
Symbolic Grey-Box Learning of Input-Output

Relations

Domagoj Babic
Matko Botincan
Dawn Song

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-59

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-59.html

May 3, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Symbolic Grey-Box Learning of Input-Output Relations

Domagoj Babić1 Matko Botinčan2 Dawn Song1

1UC Berkeley 2University of Cambridge

Abstract
Learning of stateful models has been extensively used in veri-
fication. Some applications include inference of interfaceinvari-
ants, learning-guided concolic execution, compositionalverifica-
tion, and regular model checking. Learning shows a great promise
for verification, but suffers from two fundamental limitations. First,
learning stateful models over concrete alphabets does not scale in
practice, as alphabets can be large or even infinite in size. Sec-
ond, learning techniques produce conjectures, which mightbe nei-
ther over- nor under-approximations, but rather some mix ofthe
two. The new technique we propose — Sigma∗ — overcomes
these problems by combining black- and white-box analysis tech-
niques: learning and abstraction. Such grey-box setting allows in-
spection of the internal symbolic state of the program, allowing
us to learn symbolic transducers with input and output alphabets
ranging over finite sets of symbolic terms. The technique alternates
between symbolic conjectures and sound over-approximations of
the program. As such, the technique presents a novel twist tothe
more standard alternation among under- and over-approximations
often used in verification. Sigma∗ is parameterized by an abstrac-
tion function and a class of symbolic transducers. In this paper, we
develop Sigma∗ parameterized by a variant of predicate abstraction,
andk-lookback symbolic transducers — a new variant of symbolic
transducers, for which we present learning and separation sequence
computation algorithms. Verification of such transducers is, for in-
stance, important for security of web applications and might find
its applications in other areas of verification. The main technical
result we present is that Sigma∗ is complete relative to abstraction
function.

1. Introduction
Grammatical inference techniques for learning various types of au-
tomata from input-output sequences have been applied in a wide
variety of verification settings: inference of interface invariants [3],
learning-guided concolic execution [15], compositional verifica-
tion [17], and regular model checking [25]. In those settings, learn-
ing is performed in a black-box manner, even though source code
is usually available. As a consequence, the classical Angluin’s L∗

algorithm [4] used for learning works over concrete alphabets, as
it cannot inspect the internal symbolic state of the system whose
input-output relation is to be learned. The concrete treatment of the
alphabet results in a state explosion problem, because alphabets are
typically large or even infinite in practice. Since the complexity of
L∗ is quadratic in the size of the alphabet and the number of states,
such approaches scale poorly.

By allowingL∗ to inspect the internal symbolic state of the pro-
gram for which we wish to learn an input-output relation, we obtain
a more powerful symbolic version ofL∗. Generating concrete input
sequences, analyzing how they are processed, and observingthe
symbolic responses, our approach learns symbolic input-output re-
lations. As a consequence, the approach is applicable even when

the input alphabets are infinite, and promises better scalability in
general.

The classicalL∗ merely conjectures input-output relations,
without giving any guarantees that conjectures are either under-
or over-approximations of the input-output relation implemented
by the program. To check conjectures,L∗ relies upon an equiva-
lence checking oracle. Such oracles are often either unavailable in
practice, computationally intractable, or very difficult to implement
as the input-output relation being learned and the program are of-
ten very different formal objects. We show how such oracles could
be implemented for a class of programs by equivalence checking
of deterministic approximations computed by anL∗-like algorithm
and sound possibly non-deterministic over-approximations of the
program being learned. We refer to such a learning frameworkpa-
rameterized by a class of symbolic transducers and an abstraction
function asΣ∗. Notably,Σ∗ is the first learning framework working
fully at the symbolic level.

In this paper, we developΣ∗ parameterized byk-lookback sym-
bolic transducers (~k-SLT) and a variant of predicate abstraction.
We introduce ~k-SLT as a variant of symbolic finite-state transduc-
ers (SFT) with registers and simple updates (SFTR) [11, 12].In
our variant, all the states are final. Without that requirement, it is
unclear how to automatically learn an SFT(R), as they allow in-
herent ambiguity in where the output is produced. Indeed, existing
concrete finite-state transducer learning algorithms [34,36, 39] re-
quire all states to be final. Also, we impose a restriction on how
registers are used to simplify learning and exposition, butwe be-
lieve that restriction is not fundamental. The restrictionallows us
to completely abstract away the registers. We show that with~k-
SLTs we can model faithfully 67% of sanitizers from the Google
AutoEscape framework, and 92% with a simple generalization.

We also present a learning algorithm for~k-SLTs. To check the
learned conjectures, we exploit the fact that our conjectures are
deterministic. While equivalence checking is undecidableeven for
simple concrete non-deterministicε-free generalized sequential
machines [30], equivalence checking of deterministic and non-
deterministic finite-state transducers is decidable [18],and we
present a generalization of Demers et al.’s [18] algorithm for our
symbolic setting.

The role of the abstraction inΣ∗ is to synthesize an over-
approximation of the program whose input-output relation we wish
to learn. In the particular instantiation ofΣ∗ we develop in this
paper, we use a variant of the standard well-known predicateab-
straction [6, 23]. Predicate abstraction serves the purpose of ab-
stracting away the internal computation of a program, whilewe
leave the input-output data flow intact. The resulting (possibly non-
deterministic) abstraction is still unsuitable for comparison with
conjectures, which are in the form of~k-SLTs. We show how to syn-
thesize non-deterministic~k-SLTs from the computed abstractions.

The most important technical result of this paper is that we show
thatΣ∗, parameterized by~k-SLTs and predicate abstraction, is rel-

1 2012/5/3

atively complete for a a family of infinite-state programs, which
we call ~k-SLT programs. The framework is complete relative to the
chosen abstraction function; we show thatΣ∗ is complete if the ab-
straction function eventually terminates producing the strongest in-
ductive invariant of program’s transition relation (see [8, 31]). Dif-
ferent classes of programs could be learned by parameterizing Σ∗
in a different way. For instance, subsequential symbolic transducers
could be learned with a symbolic variant of Vilar’s [39] algorithm
and by adjusting the abstraction accordingly. For an even broader
class of transductive programs that read as inputs and produce as
outputs sequences of symbols,Σ∗ might not terminate. However,
the learned incomplete symbolic conjectures might still beuseful
for various applications, like MACE [15].

The main motivation forΣ∗ came from the recent work of
Bjørner et al. [11, 12]. They develop the theory of symbolic trans-
ducers and show how such transducers can be used for verification
of web sanitizers, by checking their equivalence, idempotence, and
commutativity. In addition, they also discuss a number of other ap-
plications: detection of malicious programs, image blurring, and
location privacy. To construct formal objects amenable to verifica-
tion, they had to invest several hours of a human expert’s time into
manual synthesis of each SFT from code. In contrast,Σ∗ can com-
pletely automatically infer 10 out of 14 publicly availableexamples
used to evaluate Bek [27]. We also draw inspiration from the recent
work on MACE [15]. MACE uses an optimized version ofL∗ to
learn an approximation of a program’s search space. That approx-
imation guides concolic execution, which in turn gets deeper into
the search space, discovering new input and output symbols used
for refining the approximation. While showing strong experimen-
tal results, MACE offers absolutely no guarantees on completeness
and is computationally very expensive, because it operateson large
concrete transducers.Σ∗ could be used to realize a symbolic variant
of MACE, offering relative completeness for certain classes of pro-
grams, and potentially better scalability in general.Σ∗ might also
find its applications in compositional verification, inference of in-
terface invariants, and regular model checking.

We claim the following contributions:

Parameterized Learning Framework Σ∗. We introduce an au-
tomated learning frameworkΣ∗ for learning symbolic input-
output relations of infinite-state programs. The key insight be-
hind Σ∗ is that we can use an over-approximation to detect
convergence. Another novel insight we put forward is that by
combining black-box learning with white-box abstraction,we
reap the benefits of both.

k-Lookback Symbolic Transducers.When developing a special-
ization of Σ∗, we introduce a variant of SFTRs [11, 12] that is
amenable to learning. Additionally, we restrict how the regis-
ters are used to simplify learning and exposition. We present
a learning algorithm for ~k-SLTs, which is, to the best of our
knowledge, the first learning algorithm operating fully at the
symbolic level.

Synthesis of Program Abstractions into ~k-SLTs. We show how
to translate predicate abstractions of programs being learned to
~k-SLTs and how to refine the abstraction in our setting, when the

abstraction is too coarse. The key novelty in this synthesisis the
computation of a finite representation of a potentially infinite
input-output relation implemented by the program.

