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Abstract

Algorithms and Representations for Visual Recognition

by
Subhransu Maji

Doctor of Philosophy in Computer Science
and the Designated Emphasis
in
Communication, Computation, and Statistics

University of California, Berkeley

Professor Jitendra Malik, Chair

We address various issues in learning and representatiosuafl object categories. A key compo-

nent of many state of the art object detection and image retog systems, is the image classifier.

We first show that a large number of classifiers used in compigi®n that are based on compari-

son of histograms of low level features, are “additive”, @ndpose algorithms that enable training
and evaluation of additive classifiers that offer betteddxfs between accuracy, runtime memory
and time complexity than previous algorithms. Our analgpeseds up the training and evaluation
of several state of the art object detection, and imageititlztgon methods by several orders of

magnitude.

Many successful object detection algorithms localize gadailby simply evaluating a classifier
at multiple locations and scales in an image, and finding p&akhe classifier response. In this
setting, the overall speed of the detector can be improveédmly by improving the efficiency
of the classifier, which we addressed earlier, but also byieffi search, which we address next.
We develop a discriminative voting algorithm based on Hotrghsform, which cuts down the
complexity of this search.

In the last part of the thesis, we propose a representatiofini® scale category recognition
such as, action and pose of people in images, which is aideddrg supervision. Leveraging
on “crowdsourcing”, we collect annotations of various lgrdkeypoints, segmentations, attribute
labels, pose, etc., for several tens of thousands of obj€btsproblem of comparing two instances
visually can then be replaced by a simpler problem of comgaheir annotations. The similarity
function over the annotations provides us a flexible notibnasrespondence between instances
of a visual category, which we use to learn appearance moelelgant to the task. We apply
this framework to build a system for action recognition ttbeptures salient pose, appearance and
interactions with objects, of people performing variousats in static images.
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Chapter 1

Introduction

This generation of computer vision researchers are facmgnaproblem — there is simply too
much training data, and many of our algorithms do not scakbecsizes of datasets one could
collect. This has come about in the last decade due to a yafieeasons. Proliferation of cheap
sensors, combined with the growth of public repositoriesmdges, such as Flickr and Picasa,
has left billions of images at the disposal of computer vigiesearchers. Often these come with
user generated tags, or can be associated with search tetimthevhelp of search engines like
Google, Yahoo!, MSN, etc., providing training data for maifis of visual categories at an unprece-
dented scale. Add to that the emergence of economical “gourding” services like Amazon
Mechanical Turk, which enable scalable and cheap colleaiforast amounts of highly accurate
supervised data. A result of all this is that large dataskésimageNet, containing millions of
images for hundreds of thousands of categories, and PASGAC Watasets, containing few thou-
sand objects of dozens of categories, are becoming the rmrbehchmarking computer vision
algorithms. We are forced to think about representationsiwgeneralize across categories and
enable sub-ordinate categorization and learning algostihich are efficient during training and
testing.

In this work we address some of the challenges in learningrepesentation when dealing
with large datasets, where algorithms that are super+#liagatoo expensive. Linear classifiers
have been popular in this setting because of their efficiehring training and testing, but are
often inferior in terms of accuracy when compared to them-tinear counterparts. We show that
a class of widely used classifiers in computer vision basedamilinear kernel Support Vector
Machines (SVMs), are actually quite efficient. These clddseonels called “additive” kernels,
often arise when comparing images based on histogramsiotdielevel features. Our analysis
shows that these classifiers have the same run time memomtynamdomplexity as linear SVMs
during both training and testing, saving many orders of nitage over standard implementations,
making them practical for large scale classification or eeattime detection tasks.
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Crowdsourcing has become a practical way of collectingel@ngounts of annotated data for
various computer vision tasks with the emergence of efficrearket places for completing "micro-
tasks” performed by humans, like Amazon Mechanical Turk (BMn the second part of my
thesis, we propose a method to “bootstrap” hard computerngoblems by aiding the learning
algorithms with supervision. We build rich representasiand a learning framework which enable
image understanding at multiple levels — categories, siibgories, attributes, segmentation, pose,
etc. We demonstrate how this representation can be usdukfehtllenging task of estimating the
pose and actions of people in images.

1.1 Outline

Chapter§ 4,13 arid 4 address various bottlenecks in buildilodpgect detector. We focus on variants
of sliding window object detectors, which include many oé turrent state of the art detection
systems. These detectors are based on an image classifigrevaiuated by varying the location,
scale and aspect ratio of the classification window in an anagnce the name. In Chapitér 2,
we provide an efficient algorithm which speeds up the evedoatf many non-linear kernel SVM
based classifiers by various orders of magnitude making firantical for detection tasks. We then
show in Chaptdr]3, that these classifiers can also be traffieiéetly, motivated by the analysis in
the previous chapter. In Chapfér 4, we address the complEbsearch over pose using a variant of
Hough transformation and propose a discriminative spdatlre selection algorithm to improve
the overall accuracy and efficiency of detection. These austhave been widely adopted and have
become essential ingredients of various state of the attieh and classification algorithms.

Moving beyond detecting rigid objects such as faces andgtedes, in Chaptér]5, we show
how with appropriate supervision and learning algorithotse can build rich category models.
Arguably, the fundamental problem in building visual catggmodels is the notion of correspon-
dence between instances. We bootstrap this problem byatmginstances with various attributes
— keypoints, 3D pose, segmentation mask, action labels,atd replacing the problem of visual
correspondence by a simpler problem of comparing their @tioos. This provides us a flexible
notion of matching which can then be used to learn task spegfiearance models. Our approach
based on a novel part based representation called “pdsetetdbe used not only for detection,
but also to infer the segmentation, pose, action and otkr@ees of people in images, which is
a highly visually diverse category. Finally, in Chagdtér & describe our experience in collecting
over 250, 000 of the above annotations on Amazon Mechanical Turk whichemabled this line
of research.



Chapter 2

Evaluation of Additive Kernel SVMs

Consider sliding window detection, one of the leading apphes for detecting objects in im-
ages like faces [78, 112], pedestrians [78,[21, 33] and &8s In this approach, first, a classifier
is trained to recognize an object at a fixed “pose” - for exanas shown in Figurfie 2.1, one may
train a classifier to classify4d x 96 pixel pedestrians which are all centered and scaled to the sa
size, from background. In order to detect pedestrians dranp location and scale in an image,
the classifier is evaluated by varying the location and sohtbe classification window. Finally,
detections are obtained by finding peaks of the classificattmre over scales and locations, a
step commonly referred to as non-maximum suppression.oAgh this approach is simple — the
classifier does not have to deal with invariance — a key dralwlod this approach is computa-
tional complexity. On typical images these classifiers cap\mluated several tens of thousands of
times. One may also want to search over aspect ratios, viatgpetc., compounding the problem.
Therefore efficient classifiers are crucial for effectivéedéors.

Discriminative classifiers based on Support Vector Machii®/Ms) and variants of boosted
decision trees are two of the leading techniques used inrvisisks ranging from object detec-
tion [78,/112) 21, 33], multi-category object recognitionCaltech101 [46, 61], to texture dis-
crimination [123]. Classifiers based on boosted decisieestisuch as [112], have faster classifi-
cation speed, but are significantly slower to train. Furtiae, the complexity of training can
grow exponentially with the number of classes [107]. On tttephand, given the right feature
space, SVMs can be more efficient during training. Part obtiy@eal of SVMs is that, non-linear
decision boundaries can be learnt using the “kernel tri@k][However, the run-time complexity
of a non-linear SVM classifier can be significantly highentlaalinear SVM. Thus, linear kernel
SVMs have become popular for real-time applications as émgyy both faster training and faster
classification, with significantly less memory requirensgiian non-linear kernels.

Although linear SVMs are popular for efficiency reasons.esalvnon-linear kernels are used
in computer vision as they provide better accuracy. Somaehtost popular ones are based on
comparing histograms of low level features like color anduse computed over the image and
using a kernel derived from histogram intersection or chiesgd distance to train a SVM classifier.
In order to evaluate the classification function, a testogisim is compared to a histogram for
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Figure 2.1: A typical “sliding window” detection pipeline.

each of the support vectors. The number of support vectareftan be a significant fraction of
the training data, so this step is computationally very espe as the test time scales linearly
with the number of support vectors. This paper presents aalyzes a technique to greatly speed
up that process for histogram comparison functions thatdditive - where the comparison is
a linear combination of functions of each coordinate of tistdgram. In particular we show

it is possible to evaluate the classifier approximately in the independent of the number of
support vectors — similar to that of a linear SVM.

This more efficient approach makes SVMs with additive kexralised in many of the current
most successful object detection/recognition algorithnegficient enough to apply much more
broadly, even possibly to real-time applications. Theslafkernels includes the pyramid match-
ing orintersection kernelssed in Grauman & DarelEhG] ; and Lazebnik, Schmid & Por@,[6
and the chi squared kernel used by Varma & @[109]; and Cthrils&ermanﬁ8], which to-
gether represent some of the best results in image and obgmgnition on the CaIteciﬁbO] and
PASCAL VOC @] datasets.

Although the results in this paper apply to any additive kgrve begin by analyzing the
histogram intersectiokernel, K, (ha, hy) = >, min (ha(i), hy (7)), that is often used as a mea-
surement of similarity between histograrhs and h,. Because it is positive definitm04] for
non-negative features and conditionally positive defifotearbitrary featureleS], it can be used
as a kernel for discriminative classification using SVMs. c&uly, intersection kernel SVMs
(henceforth referred to as IKSVMs), have become populdr thié introduction of pyramid match
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kernel [46] and spatial pyramid match kernel/[61] for objdetection and image classification.
Unfortunately this success typically comes at great coatprial expense compared to simpler
linear SVMs, because non-linear kernels require memorycantputation linearly proportional to
the number of support vectors for classification.

In this chapter we show the following:

2.1

SVMs using the histogram intersection kernel carekactlyevaluated exponentially faster
than the straight forward implementation used in the previstate of the art, as has been
previously shown in [51], and independently in our own watf66] (Sectiorn 2.2).

A generalization allowarbitrary additive kernel SVMs to be evaluated with the same “big
O” computational cost, as linear SVMs (Sectionl 2.3), as aslignificantly reducing the
memory overhead, making them practical for detection aattime applications.

We show thatadditive kernels arise naturally in many computer vision applicagigSec-
tion[2.4), and are already being used in many state of theeognition systems.

Additive kernels, such as histogram intersection are seffity general, i.e., the correspond-
ing kernel SVM classifier, can represent arbitrary additiessifiers. The difference between
additive kernels can be analyzed mainly in terms of the ieglegularization for a particular
kernel. This helps us to understand both the potential hear@dithe inherent limitations of
any additive classifier, in addition to shedding some light om titade-offs between choices
of additive kernels for SVMs (Sectidn 2.5).

Our approach can be computationally more efficient comptradme of the recently pro-
posed methods and the previous state of the art in kerndglifitasevaluation (Sectidn 2.6).

Combining these efficient additive classifiers with a nowsatiptor provides an improve-
ment over the state of the art linear classifiers for pedastietection, as well for many other
datasets (Sectidn 4.4).

These techniques can be applied generally to settings vévataation of weighted addi-
tive kernels is required, including kernel PCA, kernel LD#d kernelized regression and
kernelizedk-means. (Section 2.8).

Support Vector Machines

We begin with a review of support vector machines for classiifon. Given labeled training data
of the form{(y;, x;) },, with y; € {—1,+1}, x; € R", we use a C-SVM formulation [20]. For
the linear case, the algorithm finds a hyperplane which legstirates the data by minimizing :

N
r(w.§) = WP+ 0> g @)
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subject toy;(w - x; + b) > 1 — & and¢; > 0, whereC' > 0, is the tradeoff between regularization
and constraint violation. For a kernel on data poif{$x,z) : R* x R® — R, that is the inner
product,®(x) - ®(z), in an unrealized, possibly high dimensional, feature gepane can obtain
the same by maximizing the dual formulation :

N
1
W(Oé) = Z o; — 5 Z Oéi()éjyiyjK(Xi, Xj) (22)
i—i ij
subjectto:  0<a; <Cand ) a;y; =0 (2.3)

The decision function isign (h(x)), where:

h(x) = awk(x,x;) + b (2.4)
=1

Notice that the dual formulation only requires access tk#rael function and not the features
®(.), allowing one to solve the formulation in very high dimenmsibfeature spaces efficiently
— also called thekernel trick For clarity, in a slight abuse of notation, the featumes, [ <
{1,2,...,m}, will be referred to as support vectors. Thus in generalkernel computations
are needed to classify a point with a kernelized SVM andraBupport vector must be stored.
Assuming these kernels can be compute®im) time, the overall complexity of the classifier is
O(mn). For linear kernels we can do better because, z) = x - z, SOh(x) can be written as
h(x) = w-x+b, wherew = >~ )" | ayy;x;. As aresult, classifying with a linear SVM only requires
O(n) operations, and(n) memory.

2.2 Fast Exact IKSVMs

We motivate our discussion using the histogram interseaiiothemin kernel. Often similarity
between images is obtained by comparing their distribubier low level features like edge ori-
entations, pixel color values, codebook entries, etc. &lkstributions could be represented as
histograms and a similarity measure like the histogranmrseietion can be used. The histogram in-
tersection kernel is known to be positive definite [104] fmtbgram based features and hence can
be used with the standard SVM machinery. This representéipopular for the “bag-of-words”
approaches which have led to state of the art results in mhajgctodetection and classification
tasks.

We first show that it is possible to speed up classificatiomtersection kernel SVMs (IKSVMs).
This analysis was first presented in![51] and later indepethge our own work [66]. For his-
togram based feature vectotrsz € R’ the intersection kernél i, (x, z) is defined as:

Knin(x,2) = Z min (z;, 2;) (2.5)
i=1
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and classification is based on evaluating:
hz) = ) o Kumn(z, %) +b (2.6)
=1

= ) aw (Z min(%ﬂ%,i)) +0 (2.7)
=1 i=1

The non linearity ofmin prevents us from “collapsing” the weight vector in a simita&nner for
linear kernels. Thus the complexity of evaluatihgk) in the standard way i®(mn). The key
property of intersection kernels is that we can exchangsuh@mations in equatidn 2.7 to obtain:

h(z) = Zalyl (Z min(z,—,xhi)) +b (2.8)
=1 i=1
= Z <Z ayy; min (z;, xlz)> +b (2.9)

=1 =1
= ) hi(z)+b (2.10)
=1

Thus the overall functiork(-) can be rewritten as the sum of one dimensional functioits,
where :

hi(s) = Zalyl min (s, x;;) (2.11)
=1

The complexity of computing eadh(s) in the naive way is stilD (m) with an overall complexity
of computingh(x) still O(mn). We now show how to compute eakhin O(log m) time.

Consider the functions;(s) for a fixed value ofi. Letz;; denote the sorted values of; in
increasing order with correspondings and labels ag; andy;. If s < 7, ; thenh;(s) = s>, =
0, since) ", & = 0. Otherwise let be the largest integer such that, < s. Then we have,

hi(s) = Y _ agmin (s, z,) (2.12)
=1
= Z YT+ S Z Y (2.13)
1<i<r r<i<m
= Ai(r)+ sBy(r) (2.14)
Where we have defined,
Ai(r) = Z@lﬂm,i, (2.15)
1<i<r
Bi(r) = Y am (2.16)
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Equatiori 2.14 shows that is piecewise linear. Furthermokhg is continuous because:

hi(Z,41) = Ai(r) + T2 Bi(r)
= AZ(’I" + 1) + fr+1Bi(’r + 1)

Notice that the functionsgl; and B; are independent of the input data and depend only on the
support vectors and. Thus, if we precompute them, théf(s) can be computed by first finding
the position ofs in the sorted list; ; using binary search and linearly interpolating betwkgn,. )
andh;(z,,1). This requires storing the, as well as thé;(z;) or twice the storage of the standard
implementationThus the runtime complexity of computing h(x) is O(n logm) as opposed to
O(nm), a speed up ofO(m/logm). This can be significant if the number of support vectors is
large.

2.3 Approximate Additive Kernel SVMs

It is possible to compute approximate versions of the di@ssven faster. Traditional function
approximation quickly breaks down as the number of dimensiorease. However for the inter-
section kernel SVMs we have shown that the final classifierbsarepresented as a sum of one
dimensional functions. As long as the kernel is “additive®,, the overall kernek (x,y) can be
written as,

K(x,y) = ZKi(xi,yi) (2.17)

the resulting kernel SVM classifier is also additive, i/és) can be written as,

h(s) = hi(s;) +b (2.18)
=1
where,
hZ(Sl) = Z Oéllei(Si, xl,i) (219)
=1

andz;; denotes the'th dimension of thd’'th support vector.

This decomposition allows us to approximate the final cfessddy approximating each dimen-
sion independently. The simplest of these is a piecewisgnpatial approximation in which we
represent the function in each dimension as a piecewis@puolial function using sections, each
of degreek. This required x (k + 1) floating points per dimension. Classification requiresdabl
lookup followed by the evaluation of/fadegree polynomial, which requirégk + 1) floating point
operations using Euler's method. Two special cases arei¢isewise constant and piecewise lin-
ear approximations corresponding to degree 0 andk = 1 respectively. In our experiments we
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restrict ourselves to these cases, as one can approxinydignation arbitrary well. The final clas-
sifier corresponds to a lookup table of sizex (b + 1). The overall complexity of the classifier
then isO (2(k + 1)n) — essentially the same as that of a linear SVM classifier

In our MATLAB/C++ implementation the speed of the piecewisear approximations is
about5.5x slower than the linear classifier. The more expensive taimk&ups can be avoided
by rewriting the piecewise linear interpolation as a dogot of a dense vector of function values
and a sparse vector indicating the bin indices, for e.g./8&ledr [82]. These implementations are
essentially as fast as the linear classification methoaasly, when there are a large number of
classes and the encoding time can be amortized over the maindlasses.

Although these one dimensional functions can be precordputee for each classifier — this
could become a bottleneck if the number of classes are largéthe classifier needs to be up-
dated often for example during training. To approximates¢hene dimensional functions using
a piecewise linear approximation, one has to sample thestidms at a fixed set of points. The
complexity of evaluating these one dimensional functibsts;) = > " | oyy K (s;, x;,;) atb loca-
tions isO(bm). Whenb is large, i.eb >> log m, for the intersection kernel one can sample these
functions faster using the exact IKSVM evaluation presgimeSectior 2.2 irO((m + b) log m)
time, making it the approach of choice for certain applimadi

2.4 Additive Kernels in Computer Vision

We identify several naturally arising additive kernels omputer vision applications, though we
note that variants of these kernels also arise in naturgliage processing, such as text classifica-
tion, etc. There are two important classes of additive Keraged in the computer vision, which
we describe next.

