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Abstract
Data layout, data placement, and synchronization processes are not
usually part of a speech application expert’s daily concerns. Yet
failure to carefully take these concerns into account in a highly par-
allel implementation on the graphics processing units (GPUs) could
mean an order of magnitude of loss in application performance. In
this paper we present an application framework for parallel pro-
gramming of automatic speech recognition (ASR) applications that
allows a speech application expert to effectively implement speech
applications on the GPU. It is an approach for crystallizing and
transferring the often tacit knowledge of effective parallel program-
ming techniques while allowing for flexible adaptation to various
application usage scenarios.

The application framework for parallel programming includes
an application context description, a software architecture, a ref-
erence implementation, and a set of extension points for flexible
customization. We describe how a speech expert can use the appli-
cation framework in a parallel application design flow as well as
present two case studies that illustrate the flexibility of the frame-
work to adapt to different usage scenarios. The case studies show
two examples in extending the framework to an advanced audio-
only speech recognition application and an audio-visual recogni-
tion application that enables lip-reading in high noise recognition
environments. The adaptation to the latter scenario also demon-
strates how the ASR application framework has enabled a Matlab/-
Java programmer to effectively utilize a GPU to produce an imple-
mentation that achieves a 20x speedup in recognition throughput as
compared to a sequential CPU implementation.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Automatic Speech Recognition, Algorithms

Keywords Speech Recognition, Application Framework, GPU

1. Introduction
Automatic speech recognition (ASR) is emerging as a critical com-
ponent in data analytics for a wealth of multimedia data [7]. Speech

[Copyright notice will appear here once ’preprint’ option is removed.]

Voice Input!

Recognize                                                Speech!

r   eh   k   ax   g   n   ay   z ‘ s   p   iy   ch  

 A S R!

Recognition Output!

Figure 1. Automatic Speech Recognition (ASR) analyzes a wave-
form, detects phones, and infers word sequences
recognition technology allows multimedia contents to be tran-
scribed from acoustic waveforms into word sequences (Figure 1).
Commercial usage scenarios for ASR are appearing in both data
centers and portable devices1. Being able to efficiently implement
speech recognition applications on parallel platforms is increas-
ingly important.

Underlying a wide range of ASR applications is a software ar-
chitecture (shown in Figure 3) which extracts a sequence of features
from the acoustic waveform and performs statistical inference on
the sequence of features to output a word sequence. An efficient
implementation of this software architecture can benefit a whole
class of ASR-based applications.

Commercial availability of manycore computing platforms such
as the NVIDIA GTX480 brings significant opportunities for ASR
applications to perform an order of magnitude faster when effi-
ciently implemented on GPUs as compared to traditional sequen-
tial implementations running on a CPU (as demonstrated in [36]).
Such dramatic improvements in performance can allow researchers
to analyze an order-of-magnitude more data, and allow companies
to explore new services and capabilities or provide existing services
more profitably.

However, in order to achieve good performance on the GPU,
one must have a deep understanding of the architecture characteris-
tics of the parallel implementation platform. With tens of processor
cores integrated onto the same chip, the GPU devotes its transistor
resources to maximize total instruction throughput2.

With the GPUs, their dependence on vector function units re-
quires carefully designed memory data layouts to effectively utilize
the memory bandwidth resources. It has been shown that there can
be a 2-10x performance difference between different data layout
choices [6]. The GPUs’ various non-coherent caches and software-
managed scratch-space memories, as well as the associated mem-
ory bandwidth limitations make the mapping of application data
working set to the hardware architecture resources of the GPU a
form of art. Rearranging program execution to manage data work-

1 iPhone applications such as Jibbigo are providing speech recognition on
the client device as part of a traveler’s speech-to-speech translator
2 Compared with the 102 GigaFLOP/s of peak arithmetic throughput for
the Intel i7 960 processor running at 3.2GHz, the NVIDIA GTX480 GPU
provides more than 13x the instruction throughput (1392 GigaFLOP/s)
running at less than half the frequency (1.45GHz).
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ing set to fit in scratch space memory has produced 2-3x speedup
for our key computation kernels. On top of that, the multiple syn-
chronization scopes with their associated latencies and through-
put characteristics and overloadable logic and arithmetic operations
make efficient communication among concurrent tasks a challeng-
ing design space. By using hardware atomic operations with over-
loaded arithmetic operations for synchronization, it has been shown
in [36] that one can construct software architectures that are 4.5x
more efficient than using global barrier based synchronization.

Published results [6] and our experiences [-,-] indicate that fail-
ure to carefully design data layout, data placement, and synchro-
nization processes can lead to over an order of magnitude reduc-
tions in application performance. Fully exploring each of these fac-
tors can be a significant undertaking. For example, {omitted for
blind review} [-] took five weeks to re-factor and re-verify. While a
few ambitious speech experts have parallelized the simpler modules
in ASR with limited application level parallel scalability [12]. The
many factors to consider put application development for parallel
platforms outside of reach of an average application developer.

In order to develop efficient applications, a deep understanding
of the application domain is also required. The fine-grained paral-
lelism and fast on-chip cross-core synchronization capabilities of
GPUs open up opportunities that often require flexible reorgani-
zations of the application to take advantage of parallel resources. It
was observed that transformations of the input data structures while
preserving domain-specific invariants can improve the performance
of an application by up to 42% [9]. Just being aware of the pos-
sible re-organization requires deep application expertise. Further-
more, applying such re-organizations often involves application-
specific transformations that are functionally equivalent at the ap-
plication level but would not produce bit-identical results. These
factors make many application re-organizations beyond what an av-
erage parallel programmer can attempt.

Thus, we believe that both application domain expertise and
parallel programming expertise are required to construct efficient
parallel applications. This requirement limits the wide spread uti-
lization and deployment of highly parallel microprocessors in
academia and industry.

Observing and respecting the need for both application domain
and parallel programming expertise for the development of effi-
cient parallel applications, we propose that the few individuals and
teams that have expertise in both areas should construct application
frameworks as a means to aid more application domain experts to
effectively develop parallel applications.