Relative Completeness Results.The main technical result of this
paper is thatΣ∗ converges to a complete and sound model for
certain classes of infinite-state programs, as long as the abstrac-
tion function eventually terminates producing the strongest in-
ductive invariant of program’s transition relation. Effectively,
this results shows that the completeness of learning can be re-
duced to the completeness of abstraction.

2. Related Work
In this section, we position our work with respect to the most
relevant existing literature. After discussing symbolic transducers
and their learning, we end with a discussion of connections with
predicate abstraction, which we use in our specialization of Σ∗.

2.1 Symbolic Transducers

Symbolic finite-state transducers have become a popular topic
lately [2, 11, 12, 27]. Van Noord and Gerdemann [38] introduced
the first simple symbolic transducers. The expressivity of those
transducers is severely limited as they are not able to establish
functional dependencies from input to output. In a series ofpa-
pers [11, 12, 27], a group of authors proposed symbolic finite-state
transducers (SFTs) with registers (SFTRs), where input (resp. out-
put) symbols range over predicates (resp. terms). Bjørner and
Veanes [11] show an effective composition construction andprove
that equivalence is decidable for single-valued SFTRs withsimple
updates, as long as the underlying theory is decidable. Unfortu-
nately, their proof is not constructive and does not reveal how to
efficiently compute a separating sequence.~k-SLTs are less expres-
sive than SFTRs. We carefully limited the expressivity of SFTRs
(to obtain ~k-SLTs) so as to be able to represent interesting real-
world examples. able to learn and constructively equivalence check
learned ~k-SLTs.

One feature of SFTRs makes them difficult to learn — the
set of final states of an SFTR can be a strict subset of all states.
Transducers with some non-final states are partial functions that
accumulate the output and yield it only when the last reached
state is final. Furthermore, the existence of non-final states allows
ambiguity of where the output is created. Thus, it is not surprising
that the existing algorithms for learning concrete transducers [34,
36, 39] require all states to be final. Similarly, we require all the
states of our symbolic transducers to be final. We also impose
a restriction on how registers are used. In particular, we require
that registers can contain input symbols read at mostk transitions
before the last transition. That restriction allows us to abstract
away registers, while still allowing complex bounded functional
dependencies among inputs and outputs. We do not believe that
restriction to be fundamental. As the set of predicates usedas
transition guards in SFTRs and~k-SLTs is finite, predicates partition
register valuations into a finite set of equivalence classes, which
could be learned at the cost of having a more complex learning
algorithm. Similar partitioning arguments were used in theproofs
of decidability of equivalence of single-valued SFTRs [11]and
streaming transducers [2]. In streaming transducers [2], there are
two type of registers — one for symbols and the other for strings.
At every step, a streaming transducer can make decisions based
on the current state, the tag (ranging over a finite set of values)
of the next input symbol, and the ordering between next input
symbol and symbols stored in data registers. Each value stored in
string registers can be either copied or concatenated with asymbol,
but has to be used only once. They show an intricate proof of
decidability of equivalence of streaming transducers. Inference of
both SFT(R)s [11, 12] and streaming transducers [2] has beenleft
as an open question.

2.2 Learning of Symbolic Transducers

Little work has been done on learning of symbolic transducers. The
work we are aware of [1, 10, 29] focuses on a limited form of sym-
bolic transducers that have simple guards with a fixed numberof
parameters and can either update registers or output a sequence of
concrete values in every transition. Such transducers havea Nerode
relation that partitions their states into a finite number ofequiva-
lence classes, which makes their learning possible. All of the above

2 2012/5/3

approaches learn over concrete alphabets, translating theobtained
concrete transducer to a symbolic one, and assume existenceof a
suitable equivalence checking oracle. Such approaches areexpo-
nential inboth the length of counterexamples and the number of
parameters the guard predicates can have, as well as in the num-
ber of registers. We take a different approach, and by allowing Σ∗
to inspect the internal symbolic state of the program, we canhan-
dle arbitrarily complex guard and output expressions, as long as (1)
the program’s input-output relation can be described usingfinitely
many such expressions, and (2) there exists a solver capableof
checking satisfiability of guards and (in)equality of output expres-
sions. There is another important point of difference. Instead of just
assuming existence of a suitable equivalence checking oracle, like
the prior work [1, 10, 29], we propose an efficient algorithm for
checking the learned conjectures against a synthesized abstraction.
Most importantly, the alternation between learning and abstraction
allows us to detect convergence, assuming an abstraction that can
infer the strongest invariant of program’s transition relation.

Next, we will clarify the connection ofΣ∗ to a few other lines
of work. Elkind et al. [19] propose a model checking approach
for systems in which some components are completely black- and
some completely white-box. They call the resulting approach grey-
box checking. We use the phrase “grey-box” differently to refer
to a combination of a learning algorithm that is inherently black-
box and the white-box analysis required to answer the membership
queries and to compute an abstraction. Alur andČerný [2] propose
an algorithm for inferring automata describing safe behaviors of
interfaces. They use the standardL∗ algorithm for inferring conjec-
tures and check that the conjectures are subsumed by the predicate
abstraction of the code implementing the interface, i.e., they check
that the conjecture is safe. The safety check can be done efficiently,
while finding the most permissive (complete) model is NP-hard in
their setting. In contrast, our focus is on the input-outputbehavior
of programs and inference of symbolic transducers describing that
behavior. Since we want to find the exact transducers modeling the
program, we find discrepancies among conjectures and abstractions
by computing a separating sequence between the two.

2.3 Predicate Abstraction

The specialization ofΣ∗ we develop in this paper uses predicate ab-
straction [7, 23] to generate a finite-state model of the unbounded
internal state space of the program. Predicate abstractionhas been
successfully applied in counterexample-guided abstraction refine-
ment schemes for checking safety properties. Tools like SLAM [6],
BLAST [26], IMPACT [33], and SATABS [16] have demonstrated
that predicate abstraction scales well to real-world programs with
intricate control-flow patterns. Compared to the regular predicate
abstraction, our goal is different—we infer the exact input-output
relation of a program so that we can check non-safety properties
such as equivalence, idempotence and commutativity [12].

Collecting path conditions as in concolic testing [21] has been
previously combined with predicate abstraction in the SYNERGY
algorithm [24] and its descendants [9, 22].Σ∗ combinesmust
(learning) andmay(abstraction) analyses to learn a more compact
input-output relation, while SYNERGY usesmay-mustcombina-
tion to check safety properties faster. Similarly as safetyproperties
could be checked with MAY analysis only, input-output relations
could be learned with our predicate abstraction (Section 7.2) only,
by refining abstractions until the relation becomes single-valued.
However, such relations can be unboundedly larger than the ones
learned byΣ∗.

The completeness of predicate abstraction depends on the
choice of predicates for abstracting the state space. Completeness
of predicate abstraction is an active research area [8, 31] and a num-
ber of heuristics exist that are often complete in practice [5, 20].

true/λ0

(a)C1

true/λ0 true/λ0

λ0 ≥ λ−1/λ0−λ−1
λ0 < λ−1/λ0+λ−1

(b) C2

true/λ0
true/λ0+λ−1
true/λ0−λ−1

(c) A1

true/λ0 true/λ0

true/λ0+λ−1
true/λ0−λ−1

(d) A2

Figure 1: Examples of Learning Conjectures and Abstractions.

Assuming a predicate selection oracle that eventually yields enough
predicates for constructing the strongest invariant of theprogram’s
transition relation, one can show relative completeness ofpredicate
abstraction [8, 31]. We found that for the examples used in this
paper, a simple oracle mining predicates from sequences of predi-
cates and output terms obtained from the concolic executionof the
program [13, 21, 35] is sufficient. More generally, we prove that the
specialization ofΣ∗ developed in this paper is relatively complete
to predicate abstraction.

3. A Motivating Example
We begin by showing howΣ∗ works on the following example.

1 prev = 0; cur = 0; i = 0;
while (true) {

3 cur = in ();
if (i < 2) out(cur);

5 else
if (cur < prev) out(cur + prev);

7 else out(cur − prev);
prev = cur;

9 i++;
}

The program reads input in an infinite loop using commandin(),
which reads the next input symbol, or halts if there is no more
input to read. In the first two iterations, the program printsthe
last read symbol (using commandout()), and in every subsequent
iteration it outputs the sum or difference of the last two symbols,
depending on their relative ordering. Assuming symbols from an
infinite alphabet, the program is infinite-state.

Σ∗, parameterized by ~k-SLT and predicate abstraction, alter-
nates between predicate abstraction and learning. The details of
the learning algorithm are intricate, and will be presentedlater.
Familiarity with the literature onL∗ [4, 36] and concolic execu-
tion [13, 21, 35] would be helpful for developing intuition on how
such an algorithm might work.