2.4.1 Comparing Histograms

Often similarity between images is obtained by comparieg tthistribution over low level features
like edge orientations, pixel color values, codebook esiriextures, etc. These distributions are
typically represented as histograms and a similarity medsgke the histogram intersection or the
negativey? or [, distance is used. Both the histogram intersection ker&][land they? kernels
are known to be positive definite for histogram based featarel hence can be used with the
standard SVM machinery. See [9, 77] for a proof that the fistm intersection kernel and its
variants are positive definite and [4] for a proof for trekernel.

The histogram intersection kernel,,;,, and thex? kernel, K, -, for normalized histograms
are defined as follows:

- “ 2wz
Kmin 5 = i iy i 7K ; = - 2.20
(x,2) ;mln (21, 2) , K2 (x, 2) ; - (2.20)
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Figure[2.2 visualizes these additive kernels. We also tnatethe intersection kernel is condi-
tionally positive definite for all features and hence can $eduwith SVMs even when the features
are not histograms, i.e. they need not be positive or nomeadliFor proof see paper [65]. A special
case worth mentioning is the generalized histogram intéicsekernel [9] defined by :

K(x,z) = Zmin (|xi|ﬁ, |zl|ﬁ) (2.21)

This is known to be positive definite for &l > 0. Chappelle et al. [17] observe that this remapping
of the histogram bin values by — 2°, improves the performance of linear kernel SVMs to become
comparable to RBF kernels on an image classification tasktbeeCorel Stock Photo Collection.
Simply square-rooting the features with linear kernel,chis also called the Bhattacharyya ker-
nel, has also shown to provide significant improvements,nameed with “bag-of-words” style
features, for various image classification and detectiskstg110, 82]. This representation also
arises in text classification setting where the histograpsasent counts of words in a document.

2.4.2 Approximate Correspondences

Another class of additive kernels are based on the matcleitsgo$ features between images. Two
popular variants are thgyramid matchand thespatial pyramid matclkernels. We describe each
of them briefly.

Pyramid Match Kernel. Introduced by Grauman and Darell [46, 44], who proposed atway
measure similarity between sets of features using padra¢spondences between the elements in
the sets. The similarity measure reduces to a weightedgnatointersection of features computed
in a multi-resolution histogram pyramid, hence the nameis Bpproach builds on Indyk and
Thaper’s[54] approximation to matching costs usingmbeddings. An attractive feature of this
method is that the matching has linear time complexity infdaure dimension, and naturally
forms a Mercer kernel which enables it to be used with disicrative learning frameworks like
kernel SVMs. This kernel has been used in various visiorstak& content-based-image-retrieval,
pose estimation, unsupervised category discovery [45]ia@de classification. This kernel is
additive because the overall kernel is simply a weightetbgrem intersection.

Spatial Pyramid Match Kernel. Lazebnik, Schmid and Ponce [61] introduced a similarity
based on approximate global geometric correspondencealf fieatures of images. Instead of a
global histogram of features one creates histograms afifesbver increasingly fine sub-regions
of the image in a “spatial pyramid” representation. Like gygamid match kernel, the spatial
matching is now approximated by the weighted histogranrsetetion of the multi-resolution spa-
tial pyramid. This remarkably simple and computationafficeent extension of an orderless bag-
of-features has proved to be extremely useful, and has beamtandard baseline for various tasks
which require image to image similarity like object deteantiimage classification, pose estimation,
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Figure 2.2: Visualization of linear, intersection agtikernels for one dimensional features. One
can see that thg? kernel is a smoother version of the intersection kernel amdice differentiable
on the interior.

action recognition, etc. Many state of the art object detecind image classification results on
PASCAL Visual Object Challenge [28], ImageNet [55] and TRED [1L02] challenge are based

on variants of the kernel where the underlying features gbamevertheless this kernel is also
additive as the overall kernel is once again a weighted ¢iata intersection of the underlying

features.

2.5 Learning Additive Classifiers

Additive classifiers are based on functions of the form:

flx) = Z filx:) (2.22)

i.e., the overall functiorf is a sum of one dimensional functions. Additive functionseyeopular-
ized by Hastie and Tibshirani [49], for fitting statisticsdadta. Linear classifiers are the simplest
additive classifiers where eagh(z;) = w;x;. By allowing arbitraryf;, additive models can pro-
vide better fits to the training data than linear models. Qey ksight in Section 213, was to
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Figure 2.3: Visualization of the basis functions of lineiatersection,x? kernels and decision
stumps for one dimensional features.

observe that if the kernél is additive, then the learned SVM classifier is also additiMaus the
standard SVM training machinery provides an efficient wairam additive classifiers compared
to the traditionalbackfittingalgorithm [40]. Additive classifiers also arise in boostiwgen the
weak-learners are functions of one dimension, for exanu@eision stumps,z; > ¢). Hence the
standard AdaBoost algorithm [93], is yet another way ofirag additive classifiers.

We now show that the additive classifiers based on histognéensiection kernel are general,
i.e., can represent any additive function on the input fegtas a linear combination of intersection
kernel of the features as shown by the next theorem.

Theorem 2.5.1.Letx;, xa, . ..,X, be points inR? > 0 and f(x;) = fi(x;1) + fa(wi2) + ... +
fa(xiq), be an additive function, where ; denotes the value gfth dimension of the'th point.

Then there existsy, as, . . ., a,, such thatf (x;) = Zj a; Kin(x;,%;), Vi=1,2...,n.

Proof. We prove this by showing that there exists a weight veetpim the Reproducing Kernel
Hilbert Space of the intersection kernél,,;,,, such thawv-¢(x;) = f(x;). First we show that there

is a weight vectotuy, for eachfy, such thatvy - ¢(x; ;) = fi(z;x). This follows immediately from
the fact that the gram matrix*, consisting of entrieé}fj = min(z; , z; ) is full rank for unique
z; x, and the system of equations;z* = f*, has a solution (if the values are not unique, one can
remove the repeated entries). Since the overall functiaddgive, we can obtain the weight vector
w with the required property by stacking the weight vectarg, from each dimension. Thus by
representer theorem, there existsuch thatw - ¢(x;) = >, a; Kuin(%i,X;) = f(x;) O

Note that thea is shared across dimensions and this proof may be appliedyt@dditive
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Figure 2.4: Approximations of various one dimensional fiovts by linear, intersection;? kernels
and decision stumps as the basis functions.

kernel which satisfies the property that the kernel in eanfedsion is full rank, for example the
x? kernel.

Thus the SVM classifier represents the overall function @seat combination of kernel func-
tions in each dimension. The one dimensional functiing;, =; ;) for a fixed value of; ; can be
thought of as a basis function for each dimension of the ifiassFigure[2.8 shows these basis
functions for the intersection ang kernels. Figuré 214 shows several one dimensional funstion
approximated by a linear combination If basis functions centered @t, 0.2, ...1.0 and a con-
stant. The linear combination coefficients were found usimggar least-squares regression. The
decision stumps$z; > ¢), gives us a piecewise constant approximation while thegiam in-
tersection gives a piecewise linear approximation ghdkernel gives smoother polynomial like
approximation. Compared to linear case, kernels like thersection,y? kernel and decision
stumps are able to approximate these functions much better.
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2.6 Previous Work

There are several approaches for speeding up classifiaziog kernel SVM classifiers, which
we discuss briefly next.

Approximate Kernel SVMs For the histogram intersection kernel, Herbster [51] firsiposed
the fast evaluation algorithm we presented in Sedtioh 22our earlier work![66] we indepen-
dently proposed the same method for exact classificationgaath the approximate method
described in Section 2.3, which is more general and apptiemtitrary additive kernels. Re-
cently, Rahimi and Recht [33], propose embeddings thateqamiate shift-invariant kernels, i.e.,
K(x,y) = f(Jx — y|), using a feature mag, such thatk (x,y) ~ ®(x) - ®(y). Based on this
analysis and our own work [66, 65], Vedaldi and Zissermar®]topose embeddings which ap-
proximate a class of additive kernels that are “homogerieduss allows one to use the explicit
form of the classifierf(x) = w - ®(x), instead of the kernelized version, which can be more
efficient in some settings. We discuss some of these methdtle next chapter.

However during classification for additive kernels, thecpigise linear approximation we pro-
posed can be much faster. To see this observe that the psecénear approximation can be
written as a dot product of a weight vector correspondindpéovialues of the function sampled at
uniformly spaced points, with a sparse vector correspantbrthe projection of the data on to a
uniformly spaced linear B-Spline basis centered at theg&p(also see [65]). In this represen-
tation, evaluating the classifier requires only two muitiglions and one addition per dimension,
which can be much smaller compared to the approximate enggidf [110].

Another line of approach applicable to Gaussian kernelsasatork of Yang et al. [118] who
use the fast Gauss transform to build efficient classifiereweher this is applicable when the
feature dimension is very small, typically less than ten.

Reduced Set Methods. For general kernels, a class of methods, known as “redudedeté-
ods”, approximate the classifier by constructing repregamnts using a small subset of data points,
typically much smaller than the number of support vectordsesSE set of points can be the set of
input points themselves as in the work of [15, 79], where tlstmepresentative support vectors
are kept as a post processing step. Instead of having a sipgieximation, one can have a series
of approximations with more and more points to obtain a cdscd classifiers, an idea which has
been used in [89] to build fast face detectors. Another a&ssethods build classifiers by having
a regularizer in the optimization function which encouagparseness, (elg-normon the alphas)
or pick support vectors in a greedy manner till a stoppintgda is metl[57]. These methods may
be able to reduce the number of support vectors by a order ghituae, but are still significantly
slower than a linear SVM. Often this come at the expense @gbiflaation accuracy. Thus, these
approaches are not competitive when the kernel is additimgared to our approach.
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Coarse to Fine methods. The coarse to fine approach for speeding up the classificiatioop-
ular in many realtime vision applications. Simpler featuaed classifiers are used to reject easy
examples quickly in a cascade. This idea has been applieat®[60, 10] and pedestrian de-
tection [116] to achieve an order of magnitude speedup irotlezall detection time. Methods
like branch and bound [58], context [52], bottom-up regif8#, Hough transformation [69, 52],
etc., improve efficiency by reducing the number of classiéaluations. This paper improves
the efficiency of the underlying discriminative classifigipwing more powerful classifiers to be
evaluated exponentially faster — in practice up to sevéi@isand times faster than naive imple-
mentations and entirely complementary to the techniquegioreed for reducing the number of
classifier evaluations.

2.7 Experimental Results

Since its introduction, our ideas for efficiently computingighted combination for additive ker-
nels has been applied to many applications like image-6ilzetson on Caltechi01 [31], PASCAL
Visual Object Challenge [28], handwritten digits [68], gm retrieval (TRECVID [102]), near-
duplicate image detection [99], pedestrian detection éaarks combining static image features
and optical flow[[114], efficient classifiers for training gar scale date [6%, 110, 115], etc. We
summarize some of these applications in Sectioh 2.8.

We present experiments on several image classificationetedttbn datasets and compare the
performance of linear, intersection as well as a non-litkeanel, such as radial basis, or polyno-
mial kernel. We also report the speedup obtained by the wisedinear approximation compared
to the naive method of evaluating the classifier. Table 2ritains a summary of our results. The
piecewise linear approximations are as accurate as theadditive classifier classifier with about
100 pieces on all dataset€On various datasets the intersection kernel SVM is significatly
better than the linear SVM and often comparable to rbf-kernel SVM, while offering up to
three orders of magnitude speedup The details of each dataset and the features are presented
below.

2.7.1 Toy Example : Learning a circle

We illustrate the additive kernel approximation using a ésxample. The data is generated by
sampling points from a two dimensional Gaussian and all tpanithin a certain radius of the
center belong to one class and the points outside belongetottter class as seen in Figlrel2.5
(top-left).

A linear classifier works poorly in this case as no two dimenal line can separate the points
well. However, the intersection kernel SVM is able to achian accuracy df9.10% on this data.
This is because it is able to approximate the circle whicmisidditive function £ + y* < r),
using two one-dimensional curve&, andy?. Figure[2.b shows the learned classifier represented
with varying number of bins using a piecewise linear appr@tion as well as the classification



CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS

16

Dataset| Linear SVM IKSVM Kernel SVM Kernel Type
Toy Dataset (Raw features)
Accuracy 51.9% 99.10% 99.50% rbf,v=0.5
22 %
MNIST Digits (OV-SPHOG)
Error Rate 1.44% 0.77% 0.56% poly,d =15
1200 x
USPS Digits (Raw Pixels
Error Rate 11.3% 8.7% 4.0% poly,d =3
24 x
USPS Digits (OV-SPHOG
Error Rate 3.4% 3.4% 3.2% poly,d=5
26 x
INRIA Pedestrian (SPHOG
Recall a2 FPPI 43.12% 86.59% -
2594 x
DC Pedestrians (SPHOG)
Accuracy| 72.19 +4.40% 89.03 +1.39% 88.13 +1.43% rbf,v =175
2253 %
Caltech 101 (SPHOG
Accuracy (5 examples)| 38.79 +0.94% 50.10 +0.65% 44.27 + 1.45% rbf,~v = 250
37X
Accuracy B0 examples) 44.33 +1.33% 56.59 +0.77% 50.13 £ 1.19% rbf,~v = 250
62 %
UIUC Cars (SPHOG
Precision at EER 89.8% 98.5% 93.0% rbf,yv=2.0
65X

Table 2.1: Summary of our results. We show the performanicg aslinear, intersection and non-
linear kernel as well as the speedup obtained by a piecemwese lapproximation of the intersection
kernel classifier on each dataset. ¢ kernel is defined a& (x,y) = exp (—y(x — y)?) and

thepoly kernel of degreé, is defined as( (x,y) = (1+v(x-y))?. Allthe kernel hyper-parameters
were set using cross-validation.
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accuracy as a function of the number of approximation binke @&ccuracy saturates wil
bins. On more realistic datasets the number of bins reqdimed good approximation depends
on of smoothness of the underlying function, but empincall0 bins were sufficient for a good
approximation in all our experiments.

2.7.2 MNIST and USPS Digits

The MNIST datasBtwas introduced by Yann LeCun and Corinna Cortes and con€giri¥)0
examples of digit$) — 9 for training and10, 000 examples for testing. As before we construct
features based on histograms over oriented responses tamrpuconvolving the image with a
Gaussian derivative filter withh = 2 and bin the response iR orientations. The images in
this dataset aré8 x 28 pixels and we collect histograms over blocks of si2és< 28, 14 x 14

, 7 x 7 and4 x 4 pixels. We also found that adding overlapping blocks whigkrtap by half
the block size improves performance at the expense of isicrgéhe feature vector dimension by
a factor of about four. This is similar in spirit of the ovepfang blocks in the HOG descriptor
in the pedestrian detector of [21]. These features with &MM classifier achieves an error rate
of 0.79%, compared to an error rate ®f44% using linear and).56% using polynomial kernel.
Similar features and IKSVM achieves an error rate3af% on the much harder USPS dataset.
We refer the readers to [68], for a complete set of experim@tthe task of handwritten digit
classification. Figuré 2.6 shows the errors made by our dégibgnition system on the MNIST
dataset.

A key advantage is that the resulting IKSVM classifier is viast. The estimated number of
multiply-add operations required by the linear SVM is ab&W while the intersection kernel
requires about25K operations including the time to compute the features.s Thisignificantly
less than about4 million operations required by a polynomial kernel SVM reed in the work
of [23]. The reduced set methods [16](% error) requires approximatepOK operations, while
the neural network methods like LeNetsq% error) requires 350K and the boosted LeN&t4 o
error) requirest50K operations. For a small cost for computing features we hle @ achieve
competitive performance while at the same time are fasteothattraining and test time.

2.7.3 INRIA Pedestrians

The INRIA pedestrian dataset [21] was introduced as amelterto the existing pedestrian datasets
(eg. MIT Pedestrian Dataset) and is significantly hardeabse of wide variety of articulated
poses, variable appearance/clothing, illumination ckarapd complex backgrounds. Linear ker-
nel SVMs with Histograms of Oriented Gradients (HOG) feasLeichieve high accuracy and speed
on this dataset [21]. We use the multi-scale HOG featureseduntced in[66] and train a intersec-
tion kernel SVM on these features. The single scale HOG uséldei original paper [21] when
used with IKSVM provides small improvements over the linkamel, similar to those observed

Thttp://yann.lecun.com/exdb/mnist/
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Classification Method Detection Rate ¢ FPPI) | Speedup
Linear SVM 43.12 % -
IKSVM (binary search) 86.59 % 473 %
IKSVM (piecewise linear) 86.59 % 2594 x
IKSVM (piecewise constant 86.59 % 3098
Dalal & Triggs [21] 79.63 % -
Dalal & Triggs [21]* 82.51 % -

Table 2.2: Detection rate & FPPI on INRIA person dataset. The last runof [21] is obtained
by running the detector using a finer “scaleratio”ldf5 between successive layers of the image
pyramid, instead of the defaut1.

by using the rbf-kernel. We also found that the HOG wittnormalization of the gradient based
features works better with the intersection kernel. Thetrsghle HOG however outperfornis
normalized HOG. Results are shown in Tdblg 2.2 ugibigbin approximation. Figure 2.7 shows
sample detections on this dataset.

2.7.4 Daimler Chrysler Pedestrians

We use the Daimler Chrysler pedestrian benchmark dataseted by Munder and Gavrila [74].
The dataset is split into five disjoint sets, three for tnagnand two for testing. Each training set
has5000 positive and negative examples each, while each test setdhagositive and negative
examples each. We report results by training on two out @ethiraining sets at a time and testing
on each of the test sets to obtain six train-test splits. DuaMall size of the images{ x 36),
we only compute the multi-level features with only threedle\L = 3) of pyramid with cell sizes
18 x 18,6 x 6 and3 x 3 at levelsl, 2 and3 respectively. The block normalization is done with a
cell size ofw,, x h, = 18 x 18. The features at levélare weighted by a facta; = 1/4*7 to
obtain a656 dimensional vector, which is used to train an IKSVM classifie

The classification results using the exact methods and gippations are shown in Table 2.3.
Our results are comparable to the best results for this@gkThe IKSVM classifier is comparable
in accuracy to the rbf-kernel SVM, and significantly betteart the linear SVM. The speedups
obtained for this task are significant due to large numbeuppsrt vectors in each classifier. The
piecewise linear witl30 bins is abouR000x faster and require®00x less memory, with no loss
in classification accuracy. The piecewise constant appraton on the other hand requires about
100 bins for similar accuracies and is even faster.

