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Sequential Communication Bounds
for Fast Linear Algebra∗

Grey Ballard, James Demmel, Olga Holtz, Oded Schwartz

Abstract

In this note we obtain communication cost lower and upper bounds on the algo-
rithms for LU and QR given in (Demmel, Dumitriu, and Holtz 2007). The algorithms
there use fast, stable matrix multiplication as a subroutine and are shown to be as
stable and as computationally efficient as the matrix multiplication subroutine. We
show here that they are also as communication-efficient (in the sequential, two-level
memory model) as the matrix multiplication algorithm. The analysis for LU and QR
extends to all the algorithms in (Demmel, Dumitriu, and Holtz 2007). Further, we
prove that in the case of using Strassen-like matrix multiplication, these algorithms
are communication optimal.
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1 Introduction

The running time of a numerical computation depends both on the number of floating
point operations (flops) and on the amount of data it moves, which we call communication.
In order to determine the communication cost of a sequential algorithm, we use a simple
machine model which consists of a fast memory of size M words (where computation takes
place) connected to a slow memory with unbounded size. We assume the data involved
in the computation is too large to fit entirely in the fast memory, and we measure the
communication in terms of floating point numbers (words) moved between the two memory
levels. We will refer to the number of words moved by an algorithm its bandwidth cost.

The näıve approach of multiplying two n× n matrices using three nested loops performs
2n3 flops and moves O(n3) words of data. The 2n3 flops can be re-ordered into a blocked or

recursive algorithm which moves O
(

n3
√
M

)
words, a significant improvement over the näıve

approach. Hong and Kung [12] proved that this communication reduction is asymptotically

optimal, that performing 2n3 flops requires moving at least Ω
(

n3
√
M

)
words.

Strassen [13] showed that matrix multiplication can be performed with O(nlog2 7) flops,
asymptotically fewer than the classical O(n3) approach, and many further improvements on
the exponent have been made. By reducing the number of flops performed, it is also possible
to reduce the communication below the bound proved by Hong and Kung. In [4], we prove
a communication lower bound for fast matrix multiplication algorithms: executing a matrix

multiplication algorithm with O(nω0) flops requires moving Ω
((

n√
M

)ω0

M
)

words.1 This

lower bound is attained by the natural recursive algorithm.
Demmel, Dumitriu, and Holtz [6] showed that nearly all of the fundamental algorithms in

dense linear algebra can be executed with asymptotically the same number of flops as matrix
multiplication. To obtain practical numerical algorithms, one must also consider stability
and communication issues. Although the stability properties of fast matrix multiplication
are slightly weaker than those of classical matrix multiplication, the authors show in [7] that
fast matrix multiplication is stable. Further, in [6] they show that fast linear algebra can
be made stable at the expense of only a polylogarithmic (i.e., polynomial in log n) factor
increase in cost. That is, to maintain stability, one can use polylogarithmically more bits
to represent each floating point number and to compute each flop. While this increases the
time to perform one flop or move one word, it does not change the number of flops computed
or words moved by the algorithm.

The main contribution of this note is the extension of both upper and lower communi-
cation bounds for the algorithms presented in [6]. Stability and computational complexity
were the main concerns in [6]. Here, we show that the communication cost of the algorithms
also matches that of the matrix multiplication subroutines they employ and that the re-
cursive implementations yield a communication-optimal ordering of the computation. We
summarize the previous results and those shown here in Table 1.

1Under certain technical assumptions. See Section 2 for details.
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Algorithm Flops Words Lower Bound

Classical matrix multiplication
O(n3) O

(
n3
√
M

+ n2
)

Ω
(

n3
√
M

+ n2
)

Classical linear algebra

Fast matrix multiplication
O(nω0)

O
(

nω0

Mω0/2−1 + n2
)

Ω
(

nω0

Mω0/2−1 + n2
)

Fast linear algebra O
(

nω0

Mω0/2−1 + n2 log n
)

Table 1: Summary of cost comparisons between classical and fast algorithms. The lower
bounds given correspond to the number of words moved.

