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1. Introduction
TCP incast is a recently identified network transport pathol-
ogy that affects many-to-one communication patterns in
datacenters. It is caused by a complex interplay between
datacenter applications, the underlying switches, network
topology, and TCP, which was originally designed for wide
area networks. Incast increases the queuing delay of flows,
and decreases application level throughput to far below the
link bandwidth. The problem especially affects computing
paradigms in which distributed processing cannot progress
until all parallel threads in a stage complete. Examples of
such paradigms include distributed file systems, web search,
advertisement selection, and other applications with parti-
tion or aggregation semantics [5, 18, 25].

There have been many proposed solutions for incast.
Representative approaches include modifying TCP param-
eters [18, 27] or its congestion control algorithm [28], op-
timizing application level data transfer patterns [21, 25],
switch level modifications such as larger buffers [25] or ex-
plicit congestion notification (ECN) capabilities [5], and link
layer mechanisms such as Ethernet congestion control [3, 6].
Application level solutions are the least intrusive to deploy,
but require modifying each and every datacenter applica-
tion. Switch and link level solutions require modifying the
underlying datacenter infrastructure, and are likely to be lo-
gistically feasible only during hardware upgrades.

Unfortunately, despite these solutions, we still have no
quantitatively accurate and empirically validated model
to predict incast behavior. Similarly, despite many stud-
ies demonstrating incast for microbenchmarks, we still do
not understand how incast impacts application level per-
formance subject to real life complexities in configuration,
scheduling, data size, and other environmental and work-
load properties. These concerns create justified skepticism
on whether we truly understand incast at all, whether it is
even an important problem for a wide class of workloads,
and whether it is worth the effort to deploy various incast
solutions in front-line, business-critical datacenters.

We seek to understand how incast impacts the emerging
class of big data workloads. Canonical big data workloads
help solve needle-in-a-haystack type problems and extract
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Figure 1. Simple setup to observe incast. The receiver requests k
blocks of data from a set of N storage servers. Each block is striped
across N storage servers. For each block request received, a server
responds with a fixed amount of data. Clients do not request block
k + 1 until all the fragments of block k have been received.

actionable insights from large scale, potentially complex and
unformatted data. We do not propose in this article yet an-
other solution for incast. Rather, we focus on developing a
deep understanding of one existing solution: reducing the
minimum length of TCP retransmission time out (RTO) from
200ms to 1ms [18, 27]. We believe TCP incast is fundamen-
tally a transport layer problem, thus a solution at this level is
best.

The first half of this article develops and validates a quan-
titative model that accurately predicts the onset of incast and
TCP behavior both before and after. The second half of this
article investigates how incast affects the Apache Hadoop
implementation of MapReduce, an important example of a
big data application. We close the article by reflecting on
some technology and data analysis trends surrounding big
data, speculate on how these trends interact with incast, and
make recommendations for datacenter operators.

2. Towards an Analytical Model
We use a simple network topology and workload to develop
an analytical model for incast, shown in Figure 1. This is the
same setup as that used in prior work [18, 25, 27]. We choose
this topology and workload to make the analysis tractable.

The workload is as follows. The receiver requests k
blocks of data from a set of N storage servers — in our
experiments k = 100 and N varies from 1 to 48. Each block
is striped across N storage servers. For each block request
received, a server responds with a fixed amount of data.
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Clients do not request block k + 1 until all the fragments of
block k have been received — this leads to a synchronized
read pattern of data requests. We re-use the storage server
and client code in [18, 25, 27]. The performance metric for
these experiments is application-level goodput, i.e., the total
bytes received from all senders divided by the finishing time
of the last sender.

We conduct our experiments on the DETER Lab testbed [12]
where we have full control over the non-virtualized node OS,
as well as the network topology and speed. We used 3GHz
dual-core Intel Xeon machines with 1Gbps network links.
The nodes run standard Linux 2.6.28.1. This was the most
recent mainline Linux distribution in late 2009, when we
obtained our prior results [18]. We present results using both
a relatively shallow-buffered Nortel 5500 switch (4KB per
port), and a more deeply buffered HP Procurve 5412 switch
(64KB per port).

