Symbolic Grey-Box Learning of Input-Output
Relations

Domagoj Babic
Matko Botincan
Dawn Song

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-59
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-59.html

May 3, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Symbolic Grey-Box Learning of Input-Output Relations

Domagoj Babié
1ucC Berkeley

Abstract

Learning of stateful models has been extensively used i ver
fication. Some applications include inference of interfanari-
ants, learning-guided concolic execution, compositioreifica-
tion, and regular model checking. Learning shows a greahjz®
for verification, but suffers from two fundamental limitaris. First,
learning stateful models over concrete alphabets doescatd s
practice, as alphabets can be large or even infinite in siee: S
ond, learning techniques produce conjectures, which niightei-
ther over- nor under-approximations, but rather some mithef
two. The new technique we propose — Sigma overcomes
these problems by combining black- and white-box analysib-t
niques: learning and abstraction. Such grey-box settilogvalin-
spection of the internal symbolic state of the program,vatig

us to learn symbolic transducers with input and output dptea
ranging over finite sets of symbolic terms. The techniqueradtes
between symbolic conjectures and sound over-approxXimetid
the program. As such, the technique presents a novel twitteto
more standard alternation among under- and over-appréixinga
often used in verification. Signidas parameterized by an abstrac-
tion function and a class of symbolic transducers. In thizepave
develop Sigmaparameterized by a variant of predicate abstraction,
andk-lookback symbolic transducers — a new variant of symbolic
transducers, for which we present learning and separatiguence
computation algorithms. Verification of such transducer$dr in-
stance, important for security of web applications and mfigtd

its applications in other areas of verification. The mairhtecal
result we present is that Sigimes complete relative to abstraction
function.

1. Introduction

Grammatical inference techniques for learning variouss$yqf au-
tomata from input-output sequences have been applied irda wi
variety of verification settings: inference of interfacedriants [3],
learning-guided concolic execution [15], compositionatifica-
tion [17], and regular model checking [25]. In those se®irigarn-
ing is performed in a black-box manner, even though sourde co
is usually available. As a consequence, the classical Amglu*
algorithm [4] used for learning works over concrete alplisbas
it cannot inspect the internal symbolic state of the systdmse
input-output relation is to be learned. The concrete treatrof the
alphabet results in a state explosion problem, becausealzdphare
typically large or even infinite in practice. Since the coexity of
L* is quadratic in the size of the alphabet and the number dstat
such approaches scale poorly.

By allowing L* to inspect the internal symbolic state of the pro-
gram for which we wish to learn an input-output relation, vagain
a more powerful symbolic version &f . Generating concrete input
sequences, analyzing how they are processed, and obséneng
symbolic responses, our approach learns symbolic inpipttbue-
lations. As a consequence, the approach is applicable ellen w

Matko Botintan

Dawn Sond

2University of Cambridge

the input alphabets are infinite, and promises better siifain
general.

The classicalL* merely conjectures input-output relations,
without giving any guarantees that conjectures are eitieler:
or over-approximations of the input-output relation impented
by the program. To check conjecturés; relies upon an equiva-
lence checking oracle. Such oracles are often either uahlaiin
practice, computationally intractable, or very difficdtimplement
as the input-output relation being learned and the progranof
ten very different formal objects. We show how such oracteda
be implemented for a class of programs by equivalence chgcki
of deterministic approximations computed bylanlike algorithm
and sound possibly non-deterministic over-approximatiofithe
program being learned. We refer to such a learning framewark
rameterized by a class of symbolic transducers and an atietra
function as>*. Notably,Z* is the first learning framework working
fully at the symbolic level.

In this paper, we develop* parameterized blg-lookback sym-
bolic transducersE(SLT) and a variant of predicate abstraction.
We introducek-SLT as a variant of symbolic finite-state transduc-
ers (SFT) with registers and simple updates (SFTR) [11, IR2].
our variant, all the states are final. Without that requinetng is
unclear how to automatically learn an SFT(R), as they allow i
herent ambiguity in where the output is produced. Indeedtiag
concrete finite-state transducer learning algorithms 384 39] re-
quire all states to be final. Also, we impose a restriction ow h
registers are used to simplify learning and exposition,vibeitbe-
lieve that restriction is not fundamental. The restrictadlows us
to completely abstract away the registers. We show that kvith
SLTs we can model faithfully 67% of sanitizers from the Geogl
AutoEscape framework, and 92% with a simple generalization

We also present a learning algorithm foSLTs. To check the
learned conjectures, we exploit the fact that our conjestiare
deterministic. While equivalence checking is undecidaivien for
simple concrete non-deterministizfree generalized sequential
machines [30], equivalence checking of deterministic and-n
deterministic finite-state transducers is decidable [Hid we
present a generalization of Demers et al.’s [18] algoritlemdur
symbolic setting.