We represent learned conjectures and synthesized abstractions
in the example as~1-SLTs. Each transition is labeled by a predicate-

3 2012/5/3

term pair. The transition is taken when the predicate evaluates to
true for a given sequence of concrete input symbols. (We define
symbolic evaluation formally later.) The second element ofthe pair
describes symbolically the computed output. Predicates and terms
are expressions over input symbols and constants. Since~k-SLTs
are allowed to read only the current and the lastk symbols, we
can relativize all references to input symbols with respectto the
current position of the input tape head. We useλ0 to denote the
current symbol andλ−i to denote symbols readi transitions before.
With symbolic sequences like~p= λ0 · (λ0 > λ−1) · (λ0 > λ−1), we
represent symbolic path conditions, i.e., an equivalence class of a
potentially infinite number of paths. Before solving such sequences
with a solver, we need to derelativize them and compute a suitable
formula passed to the solver. In the case above, the solver might
return a concrete sequence 0·1·2 satisfying~p.

Σ∗ begins processing the example by learning the first conjec-
ture C1 (Figure 1a), which is an under-approximation, and com-
pares it against predicate abstractionA1 of the program with re-
spect to an empty set of predicates (Figure 1c). Note that, unlike
in the standard predicate abstraction, we leave the input-output
behavior intact. Equivalence checking ofC1 andA1 produces the
first symbolic counterexample, say a predicate~p1 = true and out-
put~t1 = (λ0+λ−1), which is a behavior captured by the abstrac-
tion, but not the conjecture. Any concrete sequence satisfying those
two formulas is a concrete counterexample. For example, take in-
put λ−1 = 1,λ0 = 1. The program will produce outputλ0 for that
input without readingλ−1, showing that~p1 is a spurious symbolic
counterexample, because symbolic outputs do not match. We re-
fine the abstraction with respect to a set of predicates, obtained
from some predicate selection oracle (e.g, [20, 37]). Suppose the
oracle picks{i = 0, i < 2, i ≥ 2}. The refined abstractionA2 is
shown in Figure 1d. Equivalence checking ofA2 andC1 produces
the second symbolic counterexample, say~p2 = true ·true ·true and
~t2 = λ0 ·λ0 ·(λ0−λ−1). Any sequence of three symbols will satisfy
~p2 and it turns out that counterexample is not spurious. Thus, we
have to refine the conjecture.

After processing the counterexample,Σ∗ learns conjectureC2
shown in Figure 1b.C2 is correct, butΣ∗ does not know that
yet, because equivalence checking ofC2 andA2 returns the third
counterexample, say~p3 = true · true · (λ0 < λ−1) and~t3 = λ0 ·λ0 ·
(λ0+λ−1). The third counterexample is not spurious either. Thus,
once again, we need to refine the abstraction. Suppose the oracle
extends the set of predicates withλ0 < λ−1. Predicate abstraction
computesA3, which is equivalent toC2, and the process terminates
correctly inferring program’s input-output relation.

For the following example with nested loops,Σ∗ terminates
inferring a ~0-SLT shown below.

while (true) {
x = in ();
while (x != ’a’) {

x = in ();
out(x);

}
}

λ0 = a/ε λ0 6= a/λ0

λ0 6= a/ε

λ0 = a/λ0

4. Notation and Terminology
In this section, we introduce the notation used throughout the paper.
Let Z be the set of integers,N= {i ∈ Z | i > 0} the set of naturals,
andB = {false,true} the set of booleans. LetD be a set; byD∗,
we denote the free monoid generated byD with concatenation as
the operation and the empty wordε as identity. We often refer to
words as sequences. For sequences of predicates (resp. terms), we
write ~p= p1 . . . pm (resp.t = t1 . . . tn). During learning, we treat a

sequence of terms (t) as a single object, to simplify exposition and
the algorithms. For sequences of sequences of terms, we write~t. We
denote the length of a sequence as usual (|~p|). We refer to thei-th
element of a sequence as~p|i = pi and to a subsequence~p|[i,i+k] =

pi . . . pi+k. For function f : D→ C andD′ ⊆ D, we write f |D′ to
denote the restriction off on D′. For function f and sequences
~a and~b such thatn = |~a| = |~b|, we write f [~a←~b] to denote the
function f ′ such that for alli ∈ {1, . . . ,n}, f ′(~a|i) =~b|i and for all
x /∈ {~a|1, . . . ,~a|n}, f ′(x) = f (x). We use the notationt[x 7→ y] to
denote the term obtained fromt by simultaneously replacing all
free occurrences ofx with y. A transduction from an input alphabet
Γ1 to an output alphabetΓ2 is a partial functionΓ∗1 ⇀ Γ∗2. Finally,
we use a to denote implicit existential quantification when we care
about the named variable and “” when we do not.

5. Transductive Programs
We begin the technical part of this paper by formalizing the class
of programs that transform an input stream into an output stream
of symbols from a possibly infinite-sized alphabet. Many types of
programs behave in such a way, e.g., sanitizers, client and server
programs exchanging messages over the network, etc.

5.1 Program Representation

We now formally define our syntactic representation of programs.
Let V = VE ∪VD be the set of program variables divided into the
sets of internal and data variables. Internal variables areused in
internal computations of the program, while data variablesstore
the data read from the input and can be used for constructing the
output. We build internal expressionsExp[VE], data expressions
DExp[VD], boolean expressionsBExp[V], and atomic commands
Cmd[V] with the following grammar:

e ::= k | v | e+e | e−e | . . . ∈ Exp[VE]
ds ::= k | x
d ::= ds| d+d | d−d | . . . ∈ DExp[VD]
b ::= false | true | ¬b | b∧b | b∨b |

d = d | d 6= d | d < d | d≤ d | . . . |
e= e | e 6= e | e< e | e≤ e | . . . ∈ BExp[V]

c ::= assume(b) | v := e | x := ds|
x := in() | out(d) ∈ Cmd[V]

wherek ∈ Z, v ∈ VE and x ∈ VD. As long as the quantifier-free
theory of DExp[VD]∪Exp[VE] with equality and satisfiability of
BExp[V] are decidable, the actual operators and predicates in the
grammar are irrelevant, hence the elisions. The commandx := in()
reads an integer from the input stream and stores it tox if the input
is available, otherwise it causes the program to halt. The command
out(d) writes the value of the expressiond to the output stream.

We represent programs using control-flow automata [26] over
the language of atomic commands (rulec in the above grammar).
The control-flow automaton is determined by a set of control nodes
L containing a distinguished nodesL ∈ L representing the starting
point of the program and a functionsucc : L×Cmd[V]⇀ L repre-
senting labeled edges. All nodes either have a single successor or
have all outgoing edges labeled with a label of the formassume(b).
In the latter case, we assume that all corresponding predicatesb are
mutually exclusive and that their disjunction is a tautology.

5.2 Symbolic Semantics

Given a programP we now define its symbolic semantics. Sym-
bolic semantics represent executions ofP on all inputs. We for-
malize the contents of the input and the output stream by us-
ing sets of ghost variablesVI , {in1, in2, . . .} (in-variables) and
VO , {out1,out2, . . .} (out-variables), respectively. On a particu-
lar run ofP all except finitely many of these variables are unde-

4 2012/5/3

JkKσ = kJxKσ
.
=

σ(x) if x∈ V,
x if x∈ VI,
undefined otherwiseJe± f Kσ

.
= JeKσ ± J f Kσ

Figure 2: Symbolic Evaluation of Expressions. Symbolσ denotes
a map of typeMem.

(n,σ ,ρ, i, j)
assume(b)
 (n′,σ ,ρ, i, j)

(n,σ ,ρ, i, j)
x:=e
 (n′,σ [x← JeKσ],ρ, i, j)

(n,σ ,ρ, i, j)
x:=in()
 (n′,σ [x← JiniKσ],ρ, i+1, j)

(n,σ ,ρ, i, j)
out(d)
 (n′,σ ,ρ[outj ← JeKσ], i, j +1)

Figure 3: Symbolic Semantics of Commands.

fined, and for those which are defined,ini corresponds to thei-th
element of the input stream, andoutj to the j-th element of the out-
put stream. By~in we refer to the sequence ofin-variablesin1in2 . . .
and we useℓin to represent the length of a sequence of symbols in
the input stream.

We evaluate program variables on a memory defined as a map
Mem , (VE ⇀ Z) ∪ (VD ⇀ DExp[VI]) and we execute com-
mands symbolically on states of the formState , L×Mem×
OutStr×N×N. The first component is the set of control nodes.
The third component represents the symbols in the output stream
asOutStr , VO ⇀ DExp[VI] (although technically a part of the
environment, we keep the output stream component in the state
to simplify the exposition). The last two components of the state,
the in-index and theout-index, store indices of the next element
in the input stream and the output stream, respectively. We denote
the components of a states∈ State by s.n, s.σ , s.ρ, s.i, ands. j ,
respectively. The initial state iss0 = (sL, /0, /0,1,1). Figure 2 shows
the semantics of expressions.