2.1 Flow rate models
The simplest model for incast is based on two competing be-
haviors as we increaseN , the number of concurrent senders.
The first behavior occurs before the onset of incast, and re-
flects the intuition that goodput is the block size divided by
the transfer time. Ideal transfer time is just the sum of a
round trip time (RTT) and the ideal send time. Equation 1
captures this idea.

GoodputbeforeIncast = idealGooputPerSender ×N

=
blockSize

idealTransferT ime
×N

=
blockSize

RTT +
blockSize

perSenderBandwidth

×N

=
blockSize

RTT +
blockSize×N

linkBandwidth

×N

(1)

Incast occurs when there are some N > 1 concurrent
senders, and the goodput drops significantly. After the onset
of incast, TCP retransmission time out (RTO) represents the
dominant effect. Transfer time becomes RTT + RTO + ideal
send time, as captured in Equation 2. The goodput collapse
represents a transition between the two behavior modes.

Goodputincast = goodputPerSender ×N

=
blockSize

idealTransferT ime+ RTO
×N

=
blockSize

RTO + RTT +
blockSize

perSenderBandwidth

×N

=
blockSize

RTO + RTT +
blockSize×N

linkBandwidth

×N

(2)
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Figure 2. Flow rate model for incast. Showing ideal behavior
(solid lines, Equation 1) and incast behavior caused by RTOs (dot-
ted lines, Equation 2). We substitute blockSize = 64KB, 256KB,
1024KB, and 64MB, as well as RTT = 1ms, and RTO = 200ms.
The incast goodput collapse comes from the transition between the
two TCP operating modes.
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Figure 3. Empirical verification of flow rate incast model. Uses
our previously presented data in [18]. The blockSize is 256KB,
RTO is set to 100ms and 200ms, and the model uses RTT = 1ms.
Error bars represent 95% confidence interval around the average
of 5 repeated measurements. The switch is a Nortel 5500 (4KB
per port). Showing (1). Incast goodput collapse begins at N = 2
senders, and (2). Behavior after goodput collapse verifies Equa-
tion 2.

Figure 2 gives some intuition with regard to Equations 1
and 2. We substitute blockSize = 64KB, 256KB, 1024KB,
and 64MB, as well as RTT = 1ms, and RTO = 200ms. Be-
fore the onset of incast (Equation 1), the goodput increases
asN increases, though with diminishing rate, asymptotically
approaching the full link bandwidth. The curves move verti-
cally upwards as block size increases. This reflects the fact
that larger blocks result in a larger fraction of the ideal trans-
fer time spent transmitting data, versus waiting for an RTT
to acknowledge that the transmission completed. After in-
cast occurs (Equation 2), RTO dominates the transfer time
for small block sizes. Again, larger blocks lead to RTO form-
ing a smaller ratio versus ideal transmission time. The curves
move vertically upwards as block size increases.
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Figure 4. Empirical verification of flow rate TCP model before
onset of incast. Measurements done on HP Procurve 5412 switches
(64KB per port). RTO is 200ms. Error bars represent 95% con-
fidence interval around the average of 5 repeated measurements.
Showing (1). Behavior before goodput collapse verifies Equation 1,
and (2). Onset of incast goodput collapse predicted by switch buffer
overflow during slow start (Equation 3).

2.2 Empirical verification
This model matches well with our empirical measurements.
Figure 3 superpositions the model on our previously pre-
sented data in [18]. There, we fix blockSize at 256KB and
set RTO to 100ms and 200ms. The switch is a Nortel 5500
(4KB per port). For simplicity, we use RTT = 1ms for the
model. Goodput collapse begins at N = 2, and we observe
behavior for Equation 2 only. The empirical measurements
(solid lines) match the model (dotted-lines) almost exactly.

We use a more deeply buffered switch to verify Equa-
tion 1. As we discuss later, the switch buffer size determines
the onset of incast. Figure 4 shows the behavior using the
HP Procurve 5412 switch (64KB per port). Behavior be-
fore goodput collapse qualitatively verifies Equation 1 — the
goodput increases as N increases, though with diminishing
rate; the curves move vertically upwards as block size in-
creases. We can see this graphically by comparing the curves
in Figure 4 before the goodput collapse to the corresponding
curves in Figure 2.