Our unoptimized MATLAB implementation for computing thetares takes about abdutn s
per image and the time for classificatidn02ms) is negligible compared to this. Compared to
the 250ms required by the cascaded SVM based classifiers of [74], quelipe is15x faster.
Figure[2.8 shows some of the errors made by our classifier.
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Figure 2.7: Sample pedestrian detections on the INRIA pedstaset using spHOG + IKSVM
classifier.

| Classification Method | Accuracy(%) | Speedup)|
Linear SVM 72.19 +4.40 -
IKSVM (binary search) 89.06 £ 1.42 485 x

IKSVM (piecewise linear) 89.03 £1.39 2253 %
IKSVM (piecewise constant) 88.83 £+ 1.39 3100x
RBF-SVM 88.85 £1.13 -

Table 2.3: Accuracy on Daimler Crysler Pedestrians datase@arious methods.

ECharRanARgsHTIYRENE
TUTAER eFLIT T

Figure 2.8: (Top Row) False negatives and (Bottom Row) fpltsstives of the classifier on the
Daimler-Chrysler pedestrian dataset.
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15 examples]15.2 + 15 SVs || 30 examples]85.0 £+ 26 SVs
Classification Method Accuracy (%) Speedup || Accuracy(%) Speedup
Linear SVM 38.79 £0.94 - 44.33 +1.33 -
IKSVM (binary search) 50.15 £ 0.61 11x 56.49 + 0.78 17x
IKSVM (piecewise linear) 50.10 + 0.65 37x 56.59 4+ 0.77 62x
IKSVM (piecewise constant) 49.83 + 0.62 45X 56.11 +0.94 76 %

Table 2.4: Classification accuracy of various methods oneClafl01 dataset usind5 and 30
training examples per category. The piecewise linear fiassare up t@60x faster without loss
in accuracy over the exact method.

2.7.5 Caltechl01

Our next set of experiments are on Caltech-101 [31]. The a&ire i$ to show that existing methods
can be made significantly faster, even when the number ofastippctors in each classifier is
small. We use the framework of [61] and use our own implententaof their "weak features”
and achieve an accuracy ©.49% (compared to theib4%), with 30 training and test examples
per class and one-vs-all classifiers based on IKSVM. Theopednce of a linear SVM using the
same features is about.33%, while that of a rbf kernel i$0.13%. The IKSVM classifiers on
average haveésh support vectors and a piecewise linear approximation @ithins is62 x faster
and the piecewise constant approximatiofitis faster than a standard implementation, with no
loss in accuracy (see Talhlle2.4).

It is interesting to note the performance of one-vs-onesdiass as they are faster to train. With
15 training ands0 test examples per category, one-vs-one classifiers giveamacy of47.43 +
0.37 for intersection, compared t0.58 + 0.78 for linear kernel, with5-fold cross validation.
Increasing with number of training examples3ty improves the performance §3.80 + 2.43 for
intersection kernel compared46.66 + 2.63 for linear kernel.

2.7.6 UIUC Cars

This dataset was collected at UIUC [1] and contains imagesdaf views of cars. The training

set consists 0550 car and500 non-car images. We test our methods on the single scale image
test set which containkr0 images with200 cars. The images are of different sizes themselves
but contain cars of approximately the same scale as in thertgaimages. Results are shown in
Table[4.7. Once again the IKSVM classifier outperforms bbthlinear and the rbf kernel SVM
and is comparable to the state of the art. Figure 2.9 shows sbthe detections and mis-detections
on this dataset.
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| Classification Method | Performance(%) | Speedup|
Linear SVM 89.8 -
IKSVM (binary search) 98.5 23 %
IKSVM (piecewise linear) 98.5 65 x
IKSVM (piecewise constant 98.5 83 x
RBF-SVM 93.0 -
Agarwal & Roth [1] 79.0 -
Garget al. [41] 88.0 -
Freguset al.[35] 88.5 -
ISM [62] 97.5 -
Mutch & Lowe [76] 99.6 -
Lampertet al. [58] 98.5 -

Table 2.5: Performance at Equal Error Rate on UIUC cars dhatas

Figure 2.9: Example detections (green) and mis-detec{rea3 on UIUC cars dataset.
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2.8 Conclusion

In this paper we showed that a class of non linear kernelectallditive kernels lead to SVM
classifiers which can be approximately evaluated very efiity. Additive kernels are strictly
more general than linear kernels and often lead to signifitaprovements and our technique
brings down the memory and time complexity of classificatismg additive kernels to only a
small constant multiple of that of a linear SVM. Additive kefs are widely used in computer
vision and our technique has found wide spread applicatromany classification/detection tasks.
In addition our technique has lead to efficient training albons for additive classifiers which
we discuss in the next chapter, and has sped up many appfisativolving histogram based com-
parison, like multiple kernel learning based detectord[hhd kernel methods likemeans|[117],

PCA/LDA/regression, etc.
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Chapter 3

Training of Additive Classifiers

Too much training data can make learning a bottleneck. Quitllenly this is becoming a
real danger for computer vision research. Efficient matkegs for small increments of human
labeling effort such as Mechanical Turk |2, 103] are makimggible huge collections of im-
ages labeled and verified by real people at a rate of multipégges per penny as exemplified by
I mage- net . or g/[55] a repository of millions of image examples of the wordi32] hierarchy.
This complements a range of dataset collection efforts §emi-automatic [6, 63, 95, 19,/85] with
10, 000-600, 000+ images to fully manual but unpaid [91] witi), 000+ labeled objects to more
traditional datasets [30, 47]. All of which means that thands to millions of training examples
may become the norm for object recognition.

In a sense this is already the case for training object datedt is inexpensive to collect many
positive images of, say, pedestrians and images of nonspetes. Training for a high quality
detector typically proceeds in rounds of training a deteattd then evaluating the detector on
datasets to identify additional false positives to use iburfe training rounds. When detectors are
run using a sliding window at multiple scales in a large imtmgge can easily b&)0, 000 or more
potential negative training examples per image.

This large amount of data dictates the algorithms that a@d.uspproximate nearest neighbor
techniques in (relatively) high dimensional feature sgabat require no training but may learn
parameters for hashing [108,54) 97, 56] have been applimdage classification. Even these are
too slow for detection where boosted decision trees andiickassifiers are the default [21, 112].
Contrast this with the most accurate systems for objectgmition in settings where efficiency is
less critical, usually obtained using kernelized suppecter machines (SVMs) that must compare
a test image (or region) to each support vector [8} 109, 612d6

In the earlier chapter, we pointed out that many of these Sukle based on additive kernels
and had a classification function with an additive form thaild be efficiently approximated and
evaluated nearly as fast as a linear classifier. We did noetexmaddress the problem of efficiently
training classifiers, relying on standard training for ledized SVM classifiers and then fitting their
fast additive classifier to match the SVM classifier.

Our main contribution is to show that classifiers based orti@ddnodels can be trained di-
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rectly in a max margin framework extremely efficiently, arathi@ve approximately the same ac-
curacy as first training an SVM and then fitting an additivessifiers to the resulting decision
function as was done in_[66] while taking as little 8% of the training time. We achieve this
remarkable speedup by a special encoding of the learnirggmathat allows us to take advantage
of (our own modification of) recent techniques for trainingghr classifiers [98, 29].

The result is something of a “free lunch” (or at least veryxensive) for computer vision
researchers because the combination of our fast trainctinigues with fast evaluation make
training and testing an additive classifier only a small &ant factor) slower than training a linear
classifier. At the same time the additive classifiers prodercer rates that are almost always
significantly lower than those for a linear classifier on caomep vision data.

In addition our optimization method is derived from PEGAS[Q8] and uses stochastic sub-
gradient descent which allows us to present an “on-line$ieer of our approach streaming data
from out of core and a very efficient interactive training eggeh for classifiers used in detection.

We report experimental results quantifying training tinmel @ccuracy on on image classifica-
tion tasks and pedestrian detection, including detectsalts better than the best previous on the
INRIA dataset.

3.1 Background

In this paper we train parametric additive classifiers diyebut some of our choices for repre-
sentation and embedding are motivated by considering SMNfsWwith linear and non-linear but
additive kernels.

The history of the features and kernels used for pedestetaction and image classification
is quite complex we round up the most closely related work.b&adings that allow sub-linear
search for similar distributions of features with respectite Earth Mover’s distance were intro-
duced by Thaper & Indyk [54] and later combined with the isé&tion kernel (aka min-kernel) by
Grauman et al. [46] to train accurate image classifiers. luaikeet al. [61] refined the embedding
by using multiple levels for spatial bins, but not for othémdnsions of features. One level of
Lazebnik’s simple features are very similar to the Histogia Oriented Gradient (HOG) feature
from Dalal and Triggs.[21] which was carefully developed torkwwell with a linear kernel for
pedestrian detection and has also been used as the basisro€tared prediction approach to
pedestrian detection [33]. The mutli-scale features useb@ji et al. [66] fall between those of
[61] and [21].

Earlier Viola & Jones|[112] developed their very successibsting algorithm for training
a cascade for face detection. Boosting may seem unrelatéu thernel discussion above, but
recent work demonstrates random approximations to bapsiimg linear SVM training as an
intermediate procedure [84]. Furthermore if the weak leegiare additive so is a boosted function.
Using a random selection of weak learners and our approaghvenan effective alternative to [84].

Additive models are well known in the machine learning comityu[49, 126], and efficient
evaluation for non-parametric kernelized SVMs with adeitkernels is addressed exactlylin/[51,
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66] and approximately in [66] which motivates much of ourlges of the encodings we use to
transform our problem to a form suitable for efficient optiation.

The data encoding strategy used in Sparse Network of Winf8Ma@W) [119], can be seenas a
special case of our own and we include experiments thatyvad¥vantages of the SNoW encoding
strategy over linear in some cases, while showing analigtiead empirically that our approach
provides significantly better performance.

Our own optimization procedure generalizes that of the waressive PEGASOS [98] and
in comparison experiments we use LIBLINEAR based on [29}hBepresent amazing progress
in training efficiency. While the stochastic nature of PE@¥may be reminiscent of neural
network approaches, differences are the max margin fotroanlaand one key to its efficiency,
the renormalization at each step based on the regulatizpicameter. This is what moves its
convergence frong% of other stochastic gradient descent method§to

3.2 Overview

We are interested in learning classifiers based on additvdets. The decision functions are
sign(f(z)) where

Fe) = filas) CRY

We call f; thei*" “coordinate function”, it operates on th& coordinate ofx. Although addi-
tive models are often non-parametric, here we are spedyficaerested in parametric coordinate
functions that can be learned efficiently. For labeled trgjrdata{ (x*, 4*)},—,. . with the labels
y* € {—1,+1} and the data* € R? learning involves finding th¢ that minimizes a cost function
measuring both the training error or ladsand a regularization penalfy

£ = argmingR(f) + = 3" 6, f(x)) (3.2)
k

In the rest of the paper we will use the hinge 1688, f(x*)) = max(0, 1—y* f(x*)) motivated
by the generalization advantages of large margins, anddjyntkrpretation off as the decision
function of an SVM with additive kernel.

We explore representations that transform Equdtioh 3®antefficiently solvable optimiza-
tion. If w is a vector of parameters specifying the parametric funcftivthen we want to encode
w asw and a data poink asx so thatf“(x) ~ W'k where we emphasize that this may be
approximate. After encoding we can write the optimizatioguation 3.2 as

*

1
Y = argmin g R(W) + - Z max(0, 1 — y*(W'%")) (3.3)
k
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If each coordinate functiol;(z;) = w;x; and R(w) = w'w thenw = w andx = x and this
is simply a linear support vector machine (without bias).r&generally we can use this formu-
lation if the f; are a linear combination of a finite number of basis functidnsour experiments
f; are piecewise linear with uniformly spaced breaks. Thidahs motivated by simplicity and
the analysis in the earlier chapter, showing that decisioctfons with that form could effectively
approximate the decision function of SVMs using the min kéwhile being very efficient to eval-
uate, but we emphasize that other spline functions can lskaasgly. The choice of representations
can be thought of as a change of basis or regularization. ¥¢isk this in Sectidn 3.6.

Depending on the form of the regularization functiBnve can use different approaches for
optimization. For instance wheR(w) = A\W'w we can use an “off the shelf” SVM package on
the encoded datg(%*, *)}. On the other hand, for the “full” version of our approach -tiveted
by regularization for kernelized SVMs — we present a mod¥eion of the the PEGASOS [98]
stochastic sub-gradient descent (with careful normatimatiinear SVM solver that can handle
R(w) = w'Hw for positive definiteH. Only the case oH = I, the identity, is addressed by [98].

Sectiorf 3.B goes into options for piecewise linear encodfimtgtail, including analysis of rep-
resentation error and the implications for choices of ragemhtion R. Then Sectiof 314 presents
our modified version of PEGASOS. In Sectlon]|3.6, we connectearning algorithm to the addi-
tive model learning literature. In particular we adapgemalized splindormulation due to Eilers
and Marx [26], to train additive classifiers efficiently. Weosv interesting connections between
B-Spline basis and histogram intersection kernel and sthafor a particular choice of regu-
larization and degree of the B-Splines, our proposed lagraigorithm closely approximates the
histogram intersection kernel SVM.

3.3 Encoding

We will consider the encoding process described in Settidra8 an approximation to the em-
bedding implied by a specific additive kernel, tlhén or histogram intersection kerndt,,,.;,,, also
known as the intersection kernel or min kernel:

Koin(x,2) = Z min (z(7), 2(7)) (3.4)

The Reproducing Kernel Hilbert Space (RKHS) of thin kernel is universal with respect to
additive functions, i.e. any additive function on the inprdtures can be expressed as dot product
of a weight vector and the features in the RKHS. This is aralsgo the fact that weighted
sum of (possibly infinite) decision stumps can universalgress any one dimensional function.
This coupled with the fact thewin kernel is conditionally positive definite (CPD) for real wat
x allows one to usenin kernels to learn general additive models on real valuedifeat CPD
kernels are a set of kernels which satisfy a weaker set ofittons than positive definite kernels,
but can be easily modified to yield a PD kernel. For thi@ kernel this corresponds to adding a
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large positive constant. Other additive kernels like the¢’ induce RKHS which can also express
arbitrary functions, but we often find that these differenicethe set of basis functions tend to not
matter on large training datasets, which is our focus.

First we show explicitly that any SVM,(x) with support vector{v*} and additive kernel
K(x,y)=>_, Ki(z;,y;) is additive:

hx) = Za] K(x,v7) (3.5)
— Z%ZK zi,v)) (3.6)
- Zza, (i, 0)) + b (3.7)
- Z fl ;) (3.8)

where f;(z;) = Zj ajKi(xi,vf). For the histogram intersection kerngl} is simply min. It is
sufficient to consider encoding for each dimension seplgréas theh is additive) so consider
encoding two coordinate valuesandy both in [0, 1] for simplicity. In this case the goal of an
encoding for the two is thahin(z, y) = 2y

One straight forward encoding is to choose a fixed discrtizacale and represent the fea-
tures in the “unary”. LetV denote the number discrete levels dngh),n € Z denote the unary
representation of the numberi.e. U(3) = 1,1,1,0,0,0, U(6) = 1,1,1,1,1,1, etc, andR(.)
denote the rounding function, then we define our first featmeding:

1
o1(x) = NU(R (Nx)) (3.9
Intuitively this encoding discretizes the feature into &€ixset of levels and represents each feature

using the unary representation. The kernel can then be ddfine

min(z,y) ~ < é1(x),d1(y) >

= < \/%U (R(Nz)), \/%U (R(Ny)) >

1
= 5 <U(R(N2),U(R(Ny)) >
An alternate representation is to use an encoding whickadsbf rounding to the nearest bin,
keeps more detailed information about the values. We defiealternate representatiéi(r)
for any real number >= 0 as the unary representation, but replacing the first zerbarubary

representation o (| |) by a(r) = r — [r]. As an examplé/'(3.5) = 1,1,1,0.5,0,0

Po(z) = \/%U’ (Nx) (3.10)
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The dot product then becomes:

min(z,y) ~ < @2(x), ga(y) >

1
= 5 < U'(Nz), U (Ny) >

We consider the approximation quality for both these lirearodings in the next section.

3.3.1 Approximation Quality
We will present the worst case and average approximatiamsefor both these embeddings. In
both cases : )
Eg™(x,y) = [min(z, y)— < 6(2),¢(y) > [ < & (3.11)
However we can be more precise about these errors for eable &ktnels. Thenin operation is
symmetric so we need only consider the case whehy andmin(z,y) = x.
¢1 : Sincex < y we haveR(Nz) < R(Ny). So< U(R(Nz)),U(R(Ny)) >= R(N(z)).
Therefore the max approximation error
max ]'
By (z,y) = max |r — R(Nx)/N| = N (3.12)
¢y : Sincex < y, there can only be two cases:

1. |[Nz| < [Ny] : In which case the embedding is exact because:
< ¢2(x)7¢2(y) > = < U,(Nl'),U/(Ny) >
= (LVe] + a(No))

— L(|N#) + Na— [Nz))

N
= x
= min(z,y)
2. |[Nz| = [Ny| = Nm: Denotea(Nz) by a anda(Ny) by b. Then we havenin(z,y) =
r=m+ %, and

< ¢2($),¢2(y) > = < U,(Nl'),U/(Ny) >

1
= N(LNxJ + ab)

1
= N(Nm + ab)

1
= m—l—ﬁab

1
= min(z,y) + N(ab —a)
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b, N=10 b, N=10

Figure 3.1: From left to rightnin(x, y), ¢1(z)¢1(y) andgs(x)p2(y) with N = 10. Note that the
¢o encoding is very close tmin.

First notice that in this the dot product is always an underede ofmin value asib—a < 0
with a, b € [0, 1]. Also the max approximation error is :

1

max 1
E¢2 (zay) = max —|ab — a| — m

a<b,a,be(0,1] N

If we assume that, y are distributed uniformly ino0, 1] x [0, 1], then we can also compute
the expected erroE‘“’g = 1, While E59 = 12N2 This shows that the encoding error decreases
with the number of b|ns and thg, encodlng Is twice as accurate as theencoding in terms of
max error, and significantly better if we care about the ayeexror under a uniform distribution.

Figure shows the kernel function farin, ¢; and¢, for N = 10.

