
Techniques for Machine Understanding of Live Drum

Performances

Eric Battenberg

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-250

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-250.html

December 14, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Techniques for Machine Understanding of Live Drum Performances

by

Eric Dean Battenberg

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Nelson Morgan, Chair
Professor David Wessel
Professor Kurt Keutzer

Fall 2012

Techniques for Machine Understanding of Live Drum Performances

Copyright 2012
by

Eric Dean Battenberg

1

Abstract

Techniques for Machine Understanding of Live Drum Performances

by

Eric Dean Battenberg

Doctor of Philosophy in Engineering - Electrical Engineering and Computer
Sciences

University of California, Berkeley

Professor Nelson Morgan, Chair

This dissertation covers machine listening techniques for the automated real-
time analysis of live drum performances. Onset detection, drum detection, beat
tracking, and drum pattern analysis are combined into a system that provides
rhythmic information useful in performance analysis, synchronization, and re-
trieval. The techniques are designed with real-time use in mind but can easily be
adapted for offline batch use for large scale rhythm analysis.

At the front end of the system, onset and drum detection provide the locations,
types, and amplitudes of percussive events. The onset detector uses an adaptive,
causal threshold in order to remain robust to large dynamic swings.

For drum detection, a gamma mixture model is used to compute multiple
spectral templates per drum onto which onset events can be decomposed using
a technique based on non-negative matrix factorization. Unlike classification-
based approaches to drum detection, this approach provides amplitude informa-
tion which is invaluable in the analysis of rhythm. In addition, the decay of drum
events are modeled using “tail” templates , which when used with multiple spectral
templates per drum, reduce detection errors by 42%.

The beat tracking component uses multiple period hypotheses and an ambigu-
ity measure in order to choose a reliable pulse estimate. Results show that using
multiple hypotheses significantly improves tracking accuracy compared to a single
period model.

The drum pattern analysis component uses the amplitudes of the detected
drum onsets and the metric grid defined by the beat tracker as inputs to a gener-
atively pre-trained deep neural network in order to estimate high-level rhythmic
information. The network is tested with beat alignment tasks, including downbeat
detection, and reduces alignment errors compared to a simple template correlation
approach by up to 59%.

i

To my parents.

ii

Contents

Contents ii

1 Introduction 1
1.1 Applications . 1
1.2 Multimedia Content Analysis . 2
1.3 System Overview . 3

2 Onset Detection 4
2.1 What is an Onset? . 4
2.2 Common Approaches to Onset Detection 4
2.3 Real-Time Onset Detection for Drums 6
2.4 Onset Detection Accuracy . 8

3 Drum Detection 10
3.1 Introduction . 10
3.2 Approaches to Drum Detection 10
3.3 System Overview . 11
3.4 Extraction of Spectrogram Slices 12
3.5 Training drum templates . 14

3.5.1 Clustering with the Itakura-Saito Divergence 14
3.5.2 The Gamma Distribution 15
3.5.3 The Gamma Mixture Model 16
3.5.4 Agglomerative Clustering with Gamma Mixture Models . . 18

3.6 Decomposing Drum Onsets . 19
3.6.1 Non-negative matrix factorization 19
3.6.2 Non-negative vector decomposition 20

3.7 Drum Detection Evaluation . 21
3.7.1 Test Setup . 21
3.7.2 Results . 22
3.7.3 Discussion . 24

4 Beat Tracking 26

iii

4.1 What is Beat Tracking? . 26
4.2 Existing Approaches . 27

4.2.1 Beat Period Estimation 28
4.2.2 Phase Estimation . 30

4.3 A New Approach to Beat Tracking for Live Drums 31
4.3.1 Multi-Signal, Multi-Scale Autocorrelation 32
4.3.2 Base Period Model . 33
4.3.3 Multi-Hypothesis Pulse Tracking 38
4.3.4 Meter and Tatum Inference 42

4.4 Evaluation . 43
4.4.1 Test Set . 43
4.4.2 Beat Tracking Evaluation Method 43
4.4.3 Results . 44

5 Analyzing Drum Patterns 50
5.1 Introduction . 50
5.2 Previous Work on Downbeat Detection 51
5.3 Deep Learning . 52

5.3.1 The Restricted Boltzmann Machine 52
5.3.2 Stacking RBMs . 54
5.3.3 The Conditional Restricted Boltzmann Machine 55

5.4 Modeling and Analyzing Drum Patterns 56
5.4.1 Bounded Linear Units . 56
5.4.2 Label Units . 57
5.4.3 Modeling Drum Patterns 58

5.5 Training the System . 59
5.5.1 Training Data . 59
5.5.2 Network Configurations 59
5.5.3 Network Training . 60
5.5.4 HMM Filtering . 63

5.6 Downbeat Detection Results . 63
5.6.1 Classifying Subdivisions 63
5.6.2 Using HMM Filtering . 66

5.7 Discussion of Results . 67

6 Discussion 71
6.1 Practical Considerations . 72

6.1.1 Computation . 72
6.1.2 Scheduling . 73

6.2 Contributions . 74
6.3 Future Directions . 75

iv

Bibliography 76

v

Acknowledgments

First I would like to thank my advisors David Wessel and Nelson Morgan for
their guidance and help throughout this long process of getting a PhD. David,
your many ideas inspired everything I worked on, and I’m grateful that I had the
opportunity to work on music applications with you. Morgan, I would’ve never
finished if it hadn’t been for your advice on research organization and goal setting.
Thank you to Ian Saxton for lending his time to perform all of the recorded drum
tracks used in chapters 2 and 3. Lastly, thank you to my parents for always being
there for me through the ups and downs and for instilling within me a love of
music and mathematics.

1

Chapter 1

Introduction

The goal of this thesis is to provide new techniques that enhance the automated
analysis of rhythm in music. In particular, the focus is on creating techniques
that would be useful in the real-time rhythmic analysis of a live drum perfor-
mance, but the approaches covered can easily be applied to other applications
in machine listening, such as polyphonic beat tracking, source separation, or the
analysis of audio sequences. There are three primary contributions of this thesis,
each of which represents a piece in a complete drum understanding system. Fig-
ure 1.1 shows the three primary components: drum detection, multi-hypothesis
beat tracking, and drum pattern analysis. In addition to these three, a fourth
component, onset detection, serves as a pre-processing step for both the drum
detection and beat tracking components. Each of these is designed with real-
time operation in mind, so a purely causal approach is taken with an attention
to throughput latency; however, these components can easily be modified for of-
fline operation and their accuracy will surely be improved with the addition of
non-causal information.

1.1 Applications
The aim of the proposed system is to enable percussionists and drummers to
enhance their practice and performance experience. The basic idea is that a
drummer plays a percussive rhythm, and in real-time, the system outputs infor-
mation such as the tempo, beat locations, and rhythmic structure of the drum
beat. These outputs can be used by separate systems in order to generate ap-
propriate musical accompaniment, synchronize backing tracks or lighting effects,
or tightly synchronize aspects of a computer music performance by a separate
musician.

Ideally, such functionality will allow a drummer to greatly expand his or her
musical contribution. Since the system will track the rhythmic beats of what

CHAPTER 1. INTRODUCTION 2

beat locations +
meter/tatum

periods

Onset
Detection

Drum
Detection

Input
Drum Audio

Multi-
Hypothesis

Beat Tracking

Drum Pattern
Analysis

Measure-aligned
Beat Locations

additional
rhythmic

information

onset
locations

onset detection
function

drum activations
(time+magnitude)

Figure 1.1: The components of the drum understanding system. These four com-
ponents are covered in the next four chapters.

is being played, a synthesized bass line, chord harmony, or pre-arranged accom-
paniment could be synchronized with the drumming. The backing tracks that
drummers commonly have to synchronize with during a live performance could
instead be synchronized with the drumming. Instead of playing to a click track,
the drummer creates the click track by playing a rhythm. This functionality could
also be used to enhance practice sessions or music education by providing timing
or accuracy feedback or allowing a virtual band to play along with the drumming.
The key idea is that instead of the drummer having to play along with the music,
the system would enable a computer to play along with the drummer.

1.2 Multimedia Content Analysis
Multimedia content analysis is becoming an increasingly important field given the
exponential growth of audio and video databases. Such techniques are important
for efficient and effective content-based search, recommendation, navigation, and
tagging. In the audio realm, the development of content analysis techniques has
been grouped into fields with names such as machine listening or machine hearing.
Speech processing is probably the most mature sub-field within machine listening,
but the growing body of music information retrieval (MIR) research points to
the expanding need for other types of audio analysis. Within MIR, automated
rhythm analysis techniques augment spectral qualities, such as pitch, harmony,
and timbre, by adding information about temporal qualities, such as beat, tempo,
meter, and groove. Together, these spectral and rhythmic qualities form a more
complete picture of a piece of music as a whole; in music, you can’t have one
without the other.

CHAPTER 1. INTRODUCTION 3

There are an abundance of MIR techniques that are designed to operate on
databases of recorded music; however, the real-time analysis of live content has
seen much less work. Despite this, my work on live drum analysis does not stand
alone. Robertson [69] and Collins [16] have both focused on the practicalities
of implementing, using, and evaluating real-time drum analysis systems in the
context of interactive performance. Their work demonstrates the fact that rhythm
analysis techniques can in fact be applied in real-time with good results. What
is missing in much of the work on rhythm analysis is the application of machine
learning techniques to replace or augment the heuristically designed rules that
dominate existing tasks such as beat tracking and meter analysis. My work on
drum detection and drum pattern analysis is an attempt to bring more machine
learning into rhythm analysis.

1.3 System Overview
The four components shown in Figure 1.1 (onset detection, drum detection, beat
tracking, and drum pattern analysis) are covered in the next four chapters. The
onset detector, which is covered in Chapter 2, locates rhythmic events (drum hits)
in time and communicates these locations to the drum detector. Also, the beat
tracker makes use of the intermediate onset detection function, which contains
the onset likelihood at each point in time. Chapter 3 covers the drum detection
component, which decomposes each onset onto a set of learned drum templates
in order to quantify how much each drum contributed to an onset. This drum-
wise onset information is used by both the beat tracker and the pattern analysis
component. The beat tracking system (covered in Chapter 4) uses the onset
detection function and drum onset locations to output the locations of rhythmic
beats along with additional metrical information, such as the meter or beat sub-
divisions. Lastly, Chapter 5 discusses my approach to drum pattern analysis. This
component analyzes the output of the beat tracker and drum detector in order to
make higher-level rhythmic inferences such as beat-measure alignment, perceived
tempo, or rhythmic style information.

4

Chapter 2

Onset Detection

2.1 What is an Onset?
Music is a temporal art form. Each sound, pitch, tone, note, chord, or noise that
makes up a piece of music occurs at a meaningful point in time. Even the sound
pressure waves that embody each musical event are dependent on the continued
progression of time. In the analysis of rhythm, when things occur is of primary
importance, and a simple way to measure when things occur is to detect the
beginning, or onset, of each event.

In [5], Bello makes distinctions between the attack, transient, and onset of a
note. If a transient is a short interval of time in which the musical signal evolves
in a relatively unpredictable way, then the attack is the time interval during which
the amplitude envelope is increasing at the beginning of the transient. From these
definitions, the onset is a location in time chosen to represent the beginning of the
attack, or as Bello says, the earliest time at which the transient can be reliably
detected.

In the case of percussive instruments such as drums, the attacks are typically
very well localized, so onsets are much easier to detect compared to some other
classes of instruments, such as bowed stringed instruments or woodwinds. Because
of this, there wasn’t a great need for innovation in my approach to onset detection.
Nevertheless, accurate results are always desired, so I outline the approach I used
in this short chapter.

2.2 Common Approaches to Onset Detection
The most common methods used to detect onsets are covered by Bello in [5]. His
tutorial breaks down onset detection into three steps: pre-processing, reduction,
and peak picking.

CHAPTER 2. ONSET DETECTION 5

First is a pre-processing step which computes some type of transformation on
the input audio signal in order to improve the ability of subsequent steps to detect
onsets. This step typically involves a multiple frequency band decomposition
or a transient/steady-state decomposition. The multi-band decomposition aids
robustness by allowing each sub-band to be analyzed separately for transients.
The transient/steady-state decomposition accomplishes the same by isolating the
transient parts of the signal.

The second common step can be referred to as the “reduction” stage, in which
the pre-processed input signal is reduced to a simple onset detection function
(ODF) from which onsets can be located much more easily. The simplest reduction
involves computing the envelope of the input audio.

Env(n) =
1

N

N/2−1∑
m=−N/2

|x(n+m)|w(m) (2.1)

Where x(n) is the audio signal, and w(n) is a window function of length N .
From such a detection function, the local maxima can be located, and the hope

is that these maxima correspond to onsets. However, the above simple envelope
follower is not a useful onset detection function because envelope peaks do not
tend to correspond to perceptual onsets. An improvement would be to take the
first order difference (derivative) of the envelope to detect the locations where
the envelope is most strongly increasing. Typically the output from this discrete
derivative is half-wave rectified, retaining only the positive changes in amplitude
while rounding the negative changes up to zero.

The Weber-Fechner law states that the perceptual just-noticeable-difference
between stimuli is proportional to the magnitude of the stimuli. Klapuri uses this
fact in a compressed multi-band energy detection function [47]. This approach
uses a multi-band decomposition in its pre-processing step followed by a compres-
sive logarithmic differentiation of the energy in each band which simulates the
perceptual effect stated in the Weber-Fechner law because:

d log (E(t))

dt
=
dE(t)

dt

1

E(t)
(2.2)

Where E(t) is the energy in a band at time t.
After this transformation, the band-wise signals are summed into a single

detection function. My method uses an onset detection function similar to this.
Other approaches to computing the ODF include a spectral novelty measure

that measures the difference between the current complex spectrum and a pre-
diction of the current spectrum conditioned on the past [6]. This approach has
been shown to work better for strongly pitched instruments that lack percussive
onsets. A more recent and novel approach uses a temporal Recurrent Neural Net-
work (RNN) which is trained to output the probability that an onset is occurring

CHAPTER 2. ONSET DETECTION 6

at the current frame [25][13]. The RNN is fed with local spectrum data and first
order spectrum differences in order to make its predictions. This RNN-based ap-
proach is one of the few approaches to onset detection that uses machine learning
to compute the ODF, and it achieves state-of-the-art performance.

After computing the onset detection function, a peak picking procedure is used
to identify onset locations. This procedure could be as simple as identifying all
local maxima in the ODF above a constant threshold; or, more complex processing
and thresholding of the ODF could be used. Many of the techniques that compute
reliable peak thresholds operate in a non-causal manner, which precludes their use
in real-time systems. These thresholds are typically computed as a function of
statistics describing a local window of the ODF, such as a percentage of the mean,
median, or maximum. Some methods use a heuristic rule that limits the temporal
proximity of detect peaks. The application of these common peak picking methods
to real-time onset detection is examined in [12].

2.3 Real-Time Onset Detection for Drums
An overview of my approach to computing an onset detection function is shown
in Figure 2.1. My approach is similar to that presented by Klapuri in [47], in that
I compute the ODF using the differentiated log-energy of multiple sub-bands.
The reason for analyzing the signal in multiple bands is to allow for the robust
detection of onsets even in instances when much of the spectrum is still filled
with energy from a previous onset. Analyzing the logarithmic energy landscape
in each band individually can help detect less energetic onsets that the human ear
is capable of detecting.

First, I compute Fast Fourier Transform (FFT) on each frame of audio using
a window size of 23ms and a hop size of 5.8ms (1024 and 256 samples, respec-
tively, at 44.1kHz). The energy in each band is computed by summing the energy
in overlapping triangularly shaped frequency windows. Compared to Klapuri’s
method, I use a larger number of sub-bands (20 per channel) spaced according to
the Bark scale. The energy in the ith sub-band of the nth frame of samples, si(n),
is processed using mu-law compression as a robust estimation of pure logarithmic
compression, according to eq. (2.3).

ci(n) =
log(1 + µsi(n))

log(1 + µ)
(2.3)

I use a large value of µ = 108 in the above in order to enhance the detection of
more subtle drum notes. In order to limit the detection of spurious, non-musical
onsets, the compressed band energies, ci(n), are smoothed using a linear phase
Hann (a.k.a. Hanning) window [59] with a 3dB cutoff of 20Hz to produce zi(n).

CHAPTER 2. ONSET DETECTION 7

audio in

o(n)
onset detection function

ci(n)

si(n)

zi(n)
dzi(n)

Sub-band energy
20 Bark bands/channel

Mu-Law
compression

µ = 108

Smoothing
Hann window

20 Hz cutoff

Half-wave
rectified
derivative

Mean across
subbands

FFT
window size = 23ms
hop size = 5.8ms

Figure 2.1: Diagram of the onset detection system. The audio sample rate is
44.1kHz

Then zi(n) is differentiated and half-wave rectified to get dzi(n). To arrive at the
final onset detection function, o(n), I take the mean of dzi(n) across sub-bands.

To pick onset locations from the detection function, I first find the local max-
ima of o(n). Then, local maxima are labeled as onsets if they are larger than a
dynamic threshold, Tdyn [eqs. (2.4–2.6)]. In addition, the detection function must
have dropped below the local dynamic threshold since the last detected onset.
These criteria were chosen with causality requirements in mind.

I have experimented with many types of dynamic thresholds. Typical ways to
compute a dynamic threshold are covered in [5]. The primary dynamic threshold
I utilize is shown in eq. (2.4), where Pi(n) represents the ith percentile of the set

O(n) = {o(n), o(n− 1), . . . , o(n−N)},

where N is chosen so that O(n) contains the most recent 1 second of the detection
function.

T1(n) = 1.5(P75(n)− P25(n)) + P50(n) + 0.05 (2.4)

However, due to causality requirements, we also need a way to quickly increase
the threshold after a passage of silence. This is accomplished using a percentage
of the maximum value, P100(n), of O(n) as shown in eq. (2.5).

T2(n) = 0.1P100(n) (2.5)

The final dynamic threshold is calculated as the power mean between T1(n) and
T2(n) [eq. (2.6)]. The power mean is chosen to simulate a softened maximum

CHAPTER 2. ONSET DETECTION 8

between the two values.

Tdyn(n) =

(
T1(n)p + T2(n)p

2

)1/p

(2.6)

I use a value of p = 2, which results in a fairly soft maximum. As p → ∞, the
power mean approaches the true maximum.

2.4 Onset Detection Accuracy
In the overall drum understanding system, the onset detector determines which
frames are analyzed for the presence of individual drums (as described in Chap-
ter 3), and it produces the input which drives beat tracking (as described in Chap-
ter 4); therefore, its accuracy is of the utmost importance. The accuracy of my
approach to onset detection is evaluated using a dataset containing recorded audio
of drum set performances. The audio was recorded using multiple microphones
and mixed down to two channels of audio, as is common during live performances.
Audio samples were recorded at a 44.1kHz sampling rate with 24 bits of resolution.
Overall 23 minutes of audio were recorded consisting of 8022 annotated onsets.
The tempo of the performed rhythms varies between 94 and 181 beats per minute
(BPM). The shortest annotated interval between onsets is ∼83ms (16th notes at
181 BPM), though this time interval is infrequent. The shortest commonly oc-
curring interval is 16th notes at 100 BPM, which is equivalent to 150ms between
onsets.