Figure 3 shows symbolic semantic rules ⊆ State×C×State
that define the effect of each command on a state. In each rule
we haven′ = succ(n,c). We writes

c
 s′ to denote the transition

(s,c,s′) ∈ and say thats′ is a
c
 -successor ofs. Applying sym-

bolic semantic rules to all states gives rise to a labeled transition
system (LTS)T = (State,C,) with State as the set of states,
C⊆Cmd[V] as the finite set of labels, and as the labeled transi-
tion relation.

5.3 Traces and Path Predicates

The LTST representing symbolic semantics is infinite in general
as it encodes all possible executions ofP with respect to any
input. Given a concrete input~a∈ Z

∗, we can construct a sequence
of states fromT representing the symbolic trace ofP on that
input. We start with the initial states0 and at each step we follow
the transitionsk

c
 sk+1, such that ifc is of the formassume(b)

then b is true in sk.σ [~in← ~a]. We stop if we ever reach a state
sf = (nf ,σ f ,ρ f , i f , j f), which we call ending, such that thein-
index i f equalsℓin+1. We define the symbolic trace ofP on input
~a, denotedτP(~a), as the finite sequences0s1 . . .sf if an ending state
is reached, or as the infinite sequences0s1 . . . otherwise.

Definition 1. We say thatP is transductiveif for every input~a,
τP(~a) is finite and no transition with a labelout() occurs before
the first transition with a label := in().

Informally, a program is transductive if it terminates on all
inputs (having read all symbols from the input stream) and never
produces an output before reading the first input symbol.

We refer to a statesi as in-statewhen the next transition from

si reads an input symbol, i.e.,si
:=in()
 si+1. Let τ in

P
(~a) , s̃1 . . . s̃n

be a sequence ofin-states fromτP(~a). For 1≤ i < n, let pi be the
conjunction of predicatesb of the formassume(b) encountered on
the transitions between ˜si ands̃i+1, and letpn be such a conjunction
of predicates between ˜sn andsf . In case no such transitions exist
between the two states we setpi to true. Furthermore, for 1≤
i < n, let t i be the sequence of symbolic outputs (as written to
out-variables byout() transitions) between ˜si and s̃i+1, and let
tn be such sequence of outputs between ˜sn andsf . If no output is
generated we sett i to ε. We definebig-step transitionas a transition

between two successivein-states and write ˜si
pi/t i
 ~a s̃i+1.

We definepath predicatesof P on input~a as the sequence
πP(~a) , p1 . . . pn. Analogously, we define thesymbolic outputof
P on ~a by θP(~a) , t1 . . . tn. The concrete outputof P on ~a is
defined byγP(~a), θP(~a)[~in 7→~a].

6. Symbolic Transducers With Look-back
In the last section, we introduced transductive programs and for-
malized their semantics. In this section, we introduce a transducer
representation of transductive programs. We parameterizethe intro-
duced transducers byk, which limits the set of input variables that
can be used in computation of path predicates and symbolic out-
put. Thek factor can be seen as a size of the sliding window, from
which a transducer can read inputs. Given an unbounded window,
the symbolic transducers we introduce are equivalent to transduc-
tive programs from the last section. In our presentation, the win-
dows begin at the current input tape head position and coverk last
symbols, because we observed that such transducers are mostuse-
ful for the examples we encountered in practice. However, there
is no fundamental reason why such windows could not also cover
symbols ahead of the current head position.

6.1 Definitions

We now formally define symbolicε-input-free finite-state transduc-
ers withk-lookback — ~k-SLTs. We specialize our exposition for the
case when the alphabet of input and output symbols isZ, but gen-
eralization is easy. We omitk, when it is not important.

Instead of reading a single symbol from the input tape at a
time, the tape head of a~k-SLT is effectively a window of size
k+ 1, reading the current and the lastk symbols. Equivalently,
such a transducer could be seen as a transducer withk registers
updated in a FIFO manner on each transition — the newly read
symbol is inserted, while the oldest is removed from the queue.
Rather than using registers in the further exposition, we use a set of
input variablesVk

T := {λ0,λ−1, . . . ,λ−k}, whereλ0 is the current
symbol andλ−i is the symboli positions back. Abstracting away
the registers simplifies the exposition and the proofs.

Definition 2. A symbolic finite transducer with lookback k (~k-SLT)
is a tupleA = (Q,q0,∆) where Q is a finite set of states, q0 ∈Q is
the initial state and∆⊆Q×BExp[Vk

T]×Q×DExp[Vk
T]
∗ is a finite

transition relation.

Informally, SLT is a variant of a symbolic sequentialε-input-
free (i.e., real-time) transducer having only final states,and in
general can be non-deterministic and does not have to be bounded-
valued. Next, we define deterministic SLTs.

5 2012/5/3

Definition 3. We say that SLTA is deterministicif for every two

transitions q
ϕ/t
−−→ r and q

ϕ ′/t′
−−−→ r ′ if ϕ ∧ϕ ′ is satisfiable then r= r ′

and (ϕ ∧ϕ ′)⇒ t = t′ is valid. We say that SLTA is transition-
completeif for every q the disjunction of guards from q is valid.

SLTs that that are inferred byΣ∗ are deterministic and transition-
complete, and even more, transitions from every state have mutu-
ally disjoint guards.

Before defining a run, we introduce some convenience notation.
For brevity, we refer to the sequenceλ−k . . .λ0 as ~λ . To process
the input, ~k-SLT prepends it withk dummy symbols⊥ /∈ Z. Any
operation with⊥ yields⊥ and every comparison with⊥ (except
⊥ = ⊥) is false. For a sequence~a, let us denote~a⊥ , ⊥k ·~a. The
run of a ~k-SLT A is defined as follows.

Definition 4. A run of ~k-SLT A = (Q,q0,∆) on ~a ∈ Z
n is a

finite sequence q0 . . .qn,qi ∈ Q such that there exists a sequence
of transitions

q0
ϕ1/t1
−−−→ q1

ϕ2/t2
−−−→ q2 · · · qn−1

ϕn/tn
−−−→ qn,

whereϕ1, . . . ,ϕn ∈ BExp[Vk
T] and t1, . . . , tn ∈ Exp[Vk

T]
∗ such that

for all 1≤ i ≤ n,~a⊥|[i,i+k] satisfiesϕi . We say thatA on the input~a
produces the output~o∈ (Z∗)∗ and write~a։A ~o if for all 1≤ i ≤ n

oi = t i
[

~λ 7→~a⊥|[i,i+k]

]

.

If A is deterministic, the run is uniquely determined by the
input sequence. For a deterministicA and~a∈ Z

∗ let us denote by
πA (~a), θA (~a) and γA (~a) the corresponding sequencesϕ1 . . .ϕn,
t1 . . . tn, ando1 . . .on, respectively.

6.2 Equivalence Checking

To refine deterministic learned conjectures, we need to check
whether they are equivalent to possibly non-deterministicabstrac-
tions. While equivalence checking is undecidable even for sim-
ple concrete non-deterministicε-free generalized sequential ma-
chines [30], the equivalence of non-deterministic and determinis-
tic sequential machines can be checked efficiently with an algo-
rithm from Demers et al. [18]; we present a symbolic variant of
their algorithm. First, we check whether the program’s abstrac-
tion AΦ is single-valued, i.e., whether∀~a . |AΦ(~a)| = 1. If not,
it cannot be equivalent to the deterministic conjectureAC, be-
cause deterministic transducers are single-valued. If theabstraction
is single-valued, we check whetherAΦ = AC, which is true iff
AΦ ∪AC is single-valued. Checking whether a non-deterministic
~k-SLT A = (Q,q0,∆) is single-valued is efficiently decidable in

O(|Q|2) time [18] by checking whether a linear grammar gener-
ated fromA generates a language of palindromes [28].