3.3.2 Sparse Version of Encoding and Regularization

We saw that thenin kernel can be approximated to withimisingO(1/¢) bins for¢; andO(1/+/€)
bins for ¢,. Hypothetically we could train a linear SVM on those encagginvhich would be an
approximation the the SVM on the original data using an sgetion kernel. However these rep-
resentations are dense, and training a linear SVM on sudedepresentations become infeasible
as the number of dimensions become large. Instead we preEms®se representation for each of

the embeddings given by:
1

P5(x) = N
(avector of all zeros exce%(l —a) at positioni and\/—lﬁa at positioni+ 1) wherea = o(Nz) as
defined earlier, and= [ Nz| and features are representedibyiex : value pairs. The transform
for ¢f is the same except both- ¢ anda are rounded t0 or 1, resulting in an encoding similar to
that of SNoW [119] where they train a linear SVM on these spéeatures. The SNoW encoding
however does not preserve the underlyingh based similarity measure. We now propose an
encoding forw (as in Equation 3]3) that is compatible with ushﬁgQ} to encodex.

If w € RY is a weight vector (for instance found by fitting an SVM) on eded datap,(z) €
RY andw® € RV*! a weight vector on the same data encodedsas) € RV 1. We wantw such

(t:1—a,i+1:a) (3.13)
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thatw - ¢o(x) = w* - ¢5(x). The required relationship is
w(i+1) = w’(i) + w(i),andw?®(1) = 0 (3.14)

An important point is how to compute the regularization pgnan w*. Again if we were
hypothetically training a linear SVM on the dengg encodings of the data the regularization
penalty would bev'w.

The corresponding regularization penalty ot is then:

N N
ww =Y w(i)? = (w(i+1)—w(i)’ (3.15)
=1 =1
This can expressed & Hw*® whereH is tridiagonal, with the form:
1 -1 0
—1 2 -1
H— —1 2 -1
—1 2 -1
0 -1 1

So far our discussion has dealt with only a single coordinalleencodings are done on a coor-
dinate by coordinate basis and appended. For instance ifa& u= 20 divisions per coordinate
and have 100 dimensional features R'® thengs(z) € R?° but has at most x 100 non-zero
entries. SimilarlyH is 2000 x 2000 and all zeros except fdi00 blocks as described above along
the diagonal. In what follows we only use the sparse encadisggp; will mean ¢5 and g, will
meangs;.

3.4 Optimization

Once encoding the data is done and we have chosen a regtitarigzanalty of the formR(w) =
w'Hw as described above we need to find parametérghat minimize the cost function

c(w) = %WHW + % > max(0,1 - yF(W'%h)) (3.16)

k=1..n
where) is the regularization vs loss tradeoff. WhHris the identity this is simply optimization
to fit a linear SVM. In that case a standard linear SVM solverlmaused although ideally one that
can efficiently utilize a sparse representationf@uch as|[29, 98].
For our regularization motivated by the min kernHl,is the tri-diagonal matrix described in
Section(3.32. And we use our modified version of the PEGASIQ6&rithm for fitting linear
SVMs [98]. The original analysis of PEGASOS depends on twieets of the objective function
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¢ — first thatc be strongly convex which is true in our case as londlais positive definitd, and
second that the optimus* has normi*'w* < 1, in our casev* Hw* < 1.

Next we show our modification of PEGASOS in its entirety in &dghm 1. Note that ifH is
replaced with the identity matrix then this is exactly theGASOS algorithm. When we use the
tri-diagonalH and either encodingj, or ¢, for & as described in Selc. 3.8.2 we call the algorithm

“piecewise linear sub-gradient descent” (PWLSGD).

Algorithm 1 Our modification of PEGASOS (PWLSGD)
Require: S, T,\ > 0andk > 0
initialize w, randomly, such tha&{Hw, < {
fort =1toT do
ChooseA; C S, where|A;| =
SetAf = {(X,y) € 4; : y (W, f{) <1}

Setnt = )%t
Setw, 1 = W, — 1, ()\WtH +7 Z yeA; yx)
Setw,, = min (1, #) Wi
W +%/ W +2 2
end for

HereS = {(x*, 4*)},—1. .. is all of the training datad; is a random subset @f chosen for
thet'” iteration, andA;" is the subset of these which violate the margin constraiinlgusstimate
of weight vectorw; in stept. From [98] the errofc(Ww;) — c¢(W*)| < € afterO( 5) Steps with
probability1 — 6 whenk = 1 and aﬂer@(g) steps wherk = n. Intermediate values of fall
between these bounds. In practice the convergence deperlde noumber of margin violations —
basically the difficulty of the classification problem.

We mention briefly some differences in computational coxiplerom the original PEGA-
SOS. Our variation requires computikjw, andwHw, for each update. For tridiagonH this
costs roughly times the computation fdd = I, hence the small multiple in computation time. It
is possible that more efficient implementations than ouresurone, using loop unrolling and other
techniques, might be able to hide some of this added contpléxiaddition for the particular en-
codings¢; and ¢, the encoding pattern in our datais known and fixed (exactly one or exactly
two coefficients can be non-zero in each coordinate blockyesaan avoid using linked lists for
representing the data.

On-line and Interactive Learning: One significant benefit of basing optimization on a stochas-
tic sub-gradient descent method such as PEGASOS is thatrwaettorm learning in stages. For

LQOur tri-diagonalH is not positive definite. Adding a small constant (e.g. 0101he first diagonal entry in each
coordinate block the diagonal makes it positive definitehaiitt effecting the accuracy on experiments. Except for
smallk <= 3 using the original semidefinid has no effect on the convergence rate.
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instance in the process of training a detector it is evatlate many images, false positives (or
missed detection) are added to a new training set. Afteuatialg several hundred or thousand of
these a new classifier is trained [[21]. We can actually uptteeclassifier by running additional
steps of stochastic gradient descent using the new dataslaomimage. As long as the distribution
of images is randomized the convergence estimates areiwaitgrs This approach also avoids the
memory bottle-neck reported hy [21].

The above assumes a priori labeled data, but this does ndttoeee the case. A human
could mark false positives and missed detections in eaatessive image in an interactive setting.
Running a few iterations of training per image can be donefakan humans can label.

3.5 Experimental Results

We present training time and testing accuracy numbers fir eethe proposed methods. We have
a choice of encoding: identity;;, and¢,, and a choice of learning algorithm: lineaw’w reg-
ularization) using an off the shelf SVM solver, or a piecewlisear classifiery’Hw regulariza-
tion) using our PWLSGD algorithm on the encoded features.py@sent results on Caltedid,
Daimler-Crysler dataset and INRIA pedestrian dataset dodvghat all encodings outperform
linear classifiers on the non-encoded features by signtfisarount, and that the encoding and
training can be done in a small time compared to training aedesVM.

3.5.1 Caltechi01

Our first set of experiments are on the Caltédh-dataset [30]. We use this dataset to show that
the accuracy using spatial pyramid match kernel introdunei$l] can be matched using our
embeddings. For each category we select eithesr 30 random examples for training and test
it random set of at mosi0 training examples as some categories have fewer fihaemaining

for test. We report numbers by averaging the class accuoady)t categories using-fold cross
validation. All the parameters for the models are obtair@dgiby optimizing the performance on
a fixed set ofl5 training andl5 test examples per category and we use the same parameters for
both15 and30 training images. We use our own implementation of the “weakures” introduced

in [61] and achieve an accuracyf.15% and56.49% , with 15 and30 training examples per class
and one-vs-all SVM classifiers based on the spatial pyranaittimkernel. This kernel reduces to
amin (or intersection) kernel on histograms of oriented gragi@btained from each level of a
spatial pyramid, concatenated together after suitablghtigig. Tabld 3.1 shows the cumulative
training time and accuracies of various methods on thissgataLinear SVMs are the fastest
but also perform the worst. Thg encoding with our piecewise linear training algorithm asfeis
accuracy similar to the intersection kernel SVM at loweirtireg times. Even a linear SVM trained
on theg, encoded features offers a good accuracy improvement ovweear ISVM trained on the
raw features at the cost of a small increase in training tifitee accuracy using snow encoding
(¢1) is quite worse possibly because of quantization.
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15 examples 30 examples

Encoding| Training Algorithm | Training Time(s)| Accuracy(%)| Training Time(s)| Accuracy(%)
identity LIBLINEAR 18.57 (0.87), 41.19 (0.94) 40.49 (0.80)] 46.15 (1.33)
identity | LIBSVM (int kernel) 844.13 (2.10) 50.15(0.61)] 2686.87 (4.30) 56.49 (0.78)
SNOW=, LIBLINEAR 45.22 (1.17)] 46.02 (0.58) 89.68 (0.93)| 51.64 (1.02)
bo LIBLINEAR 42.31 (1.43)| 48.70(0.61)] 101.97 (1.09) 54.79 (1.24)
b9 PWLSGD 238.98 (2.49) 49.89 (0.45) 291.30(1.98) 55.35(0.72)

Table 3.1: Cumulative training time in secor(@&dev)and mean class accurastdev)for various
encodings and algorithms on Caltech 101 dataset usiolgl cross validation.

Encoding| Training Algorithm | Training Time(s)| Accuracy(%)
identity LIBLINEAR 1.89 (00.10), 72.98 (4.44)
identity | LIBSVM (int. kernel) | 363.10 (27.85) 89.05 (1.42)

SNow=p; LIBLINEAR 2.98 (00.33)] 85.71(1.43)

¢2 LIBLINEAR 1.86 (00.04) 88.80 (1.62)
02 PWLSGD 3.18 (00.01)] 89.25 (1.58)

Table 3.2: Training time in seconds (stdev) and accuradetof various algorithms on the
Daimler Chrysler Pedestrian dataset. Each training se2h&90 features o656 dimensions and
it takes about.84(0.006) seconds to encode them.

3.5.2 Daimler Chrysler Pedestrian Dataset

Our second set of experiments are on the Daimler Chryslexgtedn benchmark dataset, created
by Munder and Gavrila_[74]. The dataset is split into five diisj sets, three for training and two

for testing. Each training set h&800 positive and negative examples each, while each test set has
4900 positive and negative examples each. We report the tratimmgs and accuracies by training

on two out of three training sets at a time and testing on e&theotest sets. We use the same
spatial pyramid of histograms of oriented gradients fesgtas before. Once again we optimize the
parameters on one split and keep the parameters fixed ftrealktnaining runs. Table 3.2, shows
the performance of various algorithms on this dataset. Qugeén thep, encoded features with

the piecewise linear training obtains accuracy similahinhtersection kernel SVM at requiring
only aboutl% of its training time.

3.5.3

INRIA Pedestrians

We present further results on the INRIA pedestrian datasieguwo slightly different features.
This is the largest dataset we experiment on training on @boit50, 000 features of about000
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Encoding| Training Algorithm | Training Time (HOG)|| Training Time (spHOG
identity LIBLINEAR 40s 20.12s
identity | LIBSVM (lin. lernel) >180 min 140 min
identity | LIBSVM (int. kernel) >180 min 148 min
SNow=p; LIBLINEAR 35.52s 121.81s

¢2 LIBLINEAR 22.45s 26.76s
02 PWLSGD 99.85s 76.12s

Table 3.3: (HOG) 47, 327 features o780 dimension. Encoding Tim&7.22s. Dalal and Triggs
use a modified SVMLIGHT which is faster than LIBSVM, but stdkes several minutes to train,
slower than our PWLSGD on, encoding which produces both better classification usitigeei
HOG or spHOG (below) and better detection (Figl 3.2 using@@H (spHOG) : Training 39K
features 02268 dimension using PWLSGD on thg encoding takes only abouts of the time
taken to train a kernel SVM, and performs as well for classiftn (see below).

dimensions. We describe how we collect our training/tetst lselow.

Hard Training Data (HOG). We use the Dalal and Triggs implementation and collect &l th
“hard” training examples after the first round of trainingaolinear SVM. The dataset consists of
47,327 features of3780 dimension each, which is the largest dataset we test ouridiges on.
We report accuracies by testing on random split@f of the dataset consisting 86% of each of
positive examples.

Hard Training Data (spHOG). We use the spatial pyramid HOG (spHOG) from Maji etlal! [66]
to train a SVM classifier. The primary goal was to see if we doapproximate the classifier
learned by the expensive SVM learning framework using ostrdgproximation. There are about
39K features 022268 dimension. We set asid®% of the data for cross validation optimization of
the hyperparameters.

Figure[3.2, shows the classification accuracy of variousots and features on this dataset.
Linear SVM on the HOG features performs quite well, and thersection kernel SVM offers a
slight improvement in accuracy. On the spHOG features tmpeance of the linear SVM is
quite poor and there is a significant improvement in accudditgined by using the intersection
kernel. In both these datasets the performance is closelghea by thep, encoding with the
piecewise linear training method. Tablel3.3 shows theitrgitimes taken by the various training
algorithms. Training a kernel SVM classifier on the entireadat using LIBSVM can take several
hours, while our technique takes less than two minutes.

Final detection actually showing our performance on daiadh the INRIA data are in Figure
[3.2. In order to produce these, the classifier was run on mglidindow and non max suppression
to the results was applied according to the same procedasesided by Dalal and Triggs.
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INRIA Pedestrians, Hard Training Data (HOG) INRIA Pedestrians, Hard Training Data (pHOG) . §
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Figure 3.2: Cross Validation Plots on INRIA Pedestrian Haraining Data. (left) HOG, (middle)
spHOG features. Linear SVM works very well with HOG featuasshese features were designed
with linear SVM in mind. We still observe a slight boost in flemance. However with the
pHOG features the linear SVM does very poorly and the inttize kernel does the best. The
performance is closely matched by ayrembedding with PWLSGD algorithm. (righDetection
Plots on the INRIA benchmark. We compare our detector wigDhlal and Triggs, HOG + (lin.)
LIBSVM. All the detectors are run at a stride ®fx 8 pixels, and scaleratio &f/%. The correct
detection criteria is ratio of bounding box intersectiomtoon above 50%.

Figure 3.3: Sample detections on the INRIA Pedestrian datesnge, + PWLSGD algorithm.
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3.6 Additive Modeling using Spline Embeddings

Eilers and Marx|[26] proposed a practical modeling apprdacicAMs. The idea is based on the
representing the functions in each dimension using a velgtiarge number of uniformly spaced
B-Spline basis. The smoothness of these functions is ethdiyrgoenalizing the first or second
order differences between the adjacent spline coefficiéetsp(x*) denote the vector with entries
¢i(2*), the projection of:* on to theith basis function. The P-Spline optimization problem fa th
classification setting with the hinge loss function corssgdtminimizinge(w):

c(w) = %W’D&de + % Z max (0,1 — y* (w'¢(z"))) (3.17)
K

The matrixD, constructs theth order differences od:
Dyo = N (3.18)

The first difference oéx, Al« is a vector of elements; — ;. ;. Higher order difference matrices
can be computed by repeating the differencing. Fardimensional basis, the difference matrix
Diisa(n —1) x n matrix withd, ; = 1, d; ;+1 = —1 and zero everywhere else. The matriégs
andD, are as follows:

1 -1 1 -2 1
D, = 1 -1 Dy — 1 -2 1

1 -1 1 -2 1

To enable a reduction to the linear case we propose a slightfgrent difference matrio,. We
let D, be an x n matrix withd, ; = 1, d; ;_, = —1. This is same as the first order difference matrix
proposed by Eilers and Marx, with one more row added on tog. ré€bulting difference matrices
D; andD, = D? are bothn x n matrices:

1 1
—1 1 -2 1
—1 1 1 =2 1
Dl_ 7D2_ 1 _2 1
-1 1
-1 1 1 -2 1

The first row inD; has the effect of penalizing the norm on the first coeffici¢ribe spline basis,

which plays the role of regularization in the linear settilegyg. ridge regression, linear SVMs,
etc). Alternatively one can think of this as an additionaibat left most point with its coefficient
set to zero.The key advantage is that the matrix is invertible and has a particularly simple
form which allows us to linearize the whole systeWe will also show in Sectioh 3.6.1 that the
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derived embeddings also approximate the learning probfdmrael SVM classifier using th@in
kernel (K,,;,) for a particular choice of spline basis.

Kunin(x,y) = Z min(x;, y;) (3.19)

Given the choice of the regularization matrX; which is invertible, one can linearize the
whole system by re-parametrizing by D, 'w, which results in :

c(w) = gw’w + % Z max (0, 1— " (w’D;l_lqb(xk))) (3.20)
P

Therefore the whole classifier is linear on the featubés:*) = D, '¢(z*), i.e. the optimization
problem is equivalent to

c(w) = gw’w + % Z max (0,1 — y* (w’qbd(xk))) (3.21)
k

The inverse matrice®,~* and D, ! are both upper triangular matrices. The matklx ' has
entriesd; ; = 1,5 > i andD, ' = D, "2 has entriegl; ; = j — i + 1, j > 7 and look like:

11 1 ... 1 1 12 3 ... n—=1 n
11 ... 1 1 1 2 ... n-2 n-1
Dll_lz 1 1 1 ;D/2_1: 1 ’fl—3 n—2
1 1 1
1 1

We refer the readers to [27] for an excellent review of addithodeling using splines. Figure B.4
shows thegp? for various choices of the regularization degeee= 0, 1,2 and B Splines basis,
linear, quadratic and cubic.

3.6.1 Additive Kernel Reproducing Kernel Hilbert Space & Sdine Embed-
dings

We begin by showing the close resemblance of the spline ediigslto themin kernel. To
see this, let the features |, 1) be represented withV + 1 uniformly spaced linear spline basis
centered ab, +-, =, ..., 1. Letr = [ Nz| and leta = Nz —r . Then the featureg(z) is given by

¢ (2) = 1 — o, ¢p11(z) = o and the featureg' () for D, matrix is given byp! (z) = 1, if i <r
and¢l(z) = a. It can be seen that these features closely approximatesithkernel, i.e.

1

Ncbl(fﬂ)/qbl(y) ~ min(z, y) 4 1 (3.22)
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Linear B-Spline Quadratic B-Spline

Figure 3.4: Local basis functions for linear (left), quadrdmiddle) and cubic (right) for various
regularizations degrees In each figurep? refers to the dense featuré)g‘lqb. Whend = 0, the
function shown in the local basis of B-Splines. Whes r + 1, wherer is degree of the B-Spline
basis, therp? are truncated polynomials basis, — 7;)",. (see Section 3.6.1).

