
Efficient Parallelization of Natural Language

Applications using GPUs

Chao-Yue Lai

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-54

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-54.html

May 1, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award
#DIG07-10227). This work was also supported in part by the 2010
Research Fund of the University of Seoul. Additional supports come from
UC Berkeley Par Lab affiliates National Instruments, Nokia, NVIDIA,
Oracle, and Samsung.

Efficient Parallelization of Natural Language Applications

using GPUs

by Chao-Yue Lai

Research Project

Submitted to the Department of Electrical Engineering and Computer

Sciences, University of California at Berkeley, in partial satisfaction of the

requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Kurt W. Keutzer

Research Advisor

(Sign and date)

Professor Marti A. Hearst

Second Reader

(Sign and date)

1

Abstract

As we enter the era of mobile computing, high-quality and efficient

natural language applications become more and more important,

which greatly facilitate intelligent human-computer interaction.

Unfortunately, most high-quality natural language applications

employ large statistical models, which render them impractical for

real-time use. Meanwhile, Graphics Processor Units (GPUs) have

become widely available, offering the opportunity to alleviate this

bottleneck by exploiting the fine-grained data parallelism found in

the natural language processing algorithms. In this report, we

examine the possibility of parallelizing two major natural language

applications, natural language parsing and machine translation on

GPUs. In natural language parsing, we explore the design space of

parallelizing the dynamic programming computations carried out

by the CKY parsing algorithm. We use the Compute Unified

Device Architecture (CUDA) programming model to re-implement

a state-of-the-art parser, and compare its performance on two

recent GPUs with different architectural features. Our best results

show a 26-fold speedup compared against an optimized sequential

C implementation. In machine translation, we focus on

parallelizing the CKY-based machine translation decoding

algorithm using a phrase-based translation model and a trigram

language model. Various optimization approaches exposing the

inherent massive parallelism and reducing memory accesses have

been investigated. Experimental results show that our best parallel

implementation runs twice as fast as the optimized sequential

implementation, without loss of accuracy. A runtime analysis

shows that this suboptimal performance is caused by the memory-

intensive nature and excessive amount of irregular memory

accesses inherent in CKY-based machine translation decoding.

2

3

1. Introduction

Natural language applications are more and more important and prevalent

nowadays. As the number of mobile devices surges, the demand for keyboard-less

human-computer interaction, with natural language understanding as one of its core

algorithms, also increases considerably. Siri, a feature of the Apple iPhone 4S, acts

as a personal assistant to which users can speak commands (“Apple - iPhone 4S”,

2011). Its natural language understanding algorithms parse commands and perform

them accordingly. The emergence and huge success of Siri signifies the growing

importance of natural language processing (NLP). Another prime example is IBM

Watson, the machine built for answering questions in the Jeopardy! challenge

(“IBM - What is Watson?”, 2011). Watson defeated human champions (Jackson,

2011) in the Jeopardy! Show with its underlying DeepQA technologies (Ferrucci et

al., 2010), where QA stands for Question Answering. The fact that IBM chose

Jeopardy! as its grand challenge after building Deep Blue for chess, along with

Watson’s success, demonstrates the significance and maturity of NLP.

However, NLP algorithms are among the most computationally-challenging

and thus time-consuming algorithms in computer science. In order to handle

natural languages, large statistical grammar models and lexicons have to be built

and consulted throughout NLP algorithms. The quality of NLP algorithms is

proportional to the sizes of these statistical models, where large ones can consist of

billions of words and grammar rules. Therefore, there is always a tradeoff between

quality and running time in NLP applications, and for real-time applications,

sacrifices in solution quality are often inevitable.

Meanwhile, we have entered a manycore computing era, where the number of

processing cores in computer systems doubles every second year, while the clock

frequency has converged somewhere around 3 GHz (Asanovic et al., 2006). This

opens up new opportunities for increasing the speed of NLP applications, without

sacrificing their quality. The new manycore machines, especially graphical

processing units(GPUs), have been demonstrated to accelerate applications like

computer vision (Catanzaro et al., 2009) and speech recognition (Chong et al.,

2008), to more than an order of magnitude. It is also interesting to see if the same

performance gain can be translated into NLP applications, whose computational

patterns are vastly different from aforementioned application areas.

The two particular NLP applications we investigate in this report are natural

language parsing and machine translation. Natural language parsing is the task of

analyzing grammatical structures of an input sentence and predicting its most likely

parse tree (see Figure 2), while in machine translation, input sentences from a

foreign language is translated to a target language with the highest probability

4

according to statistical language models and translation models. We identified the

inherent concurrency in both applications and parallelized them on GPUs. We

examined different design choices offered by the GPU architecture. In natural

language parsing, the optimal implementation in GPU achieved a 26-fold speedup

comparing to the original CPU implementation, without sacrificing accuracy, while

in machine translation, a two-fold speedup is accomplished.

This report is structured as follows. In section 2, we present an overview of

the general architecture of GPUs and efficient synchronization schemes provided

by the Compute Unified Device Architecture (CUDA (Nickolls et al., 2008))

programming model. Section 3 and Section 4 discuss the details of parallelizing

natural language parsing and machine translation, respectively. Both sections

describe the respective NLP application, and its parallelization strategies, and then

the experimental results, followed by related works. Finally, section 5 concludes

the report.

2. GPUs and CUDA

Graphics Processor Units (GPUs) were originally designed for processing graphics

applications, where millions of operations can be executed in parallel. In order to

increase the efficiency by exploiting this parallelism, typical GPUs (Lindholm et

al., 2008) have hundreds of processing cores. For example, the NVIDIA GTX480

GPU has 480 processing cores, called stream processors(SP). The processing cores

are organized hierarchically as shown in Figure 1: A group of SPs makes up a

streaming multiprocessor (SM). A number of SMs forms a single graphics device.

The GTX480, for example, contains 15 SMs, with 32 SPs in each SM, resulting in

the total of 480 SPs. Despite this high number of processors, it should be

emphasized that simply using a GPU, without understanding the programming

model and the underlying hardware architecture, does not guarantee high

performance.

5

Figure 1: Hierarchical structure of GPUs.

2.1. Compute Unified Device Architecture

Recently, Nickolls et al. (2008) introduced the Compute Unified Device

Architecture (CUDA). It allows programmers to utilize GPUs to accelerate

applications in domains other than graphics. CUDA is essentially the programming

language C with extensions for thread execution and GPU-specific memory access

and control. A CUDA thread is executed on an SP and a group of threads (called a

thread block) is executed on an SM. CUDA enables the acceleration of a wide

range of applications in various domains by executing a number of threads and

thread blocks in parallel, which are specified by the programmer. In order to better

utilize the massive parallelism in the GPU, it is typical to have hundreds of threads

in a thread block and have hundreds or even thousands of thread blocks launched

for a single kernel: a data-parallel function that is executed by a number of threads

on the GPU.

2.2. Single Instruction Multiple Threads

One of the most important features of the GPU architecture is commonly known as

Single Instruction Multiple Threads (SIMT). SIMT means that threads are executed

6

in bundles (called warps), to amortize the implementation cost for a large number

of processing cores. In typical GPUs, a warp consists of 32 threads that share the

units for instruction fetching and execution. Thus, a thread cannot advance to the

next instruction if other threads in the same warp have not yet completed their own

execution. On the other hand, threads in different warps are truly independent: they

can be scheduled and executed in any order. Inside a warp, if some threads follow

different execution paths than others, the execution of the threads with different

paths is serialized. This can happen for example in if-then-else structures and loop

constructs where the branch condition is based on thread indices. This is called a

divergent branch and should be avoided as much as possible when designing

parallel algorithms and mapping applications onto a GPU. In the programming

model of CUDA, one or more warps are implicitly grouped into thread blocks.

Different thread blocks are mapped to SMs and can be executed independently of

one another.

2.3. Shared Memory

Generally speaking, manycore architectures (like GPUs) have more ALUs in place

of on-chip caches, making arithmetic operations relatively cheaper and global

memory accesses relatively more expensive. Thus, to achieve good performance, it

is important to increase the ratio of Compute to Global Memory Access (CGMA)

(Kirk and Hwu, 2010), which can be done in part by cleverly utilizing the different

types of shared on-chip memory in each SM.

Threads in a thread block are mapped onto the same SM and can cooperate

with one another by sharing data through the on-chip shared memory of the SM

(shown in Figure 4). This shared memory has two orders of magnitude less latency

than the off-chip global memory, but is very small (16KB to 64KB, depending on

the architecture). CUDA therefore provides the programmer with the flexibility

(and burden) to explicitly manage shared memory (i.e., loading a value from global

memory and storing it).

Additionally, GPUs also have so called texture memory and constant memory.

Texture memory can be written only from the host CPU, but provides caching and

is shared across different SMs. Hence it is often used for storing frequently

accessed read-only data. Constant memory is very small and as its name suggests is

only appropriate for storing constants used across thread blocks.

7

2.4. Synchronization

CUDA provides a set of APIs for thread synchronization. When threads perform a

reduction, or need to access a single variable in a mutually exclusive way, atomic

operations are used. Atomic operation APIs take as arguments the memory

location (i.e., pointer of the variable to be reduced) and the value. However, atomic

operations on global memory can be very costly, as they need to serialize a

potentially large number of threads in the kernel. To reduce this overhead, one

usually applies atomic operations first to variables declared in the shared memory

of each thread block. After these reductions have completed another set of atomic

operations is done. In addition, CUDA provides an API (_syncthreads()) to realize

a barrier synchronization between threads in the same thread block. This API

forces each thread to wait until all threads in the block have reached the calling line.