An application framework is a software environment built
around an underlying software architecture (such as the one shown
in Figure 3) in which user customizations may only be applied in
harmony with the software architecture. The software environment
includes an application context, a software architecture, a reference
implementation, and a set of extension points. A software architec-
ture is defined as a hierarchical composition of parallel program-
ming patterns [20], which are solutions to recurring problems in
parallel programming.

The application framework for parallel programming crystal-
lizes in the reference implementation the parallel programming
optimizations that are applicable to a class of applications based
on their common software architecture. It also provides extension
points to allow flexible customizations of the reference implemen-
tation with plugins targeting specific application usage scenarios.

In this paper, we describe the components of the application
framework (Section 2), present a reference implementation of an
ASR application framework (Section 2), and utilize its extension
points to adapt to different usage scenarios (Section 4). In partic-
ular, we utilized the extension points to adapt the reference im-
plementation to two usage scenarios: 1) an advanced audio-only

model from SRI used for meeting recording transcription, and 2) an
audio-visual speech recognition system that enables lip-reading to
increase recognition accuracy in noisy conditions.

2. Application Frameworks
There are four main components in the application framework for
parallel programming:

1. An application context is a description of the characteristics and
requirements for the class of applications

2. A software architecture description is a set of concise docu-
mentations of the organization and structure of the class of ap-
plications described using the software parallel programming
patterns [20]

3. A reference implementation is a fully functional, efficiently
implemented, sample parallel design of the application

4. The extension points are a set of interfaces defined to summa-
rize the interactions between the application framework and po-
tential new modulesThe application context exposes parallelization opportunities of

an application independent of the implementation platform. For ap-
plication domain experts, it provides the context with which they
can understand the motivations of parallelization decisions made in
the software architecture of an application framework. Section 3.1
describes the application context for an automatic speech recogni-
tion application.

The software architecture presents a hierarchical composition
of parallel programming patterns that assists in navigating the refer-
ence implementation. For application domain experts, the software
architecture description allows them to quickly gain an understand-
ing of the opportunities and challenges in the implementation of an
application. This helps the domain experts organize their efforts
around the fundamental limitations and constraints of implement-
ing the application on highly parallel microprocessors. Section 3.2
describes a software architecture for a speech recognition applica-
tion in detail.

The reference implementation provides a concrete example of
how each component in the application framework could be im-
plemented, and how they can be integrated. It is also a proof of
the capability of a computing platform for the class of applica-
tions the application framework is designed for. For application
domain experts, it relieves the burden of constructing functionally-
correct baseline implementations before introducing new features.
With the sample implementation they can focus on the particular
modules that must be designed to meet the needs of specific end-
user products. A detailed example of a reference implementation
for ASR is described in Section 3.3.

The extension points invite developers to customize specific
modules using pre-determined interfaces. It allows customizations
that would not jeopardize the execution latency or throughput sen-
sitive features in an application framework. For an application do-
main expert, the extension points provide a flexible interface for
implementing plugins while maintaining the efficiency of the fi-
nal implementation. Examples of extension points for the speech
recognition application framework are described in Section 3.4.

Section 5 discusses ways to utilize the application framework
components in a parallel application design flow. Briefly, as shown
later in Figure 9(b), the application context and software architec-
ture assist an application developer with describing the application
and its concurrency opportunities at hand. The sample implementa-
tion provides a reference design to help developers evaluate the per-
formance potential on a computing platform. The extension points
help abstract away the rest of the application and allow the devel-
oper to focus on extending the functionality and implementing new
features for an application rather than writing parallel code from
scratch.

A Speech Recognition Application Framework for Highly Parallel Implementations on the GPU 2 2012/4/26



Obs 1        Obs 2      Obs 3      Obs 4   !

State 1!

State 2!

State 3!

State N!

Time!

…
!

…
!

…
!

…
!

…
!

An Observation!A State!

P( xt|st ) P( st|st-1 ) m [t-1][st-1] m [t][st ] 

  Legends:!

  Model size for a WFST language model!

A Pruned State!

1. Forward Pass!

2. Backward Pass!

  # states: 4 million,  # arcs: 10 million,  # observations: 100/sec"
  Average # active states per time step: 10,000 – 20,000!

Observations!

Speech!

Model "

States!

Figure 2. Application characteristics: inner working of the performance critical Viterbi forward and backward pass steps

Application framework for parallel programming is best suited
for applications with a relatively mature software architecture,
where extension points can be clearly defined [11]. From this per-
spective, speech recognition is an ideal candidate. For other nascent
applications such as computer vision, a programming framework
with a set of library of components and application specific data
structures may be more appropriate for development assistance.

3. A Speech Recognition Application Framework
A speech recognition application framework helps speech recog-
nition experts efficiently program manycore processors. It is pre-
sented as an exemplar of an application framework where we elab-
orate on the features, functions, and benefits of its components for
speech recognition experts. This application framework helps re-
solve the challenges of implementing a batch mode speech recog-
nition system. In a batch system, the feature extraction component
can be trivially parallelized by distributing segments of the input
acoustic to parallel computing resources and is not discussed here.
This application framework focuses exclusively on the paralleliza-
tion of the inference process.
3.1 Application Context
Application Characteristics: A Large Vocabulary Continuous
Speech Recognition (LVCSR) application analyzes a human ut-
terance from a sequence of input audio waveforms to interpret and
distinguish the most likely words and sentences intended by the
speaker (see Figure 1). The analysis involves iteratively comparing
a sequence of features extracted from the input audio waveform (as
observations) to a speech model that has been trained using power-
ful statistical learning techniques. To adapt to different languages,
acoustic environments, domains of vocabularies, only the speech
model needs to be replaced and the recognition process stays the
same.

The process of recognizing speech is a type of temporal pat-
tern recognition, which is a well-known application of the hidden
Markov model (HMM) [30]. The states in the HMM for speech
recognition are components of words in a vocabulary. They are
hidden because they can only be observed through interpreting fea-
tures in an acoustic waveform. The Viterbi algorithm [27], with
a forward-pass and a backward-pass step, is often used to infer
the most likely sequence of words given the observations from the
acoustic waveform.

