐 ,𝑦𝑐) are the coordinates of the center of irradiance profile and �𝜎𝑥,𝜎𝑦� are the width 
of irradiance profile. One can adjust the parameters to obtain different irradiance profiles. The 
bimodal Gaussian function is preferred due to the fact that sunlight usually decreases gradually 
from a hot spot to the edge of an illuminated region.  
 

 In this work, we have simulated a 21x41 PV array, where 20 cells are connected in series 
for each string, and 40 strings are connected in parallel. In figure 5.19, we present two layouts 
for sensor placement: the left one includes 25% of cells with irradiance sensors, while in the 
right one 15% of cells have irradiance sensors. The generated irradiance profile is shown in 
figure 5.20. 

 

Figure 5.19 Layout of sensors 



125 
 

 

Figure 5.20 Generated irradiance profile for 21x41 sized PV array 

Prior to apply Kriging to interpolate the entire irradiance profile, we first computed a 
semivariogram for each layout and fit a theoretical variogram model to the semivariogram. The 
results are shown in figure 5.21 and indicate that with 25% sensor coverage we can capture most 
of the spatial variance of the irradiance profile. 

 

Figure 5.21 Spatial variogram models for kriging interpolation 

After the semivariogram model was computed, we applied Kriging to interpolate the entire 
irradiance profile. The performance of Kriging was then compared with the NN approach. In the 
NN approach, a nonlinear function is trained to capture the relationship between irradiance and 
location coordinates. The results are shown in figure 5.23. 
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Figure 5.22 Interpolation results for simulated irradiance profile 

Based on the plots shown in figure 5.22, we can see that if the irradiance profile exhibits 
a strong spatial dependence, then NN outperforms the Kriging approach with a lesser number of 
sensors. After the entire irradiance profile is interpolated, we then simulated the interpolated 
profiles in SPICE with corresponding 𝐼𝑝ℎ, 𝐼01, 𝐼02,𝑅𝑠𝑟 , and 𝑅𝑠ℎ, where 𝐼𝑝ℎ 𝐼01, 𝐼02 are adjusted 
based on the each cell’s irradiance and temperature, and 𝑅𝑠𝑟 ,𝑅𝑠ℎ are identical for all cells in the 
PV array. The IV and power curves for all four interpolated profiles are compared against the 
original ones in figure 5.23 The results suggest that NN outperforms Kriging in this case due to 
the fact that the data is generated from an explicit location based function. However, there can be 
measurement noise in actual field measurements, where the irradiance profile might not have a 
strong spatial dependence. In such cases, NN will underperform the Kriging approach. 

  

Figure 5.23 Simulated electrical performance for interpolated results 

5.2.7. Binning with Clustering and Multivariate Parameters 

In order to reduce mismatch power losses resulting from production, cell binning has 
become a common industrial practice, along with varying PV module interconnect 
configurations. Binning is done by grouping cells into different bins based on their performance, 
as shown in figure 5.24.  There are three common cell binning methods: binning by (1) 𝐼𝑚𝑝; (2) 
𝑃𝑚𝑝; (3) I at fixed V [5.15]. These three common methods all adopt a single parameter for 
grouping cells. As we have seen in simulation results from the previous section, this matches the 
expectation that a majority of mismatch losses result from current mismatch. However, ignoring 
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voltage mismatch might result in significant power losses, given that most PV arrays are 
connected in serial-parallel configuration to form modules. In this thesis, we assume the binning 
is done to ensure that mismatch losses are minimized at the module level. This assumption 
follows from the fact that cell manufacturer have different concerns than module manufacturers. 
A module manufacturer would have concerns about mismatch losses, reliability and conversion 
losses.   

 

Figure 5.24 Cell Binning process 

In this work, we propose a cell binning method that utilizes more information rather than 
relying on a single metric. This method is based on multivariate parameters including: 
𝐼𝑚𝑝, 𝑉𝑚𝑝, 𝑃𝑚𝑝, 𝐼𝑠𝑐 and 𝑉𝑜𝑐, while a K-means clustering technique is applied to assign cells into 
optimal bins. We argue that by incorporating more parameters into the binning process, the 
mismatch losses resulted from 𝑉𝑜𝑐 are also accounted for. In order to compare the performance of 
our proposed binning method with conventional approaches, we evaluate mismatch loss due to 
manufacturing variability and degradation according to each binning methods with a serial-36 
cells and the 12 alternative PV interconnect configurations we showed in figure 5.15. To observe 
which binning method is more tolerant for degradation over time, an annual degradation rate for 
the electrical performance of each cell was sampled from a bounded uniform distribution with 
upper and lower bounds as [0.25%, 0.75%]. The uniform distribution based degradation rate is 
assumed to reflect the in-field degradation rate of a PV array over a 25-year life-time. This 
degradation rate is then applied to 𝐼𝑠𝑐, 𝑉𝑜𝑐 and 𝐹𝐹 to correspondingly adjust the electrical 
parameters of cells.  

We first applied an MC simulation along with the PC1D device simulator to generate 
10,000 silicon based N+PP+ solar cells with manufacturing variability introduced to cells’ 
physical parameters. Each of the physical parameters is assumed to follow specific Normal 
distribution and be independently identical. Then, corresponding equivalent circuit electrical 
parameters including 𝐼𝑝ℎ, 𝐼01, 𝐼02,𝑅𝑠𝑟 , and 𝑅𝑠ℎ were extracted for each cell from their IV curves 
and their electrical performance parameters 𝑃𝑚𝑎𝑥, 𝐼𝑚𝑝, 𝑉𝑚𝑝, 𝐼𝑠𝑐, 𝑉𝑜𝑐 and 𝐹𝐹. The corresponding 
distributions of physical parameters and generated electrical parameters are shown in figure 5.25. 
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Figure 5.25 10,000 cells generated from Monte Carlo simulation 

The 10,000 simulated cells were then used as input samples for alternative cell binning. 
We show the simulation and mismatch evaluation flow in figure 5.26. The chosen binning 
methods to evaluate included: (1) Binning with 25% and 75% quantile of 𝐼𝑚𝑝 (2) K-means 
clustering with 𝐼𝑚𝑝 (3) K-means clustering with 𝑃𝑚𝑝 (4) K-means clustering with 
𝐼𝑚𝑝, 𝑃𝑚𝑝, 𝑉𝑚𝑝, 𝐼𝑠𝑐 and 𝑉𝑂𝐶. 