The featuresp’ (x) = D, '¢(z) constructs a unary like representation where the numbenes o
equals the position of the bin of One can verify that for a B-spline basis of degrde = 1, 2, 3),
the following holds:

I NIt VR r+1 . _ r
v (z)'@ (v) —mln(ﬂf,y)+T,lf|x yl > N (3.23)

Define K, the kernel corresponding to a B-Spline basis of degraad regularization matri®,
as follows:
r+1 r+1

Ki(r,y) = 30"/ ¢'y) — 0 = wo) D D 'gly) - ot (3.29)

Figure[3.5 showd! for r = 1, 2, 3 corresponding to a linear, quadratic and cubic B-Splinésbas
In a recent paper, Maji and Berg [65], propose to use lindarespasis and @&); regularization, to
train approximate intersection kernel SVMs, which in tuppeoximate arbitrary additive classi-
fiers. Our features can be seen as a generalization to thiswkoch allows arbitrary spline basis
and regularizations.

B-Splines are closely related to the truncated polynomeah&l [113) 81] which consists of
uniformly spaced knots,, .. ., 7, and truncated polynomial features:

bi(x) = (v — )% (3.25)

However these features are not as numerically stable adiBe3yasis (see [27] for an experimen-
tal comparison). Truncated polynomials of degkeeorresponds to a B-Spline basis of degkee
and Dy, regularization, i.e, same ds;"! kernel, when the knots are uniformly spaced. This
is because B-Splines are derived from truncated polynobaisis by repeated application of the
difference matrixD,[22]. As noted by the authors in_[27], one of the advantageb®fP-Spline
formulation is that is decouples the order of regularizafod B Spline basis. Typicall§, regu-
larization provides sufficient smoothness in our experis 4].
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mln

mln - Kl mln - K{)} Kmin - K%
Figure 3.5: Spline Kernels K (z,y), x,y € [0, 1] along withK} forr = 1,2, 3 corresponding
to linear, quadratic and cubic B-Spline basis. Using umifigrspaced basis separated(by, these
kernels closely approximate thein kernel as seen in the difference image. The approximation is
exact whenz — y| > 0.1r.

3.7 Conclusion

We have shown how to train additive classifiers motivated tnyamalysis in our earlier chapter,
very efficiently — within a small multiple of the time requitdy the very fastest linear SVM
training algorithms, shown both theoretically and in expents. Our resulting additive classifiers
consistently perform better than linear classifiers onovigasks. In particular we can train our
piece-wise linear additive classifier for pedestrian detac(based on spHOG features) which
produces better results than than Dalal & Trigg’s lineaed&tr (based on HOG) in only6.13
seconds, more thar0 x faster than the standard training. The proposed algoridsmnye show
is similar to a P-Spline formulation and can also be used tiveléearning algorithms for training
classifiers in the max-margin and hinge loss framework.

3.8 Appendix

Min Kernel is Conditionally Positive Definite
A kernel (z,y) € A x A — k(z,y) € R is said to be conditionally positive definite if it is
symmetric (i.e.k(z,y) = k(y, x)) and

zn:zn:CiCjk‘(l’i,llfj) >0 (326)

i=1 j=1

wheren > 1, x1, zo, . .., z, are points inA and(cy, cs, . . ., ¢,) IS @ vector inR™ such that

i ¢ =0; (3.27)
i=1
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Proof: Clearly k(x,y) = min(z,y) is symmetric, and we know thatin(z, y) is positive defi-
nite |77] whenz, y € R*. Lett = min,; z;. Then we can write the sum as :

Zn: i cicj (min(z; — &, x; — 1) + 1) (3.28)

iljl

= Z Z ¢;c; min(x )+t Z Z CiC; (3.29)

i=1 j=1 i=1 j=1

= Z Z cic; min(x), ') +t (Z c,) (3.30)

zlyl

= Z chcﬂ min xl,x] )>0,asVi,z, >0 (3.31)

=1 j5=1
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Chapter 4

Hough Transforms for Object Detection

A major bottleneck for a sliding window detectors we desediin the first chapter, is the num-
ber of locations one has to look in an image to find the objeeenBvith the fastest classifier, we
are limited in terms of speed because of the complexity of&aech over pose. Various techniques
have been proposed in the literature which try to alleviagecomplexity issue, including looking
at salient regions, coarse to fine search, branch-and-i{s&hdetc.

The Hough transform_[24] provides another way of dealinghwiite complexity issue and
has been used for various pose estimation problems ingushape detection|[3]. The idea is
to let easy to detect local parts vote for possible transébions of the object like translation,
scale and aspect variation — one can use the peaks of the \apace for importance sampling
of windows for further evaluation. Of particular interesttihe implicit shape model [62] which is
a formulation of the Hough transform where local parts pholistically vote for locations of the
objects. Combined with verification step, this approachdess used successfully for detection of
objects like cars and pedestrians by [62]. In this setting,tachnique that causes the voting space
to better reflect the presence of the object has a direct ingpeibe speed and accuracy of this two
stage classifier.

In this chapter we cast the Hough transform in a discrimueatiamework where each lo-
cal part casts a weighted vote for the possible locations®fobject center. We show that the
weights can be learned in a max-margin framework which direaptimizes the classification
performance. Compared to other approaches, includingve-tayes weighing scheme based on
how “representative” the local part is, the discriminatiraning framework leads to a significant
reduction in the false positive rate on various datasettevgimultaneously learning the important
parts of the object. We call our approach max-margin hougytsform or MHT.

On the ETHZ shape dataset [37] the’?INT detector has a detection rate @f.9% at 1.0
false positive per image comparedi® 4% using uniform weights an84.2% using naive-bayes
weights. On UIUC car dataset [1] the?MT detector has half the false positive per image rate
at 90% recall compared to the Hough detector based on both unifoiinnaive-bayes weights.
The performance of RHT is also better than both on the INRIA horse dataset [39¢ Tdting
step is fast and scales well with respect to pose variativvis.combine this with a verification
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step using a standard SVM classifier, which then finds theilmtaf the objects by doing a local
search around the proposed regions. Our two stage classifieeves a detection rate ©f.9%
at0.3 false positive per image (FPPI) on the ETHZ shape datasegndisant improvement over
the state of the art, while running the verification step oa tnders of magnitude fewer windows
than in a sliding window approach. On UIUC cars we obtain dgoerance 0f97.5% at equal
error rate, while having to run the verification step on otlywindows per image. On INRIA
horse dataset [37] the overall detector has a recalb 7% at 1.0 FPPI, almost the same as slid-
ing window detector while having to consider up to two ordefrsnagnitude fewer windows per
image.

The rest of the chapter is structured as follows. We presemivarview of the probabilistic
Hough transform in Sectidn 4.1. In Sectionl4.2, we cast thtenggrocess in a discriminative
framework and outline the max-margin formation of the penbl The overall detection strategy is
described in Sectidn 4.3. In sectionl4.4 we present our @rpets on various datasets. Conclu-
sions and directions of future work are presented in SegtiBn

4.1 Probabilistic Hough Transform

Let f; denote the feature observed at a locatipnvhich could be based on the properties of the
local patch around. LetS(O, x) denote the score of obje¢tat a locatiork. Herex denotes pose
related properties like position, scale, aspect ratio,lextC’; denotes th&th codebook entry of the
vector quantized space of featurésThe implicit shape model [62] framework obtains the overal
scoreS(0, x) by adding up the individual probabilitieg O, x, f;, ;) over all observations, i.e.,

SO.x) = S p(O.x, fi,l;)

_ Zp(fj,lj)p((’),x|fj7lj)

Assuming a uniform prior over features and locations andymalizing over the codebook entries
we get,

S(0,x) ZP(QX\fij)

= > (Gl f;,1;)p(O,X|Cs, f5, 1)
i

One can simplify this further using that fact thaC;| f;, ;) = p(C;|f;) because the codebook
entries are matched based on appearance only and theutisttip( O, x|C;, [;, f;) depends only
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on the matched codebook entty and;.
S(0.x) o Y p(Cilfp(O.x(C; 1))
ij

= Zp(Ci\fj)p(XK?, Ci, 1;)p(O[C;, 1)

2

The first term is the likelihood that the codebook erifygenerated the feature We base this on
the distance of the codebook entry to the feature as follows:

Lexp(—yd(Cy, f)) ifd(C;, f) <t

p(Gilf) = { 7Pl 0 ) othfarwisz:'
WhereZ is a constant to makeg C; | f) a probability distribution and, ¢ are positive constants. The
second term is the probabilistic Hough vote for the locatibthe object, which can be estimated
during training time by observing the distribution of the&tions of the codebook activations rel-
ative to the object center. In our experiments we maintaimada estimate op(x|O, C;, ;) by
discretizing the space of relative locations of the objé&tie third term is the weight of the code-
book entry emphasizing how confident we are that the codebably C; at location/; matches
the object as opposed to background. Assuming that the Ipitipay(O|C;, [) is independent of
the location (location invariance) we have a simple way tifresing this using both positive and
negative examples as follows :

p(O|C;, 1) = p(O|C;)
p(C;]O)
p(Ci)
Here,p(C;|O) is the relative frequency of the codebook entkyon the object features , while

P(C;) is the relative frequency on both negative and positivaingi images. We refer to this as
naive-bayes weights, as the weight is set independentlydion codebook entry.

0.8

4.2 Max-Margin Hough Transform

The overall procedure in the previous section can be seemwasgated vote for object locations
over all codebook entrie§;. In this section we will show how to learn these weightsin a
discriminative manner which directly optimizes the clésation performance. The key idea is to
observe that the score of t88O, ) is a linear function op(O|C;) (making the similar location
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invariance assumption thatO|C;, 1) = p(O|C;)). One can see this readily from the following :
S(0,0) o Y (|0, Ci [)p(Cil f;)p(OIC:, )
i.j

= Zp(x|(’),Culj)p(ci|fj)p(o|ci)

ihj

— Zp((9|ci)Zp(l‘|o,cialj)p(ci|fj)
— Zwi X z;

= WTZ

Wherez; is given by the following equation:

z = ZP(X|O> Ci, 1)p(Cil £5) (4.1)

For a given object location and identity, the summation gviera constant and is only a function
of the observed features, locations and the estimateddistn over the centers for the codebook
entry C;. Thus suggests a discriminative training algorithm thaddimeights that maximize the
scoreS on correct object location over incorrect ones. Unlike thdier method of estimating
w; based just on codebook activations, we have the ability thtiadally use the conditional
distribution of the object centers to learn the weights. Wfenialize our training algorithm in the
next section as well as present experiments to validatepamoach.

4.2.1 Discriminative Training

Given a set of training examples, a set of positive objedtioas and negative onésy;, ;) } Y,
wherey; € {+1,—1} is the label and; is the location of the’th training instance. Typically we
pick the negative instances by finding the peaks in the vapare on negative training images.
The first stage corresponds to the feature computation wdastputes the contributior), of each
codebook centet’,, to the score of the object location. This is done by carryorgvard the voting
process and adding up the votes fpifrom each featuref; according to the Equatidn 4.1. Let
a; = [z122. .. zk|, denote the vector of these coefficients. Thus the scorgressby the model to
the instance is w’a,;. Weights are learned by maximizing this score on corredtions of the
object over incorrect ones. In order to to be robust to ostlénd avoid over-fitting, we propose a
max-margin formulation of the problem leading to the follog/optimization problem,
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T
1
min  -w'w+C Z &
=1

w,b.¢ 2
s.t.: yi(WTai+b)21_§i7€i207Vi:1727"'7N
w =0

The optimization is similar to optimization problem of adar Support Vector Machine [20],
with the additional positivity constraint on the weightse\ise a standard off the shelf optimization
package calle@VX [43] for carrying out the optimization.

4.3 Overall Detection Strategy

The overall detector works in two stages, first th&H detector is run on the image and a small
set of regions most likely to contain the object of interastound. Next a verification classifier
based on a SVM finds the true location and score of the objedblng a local search around each
region by sampling nearby scales and translations. Ingteddnsely sampling windows all over
the image, the Hough step lets us concentrate around thenegegiost likely to contain the object
and at the same time allowing us to implicitly sample a widsraf transforms including aspect
ratio. We briefly describe the details of both the steps imiad two sections.

4.3.1 WNPHT Detector

Weights are learned on codebooks generated usimgans clustering of Geometric Blur (GB)
featuresl|[5] sampled uniformly along the edges in an imagechéose four orientation directions
and the outer radius of the GB feature typically28$; of the object height, giving us a good
tradeoff between the repeatability and discriminativengsthe features. On the positive set of
training images, the relative locations of the center ofdhgect is recorded during training time
and a binned approximation of this distribution is mainégin We perform a second iteration
over the positive and negative images and compute the batiom of each cluster center to the
score of the true location of the object. Negative example®htained by first running the hough
detector on negative images and finding the peaks in theg/spiace above a threshold. Once
again the contributions of the cluster centers to score ed@megative locations are computed.
These contributions, which are the feature3 (n the previous section, are then used to learn the
weights of the codebook entries using our max-margin foatnoth.

4.3.2 \Verification Classifier

We train a SVM classifier using the pyramid match kernel [4%), @&n histograms of oriented
gradients as features. Gradients are computed using respojr-1 0 1] and[—1 0 1]7 filters and
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histograms ird orientations are computed. The image is divided into gridisaeasing resolutions
for 4 levels, and histograms from each level are weighted aatgrii the equatiom; = 21,

[ = 1 being the coarsest scale, and concatenated together tofrehong feature vector. A SVM
is trained by using histogram intersection as the kernehesd features. We refer to this as the
IKSVM classifier. On all datasets training is done by scatimgpositive instances of the category
to the median aspect ratio and a number of windows samplediiegative training images serve
as negative examples. To detect an instance of an objeat sliting window mode the classifier
is run at various location and scales by keeping the asptotafithe image fixed. Search over
aspect ratio adds another factor to the run time, so we domivt A simpler baseline would have
been to use a linear kernel, but others[37] have noticedoin@&THZ shape dataset, linear SVM
does not give full recall. We use the speedup method for IKSMassification proposed in [66]
which makes the runtime of the classifier essentially edentao a linear SVM.

4.4 Experimental Results

In all our experiments we would like to verify two thing&t) The MPHT detector should have a
better performance compared to Houghtransform detectog usiform weights or naive-bayes
weights. Quantitatively this means a lower false positate ifor the same recal(2) The perfor-
mance of the two stage MIT + IKSVM detector should be comparable to the IKSVM deteato
the sliding window mode, while having to evaluate the IKSVEtettor on a significantly fewer
locations. Additionally, if the Houghtransform votes fooge parameters we would like to see
that the two stage detector is robust to these pose changeslyRhe overall approach should
compare favorably to other approaches in the literaturh boterms of accuracy and space-time
complexity. To validate our claims, we present our expents®n the ETHZ shape, UIUC cars
and INRIA horses dataset.

4.4.1 ETHZ Shape Dataset

The first dataset we report our results on is the ETHZ Shapasetatlt contain855 testimages and
featuring five shape-based classes (apple logos, bottteffeg, mugs, and swans). For training
we use half the positive examples and an equal number ofimegatamples equally distributed
among the rest of the categories. All the remaining exanmglkesised for testing. We use the same
training and test splits used by authorsiof [37] for a fair panmson.

M2HT Detector Training:  For the hough training step all ground truth bounding boxXespar-
ticular category are scaled to a height6fpixels, while keeping the aspect ratio fixed. A separate
codebook is learned for each category usiagieans clustering with = 400 centers. For cate-
gories like mugs and giraffes the aspect ratio varies widelye train the hough detector to vote
for both the center and aspect ratio of the object. We mairggdinned approximation of distri-
bution of the location of the center with bin widthépx, bin height30px and aspect width1.
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Figure 4.1: Learned weights on various categories of the EShhpe datase{top row) naive-
bayes weights(bottom row) M2?HT weights. In each image, the most important part is circled
with radius equal to the outer radius of the gb descriptortidéchow the salient parts like the
handles on mugs, the neck and leg region of the giraffe angrass high weights, while the
background clutter is ignored. The naive-bayes weights@momgly affected by rare structures in
the background. For each category the colors representrérgth of the weights (red is higher)
and are on the same scale for both naive-bayes &M

We then run the max-margin training procedure describe@ati®@4.3.1 to learn the weights for
the codebook entries. Figure 4.1, shows the learned welghtarious categories. The learning
framework assigns high weights to parts of the object whiehbamth characteristic and are good
predictors of the object location, while simultaneouskyagng the background clutter in images.
Notice that we only use the ground truth bounding box fomirag, which includes a significant
amount of background clutter for categories like giraffed awans. The naive-bayes weights are
strongly affected by rarely occurring structures in thekgaound.

M2HT Detector Results: Table[4.4 shows the detection rateldt FPPI for various weights.
The MPHT detector alone has a detection rate66f0% at 1.0 false positive per image (FPPI)
compared td4.2% using naive bayes arii?.4% using uniform weights. In our experiments, in-
creasing the number of codebook entries improves the pedioce of the max-margin weights,
but due to the small number of training examples (as lowédsr swans), the conditional distribu-
tion of the center over both scale and aspect ratio cannadliadly computed, so we do not train
with more cluster centers. At abog windows per image we have almost full recall for using any
of the hough detectors, and the performance of the over@ttw® is similar with all the methods.
This is at least two orders of magnitude less than the nunfbgmaolows considered by a sliding
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Figure 4.2: Sample detections where the bounding box pestlicy the MHT+IKSVM detec-
tor (blue) is closer to the groundtruth (red) than the IKSVBtattor when used in the sliding
window mode (green).

window detector

Overall Detector Results : Figure[4.5 compares the results of the IKSVM detector used in
the sliding window mode at a fixed aspect ratio v.s. thHdHW + IKSVM detector. Performance
are reported using the PASCAL criterion, i.e., a detecteoocaunted as correct if the intersection
over union of the detection rectangle and ground truth negéais greater thaf.5. The IKSVM
baseline is quite good and achieves a detection rag&.@fo (0.3 FPPI) and’8.48% (0.4 FPPI).
Sampling the nearby scales and locations around the regiopesed by the hough transform leads
to an improved detection rate 61.9%(0.3 FPPI) and3.2% (0.4 FPPI). Including the windows
of the local search is still at least two orders of magnitweds lthan a sliding window detector for
a similar dense sampling. Additionally we implicitly saragver aspect ratios because the hough
detector proposes regions of various aspect ratios. Tais® a significantimprovement over the
baseline IKSVM detector for the giraffe and mugs categoifyere the aspect ratio varies widely.
Figure[4.2 show some images where the bounding box of the tage slassifier fits the object
better than that of the sliding window classifier. Figlrel gi®ws examples of detections and
missed detections for various categories. Our resultsigrafisant improvement over previous
best result$1.4% of KAS [@] and67.1% of TPS-RPM [38] at).3 FPPI as shown in Figuie 4.4.
The results of TPS-RPM are not directly comparable as theoasireport numbers using a five-
fold cross validation, but still is better considering thia average variation in accuracy over trials
is about9% as observed by the authors.