In the forward-pass, as shown in Figure 2, there are two main
phases of the algorithm for performing inference. Phase 1, (shown
in Figure 2 as dashed arrows between observations and states), eval-
uates the observation probability of the hidden state. It matches the
input information to the available acoustic model elements and only
takes into account the instantaneous likelihood of a feature match-
ing acoustic model element. Phase 2, (shown in Figure 2 as the
solid arrows between states of consecutive time steps), references
the historic information about what are the most likely alternative

interpretations of the utterance heard so far, and computes the like-
lihood of incorporating the current observation given the pronun-
ciation and language models. The computation for each state st at
time t (with the diamond shaped state as an example) records the
state transition from the prior time step t − 1 that produced the
greatest probability m[t][st].

Input and Outputs: In a standard speech recognition applica-
tion, the acoustic inputs are features extracted from acoustic wave-
forms, typically at 10ms time steps. The number of features used
varies among different information sources, languages and acoustic
environments in the recognition scenario. For example when recog-
nizing English with single microphone in meeting rooms, 39 fea-
tures are a common value. Speech models used in this application
framework contain information from acoustic models, pronuncia-
tion models, and language models. They are combined statically
using weighted finite state transducer (WFST) techniques into a
monolithic graph structure [24]. Depending on the language mod-
els, the speech model graphs often contain millions of states and
tens of millions of arcs.

Working Set Size: When using the speech model during infer-
ence, it is observed that one can achieve good accuracy by tracking
a small percentage of the total number of states representing the
most likely alternative interpretations of the utterances. In our ex-
periments, we found that tracking more than 1% of the most likely
alternative interpretations provides diminishingly small improve-
ments in accuracy while requiring a linear increase in execution
time. Thus the working set of active states is kept below 1% of the
total number of states in the speech model, which is on average
10,000 to 20,000 active states.

Concurrency: There are four main levels of concurrency in
the inference process. We provide an application description and
highlight the amount of concurrency available at each level. The
opportunities and challenges posed by these levels of concurrency
in an implementation will be explored in detail in Section 3.2.

1. Different speech utterances can be distributed to different ma-
chines for processing. A typical conversational utterance can
be 5-30 seconds long, and a one-hour audio input can be dis-
tributed to hundreds of machines to process. Each inference
process can take billions of instructions and last a few seconds.

2. For a set of utterances, if the forward and backward passes
in the Viterbi algorithm are handled by dedicated computing
resources such as different cores or different processors, the
two passes can be pipelined. When utterance A has completed
the forward-pass and proceed to compute the backward pass,
utterance B can initiate its forward-pass.

3. In the forward-pass, if Phase 1 and Phase 2 are handled by ded-
icated computing resources, the two phases can be pipelined:
i.e. one time step can be in Phase 2 while another time step
performs Phase 1 on another computing resource.
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speech recognition application

4. Within each of the functions in Phase 1 and Phase 2 of the for-
ward pass, there are thousands of observation probabilities and
tens of thousands of alternative interpretation of the utterance to
track. Each can be tracked independently with some amount of
synchronization required after each function. Each unit of work
is usually no larger than tens to hundreds of instructions.
Performance Constraints: The goal of automatic speech

recognition is to transcribe a sequence of utterances as fast as pos-
sible with as high an accuracy as possible. For commercial applica-
tions, there is usually an accuracy threshold which makes the usage
scenario realistic and practical. For example, for in-car command
and control applications, one may tolerate a 5% command error
rate in the interpretation of non-essential commands. For data ana-
lytics, where one searches for the keywords in a recorded telephone
conversation, a 50% word error rate may be tolerable and still yield
useful results.

3.2 Software Architecture
A software architecture is the organization of a software program
expressed as hierarchical composition of patterns [20]. In the appli-
cation framework, the software architecture expresses the compo-
sition of the reference implementation and reflects decisions made
when mapping application concurrency to parallel hardware re-
sources.

The hardware resources targeted in our ASR application frame-
work is the GPU, which is an offload device with the CPU acting
as as the host engine. Programs running on the GPU are written
in CUDA [28], a language based on C++, with minor keyword ex-
tensions. CUDA programs are invoked from the host CPU code,
and operands must be explicitly transferred between the CPU and
the GPU. Recent GPUs such as the GTX480 contain 15 cores each
with dual issue 16-wide SIMD units, with non-coherent caches and
scratch space memories available in each core. In order to effi-
ciently program the GPU, one must efficiently leverage the wide
vector units, the GPU memory hierarchy, and the synchronization
primitives within and between cores.

Concurrency Exploited: In our ASR application framework
for highly parallel implementations on manycore processors, we
have selected to exploit the fourth type of concurrency: the fine-
grained parallelism within each of the functions in Phase 1 and
Phase 2 of the forward pass of the inference algorithm. This choice

may be the most complex to implement but provides the most
efficient utilization of the manycore platform.

When mapping the application onto a manycore platform, the
following thought experiments were performed to help eliminate
choosing any of the first three types of concurrency:

1. Concurrency among speech utterances is the low hanging fruit.
It can be exploited over multiple processors and is complemen-
tary to the more challenging fine-grained concurrency explored
among cores on a chip and among vector lanes within a SIMD
unit. Exploiting concurrency among speech utterances among
cores and vector lanes, however, is not practical. With tens of
cores sharing the same memory sub-system, the available mem-
ory capacity and memory bandwidth in a GPU cannot accom-
modate the working set sizes of tens of concurrent speech infer-
ence processes.

2. When different forward and backward passes are mapped onto
different resources, referring to the pipe-and-filter computa-
tional parallel programing pattern, load balancing becomes the
most significant factor in achieving efficient utilization. Back-
ward pass performs less than 1% of the work done by the for-
ward pass, thus the source of concurrency is not suitable for
exploitation.

3. Depending on the model parameters used, Phase 1 and Phase 2
of the forward pass do similar amounts of work. However, refer-
ring to the pipe-and-filter computational parallel programming
pattern, communication between the “filters” along the “pipes”
may limit performance. In this case, if Phase 1 and Phase 2
are implemented on GPU and CPU, the amount of intermedi-
ate results that must be transferred between them can become a
performance bottleneck. This is indeed observed in [12].