 

Figure 5.26 Simulation and evaluation flow for alternative binning 



129 
 

For each binning method, we then evaluated the binning performance by sampling cells 
from each bin and connecting them in the desired PV array configuration. For each sampled set, 
another run of MC was generated to simulate the effect of annual degradation introduced into 
each cell. The sampled degradation rate from uniform distribution was applied to 𝐼𝑠𝑐 and 𝑉𝑜𝑐. The 
degraded 𝐹𝐹, 𝐼𝑠𝑐 and 𝑉𝑜𝑐 were then used to adjust 𝐼𝑝ℎ, 𝐼01for degradation effects on the electrical 
performance of solar cell. The adjusted 𝐼𝑝ℎ and 𝐼01 were then fed into the SPICE simulator to 
extract performance for degraded cells. In this work, we simulated the degradation effect across a 
25-year time period. In figure 5.27, the % of power loss in a 36-cells serial PV array due to 
mismatch is plotted from year 1 to year 25 according to different binning methods. The % of 
power loss shown is the average of all the MC runs for a specific combination of bin assignment 
and sampled degradation rate.  

 

Figure 5.27 Performance evaluations for different binning method with serial array 

 

In figure 5.28, we present the year-25 mismatch results for all 12 alternative PV 
interconnect configurations according to different binning methods.  
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Figure 5.28 Performance evaluations for different binning method across different configuration  

Both figures 5.27 and 5.28 suggest that mismatch loss can be reduced across the entire lifecycle 
of a solar cell array using clustering binning methods that employ multiple performance 
parameters. 

5.3. Modeling Nonuniformities of Solar Cells  

Nonuniformities of the material properties of a solar cell have been known to impact final 
solar cell performance. Degrees of nonuniformity, including local variations in defect density 
and junction thickness variation are all usually measured using local minority carrier lifetime 
across the entire cell. It has been shown in the literature that there is a correlation between the 
spatially resolved carrier lifetime of cells and spatially resolved solar cell efficiency.  

Warta [5.16] investigated the correlation of local carrier lifetime of multicrystallene (MC) 
silicon and the corresponding monochromatic solar cell efficiency using microwave-detected 
photo-conductance decay (MW-PCD) measurements and illuminated lock-in thermography 
(ILIT). Good qualitative correlations between areas of reduced lifetime values and reduced 
efficiency of the finished cell were observed. However, the prediction of local and global solar 
cell efficiency from measured lifetimes on unprocessed wafers is of limited use, due to the 
incorrect results of lifetime measurements. MC Si solar cells are also subject to efficiency 
limitations due to defect clusters. A study presented by Sopori [5.17] shows that MC Si wafers 
used in commercial solar cell fabrication exhibit a tendency to form large clusters of defects, 
which remain laterally separated from each other. Defect clusters are often sites of impurity 
precipitation, and become the low-performing regions in the cell. They tend to shunt the device 
and constitute the primary efficiency limiting mechanism in current solar cells. Sopori’s paper 
[5.17] describes the nature of defect clusters, their formation mechanisms, and their effects on 
solar cell performance. An electronic model of a solar cell containing defect clusters is simulated 
and used to estimate the limitation of cell efficiency attributable to defect clusters. 
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 In figure 5.29, we can see how local defect density (b) directly corresponds to local 
photocurrent (a). This suggests that higher defect density can lower the electrical performance 
parameters of a cell. This phenomenon is validated by the results of an experimental study shown 
in figure 5.30, where we can observe that cells with distributions around lower means have better 
electrical performance. A lower mean for distributions of minority carrier lifetime indicates that 
the cell has a lower defect density. 

 

Figure 5.29 Defects vs. solar cell efficiency [5.16] 

 

Figure 5.30 Minority carrier lifetime distribution vs. electrical performance of cell [5.17] 

Along with experimental studies examining how these nonuniformities impact solar cell 
performance symmetrically, there have been multiple studies modeling these nonuniformities 
with distributive diode arrays, where an entire cell is divided into mini-cells that reflect local 
variations. However, they all lack a predictive model to characterize how different defect 
patterns can impact final cell performance. 

 In this section, we first review the past approaches that have been used to model 
nonuniformities. Then we propose a simulation flow that utilizes a 3-D distributive diode array 
to model different nonuniformities patterns. This simulation flow is shown in figure 5.31. The 
first step in the simulation flow is to generate different defect patterns, then populate these 
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patterns into a SPICE simulator where the distributive diode array is defined. Then, the 
corresponding cell parameters, including 𝐼𝑝ℎ, 𝐼01, 𝐼02,𝑅𝑠ℎ, 𝑅𝑠𝑟, and 𝑉𝑜𝑐, were extracted with 
PC1D for corresponding minority carrier-lifetime. The final solar cell performance is then 
extracted from the SPICE results. The entire simulation flow is automated using Perl scripts. 

 

Figure 5.31 Simulation flow for nonuniformities in cells  

With the simulator, we then create a statistical prediction model to capture the 
relationship between different defect patterns and final cell performance. This statistical model 
can be adopted in a production environment, as shown in figure 5.32, to predict final cell 
performance based on the defect image map obtained at an earlier production stage. 
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Figure 5.32 Statistical prediction models for cell performance  

As figure 5.32 illustrates, the first step of the statistical model is to filter out the noise 
from defect images, then statistics are computed to characterize these defect patterns. A library 
of defect images, along with corresponding statistics and cell performances, are then stored. This 
library can be used to train a prediction model for incoming solar cells. We will discuss the 
simulation flow and prediction model creation in the following sections. 

5.3.1. Diode Arrays For Nonuniformities   

The conventional approach in defect modeling for calculating the influence of defects on 
the material quality is to estimate the average carrier recombination and express it in terms of an 
average minority carrier-lifetime or diffusion length. However, a solar cell is a distributed device 
in which each region connects to other regions, and defect clusters at different locations affect 
the entire cell. Thus, it is necessary to calculate the electrical characteristics of each local region 
based on its local material properties, and then calculate the influence of each local region on the 
entire cell. We can thus calculate the influence of any defect distribution on final cell 
performance and determine the loss introduced by various defect distributions. 

 The entire cell can be modeled as a network model. The network model consists of an 
array of any size of small area, that is: local cells that are interconnected through a common 
junction and a bus. Each small-area cell is assigned a defect density corresponding to that in the 
actual wafer for the corresponding location. The modeling process has two steps. In the first step, 
each local cell is represented in terms of the recombination properties associated with its defect 
density, which yields values of 𝐼𝑝ℎ, minority carrier-lifetime 𝜏, and diode saturation currents 𝐼01 
and 𝐼02. In the second step, the diode array is interconnected using resistive elements to account 
for sheet resistance of junctions and metal contact resistance.  



