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Abstract

Understanding and facilitating real-life social interaction is a high-impact goal

for ubiquitous computing research. Microphone arrays offer the unique capability

to provide continuous, calm capture of verbal interaction in large physical spaces,

such as homes and especially open-plan offices. Most microphone array work has

focused on arrays of custom sensors in small spaces, and a few recent works have

tested small arrays of commodity sensors in single rooms. This thesis describes

the first working scalable and cost-effective array infrastructure that offers high-

precision localization of conversational speech, and hence enables ongoing studies

of verbal interactions in large semi-structured spaces. This work represents signif-

icant improvements over prior work in three facets – cost, scale and accuracy. It

also achieves high throughput for real-time updates of tens of active sources us-

ing off-the- shelf components. This thesis describes the design rationale behind

our system, the software and hardware modules, key localization algorithms, and a

systematic performance evaluation. Finally, we discuss some preliminary conver-

sation analysis results by showing that source location data can be usefully aggre-

gated to reveal interesting patterns in group conversations, such as dominance and

engagement.
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1 Introduction

Location sensing of individuals has been an active and fruitful area of research for

ubiquitous computing over the past two decades. Real-time location information pro-

vides rich contextual information which has become a key enabler for a myriad of novel

location-aware applications and services. With the advent of wearable and mobile com-

puting, there has been significant interest in outdoor location sensing solutions, where

individuals are tracked via actively transmitting devices using GPS [2] and Radio Fre-

quency [22]. For indoor localization, while RFID [1] and WiFi [25] have been explored,

passive location sensing systems have shown increasing promise to provide calm cap-

ture of context [18]. To this end, much research so far has focused on vision-based

camera sensing and tracking of individuals [17], while less attention has been given to

the uses of speech.

In this report, we examine use of a scalable microphone array system to extract

the locations of individuals in real-time. The locations provide useful information to

enable the detection of conversation patterns of small groups in a large semi-structured

space. The system, known as SLAAM – Scalable Large Aperture Array of Microphones,

was built entirely using off-the-shelf hardware. The deployment environment covers a

physical space of roughly 1000sq feet.

We describe the localization algorithms implemented in SLAAM which provide

low-latency and high accuracy location information of multiple conversations. We also

present a systematic performance evaluation and demonstrate its potential for a multi-

tude of conversation analysis tasks. We highlight the following key characteristics of

SLAAM that contribute to its capability of delivering scalable speech localization ser-

vices:

• High accuracy: SLAAM achieves improvements in precision over previous large-
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array realizations and quantification of localization with natural, conversational

speech.

• Modularity: SLAAM adopted a modular design approach using an array of cells,

currently 5 x 5 covering approximately 1000 square feet, which is scalable by

replication to arbitrary areas.

• Cost effectiveness: the SLAAM system costs about $10/square foot installed, sim-

ilar to modular carpeting, and has required no maintenance in 4 years.

• Simple, efficient, easy to use: the SLAAM API allows applications to easily con-

nect to, and use the service. The current hardware uses a single server CPU to

provide an efficient service, which can simultaneously track up to 10s of targets.

This report is organized as follows, in Section 2 we review related work on micro-

phone array design, source localization, and the analysis of verbal interaction. Section 3

discusses the design rationale behind of our system, and the details of hardware and

software modules. Section 4 focuses on key time-delay estimation and localization al-

gorithms. The peformance of the system is examined in Section 5 via a series of studies.

Preliminary work and results on using the infrastructure to analyse verbal interactions of

small groups is discussed in Section 6. In Section 7, ungoing work and future research

enabled by the infrastructure are outlined.
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2 Related Work

In this section, we survey related work in three relevant fields: microphone array design,

source localization, and the analysis of verbal interactions. We first examine represen-

tative work on microphone array design, focusing primarily on different hardware solu-

tions, array geometry, as well as reported system performances. Then we review acous-

tic source localization strategies, a highly active area of signal processing research for

the past two decades. Relevant localization strategies are grouped under three general

approaches and we describe their merits and drawbacks. Finally, we look at existing

work in human computer interaction on analyzing verbal interactions via microphone

arrays or other system setups.

2.1 Microphone Array Design

Flanagan et al. at AT&T Bell Lab experimented with large microphone array designs in

the late 80’s. They experimented with a rectangular array consisting of 64 microphone

elements arranged into 9 columns and 7 rows on a 1 square meter panel in [16](Figure 1).

A later iteration of the system included 400 microphones (Figure 2). The system was de-

ployed in an auditorium for directional audio capturing to support remote conferencing

in the reverberation and noisy conditions [15].

The Large acOUstic Data Array (LOUD) project by CSAIL MIT built an array with

1020 microphones and holds the world record for the most number of microphones on

a single array. The LOUD array was rectangular in shape and the microphones were

arranged uniformly with a 3cm separation, on a panel of approximately 180cm wide

and 50cm high (Figure 3). The 1024 nodes were attached to 510 printed circuit boards

(PCBs). Each PCB module contained two microphones, a stereo A-to-D converter and

a small cooling component. The A-to-D converter sampled analog inputs at 16kHz and
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Figure 1: A 64-element microphone array built at Bell labs in the late 80’s

Figure 2: A 400-element microphone array built at Bell labs for directional audio cap-

turing
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at 24-bit precision. The PCB modules were assembled in a LEGO-like fashion: a chain

of 16 PCB modules feed into a single input on a connector board using time-division-

multiplexing; 4 connector boards were used and each hosted 8 such PCB chains. The

array produced a total data rate of 393 Mbits/sec or 49.1 MBytes/sec. To accommodate

the high bandwidth, a custom designed and built parallel processor was designed and

used. LOUD was primarily evaluated on automated speech recognition (ASR) tasks. It

demonstrated significant Word Error Rate (WER) improvement over single far-field mi-

crophones for speech recognition in both normal (87% WER drop) and noisy conditions

(91% WER drop) .

Figure 3: The LOUD microphone array: 1020 microphones are uniformly placed on a

1.8m by 0.5m panel. Custom parallel processor was used to handle data input

The Huge Microphone Array (HMA) project from the LEMS group at Brown Uni-

versity constructed an array consisting of 512 microphones [38]. The array was de-

ployed in a lab space of 690 square feet. Similar to LOUD, HMA followed a compo-

nent design approach. The 512 microphone nodes were grouped into 32 distinct boxes

known as microphone modules. Each microphone module consisted of a PCB with 16

microphones , an independent A-to-D converter and a dedicated DSP processor. The

DSP processor was responsible for single channel processing such as frequency trans-
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formation and bi-channel processing such as delay computations. The 32 modules were

connected to a central processing unit via optical fiber cables. Custom DSP processors

and a load-and-go operating systems were designed and built for the array to accommo-

date an estimated 6GFlops of computation rate. HMA was used for a number of array

processing tasks, including robust acoustic beamforming, and single and multi-source

localization. A number of robust localization procedures, such as the SRP-PHAT [13],

have emerged from this system. We discuss SRP-PHAT and related algorithms in Sec-

tion 2.2.

There have also been a large collection of work involving smaller arrays of different

layouts, including spherical arrays [27], superdirectivity arrays [9], linear arrays [37],

etc. These arrays have been primarily examined in the context of speech related appli-

cations, such as desktop conferencing system, speaker diarization, meeting transcription

and understanding.

More recently, rapid advances in processor technologies have propelled microphone

arrays into many commercial products such as cellphone headsets, hands-free automo-

bile speech enhancement, infotainment system in vehicles [42] and personal gaming

devices such as the Kinect [45]. Companies such as Polycom and Microsoft have built

professional videoconferencing setups that leverage microphone array technology [10].

As microphone array technologies become cheaper and increasingly accessible there

has been growing interest to use such setups for capturing contextualized audio events

for building context-aware applications. Scott [36] designed a 6-element microphone-

array consisting of low-cost, off-the-shelf microphones and sound cards. The array was

installed in a 1.8m x 1.8m x 1.2m room and was used for localizing implosive sounds

such finger clicks or hand claps. The motivation was to use plosive sounds as cues to

control lighting and audio volumes. The system reported an absolute 3D localization

accuracy of 27cm at the 90th percentile for finger click events. However it was not able

to localize speech or continuous audio events.
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Figure 4: Placement of four 4-element microphone arrays in a smart home

Figure 5: Microphones were affixed to rectangular panels such as picture frames

Bian et al. [6] instrumented a smart-home of 410sq feet with an array of 16 micro-

phones to detect significant sound events such as cooking, footsteps, and conversations.

The microphones were grouped into 4 element submodules and mounted on rectangular

flat panel objects found in the home, such as on the frame of a painting (Figure 54).