I evaluated onset detection accuracy using precision and recall rates:

Precision =

(
correctly detected onsets

detected onsets

)
(2.7)

Recall =

(
correctly detected onsets

actual onsets

)
(2.8)

To count correctly detected onsets, I iterate through the list of annotated
onsets and attempt to match them with the detected onsets. If the difference
between a detected onset time and an actual onset time was within 10 frames
(roughly 58ms), it was counted as correct. The onset detection results are shown
in Figure 2.2.

Precision, recall, and F-score are plotted against a linear adjustment to the
dynamic threshold, Tdyn. The F-score is defined as the harmonic mean of precision
and recall.

F1 = 2× precision× recall
precision + recall

(2.9)

The threshold adjustment (+0.028) corresponding to the maximum F-score (0.948)
is labeled in the plot. As is the case in most detection problems, the threshold

CHAPTER 2. ONSET DETECTION 9

adjustment controls a trade-off between precision and recall, so the optimal ad-
justment depends on the particular application. At the original threshold (+0.0),
the F-score is 0.941 with a recall of 0.944 and a precision of 0.939. These values
are deemed to be quite satisfactory, so I use this original threshold to locate onsets
for the drum detection application presented in the next chapter.

0.0 0.2 0.4 0.6 0.8
Threshold Difference

0.0

0.2

0.4

0.6

0.8

1.0
Onset Detection Accuracy

recall
precision
fscore
fscore=0.948
threshold=+0.028

Figure 2.2: Precision, recall, and F-score for onset detection with varying thresh-
old. The maximum F-score and its corresponding threshold adjustment are denoted
by a pink dot and dotted lines. This threshold adjustment (+0.028) gives a recall
of 0.931 and a precision of 0.965.

10

Chapter 3

Drum Detection

3.1 Introduction
There is much more to rhythm analysis than the locations of onsets. In the
analysis of pitched instruments, each onset may correspond to a different note
or chord, so that a series of onsets could describe a specific melody or harmonic
progression that has a completely different musical meaning than a different series
of notes with the same relative locations in time. When analyzing a series of
drum onsets, which drum is being struck and how loudly determines the feel of the
rhythm and helps to define a rhythmic pattern. My motivation for developing live
drum detection techniques stems from the fact that the activation (onset time and
amplitude) of individual drum events is much more informative than non-drum-
specific onset locations when determining perceptual beat locations and classifying
rhythmic patterns. For example, in rock and jazz music, the drummer typically
keeps time on one of the cymbals by playing some sort of repeating pattern (e.g.,
straight eighth or quarter notes or a swung ride pattern), while the snare and bass
drum will typically accentuate certain beats within a measure.

3.2 Approaches to Drum Detection
Early approaches to drum detection focus on classifying single isolated drum
sounds [40][41] or using spectral features to classify each drum onset [34][30].
The approaches used by Paulus [61] and FitzGerald [28] use source separation
techniques to separate drum audio into drum-wise source signals and then detect
onsets from each signal belonging to each type of drum. The results presented by
Paulus show very accurate transcription results for performances on three different
drums.

More recent work on drum detection attempts to transcribe a drum perfor-
mance from within a polyphonic multi-instrument audio track. This task is much

CHAPTER 3. DRUM DETECTION 11

more difficult than drums-only transcription due to the presence of non-target
instruments and the typically low volume level of drum audio compared to other
instruments. Tanghe [71] uses spectral features extracted at onset locations to
classify which drum an onset came from, if any. Gillet [31] augments this featured-
based classification approach by adding pre-processing steps that enhance the
drum signal relative to other instruments. Yoshii [76] uses a novel adaptive ap-
proach to polyphonic drum transcription by starting with general drum templates,
matching the templates to reliable drum onsets, and then refining the templates
to better match the specific drums used on the track.

There has also been work on isolating the drums from the rest of the instru-
ments using source separation techniques, primarily Non-negative Matrix Factor-
ization (NMF) [38][75][3]. Source separation is an important problem in the field
of music information retrieval that attempts to isolate sound sources (instruments,
notes, sound samples, noise, etc.) as separate signals [63]. This can greatly en-
hance music analysis tasks such as genre/artist classification, beat-tracking, lyrics
synchronization, and automatic transcription.

My approach to drum detection uses techniques derived from NMF [52] to com-
pute the contribution of individual drums to spectrogram slices that are extracted
at onset locations. Each drum is modeled by one or more spectral templates onto
which drum onsets can be decomposed. The decomposition provides drum-wise
amplitude information that is missing in classification-based approaches. The
next section gives an overview of this approach to drum detection.

3.3 System Overview
My drum detection system is comprised of four primary components: onset de-
tection, spectrogram slice extraction, drum template training, and non-negative
vector decomposition (NVD). Onset detection (covered in Chapter 2) is used to
locate significant rhythmic events to be spectrally analyzed. During the train-
ing of the spectral template(s) of a particular drum, spectrogram slices at onset
locations are clustered using a probabilistic formulation of the Itakura-Saito di-
vergence [65]. The cluster centers are then used as time-frequency templates for
each trained drum. Live drum detection is accomplished by locating drum events
and decomposing the spectrogram slices of each event as a non-negative mixture
of drum templates. A block diagram of the system is shown in Figure 3.1.

In a live drum detection system, we have the luxury of training templates for a
single target drum kit. It is assumed that sound samples of the individual drums
can be gathered during sound check or sometime before a performance, so we can
specialize the spectral templates for the specific drums that will be used.

My approach differs from previous approaches in that it learns multiple tem-
plates per drum to account for the vast array of sound qualities that can be

CHAPTER 3. DRUM DETECTION 12

produced by a particular drum. For example, a snare drum can produce a large
variety of sounds depending upon the striking velocity and whether the drum stick
hits the center, edge, or rim of the drum.

In addition, my system incorporates the use of “tail” templates to address
the problem that occurs when long-decay percussion instruments (e.g., cymbals)
overlap with successive drum onsets, thereby degrading detection accuracy.

Onset
Detection

Spectrogram
Slice

Extraction

Gamma
Mixture Model

Non-negative
Vector

Decomposition

cluster parameters
(drum templates)

drum
activations

performance
(raw audio)

training data
(drum-wise audio)

Figure 3.1: System overview. The dotted connections are present during training,
while the solid connections are used during live performance

In the following three sections, I describe the approach used for spectrogram
slice extraction, drum template training, and non-negative vector decomposition,
respectively.

3.4 Extraction of Spectrogram Slices
The primary feature I use to perform drum detection is a spectrogram slice that is
local to a detected onset event. In previous work that applies non-negative matrix
factorization to drum transcription, the features used in drum detection are simply
the local spectra which contain no time-based transient information [61]. Like in
Yoshii’s template-based approach to drum transcription [76], I use a number of
adjacent spectral frames to detect the presence of drums. This allows us to capture
characteristics of the attack and decay of a particular drum.

The short-time spectra that make up a spectrogram slice are extracted using
the same 23ms Hann window and 5.8ms hop size as is used for onset detection.
The energy spectrum is then dimensionality-reduced by summing the energy into
80 sub-bands per channel spaced according to the Bark scale. In [3], I have shown
that NMF used for drum source separation can be sped up significantly using
this sub-band-based, dimensionality-reduction approach with no loss of separation
quality.

CHAPTER 3. DRUM DETECTION 13

A spectrogram slice is comprised of 100ms worth of adjacent spectral frames
(about 17 frames). The window of frames used in the slice begins 33ms before
the detected onset and ends 67ms after the onset as shown in Figure 3.2. This
offset helps to ensure that the window contains the entire attack of the onset.
In addition, during training, I extract a further 100ms of spectrum frames, af-
ter the initial slice, to be used in computing “tail” templates. When performing
non-negative vector decomposition (NVD) on input spectrogram slices, these tail
templates serve as “decoys” to prevent the long decay of a previous drum onset
(e.g., cymbal crash) from incorrectly showing up in the drum activations of the
current onset. These tail templates account for the intrusion of these long de-
cays into subsequent spectrogram slices, and the activations of tail templates are
ignored in the final drum detection output.

Detected Onset

80
 b

an
ds

33ms 67ms 100ms

Head Slice Tail Slice

Figure 3.2: Spectrogram slice alignment. A head slice is 100ms wide and starts
33ms before the corresponding detected onset. The tail slice starts 100ms after the
beginning of the head slice.

The head and tail spectrogram slices are both smoothed across frames using
a 29ms Hann window and downsampled by a factor of 2 in order to allow the
slices to be more robust to variations in microtiming. Finally, the square root is
taken to move the data from the energy domain to the magnitude domain. During
training, these head and tail slices are fed to the drum template training stage
covered in the following section. During live performance, only the head slices are
used as input to the template-based decomposition covered in Section 3.6.

CHAPTER 3. DRUM DETECTION 14

3.5 Training drum templates
To model the time-frequency characteristics of individual drums given a target
drum set and specific microphone placements, I cluster the spectrogram slices
extracted from the training data for each drum. It is assumed that we have
access to isolated, single-drum samples for each drum as is typically the case
during a pre-performance sound check. Once I have accumulated a training set
of spectrogram slices (both head and tail for each detected onset) for a particular
drum, I follow the agglomerative clustering procedure outlined in this section to
arrive at a small number of spectrogram templates that compactly describe the
range of sounds that can be produced by the drum. The head and tail slices for
each drum are clustered separately to produce separate sets of templates.

3.5.1 Clustering with the Itakura-Saito Divergence

The speech recognition community has made frequent use of Gaussian Mixture
Models (GMMs) for modeling speaker-specific data [67][66]. Clustering data us-
ing GMMs enforces a squared Euclidean distance measure when determining the
cluster membership probabilities of individual observations. As shown by Baner-
jee [2], other members of the Bregman divergence family can be used for clustering
by using mixture models built from other exponential-family priors. An impor-
tant Bregman divergence to the speech and music community is the Itakura-Saito
divergence (IS divergence), which is frequently used as a measure of the percep-
tual distance between audio spectra [65][26]. In order to perform soft clustering
using the IS divergence we can use a mixture model composed of exponential
distributions [2], or more generally, gamma distributions.

The fact that a mixture model composed of gamma distributions allows us
to cluster using the perceptual IS divergence is the primary motivation behind
this approach to clustering. In addition, the clustering procedure covered in this
section avoids the covariance matrix updates present in GMM training. When
using a large training set or high dimensional data, GMM covariance updates
can greatly increase computational costs. For small training sets (e.g., when
clustering a handful of drum hits), even variance-only diagonal covariance matrix
computations can become unstable, inaccurate, or poorly defined in clusters with
few members.

CHAPTER 3. DRUM DETECTION 15

3.5.2 The Gamma Distribution

The probability density function of the univariate gamma distribution can be
written as follows:

p(y|λ, η) = yη−1
ληe−λy

Γ(η)
, y ≥ 0; λ, η > 0 (3.1)

E[y] = µ = η/λ (3.2)
Var(y) = µ/η = η/λ2 (3.3)

Where the mean is shown in eq. (3.2), and Γ(η) is the gamma function, which is a
generalization of the factorial function to real numbers. The gamma distribution
generalizes the Erlang distribution (which models the sum of η independent iden-
tically distributed exponential random variables) to continuous η > 0. Figure 3.3
shows the gamma distribution with constant mean for various values of shape
parameter η. We can see that as η is increased, the variance relative to the mean
is decreased, so adjusting η is a way to control the spread of each cluster. How-
ever, unlike with a Gaussian distribution, the variance of the gamma distribution
increases as the mean increases (see eq (3.3)), which is a desirable trait given the
logarithmic amplitude sensitivity of the human auditory system.

0 10 20 30 40 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Gamma Distribution, Constant Mean: µ = 20

η = 1
η = 2
η = 3
η = 6
η = 10

Figure 3.3: The gamma distribution for various values of η and constant mean.

As shown in [2], we can write the gamma distribution in its Bregman divergence
form [eq. (3.4)]. The Bregman divergence inside of the exponential, dIS(y, µ), is

CHAPTER 3. DRUM DETECTION 16

the IS divergence.

p(y|λ, η) = exp (−η dIS(y, µ)) b0(y) (3.4)
dIS(y, µ) = y

µ
− log y

µ
− 1 (3.5)

b0(y) =
e−ηηky−1

Γ(η)
, µ = η/λ (3.6)

To model multidimensional data, I construct a multivariate gamma distribution
from independent gamma distributions:

p(y|λ, η) =
M∏
i=1

ληi y
η−1
i e−λiyi

Γ(η)
(3.7)

=
|λ|η|y|η−1 exp(−λ · y)

(Γ(η))M
(3.8)

E[y] = µ = η/λ (3.9)

where | · | denotes the product of the elements in a vector, a · b denotes a dot
product between vectors, and division involving vectors is performed element-wise.

The log-likelihood can be written:

log
(
p(y|λ, η)

)
= η log |λ|+ (η − 1) log |y| − λ · y −M log

(
Γ(η)

)
3.5.3 The Gamma Mixture Model

The Gamma Mixture Model (ΓMM) has the following distribution for observa-
tions, yn:

p(yn|θ) =
K∑
l=1

πlp(yn|λl, η) (3.10)

πl = p(xn = l) (3.11)

where θ = {λl, πl}Kl=1, yn ∈ RM , and xn is a hidden variable that denotes which
mixture component yn was generated from.

In order to learn the ΓMM parameters, θ, from a set of training data, Y =
{yn}Nn=1, I employ the Expectation-Maximization (EM) algorithm [9]. Because
maximizing the log-likelihood of the parameters, log p(Y|θ), is intractable, instead
the EM algorithm iteratively optimizes an auxiliary function:

Q(θ|θ(t)) = E
[
log p(Y,X|θ)

∣∣∣Y, θ(t)] (3.12)

where θ(t) are the current parameters at iteration t, θ are the parameters to be
optimized during the current iteration, and X = {xn}Nn=1. For this ΓMM, we

CHAPTER 3. DRUM DETECTION 17

eventually arrive at the simplified expression:

Q(θ|θ(t))= (3.13)

N∗l

K∑
l=1

{
log πl + η log |λl| − η

(
λl · 1

λ∗
l

)}
+(η − 1)

N∑
n=1

log |yn| −NM log Γ(η)

where

N∗l =
N∑
n=1

p(xn = l|yn, θ(t)) (3.14)

λ∗l =
ηN∗l∑N

n=1 ynp(xn = l|yn, θ(t))
(3.15)

Eqs. (3.14,3.15) rely on the posterior p(xn = l|yn, θ(t)) which can be calculated
using Bayes’ rule:

p(xn = l|yn, θ(t)) =
p(yn|xn = l, θ(t))p(xn = l|θ(t))

p(yn|θ(t))
(3.16)

=
πl exp (−η dIS(yn,µl))∑K
j=1 πj exp

(
−η dIS(yn,µj)

) (3.17)

=
πl|λl|η exp(−λl · yn)∑K
j=1 πj|λj|η exp(−λj · yn)

(3.18)

where µl = η/λl. Notice that in eq. (3.17), the posterior (or cluster membership
probabilities) can be viewed as a weighted sum of the IS divergence (rescaled by
the exponential function) between an observation and the cluster mean. Banerjee
shows that soft clustering using exponential family distributions aims to minimize
the expected value of the associated Bregman divergence between the cluster
means and the cluster members [2]. For the gamma distribution, the associated
Bregman divergence is in fact the Itakura-Saito divergence.

Now we can compute updated optimal values of the parameters using Q(θ|θ(t)),
which is maximized with the following parameter values:

πl =
N∗l
N
, λl = λ∗l (3.19)

with N∗l and λ∗l from eqs. (3.14),(3.15).
We can continue to alternate between updating the posterior using eq. (3.18)

and updating the parameters using eqs. (3.14),(3.15),(3.19) until Q(θ|θ(t)) con-
verges.

CHAPTER 3. DRUM DETECTION 18

3.5.4 Agglomerative Clustering with Gamma Mixture
Models

The ΓMM training procedure covered in 3.5.3 relies on a fixed number (K) of
mixture components or clusters. In order to choose a value of K that comple-
ments the training data, I use the agglomerative clustering approach in [14]. This
approach starts with an initial maximum value of K = K0 and iteratively merges
similar clusters until we are left with a single cluster (K = 1).

The agglomerative procedure begins by initializing the K0 cluster means, µl =
η/λl, to be equal to randomly chosen data points from the training set, Y. The
initial cluster prior probabilities, πl, are uniformly initialized.

Then the parameters are iteratively optimized for this value of K until conver-
gence. Upon convergence, we merge the two most similar clusters, decrement K,
and again update the parameters until convergence. The similarity of two clusters
(l,m) is computed using the following distance function:

D(l,m) = Q(θ∗|θ(t))−Q(θ∗(l,m)|θ(t)) (3.20)

where θ∗ is the set of parameters that optimizes Q(θ|θ(t)), and θ∗(l,m) is the optimal
set of parameters with the restriction that:

µ∗l = µ∗m =
πlµl + πmµm

πl + πm
(3.21)

Using eqs. (3.9),(3.13),(3.14),(3.15),(3.21) along with the convergence assumption
of θ∗ = θ(t), eq. (3.20) simplifies to:

D(l,m) =

η
{

(N∗l +N∗m)
[
log
∣∣∣N∗

l

λl
+ N∗

m

λm

∣∣∣−M log(N∗l +N∗m)
]}

(3.22)

+N∗l log |λl|+N∗m log |λm|

The two clusters that minimize D(l,m) are deemed the most similar and are
merged into a single cluster with parameters:

µl,m =
πlµl + πmµm

πl + πm
, πl,m = πl + πm (3.23)

However, before merging, the parameter set, θ∗, for the current value of K is
saved along with a measure of how efficiently the parameters describe the training
data. As in [14], I use the Minimum Description Length (MDL) introduced by
Rissanen [68].

MDL(K, θ) = −
N∑
n=1

log

(
K∑
l=1

p(yn|λl)πl
)

+ 1
2
L log(NM) (3.24)

CHAPTER 3. DRUM DETECTION 19

with L equal to the number of free parameters.

L = KM + (K − 1) (3.25)

For the ΓMM, eq. (3.24) simplifies to:

MDL(K, θ) = (3.26)

−
N∑
n=1

[
log

(
K∑
l=1

πl|λl|η exp (−λl · yn)

)]

−
N∑
n=1

[(η − 1) log |yn|] +NM log Γ(η) + 1
2
L log(NM)

So for each K, I run the EM algorithm until Q(θ|θ(t)) converges, then save the
parameters, θ∗, along with MDL(K, θ∗). I merge the two most similar clusters
using eqs. (3.22) and (3.23), and then repeat the EM algorithm for the new smaller
K. Once we reach K = 1, we choose the K and corresponding set of parameters
with the minimum MDL.

We then compute the mean vector of each cluster, µl, from the winning clus-
ter parameters, λl, using eq. (3.9). These mean vectors are used as the drum
templates.

3.6 Decomposing Drum Onsets
Now that we have trained a number of head and tail templates for each drum,
we can compute the activations of these templates from live drum audio input.
In order to make the amplitude of each template activation meaningful, the head
templates are normalized so that all of the templates for a particular drum have
the same approximate loudness. To do this, the head templates for a single drum
are rescaled to have the same energy as the template with the maximum energy
for that drum. No normalization is required for the tail templates, since as you
will see, their activations are discarded.