Note that there is no API for the barrier synchronization between all threads in a

kernel. Since a return from a kernel accomplishes global barrier synchronization,

one can use separate kernels when global barrier synchronization is needed.

3. Parallelization of Natural Language Parsing

Syntactic parsing of natural language is the task of analyzing the grammatical

structure of sentences and predicting their most likely parse trees (see Figure 2).

These parse trees can then be used in many ways to enable natural language

processing applications like machine translation, question answering, and

information extraction. Most syntactic constituency parsers employ a weighted

context-free grammar (CFG), that is learned from a treebank. The CKY dynamic

programming algorithm (Cocke and Schwartz, 1970; Kasami, 1965; Younger,

1967) is then be used to find the most likely parse tree for a given sentence of

length n in O(|G|n
3
) time. While often ignored, the grammar constant |G| typically

dominates the runtime in practice. This is because grammars with high accuracy

(Collins, 1999; Charniak, 2000; Petrov et al., 2006) have thousands of non-terminal

symbols and millions of context-free rules, while most sentences have on average

only about n = 20 words. In Section 3.1, Context-free grammars and sequential

CKY parsing algorithms are examined in more detail.

In Section 3.2, we present a general approach for parallelizing the CKY

algorithm that can handle arbitrary CFGs. No assumptions is made about the size

of the grammar and the efficacy of our approach is demonstrated by implementing

a decoder for the state-of-the-art latent variable grammars of Petrov et al. (2006)

(a.k.a. Berkeley Parser) on a Graphics Processor Unit (GPU). We discuss how the

8

hundreds of cores available on a GPU can enable a fine-grained parallel execution

of the CKY algorithm. We then explore the design space with different thread

mappings onto the GPU and discuss how the various synchronization methods

might be applied in this context. Key to our approach is the observation that the

computation needs to be parallelized over grammar rules rather than chart cells.

While this might have been difficult to do with previous parallel computing

architectures, the CUDA model provides us with fine-grained parallelism and

synchronization options that make this possible.

We empirically evaluate the various parallel implementations on two NVIDIA

GPUs (GTX480 and GTX285) in Section 3.3. We observe that some parallelization

options are architecture dependent, emphasizing that a thorough understanding of

the programming model and the underlying hardware is needed to achieve good

results. Our implementation on NVIDIA’s GTX480 using CUDA results in a 26-

fold speedup compared to the original sequential C implementation. On the

GTX285 GPU we obtain a 14-fold speedup.

Parallelizing natural language parsers has been studied previously (see Section

3.4). However, previous work has focused on scenarios where only a limited level

of coarse-grained parallelism could be utilized, or the underlying hardware

required unrealistic restrictions on the size of the context-free grammar. To the best

of our knowledge, this is the first GPU-based parallel syntactic parser using a state-

of-the-art grammar.

Figure 2: An example of a parse tree for the sentence “I love you .”

9

3.1. Natural Language Parsing

In this section we briefly review the CKY dynamic programming algorithm and the

Viterbi algorithm for extracting the highest scoring path through the dynamic

program.

3.1.1. Context-Free Grammars

In this work we focus our attention on constituency parsing and assume that a

weighted CFG is available to us. In our experiments we will use a probabilistic

latent variable CFG (Petrov et al., 2006). However, our algorithms can be used

with any weighted CFG, including discriminative ones, such as the ones in Petrov

and Klein (2007a) and Finkel et al. (2008). The grammars in our experiments have

on the order of thousands of non-terminals and millions of productions.

Figure 2(a) shows a constituency parse tree. Leaf nodes in the parse tree, also

called terminal nodes, correspond to words in the language. Pre-terminals

correspond to part-of-speech tags, while the other non-terminals correspond to

phrasal categories. For ease of exposition, we will say that terminal productions are

part of a lexicon. For example, (L1) in Figure 2(b) is a lexical rule providing a

score (of −0.23) for mapping the word ”I” to the symbol “PRP.” We assume that

the grammar has been binarized and contains only unary and binary productions.

We refer to the application of grammar rules as unary/binary relaxations.

3.1.2. Sequential CKY Parsing

The CKY algorithm is an exhaustive bottom-up algorithm that uses dynamic

programming to incrementally build up larger tree structures. To keep track of the

scores of these structures, a chart indexed by the start and end positions and the

symbol under consideration is used: scores[start][end][symbol] (see also Figure 3).

After initializing the pre-terminal level of the chart with the part-of-speech scores

from the lexicon, the algorithm continues by repeatedly applying all binary and

unary rules in order to build up larger spans (pseudo-code is given in Figure 4). To

reconstruct the highest scoring parse tree we perform a top-down search. We found

this to be more efficient than keeping backpointers.

10

Figure 3: The chart that visualizes the bottom-up process of CKY parsing for the

sentence “I love you .”

Figure 4: Pseudo-code for CKY parsing

Algorithm: parse(sen, lex, gr)

Input: sen /* the input sentence */

lex /* the lexicon */

gr /* the grammar */

Output: tree /* the most probable parse tree */

1 nWords = readSentence(sen);
2 scores[][][] = initScores(nWords);
3 lexiconScores(scores, sen, nWords, lex);
4 for length = 2 to nWords
5 binaryRelax(scores, nWords, length, gr);
6 unaryRelax(scores, nWords, length, gr);
7 tree = backtrackBestParseTree(scores);
8 return tree;

11

One should also note that many real-world applications benefit from, or even

expect n-best lists of possible parse trees. Using the lazy evaluation algorithm of

Huang and Chiang (2005) the extraction of an n-best list can be done with very

little overhead after running a slightly modified version of the CKY algorithm. Our

parallel CKY algorithm could still be used in that scenario.

3.2. Parallel Natural Language Parsing on GPUs

The dynamic programming loops of the CKY algorithm provide various types of

parallelism. While the loop in Figure 4 cannot be parallelized due to dependencies

between iterations, all four loops in Figure 5 could in principle be parallelized. In

this section, we discuss the different design choices and strategies for parallelizing

the binary relaxation step that accounts for the bulk of the overall execution time of

the CKY algorithm.

Figure 5: Binary relaxations in CKY parsing.

Algorithm: binaryRelax(scores, nWords, length, gr)

Input: scores /* the 3-dimensional scores array */

nWords /* the number of total words */

length /* the current span */

gr /* the grammar */

Output: None

1 for start = 0 to nWords − length
2 end = start + length;
3 foreach symbol in gr
4 max = FLOAT_MIN;
5 foreach rule r per symbol //defined by gr

6 // r is "symbol à l_sym r_sym"
7 for split = start + 1 to end − 1
8 // calculate score
9 lscore = scores[start][split][l_sym];
10 rscore = scores[split][end][r_sym];
11 score = rule_score + lscore + rscore;
12 // maximum reduction
13 if score > max
14 max = score;
15 scores[start][end][symbol] = max;

12

3.2.1. Thread Mapping

The essential step in designing applications on a parallel platform is to determine

which execution entity in the parallel algorithm should be mapped to the

underlying parallel hardware thread in the platform. For a CKY parser with

millions of grammar rules and thousands of symbols, one can map either rules or

symbols to threads. At first it might appear that mapping chart cells or symbols to

threads is a natural choice, as it is equivalent to executing the first loop in Figure 4

in parallel. However, in doing so, it not only fails to provide enough parallelism to

fully utilize the massive number of threads in GPUs, but it can also suffer from

load imbalance since each symbol has a varying number of rules associated with it.

Since threads in the same warp execute in SIMT fashion, this load imbalance

among threads results in divergent branches, degrading the performance greatly. It

is therefore advantageous to map rules rather than symbols to threads.

3.2.1.1. Thread-Based Mapping

If we map rules to threads, the nested loops in line 3 and line 5 of Figure 5 become

one flat loop that iterates over all rules in the grammar and the loop can be

executed in parallel as shown in line 3 of Figure 6. Since the grammar we use has

about one million rules, this mapping provides sufficient parallelism to fully utilize

the GPU, without running into load imbalance issues. We call this mapping thread-

based mapping.

Unfortunately, thread-based mapping has a major drawback. Since each rule is

mapped to a different thread, threads for rules with the same parent symbol need to

be synchronized in order to avoid write conflicts. In this mapping, the

synchronization can be done only through atomic operations (shown in line 14 and

line 18 of Figure 6), which can be costly.

3.2.1.2. Block-Based Mapping

Another mapping can be obtained by exploiting the two levels of granularity in the

GPU architecture: threads and thread blocks. We can map each symbol to a thread

block, and the rules associated with each symbol to threads in the respective thread

block. This mapping creates a balanced load because an SM can execute any

available thread block independently of other thread blocks, instead of waiting for

other SMs to complete. For example, when the first SM completes the computation

of a thread block because the associated symbol has relatively fewer rules, it can

proceed to the next available thread block, which corresponds to a different symbol.

13

Figure 6: Thread-based parallel CKY parsing.

This corresponds to mapping each iteration of the loop in line 3 of Figure 4 to

thread blocks and the loop in line 5 to threads. We call this mapping block-based

mapping and provide pseudo-code in Figure 7. The main advantage of this

mapping is that it allows synchronization without using costly atomic operations.