Each modules operated independently, thus the system consisted of four 4-element ar-

rays. The system produced high-latency updates, at roughly 1-5 second intervals which

was too high for tracking continuous audio events such as verbal interactions. Local-

ization performance of the system was evaluated using stationary, prerecorded plosive

sounds. The system reported a modest localization accuracy of 68cm at 95th percentile

but a high rejection rate of 60-80% (i.e. 60-80% of audio events were discarded).

Guo et al. [18] designed a wireless microphone array sensing system for a small lab

environment (6 x 2.9 x 2.7 m) to perform simultaneous classification and localization

of human-generated acoustic events. The array consisted of 6 nodes placed a various
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locations around the room at two different heights (Figure 6). Each node was built

on the Intel Mote2 platform consisting of a microphone, a 16-bit A-to-D converter, a

dedicated DSP processor, and a radio transmitting module (for wireless communication

with a base-station). The array setup was evaluated using pre-recorded speech from the

TIMIT database. The system reported high accuracy for a four-class classification task.

For speech, location estimates were accurate up to 30cm at the 70th percentile. However,

the array used only the first 1843 of samples from any continuous speech segment for

processing. It’s localization performance is unknown for continuous speech.

Figure 6: Wireless microphone array setup in a small lab space: 6 microphones were

installed at different heights and used radio to communicate with a base-station

2.2 Source Localization Strategy

Source localization a fundamental task for microphone array systems and extensive re-

search on localization strategies exists. Existing localization strategies can be broadly

classified as those based on high-resolution spectral estimation, steered response power,

or time-delay-of-arrival estimation.
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2.2.1 High Resolution Spectral Estimation

High-resolution spectral estimation has its roots in narrow-band array processing tech-

niques found in antenna and sonar research, including autoregressive signal modeling,

minimum variance spectral estimation, and a family of well-known eigenanalysis meth-

ods, such as MUSIC [34], ESPRIT [33] and MIN-NORM [26]. All of these techniques

rely on the exploiting the structure and properties of the cross-sensor (spatial) spectral

covariance matrix (CSCM) estimated from observed data. Theoretically, these tech-

niques are able to resolve to multiple point sources, but their effectiveness in real-world

scenarios are limited as they make a number fundamental signal assumptions that are

difficult to meet in practice. For instance, CSCM is often estimated by ensemble av-

eraging of the received signals over a time interval in which the sources and noise are

assumed to be statistically stationary. This is difficult for speech signals because speech

can only be assumed to be stationary for very short intervals, yet longer averaging is

often needed to obtain a sufficiently accurate CSCM in noisy conditions.

The theoretical array model underlying spectral estimation is well-defined only in

the context of narrow-band signals, where the bandwidth is a small fraction of the central

frequency of the sensor passband. Hence subspace methods such as MUSIC or ESPIRIT

are of limited use for wide-band signals such as speech. Extensions to these methods

are available, for example, by splitting the array passband into multiple frequency bins

and applying narrow band algorithms to each sub-band [40], or by applying a focusing

procedure to produce a single matrix to which the narrow-band algorithm is applied [43].

While these extensions do remove the narrow-band limitation, they generally require

much higher computation requirements and tend to be less robust to source and senor

model differences.

The output of spectral estimation techniques is a collection of Direction-of-arrival

angles, which inherently assume that the source is in the far-field. Near-field extension
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are possible but at the cost of higher computation demand [43]. Despite many of the

issues in applying high-resolution spectral estimation, they have been shown promise

for multi-source localization problems [11].

2.2.2 Steered Response Power

Steered response power (SRP) locators are based on the intuition that if one can measure

the distribution of spectral power over a 3D space, then the distribution should show

strong peaks at sound emitting locations. SRP locators borrows from beamforming

by focusing an array to various candidate locations and select the location with the

greatest power [44, 19]. One of the simplest types of SRP is the output of a delay-and-

sum beamformer. The delay-and-sum beamformer uses a simple delay structure to shift

signals relative to a reference microphone to compensate for propagation delays. These

signals are time-aligned and summed together to give a single output. The simple delay-

and-sum beamformer can be extended by applying different filters prior to the summing

procedure, leading to more general filter-and-sum beamformers.

Beamforming was traditionally used to obtain a “better” speech signal by focusing

an array to the known location of a source. Optimum beamforming algorithms are gen-

erally much more expensive than estimating the location of sources. This is justified

since beamforming only needed to be performed after the location of the sound source

had been determined. When beamforming is applied to SRP-based localizers, the loca-

tion of the source is unknown, hence array may need to focus to many candidate source

locations, each of which is associated with an expensive beamforming operation.

To better understand SRP-based estimators from the perspective of real-time source

localization, its basic structure is shown in Algorithm 1. For an array with n nodes,

the input to the procedure is the static microphone locations (in 3D) mi, the data frame

captured by the microphones di, for 1 ≤ i ≤ n, and a set of source candidate position
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P in 3D. The procedure returns the most likely position of a source, where likelihood is

defined as the output-power at the hypothesized source location.

The SRP procedure iterates over candidate locations in P . P is often computed a-

priori and is a function of two variables: (1) the aperture of the array – the 3D volume

within which localization should be performed and (2) spatial resolution – the maximum

accepted spatial quantization error. P is commonly defined using one or more grids

covering the 3D aperture. As a consequence, a k-fold increase in spatial resolution

amounts to a k3 increase in computational requirement. Suppose we have a modest-sized

3D aperture of 3 x 4 x 2m (e.g. a small array equipped conference room) and a spatial

resolution of 10cm, an SRP-based localizer will require 24000 beamforming operations

per data frame. Increasing to a 5cm spatial resolution represents an 8-fold increase to

about 200000 beamforming operations. For a 1cm spatial resolution a staggering 25

million beamforming operations are needed, corresponding to a 1000 times increase.

Many beamform structures, such as the Maximum-Likelihood (ML) beamformer

require significant computation for each beamforming operation and can be computa-

tionally prohibitive for real-time localization in even modest sized rooms. Furthermore,

ML beamformers are highly dependent on the assumed spectral properties of the source

signal and background noise, and thus are less effective in practice. The SRP-PHAT al-

gorithm is a filter-sum SRP locator. It addresses robustness issues for highly reverberant

conditions by filtering the signals via PHAT weighting. Highly accurate location esti-

mates can be obtained from SRP-PHAT and it has been applied to offline location esti-

mation for a number of systems. However, a computation requirement of 2.46TeraFlops

was reported in [14], when SRP-PHAT was applied to real-time (25.6ms) localization

on a 24 element array. To reduce the computational requirement of SRP-PHAT, a more

efficient version based on stochastic region contraction was proposed in [14]. The algo-

rithm avoided brute-force grid-search by iteratively contracting the likely region for the
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actual source, but at the cost of reduced accuracy.

Algorithm 1: Structure of a filter-and-sum based SRP localization procedure
Data: (mi, di), 1 ≤ i ≤ n, P and speed of sound c

Result: Most likely position of a source ps

initialize ps and mp;

for each candidate locations p ∈ P do

for each mic mi do

compute delay from source to each mic: δi =
p−mi

c
;

shift data received di by δi
filter and sum shifted signals and compute output power;

if output power > mp then
mp = output power;

remember candidate point ps = p;
return best candidate point ps;

2.2.3 Time Delay of Arrival

Time-delay-of-arrival (TDOA) methods formulate the localization task as a triangulation

problem by using the time delay between adjacent pairs of microphones to parameter-

ize geometric constraints. These methods operate in two stages. In the first stage, time

delays between pairs of microphones (doublets) are computed. Next, the time delays

along with the locations of the microphones are used to parameterize hyperbolic sur-

faces which constrain the possible locations of a source. The hyperbolic constraints are

intersected in some optimal sense to arrive at a source location estimate.

The accuracy and robustness of the TDOA estimates is central to the effectiveness

of this class of localizers. The basic form of TDOA estimation involves computing the

cross-correlation (CC) function between signals received by a doublet and determining
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the delay with the highest correlation. Background noise and room reverberation are

two major sources of degradation for robust peak detection in the cross-correlation.

The Generalized Cross Correlation (GCC) function was proposed to improve TDOA

estimation by pre-filtering or frequency-reweighting signals before evaluating the CC

function. Many variations of GCC functions have been examined, including SCOT,

Maximum-Likelihood (ML), and GCC-PHAT [24]. The GCC-PHAT function became

widely popular due to its robustness to moderate noise and reverberation conditions.

We examine GCC-PHAT in more detail in Section 4 since it forms the basis for the

localization procedure in our system.

Given TDOA estimates, the second stage of obtaining a location estimate involves

solving a set of nonlinear equations. Various algorithms have been developed, with

varying assumptions e.g. near field vs far field source, and capabilities e.g. 2D vs.

3D localization. The solvers can either give exact solutions which are often based on

an iterative procedure or give closed-form solutions. While closed-form estimators are

cheaper to compute they give sub-optimal results by approximating the exact solution

to the nonlinear problem [35, 39].