3.6.1 Non-negative matrix factorization

Using the tail templates and normalized head templates, we can decompose live
drum onsets as non-negative linear combinations of the templates. The activations
of all the head templates corresponding to a single drum are summed to get
the activation of that drum, and the activations of tail templates are discarded.
To determine the activation of each template for a particular input spectrum,
I employ a multiplicative algorithm used in non-negative matrix factorization

CHAPTER 3. DRUM DETECTION 20

(NMF) [52]. NMF poses the problem:

min
W,H

D(X||WH), W ≥ 0, H ≥ 0 (3.27)

X ∈ RM×F , W ∈ RM×T , H ∈ RT×F (3.28)

where the matrix inequality constraint applies to every element, and X is the
matrix to be factorized. D(X||WH) is an associated cost function that measures
the error between X and its approximate factorization WH. Typical NMF cost
functions include the squared Euclidean distance, KL divergence, and IS diver-
gence [26]. These cost functions all belong to the family of Bregman divergences
and, additionally, belong to a subclass of the Bregman divergence called the Beta
divergence[39], shown below.

dβ(x||y) =

x
y
− log x

y
− 1, β = 0

x(log x
y

+ y − x), β = 1
xβ+(β−1)yβ−βxyβ−1

β(β−1) , β ∈ R\{0, 1}
(3.29)

The Euclidean distance, KL divergence, and IS divergence are Beta divergences
with β = 2, 1, and 0, respectively. In order to compute the Beta divergence
between two matrices, I simply sum the Beta divergence between corresponding
elements in the matrices.

3.6.2 Non-negative vector decomposition

The drum detection task does not carry out full NMF on the input spectrogram
slices. Because we have already trained drum templates, the matrixW has already
been determined, with the templates contained in its columns. Because W is not
being optimized, the problem in (3.27) decouples into F independent optimization
problems

min
hi

D(xi||Whi), hi ≥ 0 (3.30)

xi ∈ RM , W ∈ RM×T , hi ∈ RT (3.31)

where xi and hi are the ith columns of X and H, respectively.
To pursue an optimal solution to (3.30), I use multiplicative, gradient-based

updates first introduced by Lee and Seung for Euclidean and KL divergence cost
functions [52] and later generalized to Beta divergences [39][15].

hi ← hi.
W T ((Whi)

.β−2.xi)

W T (Whi).β−1
(3.32)

Where dotted operations and division are carried out element-wise. In order to
pursue an optimal mixture of templates in terms of the IS divergence, we can

CHAPTER 3. DRUM DETECTION 21

iterate on the above update with β = 0; however, dβ(x||y) is not convex in terms
of y for β = 0, so there is the possibility of convergence to local minima. For
1 ≤ β ≤ 2, dβ(x||y) is convex in y. Bertin et al. [8] use this fact to design a
“tempering” algorithm which begins running the updates with β in the convex
range and then slowly reduces β to 0. This approach is shown to help avoid local
minima and reduce the final converged cost. In my experiments, using β = 0
produced superior results compared to β = {1, 2}, and starting with β = 2 and
slowly reducing it to 0 yielded slightly better results compared to using β = 0
during all updates. This is in contrast to my previous results which reported no
benefit when using the tempering approach [4].

Adding an L1 penalty term to the updates also helped slightly by gently
encouraging sparsity amongst the activation values of a single onset. Eq. (3.32)
can be modified to include a scalar L1 penalty term, λL1, as follows.

hi ← hi.
W T ((Whi)

.β−2.xi)

W T (Whi).β−1 + λL1
(3.33)

In experiments, using 0.001 < λL1 < 0.01 slightly outperformed λL1 = 0.

3.7 Drum Detection Evaluation

3.7.1 Test Setup

My original evaluation of this approach [4] used test data created using electronic
drums along with a high-quality, multi-sampled drum sound library. This ap-
proach was used so that solid ground truth data could be easily obtained from
the MIDI data recorded from the electronic drum kit. There were some critiques
of this method of evaluation due to the fact that real drums can produce an infinite
array of acoustic waveforms. Therefore, I took the effort to record and annotate
a test set consisting of recordings of real acoustic drum performances. The test
set is actually the same data used to evaluate the onset detection algorithm as
described in Section 2.4. As mentioned in the aforementioned section, the 23
minutes of drum audio contains 8022 annotated drum onsets. There is a strong
rock bias with many back-beat-heavy rhythms containing bass drum syncopation.
Many cymbal pattern variations are recorded including open and closed hi-hats,
ride cymbal bow and bell, and patterns that alternate between these options.
There are a fair number of 16th note fills across snare and toms recorded at 100
BPM, and an accented multi-drum march-like rhythm containing many ghosted
16th notes at 94 BPM. A double time rock rhythm with open hi-hat is recorded
at 181 BPM and contains a few 16th note intervals.

CHAPTER 3. DRUM DETECTION 22

Each annotated onset is labeled with the drum it came from and one of three
dynamic levels, representing quiet, medium, or loud onsets. This three level loud-
ness labeling gives substantially less information than the 7 bits (128 levels) of
MIDI velocity information captured by the electronic drums in my previous work,
but it has the effect of at least capturing the difference between accented, unac-
cented notes, and ghost notes.

The drum audio was created using a total of 7 drums and cymbals: snare
drum, bass drum, two toms, hi-hat, ride cymbal, and crash cymbal. For training,
templates were trained separately for open and closed hi-hat variations, but the
activations coming from these two sets of templates were combined in the end.
This was done because annotating whether each hi-hat note came from an open
or closed hi-hat can be difficult given the continuous amount of hi-hat openness
that can be achieved using the hi-hat pedal.

For each of the 7 drum classes, head and tail templates are trained on notes
played at a variety of dynamic levels and striking locations (center, rim, edge,
bow, bell, etc.). The number of training onsets for each class is between 50 and
100.

Parameters that were varied in the training of templates include the number
of initial head and tail templates, KH and KT , and the gamma shape parameter
for the head and tail templates, ηH and ηT . Larger values of η tend to produce a
larger number of clusters, and therefore, a larger number of templates per drum.

The parameters that were varied during the decomposition of onsets onto
templates include the initial and final β values in the NVD updates, β0 and βf ,
and the L1 sparsity penalty, λL1. As reported in the previous section, the best
NVD results were achieved using β0 = 2, βf = 0, and 0.001 < λL1 < 0.01.

I implemented all algorithms in Python1 with the help of the Scipy2 numerical
library. This environment allowed rapid, productive prototyping of the algorithms,
while retaining computational efficiency in the most demanding routines, such as
FFT and matrix multiplication. Spectrogram slice extraction and NVD could
easily be performed in real-time. The agglomerative training of multiple spectral
templates took between 1 and 5 seconds per drum depending on the number of
training strikes. Using optimized parallel implementations of these algorithms
would likely allow training to be carried out virtually instantaneously due to the
heavy use of matrix multiplication in the EM updates and cluster comparisons.

3.7.2 Results

To evaluate the system, I report both detection accuracy numbers and an ampli-
tude fidelity measure. Detection accuracy was computed by attempting to match

1www.python.org
2www.scipy.org

www.python.org
www.scipy.org

CHAPTER 3. DRUM DETECTION 23

each detected drum onset to an annotated drum onset. To be deemed a match,
annotated and detected onsets must occur within 5 frames of each other (about
29ms). The detection threshold for the drum activation amplitudes computed
using NVD was varied for each drum. The threshold producing the highest F-
score (eq. (2.9)) for each drum was used when computing an overall F-score for
all drums. Also, the ROC Area Under the Curve (AUC) is reported along with
the Precision-Recall AUC (AUC-PR).

To compute the quality of the estimated activation amplitude for each drum,
I use the cosine similarity, which is basically a normalized dot product between
vectors.

Scos(x,y) =
x · y
‖x‖‖y‖ (3.34)

where ‖ · ‖ indicates the 2-norm.
The two vectors to be compared using the cosine similarity contain annotated

and estimated drum amplitudes, respectively. Each amplitude vector contains the
corresponding amplitudes from matching onset pairs; however, if an onset from
either the annotated or estimated onset list has no matching counterpart, then a
zero amplitude value is added at that location in the opposite amplitude vector.

Figure 3.4 shows the overall detection accuracy and amplitude quality while
varying the initial number of head and tail templates, KH and KT . When KH =
KT = 30, the initial number of templates is set to 30, but the agglomerative
clustering procedure will most likely arrive at an optimal number of templates that
is smaller than this. Setting K{H,T} = 1 forces a single template for each drum,
and KT = 0 eliminates all tail templates. Larger values of the parameters ηH and
ηT encourage a larger optimal number of templates. In this trial, ηH = ηT = 1.
Other parameters used here are β0 = 2, βf = 0, and λL1 = 0.

From Figure 3.4 it is apparent that using more than zero tail templates is
clearly beneficial. This shows how important a role the tail templates play in
preventing false positives caused by previous drum onsets with long decays. Using
more than one head template per drum has a significant effect as well, and I
attribute this to the fact that a drum is by no means a one-sound instrument.
Using more than one tail template shows a very slight positive effect.

In Figure 3.5, the parameter ηH is varied, while KH = KT = 30 and ηT = 1.
The NVD parameters are the same as in the previous trial. The results are
ordered according to F-score, and it is clear that there is no clear winner across
all metrics here. A large ηH encourages more templates per drum (ηH = 7 gives
between 3–9 head templates per drum, while ηH = 0.1 yields 1–2 templates per
drum), and there is definitely a trend favoring values of ηH ≥ 1. The fact that
the configurations with ηH ∈ {0.25, 0.1} did worse in most cases suggests that at
least one drum ended up with too few templates to adequately describe its range
of sounds.

CHAPTER 3. DRUM DETECTION 24

KH = 30
KT = 30

KH = 30
KT = 1

KH = 1
KT = 1

KH = 30
KT = 0

KH = 1
KT = 0

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91
Detection Fscores

KH = 30
KT = 30

KH = 30
KT = 1

KH = 1
KT = 1

KH = 30
KT = 0

KH = 1
KT = 0

0.65

0.70

0.75

0.80
Amplitude Similarity

KH = 30
KT = 30

KH = 30
KT = 1

KH = 1
KT = 1

KH = 30
KT = 0

KH = 1
KT = 0

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0.970

Detection AUC

KH = 30
KT = 30

KH = 30
KT = 1

KH = 1
KT = 1

KH = 30
KT = 0

KH = 1
KT = 0

0.65

0.70

0.75

0.80

Detection AUC-PR

Detection Results Varying Max Templates per Drum

Figure 3.4: Detection accuracy and amplitude quality while the maximum number
of head and tail templates per drum, KH and KT , is varied.

3.7.3 Discussion

The results I have presented suggest that the non-negative decomposition of drum
onsets onto spectral templates can be greatly improved by the use of at least one
tail template per drum class. In addition, using multiple head templates per drum
has a positive effect on both detection accuracy and amplitude fidelity. To deter-
mine these multiple drum templates, I have proposed a gamma mixture model, a
probabilistic agglomerative clustering approach that takes the perceptual spectral
similarity of training data into account and does not rely on the computation-
ally expensive and possibly unstable covariance calculations required by Gaussian
mixture models.

The output produced by the drum detector is used by the beat tracking com-
ponent presented in the next chapter and by the drum pattern analysis component
presented in Chapter 5.

CHAPTER 3. DRUM DETECTION 25

7 4 2 3 5 8 1 0.5 0.25 0.1
Value of ηH

0.898

0.900

0.902

0.904

0.906

Detection Fscores

7 4 2 3 5 8 1 0.5 0.25 0.1
Value of ηH

0.760

0.765

0.770

0.775

0.780

0.785

0.790
Amplitude Similarity

7 4 2 3 5 8 1 0.5 0.25 0.1
Value of ηH

0.9705

0.9710

0.9715

0.9720

0.9725

0.9730

Detection AUC

7 4 2 3 5 8 1 0.5 0.25 0.1
Value of ηH

0.76

0.77

0.78

0.79

0.80

Detection AUC-PR

Detection Results Varying ηH

Figure 3.5: Detection accuracy and amplitude quality while ηH is varied. KH =
KT = 30 and ηH = 1.

26

Chapter 4

Beat Tracking

4.1 What is Beat Tracking?
In order to define beat tracking, we must first define what is meant by this prop-
erty called beat which we wish to track. In music, “beat” can refer to many
different but related concepts in rhythm, such as pulse, tempo, meter, or groove.
In popular music, many listeners refer to the contribution of the entire rhythm
section and backing instruments as the “beat” (e.g., “This song has a good beat.”).
This definition of beat may overlap somewhat with the concept of groove, the
experience of which has been defined in music perception research as “wanting to
move some part of the body in relation to some aspect of the sound pattern” [54].
In contrast to these high-level psycho-musicological meanings of beat, the lower-
level temporal-rhythmic concepts of pulse, tempo, and meter are typically the
properties being estimated by a beat tracker.

In this sense, beat is a colloquial term for what musicologists call the pulse [37],
or more formally, the tactus [53]. While these three terms will be used interchange-
ably in this chapter, it is important to note that theoretical purists may point out
subtle distinctions between their definitions. This chapter will use these terms to
refer to an underlying perceptual periodic pulse train with which listeners syn-
chronize as they tap, clap, or dance along with music [27]. The tempo of a piece
of music is the frequency of this pulse, which is typically measured in beats-per-
minute (BPM). While the beat denotes the basic foot-tapping pulse in a piece
of music, it is not the most fine-grained subdivision in the rhythmic hierarchy.
Notes can occur at a rate much faster than the tempo, and this perceived higher-
frequency pulse, called the tatum, occurs with a period equal to the smallest
commonly occurring time interval between successive notes. The term tatum was
coined by Jeff Bilmes to stand for “temporal atom” and as an homage to jazz pi-
anist Art Tatum. Another way of thinking about the tatum is the “time division
which most highly coincides with all note onsets” [10]. While the tatum subdivides

CHAPTER 4. BEAT TRACKING 27

the beat, the meter is a metric structure that designates a higher-level period of
musical repetition and synchronization and typically consists of an integer num-
ber of beats. The meter defines the number of beats that make up a measure (or
bar), which is composed of a group of contiguous beats, the first of which is called
the downbeat, or informally, “the one”.

A measure of drum music is pictured in Figure 4.1, which helps to illustrate
these concepts.

1

Drums

1(\\ 0 0 0 0 0 0 0 0 $. #
Tatum Grid (16th Notes)

Beat Grid (Quarter Notes)
1 3 42

Meter (4) 1 16

Downbeat

Figure 4.1: Illustration of metrical structure concepts.

The level of rhythmic syncopation in a piece of music describes the extent
to which musical events occur at times which do not coincide with beat times
(i.e., syncopated rhythms can be said to contain many off-beat or unexpected
events) [27]. Highly syncopated rhythms are particularly problematic for most
beat trackers, and this issue is addressed in the techniques covered in this chapter
and Chapter 5.

Among the rhythmic elements defined above, beat trackers strive to make
accurate estimates of the tactus pulse (both the tempo and beat locations). In
addition to this required output, some beat trackers supplement the output with
meter, downbeat, and/or tatum estimates, which help to characterize the hierar-
chical grid on which musical rhythm can be analyzed [32][48][21].

4.2 Existing Approaches
The vast majority of beat tracking work has focused on polyphonic music and
is evaluated using datasets composed of popular music or ballroom dance tunes
[70, 32, 48, 21, 35, 51]. Most such approaches make assumptions such as a steady
tempo, are restricted to common meters such as 4/4 time, and are designed for
offline analysis.

In contrast, early work by Dannenberg, Mont-Reynaud, and Allen focused on
tracking beats and chord progressions in live jazz improvisations [20][1].

CHAPTER 4. BEAT TRACKING 28

Compared to the beat tracking of solo drums, some aspects of polyphonic
beat tracking, such as onset detection, can be more difficult due to the ambiguous
onset locations of certain pitched instruments, while others, such as meter and
downbeat detection, can be easier due to the presence of transitional cues from
additional instruments.

Approaches that focus solely on tracking drums-only audio in real-time include
work by Robertson [69] and Collins [17]. Robertson’s approach tracks input from a
bass drum microphone and makes initialization and steadiness assumptions on the
beat pulse to be tracked. His implementation has been incorporated into a fully
functioning real-time interactive percussion synchronization system that serves as
a case study in his dissertation. Collins’ work combines the beat tracking work
of Laroche [51] and Goto [32] into a real-time drum beat tracker. The real-world
functionality of these real-time drum tracking systems is impressive; however, the
inflexibility imposed by the strong assumptions made leaves much more to be
desired in terms of true rhythmic understanding.

The various methods used by existing beat tracking systems will now be cov-
ered. The task of determining the overall beat pulse is typically divided into beat
period (or tempo) estimation and beat phase (or alignment) estimation. As a pre-
processing step, the raw audio signal is converted into some sort of representation
that contains information about the location of note onsets. This representation
could be a list of onset times or a signal that shows the rate of energy increase or
spectral novelty, similar to the many varieties of onset detection function (ODF)
covered in Chapter 2.

4.2.1 Beat Period Estimation

The task of beat period estimation or tempo induction has been studied exten-
sively outside of the realm of beat tracking. The ability to automatically detect
the tempo of a song is useful for navigating music collections and can help listen-
ers and DJs make more informed decisions on what to play. Many beat tracking
systems carrying out tempo estimation as a first step before determining the
alignment of the overall beat pulse.

Tuning a Non-Linear Oscillator

The beat tracking work of Large [50] uses an oscillator with the ability to adjust
its period and phase in response to the arrival of rhythmic events. The oscillator
has a “temporal receptive field” that is dynamically adjusted in order to tune
the responsiveness of the period and phase updates. This approach is interesting
in that the oscillator representing the beat pulse estimate itself is what is being
dynamically adjusted during the beat tracking process; however, the approach

CHAPTER 4. BEAT TRACKING 29

hasn’t seen much use due to its lack of invariance to syncopation or tatum-interval
onsets.

Clustering Inter-Onset Intervals

The beat trackers of Goto [33] and Dixon [23] take a list of onset times and
cluster (or histogram) the intervals between adjacent onsets in order to determine
the most prominent pulse period. This approach has the potential to be biased
toward detecting the tatum period rather than the true beat period due to the
comparison of only adjacent onsets. To deal with this, the interval between pairs
of non-adjacent onsets can be considered as well.

Comb Filter Resonators

The work of Scheirer [70] and Klapuri [48] employs a bank of comb filter resonators
to detect the relative strength of different beat period candidates. The comb filter
for each candidate period processes an input onset detection function. The energy
in a recent segment of the output of a comb filter represents the strength of the
period of the filter.

Autocorrelation

Autocorrelation is a simple mathematical procedure for finding periodicities in
random processes, so it makes sense that it is popular in the beat tracking world.
The work of Davies [21], Ellis [24], later work by Goto [32], and many more utilize
autocorrelation to detect salient periods. Because an autocorrelation function
uses a range of time lags, it is an improvement over the clustering of inter-onset
intervals. And compared to the comb filter approach, autocorrelation seems to
provide a less noisy and more robust output signal to work with due to its use of
multiplication between shifted signals rather than addition.