134 
 

Different distributed solar cell models have been proposed in the literature for modeling 
nonuniformities. We have shown the 4 most cited models in figure 5.34. Karpov proposed a 
random diode array to model a thin-film device structure with a random distribution quality 
[5.18]. This model is shown in figure 5.33 (A). Abdelhalim [5.19] proposed a 1-dimensional 
distributed SPICE model for a solar cell, where the cell is divided laterally into identical 
segments in which the current distribution is the same. Each of the segments comprises the cell 
area from the center-line of a metallization finger to the line half-way to the neighboring finger. 
The number of segments is twice the number of metal fingers. All segments are connected in 
parallel.  This model is shown in figure 5.34 (B). The distributed model presented in Palma’s 
work [5.20] is for simulating the voltage drop on the front contact grid. This model is shown in 
figure 5.34 (C). The model shown in figure 5.34 (D) is a 2.5D distributed SPICE model for thin-
film cell structure [5.22].  

 
All these proposed distributed models focus on explaining specific parts of the loss 

mechanism, such as series loss due to front contact, or voltage loss due to junction quality. Also, 
these works fail to statistically describe how spatial nonuniformities impact the final cell 
performance when all these effects are lumped together. 

 

 

Figure 5.33 Distributed solar cell models [5.18, 5.19, and 5.20] 

The model we propose in this thesis is a 3-dimensional distributed solar cell model where 
the entire cell is modeled as an array of mini-cells. We have adopted SPICE to simulate this 
proposed cell model. This 3-D cell model is shown in figure 5.34. Each mini-cell is represented 
with a 2-diode equivalent circuit. The mini-cells are interconnected with metal contact resistors 
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at the top and transparent conductive oxide (TCO) resistors at the bottom. The metal contact 
resistors and TCO resistors are for modeling thin-film cells, since they are more subject to 
nonuniformities. In the case of silicon-based solar cells, we can eliminate these resistors. It is 
important to include the top and bottom contact resistance in a distributive manner for thin-film 
cells, because it has been shown that higher contact resistance in thin-film cells mitigates the 
impact of nonuniformities [5.18].  

We demonstrate the mitigation effect with simulation results shown in figure 5.35. The 
simulation is based on two scenarios applied to the 3-D distributive cell model, where each cell 
is a 10 × 10 distributive array. In both scenarios, we have the 4 mini-cells at the center of the 
array be defective according to the following parameters: 𝐼01 =  1𝑒−5𝐴;  𝐼02 = 1𝑒−9𝐴;  𝑅𝑠ℎ =
0.1Ω;  𝐼𝑝ℎ = 1.34 𝐴, while the remaining non-defective cells all have identical performances 
with parameters set to: 𝐼01 =  1𝑒−7𝐴;  𝐼02 = 1𝑒−12𝐴;  𝑅𝑠ℎ = 1000Ω;  𝐼𝑝ℎ = 4.34 𝐴. We then set 
the 𝑅𝑡𝑐𝑜 = 0.1Ω in scenario 1 and; 𝑅𝑡𝑐𝑜 = 0.01Ω in scenario 2. The electrical potentials across 
the entire cell are shown for both scenarios in figure 5.35. The left plot corresponds to scenario 1 
with 𝑅𝑡𝑐𝑜 = 0.1 and the right one is for scenario 2 with 𝑅𝑡𝑐𝑜 = 0.01. It is expected that the 
“defective” mini-cells at the center will suck in power from adjacent mini-cells. With relatively 
higher TCO resistance, this effect can be mitigated and the overall 𝑉𝑜𝑐 of entire cell will not be 
significantly affected. This phenomenon is validated with electrical potential plots in figure 5.36 
where higher contact resistances can prevent mini-cells near the defective mini-cell from 
suffering lower electrical potential. Thus relative higher 𝑉𝑜𝑐 can be retained. 

 

Figure 5.34 Diode arrays used for nonuniformities modeling   
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Figure 5.35 Electrical potential for mini-cells across cell surface 

  In order to understand how distributions of local properties impact entire cell 
performances, we utilized a baseline cell represented by a 20 × 20 array for simulation. This 
20 × 20 array was used for all later analysis. In this array, each mini-cell has variability 
according to five electrical parameters : 𝐼01,𝐼02,𝐼𝑝ℎ,𝑅𝑠ℎ,𝑅𝑠𝑟. We combined the 𝑅𝑡𝑐𝑜 from contact 
resistance and 𝑅𝑚 from material resistance as a lumped parameter 𝑅𝑠𝑟. In this simulation, we 
varied the distribution of each local electrical parameter independently. Gaussian distribution 
was applied in this case. The distribution of each parameter is listed in table 5.5a below: 

𝐼01 = [𝜇,𝜎] 𝐼02 = [𝜇,𝜎] 𝐼𝑝ℎ = [𝜇,𝜎] 𝑅𝑠ℎ = [𝜇,𝜎] 𝑅𝑠𝑟 = [𝜇,𝜎] 

�𝟏𝒆−𝟓,𝟎.𝟏𝝁  �𝟏𝒆−𝟓,𝟎.𝟐𝝁  [𝟏𝒆−𝟗,𝟎.𝟏𝝁  [𝟏𝒆−𝟗,𝟎.𝟐𝝁  [𝟎.𝟑𝟒,𝟎.𝟏𝝁  [𝟎.𝟑𝟒,𝟎.𝟐𝝁  [𝟎.𝟏,𝟎.𝟏𝝁] [𝟎.𝟏,𝟎.𝟐𝝁] [𝟎.𝟎𝟏,𝟎.𝟏𝝁  [𝟎.𝟎𝟏,𝟎.𝟐𝝁  
[𝟏𝒆−𝟔,𝟎.𝟏𝝁  [𝟏𝒆−𝟔,𝟎.𝟐𝝁  [𝟏𝒆−𝟏𝟎,𝟎.𝟏𝝁  [𝟏𝒆−𝟏𝟎,𝟎.𝟐𝝁  [𝟏.𝟑𝟒,𝟎.𝟏𝝁  [𝟏.𝟑𝟒,𝟎.𝟐𝝁  [𝟏,𝟎.𝟏𝝁] [𝟏,𝟎.𝟐𝝁] [𝟎.𝟏,𝟎.𝟏𝝁] [𝟎.𝟏,𝟎.𝟐𝝁] 
[𝟏𝒆−𝟕,𝟎.𝟏𝝁  [𝟏𝒆−𝟕,𝟎.𝟐𝝁  [𝟏𝒆−𝟏𝟏,𝟎.𝟏𝝁  [𝟏𝒆−𝟏𝟏,𝟎.𝟐𝝁  [𝟐.𝟑𝟒,𝟎.𝟏𝝁  [𝟐.𝟑𝟒,𝟎.𝟐𝝁  [𝟏𝟎,𝟎.𝟏𝝁] [𝟏𝟎,𝟎.𝟐𝝁] [𝟏,𝟎.𝟏𝝁] [𝟏,𝟎.𝟐𝝁] 
[𝟏𝒆−𝟖,𝟎.𝟏𝝁  [𝟏𝒆−𝟔,𝟎.𝟐𝝁  [𝟏𝒆−𝟏𝟐,𝟎.𝟏𝝁  [𝟏𝒆−𝟏𝟐,𝟎.𝟐𝝁  [𝟑.𝟑𝟒,𝟎.𝟏𝝁  [𝟑.𝟑𝟒,𝟎.𝟐𝝁  [𝟏𝟎𝟎𝟎,𝟎.𝟏𝝁  [𝟏𝟎𝟎𝟎,𝟎.𝟐𝝁  [𝟏𝟎,𝟎.𝟏𝝁] [𝟏𝟎,𝟎.𝟐𝝁] 