Takeaway: Flow rate model captures behavior before on-
set of incast. TCP RTO dominates behavior after onset of
incast.

2.3 Predicting the onset of incast
Figure 4 also shows that goodput collapse occurs at different
N for different block sizes. We can predict the location of
the onset of goodput collapse by detailed modeling of TCP
slow start and buffer occupancy. Table 1 shows the slow start
congestion window sizes versus each packet round trip. For
16KB blocks, 12 concurrent senders of the largest conges-
tion window of 5864 bytes would require 70368 bytes of
buffer, larger than the available buffer of 64KB per port.
Goodput collapse begins after N = 13 concurrent senders.
The discrepancy of 1 comes from the fact that there is addi-
tional “buffer” on the network beyond the packet buffer on

Round 16KB 32KB 64KB 128KB
trip # blocks blocks blocks blocks

1 1,448 1,448 1,448 1,448
2 2,896 2,896 2,896 2,896
3 5,792 5,792 5,792 5,792
4 5,864 11,584 11,584 11,584
5 10,280 23,168 23,168
6 19,112 46,336
7 36,776

Table 1. TCP slow start congestion window size in bytes versus
number of round trips. Showing the behavior for blockSize =
16KB, 32KB, 64KB, 128KB. We verified using sysctl that Linux
begins at 2× base MSS, which is 1448 bytes.

the switch, e.g., packets in flight, buffer at the sender ma-
chines, etc. According to this logic, goodput collapse should
take place according to Equation 3. The equation accurately
predicts that for Figure 4, the goodput collapse for 16KB,
32KB, and 64KB blocks begin at 23, 7, and 4 concurrent
senders, and for Figure 3, the goodput collapse is well un-
derway at 2 concurrent senders.

NinitialGoodputCollapse =

⌈
perSenderBuffer

largestSlowStartCwnd

⌉
+ 1 (3)

Takeaway: For small flows, the switch buffer space deter-
mines the onset of incast.

2.4 Second order effects
Figure 4 also suggests the presence of second order effects
not explained by Equations 1 to 3. Equation 3 predicts that
goodput collapse for 128KB blocks should begin at N = 2
concurrent senders, while the empirically observed goodput
collapse begins at N = 4 concurrent senders. It turns out that
block sizes of 128KB represent a transition point from RTO-
during-slow-start to more complex modes of behavior.

We repeat the experiment for blockSize = 128KB, 256KB,
512KB, and 1024KB. Figure 5 shows the results, which in-
cludes several interesting effects.

First, for blockSize = 512KB and 1024KB, the goodput
immediately after the onset of incast is given by Equation 4.
It differs from Equation 2 by the multiplier α for the RTO
in the denominator. This α is an empirical constant, and
represents a behavior that we call partial RTO. What happens
is as follows. When RTO takes place, TCP SACK (turned on
by default in Linux) allows transmission of further data, until
the congestion window can no longer advance due to the lost
packet. Hence, the link is idle for a duration of less than the
full RTO value. Hence we call this effect partial RTO. For
blockSize = 1024KB, α is 0.6, and for blockSize = 512KB,
α is 0.8.

Goodputincast =
blockSize

α× RTO + RTT +
blockSize×N

linkBandwidth

×N

(4)
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Figure 5. 2nd order effects other than RTO during slow start.
Measurements done on HP Procurve 5412 switches (64KB per
port). RTO is 200ms. Error bars represent 95% confidence inter-
val around the average of 5 repeated measurements. Showing (1).
Partial RTOs more accurately modeling incast behavior for large
blocks, (2). Transition between single and multiple partial RTOs,
and (3). Triple duplicate ACKs causing more gradual, blockSize
independent onset of incast.

Second, beyond a certain number of concurrent senders,
α transitions to something that approximately doubles its
initial value (0.6 to 1.0 for blockSize = 1024KB, 0.8 to 1.5
for blockSize = 512KB). This simply represents that two
partial RTOs have occurred.