The role of the abstraction i&* is to synthesize an over-
approximation of the program whose input-output relati@wish
to learn. In the particular instantiation & we develop in this
paper, we use a variant of the standard well-known predihate
straction [6, 23]. Predicate abstraction serves the perpdsab-
stracting away the internal computation of a program, white
leave the input-output data flow intact. The resulting (fggson-
deterministic) abstraction is still Llnsuitable for comipan with
conjectures, which are iQ the form lbfSLTs. We show how to syn-
thesize non-deterministlc SLTs from the computed abstractions.

The most important technical result of this paper is that s
thatZ*, parameterized big-SLTs and predicate abstraction, is rel-

2012/5/3

atively complete for a a family of infinite-state programshieh
we callk-SLT programs. The framework is complete relative to the
chosen abstraction function; we show th&tis complete if the ab-
straction function eventually terminates producing thergjest in-
ductive invariant of program'’s transition relation (see38&]). Dif-
ferent classes of programs could be learned by parametg&Zi
in a different way. For instance, subsequential symbddicgducers
could be learned with a symbolic variant of Vilar's [39] atgbm
and by adjusting the abstraction accordingly. For an eveadsr
class of transductive programs that read as inputs and peoalsi
outputs sequences of symbals; might not terminate. However,
the learned incomplete symbolic conjectures might stillbeful
for various applications, like MACE [15].

The main motivation forz* came from the recent work of
Bjarner et al. [11, 12]. They develop the theory of symbaians-
ducers and show how such transducers can be used for véoificat
of web sanitizers, by checking their equivalence, idempmeand
commutativity. In addition, they also discuss a number b&otp-
plications: detection of malicious programs, image bhgriand
location privacy. To construct formal objects amenablednfica-
tion, they had to invest several hours of a human expert's titto
manual synthesis of each SFT from code. In contEstan com-
pletely automatically infer 10 out of 14 publicly availal@eamples
used to evaluate Bek [27]. We also draw inspiration from goent
work on MACE [15]. MACE uses an optimized version lof to
learn an approximation of a program’s search space. Thabgpp
imation guides concolic execution, which in turn gets deep®
the search space, discovering new input and output symiseld u
for refining the approximation. While showing strong expen-
tal results, MACE offers absolutely no guarantees on corapéss
and is computationally very expensive, because it opecatésrge
concrete transducerE? could be used to realize a symbolic variant
of MACE, offering relative completeness for certain classgpro-
grams, and potentially better scalability in geneBal.might also
find its applications in compositional verification, inface of in-
terface invariants, and regular model checking.

We claim the following contributions:

Parameterized Learning Framework Z*. We introduce an au-
tomated learning framework™ for learning symbolic input-
output relations of infinite-state programs. The key insiggr
hind Z* is that we can use an over-approximation to detect
convergence. Another novel insight we put forward is that by
combining black-box learning with white-box abstractiore
reap the benefits of both.

k-Lookback Symbolic Transducers.When developing a special-
ization of 2*, we introduce a variant of SFTRs [11, 12] that is
amenable to learning. Additionally, we restrict how theiseg
ters are used to simplify learning and exposition. We priesen
a learning algorithm fol?—SLTs, which is, to the best of our
knowledge, the first learning algorithm operating fully héet
symbolic level.

Synthesis of Program Abstractions intok-SLTs. We show how
to translate predicate abstractions of programs beingédektio
k-SLTs and how to refine the abstraction in our setting, when th
abstraction is too coarse. The key novelty in this synthedie
computation of a finite representation of a potentially iidin
input-output relation implemented by the program.

Relative Completeness ResultsThe main technical result of this
paper is that* converges to a complete and sound model for
certain classes of infinite-state programs, as long as ttesab
tion function eventually terminates producing the strage-
ductive invariant of program’s transition relation. Effieely,
this results shows that the completeness of learning cae-be r
duced to the completeness of abstraction.

2. Related Work

In this section, we position our work with respect to the most
relevant existing literature. After discussing symbotiansducers
and their learning, we end with a discussion of connectioite w
predicate abstraction, which we use in our specializatfaro

2.1 Symbolic Transducers

Symbolic finite-state transducers have become a populdc top
lately [2, 11, 12, 27]. Van Noord and Gerdemann [38] intraztlic
the first simple symbolic transducers. The expressivity hafsé
transducers is severely limited as they are not able to lestab
functional dependencies from input to output. In a seriepaf
pers [11, 12, 27], a group of authors proposed symbolic fistibe
transducers (SFTs) with registers (SFTRs), where inpsp(reut-
put) symbols range over predicates (resp. terms). Bjgrner a
Veanes [11] show an effective composition construction @nogte
that equivalence is decidable for single-valued SFTRs wiitiple
updates, as long as the underlying theory is decidable. rtinfo
nately, their proof is not constructive and does not reveal to
efficiently compute a separating sequerfc-aLTs are less expres-
sive than SFTRs. We carefully limited the expressivity ofT®BS

(to obtaink-SLTs) so as to be able to represent interesting real-
world examples. able to learn and constructively equivadearheck
learnedk-SLTs.