Multi-Agent System

Multi-agent systems track multiple simultaneous hypotheses of the beat period or
phase and use some evaluation criteria to delegate between the estimates of each
hypothesis. Each hypothesis can use slightly different parameters or strategies
when processing the input audio and making period decisions. For example, Goto
varies the onset detection parameters across each agent and a “manager” decides
which agent is making the most reliable beat estimates [33].

CHAPTER 4. BEAT TRACKING 30

Probabilistic Modeling

Some authors have formed probabilistic graphical models to exploit musical knowl-
edge when selecting a suitable beat period. Hainsworth uses a Kalman filter
to make state estimates for his “Rao-Blackwellised” and Brownian motion mod-
els [35]. Klapuri uses a joint Hidden Markov Model (HMM) [64] to infer tatum,
tactus, and meter periods from comb filter energies [48]. A diagram represent-
ing the HMM is shown in Figure 4.4. Davies uses Rayleigh and Gaussian priors
to accentuate certain periods of an input autocorrelation function [21]. Many of
these approaches model both the prior probability of a certain beat period and
the probability of transition between beat periods.

Dynamic Programming

In beat tracking, dynamic programming (DP) can be used to select a likely path
of beat period estimates through time. Laroche uses dynamic programming tech-
niques to efficiently compute a tempo path using a windowed autocorrelation
function [51]. Klapuri uses the Viterbi algorithm to decode a likely path through
his HMM-based period model [48]. The DP-based approach of Ellis computes an
optimal path through his beat-onset alignment and tempo variation cost func-
tion [24].

4.2.2 Phase Estimation

For many beat trackers, phase estimation is done only after computing a beat
period estimate. For others, beat phase and period estimates are made simulta-
neously. The dynamic non-linear oscillator of Large uses two very similar rules
to adjust both its period and phase. Klapuri and Scheirer use the output of their
comb filters (rather than the windowed comb filter energy as is used for period
estimates) to determine the strength of beat alignment candidates. Goto and
Davies cross-correlate the onset signal with a comb template at the detected beat
period in order to determine beat phase. The dynamic programming approaches
of Laroche and Ellis attempt to optimize a cost function which encourages align-
ment of beats and onsets.

Many of these approaches also use some sort of probabilistic weighting to pre-
vent discontinuities in the beat phase estimates. Klapuri employs an HMM to
make smooth phase estimates from the comb filter outputs. Davies uses a Gaus-
sian weighting on his cross-correlation function to encourage the phase estimate
to remain at its current value.

CHAPTER 4. BEAT TRACKING 31

4.3 A New Approach to Beat Tracking for Live
Drums

The approach to beat tracking presented here combines many of the techniques
mentioned above with the goal of balancing both stability and responsiveness when
tracking live, possibly improvised, drum performances. Beyond considering the
real-time, causal, and reactive needs of such a system, there are no constraining
assumptions made other than that there is a beat to track.

The approach outlined in the following uses a probabilistic graphical model
to make an initial base period estimate, which seeds multiple context-dependent
period and phase hypotheses. Figure 4.2 shows a block diagram of the system. In
addition to the onset detection function (ODF), input to the system includes the
drum-wise activation signals computed as described in Chapter 3.

Onset Detection Function
+ Drum-Wise Onsets

Long
Autocorr.

Short
Autocorr.

Base
Period
Model

Measure/Tatum
Period Model

Ambiguity
Measure

Pulse
HypothesisPulse

HypothesisPulse
Hypothesis

Base Period
Estimate

Beat Period

Beat
Locations

Measure/Tatum
Periods

Figure 4.2: Components of the beat tracking system described in this section.

CHAPTER 4. BEAT TRACKING 32

4.3.1 Multi-Signal, Multi-Scale Autocorrelation

For period detection, autocorrelation (AC) is carried out on the inputs to the beat
tracker, i.e., the ODF and each drum-wise onset signal computed as described in
Chapter 3. A separate AC function is computed for each input onset signal. As in
Chapter 3, it is assumed we are operating at a sample rate of 44.1kHz with a 256
sample hop size (5.8ms), giving us a frame rate of 172Hz for each onset signal.

For beat tracking, the AC function (represented as R in the following) is
typically computed using a summation over a fixed window size as shown in (4.1)
for lag τ , window size W , window function w(m), and output frame n. The
window function can be used to give greater weight to more recent inputs.

Rn(τ) =
W−1∑
m=0

w(m)o(n−m)o(n−m− τ) (4.1)

For a maximum lag of T , this method requires O(WT) multiply-adds per output
frame and a buffer of lengthW+T to hold past input values. Instead of using this
method, we can use a leaky integrator to more cheaply compute the AC function.

Rn(τ) = zn(τ) + αRn−1(τ)− 0.5zn−W (τ) (4.2)
zn(τ) = o(n)o(n− τ) (4.3)

α = 0.51/W (4.4)

Where α is the decay factor for the leaky integrator. This version requires only
O(T) multiply-adds per frame and uses the same size buffer for o(n). The window
function it implements is shown in Figure 4.3.

In choosing the autocorrelation window size there is a trade-off between sta-
bility and responsiveness. A longer window allows the autocorrelation function
to be robust to small timing variations, while a smaller window allows for faster
adaptation to tempo changes. For each onset signal, two AC functions are com-
puted each using a different window size. The long-window AC is used to make
a robust base period estimate, while the short-window AC is used to make more
responsive updates to each period hypothesis. The leaky AC easily allows multi-
plication operations to be shared between ACs with different decay factors since
the term o(n)o(n− τ) is unaffected by a change in this parameter.

The complete output of this autocorrelation stage includes both long and short
window AC functions for the ODF and the activation signal of each drum. Also
included are long and short “pattern” AC functions which are simply the sum-
mation across the corresponding ACs of the ODF and each drum. This pattern
AC function is especially good for detecting the meter period since it empha-
sizes repetition periods that are present across all drums. Each AC function has
a maximum lag equivalent to 5 seconds worth of frames, allowing 861 possible
periods.

CHAPTER 4. BEAT TRACKING 33

n−W n
Frames

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

Leaky Autocorrelation Window

Figure 4.3: Leaky autocorrelation window with a cliff.

4.3.2 Base Period Model

In order to make an initial robust estimate of the beat period, a probabilistic
graphical model is used similar to the HMM model used by Klapuri [48] shown
in Figure 4.4. The Klapuri model attempts joint inference of τA,τB, and τC, the
tatum, tactus, and meter periods, which creates a very large state space that is
infeasible to explicitly search over and requires an approximate beam search. For a
max AC lag of 860 frames (about 5 seconds with a 5.8ms hop size), this yields 638
million possible combinations of the three periods. The meter and tatum periods
are not quantities that are prone to change more often than every few seconds, so
in my base period model, only inference of the tactus period, τB, is attempted,
while possible tatum and meter periods remain as co-factors that influence the
likelihood of the beat period, as shown in Figure 4.5.

In the Klapuri model, a single observed vector of comb filter outputs, R, serves
as input to the HMM and models the relative strength of the three periods being
estimated. In the new model, there can be up to three separate AC functions,
RA,RB,RC, used to communicate the relative strength of the three periods sep-
arately. In the presented results, the long-window autocorrelation of the ODF
is used for both RA and RB, while the long “pattern” AC is used for the meter
strength RC in this base period model.

The conditional probabilities (represented as directed edges in the model di-
agram) are modeled similarly to the Klapuri model. In order to make causal
estimates of the beat period, τB

n , from the HMM shown in Figure 4.5, we can use
the Viterbi algorithm to compute the final state of the partial path ending at the

CHAPTER 4. BEAT TRACKING 34

⌧A
n

⌧B
n

⌧C
n

Rn

⌧A
n+1

⌧B
n+1

⌧C
n+1

Rn+1

Figure 4.4: The Klapuri model for period inference.

⌧B
n

RA
n

⌧A
n ⌧C

n

RC
nRB

n

⌧B
n+1

RA
n+1

⌧A
n+1 ⌧C

n+1

RC
n+1RB

n+1

Figure 4.5: Probabilistic graphical model for base period inference.

current time [64]. The Viterbi algorithm requires that we compute the likelihood
of the observed data under each possible hidden state. The directed edges in
Figure 4.5 imply conditional independence between the observed vectors so that
the observation likelihood factorizes as:

p(RA,RB,RC|τB) = p(RA|τB)p(RB|τB)p(RC|τB) (4.5)

CHAPTER 4. BEAT TRACKING 35

By Bayes’ rule and the conditional independence implied by the model, the first
and third factors in (4.5) can be computed using:

p(RA|τB) =
∑
τA

p(RA|τA)p(τA|τB) (4.6)

p(RC|τB) =
∑
τC

p(RC|τC)p(τC|τB) (4.7)

The likelihood of each individual observed vector given the corresponding hidden
state is simply the value of the input autocorrelation function at the period of
interest.

p(RA|τA) ∝ RA(τA) (4.8)
p(RB|τB) ∝ RB(τB) (4.9)
p(RC|τC) ∝ RC(τC) (4.10)

The remaining conditional probabilities required by (4.6)–(4.7) are modeled as:

p(τA|τB) ∝ p(τA)gAB

(
τB

τA

)
(4.11)

p(τC|τB) ∝ p(τC)gBC

(
τC

τB

)
(4.12)

And the transition probabilities for the beat period hidden states are modeled as:

p(τB
n |τB

n−1) = p(τB
n)f

(
τB
n

τB
n−1

)
(4.13)

The priors for the tatum, tactus, and meter periods are given by log-normal
distributions as suggested by Parncutt [60].

p(τ i) =
1

τ i(lnσip)
√

2π
exp

[
− 1

2(lnσip)2
(ln τ i − lnµip)2

]
(4.14)

Here I use different parameters compared to those Klapuri uses in order to allow
for a wider spread for each period as shown in Figure 4.6. The parameters used
are

µA
p = 0.18, σA

p = 1.47 (4.15)

µB
p = 0.72, σB

p = 1.82 (4.16)

µC
p = 2.52, σC

p = 1.82 (4.17)

CHAPTER 4. BEAT TRACKING 36

0 1 2 3 4 5
Period [sec]

0.0

0.2

0.4

0.6

0.8

1.0

Unnormalized priors for tatum, tactus, and meter periods

∝ p(τA)

∝ p(τB)

∝ p(τC)

Figure 4.6: The shape of the prior for each hidden state period.

The conditional probabilities of simultaneous periods in (4.6)–(4.7) rely on the
following Gaussian mixture models which are functions of the ratio between the
two periods.

gAB

(
τB

τA

)
=

MAB∑
m=1

wAB
m

1

σAB
√

2π
exp

[
− 1

2σ2
AB

(
τB

τA −m
)2
]

(4.18)

gBC

(
τC

τB

)
=

MBC∑
m=1

wBC
m

1

σBC
√

2π
exp

[
− 1

2σ2
BC

(
τC

τB −m
)2
]

(4.19)

The standard deviations of the Gaussian mixture components, σAB and σBC, are
set to 0.1 and 0.3, respectively, and the values of the weight parameters, wAB

m and
wBC
m , used in the experiments are shown in Figure 4.7. If the beat period, τB,

is equivalent to the quarter note interval, then a ratio of τB/τA = 3 means the
tatum represents eighth note triplets and τB/τA = 8 means the tatum represents
32nd notes. The likelihood of these different tatum ratios are controlled by the
weights, wAB

m . The weights wBC
m control the likelihood of different meters.

Lastly, the function needed by the state transition probabilities in (4.13) is
defined such that the logarithm of the ratio between the two states is normally
distributed.

f

(
τB
n

τB
n−1

)
=

1

(lnσf)
√

2π
exp

[
− 1

2(lnσf)2
(ln τB

n − ln τB
n−1)

2

]
(4.20)

CHAPTER 4. BEAT TRACKING 37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ratio τB/τA

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Tactus/Tatum Weight Values wAB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ratio τC/τB

0.00

0.02

0.04

0.06

0.08

0.10
Meter/Tactus Weight Values wBC

Figure 4.7: GMM weights for simultaneous period ratios. Top - wAB
m tactus/tatum

weights. Bottom - wBC
m meter/tactus weights.

A value of σf = 1.2 is used, making a period increase of 20% about 40% less
likely than a transition to the same state. (i.e., p(τB

n = 1.2τB
n−1|τB

n−1) ≈ 0.6p(τB
n =

τB
n−1|τB

n−1))
Now we are able to compute the terms p(RA,RB,RC|τB) and p(τB

n |τB
n−1) re-

quired by the Viterbi algorithm.

Practical Considerations

The length of each input autocorrelation function gives us 861 possible states for
each of the three period types. While the fact that we are only inferring the value
of τB makes this process much more feasible than choosing between 8613 states,
we can reduce the amount of computation further. Given the prior distributions
on each state, shown in Figure 4.6, it follows that only a subset of each of the 861
states for each period type are likely to ever be achieved. The bounds for each
state are restricted to be where 99.9% of the prior probability is contained. For
τA, I compute and search only over states 7–104 (40ms–600ms), for τB, states 11–
512 (63ms–3sec or 20–940 BPM), and for τC, 67–861 (0.38–5sec). These bounds
can be adjusted for special types of music, for example, very slow music with a

CHAPTER 4. BEAT TRACKING 38

tatum period greater than 600ms.
Since this base period model is only seeding the more fine-grained pulse track-

ers in subsequent steps, there is no reason to make the base period estimate every
frame. By reducing the update frequency to around 3 times per second, the
computation involved in this step becomes quite insignificant.

4.3.3 Multi-Hypothesis Pulse Tracking

Once a base period is estimated in the previous step, multiple pulse trackers are
seeded with periods. Important periods to track include the base period itself and
intervals equal to double and half the base period, for reasons that will explained
shortly.

Period Tracking

When a single pulse tracker is given a period to track it follows the short-window
AC function of the ODF in a small Gaussian-weighted window centered on the
initial period, similar to the window used by Davies [21]. Each time the period is
updated, the Gaussian window is re-computed and centered at the new period.
This allows the period tracker to adjust its estimates slightly from frame to frame
while preventing large period transitions, and the shorter autocorrelation decay
allows the period estimates to react more quickly to tempo changes. The Gaussian
window used is identical to the one shown in (4.20), but a much tighter spread of
1–2% is used (σf ∈ [1.01, 1.02]). Figure 4.8 shows how changes in the short AC
window size, Wshort, and the value of σf affect the stability and responsiveness of
the period tracker when a significant tempo transition occurs.

An additional issue that becomes important when tracking short periods is
that the tempo resolution in BPM becomes very coarse as the beat period is
decreased. For example, with a frame rate of ∼172Hz (5.8ms frames), a period
of 40 frames corresponds to 258.4 BPM, while a period of 41 frames corresponds
to 252.1 BPM. If two oscillators with these periods are started simultaneously,
they will be 180◦ out of phase in less than 5 seconds. While these high tempos
may seem extreme, the period they represent corresponds to eighth notes with a
quarter note equal to ∼125 BPM.

An obvious way of dealing with this issue would be to increase the overall
frame rate; however, this can significantly increase the computational and mem-
ory requirements. Another method would be to interpolate a region of interest
in the AC function using Fourier interpolation1 in order to increase the period
resolution. If the BPM is equal to 60fr/τ with frame rate fr and period τ ,
then the rate of change in BPM per period frame is δBPM/δτ = −60fr/τ

2. At
1Fourier interpolation involves taking the Discrete Fourier Transform (DFT) of a signal,

increasing the frequency range by appending zeros to the DFT, and taking the inverse DFT.

CHAPTER 4. BEAT TRACKING 39

50 60 70 80 90 100
Time [sec]

90

95

100

105

Pe
rio

d
[fr

am
es

]
Period tracking with various window settings

True Period
σ f = 1.03, Wshort = 516 (3 sec)

σ f = 1.03, Wshort = 172 (1 sec)

σ f = 1.01, Wshort = 172 (1 sec)

σ f = 1.01, Wshort = 516 (3 sec)

Figure 4.8: Period tracking is shown using various values of the short AC window
size, Wshort and the spread of the tracking window, σf .

τ = 100, this resolution is about 1 frame/BPM, but at τ = 40 this drops to
around 0.15 frames/BPM. In my experiments, I use interpolation to maintain
a minimum value of frames/BPM, IBPM, based on the current period. I use
IBPM = 2 frames/BPM, which results in interpolation being used often (when
τ < 143), and IBPM = 0.1 frames/BPM, which means interpolation is used only
when τ < 32.

Phase Tracking

Now that we have fine-grained period estimates for each pulse hypothesis, we can
estimate the alignment of the pulse. For each hypothesis, a separate reference
pulse is maintained that runs at the detected period. I use the pulse described by
Large in [50]:

p(n) = 1 + tanh γ(cos 2πφ(n)− 1) (4.21)

Where φ(n) is the phase of the reference pulse at the current frame and γ adjusts
the width of the pulse. The value of φ(n) is incremented by the reciprocal of
the current detected period at each frame. This causes the phase of the pulse
to be increased by one after a period worth of frames has elapsed. I use γ = 8,
which creates a pulse like that shown in Figure 4.9. Cross-correlation between this
reference pulse and the onset detection function is used to estimate the beat phase.
As with autocorrelation, I compute the cross-correlation in an online, recursive
manner. Let p(n) and o(n) be the value of the reference pulse and the ODF at

CHAPTER 4. BEAT TRACKING 40

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Phase φ

0.0

0.2

0.4

0.6

0.8

1.0

Reference Pulse with γ = 8

Figure 4.9: The above reference pulse is used for beat alignment.

frame n, respectively. The cross-correlation, Cn(ϕ) is computed as shown below.

Cn(ϕ) = yn(ϕ) + αCn−1(ϕ)− 0.5yn−Wc(ϕ) (4.22)
yn(ϕ) = p(n)o(n− ϕ) (4.23)

α = 0.51/Wc (4.24)

The above implements a decaying window with a cliff at Wc as in Figure 4.3.
Updates to Cn(ϕ) are only performed for values of ϕ between 0 and the current
period.

Instead of setting Wc to be a constant value, Wc is dynamically adjusted to be
a multiple of the current period, Wc = ρcτ̂p, so that a constant number of pulse
periods are considered in the cross-correlation. I experiment with values of Wc

equal to 4 and 8 times the current period (ρc = {4, 8}).
Once the cross-correlation function has been computed, phase decisions are

made using another hidden Markov model. This model is considerably simpler
than the base period model. The cross-correlation models the observation proba-
bilities given the hidden state, which represents the phase offset in frames of the
beat pulse compared with the reference pulse.

The transition probabilities between phase states with τ̂p-periodic circular dis-
tance ∆τ̂p(ϕn, ϕn−1) are modeled such that the circular distance as a percentage
of the current period is normally distributed.

p(ϕn|ϕn−1) =
1

σϕ
√

2π
exp

[
− 1

2σ2
ϕ

(
∆τ̂p(ϕn, ϕn−1)

τ̂p

)2
]

(4.25)

∆τ̂p(ϕn, ϕn−1) = min
[
δτ̂p(ϕn, ϕn−1), τ̂p − δτ̂p(ϕn, ϕn−1)

]
(4.26)

δτ̂p(ϕn, ϕn−1) = |ϕn − ϕn−1| mod τ̂p (4.27)

CHAPTER 4. BEAT TRACKING 41

The parameter σϕ controls the stability of the phase estimates, and in experiments,
I use σϕ ∈ {0.01, 0.05}.