Third, the goodput collapse for blockSize = 256KB,
512KB, and 1024KB is more gradual compared with the
cliff-like behavior in Figure 4. Further, this gradual goodput
collapse has the same slope across different blockSize. Two
factors explain this behavior. First, flows with blockSize ≥
128KB have a lot more data to send even after the buffer
space is filled with packets sent during slow start (Equa-
tion 3 and Table 1). Second, even when the switch drops
packets, TCP can sometimes recover. Empirical evidence of
this fact exists in Figure 4. There, for blockSize = 16KB
and N = 13 to 16 concurrent senders, at least one of five re-
peated measurements manages to get goodput close to 90%
of link capacity. Goodput collapse happens for other runs
because the packets are dropped in a way that a connec-
tion with little additional data to send would observe only a
single or double duplicate ACK, and go into RTO soon af-
ter. Larger blocks suffer less from this problem because the
ongoing data transfers triggers triple duplicate ACK with
higher probability. Thus, the connection retransmits, enters
congestion avoidance, and avoids RTO. Hence the gradual
goodput collapse.

We should point out that SACK semantics are indepen-
dent of duplicate ACKs, since SACK is layered on top of
existing cumulative ACK semantics [23].

Takeaway: Second order effects include partial RTO due
to SACK, multiple partial RTOs, and triple duplicate ACKs
causing more gradual onset of incast.

2.5 Good enough model
Unfortunately, some parts of the model remain qualitative.
We admit that the full interaction between triple duplicate
ACKs, slow start, and available buffer space requires elabo-
rate treatment far beyond the flow rate and buffer occupancy
analysis presented here.

That said, the models here represent the first time we
quantitatively explain major features of the incast goodput
collapse. Comparable results in related work [25, 28] can
be explained by our models also. The analysis allows us to
reason about the significance of incast for future big data
workloads later in the article.

3. Incast in Hadoop MapReduce
Hadoop represents an interesting case study of how incast
affects application level behavior. Hadoop is an open source
implementation of MapReduce, a distributed computation
paradigm that played a key part in popularizing the phrase
“big data”. Network traffic in Hadoop consists of small flows
carrying control packets for various cluster coordination pro-
tocols, and larger flows carrying the actual data being pro-
cessed. Incast potentially affects Hadoop in complex ways.
Further, Hadoop may well mask incast behavior, because
network forms only a part of the overall computation and
data flow. Our goal for this section is to answer whether in-
cast affects Hadoop, by how much, and under what circum-
stances.

We perform two sets of experiments. First, we run stand-
alone, artificial Hadoop jobs to find out how much incast im-
pacts each component of the MapReduce data flow. Second,
we replay a scaled-down, real life production workload us-
ing previously published tools [17] and cluster traces from
Facebook, a leading Hadoop user to understand the extent
to which incast affects whole workloads. These experiments
take place on the same DETER machines as those in the pre-
vious section. We use only the large buffer Procurve switch
for these experiments.

3.1 Stand-alone jobs
Table 2 lists the Hadoop cluster settings we considered. The
actual stand-alone Hadoop jobs are hdfsWrite, hdfsRead,
shuffle, and sort. The first three jobs stress one part of
the Hadoop IO pipeline at a time. Sort represents a job
with 1-1-1 ratio between read, shuffled, and written data. We
implement these jobs by modifying the randomwriter and
randomtextwriter examples that are pre-packaged with
recent Hadoop distributions. We set the jobs to write, read,
shuffle, or sort 20GB of terasort format data on 20 machines.

3.1.1 Experiment setup
The TCP versions are the same as before – standard Linux
2.6.28.1, and modified Linux 2.6.28.1 with tcp rto min set
to 1ms. We consider Hadoop versions 0.18.2 and 0.20.2.
Hadoop 0.18.2 is considered a legacy, basic, but still rel-
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Parameter Values
Hadoop jobs hdfsWrite, hdfsRead,

shuffle, sort

TCP version Linux-2.6.28.1, 1ms-min-RTO
Hadoop version 0.18.2, 0.20.2

Switch model HP Procurve 5412
Number of machines 20 workers and 1 master

fs.inmemory.size.mb 75, 200
io.file.buffer.size 4096, 131072

io.sort.mb 100, 200
io.sort.factor 10, 100
dfs.block.size 67108864, 536870912

dfs.replication 3, 1
mapred.reduce.parallel.copies 5, 20

mapred.child.java.opts -Xmx200m, -Xmx512M

Table 2. Hadoop parameter values for experiments with stand-
alone jobs.