Another advantage of the block-based mapping is that we can quickly skip

over certain symbols. For example, the pre-terminal symbols (i.e. part-of-speech

tags), can only cover spans of length 1 (i.e. single words). In block-based mapping,

Algorithm: threadBasedRuleBR(scores, nWords,
length, gr)

Input: scores /* the 3-dimensional scores array */

nWords /* the number of total words */

length /* the current span */

gr /* the grammar */

Output: None

1 for start = 0 to nWords − length in parallel
2 end = start + length;
3 foreach rule r in gr in parallel
4 __shared__ float sh_max[NUM_SYMBOL] =

FLOAT_MIN;

5 // r is "symbol à l_sym r_sym"
6 for split = start + 1 to end − 1
7 // calculate score
8 lscore = scores[start][split][l_sym];
9 rscore = scores[split][end][r_sym];
10 score = rule_score + lscore + rscore;
11 // local maximum reduction
12 if score > local_max
13 local_max = score;
14 atomicMax(&sh_max[symbol], local_max);
15
16 // global maximum reduction
17 foreach symbol in gr in parallel
18 atomicMax(&scores[start][end][symbol],

sh_max[symbol]);

14

Figure 7: Block-based parallel CKY parsing

only one thread needs to check and determine if a symbol is a pre-terminal and can

be skipped. In contrast, in thread-based mapping, every thread in the thread block

needs to perform the check. Since this check involves a global memory access, it is

costly. Minimizing the number of global memory accesses is the key to the

performance of parallel algorithms on GPUs.

A challenging aspect of the block-based mapping comes from the fact that the

number of rules per symbol can exceed the maximum number of threads per thread

Algorithm: blockBasedRuleBR(scores, nWords, length,
gr)

Input: scores /* the 3-dimensional scores array */

nWords /* the number of total words */

length /* the current span */

gr /* the grammar */

Output: None

1 for start = 0 to nWords − length in parallel
2 end = start + length;
3 foreach symbol in gr in parallel
4 __shared__ float sh_max = FLOAT_MIN;
5 foreach rule r per symbol in parallel

6 // r is "symbol à l_sym r_sym"
7 for split = start + 1 to end − 1
8 // calculate score
9 lscore = scores[start][split][l_sym];
10 rscore = scores[split][end][r_sym];
11 score = rule_score + lscore + rscore;
12 // local maximum reduction
13 if score > local_max
14 local_max = score;
15 atomicMax(&sh_max, local_max);
16
17 // global maximum reduction
18 foreach symbol in gr in parallel
19 atomicMax(&scores[start][end][symbol],

sh_max);

15

block (1,024 or 512 depending on the GPU architecture). To circumvent this

limitation, we introduce virtual symbols, which host different partitions of the

original rules, as shown in Figure 8. Introducing virtual symbols does not increase

the complexity of the algorithm, because virtual symbols only exist until we

perform the maximum reductions, at which point they are converted to the original

symbols.

Figure 8: Creating virtual symbols whenever a symbol has too many rules.

3.2.2. Span-Level Parallelism

Another level of parallelism, which is orthogonal to the previously discussed

mappings, is present in the first loop in Figure 4. Spans in the same level in the

chart (see Figure 3), are independent of each other and can hence be executed in

parallel by mapping them to thread blocks (line 1 of Figure 6 and Figure 7). Since

CUDA provides up to three-dimensional (x, y, z) indexing of thread blocks, this

can be easily accomplished: we create two-dimensional grids whose X-axis

corresponds to symbols in block-based mapping or simply a group of rules in

thread-based mapping, and the Y axis corresponds to the spans.

3.2.3. Thread Synchronization

Thread synchronization is needed to correctly compute the maximum scores in

parallel. Synchronization can be achieved by atomic operations or by parallel

16

reductions using _syncthreads() as explained in Section 2. The most viable

synchronization method will of course vary depending on the mapping we choose.

In practice, only atomic operations are an option in thread-based mapping, since

we would otherwise need as many executions of parallel reductions, as the number

of different parent symbols in each thread block. In block-based mapping, on the

other hand, both parallel reductions and atomic operations can be applied.

3.2.3.1. Atomic Operations

In thread-based mapping, to correctly update the score, each thread needs to call

the atomic API max operation with a pointer to the desired write location. However,

this operation can be very slow (as we will confirm in Section 5), so that we

instead perform a first reduction by calling the API with a pointer to the shared

variable (as shown in line 14 of Figure 6), and then perform a second reduction

with a pointer to the scores array (as shown in line 18 of Figure 6). When we call

atomic operations on shared memory, shared variables need to be declared for all

symbols. This is necessary because in thread-based mapping threads in the same

thread block can have different parent symbols.

In block-based mapping we can also use atomic operations on shared memory.

However, in this mapping, all threads in a thread block have the same parent

symbol, and therefore only one shared variable per thread block is needed for the

parent symbol (as shown in line 15 of Figure 7). All the reductions are performed

on this single shared variable. Compared to thread-based mapping, block-based

mapping requires a fraction of the shared memory, and costly atomic operations on

global memory are performed only once (as shown in line 19 of Figure 7).

3.2.3.2. Parallel Reductions

Parallel reduction is another option for updating scores in block-based mapping.

Each thread in the thread block stores its computed score in an array declared as a

shared variable and performs parallel reduction with a binary-tree order as shown

in Figure 9 (from leaves to the root). When there are N threads in a thread block,

the maximum score in the thread block is obtained after log 2N steps and stored in

the first element in the array. Note that when implementing the parallel reduction

_syncthreads() needs to be called at the end of each step to ensure that every thread

can read the updated value of the previous step. This approach can potentially be

faster than the inherently serial atomic operations, but it comes with the cost of

using more shared memory (proportional to the number of participating threads).

This synchronization method is in practice only applicable to block-based mapping

17

Figure 9: Parallel reduction on shared memory between threads in the same thread

block with 8 threads.

and cannot be applied to thread-based mapping since it assumes that all threads in a

thread block perform reductions for the same parent symbol.

3.2.4. Reduce Global Memory Accesses

By now it should be clear that increasing CGMA and reducing global memory

access is important for high GPU performance. We can approximately calculate the

CGMA ratio of our kernel by counting global memory accesses and arithmetic

operations per thread. There are three global memory accesses for each binary rule:

the left child symbol ID, right child symbol ID, and the rule score itself. Moreover,

there are two global memory accesses for referencing the scores with left child ID

and right child ID in the split-point loop in line 7 of Figure 4. The loop in line 7

iterates up to the length of the span. The number of global memory accesses is thus

2·length + 3. On the other hand, there are only two additions in the kernel,

resulting in a very low CGMA. To improve performance, we need to increase the

CGMA ratio by better utilizing the shared memory. Since shared memory is rather

limited, and global memory accesses to the scores array in line 9 and 10 of Figure

4 spread over a wide range of memory locations, it is impossible to simply

transform those global memory accesses into shared memory accesses. Instead, we

need to modify the access pattern of the kernel code to meet this constraint.

18

Figure 10: (a) Chart example illustrating the access patterns of the scores array:

the shaded cells are the locations that the threads with start = 1, end = 4 accesses.

(b) Better memory access patterns with the new arrays

If we look into the access pattern (ignoring the symbol dimension of the scores

array), we can see that the accesses actually occur only in restricted locations that

can be easily enumerated. For example, the accesses are restricted within the

shaded cells in Figure 10(a) when the current cell is (1, 4). We can thus introduce

two arrays (sh_scores_L and sh_scores_R) that keep track of the scores of the

children in the shaded cells. These two arrays can easily fit into shared memory

because there are only about 1000 unique symbols in our grammar and the

sentence lengths are bounded, whereas the scores array can only reside in global

19

memory. Figure 10(b) shows how the new arrays are accessed. For each unique

left/right child symbol, we need to load the score from scores to sh_scores_L and

sh_scores_R once through a global memory access. Thus, the number of global

memory access will be reduced when multiple rules share the same child symbols.

Another way to reduce global memory accesses is to use texture memory.

Recall that texture memory can be used for caching, but needs to be initiated from

the CPU side and costs overhead. Moving the scores array to texture memory

seems promising since it is frequently read to obtain the scores of children symbols.

However, as the array is updated at every iteration of binary relaxation, we need to

update it also in texture memory by calling a binding API (between line 4 and 5 in

Figure 4). While it can be costly to bind such a large array every iteration, we can

reduce this cost by transforming its layout from scores[start][end][symbol] to

scores[length][start][symbol], where length = end − start. With the new layout, we

only need to bind the array up to size (length − 1) (rather than the entire array),

significantly reducing the cost of binding it to texture memory.

3.3. Experimental Results

We implemented the various versions of the parallel CKY algorithm discussed in

the previous sections in CUDA and measured the runtime on two different

NVIDIA GPUs used in a quad-core desktop environment: GTX285 and GTX480.

The detailed specifications of the experimental platforms are listed in Table 1.

CPU type Core i7 2.8GHz

System Memory 2GB

GPU Type GTX285 648MHz GTX480 700MHz

GPU Global Memory 1GB 1.5GB

#SM 30 15

#SP/SM 8 32

Shared Memory/SM 16KB up to 64KB

L1 Cache/SM N/A up to 64KB

Table 1: Specifications of Experimental Platforms for CKY parsing

20

Figure 1: Speedups of various versions of parallel CKY parser that have different

mappings, synchronization methods, and different memory access optimizations.

The grammar we used is extracted from the publicly available parser of Petrov

et al. (2006). It has 1,120 non-terminal symbols including 636 pre-terminal

symbols. The grammar has 852,591 binary rules and 114,419 unary rules. We used

the first 1000 sentences from Section 22 of the Wall Street Journal (WSJ) portion

of the Penn Treebank (Marcus et al., 1993) as our benchmark set. We verified for

each sentence that our parallel implementation obtains exactly the same parse tree

and score as the sequential implementation. We compare the execution times of

various versions of the parallel parser in CUDA, varying the mapping,

synchronization methods and memory access patterns.