4.4.2 UIUC Cars

This database was collected at UIUG [1] and contains imafsisle views of cars. The training

set consists 0550 car and500 non-car images. We test our methods on the single scale image
test set which containis’0 images with200 cars. The images are of different sizes themselves but
contain cars of approximately the same scale as in theigaimages.
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Figure 4.3: (Rows 1-2)Example detections on the ETHZ shape dataset usifigTMIKSVM
detector (blue), IKSVM detector used in sliding window modgreen) overlaid with
groundtruth (red)(Row 3) Example images where at least one of the two detectors fails.

Hough Detector (1.0 FPPI) Overall Detector (0.3/0.4 FPPI)

Category | uniform | nbayes| max-m | IKSVM | M?HT + IKSVM KAS TPS-RPM*
Applelogos| 70.0 70.0 85.0 | 90.0/90.0 95.0/95.0 50.0/60.0f 77.7/83.2
Bottles 62.5 71.4 67.0 | 96.4/96.4 92.9/96.4 92.9/92.9| 79.9/81.6
Giraffes 47.1 47.1 55.0 | 79.1/83.3 89.6/89.6 49.0/51.1| 40.0/44.5
Mugs 35.5 35.5 55.0 | 83.9/83.9 93.6/96.7 67.8/77.4] 75.1/80.0
Swans 47.1 47.1 42.5 | 88.2/88.2 88.2/88.2 47.1/52.4| 63.2/70.5
Average 52.4 54.2 60.9 | 87.5/88.4 91.9/93.2 61.4/66.9| 67.1/71.9

Figure 4.4: Performance of various algorithms. All the tessare reported using the PASCAL
criterion (Intersection/Unio» 0.5). The hough detector alone has a detection rat®) % at 1
false positive per image (FPPI) an improvemen6af/, over the naive bayes weights aB&%
over uniform weights. The IKSVM classifier when used in siglwindow mode has a average
detection rate 087.5% at 0.3 FPPI. By combining with the hough detector, the performance
proves t®1.9% at0.3 FPPI. There are significant improvements in the giraffe andscategory,
which have high variation in aspect ratio. This is a significanprovement over previous best
results61.4% of KAS [37] and67.1% of TPS-RPM [38] an.3 FPPI.The results of TPS-RPM are
not directly comparable as the authors report numbers usifgold cross validatiort.
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Figure 4.5: Detection plots using the IKSVM detector andHW + IKSVM on ETHZ shape
dataset. All results are reported using the PASCAL criteri@) The IKSVM baseline achieves
a detection rate of7.7% (0.3 FPPI) and8.48% (0.4 FPPI).(b) Sampling densely on the regions
proposed by the KHT detector leads to an improved detection rate10§%(0.3 FPPI) and3.2%
(0.4 FPPI).

M2HT Detector Training: Similar to the ETHZ dataset we compute GB features on both the
positive and negative windows by uniformly sampling poinitsthe edges and learn a codebook
using k-means withk = 100. For every cluster the conditional distribution of the @raf the
object is maintained as binned approximation with a bin laddtand bin height#. This is a fairly
dense sampling given that the training imagesléxe x 40, so we spatially smooth the bins to
avoid any artifacts. A second loop over the training imagedane to compute the features for
the max-margin training. Figute 4.6 shows the learned visigh this dataset using max-margin
training and naive bayes. Notice how the learning framewariphasizes the regions near the
bottom of the car, which are both repeatable and good pradiof the object center.

M?2HT Detector Results:  Figure[4.8 plots the recall as a function of the false posifrer
image on for various learning schemes. 98t recall the MHT detector has about half as many
false positives per image than the hough detector usingumifveights and naive bayes weights.
Considering only the top0 windows per image and running the IKSVM verification stepleto
performance 0b7.5% at equal error rate an improvementiof4% over IKSVM detector using
the sliding window detector alone, while having to consitiex fewer regions per image. The
increased precision is because the IKSVM classifier derssehples windows near the most likely
locations of the object, while being able to discard a largetfon of the regions in the image not
containing an object. Our method compares favorably torattethods in the literature as shown
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Figure 4.6: Learned weights on UIUC car datasdteft) naive-bayes weight@ight) MZ2HT
weights (red is higher). In each image the most importarttiparircled with radius equal to the
outer radius of the gb descriptor. Notice how the featurabetbottom of the car and near the
wheels are emphasized which are both repeatable and godidtprs of the object center. Both
weights are on the same scale.

in Figure[4.7.

4.4.3 INRIA Horses

The INRIA horse dataset collected by Jurie and Ferrari, istg1sf 170 images with one or more
side-views of horses and’0 images without horses. Horses appear at several scaleagamst
cluttered backgrounds. We use the same training and tétsb&fd7] consisting of50 positive and
50 negative examples for training and the rest for testing.

M2HT Detector Training: We learn a codebook with-means withk = 500 and learn weights
for each cluster center. Figure 4.10 shows the weightséeifior various features using the max-
margin training and naive-bayes scheme. The IKSVM class#igained by scaling all the ground
truth bounding boxes to the median aspect ratio of all harst#tss dataset.

M?2HT/Overall Detector Results:  Figure[4.I]l shows the performance of théHM detector
and the overall detector. TheZMT detector outperforms both the naive-bayes and the umifor
weights. The overall performance of theNIT + IKSVM detector is same as the IKSVM detector
while having to consider onlg5 windows per image, which is up to two orders of magnitude
fewer than the sliding window classifier. At0 false positive per image we have a detection rate
of 85.27% for M2HT + IKSVM and 86% for IKSVM compared to previously published results
of 80.77%[37] and73.75% [38]. The results of |[38] are however not directly compagads the
authors report results usidgfold cross validation.
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| Method | Performance |
IKSVM 95.76 %
M2HT + IKSVM 97.5%
Agarwal & Roth [1] 79 %
Garg et al. [41] 88 %
Fregus et al. [35] 88.5 %
ISM [62] 97.5%

Mutch & Lowe [76] 99.6 %
Lampert et al. [58] 98.5 %

Figure 4.7: Performance at Equal Error Rate on UIUC Singl@eS€ars for various methods.
The MPHT + IKSVM detector has an improvement of74% over the IKSVM baseline in the
sliding window mode, while having to consider oriywindows per image. Our method compares

favorably to other methods in the literature.
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Figure 4.8: (a) Detection plots on UIUC car dataset for uasigalues of the learning parameter
C' using the max-margin hough training. 8% recall the false positive rate is only about half
compared to both uniform weights and naive bayes weighjsCémnbining with the verification
step using the IKSVM classifier. Only the tdp windows per image are considered, which is about
10x fewer than the number of windows considered by a sliding windetector. By sampling
around the regions proposed by the hough detector there im@ovement ofl.74% over the

sliding window detector.
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Figure 4.9: Example detections using théHT + IKSVM detector on UIUC cars dataset. Correct
detections are shown in green and incorrect detectionsare is red.

Figure 4.10: Learned weights on INRIA horses datadeft) naive bayes weightgtright) M2HT
weights (red is higher). In each image, the most importarttipaircled with radius equal to the
outer radius of the gb descriptor.
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INRIA Horses (Hough Detector)
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Figure 4.11: Detection plots on INRIA horse dataset usirgRASCAL criterion. (left) Com-
parison of MHT detector for various choices of the learning paramétars. uniform weights
and naive-bayes weights. The’NIT detector consistently outperforms bothight) Overall de-
tections results using IKSVM and two stagéiNT + IKSVM. Performance of MHT + IKSVM

is similar to IKSVM while having to consider onlg5s windows per image on average, which is
up to two order of magnitude fewer than in sliding window aygoh. At1.0 false positive per
image we have a detection rate&#.27% for M?HT + IKSVM and 86% for IKSVM compared
to previously published results 860.77% (KAS) [37] and73.75%(TPS-RPM) [38] (Note that the
results of TPS-RPM are not directly comparable as the awtheport numbers using-fold cross

validation.)
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4.5 Conclusion

We cast Hough transform in discriminative framework to teaeights on local parts that partici-
pate in a voting based detection scheme. The learned weaigtgsrform both the “uniform” and
“naive-bayes” weights on various datasets. Our max-masgiblem formulation is convex and
can be optimized using off the shelf optimization packageh s CVX.

In addition we show that the two stageMIT + IKSVM detector has better runtime complexity
than a sliding window detector and at the same time is monegstdab pose variations. Our approach
leads to the state the art results on ETHZ shape dataset amgkttve results on the UIUC car
and INRIA horse dataset.

Although in this chapter we focus on local parts that are genee., obtained by:-means
clustering of local patches, this need not be the case. Wedinte more semantic parts in the next
chapter based on a novel representation called “poseletsth are trained discriminatively using
additional annotations. These parts can be used for perstectobn [13], as well as predicting
the location of various joints [12] using the Hough votingrfrework. For these problems, the
proposed max-margin formulation has led to improvemen#sauracy.
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Chapter 5

Supervised Models for Object Recognition

Describing visual categories is at the heart of most red¢mgnsystems. The notion of cate-
gories itself has been the topic of debate among psychaofyis centuries and there are many
competitive theories — exemplar based models [71], prpeg¥90] and the classical one based on
a list of attributes which dates back to Aristotle (see [76f,a pleasant overview). For the task
of visual categorization one has to deal with the additieaalation because of the non-invertible
camera projection (or the eye). Computer vision technidu@sare based on variants of template
matching have proved to the most robust approach to idevisfial categories, but the question of
what should one train a template of still remains.

In the object detection setting one has seen tremendourggoigp detecting a rigid object from
a fixed viewpoint, for example frontal faces [112], or pedast [21], but the general problem of
detecting a category such as person is still far from beigego For example, the current best
method for person detection on the challenging PASCAL VOtaskt achieves an mean average
precision of only about0%. Part of the problem is that there is a significant varian@pipearance
not only because of changing viewpoint, but also becauspl@eppear in variety of clothing, are
occluded and interact with objects around them in a variéposes.

One may try to build templates each of the cases we wish teildiet there are two prob-
lems with this approach, in the spirit of the exemplar moddl]| First, these templates have to
be learned which subjects them to the usual bias-variaadedffs — more data is good, simple
models are better. Second, during test one is reduced torasteeighbor like search, the com-
plexity of which is high. Thus the exemplar model of visualagnition is at a disadvantage both
from computational and model estimation point of view, thlotnas recently been tried somewhat
successfully recently for detection in [70].

The second approach is to build a representation which isfb€ently high dimension that a
classifier can learn the highly non-linear model of the apgre@e variation — more along the lines
of a single prototype view [90]. Popularly known as multiiernel learning/[109], it has seen
reasonable success in many object detection [111] and ilagsification benchmarks. In this
setting it typical to have features of several thousand dsions to learn a classifier for a visual
category. This approach is extremely attractive — one doebawve to deal with the invariances,
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Most Similar Examples

source pose + action

uoisiajadns Suisealaul
Alle|iwis [ensia Suiseasou)

Figure 5.1: Most similar examples of the source image usiog Row) pose only, (Middle Row)
pose and action label, (Bottom Row) pose, action and sufjpagtéabel. From top to bottom the
visual similarity increases at the expense of more supervis

or describe the properties of the class as long as the fegpae is sufficiently rich, and there is
enough training data. However, where it fails is in provglinterpretability of the learned model,
making it harder to engineer richer models of categories.eikample, if one were to now ask for
the pose, or camera viewpoint or the kind of clothing of amanese, it would be hard to infer that
from the classification function.

5.1 Supervised Learning of Categories

It appears that a middle ground between the prototype thedyexemplar theory of categories
might be a good choice. Instead of having one prototype, widdoave a few, much smaller
than the number of instances. This may not suffer from thepedational complexity issues of
the exemplar model. At the same time because one of the ppe®tould be thought of as an
“average” of some number instances, one could benefit bedhadearning algorithm has more
examples to look aBut what should the prototypes be?

The key question of finding the set of prototypes then becammesof visual correspondence.
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Any instance of a visual category can be thought to be in spoedence with at least one of the
prototypes. As good as it may sound, the idea of visual cpomsence is hard, subjective and task
dependent. Categories form a hierarchy - at one level oned@sgribe an object as a car, but at a
finer level one could say the car is a Beetle or a Mini, or a redilsli an even finer level.

Given the subjective and task dependent nature of probleamaim to bootstrap the visual
correspondence problem with additional supervision. Weotate a set of keypoints on all the
objects within the category which provides us the coarsaadl lof correspondence. Prototypes
can be thought of as representation of instances which st@emmon configuration of keypoints.
To have a flexible, task dependent notion, we collect atteilbabels which could correspond to
say, the kind of clothing, action labels, or subcategoridgese enable one to refine the notion of
correspondence using both the keypoint correspondenciharadtribute label.

As an example, Figurle 8.1 top-row, shows examples of pedyerg) the same pose as the
source image. It might be hard to learn an appearance madall these instances because of the
variety in the action type, interaction with objects, etehich change the appearance. Figurée 5.1
middle-row, shows examples that share the same pose and,a@imely, playing instrument. The
examples are more visually coherent but not as much as tHethamn row, since there are many
kinds of musical instruments. Learning an appearance smplere might be easiest in the last
case, at the expense of more supervision and potentiallg teorplates or prototyptes to recognize
the category.

Collecting such annotation can be time consuming, but thssdecome increasingly efficient
and cost effective due to “crowdsourcing”. Services likeaaon Mechanical Turk, which matches
workers to micro tasks, makes it easy to collect large answahannotations relatively quickly.
In the next chapter I'll describe how we collected annotaiof various kinds ranging from key-
points, segmentation masks, 3D pose to attribute labels.

The idea of using keypoints for aligning examples using 3{pként annotations was proposed
by Bourdev and Malik/[12] and subsequently modified to deahwimpler 2D keypoint annota-
tions by Bourdev, Maji and Malik, in_[13], leading to the saif the art person detector on the
PASCAL VOC challenge at the time of publication. Subseqglyeniodels of segmentation [14],
pose estimation, action recognition [67] and attributeogeation [11], have been built on top of
that framework. In this chapter we focus on the task of poimation and action recognition of
people from static images.

5.2 Pose and Action Recognition from Still Images

We can say a fair amount about the people depicted in Figdre the orientations of their heads,
torsos and other body parts with respect to the camera, whtttby are sitting, standing, running
or riding horses, their interactions with particular oligeetc. And clearly we can do it from single
image, video is helpful but not essential, and we do not nesdé¢ the whole person to make these
inferences.

A classical way to approach the problem of action recogmiinostill images is to recover the
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Figure 5.2: Pose and action is revealed from all these psitche

underlying stick figurelEZEiSG]. This could be parametetibg the positions of various joints, or
equivalently various body parts. In computer graphicsdbpisroach has been a resounding success
in the form of various techniques for “motion capture”. Bagihg appropriate markers on joints,
and using multiple cameras or range sensing devices, tire &irtematic structure of the human
body can be detected, localized and tracked over time [1Bdf].when all we have is a single
image of a person, or a part of a person, not necessarily atrégplution, in a variety of clothing,
the task is much harder. Research on pictorial struct | and other technique|£[88] for
constructing consistent assemblies of body parts has nadgderable progress, but this is very
far from being a solved problem.

We take the position that recovering the precise geomatgdations of various body parts
is trying to solve a harder intermediate problem than nesgd®r our purposes. We advocate
instead the use of a representation, the “poselet activagotor”, which implicitly represents the
configuration of the underlying stick figure, and inferensash as head and torso pose, action
classification, can be made directly from the poselet atitimavector.

We can motivate this by a simpler example. Consider the prolif inferring the pose of a
face with respect to camera. One way of doing it is as an ekglitto 3D geometric problem by
finding the locations of the midpoints of the eyes, nose etd,solve for the pose. Alternatively
one can consider the outputs of various face detectors - wredtto frontal faces, another to
three-quarter view faces, another to faces in profile. Teparses of these detectors provide a
distributed representation of the pose of the face, and anaise an “activation vector” of these
responses as the input to a regression engine to estimage podiological vision, strategies
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such as these are common place. Color is represented byamsesygector corresponding to three
cone types, line orientation by the responses of variougplsircells in V1, and indeed neurons
have been found in macaque inferotemporal cortex which shifferential responses to faces at
different orientations, suggesting a distributed repntg@n there as well.

In order to generalize this strategy to the human body, we dea with its articulated nature.
Different parts can be in different configurations, and osin can result in only some parts being
visible. In addition one needs to deal with the variationspect due to changes in camera direc-
tion. Poselets, introduced by Bourdev and Malik [12] andfer developed in Bourdev et al. [13]
for person detection and segmentation provide a natunalewaork.

We show that the poselet activation vector, which reprastret degree to with each poselet is
present in the image of a person, provides a distribute@septation of pose and appearance. We
use it to estimate the 3D orientation of the head and torse&opie in the challenging PASCAL
VOC 2010 person detection dataset [28]. This dataset is signifizédwattd where the current state
of the art methods achieve detection performance only aidut Our approach achieves an error
of 26.3° across views for the head yaw and matches the “human eregrwdten the person is
front facing.

Action recognition from still images can benefit from thipresentation as well. Motion and
other temporal cues which have been used for generic agamgnition from videos [96, 100, 42,
25], are missing in still images which makes it a difficult plem. In this setting the pose and
appearance of the person provides valuable cues for infetiie action. For example as seen in
Figurd5.38, certain actions like walking and running ar@asged with specific poses while people
riding bikes and horses have both a distinctive pose anceaapee.

Actions often involve interactions with other objects anteacan model these interactions
to disambiguate actions [121]. In addition context base@aions of other agents in the scene
can provide valuable cues as well [59]. For example, cewiativities like marathon events or
musicians playing in a concert, are group activities and ltkely that everyone in the scene is
performing the same action.

The rest of the paper is structured as follows: we begin witevéew of work in the area of
action recognition and pose estimation in Sedtioh 5.3. tti&e5.4, we describe how we construct
the poselet activation vector for a given person in an im&ge.present experiments on 3D pose
estimation of people in the PASCAL VO2)10 people detection dataset in Section 5.5. Finally
we report results on the recently introduced PASCAL VAIT0 action classification dataset in
Sectiori 5.6 and conclude in Sectlon]5.7.

5.3 Previous Work

The current work draws from the literature of two active ar@athe computer vision — pose
estimation and action recognition. We briefly describe santleout any hope of doing justice to
either of the areas.
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Figure 5.3: Pose and appearance variation across actions.