This class of localizers are generally much more efficient than both high resolution

spectral estimation and SRP-based locators and thus are have been more widely used for

real-time localization. Despite superior performance properties, they do suffer robust-

ness issues in the presence of high reverberation and noise interference, which are not

uncommon for realistic deployment environments. The problems can be further com-

pounded by real-time, low-latency localization requirements. In addition, TDOA based

locators are formulated for single source localization and it’s not obvious how to extend

the scheme to multi-source localization. We discuss how these issues are addressed in

our system in Section 4.
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2.3 Verbal Interaction Analysis

Conversation analysis (CA) is a well established method in sociology, anthropology, lin-

guistics and psychology to study social dynamics via verbal and nonverbal interactions.

It is particular influential in sociolinguistics and discourse analysis. More recently, there

has been growing interest in using computer assisted technologies to study conversations

and automate CA. Aoki et al [4], used a multi-microphone setup (one close-talking mic

person) to record round-table, multi-party (3+ people), co-located, social interactions.

Voice activity detection was applied to the multi-channel recording to extract turn-taking

and speaker floor information. Together with transcripts of the recording, they exam-

ined the structural and temporal aspects of casual spontaneous dialog. In particular,

they focused on the mechanics of multiple simultaneous conversational floors, how par-

ticipants initiate a new floor amidst an on-going floor (known as schisming), and how

participants subsequently show their affiliation with one floor over another. A number

of recommendations for conversation modeling was given. In particular, it was sug-

gested that to analyze real world sociable interactions a system can not only assume that

conversational participation share a single floor via dyadic behavior.

Karahalios et al. [21] created numerous real-time visualizations of on-going social

conversations. It was found that by providing feedback in the form of visualizations

of turn-taking behavior, overlapping speech and energy levels, the displays could act as

reflective mechanisms (“social mirrors”) to mitigate social tension and to help maintain-

ing social norms such as equal participation and reduced interruption. Work by Kim

et al [23] built a real-time visualization around conversational engagement using data

collected from speech, body movement and proximity. The visualization was shown to

be effective in encouraging participates to balance participation during remote confer-

encing scenarios.

Roy et al. [32] instrumented homes with eleven video cameras and fourteen-element
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microphone arrays to obtain unobtrusive continuous recording of all activities continu-

ously for years. The data was used to understand the language acquisition process of

children by mapping the utterances over both spatial and temporal dimensions.

Choudhury et al. [8] explored the use speech prosody and Markov processes to

model and discover long-term social interactions. Speech, location, and proximity in-

formation was captured via an integrated sensing device known as the Sociometer [7].

Basu [5] created a library of robust techniques for conversation scene analysis and stud-

ied those techniques on data collected from the Sociometer. This library includes al-

gorithms for extracting low-level auditory cues, such as pitch, speaking rate, and en-

ergy, a linked HMM for detecting voiced and unvoiced regions of speech. These low

to mid-level features would then be used to segment speech signal into conversation

scenes. Conversation scenes, location data and speaker identifiers were input to vari-

ous models to try to learn the communication patterns with a community, various social

network properties, individual turn-taking style and how people influence each other’s

turn-taking style.

In his book Honest Signals, Pentland examined the predictive power of social signals

that are unconsciously communicated on the outcomes of social interactions [29]. Four

categories of honest signals were highlighted, including Influence - the extent to which

one person causes the other person’s pattern of speaking to match their own pattern,

Mimicry - the reflexive copying of one person by another during a conversation, Activity

- an indication of interest and arousal, Consistency - the emphasis and timing of speech

as a sign of mental focus. These honest signals are mapped to combinations of prosodic

features and spatial features. A series of studies using the Sociometer was carried out

to examine the effectiveness of using these features to predict the outcome of various

conversations including salary negotiation, speed dating, and VC pitch. “Thin-slice” be-

havioral analysis was used which involves analyzing a short windows of conversational

speech (e.g. the first couple of minutes) and it was found to be surprisingly predictive.
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3 System Design

In this section we discuss the hardware and software design of of a Scalable Large

Aperture Array of Microphones (SLAAM). We start by discussing the high level design

rationales. Scalability was a key design consideration, in terms of the area covered,

density, and number of sources that can be tracked by the array. SLAAM was built

using commodity and relatively inexpensive off-the-shelf audio components. This is

an important distinction of this system compared to more common designs based on

custom manufactured hardware components. At the same time off-the-shelf modules do

impose more constraints on the design of the system, ranging from physical wiring to

computational limitation. We’ll consider these limitations as we describe our system.

3.1 Design Goals

We motivate the design of SLAAM along a number of dimensions.

• Low Cost Cost is a practical and important design criteria, but is not often consid-

ered or explicitly explained in prior work. Elaborate sensor setups are often too

costly to design and deploy, such as for homes and small meeting spaces. In this

project we set out to design a system that is relative inexpensive to build, install

and maintain.

A clear understanding of the expected cost is important to evaluate the feasibility

and scalability of a design. We can break the total cost of deploying a micro-

phone array system into the following components: hardware, installation, and

maintenance. The total cost of a system can be defined as :

total cost = cost of hardware + installation + maintenance/year × years deployed
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Maintenance cost is generally a running cost. The sensitive region of a micro-

phone array refers to the area in which the array can produce sufficiently accurate

localization results for the applications being supported. Given a deployment en-

vironment of a specific sensitive region, one obvious cost metric is cost-per-unit-

area:

cost-per-unit-area =
total cost

area of sensitive region

Under this cost model, it is desirable to increase the sensitive area (large aperture)

while using a relatively small (sparse) number of microphones.

• Commodity Hardware One of the factors which could significantly impact the

cost models above is the amount of customization required for an array design to

accommodate specific deployment requirements. Custom hardware designs are

often more configurable (e.g. dealing with wiring requirements) but typically in-

cur steeper manufacturing costs. Custom systems are also generally more brittle

with respect to hardware failures, especially during long term deployment, thus

driving up maintenance cost. In contrast, commodity hardware are generally more

solid, robust, and more thoroughly tested. For these reasons, we set out to examine

the feasibility of building a robust array system by using only off-the-shelf com-

ponents. The was system was designed to improve high replicability so someone

else can relatively easily set up a similar installation elsewhere. The hardware

components are discussed in more detailed in Section 3.2

• Low-latency localization Latency requirements for a localization service are de-

pendent on the applications being designed and supported. Take as example an

audio-based automatic camera steering application for video-conferencing sys-

tem, it is unlikely that an active audio source (participants of the conference)

will make sudden and rapid movements. Furthermore, even when movements

are present, there is rarely a need to track all instantaneous changes. As such, la-
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tency of up to 200-300ms are very acceptable for these applications. Instead, if the

array-based localization system is to be employed as the front-end of an automatic

speech recognition (ASR) or diarization system, then position estimates must be

updated quickly, since even small misalignment or “steering errors” will signifi-

cantly degrade ASR and diarization performances. Hence for speech understand-

ing and segmentation systems, it is expected that location updates be provided on

20-50ms data frames [8, 12, 3]. However, it should be noted that “real-time” ASR

and diarization systems are rare, and the majority of these systems work offline or

in batch mode on entire segments of recorded meetings or speech. As such, these

system typically favor higher accuracy over lower latency in their design. SLAAM

was designed for real-time applications such as conversation visualization, anal-

ysis, and quasi-real-time applications such a as speech-driven applications. Thus

latency is an important design constraint.

• Multi-source localization In general, multiple simultaneous active conversations

may take place in a large physical space. When the physical separation of these

conversations are sufficiently close, microphones will receive mixtures of speech

generated by multiple simultaneous speakers (and noise sources). Thus the local-

ization algorithm cannot assume a simplistic single-speaker-only model.

While simultaneous speech is more likely to be generated between multiple con-

versations, they do occur within a conversation and are important for understand-

ing the turn-taking patterns of conversations [4]. For example, turn-stealing or

interruption is a verbal event that causes momentary simultaneous speech and is

often associated with disagreement or dominance [41]. In social conversations,

overlapping speech could also be associated with “cooperative overlap”, which

describe the case in which one speaker talks at the same time as another speaker

not in order to interrupt but to show enthusiastic listenership and participational

interest in the conversation. We discuss these patterns of speech overlap and how

they are captured by our system in Section 6.
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• Spatial precision The spatial precision of a system is another dimension that de-

pends on the applications to be supported. For example in spatial conversation

analysis, separating the speakers is an important requirement. It has been well es-

tablished by proximics theory from social psychology that the degree of intimacy

between individuals has high correlation with physical distance during a conver-

sation, which can range from 0.5m for highly intimate conversation to 7.6 m for

public speaking [20]. The physical separation among acquaintances in a social

conversations ranges between 1.2 - 4.7 meters while the distance between good

friends and family on the average ranges from 0.5 - 1.2 meters. This suggests

that we can lower bound the physical separation between speakers by 50cm ( 20

inches). This implies that a source location estimate which deviates by more than

25cm from the true location will likely be incorrectly classified. The system will

need to produce location estimates well below this error margin.