2 Lower Bounds

In this section we obtain communication lower bounds for the algorithms in [6] using the
results from [4]. The applicability of these bounds are similar to those for classical algorithms
[5] and for Strassen-like matrix multiplication algorithms [4]: they apply to any re-ordering
of the computation (which respects the dependencies) and any use of commutativity and
associativity of addition. The lower bounds here depend directly on the choice of fast ma-
trix multiplication algorithm used as a subroutine, and they apply only to “Strassen-like”
algorithms which are defined below.

Note that for all dense matrix algorithms there exists a trivial lower bound of Ω(n2)
words since every matrix element must be accessed at least once. We include this term in
the statements of the lower bounds in Table 1.

2.1 Strassen-like Matrix Multiplication

Communication lower bounds for Strassen’s and Strassen-like matrix multiplication algo-
rithms are proved in [4] using analysis of the computation directed acyclic graph (CDAG).
We repeat the definition of Strassen-like and the main result from [4] here, as our results for
Strassen-like linear algebra will be direct extensions.

Definition 2.1. A Strassen-like matrix multiplication algorithm is a recursive algorithm
for multiplying square matrices which is constructed from a base case of multiplying n0 × n0

matrices using m0 < n3
0 scalar multiplications, resulting in an algorithm for multiplying n×n

matrices requiring O(nω0) flops where ω0 = logn0
m0. In order to be Strassen-like, the base

case decoding graph, which gives the dependencies between the m0 scalar multiplication results
and the n2

0 entries of the output matrix, must be connected.2

Theorem 2.2 ([4]). The number of words moved by a Strassen-like matrix multiplication
algorithm with O(nω0) flops on a machine with fast memory of size M , assuming no inter-

2See [4] for further discussion.
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mediate value is computed twice, is

B(n) = Ω

((
n√
M

)ω0

·M
)
.

2.2 Linear Algebra with Strassen-like Matrix Multiplication

The following lower bound applies to all the algorithms in [6] assuming the fast matrix
multiplication subroutine is Strassen-like. In particular, along with the results of Sections 4
and 5, it implies that the LU and QR algorithms are communication-optimal.

Corollary 2.3. Suppose an algorithm has a CDAG containing as a subgraph the CDAG of
a Strassen-like matrix multiplication algorithm with input size Θ(n) which performs Θ(nω0)
flops. Then, assuming that no intermediate value is computed twice, the number of words
moved during the computation on a machine with fast memory of size M is

B(n) = Ω

((
n√
M

)ω0

·M
)
.

Proof. The proof of Theorem 2.2 is based on an analysis of the CDAG of a Strassen-like
matrix multiplication algorithm. If the CDAG of a computation includes as a subgraph
a CDAG which corresponds to Θ(n) × Θ(n) Strassen-like matrix multiplication, then the
analysis yields the same communication lower bound for that subset of the computation and
therefore the entire computation.

Note that there may be many different CDAGs which correspond to computing an LU
decomposition using a Strassen-like matrix multiplication as a subroutine. For example, the
algorithms of [6] split the matrix into equal-sized left and right halves, but another algorithm
may split the matrix into a tall-skinny panel and a larger trailing matrix. Corollary 2.3
applies to all such algorithms that contain a sufficiently large subgraph corresponding to a
Strassen-like matrix multiplication.

This result implies that given the CDAG that a recursive algorithm of [6] produces, no re-
ordering of the computation can improve the communication costs by more than a constant
factor compared to the depth-first ordering given by the recursive algorithm. The result
does not apply to algorithms which restructure the CDAG beyond the freedom allowed by
commutativity and associativity of addition.

Unlike the case of classical matrix multiplication and other O(n3) algorithms, the freedom
to exploit commutativity and associativity within fast matrix multiplication and fast linear
algebra is quite limited and can affect communication costs only by a constant factor. In
the case of classical algorithms, exploiting commutativity and associativity is an important
means of blocking algorithms to improve communication costs and can alter the bandwidth
cost by up to a factor of O(

√
M). In the case of fast algorithms, the freedom to order the

computation allows much greater flexibility than just exploiting commutativity and asso-
ciativity: a pessimal ordering results in O(nω0) bandwidth cost while the optimal ordering
decreases that cost by a factor of O(Mω0/2−1). In this sense, the applicability of the lower
bounds for fast linear algebra are as general as those for fast matrix multiplication.
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3 Rectangular Recursive O(n3) Algorithms

In this section we review the communication cost upper bounds for rectangular recursive
algorithms for Cholesky, LU, and QR which use classical matrix multiplication as a sub-
routine. We provide the detailed analysis here because it does not appear elsewhere in the
literature in full generality, and because the analysis for fast linear algebra (i.e., using fast
matrix multiplication as a subroutine) is very similar. We will assume the use of classical
matrix multiplication and triangular solve (with multiple right hand sides) subroutines which
attain their communication lower bounds. For upper bound analysis of recursive versions of
these algorithms, see [3].