Figure 11 shows the speedup of the different parallel parsers on the two GPUs:

Thread stands for the thread-based mapping and Block for the block-based one.

The default parallelizes over spans, while SS stands for sequential spans, meaning

that the computation on spans is executed sequentially. GA stands for global atomic

synchronization, SA for shared atomic synchronization, and PR for the parallel

reduction. SH stands for the transformed access pattern for the scores array in the

shared memory. tex:rule stands for loading the rule information from texture

memory and tex:scores for loading the scores array from texture memory. tex:both

means both the tex:rule and tex:scores are applied.

The exhaustive sequential CKY parser was written in C and is reasonably

optimized, taking 5.5 seconds per sentence (or 5,505 seconds for the 1000

benchmark sentences). This is comparable to the better implementations presented

in Dunlop et al. (2011). As can be seen in Figure 11, the fastest configuration on

the GTX285 is Block+PR+SS+tex:scores, which shows a 17.4× speedup against

the sequential parser. On the GTX480, Block+PR is the fastest, showing a 25.8×

21

speedup. Their runtimes were 0.32 seconds/sentence and 0.21 seconds/sentence,

respectively. It is noteworthy that the fastest configuration differs for the two

devices. We provide an explanation later in this section.

On both the GTX285 and the GTX480, Thread+GA shows the worst

performance as global atomic synchronization is very costly. Thread+GA on the

GTX285 is even about 8 times slower than the sequential CKY parser. Note that

although it is still the slowest one, Thread+GA on the GTX480 actually shows a

4.5× speedup. On the GTX285, Thread+SA, Block+SA, and Block+PR show 6.4×,

8.1×, and 10.1× speedups, respectively. Perhaps somewhat surprisingly,

parallelizing over spans actually hurts performance. By not serializing the

computations for spans, we can get speedups of 13% for Thread+SA+SS over

Thread+SA and about 40% for Block+SA+SS and Block+PR+SS over their

parallel spans versions. In thread-based mapping, the atomic operations on shared

memory are the bottleneck, so that sequential processing of spans makes only a

small difference. On the other hand, in Block+SA and Block+PR on the GTX285,

the global memory bandwidth is the major limiting factor since the same rule is

loaded from the global memory redundantly for each span when we parallelize

over spans. Hence, executing spans sequentially removes the redundant global

memory loads and substantially improves the performance.

On the GTX285, the transformed access pattern for the scores array along with

accesses to the shared memory (Block+PR+SH) improves the performance by

about 10%, showing an 11.1× speedup. Placing the scores array in texture memory

improves all implementations. The reduced binding cost due to the array

reorganization results in additional gains of about 25% for

Block+PR+SS+tex:scores and Block+PR+tex:scores against Block+PR+SS and

Block+PR (for a total speedup of 17.4× and 13.0×, respectively). However, placing

the rule information in texture memory improves the performance little as there are

many more accesses to the scores array than to the rule information.

The GTX480 is the Fermi architecture (“Fermi: NVIDIA’s Next”, 2009), with

many features added to the GTX285. The number of cores doubled from 240 to

480, but the number of SMs was halved from 30 to 15. The biggest difference is

the introduction of L1 cache as well as the shared memory per SM. For these

reasons, all parallel implementations are faster on the GTX480 than on the

GTX285. On the GTX480, parallelizing over spans (SS) does not improve the

performance, but actually degrades it. This is because this GPU has L1 cache and a

higher global memory bandwidth, so that reducing the parallelism actually limits

the performance. Utilizing texture memory or shared memory for the scores array

does not help either. This is because the GTX480 hardware already caches the

scores array into the L1 cache.

22

Interestingly, the ranking of the various parallelization configurations in terms

of speedup is architecture dependent: on the GTX285, the block-based mapping

and sequential span processing are preferred, and the parallel reduction is preferred

over shared-memory atomic operations. Using texture memory is also helpful on

the GTX285. On the GTX480, block-based mapping is also preferred but

sequential spans mapping is not. The parallel reduction is clearly better than

shared-memory atomic operations, and there is no need for utilizing texture

memory on the GTX480. It is important to understand how the different design

choices affect the performance, since one different choice might be necessary for

grammars with different numbers of symbols and rules.

3.4. Related Work

A substantial body of related work on parallelizing natural language parsers has

accumulated over the last two decades (van Lohuizen, 1999; Giachin and Rullent,

1989; Pontelli et al., 1998; Manousopoulou et al., 1997). However, none of this

work is directly comparable to ours, as GPUs provide much more fine-grained

possibilities for parallelization. The parallel parsers in past work are implemented

on multicore systems, where the limited parallelization possibilities provided by

the systems restrict the speedups that can be achieved. For example, van Lohuizen

(1999) reports a 1.8× speedup, while Manousopoulou et al. (1997) claims a 7-8×

speedup. In contrast, our parallel parser is implemented on a manycore system with

an abundant number of threads and processors to parallelize upon. We exploit the

massive fine-grained parallelism inherent in natural language parsing and achieve a

speedup of more than an order of magnitude.

Another difference is that previous work has often focused on parallelizing

agenda-based parsers (van Lohuizen, 1999; Giachin and Rullent, 1989; Pontelli et

al., 1998; Manousopoulou et al., 1997). Agenda-based parsers maintain a queue of

prioritized intermediate results and iteratively refine and combine these until the

whole sentence is processed. While the agenda-based approach is easy to

implement and can be quite efficient, its potential for parallelization is limited

because only a small number of intermediate results can be handled simultaneously.

Chart-based parsing on the other hand allows us to expose and exploit the abundant

parallelism of the dynamic program.

Bordim et al. (2002) present a CKY parser that is implemented on a field-

programmable gate array (FPGA) and report a speedup of up to 750×. However,

this hardware approach suffers from insufficient memory or logic elements and

limits the number of rules in the grammar to 2,048 and the number of non-terminal

symbols. Their approach thus cannot be applied to real-world, state-of-the-art

23

grammars.

Ninomiya et al. (1997) propose a parallel CKY parser on a distributed-memory

parallel machine consisting of 256 nodes, where each node contains a single

processor. Using their parallel language, they parallelize over cells in the chart,

assigning each chart cell to each node in the machine. With a grammar that has

about 18,000 rules and 200 non-terminal symbols, they report a speedup of 4.5×

compared to an optimized C++ sequential version. Since the parallel machine has a

distributed-memory system, where the synchronization among the nodes is

implemented with message passing, the synchronization overhead is significant,

preventing them from parallelizing over rules and non-terminal symbols. As we

saw, parallelizing only over chart cells (i.e., words or substrings in a sentence)

limits the achievable speedups significantly. Moreover, they suffer from load

imbalance that comes from the different number of non-terminal symbols that each

node needs to process in the assigned cell. In contrast, we parallelize over rules and

non-terminal symbols, as well as cells, and address the load imbalance problem by

introducing virtual symbols (see Figure 8).

It should be noted that there are also a number of orthogonal approaches for

accelerating natural language parsers. Those approaches often rely on coarse

approximations to the grammar of interest (Goodman, 1997; Charniak and Johnson,

2005; Petrov and Klein, 2007b). These coarse models are used to constrain and

prune the search space of possible parse trees before applying the final model of

interest. As such, these approaches can lead to great speed-ups, but introduce

search errors. Our approach in contrast preserves optimality and could in principle

be combined with such multi-pass approaches to yield additional speed

improvements. There are also some optimality preserving approaches based on A*-

search techniques (Klein and Manning, 2003; Pauls and Klein, 2009) or grammar

refactoring (Dunlop et al., 2011) that aim to speed up CKY inference. We suspect

that most of the ideas therein are orthogonal to our approach, and therefore leave

their integration into our GPU-based parser for future work.

4. Parallelization of Machine Translation

Machine translation (MT) is one of the most computationally challenging problems

in the field of natural language processing. Statistical machine translation (SMT)

uses the knowledge from trained language and translation models to automatically

translate sentences between languages. Translating each sentence requires large

amounts of unpredictable data accesses to the language model and the translation

model, making this a very memory-intensive application, whose data access pattern

is determined at runtime. Translation process is slow and accuracy greatly depends

24

on the size of the language and translation models used. Efficient parallelization of

machine translation will open up new possibilities in many fields of general-

purpose computing including real-time human computer interaction, multimedia

systems and surveillance systems.

As a complicated problem machine translation is, SMT algorithms vary in

terms of granularity of translation units. In our work, we adopted the phrased-based

translation paradigm as developed in Koehn et al. (2003). SMT also has many

variations in strategies to form larger translations from smaller ones. We adopted a

CKY-based chart decoding strategy, which is similar to the CKY parsing algorithm

described in the last section.

More detailed descriptions of the chosen SMT algorithm will come in Section

4.1. In Section 4.2, we describe various strategies to parallelize this inherently-

memory-intensive algorithm. The experimental results are given in Section 4.3,

where the best parallel implementation is twice faster than the sequential

implementation. We will give profiling results to show that the suboptimal

performance is mainly caused by overheads of memory accesses and divergent

control branches. Finally, with sufficient knowledge about different variations of

SMT algorithms, related works are introduced in Section 4.4.

4.1. Statistical Machine Translation

In this section we give an overview of the sequential SMT algorithm. We first give

an overview of an SMT system, and then we introduce individually the two key

statistical models in SMT: language model and translation model. The CKY-based

decoding algorithm upon which we parallelize is explicated afterwards.