3.2 Hardware Design

We now discuss the hardware implementation of the array system. We examine the

components used, their capabilities, and various design considerations in array place-

ment and component connectivity.

3.2.1 Components

SLAAM is constructed entirely using commodity, off-the-shelf audio modules consist-

ing of:

• Thirty-six Shure Easyflex Boundary microphones (Figure 7). The microphones

are omni-directional with a frequency response in the 50Hz to 17kHz range. The
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Figure 7: The Shure Easyflex Boundary microphones

response is flat across the vocal range (300Hz - 2kHz).

• Six SMProAudio preamplification devices (Figure 8) which supports 8 TRS input

and 8 TRS outputs. The preamp provides a maximum gain of 60dB for each

discrete input channel.

• Six MOTU MKII devices with integrated digitizer, mixer, and streaming capabil-

ities (Figure 8). A single MKII digital mixer supports up to eight TRS analog

inputs. The digitizer can sample at 44.1kHz, 48kHz, or 96kHz and at 24-bit pre-

cision. Each mixer comes with two firewire 400 interfaces which support a max-

imum transfer rate of 49.15MBytes/second and a maximum connection distance

of 4.95 meters. Each module also has one set of ADAT optical light pipe connec-

tors that can be used to stream up to 8 channels of 44.1/48kHz audio between two

connected MKII modules.

• A Dell Quad-core i5-2.8GHz workstation.
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Figure 8: A preamp plus digital mixer module

Figure 9: Adjacent pairs of MKIIs are connected by ADAT light pipes. Odd-numbered

MKII modules are daisy chained.
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Figure 10: The microphones were hang at equal distance from the beams

3.2.2 Layout

The entire array is laid out in a rectangular grid pattern, with six columns and six rows.

We show a schematic diagram of the layout and wiring in Figure 11. Adjacent mi-

crophones are set apart at roughly 1.52 m (5 feet) separations in the vertical direction.

The separation in the horizontal direction is constrained by the installed Unistrut ceil-

ing beams. The minimum measured separation is 1.57m (5.1 feet) and the maximum

separation is 1.79m (5.87 feet). The beams were installed 2.74m (9 feet) from the floor.

We calibrated the height of the microphones by playing back pre-recorded speech

at about conversational volume (70dB) and measuring the signal-to-noise ratio at the

closest set of four microphones and using human intelligibility tests. We found that

at 2.74 meters, the closest microphones produced an average of SNR of < 1.5dB and

the captured audio had low intelligibility ratings. This is in part due to the acoustic

condition of the lab space (see Section 5.1). At a height of 2.13m (7 feet), the average

SNR improved to > 2.1dB and the audio intelligibility improved significantly. Thus

the microphones were dropped from the beams at a uniform height of 2.13m from the

ground (Figure 10). To calibrate the locations of the microphones we attached reflective
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tapes to each microphone and measured the separation distances via a Berger TLM100

laser range finder. A small amount error (±5cm) is expected in the measurements.

Each vertical bank of six microphones (i.e. mics on the same Unistrut beam) are

feed into a single SM Pro Audio Preamp module. Each analog channel on from the

preamp outputs to a single MOTU MKII (Figure 8). This layout design can easily scale

up to larger aperture as well as to a higher density given a fixed aperture. For exam-

ple, the array density can be doubled by a duplicating set up by running the hardware

components orthogonal to the current array.

Figure 11: Schematic of the hardware component layout of SLAAM

3.2.3 Clock Synchronization

To avoid phase distortions (e.g. clicks) that might be introduced by A-to-D conversation

of thirty-six channels by discrete digitizers, the audio clocks of the A-to-D modules

must be phase-locked.

Two options were available to achieve this:

• A reference MKII module can be set to act as a Master clock source, while

other modules can be set as slaves that synchronizes to the reference clock on
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the firewire interface.

• Use a dedicated clock source hardware. The SPIF interface on the digitizer can

be used to synchronize with the dedicated clock.

From a scalability standpoint, the first option was more appealing since (1) the clock

source would limit the number of MKII modules that can be physically attached (2) the

locations of the digitizers would be restricted by the location of the clock source due to

wiring constraints and the total coverage of the array will be limited as a result.

There is however one challenge to synchronizing the digitizers on the firewire in-

terface: a maximum of four MKII modules can be daisy-chained on a single Firewire

400 bus. We used six MKIIs to ensure that the entire deployment space was adequately

covered. To circumvent this constraint, we connected each pair of MKII modules on

their ADAT interfaces via optical light-pipes (Figure 9). The ADAT interface allows the

content of one (out) unit to be “mixed” on to the audio bus of the second (in) unit. Thus,

a pair of MKIIs are effectively processed as a single virtual unit. Clock synchronization

of all six modules can then be achieved by daisy chaining every other unit. Finally, the

master clock MKII module streams the content from its firewire interface to the server

machine’s Firewire card. To the host processing driver, only three virtual units are visi-

ble on the Firewire bus, but each unit has 12 audio channels rather than 6.

3.2.4 Cost

At the time of its construction (48 months ago), equipment cost of SLAAM was ap-

proximately $1270 per bank of mics, with the following breakdown: $750 per MKII,

$200 per preamp, $50 × 6 for the microphone nodes. Including the workstation, the

total equipment cost amounts to $8920. The quoted installation price averages to $30

per mic, due to retrofitting to an existing ceiling. A one-time calibration took place
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post-installation and no calibration had been needed since. The hardware has also been

very resilient to failure – no mic or streaming device failure has been detected since

installation. Under our cost model we have:

cost-per-unit-area =
$8920 + 1080

1000 sq ft
= $10sqft

which is comparable to cost of installing office carpeting the same area.

3.3 Software Stack

We wanted to design our software architecture to be flexible enough for supporting a

range of location-based and speech-driven applications. The architecture is shown in

Figure 12. The “front-end” modules include a multi-channel streaming driver, a source

localizer, a speech detector, and a beamformer. Location output by the source localizer

are streamed by a web-service and used by location-based applications. The beam-

former module enhances the SNR of the speech signal and reduces the effect of noise

and reverberation. The enhanced speech can be process by an automatic speech recog-

nition component for transcription or to estimate the emotion of the speakers via affect

analysis. The components marked with solid lines have been implemented and the dash-

lined components will be added in future iterations of the system. In this section, we

describe these components but leave the technical details of speaker detection and sound

localization to Section 4.

The multi-digitizer streaming driver is the front-end layer that communicates with

MKII digitizers. It is responsible for listening to incoming data on the firewire interface,

decoding the audio streams, and buffering data for downstream processing. Real-time

processing is a key criteria: to ensure sufficient time for signal processing tasks, the

driver needs to be highly efficient. This is achieved by communicating with the MKIIs

via the Audio Stream Input Output (ASIO 2.0 API). ASIO is a driver protocol designed
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Figure 12: Software architecture of SLAAM

to provide low-latency and high fidelity data transfer between a software application

and the physical sound module. The ASIO protocol abstracts the hardware module as a

simple IO device with a predefined set of primitives for direct communication, including

starting, stopping, reading from and writing to the device. The key advantage of the

ASIO interface is allowing the multi-digitizer driver to stream directly from the MKIIs,

bypassing the layers of intermediary Windows operating system. Each layer bypassed

means a reduction in latency, thus ASIO can significant reduce the latency of the driver.
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The ASIO-based streaming driver uses call-backs to signal relevant hardware events.

For example, when the hardware buffer is filled, a predefined call-back method will be

invoked. The driver is responsible to interpreting and processing this data. We remarked

in Section 3.2 that the minimum sampling frequency of MKII is 44.1kHz. The MKIIs

also support four different sized hardware buffers: 258, 512, 1024, and 2048 samples.

Under 44.1KHZ sampling, this means that the internal hardware buffers will be full

in 12.9ms 23.8ms, 47.6ms, 96.2ms, 192.4ms, corresponding to the different hardware

buffer sizes.

To support real-time processing, MKIIs use a simple double internal buffering strat-

egy. That is, an MKII will reserve two equal length buffers A and B. Data buffering

will start from buffer A and once buffer A is filled, ASIO signals the driver to process

that data frame. While A is in use, MKII continues to buffer incoming data on buffer

B. When B is filled, the call-back is invoked again and the roles of the buffers are now

switched. This is depicted in Figure 13, where blue is used to denote the buffer being

processed by the driver and green is used to denote the buffer currently storing incom-

ing data. This configuration also means that the driver must finish processing the blue

buffer before the green buffer is filled, otherwise the previous data frame will be over-

written with new content. The combined latency of the driver and downstream DSP

must not exceed the buffering capability of the device: for a 1024 internal buffer this

maximum combined latency is 23.8ms. A semaphore is used to weakly synchronize the

ASIO device and the driver. The semaphore is set in the ASIO “data-available” call-

back function to signal the driver. The driver clears the semaphore after the current data

frame has been processed.