The bandwidth cost recurrence for rectangular recursive algorithms for Cholesky [3], LU
[11, 14], and QR [8, 9] on m× n matrices (where m ≥ n) is given by

B(m,n) =

 B
(
m, n

2

)
+ B

(
m− n

2
, n
2

)
+ Θ

(
mn2
√
M

+ mn
)

if n > 1 and mn > M

Θ(mn) if n = 1 or mn ≤M.
(1)

The base case occurs either when the recursion stops in order to factor one column (n = 1)
or the problem fits entirely into fast memory (mn < M). The fact that either base case can
occur is different than in many other communication cost recurrences and is the main reason
the analysis is more complicated. In either base case, the bandwidth cost is only a constant
factor more than the cost of reading the matrix once.

An equivalent recurrence appears in [8] (see equation (3.5)) for the case of QR, but the

cost of the update of the right half of the matrix is written as O
(

mn2
√
M

)
(in the notation

here), which ignores the mn term. The mn term dominates mn√
M

when n <
√
M ; note that

this case may occur simultaneously with mn > M for sufficiently large m. In this case, the
problem is too large to fit into fast memory but the number of columns is too small to attain
Θ(
√
M) re-use within matrix multiplication. Thus, the mn term cannot be ignored.

A simplified recurrence for LU appears in [14], where the base case mn < M is not
considered. This implies the recurrence provided in [14] is accurate only in certain cases, but
the recurrence provides a valid upper bound in all cases (only upper bounds are considered
in [14]). Tighter analysis, including consideration of lower bounds, is provided in [3] for
Cholesky, and the two cases m ≤ M and m > M are treated separately. However, in
the case m > M , the error in the statement of the recurrence is propagated from [14]. The
recurrence assumes that if m > M , then no subproblem will fit in fast memory throughout the
recursion; however, the number of rows in one of the subproblems is reduced, and therefore
both base cases are possible. The recurrence is valid only if m−n > M . That is, the smallest
number of rows among all subproblems is still greater than the size of the fast memory.

Here we show both upper and lower bounds3 for equation (1), thus showing that each
term is inherent to the algorithm and not due to lax analysis. Since the cost of factoring

3Note that this is a lower bound for the recurrence corresponding to these particular rectangular recursive
algorithms, not for a class of algorithms for computing these decompositions. Lower bounds for a class of
algorithms is the subject of [4, 5] and Section 2.
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the left half of the matrix is greater than the cost of factoring the right half, we can upper
bound the right hand side of equation (1) (as done in [8]) with

B(m,n) ≤

 2B
(
m, n

2

)
+ O

(
mn2
√
M

+ mn
)

if n > 1 and mn > M

O(mn) if n = 1 or mn ≤M.

Thus,

B(m,n) ≤ O
(

2t ·mn

2t

)
+

t−1∑
i=0

2i ·O

(
m
(
n
2i

)2
√
M

+ m
n

2i

)

= O

(
mn2

√
M

+ mnt

)
where t is the height of the recursion tree. In the case m− n > M , the base case mn < M
never occurs because the number of rows in any subproblem is always too large to fit one
column in fast memory. Thus, the only relevant base case is n = 1, and so t = log n. In
the case m < M , the base case n = 1 never occurs because each subproblem will fit in fast
memory before the number of columns is reduced to 1. Thus, the only relevant base case is
mn < M , and so t = log mn

M
.

Similarly, we can lower bound the right hand side of equation (1) with

B(m,n) ≥

 2B
(
m− n

2
, n
2

)
+ Ω

(
mn2
√
M

+ mn
)

if n > 1 and mn > M

Ω(mn) if n = 1 or mn ≤M.