atively stable and mature distribution. Hadoop 0.20.2 is a
more fully featured distribution that introduces some perfor-
mance overhead for small jobs [17]. Subsequent Hadoop im-
provements have appeared on several disjoint branches that
are currently being merged, and 0.20.2 represents the last
time there was a single mainline Hadoop distribution [30].

The rest of the parameters are detailed Hadoop configura-
tion settings. Tuning these parameters can considerably im-
prove performance, but requires specialist knowledge about
the interaction between Hadoop and the cluster environ-
ment. The first value for each configuration parameter in Ta-
ble 2 represents the default setting. The remaining values
are tuned values, drawn from a combination of Hadoop sort
benchmarking [1], suggestions from enterprise Hadoop ven-
dors [4], and our own experiences. One configuration worth
further explaining is dfs.replication. It controls the de-
gree of data replication in HDFS. The default setting is three-
fold data replication to achieve fault tolerance. For use cases
constrained by storage capacity, the preferred method is to
use HDFS RAID [14], which achieves fault tolerance with
1.4× overhead, much closer to the ideal one-fold replication.

3.1.2 Results
Figure 6 shows the results for Hadoop 0.18.2. We consider
two performance metrics — job completion time, and in-
cast overhead. We define incast overhead according to Equa-
tion 5, i.e., the difference between job completion time under
default and 1ms-min-RTO TCP, normalized by the job com-
pletion time for 1ms-min-RTO TCP. The default Hadoop has
very high incast overhead, while for tuned Hadoop, the in-
cast overhead is barely visible. However, the tuned Hadoop-
0.18.2 setting leads to considerably lower job completion
times.

t = jobCompletionTime

IncastOverhead =
tdefaultTCP − t1ms−min−RTO

t1ms−min−RTO

(5)

The results illustrate a subtle form of Amdalh’s Law,
which explains overall improvement to a system when only
a part of the system is being improved. Here, the amount of
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Figure 6. Hadoop stand alone job completion times. HP Procurve
5412 switches. Showing job completion times (top) and overhead
introduced by incast (bottom) for default Hadoop-0.18.2 (left), and
tuned Hadoop-0.18.2 (right). The error bars show 95% confidence
intervals from 20 repeated measurements. The tuned Hadoop-
0.18.2 leads to considerably lower job completion times. The confi-
dence intervals are not overlapping for both settings. However, the
default Hadoop has higher incast overhead.

incast overhead depends on how much network data trans-
fers contribute to the overall job completion time. The de-
fault Hadoop configurations result in network transfers con-
tributing to a large fraction of the overall job completion
time. Thus, incast overhead is clearly visible. Conversely,
for tuned Hadoop, overall job completion time is already
low. Incast overhead is barely visible because the network
transfer time is low.

We repeat these measurements on Hadoop 0.20.2. Com-
pared with Hadoop 0.18.2, the more recent version of
Hadoop sees a performance improvement for the default
configuration. For the optimized configuration, Hadoop
0.20.2 sees performance overhead of around 10 seconds for
all four job types. This result is in line with our prior com-
parisons between Hadoop versions 0.18.2 and 0.20.2 [17].
Unfortunately, 10 seconds is also the performance improve-
ment for using TCP with 1ms-min-RTO. Hence, the per-
formance overhead in Hadoop 0.20.2 masks the benefits of
addressing incast.

Takeaway: Incast does affect Hadoop. The performance
impact depends on cluster configurations, as well as data
and compute patterns in the workload.

3.2 Real life production workloads
The results in the above subsection indicate that to find out
how much incast really affects Hadoop, we must compare
the default and 1ms-min-RTO TCP while replaying real life
production workloads.