Architecture Representation: The software architecture for
the ASR application framework is a hierarchical composition of
parallel programming patterns, as shown in Figure 3. The top
level of the inference engine can be associated with the Bulk
Synchronous Structural Pattern [20], where each iteration is han-
dling one input feature vector corresponding to one time step.
The computation for the entire iteration is mapped onto the GPU
device, such that the computation throughput will not be bottle-
necked by intermediate results transferring between the CPU and
the GPU. The work within each iteration can be associated with
the Task Graph Structural Pattern [20], where different functions
in two phases of execution take place. Each function in each of
the two phases can be associated with the MapReduce Structural
Pattern [20], where thousands of observation probabilities are com-
puted in parallel, and tens of thousands of alternative interpretations
of a speech utterance are tracked in parallel.

Challenges: While this software architecture maps well on to
the many computing resources on the manycore GPU devices, it
also presents significant challenges in global synchronizations be-
tween different algorithm steps. For example, in Phase 2 of the for-
ward pass of the Viterbi algorithm, the inference process is based on
parallel graph traversal, a known hard problem in parallel comput-
ing [22], especially in the context of speech recognition [19]. The
parallel graph traversal operates on an irregular subset of 10,000
states of the speech model representing the most likely alternative
interpretations of the utterance, and frequently updates conflicting
memory locations. Correctly implementing such challenging tasks
in parallel while optimizing for metrics such as memory bandwidth
are often beyond what most application domain experts would like
to undertake. Section 3.3 elaborates on how this challenge can be
resolved by the application framework, which provides a reference
implementation that encapsulates an efficient solution to these im-
plementation challenges as suggested in [36].
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of the inference engine on the manycore platform

3.3 Reference Implementation
Figure 4 illustrates the reference implementation of the speech in-
ference engine. As specified in the software architecture, the for-
ward pass inference loop is implemented on the GPU accelerator,
and the backward pass is implemented on the CPU.

The main data structures can be classified in two types: read-
only model data structures and read/write runtime data structures.
Referring to Figure 4, the read-only model data structures in-
clude the acoustic model parameters (shown as “HMM” for hidden
Markov model) and the WFST graph structure (shown as “LM”
for language model). Read/write runtime data structures include
storage for intermediate buffers for the inference process (shown
as “Active Set” for the set of most likely alternative interpretations
actively tracked at runtime) and backtrack information (shown as
“Backtrack Table”), which is a log of the forward pass of the Viterbi
algorithm used for the backward pass.

In terms of the program flow, the models and inputs are read
from several files and placed into the memory on the GPU. The
forward pass of the Viterbi algorithm is computed on the GPU
and the logs are sent back to the CPU. When the forward pass
is complete, the CPU performs the backtrack operations from the
overall most likely path, and outputs the results to file.

On the GPU, the forward pass occurs in three phases. An ad-
ditional Phase 0 is inserted to implement performance optimiza-
tion techniques. Phase 1 evaluates the observation probability, and
Phase 2 tracks the most likely interpretations of the input utterance
over time.

In Phase 0, the Iteration Control step is introduced to man-
age the memory pools allocated in the ActiveSet data structure.
In highly parallel shared memory architectures, any memory al-
location and freeing action will introduce a point of serialization
in shared memory management. The technique to avoid serializa-
tion is to allocate a memory pool at the beginning of a program,
and carefully manage program behavior such that memory usage
stays within the pre-allocated space. In speech recognition, we are
tracking a set of active states which represents the set of most likely
alternative interpretations in each timestep at run time. The decision
of whether a state is active is based on a pruning threshold. States

whose likelihood is greater than the threshold are tracked, others
are pruned away in Phase 2. The challenge is that at the beginning
of a time step in Phase 0, it is not clear what pruning threshold will
allow the right amount of states to be active. The Iteration Con-
trol step makes a prediction based on the number of active states
in the past few time steps, as well as the threshold of the past few
time steps to predict what threshold to set in the current time step
to keep the traversal process within the pre-allocated space.

During the Prepare ActiveSet step in Phase 0 we populate run-
time data buffers to maximally regularize data accesses. The recog-
nition network is irregular and the traversal through the network is
guided by user input available only at runtime. To maximally utilize
the memory bandwidth, the data required in each iteration is gath-
ered into consecutive vectors acting as runtime data buffers, such
that the algorithmic steps in the iteration are able to load and store
results one cache line at a time. This maximizes the utilization of
the available memory bandwidth.

The Compute Observation Probability step in Phase 1 is a com-
pute intensive step. It involves matching the input waveform fea-
ture vector at the current time step to a large set of acoustic model
parameters in the form of Gaussian mixture models (GMM). De-
pending on types of features used and the corresponding acoustic
model used, the computation performed at this step may be differ-
ent across different usage scenarios.

Phase 2 is a performance critical phase. There are two steps in
this phase, the Graph Traversal step and the Save Backtrack Log
step. The Graph Traversal step involves data-parallel graph traver-
sals of the irregular WFST graph structure, where the working set
is guided by inputs known only at runtime. The graph traversal
routines execute in parallel on different cores and frequently have
to update the same memory locations. Such frequent write con-
flicts between cores must be resolved efficiently. We employed four
techniques to optimize the graph traversal for speech inference on
GPUs, with each of them discussed in details in [-]: {omitted for
blind review}

1. Constructing efficient dynamic vector data structures to handle
irregular graph traversals

2. Implementing an efficient find-unique function to eliminate re-
dundant work by leveraging the GPU global memory write-
conict-resolution policy

3. Implementing lock-free accesses of a shared map leveraging ad-
vanced GPU atomic operations to enable conflict-free reduction

4. Using hybrid local/global atomic operations and local buffers
for the construction of a global queue to avoid sequential bot-
tlenecks in accessing global queue control variables

These techniques allow the graph traversal step with irregular
data access patterns and irregular task synchronization patterns to
be implemented on a data parallel platform. This way the applica-
tion will not be bottlenecked by sharing of intermediate data be-
tween the CPU and the GPU in the inner loop of the speech in-
ference algorithm in a hybrid GPU-CPU implementation. The im-
plementation of these techniques also includes basic capabilities
for introspections on the dynamically changing data working set
size induced by input data. The framework is able to automatically
adapt the routines’ runtime parameters by adjusting their task dis-
tribution parameter (the thread block size) based on the amount of
work available.