Thus, since the number of rows in any subproblem is at least m− n, we have

B(m,n) ≥ Ω
(

2t ·mn

2t

)
+

t−1∑
i=0

2i · Ω


(
m−

∑i
j=1

n
2j

) (
n
2i

)2
√
M

+

(
m−

i∑
j=1

n

2j

)( n
2i

)
≥ Ω(mn) +

t−1∑
i=0

2i · Ω

(
(m− n)

(
n
2i

)2
√
M

+ (m− n)
( n

2i

))

= Ω

(
(m− n)n2

√
M

+ (m− n)nt

)
where t = log n in the case m− n > M , or t = log mn

M
in the case m < M .

Thus, for m ≥ cn for some constant c > 1 and m− n > M , we have

B(m,n) = Θ

(
mn2

√
M

+ mn log n

)
,

and for m ≥ cn for some constant c > 1 and m ≤M , we have

B(m,n) = Θ

(
mn2

√
M

+ mn log
mn

M

)
.
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Note the mn log n and mn log mn
M

terms: they arise because of the extra mn term in the
bandwidth cost of matrix multiplication (and triangular solve, possibly) at each internal node
of the recursion tree. This is why the solutions given here differ from [8]. Also, as argued in
[14], pivoting in the case of LU adds another O (m2 log n) term to the total bandwidth cost.

While the condition m ≥ cn with c > 1 does not hold for square matrices, we may focus
attention on factoring the left half of the matrix in which case the number of rows is twice
the number of columns and obtain both upper and lower bounds. Thus, for n > 2M , we

have B(n) = Θ
(

n3
√
M

+ n2 log n
)

, and for n < M , we have B(n) = Θ
(

n3
√
M

+ n2 log n2

M

)
.

For each of these recurrences, the base cases together cost only Θ(n2) words (the size
of the input/output). Since the cost of the internal nodes dominates, using a faster matrix
multiplication subroutine (that also communicates less) improves the total communication
costs of these algorithms. However, using a faster matrix multiplication cannot reduce the
extra n2 log n or n2 log n2

M
term that accumulates from the Θ(n2) bandwidth cost required

for each recursive level of internal nodes.

4 LU with Fast Matrix Multiplication

The LU decomposition algorithm of [6] includes computing and multiplying by explicit in-
verses of diagonal blocks of L (which are triangular). Thus, we first establish the bandwidth
costs of fast matrix multiplication and triangular matrix inversion using fast matrix multi-
plication.

Fast Matrix Multiplication The communication cost of fast matrix multiplication im-
plemented with the natural recursive algorithm is given by

BMM(n) = Θ

(
nω0

Mω0/2−1
+ n2

)
(see equation (1) in [4]) where ω0 is the exponent corresponding to the computational cost.

Triangular Matrix Inversion with Fast Matrix Multiplication. Following Section
3.1 of [6], the recursive algorithm for triangular matrix inversion4 involves two recursive calls
and two matrix multiplications (which ignore triangular sparsity). Again, the cost recurrence
given for arithmetic also applies to the bandwidth cost. The bandwidth cost is

BTRTRI(n) =

 2BTRTRI

(
n
2

)
+ Θ

(
(n/2)ω0

Mω0/2−1 + (n/2)2
)

if n2 > 2M

Θ(n2) if n2 ≤ 2M.

The solution to this recurrence is

BTRTRI(n) = Θ

(
nω0

Mω0/2−1
+ n2

)
.

4We use the LAPACK acronym TRTRI to refer to triangular matrix inversion.
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Note that this algorithm is communication optimal.
In order to re-use the cost function for LU decomposition given in Section 4.2 of [6],

we compute the bandwidth cost of LU without pivoting first and then add in the costs of
pivoting. With a slight change of notation from [6] (interchanging m and n), we obtain a
similar recursive bound on the bandwidth cost:

BLU(m,n) ≤ 2BLU

(
m,

n

2

)
+ 4

m

n
BMM

(n
2

)
+ BTRI

(n
2

)
+ O

(
m
n

2

)
.

Note that the base cases of the recurrence are different than in [6] and match those in
Section 3. Since the bandwidth cost of triangular inversion matches that of matrix multipli-
cation, we obtain

BLU (m,n) =

 2BLU

(
m, n2

)
+ O

(
m(n/2)ω0−1

Mω0/2−1 + m(n/2)
)

if n > 1 and mn > M

Θ(mn) if n = 1 or mn ≤M.