Once the phase is determined, causal predictions of the next beat are made
by adding the current beat period to the most recently detected beat location.

Managing Hypotheses

As mentioned above, multiple pulse hypotheses are maintained. Each hypothe-
sis is seeded with a period that forms a ratio with the base period detected in
Section 4.3.2. Because double and half period errors are very common in beat
tracking, important ratios are the base period itself, half the base period, and
double the base period. Other ratios, such as 3:2 and 2:3 can be used in order to
attempt to deal with polyrhythms, but here I only evaluate the three previously
mentioned ratios.

If the period of any hypothesis strays too far for too long from the intended
ratio with the base period, it is corrected back to the intended value. This also
allows the base period model to re-seed the pulse hypotheses in the presence of
abrupt rhythmic changes.

Initially, the base period hypothesis is the active hypothesis and is responsible
for outputting the final beat locations. A transition to an alternative hypothesis
is carried out when two criteria are met:

1. The period of the hypothesis has varied less than 5% over the previous two
seconds.

2. The average ambiguity of the phase estimates of the alternative hypothesis
over the previous two seconds is sufficiently less than that of the current
hypothesis.

I define ambiguity as a normalized circular moment about the current phase esti-
mate (ϕ̂n) of the cross-correlation function.

An =

τ̂p−1∑
l=0

[Cn(l)]j
[

∆τ̂p(l, ϕ̂n)

τ̂p

]k
τ̂p−1∑
l=0

[Cn(l)]j

(4.28)

Where ∆τ̂p(·, ·) is the circular distance as defined in (4.26). I use j = 2 and k = 1
in the above, which makes the calculation a kind of first moment about the current
phase.

This ambiguity measure is meant to quantify how confident the tracker is
that its phase estimate is correct. A high ambiguity value can mean there is

CHAPTER 4. BEAT TRACKING 42

a significantly different phase value that explains the cross-correlation function
almost equally as well as the current estimate. Or, it could just mean that the
tracker is having trouble locking onto the beat. Either way, a hypothesis that
outputs high ambiguity values is an undesirable hypothesis.

In criterion #2 above, the average ambiguity of an alternative hypothesis must
be less than a certain percentage of the average ambiguity of the current hypoth-
esis. In my experiments, the alternative-hypothesis ambiguity must be less than
0.3 times the current-hypothesis ambiguity when transitioning to a hypothesis
with half the period of the current hypothesis and 0.6 for a transition to a period
double that of the current hypothesis. These values tend to favor the faster half
period hypothesis when it is able to steadily track beats, due to the fact that the
closer the pulse period gets to the tatum, the less phase ambiguity exists.

Halving or doubling the beat period in order to find the most easily tracked
interval may seem undesirable because the output tempo is then being doubled
or halved. However, the beat tracker is aware of the ratio the current hypothesis
forms with the base period. For example, if the base period represents quarter
notes, the tracker knows that the half period hypothesis is tracking eighth notes,
and determining quarter note alignment of the eighth note grid is quite easy using
the drum pattern analysis framework presented in Chapter 5.

4.3.4 Meter and Tatum Inference

Estimating the meter and tatum periods, τC and τA, is accomplished using the
same graphical model shown in Figure 4.5. The two periods are estimated in-
dependently given the beat period of the current pulse hypothesis, τB, and the
corresponding autocorrelation function, RA or RC.

p(τA|τB,RA) ∝ p(τA,RA|τB) = p(RA|τA)p(τA|τB) (4.29)
p(τC|τB,RC) ∝ p(τC,RC|τB) = p(RC|τC)p(τC|τB) (4.30)

The terms required in the above can be found in (4.8)–(4.12).
These estimates need to be computed no more often than once or twice a

second since transitions occurring more often than this would be unbecoming a
drummer.

Instead of just choosing the values for τA and τC that maximize the probabil-
ities above, we can compute the maximum probability in a window that corre-
sponds to each meter and tatum ratio of interest. This gives us an idea about the
relative strengths of each meter or tatum ratio across time and can help to make
more robust long term estimates. I use windows with widths equal to 30% of the
beat period for meter inference and 10% of the target tatum period for tatum
inference.

After detecting the meter, aligning the beat grid with measure boundaries
(downbeat detection) is done using the drum pattern analysis system in Chapter 5.

CHAPTER 4. BEAT TRACKING 43

4.4 Evaluation

4.4.1 Test Set

Because there is a lack of drums-only datasets suitable for beat tracking evalua-
tion, I constructed my own. The data was recorded using Roland V-Drums2. The
output from this electronic drum set is recorded to a midi representation which is
then converted to an audio signal using the multi-sampled drum library Superior
Drummer 2.03.

The dataset consists of 84 drum tracks lasting 20–40 seconds each, totalling
about 45 minutes of drum music. Each track was performed to a click track in
order to simplify the annotation process. The tempos vary between 77 and 180
BPM, and the styles include rock (including double and half time feels), funk,
jazz, metal, blast beats, tribal rhythms, and sections of drum roll fills at binary
and ternary subdivisions of the beat. As far as the meter goes, there are 35 tracks
in 4/4 time, 26 in 6/8, 7 in 5/4, 5 in 7/4, 4 in 3/4, 4 in 7/8, and 3 in 5/8.

For each genre and time signature, the rhythmic complexity varies from very
basic to difficult enough that an experienced musician could potentially have trou-
ble tracking the beat.

4.4.2 Beat Tracking Evaluation Method

There have a been significant attempts to standardize the way beat tracking algo-
rithms are evaluated [55][22]. To evaluate my beat tracker, I used the “continuity-
based” evaluation method covered in [22]. This method takes a sequence of input
beat locations βb and compares them with a sequence of ground-truth beat anno-
tations aj. The intervals between two successive input beats and two successive
ground-truth beats are respectively defined as:

δj = βj − βj−1 (4.31)
τj = aj − aj−1 (4.32)

In order for an input beat βb to be labeled as correct, three conditions must hold:

1. aj − θϕτj < βb < aj + θϕτj (4.33)
2. aj−1 − θϕτj−1 < βb−1 < aj−1 + θϕτj−1 (4.34)
3. (1− θτ)τj < δb < (1 + θτ)τj (4.35)

The first condition requires that the input beat in question lies within some tol-
erance window around a ground truth beat. The width is a percentage of the

2http://rolandus.com
3http://toontrack.com

http://rolandus.com
http://toontrack.com

CHAPTER 4. BEAT TRACKING 44

current ground-truth beat period defined by θϕ. The second condition requires
that the previous input beat lies near enough the previous ground truth beat.
The third puts requirements on the interval between the last two input beats, so
that the interval must be within θτ percent of the true beat period.

In my evaluation, I use θϕ = 0.25 and θτ = 0.175. The standard approach is to
use 0.175 for both, but I’ve softened the alignment constraint due to the accuracy
of the phase of the beat annotations in the test set (especially at higher tempos).

Once we have established the correctness of the input beats, the overall beat
accuracy for a track is evaluated in terms of the maximum number of contiguous
correct beats (labeled “Cont.” in the results) and the total number of correct beats
(labeled “Total” in the results). These values are then divided by the total number
of ground truth beats to give an accuracy percentage. In addition to comparing
the input beats to a beat sequence at the correct metrical level (CML), the input
sequence is also compared with ground-truth beat sequences at double and half
the actual tempo, and the best result of the three metrical levels is recorded
for both the contiguous and total results. This “allowed metrical level” result is
labeled “AML” in the results.

The period estimates coming from the active hypothesis are evaluated as well.
The period at each frame is deemed correct if it is within 5% of the true beat
period. I report AML values for the period results as well, and the overall accuracy
is presented in terms of the percentage of correct frames.

For meter estimation, I report the percentage of correct frames for both CML
(correct meter) and AML (double or half the correct meter allowed as well).

4.4.3 Results

The beat tracking accuracy was evaluated for 63 variations of the parameter set.
Parameters varied {and their values} include:

• Hypo. ∈ {“Base”,“Alt”}: Whether the base period hypothesis is used or
alternative hypotheses are considered based on their ambiguity (pg. 41).

• Wlong ∈ {6 sec, 12 sec} - The autocorrelation window width used to deter-
mine the base period (pg. 32).

• Wshort ∈ {1 sec, 3 sec} - The autocorrelation window width used to determine
the period for each hypothesis (pg. 32).

• σHf ∈ {1.01, 1.02} - The spread of the Gaussian window used for hypothesis
period tracking (σf in Figure 4.8 on pg. 39).

• IBPM ∈ {0.1, 2} - The interpolation target in terms of the minimum allowed
autocorrelation resolution in frames/BPM for the period tracker (pg. 38).

CHAPTER 4. BEAT TRACKING 45

• ρc ∈ {4, 8} - The number of beat periods to include in the cross-correlation
window size Wc (pg. 40).

• σϕ ∈ {0.01, 0.05} - The spread of the phase tracking transition window
(pg. 40).

First we’ll look at the best and worst performers in each result category. The
top portion of Table 4.1 shows the parameters used in each of the nine trials giving
the best and worst results. The lower portion shows the accuracy results for the
categories discussed in Section 4.4.2. The best result in each category is boxed
and shown in bold, and the worst result is boxed and shown in italic.

The most important point to make here is the difference in CML and AML
results, depending on whether the tracker considered following less ambiguous,
alternative hypotheses. The best CML beat accuracy always goes to a tracker
that only uses the base period hypothesis, while the best AML accuracy always
goes to a tracker that follows the least ambiguous hypothesis. This makes sense
because the ambiguity measure tends to favor less ambiguous subdivisions of the
beat, which frequently takes the pulse out of the “correct metrical level”. However,
subdividing the beat pays off greatly when evaluating with the AML criterion as
can be seen in the “AML Total %” column for trials A and C. This is the intended
behavior of the ambiguity measure, especially since the drum pattern analysis
work presented in Chapter 5 can accurately align a subdivision of the beat with
the actual beat grid. Trial G illustrates what happens when each parameter
is set to the more responsive option: all of the estimates become unstable and
performance degrades considerably.

To give a better overall picture of the effect of parameter variations on perfor-
mance numbers, I will present a series of stem plots that show the sorted accuracy
results for each category. Each data point will be colored according the value of
the parameter that is being examined. We will look at the alternative hypothesis
parameter, “Hypo.”, first.

The data shown in Figure 4.10 shows an obvious distinction between CML
and AML performance and the two values of Hypo. Nowhere is it more apparent
than in the AML Total results in the lower right plot, in which every single
tracker considering alternative beat period hypotheses outperformed every tracker
considering only the base period. The CML Total results clearly favor the base-
period-only trackers, which is expected.

The effect of autocorrelation window size on period detection accuracy is ex-
amined in Figure 4.12 and Figure 4.13. It is clear that the longer window sizes
yield significantly better results for period detection; however, this is at the ex-
pense of responsiveness to tempo changes, which I do not attempt to quantify
here.

For σHf and σϕ, the tracking results are slightly better for the more stable
(smaller spread) values of the parameters, σHf = 1.01 and σϕ = 0.01, but the

CHAPTER 4. BEAT TRACKING 46

Trial Hypo. Wlong Wshort σHf IBPM ρc σϕ
A Base 12 sec 3 sec 1.01 0.5 4 0.01
B Alt 6 sec 3 sec 1.01 0.5 8 0.05
C Alt 12 sec 3 sec 1.01 10 4 0.01
D Base 12 sec 3 sec 1.01 10 4 0.01
E Alt 12 sec 3 sec 1.01 0.5 4 0.01
F Base 12 sec 3 sec 1.02 10 4 0.05
G Alt 6 sec 1 sec 1.02 0.5 4 0.05
H Base 6 sec 1 sec 1.02 0.5 4 0.05
I Alt 12 sec 3 sec 1.01 10 4 0.05

CML CML AML AML CML AML CML AML
Cont. Total Cont. Total Period Period Meter Meter

Trial % % % % % % % %
A 51.6 56.7 56.1 62.0 67.6 83.6 51.8 63.0
B 47.6 52.2 63.0 70.8 54.0 82.5 47.9 64.0
C 45.9 51.3 60.3 71.8 52.0 83.4 45.7 64.8
D 50.5 56.2 54.6 61.2 67.6 83.4 51.7 62.3
E 45.7 50.5 62.0 71.7 50.7 84.0 45.7 66.0
F 46.7 55.3 51.3 60.8 66.9 82.8 52.1 63.2
G 29.1 46.5 35.3 62.8 47.6 73.4 44.7 58.5
H 34.1 51.3 37.3 56.3 61.2 76.7 47.8 58.3
I 42.9 48.7 56.9 68.8 49.7 83.2 44.2 64.3

Table 4.1: Best and worst trials for each result category. Top - parameters used
in each trial. Bottom - accuracy numbers. Best results are shown in boxed bold.
Worst results are shown in boxed italic.

effect isn’t as striking as that of the Hypo parameter. For ρc, the results tend
to favor the shorter window (ρc = 4); however, the best AML Cont. results are
achieved with a tracker using ρc = 8.

Overall, the strongest conclusion that can be made is that following an alter-
native beat period hypothesis in the presence of uncertainty can greatly improve
tracking results when it is acceptable to output beats at a different metrical level
than the annotated beats. The main benefit seems to come when subdividing
the original beat hypothesis to have a period that is half of the detected base
period. The next chapter will cover the pattern analysis techniques that, among
other things, can be used to align a beat grid with higher-level metrical structures,
including measure boundaries, quarter notes, half notes, etc.

CHAPTER 4. BEAT TRACKING 47

0 10 20 30 40 50 60
Sorted Results

30

35

40

45

50

A
cc

ur
ac

y
[%

]

CML Phase, Cont

Hypo.
Base
Alt

0 10 20 30 40 50 60
Sorted Results

46

48

50

52

54

56

A
cc

ur
ac

y
[%

]

CML Phase, Total

Hypo.
Base
Alt

0 10 20 30 40 50 60
Sorted Results

35

40

45

50

55

60

65

A
cc

ur
ac

y
[%

]

AML Phase, Cont

Hypo.
Base
Alt

0 10 20 30 40 50 60
Sorted Results

55

60

65

70

A
cc

ur
ac

y
[%

]

AML Phase, Total

Hypo.
Base
Alt

Figure 4.10: Sorted beat location accuracy results, colored according to whether
alternative hypotheses were considered (Alt) or only the base hypothesis was used
(Base).

CHAPTER 4. BEAT TRACKING 48

0 10 20 30 40 50 60
Sorted Results

50

55

60

65

A
cc

ur
ac

y
[%

]

Correct Period, CML

Hypo.
Base
Alt

0 10 20 30 40 50 60
Sorted Results

74

76

78

80

82

84

A
cc

ur
ac

y
[%

]

Correct Period, AML

Hypo.
Base
Alt

0 10 20 30 40 50 60
Sorted Results

44

46

48

50

52

A
cc

ur
ac

y
[%

]

Correct Meter, CML

Hypo.
Base
Alt

0 10 20 30 40 50 60
Sorted Results

58

60

62

64

66

A
cc

ur
ac

y
[%

]

Correct Meter, AML

Hypo.
Base
Alt

Figure 4.11: Sorted beat period and meter accuracy results, colored according to
whether alternative hypothesis were considered (Alt) or only the base hypothesis
was used (Base).

0 10 20 30 40 50 60
Sorted Results

50

55

60

65

A
cc

ur
ac

y
[%

]

Correct Period, CML

Wlong

6 sec
12 sec

0 10 20 30 40 50 60
Sorted Results

74

76

78

80

82

84

A
cc

ur
ac

y
[%

]

Correct Period, AML

Wlong

6 sec
12 sec

Figure 4.12: Sorted beat period accuracy results, colored according to the length of
the long autocorrelation window used to detect the base period, Wlong.

CHAPTER 4. BEAT TRACKING 49

0 10 20 30 40 50 60
Sorted Results

50

55

60

65

A
cc

ur
ac

y
[%

]

Correct Period, CML

Wshort

1 sec
3 sec

0 10 20 30 40 50 60
Sorted Results

74

76

78

80

82

84

A
cc

ur
ac

y
[%

]
Correct Period, AML

Wshort

1 sec
3 sec

Figure 4.13: Sorted beat period accuracy results, colored according to the length of
the short autocorrelation window used to detect the base period, Wshort.

50

Chapter 5

Analyzing Drum Patterns

5.1 Introduction
So far, I have covered techniques that allow the detection of drum events and the
estimation of a metrical grid on which these events lie. Now I will present an
approach that allows higher-level analysis of drum patterns, which can be defined
as repeating sequences of drum events. Variation is possible from one repetition
of a pattern to the next, but common elements remain that define the overall style
or feel of the pattern. A single repetition of a drum pattern typically consists of
an integer number of beats that define the meter of the pattern and the current
meter of the piece of music (though simultaneous polymeter between instruments
is possible but uncommon). Figure 4.1 in Section 4.1 illustrates these metrical
concepts.

Analyzing rhythms at the measure level is a difficult problem due to the high
level of ambiguity present. For example, when trying to decide which beat is the
first beat in the measure, a frequently encountered problem is half measure am-
biguity. Figure 5.1 illustrates this problem with a basic rock pattern. We know
which beat is which because we have the sheet music in front of us; however, if we1

Drums

1(\\ 0 0 0 0 0 0 0 0 $. . . .
Beat 1? Beat 1?

Figure 5.1: Two possible measure alignment hypotheses. From lowest to highest,
the notes shown represent the bass drum, snare drum, and hi-hat, respectively.

CHAPTER 5. ANALYZING DRUM PATTERNS 51

start listening to such a rhythm at an arbitrary point in time, there’s nothing to
distinguish beat one and beat three. When a rhythm is actually performed, how-
ever, there can be many contextual clues that help a listener create an improved
hypothesis about where each measure begins. The bass drum and hi-hat may be
played slightly louder on beat one versus beat three, or there may have been some
sort of drum fill or embellishment during the end of the previous measure to set the
table for beat one of the current measure. Writing a set of rules to describe every
possible contextual cue is a common approach to improving drum pattern anal-
ysis; however, this process can be quite tedious, especially when presented with
many genres or styles of rhythm. Most existing approaches to measure align-
ment use some sort of heuristic rule-based method and forego machine learning
techniques altogether. These will be covered in the next section.

My alternative approach uses deep learning techniques to create a domain-
specific model of rhythmic information. Deep neural networks have shown promise
in many discriminative tasks, such as written digit recognition [43] and acoustic
modeling [57][56][18][19]. To demonstrate the effectiveness of this model, I focus
on a specific discriminative task, the aforementioned problem of beat-measure
alignment; however, this approach can be applied to other drum pattern analysis
tasks such as style classification, meter detection, or transition/novelty detection.
Section 5.3 serves as an introduction to common techniques used in deep learning,
and covers the specific methods I use to analyze drum patterns.

5.2 Previous Work on Downbeat Detection
As mentioned above, previous work on beat-measure alignment has focused on
simple heuristic rules. In [48], Klapuri presents a beat tracker that determines
beat-measure alignment by cross-correlating multi-band onset patterns with two
different rock-based pattern templates. In [32], Goto addresses beat alignment by
detecting chord change locations and by alignment with 8 different drum pattern
templates. Approaches that use hand-written patterns like these work well for
the typical pop song but are ineffective when presented with exotic rhythm styles
or odd meters.