One feature of SFTRs makes them difficult to learn — the
set of final states of an SFTR can be a strict subset of allsstate
Transducers with some non-final states are partial funettbat
accumulate the output and yield it only when the last reached
state is final. Furthermore, the existence of non-final stalews
ambiguity of where the output is created. Thus, it is not Ssimg
that the existing algorithms for learning concrete trasds [34,

36, 39] require all states to be final. Similarly, we requiliettze
states of our symbolic transducers to be final. We also impose
a restriction on how registers are used. In particular, vegiire

that registers can contain input symbols read at rkasinsitions
before the last transition. That restriction allows us tetedrt
away registers, while still allowing complex bounded fuocal
dependencies among inputs and outputs. We do not believe tha
restriction to be fundamental. As the set of predicates wed
transition guards in SFTRs akeSLTs is finite, predicates partition
register valuations into a finite set of equivalence classgmch
could be learned at the cost of having a more complex learning
algorithm. Similar partitioning arguments were used in pheofs

of decidability of equivalence of single-valued SFTRs [Hhd
streaming transducers [2]. In streaming transducers et are
two type of registers — one for symbols and the other for g&in

At every step, a streaming transducer can make decisiorexl bas
on the current state, the tag (ranging over a finite set ofeglu

of the next input symbol, and the ordering between next input
symbol and symbols stored in data registers. Each valuedstor
string registers can be either copied or concatenated veigimdol,

but has to be used only once. They show an intricate proof of
decidability of equivalence of streaming transducersererice of
both SFT(R)s [11, 12] and streaming transducers [2] has lefen

as an open question.

2.2 Learning of Symbolic Transducers

Little work has been done on learning of symbolic transdsiCEne
work we are aware of [1, 10, 29] focuses on a limited form of sym
bolic transducers that have simple guards with a fixed nuraber
parameters and can either update registers or output arsexjaé
concrete values in every transition. Such transducerséalerode
relation that partitions their states into a finite numbeeqtiva-
lence classes, which makes their learning possible. Ah@ftbove

2012/5/3

approaches learn over concrete alphabets, translatingothaed
concrete transducer to a symbolic one, and assume existérce
suitable equivalence checking oracle. Such approachesxaie
nential inboth the length of counterexamples and the number of
parameters the guard predicates can have, as well as in the nu
ber of registers. We take a different approach, and by atigi*

to inspect the internal symbolic state of the program, welaan
dle arbitrarily complex guard and output expressions, ag &s (1)
the program'’s input-output relation can be described uBimitgly
many such expressions, and (2) there exists a solver capéble
checking satisfiability of guards and (in)equality of outpyupres-
sions. There is another important point of difference.dadtof just
assuming existence of a suitable equivalence checkindepld®

the prior work [1, 10, 29], we propose an efficient algorithon f
checking the learned conjectures against a synthesizéchetisn.
Most importantly, the alternation between learning andrabgon
allows us to detect convergence, assuming an abstractdrman
infer the strongest invariant of program’s transition tiela.

Next, we will clarify the connection oE* to a few other lines
of work. Elkind et al. [19] propose a model checking approach
for systems in which some components are completely blauk- a
some completely white-box. They call the resulting apphogrey-
box checking. We use the phrase “grey-box” differently téere
to a combination of a learning algorithm that is inherentigch-
box and the white-box analysis required to answer the meshiger
queries and to compute an abstraction. Alur @edny [2] propose
an algorithm for inferring automata describing safe betavbf
interfaces. They use the standardalgorithm for inferring conjec-
tures and check that the conjectures are subsumed by thegired
abstraction of the code implementing the interface, ey theck
that the conjecture is safe. The safety check can be don&effic
while finding the most permissive (complete) model is NPdhar
their setting. In contrast, our focus is on the input-outpetavior
of programs and inference of symbolic transducers desgyitiiat
behavior. Since we want to find the exact transducers mayltiiz
program, we find discrepancies among conjectures and atistra
by computing a separating sequence between the two.