Since the pivoting is done the same way as in the classical O(n3) recursive algorithm, the
bandwidth cost due to pivoting is O(m2 log n) as shown in [14]. Following the same analysis
as in Section 3 and including the cost of pivoting, we have that the bandwidth cost of LU
decomposition with partial pivoting is

BLU(m,n) = Θ

(
mnω0−1

Mω0/2−1
+ m2 log n

)
.

Note that since m ≥ n, m2 log n dominates mn log n and mn log mn
M

(for m < M).
Thus, for a square matrix, the bandwidth cost is

BLU(n) = Θ

(
nω0

Mω0/2−1
+ n2 log n

)
and by Corollary 2.3 the algorithm is communication-optimal for M = O

(
n2

logn

)
.

5 QR with Fast Matrix Multiplication

Section 4.1 of [6] presents a recursive QR decomposition algorithm based on that of Elmroth
and Gustavson [9] which exploits fast matrix multiplication and has the same asymptotic
computational cost as the matrix multiplication subroutine. The recursive cost function,
given in [6] to represent arithmetic cost, also represents the bandwidth cost. Bounding it in
the same way (again with a slight change in notation and different base cases), we obtain

BQR(m,n) ≤ 2BQR

(
m,

n

2

)
+ 8

m

n
BMM

(n
2

)
+ O

(
m
n

2

)
.

Thus, we have

BQR(m,n) =

 2BQR

(
m, n2

)
+ O

(
m(n/2)ω0−1

Mω0/2−1 + m(n/2)
)

if n > 1 and mn > M

Θ(mn) if n = 1 or mn ≤M.
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Following the analysis from Section 3, in the case m > 2M , the depth of the recursion
tree is log n, and therefore

BQR(m,n) = Θ

(
mnω0−1

Mω0/2−1
+ mn log n

)
. (2)

For smaller values of m, when one or more columns of the matrix fit in fast memory, the
depth of the recursion tree is log mn

M
, and the bandwidth cost becomes

BQR(m,n) = Θ

(
mnω0−1

Mω0/2−1
+ mn log

mn

M

)
.

Note that the cost is dominated by the internal nodes of the recursion tree (the leaves
contribute Θ(mn) words total). Also note that log mn

M
< log n when m < M , which implies

that equation (2) is a valid upper bound in all cases.
Thus, for a square matrix, the bandwidth cost is

BQR(n) = Θ

(
nω0

Mω0/2−1
+ n2 log n

)
and by Corollary 2.3 the algorithm is communication-optimal for M = O

(
n2

logn

)
.

6 Discussion and Extensions

In this note we provide the communication cost analysis for recursive LU and QR algo-
rithms which use fast matrix multiplication subroutines as presented in [6], and we show
that these algorithms are communication optimal. Several more algorithms are given in [6],
including randomized rank-revealing URV decomposition, eigenvalue and singular value de-
compositions, solving the Sylvester equation, and computing eigenvectors from Schur form.
Corollary 2.3 applies to each of these algorithms, and the communication costs of these al-
gorithms attain the lower bounds up to additive n2 log n terms, though we omit the proofs
here.

There are several extensions to this work. First, all of the results here are for the se-
quential, two-level memory model. The lower bound here can be easily applied to every
pair of adjacent levels in the sequential, hierarchical memory model discussed in [5]; the
recursive structure of these algorithms leads to cache-obliviousness [10] and optimality in
this hierarchical model.

The lower bound can also be extended to the parallel, distributed-memory model as is
done in [4] and [1]. However, it is unclear if there exist communication optimal parallel
algorithms for LU and QR in the parallel case. An optimal algorithm for Strassen’s matrix
multiplication was obtained only recently [2]. It seems likely that the parallelization approach
employed there can be used for other linear algebra algorithms.

Another useful communication metric is latency cost. The latency cost of an algorithm
is the number of messages communicated between fast and slow memory, where a message
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consists of many words stored contiguously in slow memory which are communicated as a
unit. The bandwidth cost lower bound easily translates to a latency cost lower bound. In
order to consider the latency cost of an algorithm, we must define the data layout used for
the input and output matrices. As argued in [3], rectangular recursive algorithms which
minimize bandwidth cost do not necessarily also minimize latency cost.
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