The more recent approach by Peeters [62], which improves on the downbeat
detection results of Klapuri, uses Latent Discriminant Analysis to automatically
learn “beat templates” from spectral and pitch features. The work of Jehan [46]
uses a Support Vector Machine (SVM) to classify beats based on recent spectral
features. Hockman extends this approach by adding a bass frequency detector to
stabilize the estimates and specializes the SVM training for hardcore, jungle, and
drum and bass music [45].

Rather than analyzing a complete piece of polyphonic music, my approach
focuses on detecting the downbeat from a sequence of drum onsets. This problem

CHAPTER 5. ANALYZING DRUM PATTERNS 52

is much simpler in terms of recognizing salient events since the drums are isolated;
however, additional musical cues such as chord changes are not present to provide
additional context. In addition, my goal is to keep the model completely general
and avoid specializing for any single type of music. Deep learning techniques are
useful in this regard because they allow us to encode a large amount of musical
knowledge into the distributed state-space [7] of a Restricted Boltzmann Machine
(RBM), which I introduce in the next section.

5.3 Deep Learning

5.3.1 The Restricted Boltzmann Machine

The primary tool driving current approaches to deep learning is the restricted
Boltzmann machine (RBM) [44] and variations on the RBM. RBMs are stochastic
auto-encoders, and multiple RBMs can be composed to form deep belief networks
(DBNs), which are probabilistic multi-layer neural networks [7]. The RBM, as
shown in Figure 5.2, is a two layer probabilistic graphical model with undirected
connections between visible layer units, vi, and hidden layer units, hj. The “re-
stricted” part of the name points to the fact that there are no connections between
units in the same layer. This allows the conditional distribution of the units of
one layer given all the units of the other layer to be completely factorial, i.e.,

p(v|h) =
∏
i

p(vi|h) (5.1)

p(h|v) =
∏
j

p(hj|v) (5.2)

The RBM is a probabilistic energy-based model, meaning the probability of a
specific configuration of the visible and hidden units is proportional to the negative
exponentiation of an energy function, E(v,h)

p(v,h) =
e−E(v,h)

Z
(5.3)

Where Z =
∑

v,h exp(−E(v,h)) is a normalizing constant referred to as the
partition function. Note that because Z is difficult to compute, it is typically
intractable to compute the joint distribution p(v,h).

For binary-valued visible and hidden units, the energy function, E(v,h), can
be written as:

E(v,h) = −aTv − bTh− vTWh (5.4)

Where a and b are vectors containing the visible and hidden unit biases, respec-
tively, and W is the weight matrix that connects the two layers.

CHAPTER 5. ANALYZING DRUM PATTERNS 53

h1 h2 hM

v1 v2 v3 vN

...

...

hidden
layer

visible
layer

a1 a2 a3 aN

b1 b2 bM

W

Figure 5.2: A restricted Boltzmann machine with N visible units and M hidden
units.

The goal in training an RBM is to maximize the likelihood of the training
data under the model, p(v). The actual log-likelihood gradient is difficult to com-
pute because it involves the intractable partition function Z; however, stochastic
estimates of the gradient can be made by drawing Gibbs samples from the joint
distribution p(v,h) using the factorial conditional distributions in (5.5),(5.6).

p(vi = 1|h) = σ̄(ai +
∑

jWijhj) (5.5)
p(hj = 1|v) = σ̄(bj +

∑
iWijvi) (5.6)

Where σ̄(x) is the logistic sigmoid function:

σ̄(x) =
1

1 + e−x
(5.7)

The Gibbs sampling Markov chain can take quite a long time to produce actual
samples from the joint distribution, so in practice the chain is started at a train-
ing example and run for a small number of iterations. Using this estimate of
the log-likelihood gradient, we are instead minimizing a quantity referred to as
the contrastive divergence [44, 7]. Contrastive divergence updates for the RBM
parameters are shown below:

∆Wij ∝ 〈vihj〉0 − 〈vihj〉k (5.8)
∆ai ∝ 〈vi〉0 − 〈vi〉k (5.9)
∆bj ∝ 〈hj〉0 − 〈hj〉k (5.10)

CHAPTER 5. ANALYZING DRUM PATTERNS 54

h�
1 h�

2 h�
M �...

RBM1

h1 h2 hM
...

v1 v2 v3 vN...

RBM2

visible
layer

layer 2

layer 3

W1

W2

Figure 5.3: A 3-layer deep belief network comprised of 2 RBMs

Where 〈·〉k denotes the value of the quantity after k iterations of Gibbs sampling,
and for k = 0, vi is simply the training data and hj is a sample from (5.6) given
the training data. Typically, these updates are performed using multiple training
examples at a time by averaging over the updates produced by each example.
This helps to smooth the learning signal and also helps take advantage of the
computational efficiency of larger matrix operations. As k → ∞, these updates
approach maximum likelihood learning.

5.3.2 Stacking RBMs

A deep belief network is formed when multiple RBMs are stacked on top of each
other as shown in Figure 5.3. After training a first-level RBM using the training
data, we can perform a deterministic up-pass by setting the hidden units to their
real-valued activation probabilities using (5.6) for each visible training vector.
This is the same as what is done in the up-pass in a deterministic logistic neural
network. These deterministic hidden unit values are then used as the visible
data in a subsequent higher-level RBM, which is also trained using contrastive
divergence learning. This RBM stacking continues until the network reaches the
desired depth. This greedy layer-by-layer training approach is a useful procedure
for learning a set of non-linear features in an unsupervised manner [36], and

CHAPTER 5. ANALYZING DRUM PATTERNS 55

it has been shown to be a beneficial pre-training procedure when followed by
discriminative backpropagation [43].

5.3.3 The Conditional Restricted Boltzmann Machine

The conditional restricted Boltzmann machine (CRBM) takes the RBM a step
further by adding directed connections between additional visible units, yi, and
the existing visible and hidden units, as shown in Figure 5.4. These additional
units can represent any type of additional information, including visible data from
the recent past. This allows the CRBM to be an effective generative model of time
sequence data [72], and this fact is what motivated my use of the CRBM to model
drum patterns.

The directed connections, which are represented by weight matrices A and B,
replace the bias terms, a and b in (5.5),(5.6), with dynamic bias terms, â and b̂.

â = a + Ay (5.11)
b̂ = b +By (5.12)

Where y is a vector containing the conditioning data. This modified RBM models
the distribution p(v,h|y), and the learning rules in (5.8)–(5.10) are unchanged
except for the addition of the dynamic bias terms to the sampling expressions.
The learning rules for the conditional weight matrices also have a familiar form:

h1 h2 hM
...

v1 v2 vN...y1 y2 yK...

b

a

W
B

A

conditioning units visible units

hidden units

Figure 5.4: A conditional restricted Boltzmann machine.

∆Aij ∝ 〈viyj〉0 − 〈viyj〉k (5.13)
∆Bij ∝ 〈hiyj〉0 − 〈hiyj〉k (5.14)

Note that the yj above are simply the training values and are not stochastically
sampled in any way.

CHAPTER 5. ANALYZING DRUM PATTERNS 56

5.4 Modeling and Analyzing Drum Patterns

5.4.1 Bounded Linear Units

Drum patterns are not simply a series of ones and zeros, onset or no onset. Most
drum patterns contain an appreciable sonic difference between accented and un-
accented notes on every drum or cymbal, and it is these differences which give
drum patterns their character. In order to effectively model drum patterns using
the CRBM, we must modify the binary-valued visible units to be real-valued.

There are many options for getting real-valued visible activations out of RBMs;
in fact, it has been shown that every distribution in the exponential family is a
viable candidate [74]. A popular choice is the Gaussian distribution due to its
familiarity and ubiquity; however, the unboundedness of Gaussian samples does
not translate well to the space of dynamic levels possible within a drum pattern.

In order to model the bounded nature of playing dynamics, I use a modified
version of the rectified linear units (RLUs) described in [58]. RLUs are constructed
from a series of binary units with identical inputs but with fixed, increasing bias
offsets. If the bias offsets are chosen appropriately, the expected value and variance
of the number of active units out of these N tied binary units with common input
x is:

E[v|x] = log(1 + ex)− log(1 + ex−N) (5.15)
Var(v|x) = σ̄(x)− σ̄(x−N) (5.16)

As can be seen in Figure 5.5, (5.15) yields a sigmoidal curve that saturates when
x > N , bottoms out when x < 0, and is approximately linear in between. In the
linear region, the variance is equal to one, so the value of N is chosen to achieve
the desired level of noisiness in the samples, and the training data can be rescaled
to the interval [0, N]. In this work, I have chosen N = 20, so that a value of
20 represents the loudest possible drum strike, while zero represents the absence
of a drum strike. To sample from these bounded linear units (BLUs), instead of
actually sampling from N binary units with stepped offsets, I approximate their
total output with:

p(v|x) ∼
[
N
(
E[v|x],Var(v|x)

)]N
0

(5.17)

where N (·) is a normal distribution with mean and variance provided by (5.15)
and (5.16), and

[
·
]N
0
snaps values outside of the interval [0, N] to the boundaries

of the interval. Because these BLUs are constructed from logistic binary units,
all of the RBM learning rules from Section 5.3 are still valid; the only thing that
changes is how we sample from the visible BLUs.

CHAPTER 5. ANALYZING DRUM PATTERNS 57

−10 −5 0 5 10 15 20 25 30
Input (x)

0

5

10

15

20

E
xp

ec
te

d
va

lu
e,

E
[v
|x]

Bounded Linear Unit Activation with N = 20

Figure 5.5: Bounded linear unit activation function

5.4.2 Label Units

If bounded linear units give us a way to get drum onset information into the
network, label units are how we get information out of the network. A standard
approach to multi-class classification with neural networks is to use a group of
softmax output units, which assigns a value to each of its units (each with input
xi) based on the softmax activation function shown in (5.18). This activation
function is convenient for classification because the activation values of the group
sum to one, which allows the output values to be interpreted as posterior class
probabilities given the input data.

Smax(xi,x) =
exi∑
j e

xj
(5.18)

In the realm of RBMs and deep learning, a different approach can be used which
entails providing the ground truth class labels as part of the visible data during
training. This approach has been shown to be more effective than using a separate
softmax output layer in certain cases [43], and it indeed achieves better results
for this application. Instead of adding the label units to a separate output layer,
I augment the visible layer in the top-level RBM of a deep belief network with a
group of softmax label units, as shown in Figure 5.6. This allows us to train the
top-level RBM using the label units as visible data, by turning on only the correct
label unit during training. Once this labeled RBM has been trained, we can assign
a posterior probability to each of the label units given the data by computing the
free energy, F(v, l), of the RBM for each possible label configuration and taking

CHAPTER 5. ANALYZING DRUM PATTERNS 58

h1 h2 hM
...

v1 v2 vN... l1 l2 lL...

b

a

input data label units

W

hidden
layer

visible
layer

Figure 5.6: An RBM with an added group of visible label units.

the softmax (see [44]):

F(v, l)=− log
∑
h

e−E(v(l),h)

=−
∑
i

v
(l)
i ai −

∑
j

log
(

1 + exp
(
x
(l)
j

))
(5.19)

p(l|v) =
e−F(v,l)∑
k e
−F(v,k) (5.20)

Where x(l)j = bj +
∑

iWijv
(l)
i , and v(l)i denotes the visible data but with only unit l

of the label unit group activated. The term E(v(l),h) is the energy function from
eq. (5.4). This calculation is tractable due to the typically small number of label
units being evaluated.

5.4.3 Modeling Drum Patterns

In this drum pattern analysis network, the first layer is always pre-trained as a
CRBM. This CRBM models the current drum beat or subdivision using one BLU
visible unit per drum or cymbal. In my experiments, I use a minimal three-drum
setup: bass drum, snare drum, and hi-hat, but this can be expanded to work
with any percussion setup. The conditioning units, yj, of the CRBM contain
drum activations from the recent past. In my experiments, y is fed with drum
activations from the most recent two measures (or 32 subdivisions given a 4/4
time signature with sixteenth note subdivisions).

Subsequent layers use binary visible units instead of BLUs. Intermediate layers
of the DBN can be made up of either additional CRBMs or standard RBMs, and
the final layer must have visible label units to represent the classifier output.
Using an intermediate-layer CRBM allows the layer to take into account past
hidden unit activations of the layer below it, which allows it to learn higher-level

CHAPTER 5. ANALYZING DRUM PATTERNS 59

time dependencies. In doing so, it increases the past time context that the top-
level layer sees, since the past hidden unit activations of a first-level CRBM have
been conditioned on the past relative to themselves. In order to make a fair
comparison between DBNs that use different numbers of CRBM layers, we must
make sure that the top layer always has access to the same amount of visible
first-layer data from the past.

In the experiments, I train the label units to detect the current sixteenth note
beat subdivision within the current 4/4 measure. In the next section, I give details
on the configuration and training of the various DBNs that I test for this task.

5.5 Training the System

5.5.1 Training Data

The dataset consists of 173 twelve-measure sequences comprising a total of 33,216
beat subdivisions, each of which contains bass drum, snare drum, and hi-hat
activations. The data was collected using electronic Roland V-drums1, quantized
to exact sixteenth note subdivisions, and converted to a subdivision-synchronous
drum activation matrix.

The sequences were intended to span a sizeable, but by no means complete,
collection of popular rhythmic styles. There is a strong rock bias, with many
beats featuring a prominent back beat2; however, also included are more syn-
copated styles such as funk and drum ‘n’ bass as well as the Brazilian styles
samba and bossa nova. I use three-fold cross-validation to evaluate each network
configuration, with a 33%,57%,10% split for test, training, and validation data,
respectively.

5.5.2 Network Configurations

I test four network configurations each consisting of around 90,000 parameters.
Although this may seem like quite a few parameters for such a small dataset, these
configurations produced better results than versions with less parameters. For
each of the four network architectures, I tested multiple hidden unit configurations
and have chosen to present only those which performed best on the test data for
each architecture. They are as follows:

1. Labeled-CRBM (3 layers)
3 visible data units + 16 visible label units, 800 hidden units, and 32 past
subdivisions of context (96 conditioning units)

1http://rolandus.com
2snare hits on beats 2 and 4 in a 4/4 measure

http://rolandus.com

CHAPTER 5. ANALYZING DRUM PATTERNS 60

2. CRBM → Labeled-RBM (4 layers)
CRBM with 600 hidden units, LRBM with 50 hidden units. The CRBM
again has a context of 32 subdivisions.

3. CRBM → Labeled-CRBM (4 layers)
With 200 and 50 hidden units respectively. Each CRBM has a context of
16.

4. CRBM → CRBM → Labeled-RBM (5 layers)
With 200, 25, and 25 hidden units respectively. Both CRBMs have a context
of 16 subdivisions.

5.5.3 Network Training

Pre-Training

Each non-labeled RBM was pre-trained using contrastive divergence with k = 1
(CD-1) for 300 sweeps through the training data (300 epochs). Updates were
performed using mini-batch gradient descent with a mini-batch size of 100 training
examples. The order of the training data was randomized before training and after
every 100 epochs in order to smooth the learning.

Top-level labeled layers were pre-trained with the correct visible label unit
switched on and the other label units switched off. I pre-trained each labeled
layer using CD with k = 1 for 150 epochs and then k was linearly increased from
1 to 10 for an additional 150 epochs.

For all pre-training, the learning rate was initialized to 10−4 and then slowly
adjusted during training so that the average weight update magnitude was on
the order of 10−3 times the average weight parameter magnitude. As suggested
by Taylor [72], CRBM autoregressive weights (A in Figure 5.4 and eq. (5.13))
used a learning rate 1/10 of the above dynamic learning rate. To prevent the
network from simply learning to duplicate drum activations from the previous
measure, I only used autoregressive weights connecting the previous 4 subdivi-
sions in first level CRBMs and connecting only the previous subdivision in second
level CRBMs. We can think of these short-term autoregressive weights as en-
coding what is physically possible for a drummer to play, whereas the weights
connecting the past to the hidden units (B) encode the drummer’s memory of
what has been recently played and his intentions for the current subdivision.
During the last 30 epochs, the actual learning rate was forced to decay to 1/10
of the dynamic learning rate. After the first 15 epochs, a momentum term of 0.9
was gradually introduced in order to speed up the learning [42]. To prevent any
of the weights from becoming excessively large, an L2 weight-decay constraint
of 0.01 was used. Additional information on practical considerations for training
restricted Boltzmann machine can be found in [42].

CHAPTER 5. ANALYZING DRUM PATTERNS 61

Fine-Tuning

In pre-training, the label units in the top-level RBM are provided as part of the
visible data; however during fine-tuning of the entire network, they are decou-
pled from the rest of the input units of the RBM and become the output units.
This can be visualized as swinging the label units from the bottom to the top as
shown in Figure 5.7. In doing so, the weights W are split into matrices W ′ (for
the input–hidden connections) and R (for the hidden–output connections). Also,
the original biases a become a′ and c. The network can be discriminatively fine-

h1 h2 hM
...

v1 v2 vN...

l1 l2 lL...

b

input
data

label units

hidden
layer

output
layer

h1 h2 hM
...

v1 v2 vN... l1 l2 lL...

b

a

input data label units

W

hidden
layer

visible
layer

W 0

R

c

a0

Figure 5.7: In the top-level RBM, the label units are decoupled from the rest of
the input units for backpropagation.

tuned by backpropagating the cross-entropy label unit error to the logistic units
in lower layers. Below the top level, this is identical to traditional logistic back-
propagation; however, the unconventional free-energy-based output activations of
the label units (eq. (5.20)) require different updates.

The cross-entropy error, H, is defined as.

H(t, a) = −
∑
i

ti log oi (5.21)

Where ti is the target value of output unit i and oi is the actual output activation.
Since the target output for the label probabilities is 1 for the correct label and 0
for the other labels, H simplifies to:

H(l = l∗,v) = − log p(l = l∗|v) (5.22)

Where l∗ is the correct label. Therefore, minimizing H is equivalent to maximizing
the log-probability of the correct label.

The gradient updates for W ′, R, b, and c used to minimize H are computed
as follows. Let ξd(v) be the label probability error of label unit d given correct

CHAPTER 5. ANALYZING DRUM PATTERNS 62

label l∗.
ξd(v) =

{
1− p(l = d|v), d = l∗

0− p(l = d|v), d 6= l∗
(5.23)

Let hdj (v) be the real-valued activation of hidden unit j given that only label unit
d is turned on and the input data is v.

hdj (v) = σ̄

(
bj +

∑
i

viWij +Rdj

)
(5.24)

The gradient-based learning rules are then:

∆Wij ∝ vi
∑
d

ξd(v)hdj (v) (5.25)

∆Rdj ∝ ξd(v)hdj (v) (5.26)

∆bj ∝
∑
d

ξd(v)hdj (v) (5.27)

∆cd ∝ ξd(v) (5.28)

In order to backpropagate the error to lower levels, the gradient of the cost
function with respect to the input units is required.