4.1.1. Overview

In statistical machine translation, given a foreign sentence f, we want to find an

English sentence e, such that its probability is maximized:

argmax�	�(
|�)

With the help of the Bayes rule, the translation probability can be reformulated as:

argmax
	�(
|�) = argmax
	�(�|
)�(
)

This allows for a language model p(e) and a separate translation model p(f | e).

25

Figure 12: An overview of an SMT system, with a Spanish-to-English example.

Figure 12 gives an overview of an SMT system. Given a foreign sentence, the

system first uses the translation model to generate a collection of English segments,

and then the language model is consulted to reassemble the fragments into an

English sentence with the highest probability. The whole translation process

utilizing both models is called decoding, and how the two models are utilized is

called the decoding algorithm. These terms are coined to distinguish from the

statistical analyses used to generate the two models, on which most MT research

focuses.

4.1.2. Language Model

A language model (LM) assigns probabilities to word sequences in order to

account for their relative frequencies with one another in a natural language. For

example, the English word “he” occurs much more frequently than “statistical”.

We will thus assign a much higher score to “he” than to “statistical”.

A language model can also be called an n-gram model, where n is the

maximum number of words that this LM assigns probability to. An n-gram

language model is essentially an (n – 1)-order Markov model. In this work, we

employed a trigram model, where we assign probability to a word given its (at

most) two preceding words, as the nature of 2
nd

-order Markov model. A trigram

model suffices since there is no significant improvement of accuracy from a

trigram to a four-gram model.

26

Figure 13: levels of transfer: different levels of granularity on which translation

models are based. More linguistic understanding is required as the pyramid goes

up. Current SMT algorithms are based on the bottom three levels, while the

ultimate goal is to use interlingua to represent meanings independent of languages.

4.1.3. Translation Model in Phrase-based Machine Translation

A translation model (TM) assigns probabilities to pairs of foreign-English

expressions, which reflect the relative frequencies of co-occurrences of the pairs in

a bilingual corpus. For example, the Spanish word “sombrero” means “hat” in

English in most contexts. It is thus very likely that the Spanish-English pair

(sombrero, hat) has a higher probability than, say, (sombrero, juice).

The forms of expressions a TM assigns probabilities to depend on the level of

transfer of the TM, which is illustrated as the pyramid in Figure 13. In word-based

MT paradigm, only frequencies of word pairs are evaluated, whereas in phrase-

based MT paradigm, phrase pairs are the fundamental unit. In syntactic MT

paradigm, part-of-speech tags are employed to allow more linguistic information to

enter the model.

Most state-of-the-art translation-models are phrase-based (Koehn, 2004;

Tillmann, 2003), but syntactic MT is also a promising area of research (Chiang,

2005; Yamada and Knight, 2002), on which translation of language pairs with

significantly different word orderings, such as Chinese and English, performs

better. In this work, we adopted phrase-based translation models. In particular, the

length of phrases is limited to three since there is no significant performance gain

including longer phrase pairs (Koehn et al., 2003).

27

Figure 14: The three steps of a CKY-based decoding algorithm, which is very

similar to chart parsing.

28

Figure 15: pseudo-code for CKY-based MT decoding algorithm.

4.1.4. CKY-based Decoding Algorithm

We adopt a CKY-based decoding algorithm, which is very similar to the CKY

chart parsing algorithm mentioned in Section 3.1.2. Figure 14 shows the three

major steps of this algorithm, while Figure 15 provides its pseudo-code. First, we

initialize the two-dimensional cells data structure in line 2, which represents the

chart pyramid in Figure 14. We then apply the translation model to find translations

of words and phrases up to length three, to fill up the bottom three levels of the

chart (step 1 in Figure 14, line 3 in Figure 15). As follows, we combine translations

of smaller lengths to larger lengths in a bottom-up dynamic-programming fashion

(step 2, lines 4-5). Finally, the best translation translation is extracted from a top-

down backtracking in cells (step 3, line 6).

The CKY-based decoding algorithm in Figure 15 and the CKY parsing

algorithm in Figure 4 are very similar. Basically, LM and TM in CKY decoding

correspond to lexicon and grammar in CKY parsing, respectively. One major

difference is that there is no unary relaxation in CKY decoding. The combineTrans

function corresponds to binary relaxation, since it is always combining two lower

cells. Another important difference is the dimensionality of the main data structure,

scores in parsing and cells in MT decoding. The scores[start][end][symbol] array is

three-dimensional, where the third dimension corresponds to symbol, since one

chart cell can only be mapped to one symbol and the number of symbols is limited

to a few hundreds. Whereas in MT decoding, cells[start][end] is two-dimensional.

Algorithm: translate(sen, lm, tm)

Input: sen /* the input sentence */

lm /* the language model */

gm /* the translation model */

Output: trans /* the most probable English translation */

1 nWords = readSentence(sen);
2 cells[][] = initCells(nWords);
3 translatePhrases(cells, sen, nWords, tm);
4 for length = 2 to nWords
5 combineTrans(cells, nWords, length, lm);
6 translation = backtrackBestTrans(cells);
7 return translation;

29

In each cell, a list of possible translations for words in the range of (start, end) is

stored. Unlike in parsing, one cell can potentially correspond to infinite number of

translations, which are combinations of English words in the LM and TM. We thus

cannot index the translations like we do for symbols in parsing. We also have to

limit the number of translations per cell and prune unlikely ones.

Just like binary relaxation is the bottleneck in CKY parsing, combining

translations is the bottleneck in CKY-based MT decoding, as its details are

discussed in the next subsection.

Figure 16: combineTrans in CKY-based MT decoding.

Algorithm: combineTrans(cells, nWords, length, lm)

Input: cells /* the 2-dimensional cells array */

nWords /* the number of total words */

length /* the current span */

lm /* the language model */

Output: None

1 for start = 0 to nWords − length
2 end = start + length;
3 cur_cell = cells[start][end];
4 for split = start + 1 to end – 1
5 l_list = cells[start][split];
6 r_list = cells[split][end];
7 foreach l_trans in l_list
8 foreach r_trans in r_list
9 // calculate LM score
10 lm_score = getLMscore(l_trans,

r_trans, lm);
11 score = l_trans.score + r_trans.score

+ lm_score;
12 new_trans = createTrans(l_trans,

r_trans, score);
13 addTrans(cur_cell, new_trans);
14
15 // pruning unlikely translations
16 max = getMaxScore(cur_cell);
17 threshold = max – BEAM_WIDTH;
18 pruneCell(cur_cell, threshold);

30

4.1.4.1. Combining Translations

Figure 16 shows the pseudo-code for combineTrans in line 5 of Figure 15. The

outer-most loop iterates through all cells in one level of the chart given a specific

start position. Given a cell (line 3), we iterate through different split positions, and

combine each translation in the left cell (as l_list) with each translation in the right

cell (as r_list), by calculating the LM score according to words in the boundaries of

the translations (line 10) and adding the scores up (line 11). We collect all new

combined translations with all split positions and put them in the target cur_cell.

We also prune unlikely translations with a beam search strategy (lines 16-18).

This is also done in other major MT decoder systems for efficiency (Koehn et al.,

2003). The beam width can be chosen to reflect the tradeoff between speed and

accuracy.

4.1.4.2. Simplifying Translations into Contexts

A key observation to the efficient implementation of CKY-based decoding

algorithm is that not all words in a translation are necessary to calculate LM scores.

As shown in Figure 17, with a trigram LM, only the first two and the last two

words of translations are required. Therefore, we only need to keep (at most) four

words in a translation, defined as the context. Simplifying translations into contexts

largely reduce memory usage and creates a more regular data structure, both of

which are beneficial in GPU programming.

With the use of contexts, there will be much more reduplicated translations

inside a cell. We can eliminate duplicates of contexts with lower scores to

accelerate the algorithm without loss of accuracy.

Figure 17: We only need the first two and the last two words of translations

(defined as the contexts) to calculate the LM scores in a trigram model.

31

Figure 18: pseudo-code for combineTransInParallel.

Algorithm: combineTransInParallel(cells, nWords,
length, lm)

Input: cells /* the 2-dimensional cells array */

nWords /* the number of total words */

length /* the current span */

lm /* the language model */

Output: None

1 for start = 0 to nWords – length in parallel
2 end = start + length;
3 cur_cell = cells[start][end];
4 for split = start + 1 to end – 1 in parallel
5 l_list = cells[start][split];
6 r_list = cells[split][end];
7
8 __shared__ sh_r_list;
9 copyToShared(r_list, sh_r_list);
10 foreach l_trans in l_list in parallel
11 foreach sh_r_trans in sh_r_list
12 // calculate LM score
13 lm_score = getLMscore(l_trans,

sh_r_trans, lm);
14 score = l_trans.score +

sh_r_trans.score + lm_score;
15 new_trans = createTrans(l_trans,

sh_r_trans, score);
16 atomicAddTrans(cur_cell, new_trans);
17
18 uniquifyCellInParallel(cur_cell);
19
20 // pruning unlikely translations
21 max = getMaxScoreInParallel(cur_cell);
22 threshold = max – BEAM_WIDTH;
23 pruneCellInParallel(cur_cell, threshold);

32

4.2. Parallel Machine Translation on GPUs

In this section, we will focus on various approaches and design choices to

efficiently parallelize combining translations, combineTrans, where the majority of

runtime of the whole algorithm is spent on.