Table 5.5a. Parameters for simulation 

2000 Monte Carlo simulation runs were executed, varying individual parameters with 
Gaussian distribution while keeping other mini-cells constant using following values: 𝐼01 =
1𝑒−6𝐴, 𝐼02 = 1𝑒−10𝐴, 𝑅𝑠ℎ = 1000 Ω, 𝑅𝑡𝑐𝑜 = 0.01 Ω, 𝐼𝑝ℎ = 3.34 𝐴 as means, with sigma being 
10% of mean. The applied variations are summarized in table 5.5b. 

 𝐼01 𝐼02 𝐼𝑝ℎ 𝑅𝑠ℎ 𝑅𝑠ℎ + 𝑅𝑠𝑟 

Baseline [1𝑒−6𝐴, 10%] [1𝑒−10𝐴, 10%] [3.34 𝐴, 10%] [1000 Ω, 10%] [0.1 Ω, 10%] 
Monte 
Carlo 

[1𝑒−8, 1𝑒−5] [1𝑒−12, 1𝑒−9] [0.34 ,3.34] [0.1, 1000] [0.001, 1] 

Table 5.5b. MC simulation parameters for cell variability defined by Gaussian distribution with mean 
values 
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Figure 5.36 Monte Carlo simulation results for individual parameter fluctuations 

We analyze the simulation results in figure 5.36 with 5 plots where quintiles of the 
maximum power of entire cell performance are plotted against different conditions. The results 
suggest that the distributions of 𝐼01and 𝐼𝑝ℎ produce the largest impact on final cell performance. 
These two parameters are directly correlated with levels of defect density in cell. The simulation 
results shown in figure 5.36 imply that the spread of distribution does not impact the final output 
power of the cell as significantly as the mean does. However, the results also suggest that an 
identical distribution of local variations can result in cells that have final power output vary 
consistently from the norm by 15%.. This indicates that the location of defects can play an 
important role in final cell performance. In production, it is quite normal for cells to have similar 
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distributions in terms of physical properties such as defect density, but the location of defects can 
vary significantly. This phenomenon is illustrated in figure 5.37.   

 

Figure 5.37 Illustration of spatial distribution with same histogram 

5.3.2. Defect Concentration to Electrical Parameters  

In order to produce an accurate simulation model, it is necessary to be able to incorporate 
the variations in electrical behavior of material properties. In practice, one would need to 
measure cells with certain defect concentrations; the obtained IV curves would then be fed into 
optimization routines to extract equivalent circuit parameters. In this work, our focus is creating 
a predictive model for cell performance based on nonuniformity patterns. Due to the lack of 
experimental data, we have utilized binary defects in this work, where the mini-cell is defined to 
be defective or non-defective. The mini-cell is defined as defective if corresponding local defect 
concentration or minority carrier-lifetime is above a defined threshold level. In production, one 
would need to adopt optimization methods discussed below to extract corresponding local mini-
cell parameters based on measured minority carrier-lifetime. 

There exist multiple approaches to extracting electrical parameters from solar cell I-V 
curves. They can be grouped into three categories: direct approaches according to I-V 
characteristics, gradient based methods and global stochastic optimization methods [5.23].  

Among these methods, the direct approaches are based on the use of I-V curve features, 
such as axis intercepts and gradients at selected points, to determine specific cell parameters. The 
accuracy of these methods is thus limited by the numerical differentiation as well as by the 
simplified formulas used in parameter extraction. In addition, several different conventional 
nonlinear fitting algorithms, such as the quasi-Newton method and its variations, have been 
proposed to solve solar cell parameter extraction. However, nonlinear optimization also 
introduces a difficulty in that the extracting process cannot guarantee accurate results for the 
global convergence if it starts from an arbitrarily chosen initial guess. Therefore, using 
conventional gradient-based methods, we still cannot characterize the nonlinear behavior of the 
solar cell very well [5.24].  
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 In the literature, global optimizations such as GA, particle swarm optimization (PSO) 
and simulated annealing (SA) have been proposed to extract parameters with higher accuracy 
[5.25]. However, GA suffers some deficiencies in performance when the parameters being 
optimized are highly correlated. In such cases, the crossover and mutation operations cannot 
ensure better fitness of offspring because chromosomes in the population have similar structures, 
and their average fitness is high toward the end of the evolutionary process. In the case of 
simulated annealing, it is relatively hard to determine the temperature steps that allow fast 
converging to global minimum. PSO has been shown to have better accuracy than GAs and other 
gradient-based methods.  

5.3.3. Generation of Defect Patterns 

In practice, one would obtain an image map of carrier lifetime that correlates with defect 
concentration spatially across the cell, after which imaging process techniques could be applied 
to filter out image noise. Then, defect patterns could be characterized for each cell and 
corresponding cell efficiency inferred from defect patterns. In this work, due to the limited 
availability of industrial data, we have adopted a spatial probability approach to generate 
different spatial patterns. It is assumed that we have identical sizes of cells, and that the defect 
concentration can be categorized into binary levels. That means we can label certain locations of 
cell with “1” if the defect concentration exceeds our threshold level and “0” if the location is 
below our threshold. We then apply a spatial probability function, with the assumption that the 
defect level of a location is independent of the defect levels of other locations across the cell.   