∂H(l = l∗,v)

∂vi
= −

∑
d

(
ξd(v)

[
a′i +

∑
j

hdj (v)Wij

])
(5.29)

Using the above, backpropagation can be continued to lower levels as usual [11].
As in the layer-wise pre-training, mini-batch updates with a batch size of 100

were used during fine-tuning. The learning rate was dynamically adjusted but a
smaller target magnitude ratio of 5× 10−5 was used. The update momentum was
the same as during pre-training and an L2 weight decay of 0.001 was used. During
backpropagation, the parameter set that produced the lowest cross-entropy error
on the validation set up to that point in the training was remembered. As soon as
the validation error began to increase, the learning rate was slowly reduced to 10%
of the dynamically adjusted value over a period of 30 epochs. At this point, the
training was halted, and the remembered minimum validation error parameters
were used as the final model parameters. This early stopping training procedure
typically resulted in 250–500 epochs of backprogation being performed. I also
experimented with using a set number of training epochs (500). This produced
very similar but slightly worse results (with longer training time) compared to the
early stopping procedure.

CHAPTER 5. ANALYZING DRUM PATTERNS 63

Implementation

Neural network training can be extremely computationally intensive, so it is very
important to pay attention to execution speed and efficiency since this could mean
the difference between hours and weeks of training time. Training relies heavily
on multiplying large matrices, which can be done considerably faster using highly
data-parallel graphics processing units (GPUs). In fact, I believe the advent of
general-purpose GPU computing has played a large part in the resurgence of
neural network research. I use Gnumpy [73], a Python module which provides
Numpy-like3 bindings for matrix operations on Nvidia GPUs. Modules such as
Gnumpy allow much faster execution while retaining the programmer productiv-
ity of high-level scripting languages such as Python and Matlab. In this case,
it results in much faster overall application development and experiment turn-
around. Using an Nvidia Tesla C2050 GPU, training the LCRBM model (#1,
3-layers) took an average of around 20 minutes, while the CRBM-CRBM-LRBM
(#4, 5-layers) took around 30 minutes. The typical split between pre-training
time and backpropagation time was around 60%/40%.

5.5.4 HMM Filtering

In addition to simply classifying each subdivision individually, we can take into
account additional sequential context by providing the label probabilities as pos-
terior state probabilities in a hidden Markov model (HMM) [64]. In order to max-
imize coherence between successive beat subdivision estimates, I assign a high
probability of a transition to the next sequential beat and give an equal division
of the remaining probability to other transitions. Since the system is designed for
live use, I use a strictly causal version of the Viterbi algorithm to estimate the
current beat subdivision.

5.6 Downbeat Detection Results

5.6.1 Classifying Subdivisions

Here I present the classification results for beat-measure alignment, as well as half
note and quarter note alignment. The test data contains 16 beat subdivisions per
4/4 measure, so 16 separate label units are used in the training.

In order to justify the large number of parameters used in these networks,
Figure 5.8 shows beat labeling performance for a single-level labeled CRBM net-
work as the number of hidden units is increased. Accuracy tops out around 80%
and doesn’t improve significantly beyond 800 hidden units. This 800 hidden unit

3http://numpy.org

http://numpy.org

CHAPTER 5. ANALYZING DRUM PATTERNS 64

0 500 1000 1500 2000
Number of Hidden Units

0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81

M
ax

P
ro

ba
bi

lit
y

La
be

lA
cc

ur
ac

y

0 500 1000 1500 2000
Number of Hidden Units

0.55

0.60

0.65

0.70

0.75

0.80

La
be

lP
ro

ba
bi

lit
y

C
ro

ss
E

nt
ro

py

Single-Level L-CRBM Beat Labeling Performance

Figure 5.8: Measure alignment accuracy for a single-level LCRBM model as the
number of hidden units is increased.

network has around 90,000 parameters, so I set this as the equalizer with which
to compare different models.

In the results that follow, beat labeling accuracy is shown for the four mod-
els described in Section 5.5.2. As a baseline, results from a 2-template cross-
correlation approach are shown for comparison. The two templates used are
adapted for use with drums from the band-wise templates used by Klapuri in
[48]. Figure 5.9 shows measure alignment (downbeat detection) results produced
using the maximum likelihood beat labels produced by each model. All four of
the CDBN-based models shown significant improvement over the 2-template cor-
relation, with each one achieving around 80% accuracy. The average test label
probability cross-entropy for each model is shown in the bottom of Figure 5.9
(smaller is better). For both label accuracy and cross-entropy, the model using
two stacked CRBMs achieves the best results, though only by a slight margin.
A much larger data set is needed to adequately evaluate the trade-offs in these
networks.

Example label probabilities for each model are shown in Figure 5.10, where
the horizontal axis represent time in beat subdivisions, and the columns of each
matrix hold the estimated label probabilities for the current subdivision. Ideal
(ground-truth) output appears as periodic diagonal bands proceeding sequentially
through each measure, as shown in the bottom matrix. The normalized 2-template
correlation exhibits wildly varying output, although some structure is present.

CHAPTER 5. ANALYZING DRUM PATTERNS 65

0.5

0.6

0.7

0.8

0.9

1.0

M
ax

 P
ro

ba
bi

lit
y

La
be

l A
cc

ur
ac

y
0.798 0.791 0.804 0.795

0.640

-
-

LCRBM-800

-
LRBM-50

CRBM-600

-
LCRBM-50
CRBM-200

LRBM-25
CRBM-25

CRBM-200

2-Template
Correlation

0.0

0.5

1.0

1.5

2.0

La
be

l P
ro

ba
bi

lit
y

Cr
os

s
En

tr
op

y

0.582 0.596 0.567 0.624

1.815

Measure (Whole Note) Alignment Accuracy by Model

Figure 5.9: Measure alignment accuracy for four CDBN models with ∼90,000
parameters each compared to a two-template correlation approach.

Each of the CDBN-based models have difficulty toward the middle of the exam-
ple sequence of beats, with the two lower models possibly showing slightly less
ambiguity.

Figures 5.11–5.12 show results for quarter note and half note alignment, respec-
tively. Separate models were not trained to predict these alternative granularities
of alignment. Instead, the probabilities for the original beat labels were summed
according to which alignment they correspond to given the target alignment pe-
riod. For example, if there are 16 subdivisions in a measure, subdivisions 1, 5,
9, and 13 all correspond to the same alignment on a quarter note grid (mod 4
invariance).

In Chapter 4, pg. 42, it is mentioned that halving the beat period to track
eighth notes in order to reduce beat alignment ambiguity was not a problem
due to the fact that correct quarter note alignment could ultimately be computed
using techniques from this chapter. Figure 5.11 shows that quarter note alignment
can be estimated with around 96% accuracy, which is a significant improvement
compared to the template correlation method. In addition, the cross-entropy of
the output probabilities is significantly better indicating the probability assigned
to the correct labels is much closer to one. This improved result is important
when using HMM filtering to enhance the accuracy of the predicted labels, as is
shown next.

CHAPTER 5. ANALYZING DRUM PATTERNS 66

LCRBM-800

Label Probabilities for Various Models [test sequence 31]

LRBM-50
CRBM-600

LCRBM-50
CRBM-200

LRBM-25
CRBM-25

CRBM-200

2-Template
Correlation

0 16 32 48 64 80 96 112 128 144
Beat subdivision [16 per measure]

Ground
Truth

Figure 5.10: Example posterior subdivision probabilities from the four models and
the ground truth labels. The columns in each matrix show the posterior probability
of each label for a particular beat subdivision. Vertical white lines indicate measure
boundaries.

5.6.2 Using HMM Filtering

Now I will present the classification results when using the Viterbi algorithm
to compute the most likely partial path end-state at each point in time. I was
concerned there would be a tendency for the high sequential state transition prob-
ability to increase the number of classification errors in the presence of half-note
offset ambiguities; however, the HMM filtering only seemed to help classification
on average.

As shown in Figure 5.13, increasing the sequential transition probability in-
creases the overall beat classification accuracy; however, in a real-world applica-
tion, this probability must be kept below 1.0 in order to allow for incorrect beat
tracking or beats which are purposely omitted by the drummer. Therefore, this
parameter should be set with the end use case in mind.

When looking at each curve presented in Figure 5.13, we can make a connection
between the subdivision label cross-entropy of a model (shown in Figure 5.9)
and the improvement seen in the HMM curves. For example, the fourth model
containing 3 levels of RBM has the highest label cross-entropy and lags behind the

CHAPTER 5. ANALYZING DRUM PATTERNS 67

0.80

0.85

0.90

0.95

1.00

M
ax

 P
ro

ba
bi

lit
y

La
be

l A
cc

ur
ac

y 0.956 0.958 0.962 0.960

0.893

-
-

LCRBM-800

-
LRBM-50

CRBM-600

-
LCRBM-50
CRBM-200

LRBM-25
CRBM-25

CRBM-200

2-Template
Correlation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

La
be

l P
ro

ba
bi

lit
y

Cr
os

s
En

tr
op

y

0.146 0.139 0.124 0.141

0.661

Quarter Note Alignment Accuracy by Model

Figure 5.11: Measure alignment accuracy for four CDBN models with ∼90,000
parameters each compared to a two-template correlation approach.

pack in Figure 5.13 despite the fact that it did not start with the lowest unfiltered
accuracy. This shows that increasing the certainty with which independent label
estimates are made (decreasing the cross-entropy) improves the HMM-filtered
labeling accuracy, even if it doesn’t improve the unfiltered accuracy. Example
HMM-filtered results are shown in Figure 5.14.

5.7 Discussion of Results
The presented results show that a neural network based on the conditional re-
stricted Boltzmann machine is a promising model with which to analyze drum
patterns. This model achieves a significant improvement in measure alignment
performance compared to the standard template correlation approach. However,
the results do not point to an optimal network configuration for this task, as it
is likely that this will be highly dependent on the diversity and complexity of the
drum patterns in the dataset. A much larger dataset will be needed to make any
more conclusive judgments in this regard.

There was a significant gap between training set accuracy (∼ 95%) and test
set accuracy (∼ 80%) after backpropagation for all models. The training/test ac-
curacy after pre-training but before backprogation was much more even (around

CHAPTER 5. ANALYZING DRUM PATTERNS 68

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
ax

 P
ro

ba
bi

lit
y

La
be

l A
cc

ur
ac

y 0.929 0.931 0.934 0.935

0.828

-
-

LCRBM-800

-
LRBM-50

CRBM-600

-
LCRBM-50
CRBM-200

LRBM-25
CRBM-25

CRBM-200

2-Template
Correlation

0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
be

l P
ro

ba
bi

lit
y

Cr
os

s
En

tr
op

y

0.233 0.233 0.212 0.234

1.185

Half Note Alignment Accuracy by Model

Figure 5.12: Measure alignment accuracy for four CDBN models with ∼90,000
parameters each compared to a two-template correlation approach.

50% for both). This suggests the regularization provided by the stochastic RBM
training was quite effective at preventing overfitting, and that incorporating ad-
ditional regularization techniques into the backpropagation phase would improve
test accuracy. Using a larger training set can help to prevent overfitting at the ex-
pense of longer training time, but when additional labeled training is not available,
this is not an option.

A network-wide stochastic generative training procedure similar to that used in
RBM pre-training can be used to fine-tune the entire network as a whole [44][43].
Though this approach is much more computationally demanding than simple
backpropagation, the level of regularization it achieves can greatly improve test
accuracy. There is also the option of combining generative updates with back-
propagation in a hybrid fine-tuning scheme which has the potential to improve
generalization over standard discriminative backpropagation.

Another approach to regularization is the use of “bottleneck” features [57],
which restrict the number of hidden units in certain layers to a small number.
This forces the network to learn a compact distributed representation of the input
data that only retains the aspects most important for classification. This compact
encoding of the input data not only prevents overfitting to noise in the training
data, but also reduces the number of weights required in subsequent levels, which
provides additional protection against overfitting and can significantly speed up

CHAPTER 5. ANALYZING DRUM PATTERNS 69

0.0 0.2 0.4 0.6 0.8 1.0
Sequential Transition Probability

0.79

0.80

0.81

0.82

0.83

0.84

0.85

B
ea

tL
ab

el
C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y

HMM-Filtered Labeling Accuracy

LCRBM-800
CRBM-600,LRBM-50
CRBM-200,LCRBM-50
CRBM-200,CRBM-25,LRBM-25

Figure 5.13: HMM-filtered classification accuracy with increasing sequential tran-
sition probability

learning.
Because the distributed representations learned by deep belief networks allow

for a very large state-space to be spanned, it is conceivable that a similarly con-
structed model could be used to effectively analyze a very large array of rhythmic
styles and genres, avoiding the need for models that are specialized for a single
specific genre.

A final regularization technique worth mentioning is the “dropout” procedure
that has recently shown promise in training a very deep convolutional object
recognition network [49]. This technique involves disabling randomly chosen hid-
den units during training, thereby forcing the network to learn robust features
that do not depend on the presence of other features. The use of dropout in
the above mentioned object recognition network has produced results that signif-
icantly surpass the previous state-of-the-art.

Although I do not objectively evaluate the use of these models for generating
drum patterns, it is important to note that because the CRBM is inherently a
generative model, these networks are especially well-suited to serve as stochastic
drum machines. Even a single labeled-CRBM works well for this purpose, and
turning on the label unit of the desired subdivision during Gibbs sampling helps
increase the metric stability of the generated patterns.

Overall, this generatively pre-trained deep model model has significant poten-
tial to be of use in many music information retrieval and computer music tasks. In
addition to exploring the regularization techniques mentioned above, future work

CHAPTER 5. ANALYZING DRUM PATTERNS 70

Label
Probabilities

HMM-Filtered Label Probabilities: LCRBM-800 [test sequence 88]

Label
Probability

Classifier

HMM-
Filtered

Probabilities

HMM
Classifier

0 16 32 48 64 80 96 112 128 144
Beat subdivision [16 per measure]

Ground
Truth

Figure 5.14: Row 1: Example posterior probabilities. Row 2: Posterior classifica-
tions. Row 3: HMM-filtered classifications. Row 4: Ground truth labels. Vertical
white lines indicate measure boundaries. Sequential transition probability is set to
85%.

should explore the ability of the model to discriminate between rhythmic styles,
discern between different time signatures, or to detect rhythmic transitions or fills.
It would also be interesting to do a more in-depth evaluation of the generative
abilities of the model.

71

Chapter 6

Discussion

The previous four chapters have detailed each of the components of the drum
understanding system shown in Figure 6.1. In this last chapter, I cover prac-
tical considerations that must be addressed when implementing and integrating
the components of such a system. Then I will conclude with a summary of the
contributions and future directions for this work.

beat locations +
meter/tatum

periods

Onset
Detection

Drum
Detection

Input
Drum Audio

Multi-
Hypothesis

Beat Tracking

Drum Pattern
Analysis

Measure-aligned
Beat Locations

additional
rhythmic

information

onset
locations

onset detection
function

drum activations
(time+magnitude)

Figure 6.1: The components of the drum understanding system covered in the
preceding four chapters.

CHAPTER 6. DISCUSSION 72

6.1 Practical Considerations

6.1.1 Computation

The implementations used to evaluate the presented techniques were all writ-
ten in Python1, making heavy use of the Numpy2 and Scipy3 numerical modules
for things like FFTs, matrix multiplications, and other array processing primi-
tives. Because the functions available in these modules are implemented in C, the
performance is more than acceptable for prototyping and testing in most cases.
However, training the deep neural network used in drum pattern recognition did
require the use of an additional module, Gnumpy [73], to move the computation
from the CPU to a highly parallel GPU. High efficiency GPU implementations
have been very important to the progress of neural network research in recent
years [42][57][49].

After training, efficient offline analysis can be accomplished by batching up
many frames of audio and sending them to a GPU, multi-core system, or comput-
ing cluster for processing. In a real-time performance scenario (after training), the
computational needs change quite a bit. The most significant bit of synchronous
computation is the FFT used by the onset and drum detectors. A 1024-length
FFT is computed every 5.8ms (172Hz), giving on the order of 106–107 floating
point operations (flops) per second (using 1.5N log2(N) ≈ 1.5 × 104 flops/FFT
with N = 1024 as an estimate [29]).

When onsets are detected, the drum detector decomposes a 1440-element spec-
tral slice onto around 10–80 drum templates. The 100 or so NVD iterations needed
for the decomposition require around 107 matrix multiplication flops per detected
onset.

In the beat tracker, the most significant chunk of computation is the multi-
hypothesis pulse tracking which needs around 105–106 flops per hypothesis per
second to make beat estimates. Adding Fourier interpolation to increase period
tracking resolution can drastically increase the amount of computation depending
on the level of interpolation.

The pattern analysis models that were evaluated all had around 90,000 mul-
tiplicative weights, each of which requires one multiply-add in a feed-forward
up-pass. At 120 BPM, there are 8 sixteenth note subdivisions per second that
need to be evaluated. This only requires around 106 flops per second.

Of course, these computational requirements are only estimates and the actual
execution time can vary widely with changes to the CPU or memory hierarchy
or when using different libraries to compute key routines such as FFT, matrix
multiply, or the exponential function. Especially for real-time execution, it is

1http://www.python.org
2http://numpy.scipy.org
3http://www.scipy.org

http://www.python.org
http://numpy.scipy.org
http://www.scipy.org

CHAPTER 6. DISCUSSION 73

important to make sure that the worst-case execution time of each piece of the
system is well understood, so that every processing deadline can be met. However,
the above estimates show that as long as reasonably efficient implementations are
used, real-time execution is completely feasible given that current multi-core CPUs
are capable of executing well over 1010 flops per second.

6.1.2 Scheduling

In an implementation designed for real-world use in a musical performance en-
vironment, it is unlikely that a Python implementation will be able to meet the
real-time needs of the application. The compiled C modules used by Python
can be plenty efficient; however, the Python interpreter, which is responsible for
running each piece of C code, must also perform maintenance tasks like garbage
collection, which can take an unbounded amount time, thereby seriously degrad-
ing real-time quality of service. In addition, Python has very limited support for
multi-thread execution. For these reasons, a fully compiled implementation in
an efficient language like C/C++ is strongly indicated. Alternatively, this sys-
tem could serve as a compiled plug-in in an audio programming environment like
Max/MSP4 or in a digital audio sequencer like Ableton Live5.

Since the tasks executed by the system occur at multiple rates, special schedul-
ing considerations need to be taken for the different task granularities. The finest-
granularity tasks occur at the frame rate (every 5.8ms). These include the onset
detector, buffering of drum detector spectral slices, and the computation required
by period and phase trackers used by each hypothesis of the beat tracker. Depend-
ing on the use case, these tasks have rather lax deadlines since the beat tracker
places beat predictions on an output queue one beat period in advance. There-
fore, the overall system output can be delayed by a hundred or so milliseconds
(depending on the tempo) and still output a beat prediction on time.

Some tasks occur much less frequently than the frame rate and could be sched-
uled on separate lower-priority threads in order to maintain more uniform proces-
sor loading. For example, the drum detector waits for an onset to occur and then
waits 67ms for the spectral slice buffer to be filled. It then runs NVD iterations un-
til convergence, which could take significantly longer than the frame-synchronous
tasks. Since the beat tracker expects drum-wise activations as input, the drum
detector thread must be promoted to high priority (by blocking the dependent
tasks) if it is not finished when its output is required.

Base period inference and meter/tatum inference used by the beat tracker
occur only a couple times per second, and no parts of the system require their
output by a specific deadline.They can be scheduled on a thread with lower priority

4http://www.cycling74.com
5http://www.ableton.com

http://www.cycling74.com
http://www.ableton.com

CHAPTER 6. DISCUSSION 74

than the drum detector. The pattern analyzer network, when used for measure
alignment, runs once per tatum subdivision and its output would be required
during every predicted beat.