Figure 13: Double internal buffering scheme used by MKII
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The beamforming module uses the output of the localization procedure (i.e. source

locations), the speaker detection module (i.e. speech or non-speech) to perform spatial

filtering of the multichannel audio input. The localization and speaker detection mod-

ules run parallel to each other (see Section 4) and are implemented in C++ using the

Intel Math Kernel Library (MKL). MKL contains a collection of highly tuned and ro-

bust linear algebra routines from LAPACK.The output of the localization module are

buffered by a location service. The location service module is a daemon that listens

for incoming client connections at a public IP. Clients communicate with the daemon

via TCP/IP sockets via a simple protocol with four commands (join, quit, start, pause).

After the “start” command has been called by a connected client, the daemon starts

relaying location estimates to the clients in real-time. The clients can perform further

application specific processing (e.g. source clustering, Kalman filtering). The “pause”

commands allows clients to instruct the daemon to temporarily pause location streaming

when location estimates are being generated a faster rate than the client can handle. The

buffered location estimates are flushed and archived to persistent storage periodically.
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4 Source Detection and Localization

In this section we examine the algorithmic details of the speech detection and source

localizations modules. We look at the way SLAAM is partitioned logically to divide the

aperture into smaller regions of submarrays. We discuss a simple, spectral divergence

based voice-activity detection (VAD) algorithm and describe in detail a two-stage lo-

calization procedure based on TDOA estimation extended from GCC-PHAT and a fast

triangulation solution.

4.1 Subarray Partitioning

The physical grid layout of the array discussed in Section 3.2.2 offers a natural partition-

ing of the array aperture into 25 non-overlapping rectangular cells. Under this scheme,

each cell is enclosed by four adjacent microphones (in both horizontal and vertical di-

rections), known as a a quad (Figure 14).

The spatial partitioning of a large aperture array can help improving the robustness

of localization for both single and multiple source localization tasks. By using a non-

overallping design, each cell can be configured to monitor only those sound sources that

are active with in its boundaries. The localization task for the full array can be broken

down into 25 independent localization tasks with 25 smaller sub-arrays. For a single

source scenario, in a large apeture array most of the channels (mics) are too far away

from the source to contain useful information for localization or beamforming tasks.

Thus the partition can be used to naturally select channels that contain the most relevant

signals and significantly reduce computational requirement by filtering out less pertinent

channels. For the multiple source case, the spatial partition effectively limits the number

of sources that need to be tracked by each sub-array. This is important for peak selec-

tion based multi-source localization strategies. As we shall see in Section 4.4, the peak
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selection procedure examines possible combinations of peaks generated by each micro-

phone pair; the total number combinations of peaks that need to be examined grows

exponentially with the number of sources and the number of delays: O(nk) where n

is the number of sources and k is the number of delays. Further more the number of

delays is combinatorial k =
(
m
2

)
, where m is the total number of single channels. For

quad-based sub-array localization the number single channels is limited to 4, i.e. k = 6.

In addition, the number of active sources that fall within the boundary of a sub-array is

physically limited by the size spatial region and the natural physical separation (prox-

imics) between people involved in conversations. In addition, from the standpoint of

beamforming, with the exception of simple delay-and-sum beamformers, most other

structures require joint optimization of multiple filter parameters which increases super-

linearly with the number of channels.

While the quad structure mimics the physical layout of the array, the partitioning of

the array into subarrays is inherently logical and it is possible to construct other regular

shaped partitioning of the space. For example, one can defining any k by k grid of

microphones as a cell (for k > 2) to increase the number of microphones in a subarray

(Figure 14). It will be interesting to study the trade-off between higher complexity

versus performance using different array layouts. In SLAAM however, we found in

calibration that for a speech source at conversational volume, microphones in adjacent

cells do not obtain signals with sufficiently high signal-to-noise ratio (i.e > 1.2dB).

Thus the current design uses a quad-based subarray partitioning scheme.

4.2 Speech Detection

To detect the presence of speech sources, we make use of an efficient voice activity de-

tector (VAD) algorithm similar to [31, 30]. The detector produces a binary classification

of a data frame xt(n) at time t as either speech or non-speech. The metric is based on
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Figure 14: Possible partitioning schemes from the array layout. The green area shows a

quad structure. The orange area shows a 9 element rectangular subarray

the Kullback-Leibler (KL) divergence between the spectrum of the current data frame

pd(ω), and a running estimate of the noise spectrum probability distribution pn(ω):

H(pn‖pd) =

∫
pn(x) log

(pn(x)

pd(x)

)
dx

The noise spectrum probability distribution is an exponentially weighted average all

non-speech frames. If the current frame is classified as non-speech, then the noise spec-

trum distribution estimate is updated recursively via:

ptn(ω) = γpt−1n (ω) + (1− γ)ptd(ω)

where γ is the forgetting factor. Thresholding is applied to H(pn‖pd) to classify the

frame as speech or non-speech.

In SLAAM, the spectrum of the current data frame is also temporally smoothed

via a double-exponential filter (running at the same rates as EXP-GCC-PHAT, see next

section):

ptd(ω) = (α− β)X t(w) + (β − α)pt−1d (w)

where Xt(ω) is the short-term spectrum of the current frame and pt−1d (ω) is the running

estimate of the data spectrum.
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To determine if a quad enclosure contains a speech source, VAD is applied to each of

the microphone channels independently to produce four binary outputs v1, . . . , v4. Next

we applied quad-level majority voting to decide if delay estimation and triangulation

should be attempted within the quad (ie. v1 + v2 + v3 + v4 > 2, more than two channels

are classified as speech). A minimum of three (out of four) channels need to be classified

as speech since that’s the minimum number of time delays needed for triangulation (see

Section 4.6).

Note that the VAD algorithm depends entirely on running estimates of the data and

noise spectra. From an implementation standpoint, this is efficient and fits well with

generalized cross correlation (GCC) time delay estimation algorithms that we describe

next.

4.3 Time Delay of Arrival Estimation

Given the quad partitioning of the SLAMM aperture, the delay estimation module com-

putes time-delays between any two adjacent pairs of microphones: horizontal, vertical,

and diagonal, leading to six such TDOA estimates. The time-delays estimates are not

linearly independent (some delays are completely determined by combinations of oth-

ers). However, the redundancy helps to reduces the variance of the location estimates

in the presence of estimation errors. In addition, the redudant delays can be effectively

used in a peak selection procedure and in the context of multi-source localization, as we

describe in Section 4.4.

The time delay of arrival (TDOA) estimation in SLAAM is based on GCC-PHAT.

The General Cross-Correlation (GCC) with Phase-transform (PHAT) is a well-known

technique for estimating time-delays [24]. GCC based delay estimators assume the

following signal model: a source signal x(t) is located at an unknown point p in 3D
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space, a pair of microphones located at m1 and m2 receive delayed and noise corrupted

replicas of x(t):

x1(t) = x(t− τ1) + n1(t)

x2(t) = x(t− τ2) + n2(t)

where n1(t) and n2(t) are additive channel noises, assumed to be Gaussian and un-

correlated with x(t) and each other, τ1 and τ2 are the absolute propagation delays of

sound from p to m1 and m2 in air. The true relative delay between the received signals

is then τ12 = τ1 − τ2. By definition, the cross correlation between x1(t) and x2(t) is:

c(τ) =

∫ ∞
−∞

x1(t)x2(t+ τ) dt

The GCC function is defined as the cross correlation of two filtered versions of x1(t)

and x2(t).

c(τ) =

∫ ∞
−∞

(h1(x) ∗ x1(t))(h2(x) ∗ x2(t+ τ)) dt

A computationally efficient implementation of the GCC function is by transforming the

input to the frequency domain, as

R(τ) = IDFT
(

Ψ12(ω)X1(ω)X∗2 (ω)
)

where X1(ω), X2(ω) are the spectra of the input signals, ∗ is the complex conjugation

operator, and Ψ12 is a suitably chosen weighting function. The goal of Ψ12 is to max-

imize the GCC function at R(τ) at the true delay τ12. Finally, the estimated delay is

obtained via

τ̂12 = arg max
τ∈D

R(τ)

whereD is the plausible interval of delays, commonly defined by the distance separating

the doublet. The GCC-PHAT is essentially a weighting function Ψ12 defined as:

Ψ12 =
1

|X1(ω)X∗2 (ω)|
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GCC-PHAT is well-known for its simplicity and efficient implementation, and has

been shown to provide fair localization accuracy under a range of acoustic conditions.