4.2.1. Thread Mapping

Figure 18 shows the pseudo-code of the parallel version of combineTrans. As in

the case of parallelizing parsers, all four loops in combineTrans are parallelizable.

However, we do not parallelize upon the inner-most loop (line 11), because this

loop is not completely independent of the previous loop (line 10). Given a split

point (line 4), the two inner-most loops iterate through lists of left and right

translations, respectively. For each pair of left and right translations, we will

calculate the LM score of the combination and add this new translation to the

current cell (lines 13-16). That is to say, if there are l and r translations in l_list and

r_list, respectively, we will generate l·r new translations.

We can certainly assign each thread to perform one combination of left and

right translations, by making the two inner-most loops executed in parallel.

However, this might induce load imbalance among threads, since the overhead of

getLMscore critically depends on its input words
1
. Moreover, the amount of work

performed per thread will be too little to justify the overhead of parallelism and

inter-thread synchronization.

Instead, we copy all the translations in r_list in the shared memory (lines 8-9)

to share among threads in a thread block. We let one thread to handle the

combinations of one left translation with all corresponding right translations. This

significantly increases the amount of work per thread and is more load-balanced.

4.2.2. Span-Level Parallelism

Just like in parallelizing parsers, spans with the same length are independent

of one another and thus can be processed in parallel (line 1 in Figure 18). Again,

we utilize the multi-dimensional indexing of thread blocks in CUDA to achieve

this task. We assign the x-dimension of the thread block to different start positions

in a level (line 1) and the y-dimension to different split points given a specific start

position (line 4). By doing so, a thread block handles the combination of

1
 For example, if the input three-word sequence does not exist in the trigram model, we

have to back off to bigram probabilities and/or to adopt the probability for unknown words.

33

translations of left and right lists given a split point. Then, we copy all the right

translations onto the shared memory and map a thread to a left translation (line 10).

The rest of the process is explained previously. We will show in the experiments

that exploiting this additional level of parallelism significantly improves the

performance of the parallel MT decoder.

We have to pay extra attention when we add new translations to the target cell

(line 16). Since every thread in a thread block updates the same target cell cur_cell,

synchronization is necessary to avoid inconsistency. In the actual code, we use a

shared variable cur_location to keep track of the end of the list of cur_cell. When

we add translations, we first use atomicAdd to increment cur_location, and then we

put the new translation at cur_location.

4.2.3. Uniquifying and Pruning Translations

At the end of combining translations, new translations that have the same contexts

have to be trimmed (called “uniquifying”) and translations that fall out of beam

have to be pruned. Uniquifying and pruning translations are indispensible for the

efficiency of the CKY-based MT decoding algorithm. These two procedures can

also be performed in parallel (lines 18-23 in Figure 18), as explained as follows.

In uniquifying translations, we can compare the contexts of each pair of

translations and eliminate the translation with a lower score/probability. If the

number of translations is n, This pair-wise comparison is essentially of O(n
2
)

complexity, and not parallelizable. We thus do not adopt the pair-wise comparison

method.

Instead, we sort the translations according to the words in the contexts and

then remove consecutive translations with the same contexts. The complexity of

this sort-and-remove method lowers to O(nlog n). Furthermore, both sorting and

removing consecutive duplicates are parallelizable. In this work, we adopt the

optimized implementations of both routines in the CUDA programming library

Thrust (Hoberock and Bell, 2000).

Pruning can be divided into two major steps, maximization of scores (line 21)

and eliminating translations with low scores (line 23). Both of them are amenable

to parallelization. Maximization of scores can be either implemented with atomic

operations or parallel reductions, with little influence on running time. Eliminating

elements in a vector with a threshold is a well-defined parallel function, and we

adopt the efficient Thrust function reduce_by_key to perform the task.

34

Figure 19: An LM score table with compact indexing, with an example of looking

up the trigram probability of “of course not.” Notice that in the actual

implementation the words are replaced with IDs for simplicity and efficiency.

4.2.4. Implementations of LM Score Table

The fastest and simplest way to implement a trigram LM score table is to use a

three-dimensional array, where indices are word IDs. However, given the large

number of words in language models, a 3D array is not practical in CPUs, not to

mention GPUs, whose memory is rather limited. Furthermore, the 3D array will be

extremely sparse, since most word sequences are not common in natural languages.

We need a more memory-efficient implementation of the LM score table.

The CPU implementation of the LM score table is the C++ standard library

<map>, with the triplet of words as the key and the LM score as the value.

However, this implementation is not viable on GPU, because <map> is not thread-

safe, which may induce race conditions. Moreover, the binary-tree implementation

of <map> will create too many global memory accesses on GPU for the lookups to

be efficient.

35

We can condense the three-dimensional LM score table by recording all the

word indices that can follow a unigram/bigram in a vector. Figure 19 is an example

of such compact LM score table. We have three vectors for word IDs, First_Words,

Second_Words, and Third_Words. The vector Index_into_Second_Words records

the starting index in Second_Words where the single word can follow. For example,

the index of “of” in Index_into_Second_Words is 144, and the next index is 147,

which means there are 3 (147 - 144) bigrams starting with “of”, and the second

words are stored in Second_Words of indices 144 to 146.

Index_into_Third_Words and Third_Words are designed with the same

methodology. For example, if we want to search for the trigram score of “of course

not”, we first check the index of “of” in Index_into_Second_Words and the index

of its next word, and get the range 144 to 146. Then we search through

Second_Words for the word ID of “course”, and check its corresponding index in

Index_into_Third_Words (and its next index), and get the range 345 to 347. Finally,

we search through Third_Words for the word ID of “not”, and access the

corresponding score in Trigram_Scores.

We search through Second_Words and Third_Words with a binary search

instead of a linear search, given that the word IDs pertaining to the same

unigram/bigram are stored in ascending order. Binary searches largely reduce

global memory accesses comparing to linear searches, which is crucial for GPU

performance, especially when the bigram/trigram is not found in the language

model.

Another possible implementation is a parallel hash map. Alcantara et al. (2009)

demonstrates a construction method of hash maps on GPUs with a hybrid approach

of sparse perfect hashing and cuckoo hashing. Comparing to the LM score table

with compact indexing, the number of memory accesses does not vary considerably

with the input words. Nevertheless, although sparse perfect hashing is used to

construct the hash map, the load factor is 71% (Alcantara et al. 2009), with a 29%

waste of space. This is unfavorable under a memory-limited GPU setting,

comparing the compact-indexing LM score table.

4.3. Experimental Results

We have implemented the parallel CKY MT decoder in CUDA, with various

design choices discussed in the last subsection. The runtimes and speedups are

measured on one NVIDIA GPU, GTX480, in a quad-core desktop environment,

against a serial implementation running on a Core i7 quad-core processor, as listed

in Table 2. Notice that GTX285 is not tested since we arrived at the same

conclusions comparing two GPUs as in the case of parallel CKY parsing.

36

CPU type Core i7 2.8GHz quad-core

System Memory 2GB

GPU Type GTX480 700MHz

GPU Global Memory 1.5GB

#SM 15

#SP/SM 32

Shared Memory/SM up to 64KB

L1 Cache/SM up to 64KB

Table 2: Specifications of Experimental Platforms for MT decoding

The phrase-based translation model and the trigram language model are

trained using the Spanish-English parallel texts in the EuroParl corpus (Koehn

2005). The translation model is trained by Moses (Koehn et al., 2007), an open-

source SMT toolkit for training translation models and decoding. The translation

model consists of 5,041,515 Spanish-English rules, where only unigram, bigram

and trigrams are considered on both sides. The language model is trained with

SRILM (Stolcke, 2002), an open-source language modeling toolkit, where we limit

the length of word sequences to trigrams. The resulting LM has 117,579 unigrams

(and thus, words), 2,690,679 bigrams and 2,863,446 trigrams. All of the words

appearing in the English side of the TM are captured in the LM, since they are

trained on the same corpus.

We used the first 1000 pairs of sentences in the Spanish-English texts in the

EuroParl corpus (Koehn 2005) as our benchmark set. Identicalness of the resultant

translation between serial and parallel implementations cannot be guaranteed due

to the inherent randomness of parallel execution. Nevertheless, we verified that

translation quality does not degrade with parallelization, by asserting that there is

no decrease of BLEU score (Papineni et al, 2002), a de facto MT evaluation

standard.

We first tried with different design choices on span-level parallelism as well

as uniquifying. The results are summarized in Table 3. As we can see, all results

with parallel spans greatly outperform those with sequential spans. This is not

surprising since much more parallelism available in the CKY decoding is exploited

in parallel spans.

37

Span Uniquify
Runtime

(seconds)
Speedup

Sequential No 2320.0 0.1

Sequential Pair-wise 590.0 0.4

Sequential Sorting 333.3 0.7

Parallel No 468.1 0.5

Parallel Pair-wise 147.9 1.6

Parallel Sorting 117.6 2.0

Table 3: the runtime and speedup comparisons among various design choices over

1000 sentence pairs. The sequential implementation runs in 235.7 seconds.

Uniquifying can be implemented with pair-wise comparison, parallel sorting,

or not realized at all. From Table 3 it is obvious that uniquifying is mandatory for

practical reasons. Without uniquifying, the numbers of translations per cell

increases considerably, which greatly slow down the decoding process. Parallel

sorting is preferred to pair-wise comparisons, as Thrust provides an optimized

implementation.

On the other hand, no significant difference in runtime is observed with

different implementations of the LM score table, as shown in Table 4. It seemed

that parallel hash maps should perform better, since the number of memory

accesses remains constant with respect to different input words, unlike with

compact indexing. However, compact indexing has fewer memory accesses when

the input trigram is not in the model. As a result, compact indexing slightly outruns

parallel hash maps, even when the latter is implemented in texture memory.