The primary timing requirement is that beat predictions are made on time, so
timing constraints are much less strict than in cases where audio output is being
produced in a frame-synchronous manner.

6.2 Contributions
Happily there were many positive results reported in the preceding chapters. My
hope is that these techniques will be improved upon in future work by others and
eventually adapted for use in real-world systems. Here is a summary of the key
contributions.

The approach to onset detection presented in Chapter 2 used a multi-band
detection function along with a causal dynamic threshold that is robust to abrupt
changes in dynamics. Overall, the onset detector achieves a detection recall of
94.1% and a precision of 93.9% over 8022 drum onsets played at varying dynamic
levels.

Chapter 3 presented a gamma mixture model soft clustering procedure that
learns multiple spectral templates for each drum and chooses the optimal number
of templates automatically. Use of the gamma distribution allows clustering us-
ing the perceptual Itakura-Saito distance, as opposed to the Euclidean distance
used by a Gaussian mixture model. In addition, this gamma-based clustering
procedure eliminates the expensive and potentially unstable covariance matrix
computation required by the oft-used Gaussian mixture model. I also introduced
“tail” templates, which model a portion of the decay of a drum sound. They are
shown to be quite effective at reducing false drum detections. The use of multiple
templates per drum along with tail templates improves detection accuracy from
83.3% to 90.3%.

The causal beat tracking work from Chapter 4 aims to balance stability and
responsiveness through the use of period estimation models operating at differ-
ent time granularities. An ambiguity measure was developed in order to delegate
between multiple period hypotheses. Many configurations of the beat tracking
parameters were tested, and every configuration using multiple period hypotheses
outperformed all single-period-hypothesis configurations in terms of the allowed
metrical levels (AML) overall beat tracking accuracy. The best multi-hypothesis
version achieved 71.8% accuracy while the best single-hypothesis version was eval-
uated at 62.0% total AML accuracy.

The last chapter, Chapter 5, focused on a deep neural network model for an-
alyzing drum patterns. This model was constructed from stochastically trained
conditional restricted Boltzmann machines (CRBMs) and fine-tuned to make es-

CHAPTER 6. DISCUSSION 75

timates on beat-measure alignment. A new type of visible unit, the bounded
linear unit, was used to represent drum loudness. Compared to the standard
template correlation approach to measure alignment, which was tested at 64.0%
accuracy, a model composed of two stacked CRBMs eliminated almost half of the
errors, producing 80.4% accuracy. When used for quarter note alignment, the
same model was 95.6% accurate versus the 89.3% figure of the 2-template cor-
relation (again eliminating about half of the errors). It was also shown that the
results from these CRBM-based models can be improved using an HMM to filter
the alignment estimates across time.

6.3 Future Directions
Because music information retrieval is a relatively new field, there are a paucity of
standardized datasets that can be used to evaluate techniques in a standardized
way. There are a few existing beat tracking and tempo tracking datasets that have
made the rounds, but these consist mostly of recorded polyphonic pop music or
ballroom dance tracks and cannot be used to evaluate the drum-specific techniques
I have presented here. An important step that would aid progress in the field
of automated music understanding would be the standardization of evaluation
datasets as is done in the speech recognition and computer vision communities.
There have been efforts in this regard (e.g., the MIREX6 event and some efforts to
standardize evaluation [22].); however, support for more specific tasks like drum
detection is still lacking. This still does not reduce the importance of doing an
objective large-scale comparison of these techniques.

Beyond further comparative testing, it would be interesting to apply the
CRBM-based drum pattern model to other rhythm analysis problems such as
style classification, perceptual tempo estimation, and fill detection. I would also
say that this model has the potential to be very useful in any application that
requires the analysis of features across time, which is the vast majority of music
information retrieval and audio processing tasks. Using the trained drum pattern
model in a generative manner as a stochastic drum machine for use in interactive
performance is also a compelling application.

Lastly, an immediate direction for this work would be to incorporate these
techniques into a real-world implementation that can be used in a live performance
or practice scenario.

6The music information retrieval evaluation exchange, http://music-ir.org/mirex

http://music-ir.org/mirex

76

Bibliography

[1] P Allen and R B Dannenberg. “Tracking Musical Beats in Real Time”. In:
International Computer Music Conference (1990).

[2] A Banerjee, S Merugu, and IS Dhillon. “Clustering with Bregman Diver-
gences”. In: Journal of Machine Learning Research (2005).

[3] E Battenberg. “Improvements to Percussive Component Extraction Using
Non-Negative Matrix Factorization and Support Vector Machines”. M.S.
thesis. University of California, Berkeley, Dec. 2008.

[4] E Battenberg, V Huang, and D Wessel. “Toward live drum separation us-
ing probabilistic spectral clustering based on the Itakura-Saito divergence”.
In: Audio Engineering Society Conference: 45th International Conference:
Applications of Time-Frequency Processing in Audio. 2012.

[5] JP Bello, L Daudet, S A Abdallah, C Duxbury, M Davies, and MB Sandler.
“A tutorial on onset detection in music signals”. In: IEEE Transactions on
Speech and Audio Processing 13.5 (2005), p. 1035.

[6] JP Bello, C Duxbury, M Davies, and M Sandler. “On the use of phase and
energy for musical onset detection in the complex domain”. In: IEEE Signal
Processing Letters 11.6 (2004), pp. 553–556.

[7] Y Bengio. “Learning deep architectures for AI”. In: Foundations and Trends
in Machine Learning (2009).

[8] N Bertin, C Févotte, and R Badeau. “A tempering approach for Itakura-
Saito non-negative matrix factorization. With application to music tran-
scription”. In: ICASSP 2009. 2009, pp. 1545–1548.

[9] J A Bilmes. A gentle tutorial of the EM algorithm and its application to pa-
rameter estimation for Gaussian mixture and hidden Markov models. Tech.
rep. TR-97-021. International Computer Science Institute, 1998.

[10] J A Bilmes. “Techniques to foster drum machine expressivity”. In: Proceed-
ings of the International Computer Music Conference (1993).

[11] C M Bishop. Neural networks for pattern recognition. Oxford University
Press, 1995.

BIBLIOGRAPHY 77

[12] S Böck, F Krebs, and M Schedl. “Evaluating the online capabilities of onset
detection methods”. In: International Society for Music Information Re-
trieval Conference. 2012.

[13] S Böck, A Arzt, F Krebs, and M Schedl. “Online realtime onset detection
with recurrent neural networks”. In: International Conference on Digital
Audio Effects (DAFx-12). 2012.

[14] CA Bouman. Cluster: An Unsupervised Algorithm for Modeling Gaussian
Mixtures. https://engineering.purdue.edu/~bouman/software/cluster/.
1998.

[15] A Cichocki, R Zdunek, and S Amaria. “Csiszar’s divergences for non-negative
matrix factorization: Family of new algorithms”. In: International Con-
ference on Independent Component Analysis and Blind Signal Separation.
2006.

[16] N Collins. “Drumtrack: Beat induction from an acoustic drum kit with syn-
chronised scheduling”. In: International Computer Music Conference. 2005.

[17] N M Collins. “Towards autonomous agents for live computer music: Realtime
machine listening and interactive music systems”. PhD thesis. University of
Cambridge, 2006.

[18] G E Dahl, D Yu, and L Deng. “Large vocabulary continuous speech recog-
nition with context-dependent DBN-HMMs”. In: Proc. ICASSP (2011).

[19] G E Dahl, M Ranzato, A Mohamed, and G E Hinton. “Phone recognition
with the mean-covariance restricted Boltzmann machine”. In: Advances in
Neural Information Processing Systems 23 (2010), pp. 469–477.

[20] R B Dannenberg. “Following an improvisation in real time”. In: International
Computer Music Conference. 1987, pp. 241–248.

[21] M E P Davies and M D Plumbley. “Context-dependent beat tracking of
musical audio”. In: Audio, Speech, and Language Processing, IEEE Trans-
actions on 15.3 (2007), pp. 1009–1020.

[22] M E P Davies, N Degara, and M D Plumbley. “Evaluation methods for
musical audio beat tracking algorithms”. In: Queen Mary University, Centre
for Digital Music, Tech. Rep. C4DM-TR-09-06 (2009).

[23] S Dixon. “Automatic extraction of tempo and beat from expressive perfor-
mances”. In: Journal of New Music Research (2001).

[24] D P W Ellis. “Beat tracking by dynamic programming”. In: Journal of New
Music Research 36.1 (2007), pp. 51–60.

[25] F Eyben, S Böck, B. Schuller, and A. Graves. “Universal onset detection
with bidirectional long-short term memory neural networks”. In: Proc. of
ISMIR (2010).

https://engineering.purdue.edu/~bouman/software/cluster/

BIBLIOGRAPHY 78

[26] C Févotte, N Bertin, and JL Durrieu. “Nonnegative matrix factorization
with the Itakura-Saito divergence: With application to music analysis”. In:
Neural Computation 21.3 (2009), pp. 793–830.

[27] W T Fitch and A J Rosenfeld. “Perception and production of syncopated
rhythms”. In: Music Perception 25.1 (2007), pp. 43–58.

[28] D FitzGerald, R Lawlor, and E Coyle. “Prior subspace analysis for drum
transcription”. In: 114th Convention of the Audio Engineering Society. Dublin
Institute of Technology, 2003.

[29] G Garcia. “Optimal filter partition for efficient convolution with short in-
put/output delay”. In: 113th Convention of the Audio Engineering Society
(2002).

[30] O Gillet and G Richard. “Automatic transcription of drum loops”. In: Acous-
tics, Speech, and Signal Processing, (ICASSP ’04). IEEE. 2004, iv–269–iv–
272 vol.4.

[31] O Gillet and G Richard. “Transcription and separation of drum signals from
polyphonic music”. In: IEEE Transactions on Audio (2008).

[32] M Goto. “An audio-based real-time beat tracking system for music with
or without drum-sounds”. In: Journal of New Music Research 30.2 (2001),
pp. 159–171.

[33] M Goto and Y Muraoka. “Music understanding at the beat level: Real-time
beat tracking for audio signals”. In: Computational Auditory Scene Analysis
(1998), pp. 157–176.

[34] F Gouyon and P Herrera. “Exploration of techniques for automatic labeling
of audio drum tracks instruments”. In: Proceedings of MOSART: Workshop
on Current Directions in Computer Music. 2001.

[35] S W Hainsworth. “Techniques for the automated analysis of musical audio”.
PhD thesis. University of Cambridge, 2003.

[36] P Hamel and D Eck. “Learning features from music audio with deep belief
networks”. In: Proc. of the 11th International Society for Music Information
Retrieval Conference (ISMIR 2010) (2010), pp. 339–344.

[37] S Handel. Listening: An introduction to the perception of auditory events.
The MIT Press, 1993.

[38] M Helén and T Virtanen. “Separation of drums from polyphonic music using
non-negative matrix factorization and support vector machine”. In: Proc.
EUSIPCO (2005).

[39] R Hennequin, B David, and R Badeau. “Beta-Divergence as a Subclass
of Bregman Divergence”. In: Signal Processing Letters, IEEE 18.2 (2011),
pp. 83–86.

BIBLIOGRAPHY 79

[40] P Herrera, A Yeterian, and F Gouyon. “Automatic classification of drum
sounds: a comparison of feature selection methods and classification tech-
niques”. In: Music and Artificial Intelligence (2002), pp. 69–80.

[41] P Herrera, A Dehamel, and F Gouyon. “Automatic labeling of unpitched
percussion sounds”. In: 114th Convention of the Audio Engineering Society.
2003.

[42] G E Hinton. A practical guide to training restricted boltzmann machines.
Tech. rep. 2010-003. University of Toronto, 2010.

[43] G E Hinton. “To recognize shapes, first learn to generate images”. In: Progress
in brain research 165 (2007), pp. 535–547.

[44] G E Hinton and S Osindero. “A fast learning algorithm for deep belief nets”.
In: Neural Computation (2006).

[45] J A Hockman, M E P Davies, and I Fujinaga. “One in the jungle: Down
detection in hardcore, jungle, and drum and bass”. In: International Society
for Music Information Retrieval Conference. 2012.

[46] T Jehan. “Creating music by listening”. PhD thesis. Massachusetts Institute
of Technology, 2005.

[47] A Klapuri. “Sound onset detection by applying psychoacoustic knowledge”.
In: ICASSP (1999).

[48] AP Klapuri, AJ Eronen, and JT Astola. “Analysis of the meter of acoustic
musical signals”. In: IEEE Transactions on Speech and Audio Processing
14.1 (2006), p. 342.

[49] A. Krizhevsky, I Sutskever, and G E Hinton. “ImageNet classification with
deep convolutional neural networks”. In: Advances in Neural Information
Processing Systems (2012).

[50] EW Large. “Beat tracking with a nonlinear oscillator”. In: Proceedings of the
IJCAI’95 Workshop on Artificial Intelligence and Music (1995), pp. 24–31.

[51] J Laroche. “Efficient tempo and beat tracking in audio recordings”. In: Jour-
nal of the Audio Engineering Society 51 (Apr. 2003).

[52] D Lee and H Seung. “Algorithms for non-negative matrix factorization”. In:
Advances in Neural Information Processing Systems (2001).

[53] F Lerdahl and R Jackendoff. A Generative Theory of Tonal Music. MIT
Press, 1996.

[54] G Madison. “Experiencing groove induced by music: consistency and phe-
nomenology”. In: Music Perception 24.2 (2006), pp. 201–208.

[55] M F Mckinney, D Moelants, M E P Davies, and A Klapuri. “Evaluation of
Audio Beat Tracking and Music Tempo Extraction Algorithms”. In: Journal
of New Music Research 36.1 (Feb. 2007), pp. 1–16.

BIBLIOGRAPHY 80

[56] A Mohamed, G Dahl, and G Hinton. “Acoustic Modeling using Deep Belief
Networks”. In: Audio, Speech, and Language Processing, IEEE Transactions
on 99 (2011), p. 1.

[57] A Mohamed and G E Dahl. “Deep belief networks for phone recognition”.
In: NIPS Workshop on Deep Learning for Speech Recognition and Related
Applications (2009).

[58] V. Nair and G E Hinton. “Rectified linear units improve restricted boltz-
mann machines”. In: Proc. 27th International Conference on Machine Learn-
ing (2010).

[59] Alan V Oppenheim and Ronald W Schafer. Discrete-time signal processing.
Prentice Hall, 1989.

[60] R Parncutt. “A perceptual model of pulse salience and metrical accent in
musical rhythms”. In: Music Perception (1994), pp. 409–464.

[61] J Paulus and T Virtanen. “Drum transcription with non-negative spectro-
gram factorisation”. In: Proc. of 13th European Signal Processing Conference
(EUSIPCO2005). 2005.

[62] G Peeters and H Papadopoulos. “Simultaneous beat and downbeat-tracking
using a probabilistic framework: theory and large-scale evaluation”. In: Au-
dio, Speech, and Language Processing, IEEE Transactions on 19.6 (2011),
pp. 1754–1769.

[63] M D Plumbley, S A Abdallah, J P Bello, M E Davies, G Monti, and M B
Sandler. “Automatic Music Transcription and Audio Source Separation”. In:
Cybernetics and Systems 33.6 (Sept. 2002), pp. 603–627.

[64] L R Rabiner. “A tutorial on hidden Markov models and selected applications
in speech recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–286.

[65] L R Rabiner and B H Juang. Fundamentals of Speech Recognition. Prentice
Hall. 1993.

[66] DA Reynolds. “Approaches and applications of audio diarization”. In: Acous-
tics (2005).

[67] DA Reynolds, TF Quatieri, and RB Dunn. “Speaker verification using adapted
Gaussian mixture models”. In:Digital signal processing 10.1-3 (2000), pp. 19–
41.

[68] J Rissanen. “A universal prior for integers and estimation by minimum de-
scription length”. In: The Annals of statistics (1983).

[69] A Robertson. “Interactive real-time musical systems”. PhD thesis. Queen
Mary University of London, 2009.

[70] ED Scheirer. “Tempo and beat analysis of acoustic musical signals”. In: The
Journal of the Acoustical Society of America 103 (1998), p. 588.

BIBLIOGRAPHY 81

[71] K Tanghe, S Degroeve, and B De Baets. “An algorithm for detecting and
labeling drum events in polyphonic music”. In: Proc of First Annual Music
Information Retrieval Evaluation eXchange (MIREX) (2005).

[72] G Taylor and G E Hinton. “Two Distributed-State Models For Generating
High-Dimensional Time Series”. In: Journal of Machine Learning Research
(2011).

[73] T Tieleman. Gnumpy: an easy way to use GPU boards in Python. Tech. rep.
2010-002. University of Toronto, 2010.

[74] M Welling and M Rosen-Zvi. “Exponential family harmoniums with an ap-
plication to information retrieval”. In: Advances in Neural Information Pro-
cessing Systems (2005).

[75] J Yoo, M Kim, K Kang, and S Choi. “Nonnegative matrix partial co-
factorization for drum source separation”. In: Acoustics Speech and Signal
Processing (ICASSP), IEEE International Conference on (2010), pp. 1942–
1945.

[76] K Yoshii, M Goto, and H G Okuno. “Drum Sound Recognition for Poly-
phonic Audio Signals by Adaptation and Matching of Spectrogram Tem-
plates With Harmonic Structure Suppression”. In: Audio, Speech, and Lan-
guage Processing, IEEE Transactions on 15.1 (2007), pp. 333–345.

	Contents
	Introduction
	Applications
	Multimedia Content Analysis
	System Overview

	Onset Detection
	What is an Onset?
	Common Approaches to Onset Detection
	Real-Time Onset Detection for Drums
	Onset Detection Accuracy

	Drum Detection
	Introduction
	Approaches to Drum Detection
	System Overview
	Extraction of Spectrogram Slices
	Training drum templates
	Clustering with the Itakura-Saito Divergence
	The Gamma Distribution
	The Gamma Mixture Model
	Agglomerative Clustering with Gamma Mixture Models

	Decomposing Drum Onsets
	Non-negative matrix factorization
	Non-negative vector decomposition

	Drum Detection Evaluation
	Test Setup
	Results
	Discussion

	Beat Tracking
	What is Beat Tracking?
	Existing Approaches
	Beat Period Estimation
	Phase Estimation

	A New Approach to Beat Tracking for Live Drums
	Multi-Signal, Multi-Scale Autocorrelation
	Base Period Model
	Multi-Hypothesis Pulse Tracking
	Meter and Tatum Inference

	Evaluation
	Test Set
	Beat Tracking Evaluation Method
	Results

	Analyzing Drum Patterns
	Introduction
	Previous Work on Downbeat Detection
	Deep Learning
	The Restricted Boltzmann Machine
	Stacking RBMs
	The Conditional Restricted Boltzmann Machine

	Modeling and Analyzing Drum Patterns
	Bounded Linear Units
	Label Units
	Modeling Drum Patterns

	Training the System
	Training Data
	Network Configurations
	Network Training
	HMM Filtering

	Downbeat Detection Results
	Classifying Subdivisions
	Using HMM Filtering

	Discussion of Results

	Discussion
	Practical Considerations
	Computation
	Scheduling

	Contributions
	Future Directions

	Bibliography