Figure 5.4:Our distributed representation of pose using poseletsEach image is shown with
the top9 active poselets consistent with the person in the imagen(sioy their average training
examples). Occlusion, variations in clothing, cluttecki@f resolution in images makes the pose
estimation a hard problem and our representation is robukese.
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Human pose estimation from stillimages. Pictorial structures based algorithms like that of [34,
88,186, 36] deal with the articulated nature of humans by figdiody parts like limbs and torsos
and constructing the overall pose using the prior knowleafgeuman body structure. Though
completely general, these methods suffer when the parteaddo detect in images. Another class
of methods work by assuming that the humans appear in baskdsovhich are easy to remove,
and in such cases the contour carries enough informatiout #e pose. This includes the shape-
context based matching of silhouettes in the work of [73§ work of [97] where approximate
nearest neighbor techniques are used to estimate the pogelarge dataset of annotated images.

A common drawback of all these approaches is that they theatask of pose estimation
and detection separately. Pictorial structure based manfegn assume a rough localization of
the person and fail when there is significant occlusion ottetu In such a two-stage pipeline it
would be helpful if the detector provides a rough estimatthefpose to guide the next step. We
also believe that the detection algorithms need to havegedneatment of pose in them. This is
reflected by the fact that some of the best people detectdieedPASCAL VOC challenge namely
the detector of Felzenszwalb et al.[[33] and Bourdev et 8l §te part based detectors which have
some treatment of pose.

Action Recognition from video. Actions in this setting are described by some representatio
of its spatio-temporal signature. This includes the worlBt#nk et al. [Y] and Shechtman and
Irani [42], who model actions as space-time volumes andsifleation is based on similarity of
these volumes. Schuldt et al. [96] and Laptev [60] genegdlie notion of interest points from
images to space-time volumes and use it to represent actdct®ns as motion templates has
been explored in the work of Efros et al. [25], where actiamsdescribed as series of templates of
optical flow. Other methods like [87, 122] are based on repridions on the 2D motion tracks of
a set of features over time.

Action recognition from still images. Humans have a remarkable ability to infer actions from
a stillimage as shown in Figure 5.2. In this setting it is nakto build representations on top the
output of a pose estimation algorithm. Due to the drawbatkiseocurrent pose estimation algo-
rithms, several approaches build pose representationaréhanore robust — Ikizler and Pinar [53]
represent pose using a “histogram of oriented rectangigfe which is the probability distribu-
tion of the part locations and orientations estimated upargjdetectors. Thurau and Hlavac [106]
represent pose as a histogram of pose primitives. Theseodwethherit most if not all of the
problems of pose estimation.

The closest in spirit to our approach is the work of Yang ejl&0], who also use a represen-
tation based on poselets to infer actions. Pose represasedonfiguration of body part locations
is expressed as a latent variable which is used for actiawgreton. Training and inference in
the model amount to reasoning over these latent poses wiadhemselves inferred using a tree
like prior over body parts and poselet detections. Unlil@rthpproach we don’t have an explicit
representation of the pose and use the “poselet activadiotow itself as a distributed represen-
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tation. In addition, our poselets encode information fromitiple scales and are not restricted to
parts like legs and arms. In our experiments we found thadt amcover-complete representation
greatly improves the robustness of the system. We show ittesrl classifiers trained on top of
the poselet activation vector can be used for both 3D posaa&sdn of people in the challenging
PASCAL VOC 2010 dataset and static image action recognition demonstrétm@ffectiveness
of our representation.

5.4 Poselet Activation Vector

Our framework is built on top of poselets [12, 13] which arelypart detectors trained from an-
notated data of joint locations of people in images. The tatiams are used to find patches similar
in pose space to a given configuration of joints. A poseletS¥ ¥ classifier trained to recognize
such patches. Along with the appearance model one can aksio titee distributions of these joints
and person bounding boxes conditioned on each poselet frerartnotations. Figute 5J11 shows
some example poselets.

Given the bounding box of a person in an image, our represent@alled the poselet activa-
tion vector, consists of poselets that are consistent Wwithbbunding box. The vector has an entry
for each poselet type which reflects the degree to which tlselpbtype is active in that person.
This provides a distributed representation of the high disi@nal non-linear pose space of humans
as shown in Figure 5.4. Notice that the pose and appearafurenation is encoded at multiple
scales. For example, we could have a part which indicatéghesead or just the torso or the full
pedestrian. We use this representation for both actiongreton and 3D pose estimation from
still images.

5.5 3D Pose Estimation from Still Images

First we quantitatively evaluate the power of the poselévaiton vector representation for esti-
mating pose. Our task is to estimate the 3D pose of the heatbesal given the bounding box
of the person in the image. Current approaches for pose astimbased on variants of pictorial
structures are quite ill suited for this task as they do nstinjuish between a front facing and back
facing person. Some techniques can estimate the 3D pose bkt by first detecting fiducial
points and fitting it to a 3D model of the head, or by regressiegrose from the responses of face
detectors trained to detect faces at different orientati@2]. These methods are not applicable
when the face itself is occluded or when the image is at tood@asolution for a face detector, a
common occurrence in our dataset.

The pose/aspect of the person in encoded at multiple saadesfien one can roughly guess the
3D pose of the person from various parts of the person as séegure 5.2 and our representation
based on poselets are an effective way to use this informaflar results show that we are able to
estimate the pose quite well for both profile and back facergans.
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Head [-10, -35, 0] Average human error in degrees (6.66 head, 7.07 torso)

E!
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(a) AMT interface  (b) Human Error  (¢) Head Yaw  (d) Torso Yaw (e) Head-Torso Yaw

Figure 5.5: (a) Interface for annotating the 3D pose on Amadechanical Turk. (b) Human error
rate across view for estimating the pose of the head and.t(rsd, e) Distribution of the yaw of
head, torso and torso relative to the head, on our 3D possatata

A Dataset of 3D Pose Annotations. Since we wanted to study the problem of pose estimation
in a challenging setting, we collected images of people fthewalidation subset of PASCAL
VOC 2010 dataset not marked as difficult. We asked the users on Amasmhahical Turk [2], to
estimate the rotations around X,Y and Z of the head and torsmjusting the pose of two gauge
figures as seen in Figure 6.7(a). We manually verified thdteeand threw away the images where
there was high disagreement between the annotators. Tymgsally turned out to be images of
low resolution or severe occlusion.

Our dataset has very few examples where the rotation alomglX axes is high, as is typical of
consumer photographs, hence we removed images which hatie®ns along X and Z 30° and
focus on estimating the rotation around Y (Yaw) only. In thel &e havel 620 people annotations
that along with their reflections result 8240 examples. The distribution of the yaw across the
dataset is shown in Figure 6.7(c, d, e).

Figurel6.7(b) shows the human error in estimating the yawsscviews of the head and torso.
This is measured as the average of standard deviation ohti@ations on a single image in the
view range. The error is small for people in canonical vieves,when the person is facing front,
back, left or right, whereas it is high when the person infggomewhere in between. Overall
the annotators are fairly consistent with one another witredian error of;.66° for the head and
7.07° for the torso across views.

Experiments. Similar to [13], we trainl200 poselets on the PASCAL traiz010 + H3D trainval
dataset. Instead of all poselets having the same aspegtwatiused four aspect ratio$6 x 64,
64 x 64, 64 x 96 and128 x 64 and trained300 poselets of each. In addition we fit a model of
bounding box prediction for each poselet. We construct tisefet activation vector by considering
all poselet detections whose predicted bounding box ogeerlhe bounding box of the person,
defined by the intersection over union0.20 and adding up the detection scores for each poselet
type. We use thi$200 dimensional vector to estimate the pose of the person.

We estimate the pose of the head and torso separately. Wettiedhe yawe [—180°, 180°]
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into 8 discrete bins and train one-vs-all linear classifiers fadpting the discrete label. The
angle is obtained by parabolic interpolation using the agjipredicted bin and its two adjacent
neighbors. We optimize our parameters on one split of tha datl report results using) fold
cross validation. We split the training and test set equallyuring both the image and its reflection
are both either in the training or the test set.

Figure[5.6(a, b) show the confusion matrix for the task ofdpténg the discrete view, one
of front, left, right and back, for the head and torso. Therage diagonal accuracy #&.1%
for the head and1.71% for the torso. The median errors in predicting the real adlview are
shown in Figurd 5]6(c). We report results by averaging therdpr predicting view across
discrete views. Since the dataset is biased towards frelaak, this error metric gives us a better
idea of the accuracy of the method. Across all views the esr@bout26.3° and 23.4° for the
head and torso respectively, while across the front vieves, yawe [—90°,90°], the error is
lower: 20.0° and19.6° respectively. In particular, the error when the person ¢enfgfront, i.e.
yaw € [—22.5°,22.5°] matches the human error rate. Our method is able to recotrézeose of
back facing people, i.e. yaw [157.5°, —157.5°], a45° range around the back facing view, with an
error of abouR0° error for the head and torso. Approaches based on face ideteaiuld fail but
our representation benefits from information at multipkeiss like the overall shape of the person,
as shown in Figure 5.7. The error is smaller when the persfaisg exactly left, right, front and
back while it is higher when the person is facing somewhetgetmween, qualitatively similar to
humans.

At roughly 25° error across views, our method is significantly better timenbtaseline error of
90° for the method that always predicts the view as frontal (ts@e error for frontal view, but
180° error for back view). Figurie 5.8 shows some example imagesrinlataset with the estimated
pose. We believe this is a good result on this difficult datdeenonstrating the effectiveness of
our representation for coarse 3D pose estimation.

5.6 Static Action Classification

In this section we present our method for action classificedind report results on the newly intro-
duced PASCAL VO010 action classification benchmark. The input is a set of baumnboxes
on images and the task is to score each of these with respenttaction categories namelghon-
ing, playinginstrument, reading, ridingbike, ridinghetsunning, takingphoto, usingcomputerd
walking Figure[5.8 shows examples from various action categories.

Action specific poselets. There arg08 training examples for all the action categories. To train
poselet models we first annotate each person with 2D joiatimes on Amazon Mechanical Turk.
Five independent annotators were asked to annotate evageiand the results were averaged with
some outlier rejection. Similar to the approach|of [13] wedamly sample windows of various
aspect ratios and use the joint locations to find trainingrgx®as each poselet.
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Figure 5.6: (a, b) Average confusion matrix ovérfold cross validation, for predicting four views
left, right, frontandback The mean diagonal accuracy6®.10% and61.71% for predicting the
head and the torso respectively. (c) Error in predicting/éve averaged oveydiscrete views using
10-fold cross validation. Across all views the error is ab2aB° and23.4° for the head and torso
respectively, while across the front views, i.e. yaW—90°, 90°], the error is loweR0.0°, 19.6°. In
particular the error when the person is facing front, i.evya|—22.5°, 22.5°] matches the human
error rate.
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yaw = +90°

Figure 5.7:Poselets with the highest weights for discrete view clasgiition of the head.Note
that information from multiple scales is used to infer thewi When the person is back-facing,
i.e. yaw= —180°, poselets corresponding to pedestrians and upper-bocdekreted where as for

the frontal view face poselets are selected.
E; ' 1 . B . :
i .
T F T o ] T

Figure 5.8: Left to right are examples images in our 3D posasga of increasing prediction error.
Under each image the plot shows the true yaw for the headl @ledt torso (right) in green and the
predicted yaw in red. We are able to estimate the pose even thiedface, limbs and other body

parts are hard to detect.
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Figurel5.9 shows that pose alone cannot distinguish betagt@ns and the appearance infor-
mation is complimentary. For example we would like to ledrattpeople riding bikes and horses
often wear helmets, runners often wear shorts, or that pdaging pictures have their faces oc-
cluded by a camerdo model this, we learn action specific appearance by rasigahe training
examples of a poselet to belong to the same action category

Many poselets like a “face” poselet may not discriminateveein actionsThe idea illustrated
in Figure[5.10, is windows that capture salient pose spetificertain actions are likely to be
useful for action discriminationWe measure “discriminativeness” by the number of withassl
examples of the “seed” windows in the thp= 50 nearest examples for the poselet. The idea is that
if a pose is discriminative then there will be many exampliethat poselet from within the same
class. Combined with the earlier step this gives us a wayléosgoselets which detect salient pose
and appearance for actions as shown in Algorithm 2. Appeararodels are based on HOG[21]
and linear SVM. We learm200 action specific poselets. Figure 5.11 shows represenfadiselets
from four action categories.

Algorithm 2 Action specific poselet selection.
Require: 2D keypoint/action labels on training images.
1: for i = 1ton do
2. Pick arandom seed window and find the nearest examples irgooation space based on
the algorithm of[13].
Compute the number of within class examples inithe 50 nearest examples.
. end for
. Select the topn seed windows which have the highest number within class phkean
. For each selected window, restrict the training examplesitioin the class and learn an ap-
pearance model based on HOG and linear SVM.

Remarks:
e Stepsl — 5 learn action specific pose, while stépearns action specific appearance.

e \We ensure diversity by running steps- 6 in parallel. We sein = 60,n = 600 across20 nodes to
learn 1200 poselets.

o g s w

Poselet Activation Vector. The action poselets are run in a scanning window manner and we
collect poselet detections whose predicted bounds ovtragiven person bounds, defined by the
intersection over union of the area0.15. Thei'th entry of the poselet activation vector is the sum
of the scores of all such detections of poselet type

Spatial Model of Object Interaction. Interaction with other objects often provides useful cues
for disambiguating actions [121]. For example, images afpbe riding horses have the person
and the horse in certain spatial configurations. We modelrtegaction with four object cate-
gories :horse, motorbike, bicyclandtvmonitor We learn a mixture model of the relative spatial
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all examples within class examples
Figure 5.9: The middle image shows the nearest examplefimgtihe seed using the pose alone,

while the image on right shows the top examples withintdiengphotocategory. This allows us
to learn appearance and pose specific to that action.

location between the person bounding box and the objectdingibox in the image as shown in
Figure[5.12. For detecting these objects we use the detieatmd on poselets trained on these
object categories presented in the PASCAL VOC 2010 objdetctien challenge. For each object
type we fit a two component mixture model of the predicted lalirgn box to model the various
aspects of the person and objects.

Given the object detections we find all the objects whoseigted person bounds overlap the
bounds of the given persan 0.3. Similar to the poselet activation vector we construct aojéot
activation vector” by taking the highest score of the detector each object type among these.

Action context. Often the action of a person can be inferred based on whatsodine doing in
the image. This is particularly true for actions liglayinginstrumenandrunningwhich are group
activities. Our action context for each person i8 dimensional vector with an entry for each
action type whose value is the highest score of the actiodigiien among all the other people in
the image. Overall the second stage classifier is a separaée VM for each action type trained
on 10 features: self score for that action ahtbr action context.

Experiments. Table5.1 shows the performance of various features on ¢hanel validation set.
All the parameters described were set usiri@-#old cross validation on the trainval subset of the
images.

The poselet activation vectoalone achieves a performance .8 on the validation subset
of images and does quite well in distinguishing classes i#iimghorse, running, walkingand
phoning Adding the object model boosts the performance of categdikeridingbikeandusing-
computersignificantly, improving the average AP &.3. These classes either have the widely
varying object types and poselets are unable to captureppeasance variation. Modeling the
spatial interaction explicitly also helps for classifyingingcomputerclass as the interaction is
often outside the bounding box of the person. Finally theexdrbased re scoring improves the
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Figure 5.10: The top row shows a seed window that capturefiemspose for thaakingphoto
category. The6 nearest examples in configuration space for the top seewihds7? examples
from thetakingphotocategory while the bottom seed has o2ly
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walking ridinghorse

Figure 5.11: Example poselets shown by theiridining examples for various action categories.
These capture both the pose and appearance variation #doeasgion categories.

motorbike bicycle horse tvmonitor

Figure 5.12: Spatial model of the object person interactiBach image shows the modes of the
bounding boxes of the person (blue) relative to the bountdmgof the object (red). Fdnorse,
motorbikeandbicyclecategory the two modes capture front and side views of thecblyhile for
thetvmonitorit captures the fact that TV monitors are often at the lefigintrcorner of the person
bounding box.
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Validation Test
category| PAV | w/ OAV | w/C | w/C
phoning| 63.3| 62.0 | 62.0| 49.6

playinginstrument 44.2| 44.4 | 45.6| 43.2
reading | 37.4| 44.4 | 44.3| 27.7

ridingbike | 62.0| 84.7 | 85.5| 83.7
ridinghorse| 91.1| 97.7 | 97.5| 89.4
running | 82.4| 84.1 | 86.0| 85.6
takingphoto| 21.1| 229 | 24.6| 31.0
usingcomputer 54.2| 64.9 | 64.3| 59.1
walking | 82.0| 83.6 | 80.8| 67.9
average 59.8| 65.3 | 65.6| 59.7

Table 5.1: Average precision on the action validation arstl $et using various features. PAV is
the performance using just tip@selet activation vectorColumn w/OAV shows the performance
by including theobject activation vectoas features and column w/C shows the performance by
including action context. The object features help in tiidéengbike, ridinghorseandusingcom-
puter categories, while the context improves the performancelayinginstrumenandrunning
categories. Our methods achieves an average AB.oon the test set which is comparable to the
winning techniques in PASCAL VOE010.

performance oplayinginstrumenandrunningclass as these are often group activities.

Figure[5.1B shows the confusion matrix of our classifier. &dngh confusion pairs are
{reading, takingphotp — playinginstrumentndrunning — walking Figure[5.14 shows mis-
classified examples for several pairs of categories. Ovanalmethod achieves an AP 6%.6 on
the validation and9.7 on the test set which is comparable to the winning techniquaSCAL
VOC 2010 challenge, for examplé().1 for “INRIA _SPMHT” and 60.3 for “CVC_BASE". We
refer the readers to the challenge welllsive details and results of other entries.

5.7 Conclusion

We demonstrate the effectiveness of the poselet activagotor on the challenging tasks of 3D
pose estimation of people and static action recognitionnti@oy to the traditional way of rep-
resenting pose which is based on the locations of joints ages, we use the poselet activation
vector to capture the inherent ambiguity of the pose andcaspea multi-scale manner. This is
well suited for estimating the 3D pose of persons as well ésrafrom static images. In the
future we would like to investigate this representationlémalizing body parts by combining top

"http://pascallin. ecs. soton. ac. uk/ chal | enges/ VOC
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Figure 5.13: Confusion matrix for our action classifier. E@aow shows the distribution of the
true labels of the top0 ranked examples for each action category on the validatibees of the
images. Some high confusion pairs &reading, takingphotp — playinginstrumenandrunning
— walking
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phoning— takingphoto takingphoto— phoning

Figure 5.14:Pairwise confusions between several classes on the PASCAL1D validation set
Each A— B shows the tog images of class A ranked by classifier of class B. Confusiarften
caused when the person has similar pose or failures of tleedgtector.
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down pose estimates with bottom-up priors and exploit goggese constraints between people
and objects to estimate pose better.