Compact

Indexing

Parallel

Hash Map

Runtime

(seconds)
Speedup

Yes N/A 117.6 2.0

No
Global

Memory
130.2 1.8

No
Texture

Memory
124.0 1.9

Table 4: the runtime and speedup comparisons with different implementations of

the LM score table over 1000 sentence pairs. The sequential implementation runs

in 236 seconds

38

Figure 20: the runtime comparisons (in seconds) of different parallelization

schemes, CUDA versus OpenMP, on 1000 sentences with different lengths.

The 2.0× speedup over serial implementation is clearly suboptimal. Figure 20

demonstrates this by comparing the best CUDA implementation with an OpenMP

implementation (Dagun and Menon, 1998), which is tested on the quad-core Core

i7 CPU shown in Table 2. With all sentences, the CUDA implementation runs

slower than the OpenMP one, even when the latter is much easier to program and

only uses four threads. However, we can see in the right graph of Figure 20 that

CUDA performs much better on longer sentences in comparison to OpenMP,

where CUDA achieves a 3.0× speedup. Translating longer sentences benefits more

from span-level parallelism, since they have bigger charts with more independent

tasks to saturate the GPU cores and threads.

The profiling results of our CKY-based MT decoder in Figure 21 point out the

reason why only limited speedup can be achieved. Add Scores in Figure 21, or line

14 in Figure 18, is the only compute-intensive part of the entire

combineTransInParallel method. As we can see, Add Scores only accounts for 5%

of the total runtime, and all the rest parts are memory-intensive
2
. This low

compute-to-memory ratio does not favor GPU computing.

2
 Get LM Scores is a series of table lookups, no matter whether compact indexing or hash

maps are used. Uniquify and Prune are both heavy on comparison of elements and

relocating them. None of them contain arithmetic instructions.

235.7

117.6
101.2

0

50

100

150

200

250

Serial CUDA OpenMP

(4 threads)

All sentences

(28 words in average)

892.7

286.4
361.1

0

200

400

600

800

1000

Serial CUDA OpenMP

(4 threads)

Long sentences

(more than 40 words)

39

Figure 21: percentages of runtime of major routines in combining translations in

parallel. Notice that the only compute-intensive part, Add Scores (line 14 in Figure

18), takes up only 5% of the overall runtime.

Parallel CKY parsing does not have an ideal compute-to-memory ratio, either.

However, thanks to the limited number of symbols and corresponding rules, its

memory accesses are regular and predicable. On the contrary, Get LM Scores in

parallel CKY-based decoding, which accounts for 37% of the overall runtime,

consists of unpredictable memory accesses, since the words that will be examined

in the list of translations of a cell cannot be determined prior to the actual

computation. Those memory accesses are also irregular when we use compact

indexing, since accesses into First Words, Second Words and Third Words are

completely random with respect to thread IDs. The same can be said when hash

maps are used.

Finally, we can observe from Figure 21 that the maximum speedup we can

possibly achieve is 4.3×, which is about twice as the current speedup. Uniquify and

Prune are built from the heavily-optimized Thrust routines, which means we

cannot further reduce their runtime. Even if we could manage to accelerate the

other parts to a negligible amount of runtime, we are still left with the 47% runtime

for Uniquify and Prune. The theoretically best speedup for our parallel CKY-based

MT decoder is thus 2.0× / 47% = 4.3×.

Get LM Scores

37%

Uniquify

24%

Prune

23%

Add Scores

5%

Miscellaneous

11%

Percentages of Runtime

40

4.4. Related Work

Most of the research effort of the statistical machine translation community has

been dedicated to the investigation of various statistical methods to construct

language models and translation models with higher translation quality. This leaves

researches on efficient decoding algorithms a minority. Furthermore, all of such

research work focuses on algorithmic enhancement instead of exploring

possibilities of implementation platforms, let alone parallelism. As a result, none of

them is directly comparable to our approach.

The most well-known series of research for efficient MT decoding develop the

concept of cube pruning (Chiang, 2007; Huang and Liang 2007). Cube pruning is

essentially a clever way to combine two lists of k translations and get the top k

results. They argue that not all k
2
 combinations have to be traversed, but we can

start from combining the best translations of both lists, and go down the lists in a

descending order of probability. The resultant speed improvements often surpass a

factor of ten. However, the cube pruning approach is inherently serial and not

parallelizable.

Several research projects on efficient MT decoding also stress parallelism, but

the parallelism in their work connotes the simultaneous execution of orthogonal

MT decoding approaches, instead of a feature of implementation platforms. In Ren

and Shi (2002), four subsystems of translation engines are executed independently,

whose result with the best quality is then adopted as the final result. Tsukada and

Nagata (2004) combine different translation models with weight finite state

transducer (WFST) in order to improve translation quality. In this set of work,

better translation quality instead of speed improvements is what they aim for.

Perhaps the most relevant research is Li and Khudanpur (2008). They

designed and built a scalable MT decoder using cube pruning, beam search and

other optimization techniques. They implemented the decoder on a cluster of

multicore machine with both distributed and parallel programming. The resultant

Java implementation is more than 30 times faster than the original Python

implementation. However, it seems that in Li and Khudanpur (2008), the inherent

speed difference between Java and Python programs is not credited. Furthermore,

their system parallelized upon sentences by making different cores/threads handle

different sets of sentences, whereas our approach exploited the parallelism inside a

sentence. The comparison between inter-sentence parallelism and intra-sentence

parallelism is therefore not meaningful.

As inspired by the coarse-to-fine approaches in CKY parsing (Charniak and

Johnson, 2005; Petrov and Klein, 2007b), Petrov et al. (2008) designed a coarse-to-

fine syntactic MT system, where coarse translation models as well as coarse

41

language models are derived and utilized to constrain and prune the search space of

possible translations before applying finer models. This approach demonstrated a

50-fold speedup over the one-model approach. In principle, this approach is

orthogonal to our parallelization approach, and can be superimposed to yield

greater speed improvements.

5. Conclusions

In this report, we explored the design spaces of parallelizing two major natural

language processing applications, natural language parsing and statistical machine

translation. In natural language parsing, we focused on parallelizing the CKY

parsing algorithm, which is prevalent in constituency-based natural language

parsers. We compared various implementations on two recent NVIDIA GPUs. The

fastest parsers on each GPU are different implementations, since the GTX480

supports L1 cache while the GTX285 does not, among other different architectural

features. Compared to an optimized sequential C implementation our parallel

implementation is 26 times faster on the GTX480 and 17 times faster on the

GTX285. All our parallel implementations are faster on the GTX480 than on the

GTX285, showing that performance improves with the addition of more Streaming

Processors.

In statistical machine translation, we zeroed in on the possibility of

parallelizing the CKY-based decoding algorithm for phrase-based machine

translation, the most widely-used machine translation scheme. We proposed

several optimization approaches to expose the inherent parallelism and to reduce

memory accesses, which are tailor-designed for NVIDIA GPUs. However, the best

implementation on GTX480 only runs twice as fast as the optimized sequential C

implementation. A detailed runtime and profiling analysis shows that the CKY-

based decoding algorithm is memory-intensive and incurs a considerable amount

of irregular memory accesses, both of which are harmful to the performance of

GPU programs.

6. Acknowledgments

Thank you to Youngmin Yi for your collaboration and dedication in the

parallelization of natural language parsing, and Ekaterina Gonina for your

collaboration and enlightening discussions in the parallelization of machine

translation. I am also grateful for Slav Petrov’s generous assistance in utilizing

Berkeley Parser. This work was supported by Microsoft (Award #024263) and

Intel (Award #024894) funding and by matching funding by U.C. Discovery

42

(Award #DIG07-10227). This work was also supported in part by the 2010

Research Fund of the University of Seoul. Additional supports come from UC

Berkeley Par Lab affiliates National Instruments, Nokia, NVIDIA, Oracle, and

Samsung.

References

D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, and M. Mitzenmacher.

2009. Real-time Parallel Hashing on the GPU. In ACM Transactions on

Graphics, 28(5).

Apple - iPhone 4S - Ask Siri to help you get things done. 2011. Retrieved April

10
th
, 2012, from http://www.apple.com/iphone/features/siri.html.

K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D.

Patterson, W. Plishker, J. Shalf, S. Williams, and K. Yelick. 2006. The

Landscape of Parallel Computing Research: A View from Berkeley. Technical

report, Electrical Engineering and Computing Sciences, University of California

at Berkeley.

J. Bordim, Y. Ito, and K. Nakano. 2003. Accelerating the CKY Parsing Using

FPGAs. IEICE Transactions on Information and Systems, E86-D(5):803-810.

X. Carreras, M. Collins, and T. Koo. 2008. TAG, Dynamic Programming, and the

Perceptron for Efficient, Feature-Rich Parsing. In Proceedings of the 12
th

Conference on Natural Language Learning(CoNLL), pages 9-16.

B. Catanzaro, B.-Y. Su, N. Sundaram, Y. Lee, M. Murphy, K. Keutzer. 2009.

Efficient, High-Quality Image Contour Detection. In Proceedings of

International Conference on Computer Vision (ICCV), pages 2381-2388.

E. Charniak and M. Johnson. 2005. Coarse-to-Fine N-Best Parsing and MaxEnt

Discriminative Reranking. In Proceedings of the 43
rd

 Annual Meeting of the

Association of Computational Linguistics (ACL).