The spatial probability function states that the defect level of a location is a function of its 
relative position within the cell: 𝑃(1 𝑜𝑟 0) = 𝑝(𝑥, 𝑦), where 𝑥 and 𝑦 are coordinates of the 
location. In this work, we have assumed each solar cell be represented by a 20x20-grid, each grid 
has a binary value of 0 or 1. The expressions of spatial probability 𝑝(𝑥,𝑦) for some common 
patterns are listed below [5.26]:  

𝑆𝑝𝑜𝑡:𝑝(𝑥,𝑦) = 𝑒𝑥𝑝�
−𝑟2

𝜎2� � , 𝑟2 = (𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2                
(5.15) 

𝑅𝑖𝑛𝑔:𝑝(𝑥,𝑦) = 1 − 𝑒𝑥𝑝�
−𝑟2

𝜎2� � , 𝑟2 = (𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 (5.16) 

𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒(ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙):𝑝(𝑥, 𝑦) = (1 + sin((2𝜋𝑦 ⁄ 𝑇) + 𝜃))
2�  (5.17) 

𝑅𝑒𝑝𝑒𝑡𝑖𝑣𝑒(𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙):𝑝(𝑥,𝑦) =
�1 + sin ��2𝜋𝑥

𝑇� � + 𝜃��
2
�  

(5.18) 

𝑀𝑖𝑥𝑒𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ("𝑂𝑅"):𝑝(𝑥, 𝑦) = 𝑝1(𝑥,𝑦) + 𝑝2(𝑥,𝑦) − 𝑝1(𝑥,𝑦)𝑝2(𝑥, 𝑦)    (5.19) 
𝑀𝑖𝑥𝑒𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ("𝐴𝑁𝐷"):𝑝(𝑥,𝑦) = 𝑝1(𝑥,𝑦)𝑝2(𝑥, 𝑦) (5.20) 

 

𝑥𝑐 and 𝑦𝑐 are assumed to be the origins of cells. For spot and ring patterns, the width is 
controlled by the parameter 𝜎. The repetitive horizontal or vertical pattern is characterized by 
repetitive rows or columns of defects whose positions are controlled by the parameters 𝑇and 𝜃.  
For mixed patterns, the defect pattern is the result of a logical “OR” or logical “AND” of the 
pattern 1 and 2 whose probabilities are 𝑝1(𝑥, 𝑦) and 𝑝2(𝑥,𝑦). Once the spatial probability is 
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generated for a specific pattern, binomial inversion is performed to convert the grids into “1” and 
“0.” In this work we have simulated 800 cells with 8 defect patterns. They are listed in table 5.6 
below. 

A:mixAnd_spot_xc10.5_yc10.5_sigma8_repVer_T5_phi0 𝑥𝑐=10.5 𝑦𝑐=10.5 𝜎=8,T=5, 𝜃=0 
B:mixOr_spot_xc10.5_yc10.5_sigma8_repVer_T5_phi0 𝑥𝑐=10.5 𝑦𝑐=10.5 𝜎=8,T=5, 𝜃=0 
C:repHor_T5_phi0 T=5, 𝜃=0 
D:repVer_T7_phi2 T=7, 𝜃=2 
E:ring_xc0.5_yc12.5_sigma10 𝑥𝑐=0.5 𝑦𝑐=12.5 𝜎=10 
F:spot_xc10.5_yc10.5_sigma8 𝑥𝑐=10.5 𝑦𝑐=10.5 𝜎=8 
G: binom_rand_p0.7 P=0.7 (70% defective rate) 
H: binom_rand_p0.3 P=0.3 (30% defective rate) 

Table 5.6. Generated defect patterns 

In figure 5.38, we show the spatial probabilities corresponding to Equations 5.15 to 5.20. 

 

Figure 5.38 Spatial probabilities of defect patterns 

For each class of spatial probabilities, 100 cells are generated. In figure 5.39, we show 
corresponding defect patterns generated using the above 8 spatial probabilities. 25 patterns are 
shown for each spatial probability. Each defective mini-cell is coded with a “black” color. 
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Figure 5.39 Binary defect patterns for different spatial probabilities 

5.3.4. Extraction of Spatial Statistics for Binary Defect Patterns 

After the defect patterns are generated, we need to extract statistics that can capture the 
characteristics of each defect pattern. There are two types of statistics we want to extract for each 
defect pattern: spatial statistics to capture the spatial characteristics of defects, and the degree of 
clustering exhibited by defects. For the first, we have adopted joint count statistics (JCs) [5.27] to 
compute the adjacency degree of defects. The spatial variogram and correlogram are then 
computed for JCs. The purpose of JCs is to convert the binary defect map into numerical 
continuous values. For the second objective, we compute a cluster index for each defect pattern. 
The assumption here is that the degree of defect clustering affects final cell performance. We 
then utilize statistical prediction methods to chart the relationship between these extracted 
statistics and cell performances. 

5.3.4.1. Computing Join-Count Statistics Using Spatial Correlogram and 
Variograms 

Join-count statistics (JCs) have been applied in the field of defect pattern identification 
for IC manufacturing [5.28]. JCs measure the degree of adjacency between different levels of an 
attribute. For this work, joint count measures the adjacency of good and defective grids, where 
each grid is a mini-cell.  

 
A join-count statistic contains two T statistics, one that measures the number of defective 

grids neighboring defective grids and another that measures the number of good grids 
neighboring good grids [5.29]. A join is formed when the two grids are located in the same 
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neighborhood. Let H denote a set of neighbors, and let n denote the total number of grids per 
cell. Under certain neighborhood constructions system, the number of possible joins is given by: 

 
 𝑐 = �𝑤𝑖𝑗

𝑖<𝑗

 (5.21) 

 
Where 𝑤𝑖𝑗 = 1 if (𝑖, 𝑗) are in the same neighborhood, 0 elsewhere.  
 

We can have three types of joins: 0-to-0 join (between good grids), 0-to1 join between 
functional and defective, and 1-to-1 join. To discriminate among the three joins, an indicator 
variable is introduced for grid i as 𝑥𝑖 = 1 for defective, 0 for good. Let 𝑐00, 𝑐01 and 𝑐11 denote 
the numbers of 0-to-0, 0-to-1, and 1-to-1 joins, then: 

 
            𝑐00 = �𝑤𝑖𝑗(1 − 𝑥𝑖)�1 − 𝑥𝑗�

𝑖<𝑗

 (5.22) 

𝑐01 = �𝑤𝑖𝑗�𝑥𝑖 − 𝑥𝑗�
2

𝑖<𝑗

 (5.23) 

 𝑐11 = �𝑤𝑖𝑗𝑥𝑖𝑥𝑗
𝑖<𝑗

 (5.24) 

 
𝑐00, 𝑐01 and 𝑐11 depend on the neighborhood construction rules. The King’s move and Rook’s 
move neighborhood construction rules are the most popular. The former is adopted in this work. 
 