2.3 Predicate Abstraction

The specialization at* we develop in this paper uses predicate ah-
straction [7, 23] to generate a finite-state model of the unded
internal state space of the program. Predicate abstraotisibeen ,
successfully applied in counterexample-guided abstraagfine-
ment schemes for checking safety properties. Tools likel8[&], s
BLAST [26], IMPACT [33], and SATABS [16] have demonstrated
that predicate abstraction scales well to real-world @ogr with
intricate control-flow patterns. Compared to the reguladprate
abstraction, our goal is different—we infer the exact inputput
relation of a program so that we can check non-safety prigsert
such as equivalence, idempotence and commutativity [12].
Collecting path conditions as in concolic testing [21] has
previously combined with predicate abstraction in the SRE&Y
algorithm [24] and its descendants [9, 22]' combinesmust
(learning) andmay (abstraction) analyses to learn a more compact
input-output relation, while SYNERGY useésaymustcombina-
tion to check safety properties faster. Similarly as safetperties
could be checked with MAY analysis only, input-output reas
could be learned with our predicate abstraction (Sectighahly,
by refining abstractions until the relation becomes sinvgliered.
However, such relations can be unboundedly larger thanriks o
learned byz*.

true/Ag true/Ag
true/Ag
Ao>A1/A0—A 1
Ao <)\,1/)\0+A,1
(@Cy (b) &
true/A true/A
true/Ao rue/Ag rue/Ag
tl’ue/Ao-ﬁ-/\,]_
true/Ag—A_1
true/Ag+A_1
true/)\o—/\,l
(c) Ay (d) A

Figure 1: Examples of Learning Conjectures and Abstrastion

Assuming a predicate selection oracle that eventuallglgiehough
predicates for constructing the strongest invariant ofottoggram’s
transition relation, one can show relative completenegsaificate
abstraction [8, 31]. We found that for the examples used is th
paper, a simple oracle mining predicates from sequencesedf-p
cates and output terms obtained from the concolic execuofitime
program [13, 21, 35] is sufficient. More generally, we prdvatthe
specialization o&* developed in this paper is relatively complete
to predicate abstraction.

3. A Motivating Example
We begin by showing ho* works on the following example.

prev=0; cur =0; i =0;

while (true) {
cur =in();
if (i <2 out(cur);
else

if (cur < prev) out(cur + prev);
else out(cur — prev);
prev = cur;
i++;

}

The program reads input in an infinite loop using commanr(l
which reads the next input symbol, or halts if there is no more
input to read. In the first two iterations, the program pritite
last read symbol (using commaedt()), and in every subsequent
iteration it outputs the sum or difference of the last two byis,
depending on their relative ordering. Assuming symbolsnfizn
infinite alphabet, the program is infinite-state.

2*, parameterized bk-SLT and predicate abstraction, alter-
nates between predicate abstraction and learning. Thésdefa
the learning algorithm are intricate, and will be preseritaér.
Familiarity with the literature orL* [4, 36] and concolic execu-

The completeness of predicate abstraction depends on thetion [13, 21, 35] would be helpful for developing intuitiom tow

choice of predicates for abstracting the state space. Gengss
of predicate abstraction is an active research area [8&lld@aum-
ber of heuristics exist that are often complete in pract&ge2].

such an algorithm might work.
We represent learned conjectures and synthesized abmtsact
in the example a%-SLTs. Each transition is labeled by a predicate-

2012/5/3

term pair. The transition is taken when the predicate evesut
true for a given sequence of concrete input symbols. (We define
symbolic evaluation formally later.) The second elemenhefpair
describes symbolically the computed output. Predicatdstemms
are expressions over input symbols and constants. HRIETs
are allowed to read only the current and the lastymbols, we
can relativize all references to input symbols with resgedhe
current position of the input tape head. We ugeto denote the
current symbol and_; to denote symbols readransitions before.
With symbolic sequences likg= Ag- (Ao > A_1)-(Ag > A_1), we
represent symbolic path conditions, i.e., an equivaletassof a
potentially infinite number of paths. Before solving suchsences
with a solver, we need to derelativize them and compute aldeit
formula passed to the solver. In the case above, the sohgittmi
return a concrete sequencelQ?2 satisfyingp.

>* begins processing the example by learning the first conjec-
ture C; (Figure 1a), which is an under-approximation, and com-
pares it against predicate abstractiénof the program with re-
spect to an empty set of predicates (Figure 1c). Note théikeun
in the standard predicate abstraction, we leave the inpiio
behavior intact. Equivalence checking©f andA; produces the
first symbolic counterexample, say a predicgie= true and out-
putt; = (Ag+A_1), which is a behavior captured by the abstrac-
tion, but not the conjecture. Any concrete sequence satisfhiose
two formulas is a concrete counterexample. For example, itak
putA_; =1,Ap = 1. The program will produce outpu for that
input without reading\ _;, showing thatp is a spurious symbolic
counterexample, because symbolic outputs do not match.eWe r
fine the abstraction with respect to a set of predicates,irata
from some predicate selection oracle (e.g, [20, 37]). Ssppbe
oracle picks{i = 0,i < 2,i > 2}. The refined abstractioA, is
shown in Figure 1d. Equivalence checkingfef andC; produces
the second symbolic counterexample, fay= true-true-true and
T, =Ap-Ag- (Ao—A—1). Any sequence of three symbols will satisfy
P2 and it turns out that counterexample is not spurious. Thes, w
have to refine the conjecture.