E. Charniak. 2000. A Maximum-Entropy-Inspired Parser. In Proceedings of the 1
st

North American Chapter of the Association for Computational Linguistics

(NAACL), pages 132-139.

http://www.apple.com/iphone/features/siri.html

43

D. Chiang. 2005. A Hierarchical Phrase-based Model for Statistical Machine

Translation. In Proceedings of the 43
rd

 Annual Meeting of the Association of

Computational Linguistics (ACL).

D. Chiang. 2007. Hierarchical Phrase-based Translation. In Computational

Linguistics, 33(2):201-228.

J. Chong, Y. Yi, N. R. S. A. Faria, and K. Keutzer. 2008. Data-parallel Large

Vocabulary Continuous Speech Recognition on Graphics Processors. In

Proceedings of International Workshop on Emerging Applications and

Manycore Architectures.

J. Cocke and J. T. Schwartz. 1970. Programming Languages and Their Compilers:

Preliminary Notes. Technical report, Courant Institute of Mathematical Sciences,

New York University.

M. Collins. 1999. Head-Driven Statistical Models for Natural Language Parsing.

Ph.D. thesis, University of Pennsylvania, Philadelphia, PA, USA.

L. Dagun and R. Menon. 1998. OpenMP: an Industry Standard API for Shared-

memory Programming. In IEEE Computational Science and Engineering, Vol.

5, No. 1, pages 46-55

A. Dunlop, N. Bodenstab, and B. Roark. 2011. Efficient Matrix-Encoded

Grammars and Low Latency Parallelization Strategies for CYK. In Proceedings

of the 12
th
 International Conference on Parsing Technologies(IWPT), pages

163-174.

Fermi: NVIDIA’s Next Generation CUDA Compute Architecture. 2009. Retrieved

April 10
th
, 2012, from

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Com

pute_Architecture_Whitepaper.pdf.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondet, A. Kalyanpur, A. Lally, J.

W. Murdock, E. Nyberg, J. Prager, N. Schlaefer, and C. Welty. 2010. Building

Watson: An Overview of the DeepQA Project. In AI Magazine, 31(3):59-79.

J. Finkel, A. Kleeman, and C. D. Manning. 2008. Efficient, Feature-Based,

Conditional Random Field Parsing. In Proceedings of the 46
th
 Annual Meeting

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

44

of the Association for Computational Linguistics: Human Language

Technologies(ACL/HLT).

E. P. Giachin and C. Rullent. 1989. A Parallel Parser for Spoken Natural Language.

In Proceedings of the 11
th
 International Joint Conference on Artificial

Intelligence(IJCAI), pages 1537-1542.

J. Goodman. 1997. Global Thresholding and Multiple-Pass Parsing. In Proceedings

of the 2
nd

 Conference on Empirical Methods in Natural Language

Processing(EMNLP).

J. Hoberock and N. Bell. 2010. Thrust: A Parallel Template Library. Retrieved

April 13
th
, 2012, from http://www.meganewtons.com/.

L. Huang and D. Chiang. 2005. Better k-Best Parsing. In Proceedings of the 9
th

International Conference on Parsing Technologies(IWPT), pages 53-64.

L. Huang and D. Chiang. 2007. Forest Rescoring: Faster Decoding with Integrated

Language Models. In Proceedings of the 44
th
 Annual Meeting of the Association

for Computational Linguistics (ACL), pages 144-151.

IBM - What is Watson? 2011. Retrieved April 10
th
, 2012, from http://www-

03.ibm.com/innovation/us/watson/what-is-watson/index.html .

J. Jackson. 2011. IBM Watson Vanquishes Human Jeopardy Foes. In PCWorld.

Retrieved April 10
th
, 2012, from

http://www.pcworld.com/businesscenter/article/219893/ibm_watson_vanquishe

s_human_jeopardy_foes.html.

T. Kasami. 1965. An Efficient Recognition and Syntax-Analysis Algorithm for

Context-Free Languages. Scientific Report AFCRL-65-758, Air Force

Cambridge Research Lab.

D. B. Kirk and W.-M. W. Hwu. 2010. Programming Massively Parallel

Processors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1st edition.

D. Klein and C. Manning. 2003. A* Parsing: Fast Exact Viterbi Parse Selection. In

Proceedings of the 4
th
 North American Chapter of the Association for

http://www.meganewtons.com/
http://www-03.ibm.com/innovation/us/watson/what-is-watson/index.html
http://www-03.ibm.com/innovation/us/watson/what-is-watson/index.html
http://www.pcworld.com/businesscenter/article/219893/ibm_watson_vanquishes_human_jeopardy_foes.html
http://www.pcworld.com/businesscenter/article/219893/ibm_watson_vanquishes_human_jeopardy_foes.html

45

Computational Linguistics(NAACL), pages 40-47.

P. Koehn. 2004. Pharaoh: a Beam Search Decoder for Phrase-Based Statistical

Machine Translation Models. In Proceedings of the 6
th
 conference of the

Association for Machine Translation in the Americas (AMTA).

P. Koehn. 2005. EuroParl: A Parallel Corpus for Statistical Machine Translation. In

Proceedings of Machine Translation Summit, 2005.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B.

Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E.

Herbst. 2007. Moses: Open Source Toolkit for Statistical Machine Translation.

In Proceedings of the Annual Conference of the Association for Computational

Linguistics, 2007(ACL).

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical Phrase-based Translation. In

Proceedings of the 4
th
 North American Chapter of the Association for

Computational Linguistics(NAACL), pages 48-54.

Z. Li and S. Khudanpur. 2008. A Scalable Decoder for Parsing-based Machine

Translation with Equivalent Language Model State Maintenance. In

Proceedings of the 2
nd

 ACL Workshop on Syntax and Structure in Statistical

Translation (SSST), pages 10-18.

E. Lindholm, J. Nickolls, S. Oberman, and J.Montrym. 2008. Nvidia Tesla: A

Unified Graphics and Computing architecture. IEEE Micro, 28(2):39-55.

A. G. Manousopoulou, G. Manis, P. Tsanakas, and G. Papakonstantinou. 1997.

Automatic Generation of Portable Parallel Natural Language Parsers. In

Proceedings of the 9
th
 conference on Tools with Artificial Intelligence.

M. Marcus, B. Santorini, and M.Marcinkiewicz. 1993. Building a Large Annotated

Corpus of English: The Penn Treebank. In Computational Linguistics, 19(2).

J. Nickolls, I. Buck, M. Garland, and K. Skadron. 2008. Scalable Parallel

Programming with CUDA. ACM Queue, 6(2):40-53.

T. Ninomiya, K. Torisawa, K. Taura, and J. Tsujii. 1997. A Parallel CKY Parsing

Algorithm on Large-Scale Distributed-Memory Parallel Machines. In

46

Proceedings of the 10
th
 Conference of the Pacific Association for Computation

Linguistics(PACLING), pages 223-231.

K. Papineni, S. Ruokos, T. Ward, and W.-J. Zhu. 2002. BLEU: a Method for

Automatic Evaluation of Machine Translation. In Proceedings of the 40
th

Annual Meeting of the Association for Computational Linguistics (ACL), pages

311-318.

A. Pauls and D. Klein. 2009. Hierarchical Search for Parsing. In Proceedings of

the 10
th
 North American Chapter of the Association for Computational

Linguistics(NAACL), pages 557-565.

S. Petrov, A. Haghighi and D. Klein. 2008. Coarse-to-fine Syntactic Machine

Translation using Language Projections. In Proceedings of Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 108-116.

S. Petrov and D. Klein. 2007a. Discriminative Log-linear Grammars with Latent

Variables. In Proceedings of the 20
th
 Annual Meeting of Neural Information

Processing Foundation (NIPS).

S. Petrov and D. Klein. 2007b. Improved Inference for Unlexicalized Parsing. In

Proceedings of the 8
th
 North American Chapter of the Association for

Computational Linguistics(NAACL), pages 404-411.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006. Learning Accurate, Compact,

and Interpretable Tree Annotation. In Proceedings of the 44
th
 Annual Meeting of

the Association of Computational Linguistics(ACL), pages 433-440.

E. Pontelli, G. Gupta, J. Wiebe, and D. Farwell. 1998. Natural Language

Processing: A Case Study. In Proceedings of the 15
th
 National Conference on

Artificial Intelligence(AAAI).

F. Ren and H. Shi. 2001. Parallel Machine Translation: Principles and Practice. In

Proceedings of the 7
th
 International Conference on Engineering of Complex

Computer Systems (ICECCS), pages 2-49.

A. Stolcke. 2002. SRILM - An Extensible Language Modeling Toolkit. In

Proceedings of the International Conference on Spoken Language Processing,

vol. 2, pages 901-904.

47

C. Tillmann. 2003. A Projection Extension Algorithm for Statistical Machine

Translation. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing(EMNLP), pages 1-8.

H. Tsukada and M. Nagata. 2004. Efficient Decoding for Statistical Machine

Translation with a Fully Expanded WFST Model. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing(EMNLP),

pages 427-433.

M. P. van Lohuizen. 1999. Parallel Processing of Natural Language Parsers. In

Proceedings of the 15
th
 Conference of Parallel Computing, pages 17-20.

K. Yamada and K. Knight. 2002. A Decoder for Syntax-based Statistical MT. In

Proceedings of the 40th Annual Meeting of the Association for Computation

Linguistics (ACL), pages 303-310.

D. H. Younger. 1967. Recognition and Parsing of Context-Free Languages in Time

n
3
. Information and Control, 10.