Let 𝐻(𝑔) denote a set of g-th order neighbors, defined as grids that are g distant from 
each other. Join length g corresponds to the distance between the two grids involved. In this 
work, Manhattan distance is used as the distance metric. If the distance between two grids is 
denoted by 𝑑(𝑖, 𝑗), 𝐻(𝑔) can be written as:  
 

𝐻(𝑔) = {(𝑖, 𝑗) ∈ 𝑊|𝑑(𝑖, 𝑗) = 𝑔}   𝑓𝑜𝑟 𝑔 = 1,2, … . ,𝑚     (5.25) 
 
where W is a collection of all possible joins within the 20x20 grids map and m is the maximum 
length of join. The number of g-th order joins is: 
 
 𝑐(𝑔) = �𝑤𝑖𝑗(𝑔)

𝑖<𝑗

 (5.26) 

 
with 𝑤𝑖𝑗(𝑔) = 1   𝑖𝑓 (𝑖, 𝑗) ∈ 𝐻(𝑔) else 0.  
 

A generalized JC-based statistic with 𝑔𝑡ℎ order neighbors as a measure of spatial 
autocorrelation can be obtained as follows: 

𝑇(𝑔) = 𝛼0𝑓�𝑐00(𝑔)� + 𝛼1𝑓�𝑐11(𝑔)� (5.27) 
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Where 𝑐00(𝑔) and 𝑐11(𝑔) are the number of g-th order 0-to-0 and 1-to-1 joins and 𝑓(∙) is a 
monotonic function.  𝛼0 and 𝛼1 are subjected to constraint that : 

𝛼0 + 𝛼1 = 1; (𝛼0,𝛼1) = (𝑝, 𝑞)    (5.28) 
 
𝑝 is the defective rate equal to �𝑏 𝑁� �, where b is the number of defective local cells and N is the 
number of total local cells, 400 in our work. 𝑞 is equal to 1 − 𝑝. Based on central limit theorem, 
the standardized statistic 𝑇(𝑔) can be approximated using standard normal distribution as 
follows: 
 
 

𝑍𝑇(𝑔) =
𝑇(𝑔) − 𝑐(𝑔)𝑝𝑞
�𝑐(𝑔)𝑝2𝑞2

 
(5.29) 

 
where (𝑔) = 𝑐00(𝑔) + 𝑐11(𝑔) + 𝑐01(𝑔). 
 

The 𝑍𝑇(𝑔) is computed for all mini-cells across the 20x20 grid. Then, each cell with a 
different defective pattern can be characterized by a 20x20 numerical matrix. This 20x20 
numerical matrix can then be viewed as a map with continuous values to which we can apply a 
spatial variogram or correlogram to capture spatial differences. 

To characterize different defect patterns, empirical spatial variogram and correlogram 
were computed for each cell based on their JCs across the 20x20 grids. In figures 5.40- and 5.41, 
we show corresponding spatial correlograms and variograms for defect patterns shown in figure 
5.39.  

 

Figure 5.40 Corresponding spatial correlogram for spatial probabilities 
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Figure 5.41 Corresponding spatial variogram for spatial probabilities 

5.3.4.2. Computing  Clustered Index for Defective mini-cells 

Besides join-count statistics, we adopt three statistical indexes to compute the degree of 
clustering for the defective mini-cells. We expect that the degree of clustering of defective mini-
cells is correlated with differences in the final electrical performance of entire cells. If we can 
characterize the clustering sufficiently with statistical indexes, then a regression or classification 
model can be trained to infer final solar cell performance based on defect images at an earlier 
stage of processing. The clustering indexes described in this section are nonparametric; there is 
no assumption as to the defective mini-cells’ distribution. In this work, we have adopted three 
clustering indices to capture degrees of defective mini-cell clustering for each defect pattern. 

 
Degree of defect clustering can be measured based on the locations of defects. Jun [5.30] 

utilized projected defect location to describe defect patterns on semiconductor wafers. Thus, 𝐶𝐼𝑗 
is computed using the x and y and coordinates (𝑥𝑖 ,𝑦𝑖) of defects’ locations on the wafer map. 
The mean and standard deviation of intervals between adjacent defects’ coordinates are then 
used as metrics for measuring the degree of clustering. Despite the 𝐶𝐼𝑗’s advantage of requiring 
no statistical assumption about defect distribution, it tends to underestimate the degree of defect 
clustering.  
 
Definition 1: 
The first cluster index, 𝐶𝐼𝑀, was proposed by Tong [5.31] to relieve the drawbacks of 𝐶𝐼𝐽. It uses 
one dimensional rotation to compute the degree of clustering based on defect location 
coordinates. It is computed according to the following five steps: 
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1) Project the defect coordinates (𝑥𝑖 ,𝑦𝑖) onto a new axis obtained by rotating the x-axis 
counterclockwise using angle 𝜃0. The new coordinates for the ith defect with respect to 
𝜃0 can be calculated as follows: 
 

𝑥𝑖,𝜃∗ = 𝑐𝑜𝑠𝜃 ∗ 𝑥𝑖 + 𝑠𝑖𝑛𝜃 ∗ 𝑦𝑖    (5.30) 
 
where i denotes the ith defect, and 𝜃 represents a rotating angle, where 0 ≤ 𝜃 ≤ 180.  
 

2) Sort the 𝑥𝑖,𝜃∗  in ascending order and calculate the intervals between each adjacent 
coordinate value 𝑥𝑖,𝜃∗ . The intervals between each adjacent coordinate value 𝑥𝑖,𝜃∗  then can 
be calculated as follows:  
 
 𝑣𝑖,𝜃 = 𝑥𝑖,𝜃∗ − 𝑥𝑖−1,𝜃

∗  (5.31) 
 

3) Calculate the square coefficient of variation (SCV) for 𝑣𝑖,𝜃. The SCV for 𝑣𝑖,𝜃 can be 
determined as follows: 
 

𝑆𝐶𝑉𝜃 =
𝑠𝑣,𝜃
2

𝑣̅𝜃2
   

(5.32) 

          where 𝑆𝐶𝑉𝜃 represents the squared coefficient of variation for 𝑣𝑖,𝜃:  

 
𝑣̅𝜃2 = �∑ 𝑣𝑖,𝜃𝑛

𝑖=1 �
𝑛�  

(5.33) 

𝑠𝑣,𝜃
2 =

�∑ �𝑣𝑖,𝜃 − 𝑣̅𝜃�
2𝑛

𝑖=1 �
(𝑛 − 1)
�  

(5.34) 

4) Change the angle of 𝜃 and calculate the corresponding 𝜃 = 1°. The number of 180 𝑆𝐶𝑉𝜃 
values with respect to 𝜃 increased by 𝜃 = 1°, can be obtained through Steps 1-3.  
 