The Save Backtrack Log step in Phase 2 transfers traversal data
from the GPU to the CPU. This step incurs a sequential overhead
of 13% of the total execution time after parallelization.
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3.4 Extension Points
Based on the optimized reference implementation, we can construct
extension points to allow the implementation to be flexibly adapted
to a variety of usage scenarios. The application framework with
its extension points and many plugins is presented in Figure 5.
The extension points are illustrated as notches in the application
framework. Their position is aligned with the functions in the
program flow they affect. The shapes of extension points, or the
notches, correspond to the associated plugins that match them.

An extension point is an interface for creating families of func-
tions that extend the capability of the application framework for a
specific application. It is implemented as an instance of an Abstract
Factory creational object-oriented programming pattern as speci-
fied in [15]. This pattern involves an abstract class definition that
specifies a set of methods with names, a certain number of param-
eters, and the types of the parameters.

There are three extension points implemented in the ASR appli-
cation framework: Observation Probability Computation, Pruning
Strategy, and Output File Format.

The Observation Probability Computation extension point
is complex. It is used to manage not only the computation of the
observation probability, but also the data structure of the acoustic
model associated with the computation. As different acoustic mod-
els may use very different data structures, the data structure itself
is not specified at the interface. This is also the reason why the File
Input extension point is part of this interface. The interface is spec-
ified as follows:

1 s t r i n g getName ( ) ;
2 vo id b u i l d m o d e l ( c o n s t Runopt ∗ o p t i o n s ) ;
3 vo id save mode l ( c o n s t c h a r ∗ f i l e n a m e ) ;
4 vo id l o a d m o d e l ( c o n s t Runopt ∗ o p t i o n s ) ;
5 vo id f r e e m o d e l ( ) ;
6
7 vo id o b s e r v a t i o n P r o b C o m p u t a t i o n (
8 c o n s t i n t frame ,
9 c o n s t U t t e r a n c e ∗ in ,

10 c o n s t i n t ∗LabelF lagHash ,
11 f l o a t ∗LabelProbHash ) ;

The interface on line 1 is a self identifying function for the
plugin function. The build model interface on Line 2 reads a text
format input file into the internal data format. The filename to read
is specified in the run options in the parameter. The save model
interface on Line 3 dumps the internal format to a binary file for
fast loading in future runs. The load model interface on Line 4

loads previously dumped internal format from a binary file. The
free model interface frees a model from memory.

The observationProbComputation interface on line 7 is where
Phase 1 of the inference engine takes place. It has four parameters.
The frame parameter specifies what frame, or time step, the Phase 1
calculations are targeting. The in parameter provides the input data.
The LabelFlagHash parameter provides a vector of “0”s and non-
“0”s as flags, where a “0” means the calculation should be skipped.
The LableProbHash is a vector of output where for each non-“0”
in the input flag vector, a valid observation probability is expected.

The Pruning Strategy extension point allows customization of
the algorithm for specifying the pruning threshold. The interface is
as follows:

1 s t r i n g getName ( ) ;
2 vo id i t e r a t i o n c o n t r o l (
3 c o n s t i n t frame ,
4 i C o n t r o l ∗ h i s t o r y ,
5 f l o a t p r u n e T h r e s h o l d ) ;

The interface on line 1 is a self identifying function for the plu-
gin function. The iteration control interface has three parameters.
The frame parameter specifies what frame, or time step, the plugin
is working on. The history parameter provides the history of past
active state count and pruning threshold used. The pruneThreshold
is the predicted pruning threshold to be used for the current frame.

The Result Output extension point allows the result of the
inference process to be displayed in any format. The interface is:

1 s t r i n g getName ( ) ;
2 vo id R e s u l t O u t p u t (
3 FILE ∗ o u t F i l e ,
4 c o n s t g p u H i s t o r y ∗ h i s t ,
5 c o n s t WordTable ∗Wordtable ,
6 c o n s t S e g m e n t L i s t ∗ s e g m e n t L i s t ) ;

The interface on line 1 is a self identifying function for the
plugin function. The Result Output interface has four parameters.
The outFile parameter indicates the file pointer if the results are to
be written to a file. The hist parameter provides the results of the
backward pass in the Viterbi algorithm. The Wordtable parameter
provides the word table to look up word IDs and print them out
as words. The segmentList parameter provides the list of filenames
being analyzed.
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Figure 6. Recognition speed in real time factor demonstrated with
the Wall Street Journal corpus at 8.0% WER

4. Sample Usages and Results
The reference implementation is provided with a small 5000 word
model based on the Wall Street Journal corpus trained on broad-
cast news. The acoustic model was trained by HTK [35] with the
speaker independent training data in the Wall Street Journal 1 cor-
pus. The frontend uses 39 dimensional features that have 13 di-
mensional MFCC, delta and acceleration coefficients. The trained
acoustic model consists of 3,000 16-mixture Gaussians. The WFST
network is an H ◦C ◦L◦Gmodel compiled and optimized offline
with the dmake tool described in [1]. There are 3.9 million states
and 11.4 million arcs in the WFST graph representing the language
model. The test set consists of 330 sentences totaling 2,404 seconds
from the Wall Street Journal test and evaluation set. The serial ref-
erence implementation using the LLM representation has a word
error rate (WER3) of 8.0% and runs with a 0.64 real time factor.

For the implementation platform, we used the NVIDIA GTX480
(Fermi) GPU with a Intel Core i7 920 based host platform. GTX480
has 15 cores, each with dual issue 16-way vector arithmetic units
running at 1.45GHz. Its processor architecture allows a theoreti-
cal maximum of two single-precision floating point operations (SP
FLOP) per cycle, resulting in a maximum of 1.39 TeraFLOP of
peak performance per second. For compilation, we used Visual
Studio 2008 with nvcc 3.1.

To achieve the same 8.0% WER, the framework’s reference
implementation achieved 0.136 real time factor, or 4.7x speed up.
The pruning threshold was set at 20,000 states, and the resulting
run traversed an average of 20,062 states and 141,071 arcs per
time step. From Figure 6, we observe that the execution time is
dominated by Phase 0 for data gathering. This is necessary to align
operands for Phase 2, the graph traversal phase. For the sequential
overhead, 65% is used for transferring the backtrack log from the
GPU to the CPU and 35% is for backtrack, file input and output on
the CPU.