After processing the counterexampl, learns conjectur€,
shown in Figure 1bC; is correct, butz* does not know that
yet, because equivalence checkingOgfand A, returns the third
counterexample, s&a§s = true-true- (Ag < A_1) andtz = Ag-Ag-
(Ao+A_1). The third counterexample is not spurious either. Thus,
once again, we need to refine the abstraction. Suppose tbke ora
extends the set of predicates with < A_;. Predicate abstraction
computedAs, which is equivalent t&€;, and the process terminates
correctly inferring program’s input-output relation.

For the following example with nested loopE! terminates
inferring ad-SLT shown below.

while (true) {
x =in();
while (x 1= 'a’) {
X =in();
out(x);

} t Ao # a/e

Ao=a/e

Ao # a/Ao

4. Notation and Terminology

In this section, we introduce the notation used throughwipaiper.
Let Z be the set of integer®] = {i € Z | i > 0} the set of naturals,
andB = {false, true} the set of booleans. L& be a set; byD*,
we denote the free monoid generatedbyvith concatenation as
the operation and the empty woedas identity. We often refer to
words as sequences. For sequences of predicates (resg), temm
write p= p1...pm (resp.t =t;...ty). During learning, we treat a

sequence of terms)(as a single object, to simplify exposition and
the algorithms. For sequences of sequences of terms, veviie
denote the length of a sequence as usi).(We refer to the-th
element of a sequence g = pj and to a subsequend® iy =

pi- .. Piik- For functionf: D — C andD’ C D, we write f|p to
denote the restriction of on D’. For functionf and sequences
& andb such thatn = |a| = |b|, we write f[d + b] to denote the
function f’ such that for ali € {1,...,n}, f(&];) = b|; and for all

x ¢ {d1,...,dn}, f'(x) = f(x). We use the notatiot[x — y] to
denote the term obtained fromby simultaneously replacing all
free occurrences ofwith y. A transduction from an input alphabet
I'1 to an output alphabet; is a partial functiod™; — I'5. Finally,
we use ato denote implicit existential quantification when we care
about the named variable and Wwhen we do not.

5. Transductive Programs

We begin the technical part of this paper by formalizing tless
of programs that transform an input stream into an outpe@astr
of symbols from a possibly infinite-sized alphabet. Manyetyof
programs behave in such a way, e.g., sanitizers, client aners
programs exchanging messages over the network, etc.

5.1 Program Representation

We now formally define our syntactic representation of paogs.
LetV = Vg UVp be the set of program variables divided into the
sets of internal and data variables. Internal variablesuaesl in
internal computations of the program, while data varialsiese
the data read from the input and can be used for construdiimg t
output. We build internal expressiof&xpVg|, data expressions
DExpVp], boolean expressiorBExgV], and atomic commands
CmdV] with the following grammar:

e = k|v|jetele—e]... € ExpVE]
ds = k|x
d = ds|d+d|d-d]... € DExgVp]
b 1= false|true|-b|bAb|bVb]|
d=d|d#d|d<d|d<d]...|
e=ele#ele<e|e<e]... € BExgV]
¢ = assume(b)|v:i=e|x:=ds|
x:=in() | out(d) e CmdV]

wherek € Z, v e Vg andx € Vp. As long as the quantifier-free
theory of DExgVp] U ExpVg] with equality and satisfiability of
BExgV] are decidable, the actual operators and predicates in the
grammar are irrelevant, hence the elisions. The commaadn()
reads an integer from the input stream and storesxiftthe input

is available, otherwise it causes the program to halt. Tihencand
out(d) writes the value of the expressidrto the output stream.

We represent programs using control-flow automata [26] over
the language of atomic commands (rolen the above grammar).
The control-flow automaton is determined by a set of contodias
L containing a distinguished nodg € L representing the starting
point of the program and a functiamcc: L x CmdV] — L repre-
senting labeled edges. All nodes either have a single ssmces
have all outgoing edges labeled with a label of the fassume(b).