Previously, such evaluation capabilities are exclusive to
enterprises that run large scale production clusters. Recent
years have witnessed a slow but steady growth of public
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Figure 7. Per job input, shuffle, and output size for each work-
load. FB-* workloads come from a six-months cluster trace in 2009
and a 45-days trace in 2010. CC-* workloads come from traces of
up to 2 months long at various customers of Cloudera, which is a
vendor of enterprise Hadoop.

knowledge about front line production workloads [9, 10, 15,
17, 29], as well as emerging tools to replay such workloads
in the absence of production data, code, and hardware [16,
17].

3.2.1 Workload analysis
We obtained seven production Hadoop workload traces from
five companies in social networking, e-commerce, telecom-
munications, and retail. Among these companies, only Face-
book has so far allowed us to release their name and syn-
thetic versions of their workload. We do have permission
to share some summary statistics. The full analysis is under
publication review.

Several observations are especially relevant to incast.
Consider Figure 7, which shows the distribution of per job
input, shuffle, and output data for all workloads. First, all
workloads are dominated by jobs that involve data sizes of
less than 1GB. For jobs so small, scheduling and coordi-
nation overhead dominate job completion time. Therefore,
incast will make a difference only if the workload intensity
is high enough that Hadoop control packets alone would
overwhelm the network. Second, all workloads do contain
jobs at the 10s TB or even 100s TB scale. This compels the
operators to use Hadoop 0.20.2. This version of Hadoop is
the first to incorporate the Hadoop fair scheduler [29]. With-
out it the small jobs arriving behind very large jobs would
see FIFO head of queue blocking, and suffer wait times of
hours or even days. This feature is so critical that cluster
operators use it despite the performance overhead for small
jobs. Hence, it is likely that in Hadoop 0.20.2, incast will be
masked by the performance overhead.
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Figure 8. Distribution of job completion times for the FB-2009

workload. The distribution for 1ms-min-RTO is 10-20 seconds
right shifted compared with the distribution for default TCP.

3.2.2 Workload replay
We replay a day-long Facebook 2009 workload on the de-
fault and 1ms-min-RTO versions of TCP. We synthesize this
workload using the method in [17]. It captures in a relatively
short synthetic workload the representative job submission
and computation patterns for the entire six-month trace.

Our measurements confirm the hypothesis earlier. Fig-
ure 8 shows the distribution of job completion times. We
see that the distribution for 1ms-min-RTO is 10-20 seconds
right shifted compared with the distribution for default TCP.
This is in line with the 10-20 seconds overhead we saw in the
workload-level measurements in [17], as well as the stand-
alone job measurements earlier in the article. The benefits of
addressing incast are completely masked by overhead from
other parts of the system.

Figure 9 offers another perspective on workload level be-
havior. The graphs show two sequences of 100 jobs, ordered
by submission time, i.e., we take snapshots of two continu-
ous sequences of 100 jobs out of the total 6000+ jobs in a
day. These graphs indicate the behavior complexity once we
look at the entire workload of thousands of jobs and diverse
interactions between concurrently running jobs. The 10-20
seconds performance difference on small jobs becomes in-
significant noise in the baseline. The few large jobs take sig-
nificantly longer than the small jobs, and stand out visibly
from the baseline. For these jobs, there are no clear patterns
to the performance of 1ms-min-RTO versus standard TCP.

The Hadoop community is aware of the performance
overheads in Hadoop 0.20.2 for small jobs. Subsequent
versions partially address these concerns [22]. It would be
worthwhile to repeat these experiments once the various ac-
tive Hadoop code branches merge back into the next main-
line Hadoop [30].

Takeaway: Small jobs dominate several production Hadoop
workloads. Non-network overhead in present Hadoop ver-
sions mask incast behavior for these jobs.

4. Incast for Future Big Data Workloads
Hadoop is an example of the rising class of big data comput-
ing paradigms, which almost always involve some amount of
network communications. To understand how incast affects
future big data workloads, one needs to appreciate the tech-
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Figure 9. Sequences of job completion times. Showing two con-
tinuous job sequences of 100 jobs. The few large jobs have long
completion times, and stand out from the baseline of continuous
stream of small jobs.

nology trends that drive the rising prominence of big data,
the computational demands that result, the countless design
and mis-design opportunities, as well as the root causes of
incast.