5) Calculate the 𝐶𝐼𝑀. According to the 𝑆𝐶𝑉𝜃 values obtained from step 4, the average 
𝑆𝐶𝑉𝜃 values determine the clustering index 𝐶𝐼𝑀 as follows: 
 
 

𝐶𝐼𝑀 =
∑ 𝑆𝐶𝑉𝜃180
𝜃=0

180
 

(5.35) 

 
Definition 2: 
The second clustering index [5.32] takes advantage of the angle between x and y coordinates for 
each defect on a wafer. It can be computed in the following steps:  
 

1) Calculate the angle between defect coordinate with x-axis in the first quadrant. Because 
randomly distributed defects tend to have consistent angle intervals, then the variance of 
all angle intervals is expected to be small. The angles between each defect’s coordinates 
are computed as follows: 
 𝜃𝑖 = tan−1�𝑦𝑖 𝑥𝑖� � (5.36) 
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where 𝜃𝑖is the angle between the ith defect coordinates (𝑥𝑖 ,𝑦𝑖) with respect to x-axis in 
the first quadrant.  
 

2) Rank 𝜃𝑖𝑠 in ascending order and calculate their intervals.  
 
 𝐴𝑖 = 𝜃𝑖 − 𝜃𝑖−1 (5.37) 
where 𝐴𝑖 is the angle interval and large variance of 𝐴𝑖𝑠 indicates a higher degree of 
clustering for defects. 
 

3) Determine the defect clustering index based on:  
 

𝐶𝐼𝐴 =
𝑆𝐴2

𝐴̅2
 

(5.38) 

 

where 𝐴̅ = ∑𝐴𝑖 𝑛� ; 𝑆𝐴2 = ∑ (𝐴𝑖 − 𝐴̅)2
(𝑛 − 1)�  

Definition 3: 
The third clustering index utilizes the distance between defect locations [5.31]. 𝐶𝐼𝐷 is computed 
as follows: 

 
1) Calculate the Euclidean distance between each defect coordinate and origin of the cell 
map.   
 

𝐿𝑖 = �(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦0)2 (5.39) 
  Where 𝐿𝑖 represents the Euclidean distance of the ith defect coordinates with respect to   

the origin (𝑥0,𝑦0). 

2) Rank 𝐿𝑖𝑠 in ascending order and calculate their intervals.  
 

 𝐷𝑖 = 𝐿𝑖 − 𝐿𝑖−1 (5.40) 
Where 𝐷𝑖 represents the distance intervals, and large variance of 𝐷𝑖𝑠 indicates the higher 
degree of clustering for defects. 

3) Determine the defect clustering index based on:   
 

𝐶𝐼𝐷 =
𝑆𝐷2

𝐷�2
 

(5.41) 

where 𝐷� = ∑𝐷𝑖 𝑛� ; 𝑆𝐷2 = ∑ (𝐷𝑖 − 𝐷�)2
(𝑛 − 1)�  . 

In the case of randomly distributed defects, the  𝐶𝐼𝐷values for both angles and distance intervals 
tend to be small. Thus, a large 𝐶𝐼𝐷 indicates higher degree of clustering. 

5.3.5. Prediction Model Results 

In this section, we created a statistical prediction model that utilizes the defective rate, 
and computed spatial correlograms, variograms, as well as clustering indices including 𝐶𝐼𝑀 , 𝐶𝐼𝐴 
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and 𝐶𝐼𝐷 as input to predict 𝑃𝑚𝑝 of solar cells. Each spatial variogram and correlogram contains 
information up to Lag 20 given the cell is simulated on a 20x20 grids. There were a total of 800 
solar cells simulated, with 8 spatial probability defects described in Section 5.3.3, and 100 cells 
generated for each spatial probability class. Each spatial probability class is denoted as a defect 
class. The simulation assumes binary defects, where a defective mini-cell is assumed to have 
electrical parameters of: 𝐼01 =  1𝑒−5𝐴 ;  𝐼02 = 1𝑒−9𝐴;  𝑅𝑠𝑟 = 0.01Ω ;𝑅𝑠ℎ = 0.1Ω ; 𝐼𝑝ℎ = 1.34 𝐴  
and a non-defective mini-cell is assumed to have electrical parameters: 𝐼01 =  1𝑒−7𝐴 ;  𝐼02 =
1𝑒−12𝐴;  𝑅𝑠𝑟 = 0.01Ω;𝑅𝑠ℎ = 1000Ω ; 𝐼𝑝ℎ = 4.34 𝐴. The 𝑅𝑠𝑟 = 0.01Ω accounted for contact 
resistance and material body resistance, and is assumed to be constant for both defective and 
non-defective cases, since higher defect density mostly affects photo-current generation and 
shunting path across cell junctions. 

The defective rate for generated cells is shown against their corresponding defect class in 
figure 5.42. 

 

Figure 5.42 Corresponding Defective rate for each defect class 

 We first compare how well each cell can be classified into corresponding defect patterns 
using the extracted statistics described above. The classification methods used here are 
classification tree and BNN. 400 cells are sampled from 800 cells in such a way that there are 50 
cells from each defect class. These sample cells are used as a training set while the remaining 
cells are used as a testing set. Both classification tree and BPNN models can achieve 
misclassification rates as low as 0.75%, meaning only 3 cells are misclassified among 400 testing 
cells. We present the result of classification tree model in figure 5.43. The variables providing 
the most classification power are:  

Lag1_spatialcorrelog
ram 

Lag2_spatialcorrelog
ram 

Lag10_Spatialcorrelo
gram 

Lag8_Variogr
am 

Defecti
ve rate 
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Figure 5.43 Pattern Classification result of Classification tree model 

For the prediction of maximum power output 𝑃𝑚𝑝, we employed a stepwise variable 
selection in combination with BPNN to predict the 𝑃𝑚𝑝 of the 400 testing cells. The 𝑅2 is 
approximately 0.9, however, this is due to leverage points created by the defective rate being the 
dominant factor. The fit result is shown in figure 5.44, and we overlaid predicted and actual 
results for the 400 testing cells in figure 5.45.  

  

 

Figure 5.44 Stepwise variable selection with BPNN results 
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Figure 5.45 Overlay plot for Pmp prediction results from BPNN  

The results in figure 5.44 show that the most dominant parameter for predicting 𝑝𝑚𝑝 is 
the defective rate, whereas all three cluster indices failed to provide predictive power. The 
overlay plot in Figure 5.45 indicates that the prediction model captures the differences of 𝑝𝑚𝑝 for 
different defect classes. However, it does not explain the variation of 𝑝𝑚𝑝 within a defect class, 
where defective rate is similar for all cells.  