In the latter case, we assume that all corresponding pttedicare
mutually exclusive and that their disjunction is a tautglog

5.2 Symbolic Semantics

Given a program?” we now define its symbolic semantics. Sym-
bolic semantics represent executionsdfon all inputs. We for-
malize the contents of the input and the output stream by us-
ing sets of ghost variableg, £ {iny,in,...} (in-variables) and
Vo £ {outy,outy, ...} (outvariables), respectively. On a particu-
lar run of Z all except finitely many of these variables are unde-

2012/5/3

kKle = k
a(x) if xeV,
Xle = X if xe Vv,
undefined otherwise
[exfle = [elo=[flo

Figure 2: Symbolic Evaluation of Expressions. Symballenotes
a map of typeMem.

assume(b)

(no,p,i,j) ~~ " (n,0,pij)

(no.pij) =7 (0,0« [elol,p.i.i)
no.piri) V(o e [infol.phi+ 1)
nopi) Y (n.o.plout « [elo].i,j+1)

Figure 3: Symbolic Semantics of Commands.

fined, and for those which are defined; corresponds to theth
element of the input stream, andt; to the j-th element of the out-
put stream. Byn we refer to the sequence iofvariablesiniin, . ..

and we us¢;, to represent the length of a sequence of symbols in
the input stream.

Definition 1. We say that? is transductivef for every inputd,
T4(4d) is finite and no transition with a labelut(-) occurs before
the first transition with a label := in().

Informally, a program is transductive if it terminates on al
inputs (having read all symbols from the input stream) ancene
produces an output before reading the first input symbol.

We refer to a statg asin-statewhen the next transition from

s reads an input symbol, i.es, "1'3() S+1. Let Tg‘,(a) £§...5
be a sequence dfi-states front 4 (&). For 1<i < n, let p; be the
conjunction of predicatels of the formassume(b) encountered on
the transitions betweexdnds’, 1, and letp, be such a conjunction

of predicates betwees, ands;. In case no such transitions exist
between the two states we satto true. Furthermore, for K

i <n, lett; be the sequence of symbolic outputs (as written to
out-variables byout() transitions) betweews; and s;1, and let

tn be such sequence of outputs betweemrids; . If no output is
generated we sgtto €. We definebig-step transitioras a transition

between two successive-states and writg ‘OL/»ti 2541

We definepath predicatesof &2 on inputd as the sequence
() £ p1... pn. Analogously, we define theymbolic outpubf
2 ondby 85(d8) £ t;...th. The concrete outpubf &2 on d is
defined byy.» (&) £ 6., (&)[in — 4.

6. Symbolic Transducers With Look-back

In the last section, we introduced transductive prograntsfan
malized their semantics. In this section, we introduce @astlacer
representation of transductive programs. We parametiéziatro-
duced transducers by which limits the set of input variables that

We evaluate program variables on a memory defined as a mapcan be used in computation of path predicates and symboatic ou

Mem £ (Vg — Z)U (Vp — DExgV|]) and we execute com-
mands symbolically on states of the forftate £ L x Mem x
OutStr x N x N. The first component is the set of control nodes.
The third component represents the symbols in the outpedrstr
as OutStr £ Vo — DExgV/] (although technically a part of the
environment, we keep the output stream component in the stat
to simplify the exposition). The last two components of thetes
the in-index and theout-index, store indices of the next element
in the input stream and the output stream, respectively. et
the components of a stasec State by s.n, s.0, s.p, si, ands.j,
respectively. The initial state & = (s ,0,0,1,1). Figure 2 shows
the semantics of expressions.

Figure 3 shows symbolic semantic rulesC State x C x State

put. Thek factor can be seen as a size of the sliding window, from
which a transducer can read inputs. Given an unbounded wjndo
the symbolic transducers we introduce are equivalent testhac-
tive programs from the last section. In our presentatioa,wm-
dows begin at the current input tape head position and dolast
symbols, because we observed that such transducers ar@seost
ful for the examples we encountered in practice. Howevereth

is no fundamental reason why such windows could not alsorcove
symbols ahead of the current head position.

6.1 Definitions

We now formally define symbolie-input-free finite-state transduc-
ers withk-lookback —k-SLTs. We specialize our exposition for the

that define the effect of each command on a state. In each rulecase when the alphabet of input and output symbad’ tsut gen-

we haven’ = succ(n,c). We wnteSW s to denote the transition
(s,c,§) e~ and say thas is a~5-successor of. Applying sym-
bolic semantic rules to all states gives rise to a labeledsttian
system (LTS)7 = (State,C,~~) with State as the set of states,
C C CmdV] as the finite set of labels, and as the labeled transi-
tion relation.

5.3 Traces and Path Predicates

The LTS .Y representing symbolic semantics is infinite in general
as it encodes all possible executions & with respect to any
input. Given a concrete inpate Z*, we can construct a sequence
of states from.7 representing the symbolic trace 6f on that
input. We start with the initial statg) and at each step we follow
the transitions, ~ Sk+1, such that ifc is of the formassume(b)
thenb is true insc.olin « &. We stop if we ever reach a state
si = (nf,0%,Pf,if,), which we call ending, such that the-
indexit equals/;, + 1. We define the symbolic trace 6f on input

d, denotedr » (&), as the finite sequenesgs; . . . st if an ending state
is reached, or as the infinite sequesgs . .. otherwise.

eralization is easy. We omit when it is not important.