4.1 Adapting to the SRI Meeting Model
The SRI Meeting model is produced for the accurate automatic
transcription of multi-party meetings. It aims to construct an inter-
active agent that provides online and offline assistance to meeting
participants.

We used the speech models from the SRI CALO realtime meet-
ing recognition system [34]. It is produced with an advanced fron-
tend that uses 13 dimensional perceptual linear prediction (PLP)
features with 1st, 2nd, and 3rd order differences, is vocal-track-
length-normalized and is projected to 39 dimensions using het-
eroscedastic linear discriminant analysis (HLDA). The acoustic
model is trained on conversational telephone and meeting speech
corpora, using the discriminative minimum-phone-error (MPE) cri-
terion. The language model is trained on meeting transcripts, con-
versational telephone speech, and web and broadcast data [33]. The
acoustic model includes 52K triphone states which are clustered
into 2,613 mixtures of 128 Gaussian components. The acoustic
model uses tied Gaussian Mixture Model (GMM) weights [33] and

3 The Word Error Rate is computed by summing the substitution, insertion
and deletion errors of a recognition result after it is matched against a golden
reference using the longest common subsequence matching algorithm.

requires a slightly more complex Phase 1 module for observation
probability computation.

To adapt the ASR application framework to the SRI Meeting
Model, a new Observation Probability Computation plugin was
developed to handle the tied Gaussian Mixture Model with a two
step computation. This extension also involved a new component
to read in SRI’s model file format. A new Result Output plugin was
developed to produce files for SRI’s accuracy scoring script. the
Pruning Strategy plugin was kept the same.

The test set consisted of excerpts from NIST conference meet-
ings, taken from the “individual head-mounted microphone” con-
dition of the 2007 NIST Rich Transcription evaluation. The seg-
mented audio files total 44 minutes in length and comprise 10
speakers. For the experiment, we assumed that the feature extrac-
tion is performed offline so that the inference engine can directly
access the feature files. The meeting recognition task is very chal-
lenging due to the spontaneous nature of speech. The ambiguities in
the sentences require larger number of active states to keep track of
alternative interpretations which leads to slower recognition speed.

Table 1 shows at various pruning thresholds the accuracy in
WER, speed in real time factor and speedup on the GTX480 GPU
(compared to an optimized sequential version implemented on the
CPU). By leveraging the optimizations in the ASR framework, we
were able to achieve up to 14.2x speedup GPU compared to a
sequential version run on the CPU.

Table 1. Accuracy, word error rate (WER), for various beam sizes
and corresponding decoding speed in real-time factor (RTF)

# of Active States 30k 20k 10k 3.5k
WER 41.6 41.8 42.2 44.5

Sequential RTF 4.36 3.17 2.29 1.20
Manycore RTF 0.37 0.22 0.18 0.13

Speedup 11.6x 14.2x 13.0x 9.10x

4.2 Using Coupled HMMs for Robust ASR
Robustness of speech recognition can be significantly improved
by multi-stream and especially by audio-visual speech recognition
(Figure 7). This is of interest for example for human-machine inter-
action in noisy reverberant environments, and for transcription of or
search in multimedia data. The most robust implementations of au-
diovisual speech recognition often utilize coupled hidden Markov
models (CHMMs), which allow for both input streams to be asyn-
chronous to a certain degree. In contrast to conventional speech
recognition, this increases the search space significantly, so cur-
rent implementations of CHMM systems are often not real-time
capable. Thus, for real-time constrained applications such as online
transcription of VoIP communication or responsive multi-modal
human-machine interaction, using current multiprocessor comput-
ing capability is vital.

4.2.1 Model Architecture of Coupled HMMs
Multistream and audiovisual speech recognition both use a number
of streams of audio and/or video features in order to significantly
increase robustness and performance ([26, 29]). Coupled hidden
Markov models (CHMMs), with their tolerance for stream asyn-
chronicities, can provide a flexible integration of these streams and
have shown optimum performance in a direct comparison of alter-
native model structures in [25].

In CHMMs, both feature vector sequences are retained as sep-
arate streams. As generative models, CHMMs describe the proba-
bility of both feature streams jointly as a function of a set of two
discrete, hidden state variables, which evolve analogously to the
single state variable of a conventional HMM.
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Thus, CHMMs have a two-dimensional state q which, for au-
diovisual recognition, is composed of an audio and a video state,
qa and qv , respectively, as shown in Fig. 7.
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Figure 7. A coupled HMM consists of a matrix of interconnected
states, which each correspond to the pairing of one audio- and one
video-HMM-state, qa and qv , respectively.

Each possible sequence of states through the model represents
one possible alignment with the sequence of observation vectors.
To evaluate the likelihood of such an alignment, each state pairing
is connected by a transition probability, and each state is associated
with an observation probability distribution.

The transition probability and the observation probability can
both be composed from the two marginal HMMs. Then, the cou-
pled transition probability becomes

p
(
qa(t+ 1) = ja, qv(t+ 1) = jv|qa(t) = ia, qv(t) = iv

)
= aa(ia, ja) · av(iv, jv) (1)

where aa(ia, ja) and av(iv, jv) correspond to the transition prob-
abilities of the two marginal HMMs, the audio-only and the video-
only single-stream HMMs, respectively. This step of the compu-
tation, the so-called propagation step, is memory intensive due to
the need for transition probability lookup in a large and irregularly
structured network.

For the observation probability, both marginal HMMs could be
composed similarly, to form a joint output probability by

p(o|i) = ba(oa|ia) · bv(ov|iv), (2)

where ba(oa|ia) and bv(ov|iv) denote the output probability distri-
butions for both single streams.