For instance, Guo et al.[18] applied the GCC-PHAT procedure to the first voiced 204.3ms

frame, or 8376 samples, of a continuous speech segment to obtain an absolute TDOA

accuracy of 60cm at 70% of the time, though errors can be as high as 2.5meters. While

these results are encouraging, it is unclear how well GCC-PHAT can consistently and

accurately produce TDOA estimates for continuous speech in a low-latency setting (e.g.

data frames of 1024 samples). In fact our experiments suggests that when applied over

an entire segment of multiple frames of speech, one might be much less optimistic about

GCC-PHAT in its basic form.

We conducted delay-estimation experiments using the TIMIT test dataset (see Sec-

tion 5.2). Given a quad, the GCC-PHAT function is computed for each doublet on

frame-by-frame basis over the entire speech segment, producing six time-series of delay

estimates. A hamming window was applied to each data frame of 1024 samples (with a

50% overlap). As shown in Figure 15, GCC-PHAT only achieved an absolute error of

60cm about 40% of the time.

GCC-PHAT is a frequency domain technique, and when applied to isolated frames

of speech data yields suboptimal TDOA estimates. In our work, we observed that the rel-

ative time-delays change only slowly over time for both stationary and even slowly mov-

ing sources. To track temporally slow varying TDOAs, we apply a double-exponential

filter over the short-term GCC-PHAT spectrum. This procedure, which we call EXP-

GCC-PHAT, takes the conventional PHAT-weighted cross-spectrum at time t: GCCt and

recursively smooths the estimate via a weighted moving average:

GCCt
α = (αGCCt−1

α ) + (1− α)GCCt

GCCt
β = (βGCCt−1

β ) + (1− β)GCCt

GCCt = GCCt
α − GCCt

β
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Figure 15: TDOA estimation accuracy: cumulative distribution of TDOA errors (in

meters)

At t = 0, we have GCC0
α = GCC0,GCC0

β = GCC0. Note α and β are filter parameters

which trades the relative emphasis between present and past cross-spectra. Taking the

difference of two single-exponential averages effectively implements a non-causal IIR-

filter. We empirically designed the filter coefficients with α = 0.5 and β = 0.3, which

provided good temporal smoothing while introducing a minimum of 1-frame delay in

the output.

The result of applying EXP-GCC-PHAT to the TIMIT dataset are shown in Fig-

ure 15. An absolute error of 60cm and 75cm are obtained over 70% and 80% of the

time. These are significant improvements compared to the baseline (GCC-PHAT) accu-

racy. In Figure 16, we show the result (in lag-domain) of processing the same frame of

data by EXP-GCC-PHAT and GCC-PHAT; compared to GCC-PHAT, EXP-GCC-PHAT

is shown to significantly boosts the absolute value of the primary peak, as well as the

relative value to secondary peaks, both of which improves the robustness of the peak
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Figure 16: EXP-GCC-PHAT accentuate the desired peak and increase primary peak to

secondary peak ratio

selection procedure.

We show the resulting TDOA estimates obtained from applying EXP-GCC-PHAT

and GCC-PHAT to the same 1̃5 seconds recording of human speech segment in Fig-

ures 17 and 18. The figures show running TDOA estimates for the six doublets in a

quad. The same preprocessing filter and window lengths are applied. The frames with-

out “markers” are those whose primary peak in the GCC function fell below the same

predefined threshold value. It’s clear that EXP-GCC-PHAT can more consistently pro-

duce stable time delay estimates.

To quantify this effect, consider the ratio between the secondary peak to the primary

peak in the cross-correlation under each processor, as shown in Figure 19. Under EXP-

GCC-PHAT, the primary peaks are at least 2 times stronger than secondary peaks 30% of

the time and at least 1.5 times stronger in 60% of the time. In comparison, under GCC-

PHAT, only 10% of the primary peaks are twice stronger and 30% are 1.5 times strong.
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Figure 17: Applying GCC-PHAT to six doublets for a 15 seconds recording of human

speech

Figure 18: Applying EXP-GCC-PHAT to six doublets for a 15 seconds recording of

human speech

In general, EXP-GCC-PHAT achieves significantly stronger primary peaks which con-

tributes to much lower TDOA estimation errors.

4.4 Peak Selection

While the EXP-GCC-PHAT procedure obtains encouraging TDOA estimate results, the

estimation errors could still run as high as 1 meter over 15% of the time. Furthermore,

since TDOAs are key parameters in defining the triangulation problem, these errors

would result in suboptimal or inconsistent models for solvers, which lead to poor local-

ization estimates. While residual-norms from the triangulation solver could be used to
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Figure 19: Secondary peak to primary peak ratio

evaluate the quality of a set of localization estimates, solving for the model in the first

place makes it an expensive peak quality evaluation procedure.

Furthermore, in most indoor residential or office enclosures, hard objects such as

walls, windows, and furniture will cause reflections and reverberations. These lead to

multipath propagation of the signal and will manifest as false peaks in the GCC. To ac-

count for possible strong reflections, we consider simultaneously a number of candidate

peaks. This can be accomplished by softening the requirement to return the lag which

maximizes the GCC function but rather consider the top k peaks in the GCC (which is

slower than max by a factor of only log n)

With up to k candidate peaks returned per GCC function (for a single doublet), the
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resulting problem is a matching problem – for d doublets involved in the localization

procedure, determining which of kd possible combinations are plausible as the location

of the source. While the problems appears to combinatorial and should cause scalability

concerns, good heuristics exist to signficantly trim the problem space.

m2 m3

m4m1

d3

d4

τ12 =
d1−d2

c

τ23 =
d2−d3

c

d2

d1

τ13 =
d1−d3

c
= τ12 + τ23

Figure 20: TDOA consistency constraints

We observe that if the source location is known, then the true TDOAs can be com-

puted given the locations of the microphones. These TDOAs are also related a set of

deterministic relations. Consider Figure 20, letting di denote the distance between the

source to mic i and τi = di/c, we have the following relations:

τ12 = τ1 − τ2

τ23 = τ2 − τ3

τ13 = τ1 − τ3 = τ12 + τ23

where the last relation shows that τ13 is linearly dependent on the two other delays τ12

are τ23. We can in fact write six such relations that must be satisfied by any given set of

true TDOAs.

Viewed differently, for an unknown source with a given set of estimated TDOAs,
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in the presence with estimation errors these relations can be seen as a metric to evalute

how close a collection of estimated TDOAs are to the true TDOAs corresponding to

some source (or strong reflection). For the relation above we define a corresponding

consistency metric:

τ̂13 = τ̂12 + τ̂23 + ε

for some suitably chosen threshold ε. That is, given τ̂13, τ̂12, τ̂23, if τ̂13 − τ̂12 − τ̂23 < ε

we deem the estimated delays to be consistent, otherwise they are not.

From a computational stand-point, these metrics can be evaluated efficiently with-

out traversing the complete candidate space. Observe that each consistency metric only

requires knowing three (rather than all six delays). Failure to satisfy a condition al-

lows us to prune the candidate space (for example, by eliminating all sets containing

τ̂13, τ̂12, τ̂23), thus avoiding generating and evaluate all k6 combinations.

We show the effectiveness of this peak selection procedure for TDOA estimation of

a single source in a reverberant room. Figure 21 shows the TDOA running estimates for

a single doublet. It’s clear that the global maximum peak “jumps” between two TDOAs,

where one corresponds to a strong reflection from a fixed brick-wall. The result after

applying peak selection is shown in Figure 22. We can see that the procedure was

effective in filtering out the strong reflection source.

Figure 21: The TDOA running estimate for a single doublet before peak selection. The

jumps between TDOA values indicates a strong reflection.
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Figure 22: The TDOA running estimate for the same doublet after peak selection. The

strong reflection is filtered out.

A lower bound on ε obtained by considering the best-case delay estimator, where

the estimation error ε is zero. Since the actual delays are continuous time quantities,

discretization in the lag domain introduces an uncertainty bounded by the sampling

period 1/f . We evaluate the effectiveness of this matching algorithm with respect to

error CDF by varying the threshold ε in multiples of 1/f . We performed thresholding

in an OR-fashion, i.e. the entire frame of array data is rejected if any of the d peaks

(time-delays) fails the consistency check. We see an absolute error of 3cm is achieved

at the 99th percentile (for ε = 1/f ) at a surprisingly reasonable rejection rate of around

20%. At 5% rejection rate (ε = 3/f ), 99% of errors are below 7cm.

In theory only three pairs of TDOA estimates are require for triangulating targets in

3D – however the inclusion redundant constraints will generally improve accuracy and

reduce variance in the presence of noisy estimates. In future work, we will study and

quantify the performance of less aggresive schemes by varying the number of consistent

TDOAs between 3 and 6.
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Figure 23: EXP-GCC-PHAT improves signficantly with consistency check

4.5 Multiple Sources

Robust multi-source localization is still a challenging problem in microphone array pro-

cessing. Recently proposed techniques based on blind-source-separation (BSS) have

shown great promise [11, 28]. These techniques compute a factorizations of the signal

coherent matrix and/or computes likelihoods over a 3D space, and thus are are not easily

adapted for real-time processing.