We believe that the top technology trends driving the
prominence of big data include (1). Increasingly easy and
economical access to large scale storage and computation in-
frastructure [7, 11], (2). Ubiquitous ability to generate, col-
lect, and archive data about both technology systems and
the physical world [19], and (3). Growing desire and statisti-
cal literacy across many industries to understand and derive
value from large datasets [2, 13, 20, 24].

Several data analysis trends emerge, confirmed by the
cluster operators who provided the traces in Figure 7. (1).
There is increasing desire to do interactive data analysis,
as well as streaming analysis. The goal is to have humans
with non-specialist skills explore diverse and evolving data
sources, and once they discover a way to extract actionable
insights, such insights should be updated based on incoming
data in a timely and continuous fashion. (2). Bringing such
data analytic capability to non-specialists requires high-level
computation frameworks built on top of common platforms
such as MapReduce. Examples of such frameworks in the
Hadoop MapReduce ecosystem include HBase, Hive, Pig,
Sqoop, Oozie, and others. (3). Data sizes grow faster than the
size per unit cost of storage and computation infrastructure.
Hence, efficiently using storage and computational capacity
are major concerns.

Incast plays into these trends as follows. The desire for
interactive and streaming analysis requires highly respon-
sive systems. The data size required for these computations
are small compared with those required for computations on
historical data. We know that when incast occurs, the RTO
penalty is especially severe for small flows. Applications
would be potentially forced to either delay the analysis re-
sponse, or give answers based on partial data. Thus, incast

could emerge as a barrier for high quality interactive and
streaming analysis.

The desire to have non-specialists use big data systems
suggests that functionality and usability should be the top de-
sign priorities. Incast affects performance, which can be in-
terpreted as a kind of usability. It becomes a priority only af-
ter we have a functional system. Also, as our Hadoop exper-
iments demonstrate, performance tuning for multi-layered
software stacks would need to confront multiple layers of
complexity and overhead.

The need for storage capacity efficiency entails storing
compressed data, performing data deduplication, or using
RAID instead of data replication to achieve fault tolerance.
In such environments, memory locality becomes the top con-
cern, and disk or network locality becomes secondary [8]. If
the workload characteristics permits a high level of mem-
ory or disk locality, network traffic gets decreased, the appli-
cation performance increases, and incast becomes less of a
concern.

The need for computational capacity efficiency implies
that computing infrastructure needs to be more highly uti-
lized. Network demands will thus increase. Consolidating
diverse applications and workloads multiplexes many net-
work traffic patterns. Incast will likely occur with greater
frequency. Further, additional TCP pathologies may be re-
vealed, such as the similarly phrased TCP outcast problem,
which affects link share fairness for large flows [26].

5. Recommendations
Set TCP minimum RTO to 1ms.

Future big data workloads likely reveal TCP pathologies
other than incast. Incast and similar behavior are fundamen-
tally transport-level problems. It is not resource effective to
overhaul the entire TCP protocol, redesign switches, or re-
place the datacenter network to address a single problem.
Setting tcp rto min is a configuration parameter change –
low overhead, immediately deployable, and as we hope our
experiments show, it does no harm inside the datacenter.
Deploy better tracing infrastructure.

It is not yet clear how much incast impacts future big
data workloads. The article discusses several contributing
factors. We need further information to determine which
factors dominate under what circumstances. Better tracing
helps remove the uncertainty. Where possible, such insights
should be shared with the general community. We hope
the workload comparisons in this article encourage similar,
cross-organizational efforts elsewhere.
Apply a scientific design process.

We believe future big data systems demand a departure
from some design approaches that emphasize implementa-
tion over measurement and validation. The complexity, di-
versity, scale, and rapid evolution of such systems imply that
mis-design opportunities proliferate, redesign costs increase,
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experiences rapidly become obsolete, and intuitions become
hard to develop. Our approach in this article involves per-
forming simplified experiments, developing models based
on first principles, empirically validating these models, then
connecting the insights to real life by introducing increasing
levels of complexity. We hope our experiences tackling the
incast problem demonstrates the value of a design process
rooted in empirical measurement and evaluation.
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