Such a formulation, however, does not take into account the
different reliabilities of the two feature streams. Therefore, Eq. (2)
is commonly modified by an additional stream weight γ as follows

p(o|i) = ba(oa|ia)γ · bv(ov|iv)1−γ . (3)

Finally, computation of the marginal HMM state probabilities can
be implemented in the same way as for a standard single HMM
system, e.g. as an M-component Gaussian mixture model (GMM)

b(o|i) =

M∑
m=1

γmN (o | µi,m,Σi,m) . (4)

N (o|µ,Σ) stands for a multivariate Gaussian distribution evalu-
ated for the vector-valued observation o with mean µ and covari-
ance matrix Σ. The covariance matrix may be either a full or a diag-
onal covariance matrix, where the latter implies that feature vector
components are either independent or that their dependencies may
be neglected.

The steps given by (4) and (3) will be referred to as the like-
lihood computation and the likelihood combination steps, respec-

tively. These steps, especially the computation, have a much greater
compute-to-memory-access ratio than the propagation step, due to
the computational effort involved in GMM evaluation.

4.2.2 How was the framework used?
A coupled HMM can be compiled into a WFST that conforms to
the required format in two steps:

• First, the 2-dimensional state index needs to be converted into
one linear index for each of the involved word models. These
linearized word models can then be stored in an applicable
format, in this case, the OpenFST [2] input format.
• Secondly, the word models need to be composed into the sen-

tence level WFST. This compilation, and a subsequent mini-
mization, were carried out using OpenFST, which resulted in
an overall network size of 3167 states and 12751 arcs for the
GRID grammar [10].

Once the WFST network is available, the only relevant change
with respect to a ”regular” HMM is the observation probability
computation according to Eq. (3). Therefore, the significant exten-
sion point for enabling CHMM-based audiovisual and multistream
ASR was the observation probability computation step, which had
to be adapted for coupled HMMs. For this purpose, CUDA kernels
were implemented for Equations (4), the likelihood computation,
and (3), the likelihood combination step.

The likelihood computation was optimized especially for the
use with full covariance matrices, which can often result in sub-
stantial performance improvements; the relevant optimizations are
shown in some detail in [-] . For the likelihood combination step, a
simple kernel was designed that is parallelized over all those cou-
pled states that are in the active set at the given time frame.
4.2.3 Performance results
The WFST decoder was used for multi-stream speech recognition
in the following experiment. The two combined marginal HMMs
were a 39-dimensional full-covariance Mel-frequency Cepstrum
model and a 31-dimensional diagonal covariance RASTA-PLP
model. The accuracy remained precisely the same for the C++
reference implementation and the GPU version of decoder, reach-
ing 99.3% for the best-performing, speaker-independent model on
clean data.

Fig. 8 shows the runtime per file, averaged over 47 utterances,
where the decoder was running sequentially on a Intel Core i7 920
CPU or on a NVIDIA GTX480 GPU.
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Figure 8. Runtime in ms per file of 3s length forM = 1, 2, . . . , 16
mixture components used in Eq. (4). The speedup factor S is given
in parentheses.

As can be seen, the speedup grows almost linearly with model
complexity. For the GPU version, system overhead for calling the
accelerator dominates the overall runtime for models with less than
4 mixture components. The likelihood computation starts dominat-
ing the runtime for more complex models with 8 and 16 mixture
components.
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Figure 9. Parallel application development flow with and without
assistance from application frameworks

5. Discussions
5.1 Parallel Programming Design Flow Implications
Our ASR application framework is developed to help speech appli-
cation domain experts more effectively utilize highly parallel mi-
croprocessors. It allows them to extend the functions of an appli-
cation implementation without having to implement the most com-
plex and performance-sensitive parts of an ASR based application.

Without the application framework, the current industry best-
practice for developing parallel software can be viewed as a three-
step process involving Specify, Architect and Implement steps, as
shown in Figure 9(a).

• The Specify Step highlights the application characteristics in
terms of the type, size and requirements of the computation
and any performance goals that must be met or would be nice
to meet. It also exposes all the parallelization opportunities
in the application, as well as the amount of parallelism each
opportunity entails.
• The Architect Step defines the design space which is a set of al-

ternative implementations of the solution that solves end-user’s
problem. The design space is associated with the parallelism
opportunities exposed in the Specify step. In architect step, we
also explore and prototype the potential performance bottle-
necks. The end result is a set of data structures and their layouts,
as well as application programing interfaces (APIs).
• The Implement Step implements the functions of the application

by translating the high level descriptions of the application into
software code, defines and deploys unit tests to verify functional
correctness and performance requirements.

In this process, parallel programming experts are involved in
the Architect and Implement step of every application development
project. There are many application domains that can benefit from
parallel implementations. If parallel programming experts have to
be involved in developing every parallel application, the deploy-
ment of highly parallel microprocessors will be severely limited.

With the application framework, the process now has three steps
of Specify, Match, and Customize, as shown in Figure 9(b).

• The Specify Step is the same as above, where one describes the
application characteristics, exposes application concurrency (or
parallelization opportunities), and defines invariants.

• The Match Step is where one selects the application framework
to use, checks for potential performance bottlenecks, and gets
an understanding of the data types and APIs of the extension
points.
• The Customize Step is where one develops the plug-in modules

to obtain new functions for the end application.

The parallel programming expert is still required to develop the
application framework. Once the framework is available, the ap-
plication domain expert can perform the Specify, Match and Cus-
tomize steps independent of parallel programming experts, allow-
ing more applications to benefit from the capabilities of highly par-
allel microprocessors.

5.2 Related Work
Application frameworks are developed as a tool for propagating
proven software designs and implementations in order to reduce
cost and improve quality of software. This concept has been dis-
cussed since the 1980s [31] and early application frameworks were
built with macroprocessor and conditional compilation [5]. In the
1990s, with the rise of object-oriented programming (OOP) and the
development of programming patterns based on OOP [15], there
was a plethora of frameworks developed to define proven soft-
ware designs in a variety of application domains. A large collec-
tion of such application frameworks in various domains has been
presented in [13, 14].

As the computing platforms shift from sequential to parallel,
the implementation challenges of software development are shift-
ing towards exposing and exploiting application concurrency. We
focus on these challenges by basing the application framework on
the application’s software architecture, which are based on a foun-
dation of parallel programming patterns [20, 23]. This was inspired
by the success of Ruby on Rails [4], which was built around cus-
tomizations to the Model-View-Controller architecture [21].