Within the time-delay based localization framework, the existence of multiple sources

implies the GCC-PHAT function may produce multiple significant peaks. Unlike peaks

introduced by strong reflections, these peaks are not only likely to be internally con-

sistent, but should also exhibit longer term persistence in the temporal domain. Our

multi-source localization strategy is thus based on the fast peak matching algorithm de-

scribed previously. The scheme will return S × k numbers of peaks for each doublet,

where S is the number potential sources and k is the number of candidate peaks per
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source. We consider the performance of this scheme in the Evaluation section.

4.6 Triangulation

Triangulating the target source location based on delay estimates is a geometric problem.

Given a source located at x, the time-delay relative to the ith doublet is:

τ =
‖x−m1‖ − ‖x−m2‖

c

where m1, m2 are the known locations of the doublet and c is the speed of sound in air.

Together with the sign of τ , the expression defines a locus of candidate source locations

that form a one-half of a hyperboloid of two sheets in 3D, centered at m1 and m2. From

basic geometry, a hyperbolid of two sheets has a semi-major axis α and a semi-minor

axis β which are related by

α2 + β2 =
d

2

2

where d is the distance between the foci m1 and m2. The analytic form of a hyperboloid

of two sheets in 3D whose foci is on the x-axis is given by :

x2

α2
− y2

β2
− z2

β2
= 0

An equivalent expression in quadratic form is : xTAx = 0 The coefficient matrix A is

given by: 
α−2 0 0

0 −β−2 0

0 0 −β−2

 (1)

Given a set of six time-delay estimates in a quad, the source location estimate can

then be defined as the point that lies at the intersection of all the hyperboloids. However,

such a point may not exist since TDOAs are estimated and may not be exact. As such,
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we seek to find the point that is closest to all the hyperbolic constraints, which leads to a

least squares problem. Letting fi(x) = xTAix, the least squares problem can be stated

as:

x̂ = arg min
x

6∑
i=1

wifi(x)2 (2)

The problem (2) involves solving a weighted system of nonlinear equations. We

developed an iterative solver based on Gauss-Newton. The solver produces an exact

solution in the absence of model (TDOA) errors. At each iteration, the solver computes

the direction of descent via linear least squares by using linear approximations of the

original quadratic constratins. The step size is obtained via direct line search. In general,

descent methods can take many iterations to converge. To ensure our solver converges

under the low-latency requirement, we developed a number of heuristics to speed up

convergence, which we describe below.

1. Initialization Descent methods are often sensitive to the initialization point. For

our solver we leveraged the geometric model to produce a good (probable) initial

guess of the source location. For a hyperboloid given by fi(x) = xTAix = 0, one

can fit a plane tangential to the surface at a given point xi by evaluating the partial

derivatives at that point

5fi(xi) = Aixi

and forming the equation

5fi(xi)Tx = 5fi(xi)Txi

One such tangential planes is obtained for each of the six hyperboloid constraints,

and together, form the linear approximation to the problem, i.e., let

J = [5f1(x1)T , . . . ,5f6(x6)T ]T
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and

b = [5f1(x1)x1, . . . ,5f6(x6)x6]T

solve

Jx = b

Provided J is full-rank, the linear system can be solved via the normal equations:

x = (JTJ)−1JT b

We initialize each xi to be the vertex of the corresponding hyperboloid. Further-

more, the normalized weights indicate the relative importance of each constraint

fi(x). We encode our belief of the accuracy of the model into wi by setting them

to the normalized EXP-GCC-PHAT function values corresponding to the TDOA

peaks.

2. Z-dim constraint The microphones in SLAAM are ceiling mounted at the same

height. Consequently, the linear approximation to the quadratic problem is under-

constrained and the Jacobian is singular. To mitigate this issue, we add a soft

height-constraint z = c to the solver. To locate both sitting and standing speakers,

this height-constraint is set at 1m, roughly the height of a sitting person.

3. Planar reduction When an active speaker is positioned at roughly the half way

point between a doublet, the TDOA τ approaches zero and the coefficient matrix

A is undefined. However, we observe that in this degenerate case, the hyperboloid

constraint effectively reduces to a planar constraint – a plane that bisects the line

joining the two microphones. The solver replaces the quadratic constraint with a

corresponding plane constraint, by consulting the known geometry of the micro-

phone array layout.

We benchmarked our solver against the Matlab optimization toolbox implementation

of Nonlinear least squares using Levenberg-Marquardt. For localizing a single source,
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the Levenberg-Marquardt solver took a frame-average of 30ms cpu-time for a single

source computation. Our solver took an average of 1ms cpu-time to obtain a solution at

the same precision, which represents a factor of 30 increase in performance at the same

accuracy. This suggests that, for real-time localization (23ms), our solver is theoretically

able to simultaneously track 10s of targets.
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5 Performance Evaluation

In this section, we discuss evaluation of SLAAM for continuous speech, using both pre-

recorded and natural speech. To provide an honest appraisal of our system, we adopted

a multi-step evaluation approach in order to understand its performance characteristics.

5.1 Testing Environment

Figure 24: SLAAM is deployed in Berkeley Institute of Design (BiD)

The receiving region of SLAAM overlays one-half of an open semi-structured lab

space (Figure 25) at the Berkeley Insititute of Design (BID). This open space hosts a

regular seminar series, perioidic small group research meetings, and graduate student

and adviser meetings, teaching-assistant office hours, and student socials.

The space was retrofitted with about ten years ago with an open ceiling constructed

with Unistrut beams that run in both horizontal and vertical directions. The beams

are at a height of 9 feet from ground and open up to a vaulted ceiling of 30 feet. A

number of HVACs are installed 3 feet away from the beams. This space is connected

to an open cubicle area of about 30 by 32 feet hosting 20 graduate students with 15
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Figure 25: Layout of lab space and array placement

workstations. Rudimentary analysis of the room acoustics revealed a fairly complex

condition for acoustic localization: an average ambient noise of 42dB was detected

across all microphones. This is about the same noise level as a house in the middle of a

major city. The RT60 of the room averages to 3.6 seconds and was measured as high as

5 seconds at some locations.

5.2 Playback speech

Evaluation of localization performance for naturally occurring speech is complicated by

the fact that the human upper-body will not remain perfectly rigid even without active

movement. We start therefore by examining the performance characteristics of the sys-
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Table 1: Localization performance for prerecorded speech

RMSE (standing) RMSE(sitting)

< 25cm 100 % 99%

< 10cm 98.20% 83.90%

< 8cm 95.91% 73.34%

< 5cm 92.62% 65.71%

Reject % 1.01% 2.14%

tem for a completely stationary sound source. A stationary sound source is generated

by playing back 50 clips selected from the TIMIT test dataset through a quality loud

speaker, at 25 calibrated locations under SLAAM (one location per quad) and at two

different heights: a “standing height” (of 6 feet) and a “sitting height” (of 4.5 feet). The

loudspeaker was adjusted to produce a maximum of volume of 70dB at 3 feet away

which is roughly the loudness of adult speech. A total of 750 audio clips were col-

lected at each height level. TDOAs are then estimated using EXP-GCC-PHAT and tri-

angulation is performed using our custom least-squares solver, as described in previous

sections. We summarize both the 3D localization errors and rejection ratios in Table 1.

High localization accuracy was obtained by the system: 100% of the standing data

obtained an absolute error of less than 25cm, while 92.6% of the time, the error was less

than 5cm. For the sitting corpus, we obtain an absolute error of less than 25cm at 99%

but only < 5cm at 65% of the time. The rejection rates were at 1% for the standing

corpus and 2% for the sitting corpora.
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5.3 Human speakers

We consider the case of a single, stationary human speaker. For this we recruited seven

subjects and each subject was assigned to 3 different locations under the coverage of

SLAAM. Ground truth was established by calibrating the locations relative to SLAAM’s

geometry via a Berger TLM100 laser range finder. At each location, a subject read aloud

the content of a paper written in English. This was repeated for both standing as well

as sitting heights. We asked the subjects to speak naturally at a normal conversational

volume and pace, and did not ask them to remain consciously rigid during the recording

process. Under each condition, a multichannel track recording of 2.5-3 minutes was

obtained. Localization was performed in real-time on the fly and the location estimates

and residuals were also recorded. This corpus contained an average of 18 minutes of

audio recording for each of the seven subjects.

For each condition, we consider the RMS deviation of the estimated source location

from the calibrated locations. The results are summarized in Table 2. For the stand-

ing corpus, 95.2% of the estimates were less than 10cm of error. No error exceeded

the permissible margin of 25cm. Localization performance is slightly worse for the sit-

ting corpus; the mean deviation from the calibrated locations was 8.8cm and 92.5% of

estimates were below 25cm.