Instead of reading a single symbol from the input tape at a
time, the tape head of &SLT is effectively a window of size
k+ 1, reading the current and the lastsymbols. Equivalently,
such a transducer could be seen as a transducerkwithyisters
updated in a FIFO manner on each transition — the newly read
symbol is inserted, while the oldest is removed from the queu
Rather than using registers in the further exposition, veeauset of
input variables\/'.‘r :={Ap,A_1,...,A_k}, whereAq is the current
symbol andA_; is the symboli positions back. Abstracting away
the registers simplifies the exposition and the proofs.

Definition 2. A symbolic finite transducer with lookbackk¢$LT)
is a tupless = (Q,do,A) where Q is a finite set of states g Q is
the initial state and\ C Q x BExgVX] x Q x DExp{VK]* is a finite
transition relation.

Informally, SLT is a variant of a symbolic sequenti&input-
free (i.e., real-time) transducer having only final statmsd in

general can be non-deterministic and does not have to belbdun
valued. Next, we define deterministic SLTs.

2012/5/3

Definition 3. We say that SLE/ is deterministicif for every two

transitions qm rand qﬂ r'if ¢ A ¢’ is satisfiable then =1’

and (¢ A @) =t =t is valid. We say that SLF is transition-
completeif for every q the disjunction of guards from q is valid.

SLTsthatthat are inferred I3 are deterministic and transition-
complete, and even more, transitions from every state haita-m
ally disjoint guards.

Before defining a run, we introduce some convenience natatio
For brevity, we refer to the sequengdey...Ag asA. To process
the input,k-SLT prepends it wittk dummy symbolsL ¢ Z. Any
operation withL yields 1 and every comparison with (except
1 = 1) is false. For a sequencd, let us denota&® £ 1K.3 The
run of ak-SLT « is defined as follows.

Definition 4. A run of k-SLT & = (Q,q0,A) onde Z"is a
finite sequence..dn,q € Q such that there exists a sequence
of transitions

t t n/th
L R LA

where gy, ..., ¢n € BExdVK] andty, ..., t, € ExpVK]* such that

forall1<i<n, aL‘[i,Hk] satisfiesp;. We say that# on the inpu&
produces the outp@te (Z*)* and writed — , difforall 1<i<n
o =t [A = §L|[i,i+k] .

If o/ is deterministic, the run is uniquely determined by the
input sequence. For a deterministi€ anda € Z* let us denote by
n,(d), 8.,,(d) andy,, (&) the corresponding sequencgs. .. ¢n,
t1...th, andos ... 0op, respectively.

6.2 Equivalence Checking

To refine deterministic learned conjectures, we need tokchec
whether they are equivalent to possibly non-deterministrac-
tions. While equivalence checking is undecidable even fior- s
ple concrete non-deterministizfree generalized sequential ma-
chines [30], the equivalence of non-deterministic and rdeitas-

tic sequential machines can be checked efficiently with go-al
rithm from Demers et al. [18]; we present a symbolic variaiht o
their algorithm. First, we check whether the program’s iaust
tion o7 is single-valued, i.e., whethéfa . | o (d)| = 1. If not,

it cannot be equivalent to the deterministic conjecturg, be-
cause deterministic transducers are single-valued. Hlbs&raction

is single-valued, we check whethery, = o, which is true iff
e U o is single-valued. Checking whether a non-deterministic
k-SLT o = (Q,do,A) is single-valued is efficiently decidable in
0(]Q|?) time [18] by checking whether a linear grammar gener-
ated froma/ generates a language of palindromes [28].

Let (N,T,P,S) be a linear context-free grammar, with a fi-
nite set of non-terminals (resp. terminald) (resp.T), a finite
set of productions? of the formN ::= TNT | &, and the start
symbol S e N. From ak-SLT 7, generate a gramma¥ =
(Q x Q,BExdVX] x DExp[VK]*, P, [qo, o), whereP is defined as
[s1,%2] = (¢1,t1)[S], (P2, 12), such thats, §i,ti.§) € A, A ¢i
is satisfiable, and; ## L. By L, our learning algorithm denotes
outputs on transitions that are either (1) infeasible bseaf the
constraints on the path condition, or (2) subsumed by otheat-p
icates..o/ is single-valued iff¢ generates a set of palindromes.
Checking whether the outputs match under the guards redaces
checking the validity of formuldA; ¢;) = t1 = t2, which can be
done with&(|Q|?) calls to the prover. IfeZ, # <%, one can con-
struct a witness calleseparating sequendsy finding the shortest
path from the start symbol to the first reachable rule that dum
generate a palindrome.