Let (N,T,P,S) be a linear context-free grammar, with a fi-
nite set of non-terminals (resp. terminals)N (resp. T), a finite
set of productionsP of the form N ::= TNT | ε, and the start
symbol S ∈ N. From a ~k-SLT A , generate a grammarG =
(Q×Q,BExp[Vk

T]×DExp[Vk
T]
∗,P, [q0,q0]), whereP is defined as

[s1,s2] ::= (ϕ1, t1)[s′1,s
′
2](ϕ2, t2), such that(si ,ϕi , t i ,s′i) ∈ ∆,

∧

i ϕi
is satisfiable, andt i 6= ⊥. By ⊥, our learning algorithm denotes
outputs on transitions that are either (1) infeasible because of the
constraints on the path condition, or (2) subsumed by other pred-
icates.A is single-valued iffG generates a set of palindromes.
Checking whether the outputs match under the guards reducesto
checking the validity of formula(

∧

i ϕi)⇒ t1 = t2, which can be
done withO(|Q|2) calls to the prover. IfAΦ 6= AC, one can con-
struct a witness calledseparating sequenceby finding the shortest
path from the start symbol to the first reachable rule that does not
generate a palindrome.

7. Synthesizing Over-Approximations
Σ∗ works by iteratively learning increasingly more precise conjec-
tures and comparing them with over-approximations of the pro-
gram until the two become equivalent. We now show how to con-
struct a sound approximation of a transductive program in the form
of a non-deterministic SLT in two steps. In the first step, we con-
struct an over-approximation of the program that is based onpred-
icate abstraction [7, 23]. In the second step, we transform the ob-
tained abstraction to an equivalent non-deterministic SLT. When
such an SLT does not capture the behavior of the program pre-
cisely, we refine it by augmenting the set of predicates used for the
predicate abstraction.

7.1 Abstraction of Transductive Programs

Let us consider the LTST = (State,C,) of a transductive pro-
gramP as defined in Section 5. We build our abstraction ofT

by performing predicate abstraction of the control-flow component
and treating the data component explicitly. Predicate abstraction is
known to be effective for control-flow dominated properties, moti-
vating our choice of abstraction.

We parameterize our abstraction by a set of predicatesΦ over
variables fromVE, interpreted over|VE|⇀ Z. Let us denote by
Pred(Φ) the set of boolean combinations over predicates fromΦ
(i.e., all minterms). We define the abstraction ofT as the LTS
T ♯ = (State♯,C, ♯). The set of abstract statesState♯ is given by

State♯ , L×Pred(Φ)× (VD ⇀ DExp[VI])×OutStr×N×N

in which the valuations of internal variables are mapped to predi-
cates inPred(Φ) satisfied by the valuation, while other components
of the state are kept intact. Using the approximate post operator on
Pred(Φ) computed with predicate abstraction we obtain the transi-
tion relation ♯ on abstract states. We rely on the soundness of the
predicate abstraction to obtain the following.

Proposition 5. For every input~a, if τP (~a) = s0 . . .sn is a trace
in T on ~a, then there is a traceτ♯

P
(~a) = s′0 . . .s

′
n in T ♯ such

that for every0 ≤ i ≤ n, if si = (n,σ |VE ∪ σ |VD ,ρ, i, j) and s′i =
(n′,ϕ ′,σ ′,ρ ′, i′, j ′) then n= n′, ρ = ρ ′, i = i′, j = j ′, σ |VD = σ ′
and σ |VE satisfiesϕ ′. Consequently, the output in the abstraction,
γ♯
P
(~a), is equal toγP(~a).

7.2 Translation to SLT

We now translate the abstract LTST ♯ = (State♯,C, ♯) into an
equivalent (possibly non-deterministic) SLT. First, we focus on the
penultimatei-component of the abstract state tuple, which repre-
sents the offset of the input tape head from the beginning of the
tape. We can abstract away that offset byrelativizing the states so
that offset is relative to the current position of the input tape head,
rather than the beginning of the tape. LetVT , {λ0,λ−1, . . .} be

the infinite set of allλ -variables. Let~in
i
7−→ ~λ denote a variable sub-

stitution that maps eachin-variablein j to λ -variableλ j−i .
We define input-relativisation of a states= (n,ϕ,σ ,ρ, i, j) ∈

State♯ by Λ(s) , (n,ϕ[~in i
7−→ ~λ],σ [~in

i
7−→ ~λ],ρ[~in i

7−→ ~λ], j). Intu-
itively, Λ(s) relativizes symbolic expressions inswith respect to the
currentin-index (i.e., the current position of the input tape head). In
general, expressions inσ - andρ-components ofΛ(s) may use un-
boundedly manyλ -variables as the expressions can refer to inputs
from arbitrary far in the past. To allow translation to a SLT,we fo-
cus on a class transductive programs that, in addition to being input-
output equivalent to a SLT, use only finitely manyλ -variables.

Definition 6. We say that a transductive programP is ~k−SLT if
(1) there exist a ~k−SLTA such that for all~a, γP (~a) = γA (~a), and
(2) for all s,Λ(s) uses onlyλ -variables inVk

T.

6 2012/5/3

A consequence of the first property in the definition is that~k-
SLT programs will have a finite number ofin-states and big-step
transitions (Section 5.3). The second property ensures that program
consumes input using a bounded sliding window. In practice,in-
stead of postulating this property, we could replace it withaddi-
tional safety checks that would enforce avoiding infeasible paths
with look-back greater thank when constructing the abstraction.

Now we define an equivalence relation∼ onState♯ as follows.
For s,s∈ State♯, we lets∼ s′ iff for Λ(s) = (n,ϕλ ,σλ ,ρλ , j) and
Λ(s′) = (n′,ϕ ′λ ,σ

′
λ ,ρ

′
λ , j ′) we haven= n′, ϕλ ⇔ ϕ ′λ andσλ = σ ′λ .

Lemma 7. If P is an SLT then∼ is of finite index.

Let us definepaths♯in(s, t) as the set of all ♯-sequences of
states betweens and t such that there is a single input transition
between states on the path froms to t. Forξ ∈ paths

♯
in(s, t), let us

denote byπ♯(ξ) the conjunction of assumed predicates on transi-
tions inξ and letθ ♯(ξ) be the produced symbolic output. We need
the following lemma for our translation to SLT to be well-defined.

Lemma 8. If s∼ s′ and t∼ t ′ then for every pathξ ∈ paths♯
in
(s, t),

there exists a unique pathξ ′ ∈ paths
♯
in(s
′, t ′) such thatπ♯(ξ) =

π♯(ξ ′) andθ ♯(ξ) = θ ♯(ξ ′).

We defineAΦ to be an SLT(Q,q0,∆) with

Q,

{

[s]∼ | ∃s
′ ∈ State♯ .s

:=in()

♯

s′
}

as the set of states,q0 , [s0]∼ as the initial state1 and ∆ as the

transition relation such that[s]
ϕ/t
−−→ [s′] ∈ ∆ iff there exist ξ ∈

paths
♯
in(s,s

′), such thatπ♯(ξ) = ϕ andθ ♯(ξ) = t. Intuitively, AΦ
represents all isomorphism classes of big-step transitions between
the abstractedin-states.

Lemma 9. If P is ~k-SLT thenAΦ is ~k-SLT.

We can now show thatAΦ captures exactly the behavior ofT ♯

thusAΦ soundly over-approximates the behavior ofP .

Proposition 10. For all ~a, γ♯
P
(~a) =~o iff ~a⊥։AΦ ~o.

Corollary 11. For all ~a, if γP(~a) =~o then~a⊥։AΦ ~o.

7.3 Refinement

Suppose the learned conjecture and the abstractionAΦ differ and
that~a is a separating sequence. If the following conditions are all
true:γP(~a) =~o,~a։AΦ ~o′, and~o 6=~o′, then we need to refine the
abstractionAΦ. We want to add enough predicates toΦ to evidence
infeasibility of the spurious run inAΦ that generates~o′.

The existence of a counterexample means thatAΦ is not pre-
cise enough, i.e., that it strictly over-approximatesP . Since our
abstraction is based on predicate abstraction and fully precise iso-
morphic representation of other components of the state,AΦ in fact
defines the strongest inductive invariantψ of transition relation of
P that is expressible as a Boolean combination of the given setof
predicates, while the input-output relation is preserved exactly in
the relativized form. Assuming a complete decision procedure for
the underlying theory and a predicate selection method thatwould
eventually buildΦ, by the relative completeness of predicate ab-
straction [8, 31], we could generate an invariant as strong as ψ.

1 Without loss of generality, we can assume that the initial state is anin-
state, becauseP is transductive (Definition 1) and therefore cannot produce
output before reading some input. Thus, the states before the first in-state
are uninteresting, and can be merged into the firstin-state.

It is not clear whetherψ can always be constructed, and if it
can, is it independent of the number of states (or some other in-
trinsic property) of the ~k-SLT AP that is behaviorally equivalent
to P . It is, on the other hand, possible to construct such an in-
variant if the number of statesn is known a priori, by explicitly
encoding a checking sequence [32] that distinguishesAP from all
other transducers up ton states. Therefore, to abstract away the
complexity of such construction, we assume existence of a predi-
cate selection oracle that eventually yields a setΦ resulting in an
abstractionAΦ equivalent toP . We say that a predicate selection
oracle iscompleteif it is guaranteed to eventually generate a suffi-
cient set of predicates to constructAΦ equivalent toP . Our main
result expresses completeness of our learning algorithm relative to
existence of such a complete predicate selection method.