Application frameworks for parallel programming have been
proposed for scientific computing on large computing clusters.
Examples include Cactus [17] for structured grids based applica-
tions, and CHARMS [18] for computational chemistry applica-
tions. Their development often involved multi-year efforts by a
large team of developers. As multi-GPU workstations today of-
ten pack the compute throughput common in computing centers
a few years ago, the demand of application frameworks is shifting
towards desktop applications in a more diverse set of application
domains. As such, we are already seeing frameworks emerging for
GPU-based computing targeting machine learning and computer
vision applications [3, 8]. By providing reference implementations
and defining extension points on top of proven software designs, we
hope to create light-weight application frameworks that are easy to
construct and easy to use. We expect this type of application frame-
works to become more important as more computer-literate appli-
cation domain experts develop application for high performance
workstations or even portable devices.

For speech recognition application, application frameworks
have been proposed in [16, 32]. They focused on the software
architecture to enable the interactive nature of speech recognition
in dictation, command-and-control, or meeting transcription us-
age scenarios. They have not considered the parallel programming
component of the application needs. Our framework focuses on
exposing and exploiting the underlying application concurrency to
enable high throughput recognition, which is complimentary to the
existing work.
6. Conclusion
Our application framework for parallel programming is developed
to help application domain experts effectively utilize highly parallel
microprocessors. We have demonstrated that the automatic speech
recognition (ASR) application framework has enabled a Matlab/-

A Speech Recognition Application Framework for Highly Parallel Implementations on the GPU 9 2012/4/26



Java programmer to achieve 20x speedup in her application by ex-
tending an audio-only speech recognition reference implementa-
tion to an audio-visual speech recognition application. This was
achieved through the use of extension points to plug in new com-
ponents in audio-video speech recognition that enables lip-reading
in high noise environments to improve recognition accuracy.

The ASR application framework allowed the speech expert to
leverage 12 months of prior research in software architecture, ap-
plication design space, and implementation techniques of speech
recognition on highly parallel computing platforms. With the pro-
liferation of highly parallel computation from servers to work sta-
tions to laptops and portable devices, there will be increasing de-
mand for adapting business and consumer applications to specific
usage scenarios. We have shown that our application framework,
with its application context description, application software archi-
tecture, reference implementation, and extension points, is an ef-
fective approach for transferring tacit knowledge about efficient,
highly parallel software design for use by application domain ex-
perts. We believe application frameworks for parallel programming
will be an important force for accelerating the adoption of highly
parallel microprocessors.

References
[1] C. Allauzen, M. Mohri, M. Riley, and B. Roark. A generalized

construction of integrated speech recognition transducers. In IEEE
Intl. Conf. on Acoustics, Speech, and Signal Processing, pages 761–
764, 2004.

[2] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. Open-
Fst: A general and efficient weighted finite-state transducer library. In
Proceedings CIAA 2007, volume 4783 of Lecture Notes in Computer
Science, pages 11–23. Springer, 2007.

[3] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan. Gpucv: A
gpu-accelerated framework for image processing and computer vision.
Advances in Visual Computing, Lecture Notes in Computer Science,
5359:430–439, 2008.

[4] M. Bachle and P. Kirchberg. Ruby on rails. IEEE Software, 24:105–
108, 2007. ISSN 0740-7459.

[5] D. S. Batory. Construction of file management systems from software
components. Technical report, Austin, TX, USA, 1988.

[6] N. Bell and M. Garland. Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors. In SC ’09: Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis, pages 1–11, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-744-8.

[7] Business Wire. Impact 360 speech analytics software
from verint witness actionable solutions enhances per-
formance and customer experiences at telefnica o2 ire-
land. Financial Tech Spotlight, July 19, 2010. URL
http://financial.tmcnet.com/news/2010/07/19/4907090.htm.

[8] B. Catanzaro, N. Sundaram, and K. Keutzer. A map reduce framework
for programming graphics processors. In In Workshop on Software
Tools for MultiCore Systems, April, 2008.

[9] J. Chong, E. Gonina, Y. Yi, and K. Keutzer. A fully data parallel wfst-
based large vocabulary continuous speech recognition on a graphics
processing unit. In Proceeding of the 10th Annual Conference of
the International Speech Communication Association (InterSpeech),
pages 1183–1186, September 2009.

[10] M. Cooke, J. Barker, S. Cunningham, and X. Shao. An audio-visual
corpus for speech perception and automatic speech recognition. J.
Acoust. Soc. Am., 120(5):2421–2424, 2006.

[11] L. Deutsch. Design reuse and frameworks in the smalltalk-80 sys-
tem. Software Reusability, Volume II, Applications and Experiences,
Biggerstaff and Perlis, editors. Addison-Wesley, pages 57–71, 1989.

[12] P. R. Dixon, T. Oonishi, and S. Furui. Harnessing graphics processors
for the fast computation of acoustic likelihoods in speech recognition.
Comput. Speech Lang., 23(4):510–526, 2009. ISSN 0885-2308.

[13] M. Fayad, D. Schmidt, and R. Johnson. Building Application Frame-
works: Object-Oriented Foundations of Framework Design. Wiley
Computer Publishing, New York, NY, 1999. ISBN 0471248754.

[14] M. Fayad, D. Schmidt, and R. Johnson. Implementing Application
Frameworks: Object-Oriented Framework at Work. Wiley Computer
Publishing, New York, NY, 1999. ISBN 0471252018.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, Boston, MA, 1995. ISBN 0201633612.

[16] P. N. Garner, J. Dines, T. Hain, A. E. Hannani, M. Karafiat, D. Kor-
chagin, M. Lincoln, V. Wan, and L. Zhang. Realtime asr from meet-
ings. Proceeding of the 10th Annual Conference of the International
Speech Communication Association (InterSpeech), pages 2119–2122,
September, 2009.

[17] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel,
and J. Shalf. The cactus framework and toolkit: Design and appli-
cations. High Performance Computing for Computational Science
- VECPAR 2002, Lecture Notes in Computer Science, 2565:15–36,
2003. ISSN 0302-9743.

[18] E. Grinspun, P. Krysl, and P. Schröder. Charms: a simple framework
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