Most of the other high performing methods on the PASCAL VOQ@@ction classification
task use low-level features based on color and texture hegetith a SVM classifier, without
any explicit treatment of pose. We believe that such methmaeefit from the fact that one is
provided with accurate bounding boxes of the person in thegan This is quite unrealistic in an
automatic system where one has to estimate the bounds usimigyaobject detector. We on the
other hand use the bounding box information quite looselgdnysidering all poselet detections
that overlap sufficiently with the bounding box. In addititine poselet activation vector provides
a compact representation of the pose and action, unlikeigiredimensional features typical of
“bag-of-words” style approaches.

The annotations and code for estimating the yaw of the headoaso in images, as well as the
keypoint annotations and code for static image action ifleggon can be downloaded from the
author’s website.
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Chapter 6

Crowdsourcing for Computer Vision

We describe our experience of collecting rougbiy, 000 image annotations on Amazon Me-
chanical Turk (AMT) [2]. The annotations we collected rafigen location of keypoints and figure
ground masks of various object categories, 3D pose estnodteead and torsos of people in im-
ages and attributes like gender, type of hair and clothittg,We describe the setup and strategies
we adopted to automatically approve and reject the anootati Such automation is necessary
for large scale annotations since the task of verificationitself be tedious and time consuming.
These annotations were used to train algorithms for detelsiegmentation [13], semantic bound-
ary extraction|[48], pose estimation/action recogniti6ri][and attribute recognition of people in
images|[11], some of which we described in the previous @rapt

Collecting annotations in a cost effective manner has beqawssible due to emergence of effi-
cient marketplaces like AMT. Services like AMT serve as nefipkace, where “workers” complete
Human Intelligence Tasks (HITs), as illustrated in Figur® @ he large pool of available workers
enables completion of large scale visual annotation tas&sime and cost effective manner. There
are three ingredients for constructing a HIT (Human Ingelfice Task) which “workers” on AMT
can complete :

1. User Interface. This is the front-end which enables the user to do the tasétartbeir web
browsers. Some of our tasks required users to draw the baeeda mark the locations
of various keypoints of objects. All our GUIs (Graphical Useterfaces) were written in
Java/JavaScript + HTML.

2. Instructions. Contains the task description, with examples of completskl &s well as GUI
usage instructions.

3. Verification. A method to approve/reject the HITs. This becomes impofftariarge scale
annotations as this step also has to be done automaticatig. c@ have a task done by
multiple workers followed by outlier rejection or a second#IT to verify the results to
automatically select the right answers. We adopt the fingtagzeh for all our tasks.
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Worker: Requester :
- Works on tasks - Creates tasks
- Gets paid by Amazon - Retrieves the answers

- Pays Amazon

Figure 6.1: Amazon mechanical turk serves as a marketptacedrkers to complete “Human
Intelligence Tasks” (HITSs).

An interesting aspect of collecting annotations on AMT iattitve can measure the inherent
hardness of these tasks. Many of these tasks don’t requao#fistraining and human performance
of even a casual annotator is quite good. The agreement &etwagious workers on a given
problem can provide us a sense of the hardness of the taskamppar bound on the performance
one might expect from an automatic system. In the 3D posmastn problem, we see that the
humans are not perfect, with an average errdi°aicross views.

We describe the three ingredients, i.e. the interfacefuoBbns and verification method for
the each of the tasks we set up on AMT in the next few sections.

6.1 Figure-ground Masks of Objects

We collect figure ground masks for various object categord& focus on the categories and
images from the PASCAL VOC 2010 dataset] [28]. The datasetbadr4 objects in the train-
ing/validation set fron20 categories. The statistics of the dataset are show in the [6ah

Interface & Instructions. Our interface was as simple polygon outline tool which adwe
user to draw a closed polygon and then move the vertices drtuadjust the polygon. The
advantage of this interface is that it is quite simple anditivie to use. On the other hand, it only
allows the user to draw one closed polygon which does not weikfor objects with holes. An
alternate interface was one which allows the user to pagptkels belonging to the figure. This
interface is too time consuming if done at the pixel level &wlinaccurate on the boundaries if
done at a “superpixel” (or a coarser quantization) level.
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Draw the outline of the sheep within the box Draw the outline of the sheep within the box Draw the outline of the sheep within the box

Read instuctions before you start (press r fo reset) Read instructions before you start (press r to reset) Read instructions before you start (press r to reset)

®)

Figure 6.2: The user interface for annotating the outer daonof the objects. (a) The user sees
this inside the Amazon Mechanical Turk environment. (b}iBbannotation by the user. (c) The
user closes the polygon and edits the boundary if needed;lakd the submit button.

Figure[6.2 shows our interface for marking the outer bouedanf the objects. We provide
instructions and sample segmentations, to describe tkeédadse user. Below that we display the
image to be segmented. To avoid confusion when there arepteultverlapping objects in the
image, we draw a bounding box to indicate which object we terésted in.

The interface is written in Javascript + HTML5. It uses tharfeas” tagS] which is cur-
rently supported in the latest Internet Explorer, Firefox &afari browsers. We did not have any
users complaining that the interface was not working pigder them. This switch was partly
motivated by the difficulties we had in porting our keypomibéling tool (next section) written in
JAVA to various browsers. At the time of writing the “canvdag) was only partly supported on IE,
in particular they had no support for displaying text. We Vddike to port the keypoint labeling
tool to Javascript + HTMLS5 in the future once text is suppoby then%

Verification. We collect5 independent annotations per object. For approving the Hiifesmat-
ically, we compute the pairwise overlap between the masksadbject, and find the one which
overlaps the maximum with everyone else. We consider alkeyagich overlap with this mask
greater than a threshold as correct. The threshold is chosewnally based on how flexible the
object category is. For example for rigid objects like “ledt and “tv-monitors” the we choose a
threshold of).75 while for less rigid objects like cats and dogs we choose @tdtareshold 0.65

or even lower. In general the quality of segmentations sttbthby the users are pretty good and
only about10% of the submitted hits were rejected. Figlrel 6.3 shows thilolision of submit
times for the “aeroplane” and “cat” categories. Figure Gidves some of the submitted results by
the workers. Figure 6.5 shows some outliers which are mjlegtitomatically by our algorithm.

Lcanvas text is now supported on most browsers, and the keypoi has been ported to HTML5
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Category | Number of Objects Reward (cents) Submit Time (seconds)
Aeroplane 738 2 77/59
Bicycle 614 2 87/69
Bird 971 1 72/57
Boat 687 1 47/36
Bottle 1014 1 47/36
Bus 498 1 55/41
Car 1774 1 55/42
Cat 1132 1 70/57
Chair 1890 1 60/44
Cow 464 2 70/58
Diningtable 468 1 50/36
Dog 1416 1 70/57
Horse 621 2 95/77
Motorbike 611 2 80/65
Person 7296 1 55/43
Pottedplant 821 1 65/50
Sheep 701 2 67/50
Sofa 451 1 65/51
Train 524 1 59/46
Tvmonitor 683 1 32/25
Total 23374

Table 6.1: Statistics of PASCAL VOC 2010 trainval set. Facheamage we collected indepen-
dent annotations. We paid them eitheor 2 cents (US currency), based on the how complex we
thought the boundaries of the class were, as shown in thedREwolumn. This is more or less
also reflected in the mean/median submit time of the HITs shawhe last column.
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Figure 6.3: Histogram of submit times for the “aeroplaneftjland “cat” (right) categories.

Figure 6.4: Example results submitted by workers.
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Figure 6.5: Ouitliers in the submitted boundaries by the wiwlon several images. These are
automatically rejected as they do not have high overlap thighbest answer.

6.2 Keypoint Annotation of Objects

Our goal here was to mark the locations of various keypoifitsbjects in images. The first
challenge is deciding which keypoints to use. This is fastiaightforward for animal categories,
where one can base them on anatomical parts, but becomesinahfor categories such as a
chair, a boat and an airplane, whose examples have larggustlvariations. For example, there
are chairs with four legs or one stem and a wide base. Somesdteie armrests, and others don't.
Military airplanes look very different from commercial ®)end sail boats have little in common
with cruise ships. Our approach was to split the categonitesa few sub-categories and each of
which has its own set of keypoints. This allows us to trairesafe “poselets”, which we described
in the previous chapter with more supervision. For examplke auld train poselets for pointed
front of a military airplane, the round tip of a commercialliaer and the propeller blades of a
propeller plane.

The second challenge is that some categories do not havecaliorientation, which makes
it difficult to assign keypoints in the reference frame of tfsgect. For example, it is clear what the
front left leg is in the case of a horse, but what is the frofitlégy of a table? Other categories have
round parts and thus have no extrema points, such as the badmotile or a potted plant. Our
solution in these cases is to introduce view-dependentdiatg For example, we have a keypoint
for the bottom left corner of a bottle, and we define the frefitleg of a table based on the current
camera view. The number of keypoints and the sub-categameshown in Table 6.2.

Interface & Instructions. Figure[6.6 shows the interface we have for annotating thpdieys.
Each user is shown an image within a bounding box and a lisegpdéints. The user drags and
drops these to their locations in the image. The user isuat&d not to mark the points which are
not visible due to occlusion, truncation etc. If a user aeotdlly moves a point then he/she can
click on it to move it back to its initial position. Once theanss done he/she can press submit.
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Class # Keypoints| # Subcategories
Aeroplane 16 3
Bicycle 11 1
Bird 12 2
Boat 11 2
Bottle 8 1
Bus 8 1
Car 14 1
Cat 16 1
Chair 10 1
Cow 16 1
Dining table 8 1
Dog 16 1
Horse 19 1
Motorbike 10 1
Person 20 1
Potted plant 6 1
Sheep 16 1
Sofa 12 1
Train 7 1
TV monitor 8 1

Table 6.2: Class-specific variations in the keypoint aninmta. #Keypoints is the number of
keypoints andtSubcategoriess the number of subcategories.
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Mark all the visible keypoints of the cat Mark all the visible keypoints of the bottle Mark all the visible keypoints of the pot

es not display, your browser may not have the latest version of java.  Ifthe image does not display, your browser may not have the latest version of java. o Ifthe image does not
struction:  Instructions:

display, your browser may not have the latest version of java.

. before you start. You may want to open this page in a new ead the guidelines before you start 1. Read the guidelines before you start
windo wf future reference. 2. Mark all the visible ke eypoints of the bottle within the bounding box by 2. Mark all the visible keypoints of the pot (of the potted plant) within the
2. Mark all the visible keypoints of the cat within the bounding box by dragging dragging each of the keypoints to its correct location. bounding box by dragging each of the keypoints to its corect location..
wch f the keypoints to its correct location. See this page to see what we mean by 3. Note that left and right are in image coordinates as shown in the examples. 3. Note that left and right are in image coordinates as shown in the examples.
4. Press the Submit Results button at the bottom once done. 4. Press the Submit Results button at the bottom once done.
& Bros e Submit Resuls buton e ot + Ifyou cannot localize 2 keypoint, leave it at it intial location. If you accidentally moved . Ifyou mnnot localize a keypoint, leave it at its intial location. If you accidentally moved
+ Tysrennnat looilizels Xayoctas leave frne St u Lfy ont el it, click on it to move it back. We will evalutate all the keypoints moved from their initial , click on it to move it back. We will evalutate all the keypoinis moved from their intial
1, click on i to move It back. We il evalutat al the Keypoints moved from thes ol Jootion; ___ < L”‘“”"”
sy « Pressror R if you need to reset the annotation,  Pressr or R if you need to reset the annotation.
o Pressr or R if you need to reset the annotation.

3. \lolc lha left and right are from the point of vi cw of rhc Dbjccl See examples.

(‘Submit Results )

(b)bottle (c)pottedplant

Figure 6.6: The user interface for annotating the keypaiftthe objects. An image inside the
bounding box is shown along with the list of keypoints on tight. The user can move the points
and place them on their locations in the image or leave themtatiched if the point is not visible.

Verification. Each object was annotated byndependent users. We assume that a keypoint is
visible if at least annotators have marked its location. To determine theilmtat each keypoint,

we find the closest pair of annotations and average all thetatians which are within a certain
radius of them. We also get an estimate of the variance ofdiaigand optionally can fix points
which have large variance.

6.3 3D Pose of Humans

We construct a dataset of people annotated with the 3D posiedfiead and torso. One may
try to estimate the 3D pose from the 2D keypoints, but thisostrivial because of occlusions,
truncations and variations of head/torso sizes acrossl@edfence we asked users to estimate
the rotations around X, Y and Z directly. Our research goda teastudy the task of human pose
estimation in a challenging setting, hence we collect isagfgpeople from thealidationsubset

of PASCAL VOC 2010 dataset, but remove the person annotations which are mdifedlt or
truncated.

Interface & Instructions. The interface in Figure 6.7(a), shows an image on the leftteuad
gauge figures corresponding to the head and the torso ongtite fihey are asked to adjust the
pose of the gauge figures to match the 3D pose of the shownmiersiee image. Different keys
rotate the figures along predefined axis. Other possible waysanipulate such objects in 3D
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Figure 6.7: (a) The user interface for 3D pose annotation BT Ab) Human error rate across
views.

are well known to the design and graphics community, but ot@riace was easiest to implement
using Javascript.

Verification. Each person was annotated bgifferent annotators for outlier rejection and esti-
mate of variance. We manually verified the results and dilechthe images, where there was high
disagreement between the annotators. These typicallgduwnt to be images of low resolution or
severely occluded ones. Our dataset has very few exampla®\ite rotation along X and Z axes
is high which is natural in consumer photographs of people.cdllected a total 0f620 people
annotations.

Figurel6.7(b) shows the human error in estimating the yawsscviews of the head and torso.
This is measured as the average of standard deviation ohtiwations on a single image in the
view range. The error is small when the person is facing froatk, left or right whereas it is high
when the person in facing somewhere in between. Overallthetators are fairly consistent with
one another with a median error@b6° for the head and.07° for the torso across views.

6.4 Attributes of People

About9000 images of people were taken from the H3D and PASCAL \V2DQ) dataset for which
we collect several attributes.
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Identify the "lower-clothes" of the person shown in the image.
Important : read instructions before you start the task.

O shorts (D shorts O shorts O shorts O shorts D shorts
) skirt O skirt ) skirt O skirt O skirt O skirt

O jeans O jeans O jeans O jeans O jeans O jeans
() pants () pants ) pants () pants ) pants (O pants

O other (D other D other D other Dother Dother

() shonts (O shorts O shonts (O shorts i shorts (O shorts (shorts (O shorts (O shorts O shorts
() skirt O skirt () skirt ) skirt ) skirt O skirt () skirt O skirt ) skirt O skirt

O jeans O jeans O jeans O jeans O jeans O jeans O jeans O jeans O jeans O jeans
O pants O pants ) pants () pants ) pants () pants ) pants ) pants ) pants ) pants
Oother O other O other O other O other O ather O other O other O other ) other

You must ACCEPT the HIT before you can submit the results,

Figure 6.8: User interface for marking the "lower-clothestribute.

Interface & Instructions. Each person is shown a set of images and asked to mark theitetri
for each image (Figurle 8.8). If the attribute is not cleardamse of occlusion, truncation, etc, the
user was asked not to mark any option. The users were alsosh@mples for each attribute kind,
as shown in Figure 6.9. Table 6.3 shows the list of attributesannotated. Instead of showing
the entire person we only show the region of interest, forrgda, upper bodies for hair-type and
gender and lower bodies for lower-clothes. We are able tddousing the keypoint annotations
we obtained earlier on the same dataset. This makes it much@asier for the users to annotate
them and there were many more images which were marked witle sdtribute compared to an
earlier run we did using the entire person shown as the sarad snages. We typically paid the
workersl1 cent for markingl6 attributes per HIT.

Verification. We collected labels for all attributes on all annotationgitg independent annota-
tors. A label was considered as ground truth if at ldasftthe 5 annotators agreed on the value of
the label. We discarde@1 annotations in which less than two attributes were specifseground
truths which left us with8035 images. We paid the workers who got at least half the marked
annotations right.
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le wearing tull length jeans

Mark the type of lower clothes of the person

Instructions:
* Mark the type of lower clothes as shorts, skirt, jeans, pants or other when you can.
# Do not mark the images where the sleeve type is not obvious. This could be because of heavy
occlusion, runcation, low resolution, etc.
» When multiple people are visible pick the one which fits inside the box the best.

Examples:

+ Shorts : short pants where the lower leg is visible.

garmet that hangs from the waist and covers part of whole of the leg.

AT i 3 r
- C
. Z
N
- = B * Unknown : These should be left unmarked.
4

Figure 6.9: Instructions for marking the "lower-clothedtrdute. Examples of each choice of
"lower-clothes”, such as jeans, shorts etc are shown tothelannotator identify these. The user
is also shown examples which may be left unmarked.

Attribute Choices

gender male, female

race white, black, asian, indian

age baby(0-2), child(2-10), adult, old(65+)
hair-type long, short, no-hair

glasses regular, sunglasses, no-glasses
shoes barefoot, sneaker/shoe, sandal

sleeve-type | short-sleeve, long-sleeve, no-sleeve

upper-clothes t-shirt, shirt, noclothes, bikini, tanktop, bikerwearhet
headgear cap/hat, full-helmet, half-helmet, other, none
lower-clothes| shorts, skirt, jeans, pants, other

hair-color black, blonde, white, no-hair, other

Table 6.3: List of attributes we annotated on Amazon Meataiurk.
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6.5 Conclusion

Services like AMT have enabled us to collect large amountanpfotations in a cost effective
manner. Although there are many advantages there are ssatvedntages too. The quality of the
annotations is a subject of concern sometimes and is a tumatithe difficulty of the task, amount
of time spend by the “workers” which in turn is a function ottfreward”, etc. Sometimes the
task is ill posed, for example, how does one label wings giaires with multiple wings, leading
to inconsistencies in annotations. For classes where thetste varies a lot, creating detailed
instructions for various special cases or curating the &tioms manually as a post processing
step can take the same order of time as manually annotagngitiges, defeating the advantages
of AMT. In such cases one may want to adopt other strategiesexfample, have a small set of
trained, but highly paid workers, or subject workers to &fidly designed qualification test.
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