Further on, we assume a suitable refine procedure that given a
set of predicatesΦ and an input~a producing a spurious run inAΦ
returns an augmented setΦ′, for which the spurious run is avoided
in AΦ′ . Although generally it may be hard if not impossible to con-
struct a predicate selection method that would always yieldthe right
predicates for constructingAΦ, our empirical evaluation shows that
standard heuristics work well in practice for the examples we ana-
lyzed.

8. Learning
In this section, we describe theΣ∗ algorithm. The algorithm con-
structs a table, calledobservation table, similarly asL∗, but table
entries are path predicates and symbolic output (see Section 5.3),
rather than concrete sequences. The finished table can be easily
translated into a ~k-SLT, representing a conjecture. The conjecture
is always deterministic. By checking equivalence of the conjecture
and a potentially non-deterministic~k-SLT abstraction of program
P (Section 6.2), we either generate a concrete counterexample
showing how the conjecture and abstraction differ, or provethey
are equivalent. If the counterexample is spurious (the program does
not produce the same sequence of outputs as the abstraction), we
refine the abstraction. Otherwise, the counterexample represents a
behavior that the conjecture failed to capture, and we refinethe con-
jecture. We proceed by describing some notational conveniences
used in this section, followed by the detailed presentationof the
algorithm and its properties.

For brevity, all sets of data and boolean expressions are over
~k-SLT input variablesVk

T, defined in Section 6.1. LetVT be
the infinite set of allλ -variables, defined in Section 7.2. We
define a sequence-relativisation functionΛ(s1 . . .sn) , s1[~in

1
7−→

~λ] . . .sn[~in
n
7−→ ~λ], where~in

i
7−→ ~λ is the variable substitution defined

in Section 7.2 and~s is either a path predicate or symbolic output.
If ~s is a symbolic output~t, the same relativisation function is ap-
plied to each individual term in the subsequence, i.e., ift = t1 . . . tm
thent[~in i

7−→ ~λ] = t1[~in
i
7−→ ~λ] . . . tm[~in

i
7−→ ~λ]. We define SOLVE as a

function that takes a sequence of predicates, derelativizes them by
applying the inverse of theΛ substitution, computes a conjunction
of derelativized predicates

∧

1≤i≤|~p|
(

Λ−1(~p)
)

|i , passes the con-
junction to a solver, and returns a concrete sequenceZ

∗ of input
symbols~a satisfying the conjunction such that|~a| = |~p|, or ⊥ if
the conjunction is infeasible. Finally, we point out that all equality
(resp. inequality) checks= (resp.6=) over predicates and terms in
this section are syntactic equality (resp. inequality) checks.2

2 At the cost of more complex exposition, we could use semanticequality
and check that output terms are equal under the guard restrictions. Such an
approach might allow us to learn more compact~k-SLTs.

7 2012/5/3

8.1 Definitions

Σ∗ constructs a symbolic observation table, defined as follows:

Definition 12. Symbolic observation tableis a quadruple(R,S,E,
T)⊂ (BExp∗,BExp∗,BExp∗,BExp∗×BExp∗→ (DExp∪{⊥,ε})∗),
where R⊆ S represents a set of identified states, S (resp. E) is a
prefix- (resp. suffix-) closed set of relativized path predicates, T is
a table indexed by~pp ∈ S,~ps ∈ E containing a relativized symbolic
output. The entry at T[~pp,~ps] is only the suffix of symbolic out-
put generated byP when processing~ps, or more formally:∀~a=
SOLVE(~pp ·~ps) .~t = θP(~a)∧~t =~tp ·~ts∧|~ts|= |~ps|∧T [~pp,~ps] =~ts.
For some~p∈ S, we define a~p-row in the observation table as an
E-indexed set, denoted~p-row. We denote outputs generated by in-
feasible and redundant transitions in the table by⊥.

Intuitively, setR represents a set of shortest paths leading to
discovered states, setS⊇ R contains exactly path predicates from
R and additionally all the sequences that extend sequences from R
by exactly one big-step transition. The role ofS is to exercise all
the transitions in the inferred transducer. Finally, setE is the set of
distinguishing tests that distinguish different states.

The standardL∗ makes a conjecture when the table isclosed,
which means that every sequence inS has a representative inR,
or more formally∀~p ∈ S . ∃~r ∈ R . ~p-row = ~r-row. We define
closedness in the same way asL∗. From a closed table, one can
construct a complete (for all states and input symbols, all transitions
are defined) transducer using standard techniques (e.g., see [4,
36]).3

8.2 Algorithm

We begin by describing the FILL ROWSalgorithm that computes the
undefined entries of the table, continue with the EXTENDTABLE
algorithm that explores the successor states of all states discovered
at certain step, and end with theΣ∗ algorithm.

Algorithm 1 computes the missing entries in the table. If theen-
try is missing for some prefix~pp ∈ Sand suffix~ps ∈ E, we first try
to compute a concrete witness~a by splicing together the prefix and
the suffix. While theS(andR) sets contain path predicates that are
collected along prefixes of some feasible paths inP starting from
the initial state, theE set contains suffixes of feasible paths. Nat-
urally, when we arbitrarily splice prefixes and suffixes of different
paths, the resulting formula might be infeasible. If feasible, we exe-
cute~a onP using concolic execution [13, 21, 35] (Line 4) and col-
lect the predicates (~r) and output terms (~t) from big-step transitions.
Note that the collected predicates might differ from~pp ·~ps, but at
least the prefix (corresponding to~pp) will always match. The out-
puts corresponding to mismatched predicates and infeasible path
conditions are marked⊥. Lines 6–11 replace the output terms at
positions where the~pp ·~ps and~r sequences differ syntactically. Fi-
nally, lines 16–17 close the table.

Algorithm 2 takes a state representative~r, i.e., a path predicate
that holds on the shortest path to the identified state, and finds all the
outgoing big-step transitions from that state, adding the predicates
from those transitions toE and the entire sequence (~r extended by
one transition) toS. The only interesting part of the algorithm is
the discovery of new transitions and the corresponding predicates.
In the first iteration, Line 6 extends the representative sequence~r
with predicatetrue, effectively allowing the solver to produce an
arbitrary value for the last element of the concrete input sequence.

3 In theL∗ setting, one also defines theconsistencyproperty, which roughly
says that if two sequences~p1,~p2 from R are equivalent, then both states
reached byγP (SOLVE(~p1)) andγP (SOLVE(~p2)) must produce the same
output in the next big-step transition given the same input symbol. We main-
tain the consistency of our symbolic observation table by always assuring
that each state has only one representative in theRset.

input and output : Observation tableOT
1 forall the ~pp ∈ S,~ps ∈ E such that T[~pp,~ps] is undefineddo
2 ~a := SOLVE(~pp ·~ps)
3 if ~a 6=⊥ then
4 (~r,~t) := (Λ(πP (~a)),Λ(θP (~a)))

// assert(|~r |= |~t|)
5 ~ts := ε
6 forall the 1≤ i ≤ |~t| do
7 if i > |~pp| then
8 if (~pp ·~ps)|i =~r|i then
9 ~ts :=~ts ·~t|i

10 else
11 ~ts :=~ts ·⊥
12 else

// assert(~pp|i =~r|i)
13 T [~pp,~ps] :=~ts
14 else
15 T [~pp,~ps] :=⊥

// Now close the table

16 forall the ~p∈ S s.t.¬∃~r ∈ R . ~p-row=~r-row do
17 R := R∪~p // New state

18 ReturnOT

Algorithm 1: The FILL ROWSAlgorithm.

Executing the obtained concrete sequence and collecting predicates
along the path, we identify the first big-step transition guard pred-
icate (rs). In every following iteration, we negate a disjunction of
the predicates discovered so far, until the disjunction becomes valid
(test at Line 4). All infeasible traces lead to a ghost state that has
one self-loop transition labeledtrue/⊥. The algorithm creates such
a state automatically, if needed, by filling the corresponding row
with ⊥, as even the prefix to the ghost state is infeasible.

input and output : Observation tableOT
1 forall the ~r ∈ Rdo // Extend all sequences from R
2 if ¬∃~ps ∈ E . |~ps|= 1∧~r ·~ps ∈ S then
3 s := false

4 while s 6⇔ true do
5 rs := ε
6 ~a := SOLVE(~r ·¬s)
7 if a=⊥ then
8 rs := ¬s
9 s := true

10 else
11 ~p := Λ(πP (~a))

// assert(|~p|= |~r|+1)
12 rs := ~p||~r|+1
13 s := s∨ rs

14 E := E∪{rs}
15 S:= S∪{~r · rs}
16 OT :=FILL ROWS(OT)
17 ReturnOT

Algorithm 2: The EXTENDTABLE Algorithm.