Given the ceiling-mount construction of the array, the distance of a sound source

to the microphones will increase at sitting height. Thus we expect the signal strength

to degrade in proportion to inverse distance squared, which contributes to the increase

in RMSE. Furthermore, some of the error could be attributed to slight movements of a

subject’s upper-body position (e.g. head movement).
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Table 2: Localization performance for human speakers

RMSE(standing) RMSE(sitting)

< 25cm 100% 92.50%

< 10cm 95.20% 61.90%

< 8cm 80.90% 52.30%

< 5cm 47.60% 33.30%

Reject % 3.91% 4.52%

(a) dyad1 (b) dyad2 (c) dyad3

Figure 26: Visualization of dyads

5.4 Human conversations

We evaluate SLAAM’s localization performance for human conversations by consid-

ering dyadic conversations (2 interlocutors). We recruited six subjects, forming three

dyads. We calibrated three pairs of fixed locations, where each pair of locations are

separated by a maximum of 70cm. Each dyad was asked to carry a normal conversa-

tion, first standing and then sitting down, at each location; all other requirements were

identical to the single-speaker condition. In total we recorded between 30-40 minute of

conversational speech at each calibrated location. We show the results of localization

for each dyad in a spatial visualization in Figure 27.
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Table 3: Localization performance for dyadic conversations

RMSE(standing) RMSE(sitting)

A B A B

< 25cm 97.3% 97.2% 90.03% 89.3%

< 10cm 93.10% 94.23% 60.10% 59.4%

< 8cm 78.10% 77.93% 50.40% 51.5%

< 5cm 45.33% 41.30% 31.3% 30.1%

Reject % 4.22% 4.17 % 5.20% 5.41%

As shown in Table 3, for standing conversations, 97% of the errors were under 25cm

while for the sitting corpus, 89% of the estimates were under 25cm of absolute error.

These results are strong indications that it is feasible to spatially separate and implicitly

tag stationary speaker directly from the localization results.
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6 Conversation analysis

In this section we report preliminary conversation analysis work enabled with the in-

frastructure. To keep the analysis tractable we set out with a modest initial goal of an-

alyzing conversations for small group interactions with natural authentic conversations.

We recorded three group conversations that took place in the lab. The demographics of

the groups and the topics of their conversations are summarised in Table 4 .

Table 4: Authentic conversations

Demographics Topic

Group 1 3 graduate students weekend plan

Group 2 3 undergraduate students football

Group 3 1 graduate student and research

2 undergraduate researchers

In order to not influence their interaction, we avoided calibrating the positions of the

members of each team but asked each group to take up whatever location was natural and

appropriate. However, we did ask all the groups to avoid making significant movements

(e.g. swapping locations). We show the results of localization for each small group in a

spatial visualization in Figure 27.

To obtain ground truth, each subject was wired with a close-talking microphone

just below the chin. To perform conversation analysis, we first used the standard k-

means algorithm to cluster our localization data, which consisted of coordinate vectors

into meaningful constructs: sources. The number of clusters was chosen via a five-

fold cross-validation. The cost function was the sum of the euclidean distances from the

coordinate vectors to the centroids of the clusters. Next, we perform a temporal mapping

of the sources by assigning the source-id to the frame in which it is active. From this we

compute a set of high level summary statistics for each conversation (Table 5).
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(a) dyad1 (b) dyad2 (c) dyad3

Figure 27: Visualization of dyads

From the summary data it is clear that Group 1 and Group 2 had more balanced con-

versations than Group 3. Each member in Group 1 and Group 2 spoke for approximate

the same total time as well as holding the same number of floors. This is unsurprising

given the informal and casual nature of these two conversations. For Group 3, alloca-

tion of speaking times and turn-takes were more skewed and a pattern of dominance

and engagement reveals itself – member A, the graduate student, was clearly the dom-

inant speaker; member C held the floor the highest number of times (19), which seems

to suggest that she was highly engaged in the conversation. To better understand this

dynamics, we break-down the turn-taking counts to examine the number of turn-takes

between each pair of members in the group and the directionality of the turns-takes, i.e.

whether the turn was passed from member X to Y or Y to X. As visualized in Figure 28,

we overlay a directed graph over the localization visualization, with the following map-

ping: (1) nodes represented members in the group (2) color of the nodes is proportional

to the mean speech energy (3) directed arrows indicate the exchange of floors and the

thickness of the arrow lines is proportional to the number of exchanges.
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Table 5: Summary statistics of three-way conversations

Group 1 Group 2 Group 3

Member A B C A B C A B C

Speaking Time (minutes) 15.2 19.3 17.1 10.3 8.2 9.2 25 2.4 10.8

% of total conversation 29% 37 % 33% 37% 30% 33% 65% 6% 28%

Total # turns 24 25 22 16 18 14 17 6 19

Time per turn (sec) 38 48 49 39 27 39 88 24 34

Mean energy (db) 59 58 59 56 57 56 57 55.6 55

From these graphs we can begin making hypothesis about regarding the dynamics

of the groups. For example, members A and B seems to be more engaged with each

other, as indicated by the high number of floor exchanges. Furthermore, the smaller

number of interchanges between members B and C suggests that A was leading roughly

two dyadic conversations (A to B and A to C). This is shown more prominently in

Figure 28b, where the directionality of the turn-exchanges show a roughly balanced

number of floor exchanges between each dyad. Indeed, from the audio transcripts we

were able to ascertain that the graduate student (A) was getting a weekly progress update

from the two undergraduate researchers (B and C) who worked on different parts of a

project. Applying the same analysis to Group 1, we see in Figure 29 that turn-taking

behavior was more balanced, suggesting equal participation from each member. This is

consistent with their total speech times (Table 3).

We have remarked that both interruption and cooperative-overlap can produce frames

in which multiple sources are active. As explained in [41] cooperative-overlaps are de-

vices used by the interlocutors to “chime in” to show rapport and do not interrupt the

flow of the conversation. Examples of cooperative overlap devices include utterances

such as “oh” or “oh yeah”. To differentiate multi-source frames that correspond to true

turn-stealing interruptions versus those that are cooperative overlaps, we use the follow-
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(a) pair-wise turn-takes (b) directional turn-takes

Figure 28: Turn-taking dynamics of Group 3

ing heuristic: if the number of consecutive overlapping frames is greater than 5 frames

(i.e. roughly 2 seconds) and the overlapping frames are followed by a turn-exchange,

then the multi-source frames are classified as interruptions; otherwise, they are classified

as cooperative overlap. This heuristic is consistent with the observation that coopera-

tive overlap constructs are short utterances and that they do not typically cause a floor

change. We visualize the detected interruptions and cooperative overlaps for Group 1

and Group 3 in Figures 30 and 31. Again, we show the directionality of the overlap.

It is interesting to see that in the formal meeting case (Group 3), few cooperative over-

laps were detected and the majority of the overlaps were actual interruptions and 50%

of those interruptions were caused by member A (graduate student). For the more ca-

sual conversation (Group 1) the opposite is true – most of the overlaps were cooperative

rather than interruptions. These are consistent with [41] in that cooperative overlaps a

common in dialog between acquaintances.
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(a) pair-wise turn-takes (b) directional turn-takes

Figure 29: Turn-taking dynamics of Group 1

(a) Cooperative overlaps (b) Interruptions

Figure 30: Overlapping dynamics of Group 1
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(a) Cooperative overlaps (b) Interruptions

Figure 31: Overlapping dynamics of Group 3
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7 Conclusion and Future work

In this work, we have examined the design, implementation, and evaluation of a scalable

microphone array system that is capable of achieving high accuracy, low latency human

speech localization and small-group conversation analysis. We discussed system design

requirements for capturing conversation dynamics, and algorithms and techniques ca-

pable of meeting these requirements. While this work is built on a known localization

strategy using time delays, we achieved significant performance gains over previously

reported results in both precision and recall for localization in a real-world acoustic

environment. Furthermore, we proposed an efficient multi-source localization scheme

under this framework based on peak matching, which was the key enabler to pick up

the nuances in human to human conversations. This working platform has enabled a

number of initial conversation analysis work, revealing interesting patterns of rapport,

interruption, and dominance within different social structures.

There are a number of interesting directions which can be built on this work. We

are currently exploring machine learning techniques, such as Bayesian networks, for

automated analysis and classification of meeting types, speaker roles, and other nuances

of social interaction (e.g. mimicry) on a large scale. We hope that this line of work

will inform models to better understand the formation and evolution of physical social

networks. We have also been exploring uses of this infrastructure for emotion detection,

classification, and feedback for collaborating teams. It is well known that emotional and

social feedback can be powerful incentives to enable teams to function more effectively.

We have since collected a significant amount of authentic conversational and meeting

data for model training and prediction which are being studied. Lastly, microphone

arrays have long been envisioned as ubiquitous input devices and to this end we are

extending the SLAAM API as an array front-end to drive novel speech-based ubicomp

applications.
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