5.4. Conclusion and Future work 

In this chapter, we investigated mismatch loss in solar PV networks due to manufacturing 
and environmental variations (Section 5.2). An empirical model based on extracted statistics was 
constructed to predict the mismatch loss of different PV networks. The empirical model was 
found to perform better than Bucciarelli’s model. We also proposed using clustering with 
multivariate parameters. The results show that we can gain slightly better mismatch loss across 
the lifetime of solar PV networks. In Section 5.3, we employed a 3-D distributive diode array to 
model nonuniformities. We then created a statistical prediction model to explain the relationship 
between defect pattern and final cell performance. A 𝑅2 of 0.9 was achieved with simulated data.  

Future work can focus on using real defect maps with corresponding measured electrical 
performances. We might also explore simulating defect patterns with continuous defect 
concentrations using a device simulator such as Sentaurus, permitting extraction of more realistic 
defective cell performances.  
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Chapter 6 

Conclusion and Future Work 

In this Chapter, we discuss the conclusion of three main research projects in this thesis in 
Section 6.1, and provide future direction for each work in Section 6.2. 

6.1  Thesis Summary 

This thesis first presents study in wafer-to-wafer metrology model creation with specific 
focus on plasma etching operation in Chapter 3. The prediction of wafer metrology with process 
tool sensor data is called Virtual Metrology (VM) model. The study for VM model focus on 
variable selection and model creation approaches. High dimensional and drifting nature of sensor 
data collected from production wafers makes it difficult to have a robust static VM model. To 
address the redundancy of data, we have explored several variable selection schemes from filter 
and wrapper approaches to select sensor parameters that are relatively significant to the response 
variable. Drifting nature of sensor data due to chamber events introduces artificial clusters in 
input data while the response variables do not show corresponding clusters. Therefore, we have 
also discussed detrending techniques to account for this phenomenon. However, there is not a 
general solution or detrending sensor parameters, and one has to rely on expert domain 
knowledge to apply appropriate detrending. Various multivariate prediction methods such as 
Principal Component regression (PCR), Partial Least Square (PLS), Neural Network (NN), 
Regression Tree (CART), and K-nearest neighbor (KNN) regression have been employed to 
predict the etch bias of plasma etching operation with sensor parameters as input. The results 
show that we can obtain a testing  𝑅2 around 0.76 with NN model.  

The thesis then presented FDC (fault detection and classification) methods for wafers 
using site-to-site metrology as input. We have utilized spatial statistics such as spatial variogram 
and multivariate statistics to detect wafers with disrupted patterns. The multivariate methods 
discussed include Mahalanobis distance, PCA and ICA. Among them, similarity factor derived 
from PCA SPCA 

λ tends to perform better. We then performed site selection methods to select 
optimal sites for process monitoring. The idea is to capture most information needed for process 
monitoring with fewer measured sites. The best performing site selection method was based on 
clustering-PCA variable selection approach where one first partition the sites into subset then 
select the most informative sites of each subset. 

In last section of thesis, we model the variability of solar PVs. SPICE simulator has been 
utilized to simulate different PV networks. We first investigated mismatch loss of different PV 
networks under environmental and manufacturing variations. Then an empirical model based on 
extracted statistics is then created to predict mismatch loss of different networks. The model 
result is then compared against analytical Bucciarelli’s model. We then modeled nonuniformities 
of solar cell with distributive diode network. 800 cells with different defect patterns were 
simulated in SPICE, and spatial statistics based on join count along with clustering indices are 
computed for each cell. We then trained a statistical prediction model with BPNN to predict the 
maximum power output of each cell based on their defect patterns.  A 𝑅2~0.9 was achieved 
across cells from different defect classes. However, the model lacks of predictive power for cells 
coming from same defect class.  
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6.2  Future Work 

Future work for creating robust VM model would require more focus on selecting 
variables and accommodation of process dynamics. The selected variables should capture within-
lot and lot-to-lot variation for response variables such as CD bias or Etch rate. We have observed 
there are some predictor variables exhibit higher correlation with response variables within lot 
and across several lots, however this correlation is weaken if we sample wafers from lots ranging 
over a longer production period.  One could utilize state space approach to adaptively update the 
model coefficients based on evolving correlation among variables. VM model can also be 
applied as a system health indicator rather than replacing real metrology measurement results. 
Thus threshold value can be set to trigger alarm for equipment maintenance.   

The work for enhanced metrology with site-to-site metrology data can be extended into 
two directions. The first direction would be implementation of online FDC model where an 
adaptive approach can be applied to update process mean and correlation structure among sites. 
The model would also need to be validated against real faulty wafers. Another direction would 
be selecting optimal sites for entire wafer map interpolation. In such case, engineer can only 
measure a few sites then predict the metrology results of other sites on the same wafer.   

The next step to extend the work of modeling variability of solar cell would be utilize a 
device simulator that can couple realistic material and physical properties to simulate how 
different defect concentration can impact final cell performance. In this thesis, we have assumed 
binary defect patterns where mini-cells are classified into defective and non-defective cases. This 
might lead to mistreatment of interaction among adjacent mini-cells.   

 

Reference 

 


	Dissertation_Abstract.pdf
	Title.pdf
	ABSTRACT.pdf
	List.pdf
	TABLE OF CONTENTS
	List of Figures…………………………………………………………………………………      v
	List of Tables………………………………………………………………………………….       x
	Acknowledgments…………………………………………………………………………….      xi


	Chapter 1_cjs&DK10092012.pdf
	Chapter 2_cjs&DK10092012.pdf
	The fabrication process of PV cells is relatively simple in comparison to IC manufacturing since the PV cell does not have a complicated structure. However, there are many variants in terms of process due to different types of PV cells. PV cells can b...
	Solar cell plants take the wafer through a high technology semiconductor processing sequence to create working solar cells. In C-Si, wafers typically undergo a process sequence of etching, diffusion, and screen-printing steps before they are tested an...

	Chapter 3_cjs&DK10092012.pdf
	[3.14] Chu, Y.-H., Qin, S. . (2004).Fault detection and operation mode identification based on pattern classification with variable selection. Ind. Eng. Chem. Res.43 (7): 1701-10.

	Chapter 4_cjs&DK10092012.pdf
	Chapter 5_cjs&DK10092012.pdf
	Chapter 6_cjs&DK10092012.pdf