Finally, Algorithm 3 infers a symbolic transducer. Lines 1–9
discover all the big-step transitions from the initial state and the
corresponding predicates. All the discovered predicates are added
to theE set. In the next three lines, we extend and close the table,
producing the firstAC conjecture and the first abstractionAΦ of
P . The loop beginning on Line 14 checks the equivalence between

8 2012/5/3

the conjecture and abstraction. If they are equivalent, thealgorithm
terminates returning the exact transducer implemented byP . Oth-
erwise, the counterexample is checked againstP . If it is spurious,
we refine the abstraction, otherwise, we refine the conjecture. We
use Shahbaz and Groz’s [36] technique for processing the coun-
terexamples adapted for our symbolic setting. First, we collect the
predicates fromP along the path determined by the counterexam-
ple and discard the longest prefix that is already inS. We denote the
remaining suffix by~ps. We add all suffixes of~ps to E (Line 24), to
assure thatE remains suffix closed.

init : R= {ε},S= {ε},E = /0,T = /0, i = 0,s= false

result : ~k-SLT AC
1 repeat// Fill 1st row
2 if s⇔ false then
3 a := randomly generated array of typeZ[1]
4 else
5 a :=SOLVE(¬s)
6 p := Λ((πP(a))|1) // 1st pred. from path predicate

7 E := E∪ p
8 T[ε, p] := Λ((θP(a))1)
9 s := s∨ p

10 until s⇔ true

11 (R,S,E,T) :=EXTENDTABLE(FILL ROWS(R,S,E,T))
12 ComputeAC from (R,S,E,T)
13 Compute initialAΦ of P

14 while true do
15 Let (~a,~o) be a separating sequence betweenAC andAΦ
16 if ~a= ε then
17 ReturnAC
18 if γP (~a) 6=~o then// Spurious counterexample?
19 RefineAΦ of P on (~a,~o)
20 else
21 ~p := Λ(πP (~a))
22 Let ~pp be the longest prefix of~p s.t.~pp ∈ S
23 Let ~ps be s.t.~p= ~pp ·~ps
24 E := E∪Suffix(~ps)
25 (R,S,E,T) :=EXTENDTABLE(FILL ROWS(R,S,E,T))
26 ComputeAC from (R,S,E,T)

Algorithm 3: TheΣ∗ Algorithm.

8.3 Properties

First, we state the main properties ofΣ∗, and then proceed with the
proof of relative completeness and a discussion of computational
complexity.

Lemma 13. Let T = (R,S,E,T) be a symbolic observation table.
Σ∗ preserves the following invariants:

1. R and S (resp. E) are always prefix- (resp. suffix-) closed.
2. For every~p∈S there is a unique~r ∈R such that~p-row=~r-row.
3. For every~r ∈ R, there are r1s , . . . , r

n
s such that

∨n
i=1 r i

s ⇔ true

and for all i, it holds that~r · r i
s ∈ S.

4. The conjectureAC is closed at the end of each step.

Correctness. R represents the part of the all-path symbolic exe-
cution tree ofP on which the conjecture faithfully represents the
behaviour ofP , which is stated with the following proposition.

Proposition 14 (Bounded correctness). After each step, for all
~r ∈ R and~a such that~a= SOLVE(~r), γP (~a) = γAC

(~a) holds.

Completeness. The following lemma ensures that a progress is
made after each conjecture refinement.

Lemma 15. If at some step ofΣ∗, (~a,~o) is a separating sequence
such thatγP(~a) =~o, then at the end of the step, for all~a′ such that
~a′ = SOLVE(πP(~a)), γAC

(~a′) = γP(~a′) holds.

We state our completeness result relative to the completeness of
the predicate selection oracle.

Theorem 16 (Relative completeness). If P is an SLT and the
predicate selection method for refinement is complete, thenΣ∗
terminates withAC being behaviorally equivalent toP .

Proof. First note that whenAΦ is single-valued, then by the sound-
ness of abstraction,AΦ is in fact behaviorally equivalent toP . As
the predicate selection method is assumed to be complete, wewill
eventually obtain a single-valuedAΦ.

The equivalence check ofAΦ andAC always returns the short-
est separating sequence (if one exists). There can be only finitely
many shortest separating sequences of a given length, and ateach
step such a sequence is used either to refine the conjecture orto
refine the abstraction. Therefore, the number of conjecturerefine-
ments must also be finite.

Computational complexity. Next, we analyze the complexity of
Σ∗. Let n be the number of states of the inferred~k-SLT, k the
maximal number of outgoing big-step transitions from any state,
m the maximal length of any counterexample, andc the number
of counterexamples. There can be at mostn−1 counterexamples,
as each counterexample distinguishes at least one state. Since we
initialize E with k predicates,|E| can grow to at mostk+m(n−1).
The size ofS is at mostn · k. Thus, the table can contain at most
n · k · (k+ m · n−m) = O(n · k2 + m · n2k) entries. Thek factor
is likely to be small in practice, and our equivalence checking
algorithm finds the minimal counterexample. The solver is called
once per each state (i.e., representative inR) and for each outgoing
transition. For each equivalence check, we might need to call the
solvern2 times. Thus, the total worst-case number of calls to the
solver isO(n·k+n2), not including the number of calls required for
abstraction refinement, which depends on the abstraction technique
used.

9. Experimental Evaluation
We have implemented the learning part ofΣ∗ (algorithms in Sec-
tion 8) and evaluated it on the Google AutoEscape (GA) frame-
work sanitizers, the same examples used recently by Hooimeijer et
al. [27]. We instrumented them with a single command to denote
the line corresponding to thein-state. We dropped the ValidateUrl
sanitizer, as it is effectively just a wrapper for calling other sanitiz-
ers. ProgramsEncodeHtml andGetTags have been obtained from
the corresponding C# examples with the same name from [27] and
[12], respectively.

We patched Klee [14] with around 300 lines of code to gener-
ate symbolic relativized traces, wrote an implementation of Algo-
rithms 1–3.Σ∗ learned 10 out of 14 examples, and the first conjec-
ture was correct on all but one benchmark (GetTags required two
conjectures). To check the conjectures, we manually constructed
predicate abstractions of the examples using syntactic predicates
from the code. Such a simple heuristic was sufficient to construct a
complete predicate abstraction of programs’ control flow. The pred-
icate abstraction checking took us on the order of 30 minutesper
example, but it is well known it could be automated.

We ran the experiments under Cygwin on Windows 7 64bit, run-
ning on Intel 2.8GHz Core Duo CPU with 4GB RAM. The path ex-
ploration with Klee took under 10 minutes on all examples, and the

9 2012/5/3

Benchmark Learned Control Bits Data Bits
CleanseCss + 32 8
CleanseAttribute −(∗) 32 8
CssUrlEscape + 32 8
HtmlEscape + 0 8
JsonEscape + 0 8
PreEscape + 0 8
UrlQueryEscape + 0 8
XMLEscape + 0 8
JavascriptEscape + 0 16
JavascriptNumber −(∗) 33 8
PrefixLine − 0 8
SnippetEscape −(∗) 0 8
EncodeHtml + 0 8
GetTags + 32 16

Table 1: Experimental Results. The benchmarks thatΣ∗ success-
fully learned are denoted by+. Benchmarks marked with(∗) could
be learned ifΣ∗ were extended to handle subsequential transduc-
ers. The last two columns show the size of the internal control
and data state. We countedλ0 as 8 bits of data state. We counted
boolean variables as a single bit (e.g., for the JavascriptNumber
benchmark).

learning itself took under a second. In comparison, human expert
required several hours of analysis to extract symbolic transducers
manually [27].

The learned ~k-SLTs all have the lookback of zero or one, and
between one and three states, which attests to the compactness of
~k-SLTs as a symbolic representation. Concrete versions of these

sanitizers are far less compact, as the alphabets are either8- or 16-
bit, and some benchmarks have internal state of up to 48 bits (e.g.,
GetTags).

PrefixLine is effectively a ~0-SLT, but it is implemented us-
ing the memchr function, and the results of these function calls
are used in guards. The remaining three sanitizers, CleanseAt-
tribute, JavascriptNumber and SnippetEscape, are subsequential:
CleanseAttribute detects the end of the input and handles the end
differently, JavascriptNumber checks validity of the input stream
before deciding the output, and SnippetEscape outputs unclosed
tags from a predefined set at the end of the input. These could be
learned ifΣ∗ were extended to subsequential transducers by gener-
alizing Vilar’s algorithm [39] to the symbolic setting.

Although small in numbers of lines of code, sanitizers are often
very difficult to implement correctly. Being able to automatically
infer a formal model of these functions, allows us to automatically
check their properties such as idempotence, commutativityand
reversibility [27] that are important for establishing security of web
applications.

10. Limitations and Future Work
In this section, we discuss the main theoretical and practical limita-
tions ofΣ∗. The main theoretical limitation is the relative complete-
ness to the abstraction method chosen for over-approximating the
program. While the existing predicate selection heuristics worked
well for our examples, and were indeed capable of constructing the
strongest invariant of program’s transition relation, more research
is needed in this direction. We hope thatΣ∗ could help elucidat-
ing the connection between predicate selection heuristicsand com-
pleteness.

On the practical side, the specialized version ofΣ∗ developed
in this paper was expressive enough to infer symbolic transducers
on a number of real-world examples, but~k-SLTs are not expressive

enough to represent functions likefromLast anduptoLast [27],
which inherently require non-determinism. Learning such more ex-
pressive classes of symbolic transducers remains an open problem.

References
[1] F. Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state

communication protocols using regular inference with abstraction.
In ICTSS’10: Proceedings of the 22nd IFIP WG 6.1 international
conference on Testing software and systems, volume 6435 ofLNCS,
pages 188–204. Springer, 2010.

[2] R. Alur and P.Černý. Streaming transducers for algorithmic veri-
fication of single-pass list-processing programs. InPOPL’11: Pro-
ceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 599–610. ACM, 2011.

[3] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of inter-
face specifications for java. InPOPL’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 98–109. ACM, 2005.

[4] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[5] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. M. Paradkar, and
M. D. Ernst. Finding bugs in dynamic web applications. InISSTA’08:
Proc. of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, pages 261–272. ACM, 2008.

[6] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic Pred-
icate Abstraction of C Programs. InPLDI’01: Proc. of the ACM SIG-
PLAN 2001 Conf. on Programming Language Design and Implemen-
tation, volume 36 ofACM SIGPLAN Notices, pages 203–213. ACM
Press, 2001.

[7] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian ab-
straction for model checking c programs. InTACAS’01: Proceedings
of the 7th International Conference on Tools and Algorithmsfor the
Construction and Analysis of Systems, volume 2031 ofLNCS, pages
268–283, 2001.

[8] T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness
of abstraction refinement for software model checking. InTACAS
2002: Proceedings of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 2280
of LNCS, pages 158–172, 2002.

[9] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons.
Proofs from tests. InProceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2008, Seattle,
WA, USA, July 20-24, 2008, pages 3–14, 2008.

[10] T. Berg, B. Jonsson, and H. Raffelt. Regular inference for state
machines using domains with equality tests. InFASE’08: Proceedings
of the Theory and practice of software, 11th international conference
on Fundamental approaches to software engineering, volume 4961 of
LNCS, pages 317–331. Springer, 2008.

[11] N. Bjørner and M. Veanes. Symbolic transducers. Technical Report
MSR-TR-2011-3, Microsoft Research, 2011.

[12] N. Bjørner, P. Hooimeijer, B. Livshits, D. Molnar, and M. Veanes.
Symbolic finite state transducers: Algorithms and applications. In
POPL’12: Proceedings of the 39th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. ACM, 2012.

[13] C. Cadar and D. R. Engler. Execution generated test cases: How
to make systems code crash itself. InSPIN’05: Proc. of the 12th
Int. SPIN Workshop on Model Checking Software, volume 3639 of
LNCS, pages 2–23. Springer, 2005.

[14] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted andautomatic
generation of high-coverage tests for complex systems programs. In
OSDI’08: Proc. of the 8th USENIX Symposium on Operating Systems
Design and Implementation, pages 209–224. USENIX Association,
2008.

[15] C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, and
D. Song. MACE: Model-inference-assisted concolic exploration for

10 2012/5/3

protocol and vulnerability discovery. InProceedings of the 20th
USENIX Security Symposium, Aug 2011.

[16] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Satabs: Sat-
based predicate abstraction for ansi-c. InTACAS 2005: Proceedings
of the 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 3440 ofLNCS, pages
570–574. Springer, 2005.

[17] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pǎsǎreanu. Learning
assumptions for compositional verification. InTACAS’03: Proc. of the
9th International Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, volume 2619 ofLNCS, pages 331–346.
Springer Berlin, 2003.

[18] A. J. Demers, C. Keleman, and B. Reusch. On some decidable
properties of finite state translations.Acta Informatica, 17:349–364,
1982.

[19] E. Elkind, B. Genest, D. Peled, and H. Qu. Grey-box checking.
In FORTE’06: Proceedings of the 2006 Formal Techniques for Net-
worked and Distributed Systems, volume 4229 ofLNCS, pages 420–
435. Springer, 2006.

[20] C. Flanagan and S. Qadeer. Predicate abstraction for software verifica-
tion. In POPL’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 191–202.
ACM, 2002.

[21] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. InPLDI’05: Proc. of the ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages 213–223.
ACM, 2005.

[22] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. Compositional
may-must program analysis: unleashing the power of alternation. In
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2010, Madrid, Spain,Jan-
uary 17-23, 2010, pages 43–56, 2010.

[23] S. Graf and H. Saidi. Construction of abstract state graphs with
PVS. In CAV’97: Proceedings of the 9th International Conference
on Computer Aided Verification, volume 1254 ofLNCS, pages 72–83.
Springer, 1997.

[24] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani. SYNERGY: a new algorithm for property checking. In
FSE’06: Proc. of the 14th ACM SIGSOFT Int. Symp. on Foundations
of Software Engineering, pages 117–127. ACM, 2006.

[25] P. Habermehl and T. Vojnar. Regular model checking using inference
of regular languages.Electronic Notes in Theoretical Computer Sci-
ence, 138:21–36, 2005.

[26] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-
tion. In POPL’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 58–70.
ACM, 2002.

[27] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M.Veanes. Fast
and precise sanitizer analysis with BEK. InProceedings of the 20th
USENIX Security Symposium, Aug 2011.

[28] J. E. Hopcroft. On the equivalence and containment problems for
context-free languages.Theory of Computing Systems, 3:119–124,
1969.

[29] F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical
register automata. InVMCAI’12: Proceedings of the 12th Interna-
tional Conference on Verification, Model Checking, and Abstract In-
terpretation. Springer, 2012. To appear.

[30] O. H. Ibarra. The unsolvability of the equivalence problem for ε-
free NGSM’s with unary input (output) alphabet and applications. In
SFCS’77: Proceedings of the 18th Annual Symposium on Foundations
of Computer Science, pages 74–81. IEEE Computer Society, 1977.

[31] R. Jhala and K. L. McMillan. A practical and complete approach
to predicate refinement. InTACAS 2006: Proceedings of the 12th
Conference on Tools and Algorithms for the Construction andAnalysis
of Systems, volume 3920 ofLNCS, pages 459–473, 2006.

[32] D. Lee and M. Yannakakis. Principles and methods of testing finite
state machines-a survey. InProc. of the IEEE, volume 84, pages 1090–
1123. IEEE Computer Society, 1996.

[33] K. L. McMillan. Lazy abstraction with interpolants. InCAV’06:
Proceedings of 18th International Conference on Computer Aided
Verification, volume 4144 ofLNCS, pages 123–136. Springer, 2006.

[34] J. Oncina, P. Garcı́a, and E. Vidal. Learning subsequential transducers
for pattern recognition interpretation tasks.IEEE Transactions Pattern
Analysis and Machine Intelligence, 15:448–458, May 1993.

[35] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine
for c. SIGSOFT Softw. Eng. Notes, 30:263–272, 2005.

[36] M. Shahbaz and R. Groz. Inferring Mealy machines. InFM’09:
Proc. of the 2nd World Congress on Formal Methods, pages 207–222.
Springer, 2009.

[37] S. Srivastava and S. Gulwani. Program verification using templates
over predicate abstraction. InPLDI’09: Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and
implementation, pages 223–234. ACM, 2009.

[38] G. van Noord and D. Gerdemann. Finite state transducerswith predi-
cates and identities.Grammars, 4(3):263–286, 2001.

[39] J. M. Vilar. Query learning of subsequential transducers. InProceed-
ings of the 3rd International Colloquium on Grammatical Inference:
Learning Syntax from Sentences, pages 72–83. Springer-Verlag, 1996.

11 2012/5/3