7. Synthesizing Over-Approximations

>* works by iteratively learning increasingly more precisejec-
tures and comparing them with over-approximations of the pr
gram until the two become equivalent. We now show how to con-
struct a sound approximation of a transductive programerfahm

of a non-deterministic SLT in two steps. In the first step, wa-c
struct an over-approximation of the program that is basepred-
icate abstraction [7, 23]. In the second step, we transfoerob-
tained abstraction to an equivalent non-deterministic. Sihen
such an SLT does not capture the behavior of the program pre-
cisely, we refine it by augmenting the set of predicates usethé
predicate abstraction.

7.1 Abstraction of Transductive Programs

Let us consider the LTS = (State,C, ~+) of a transductive pro-
gram & as defined in Section 5. We build our abstraction%f
by performing predicate abstraction of the control-flow pament
and treating the data component explicitly. Predicaterabon is
known to be effective for control-flow dominated propertieti-
vating our choice of abstraction.

We parameterize our abstraction by a set of predic@teser
variables fromVg, interpreted ovetVg| — Z. Let us denote by
Pred(®) the set of boolean combinations over predicates flom
(i.e., all minterms). We define the abstraction .&f as the LTS
Tt = (State?,C,~~1). The set of abstract statBsate’ is given by

State* 2 L x Pred(®) x (Vp — DExpV|]) x OutStr x N x N

in which the valuations of internal variables are mappedréalip
cates irPred (@) satisfied by the valuation, while other components
of the state are kept intact. Using the approximate postabpeon
Pred(®) computed with predicate abstraction we obtain the transi-
tion relation~-# on abstract states. We rely on the soundness of the
predicate abstraction to obtain the following.

Proposition 5. For every inputd, if 75 (d) = 5...5 is a trace

in 7 on &, then there is a tracer;,(a) =g...5, in 7% such
that for every0 <i <n, if § = (n,0|\y UG, p,i,j) and § =
(n,¢",0,p'\i"j'Y thenn=n', p=p',i=V, =], o\, =0
and oy, satisfiesp’. Consequently, the output in the abstraction,
V., (8), is equal toy» ().

7.2 Translation to SLT

We now translate the abstract LT$? = (Statef,C,~1) into an
equivalent (possibly non-deterministic) SLT. First, wede on the
penultimatei-component of the abstract state tuple, which repre-
sents the offset of the input tape head from the beginnindhef t
tape. We can abstract away that offsetrblativizingthe states so
that offset is relative to the current position of the inmjé head,
rather than the beginning of the tape. Mg 2 {Ag,A_1,...} be

the infinite set of al -variables. Lefn - A denote a variable sub-
stitution that maps eadh-variablein; to A-variableA;_;.

We define input-relativisation of a stase= (n,¢,0,p,i,j) €
State? by A(s) £ (n,@in =+ A],afin s A],p[in = A, j). Intu-
itively, A(s) relativizes symbolic expressionssmwith respect to the
currentin-index (i.e., the current position of the input tape heau). |
general, expressions o andp-components oA\(s) may use un-
boundedly many -variables as the expressions can refer to inputs
from arbitrary far in the past. To allow translation to a SWE fo-
cus on a class transductive programs that, in addition taliaput-
output equivalent to a SLT, use only finitely makyvariables.

Definition 6. We say that a transductive program# is k—SLT if
(1) there exist &—SLT .« such that for allg, y»(3) = y.»(d), and
(2) for all s,/A(s) uses only -variables invl}.

2012/5/3

A consequence of the first property in the definition is that
SLT programs will have a finite number of-states and big-step
transitions (Section 5.3). The second property ensurépthgram
consumes input using a bounded sliding window. In praciite,
stead of postulating this property, we could replace it veittdi-
tional safety checks that would enforce avoiding infeasihths
with look-back greater thakwhen constructing the abstraction.

Now we define an equivalence relatienon State! as follows.
Fors,s € State!, we lets ~ ¢ iff for A(S) = (n,¢,,0x,px,]) and
A(S) = (", 9},0;.p0,,]") we haven=1', ¢, < ¢} ando) = ;.

Lemma 7. If £ is an SLT thenv is of finite index.

Let us definepathsitn(s,t) as the set of alk!-sequences of
states between andt such that there is a single input transition
between states on the path frato t. Foré e pathsitn (st), letus
denote byrt* (&) the conjunction of assumed predicates on transi-
tions in& and letd? (&) be the produced symbolic output. We need
the following lemma for our translation to SLT to be well-chefd.

Lemma 8. If s~ s and t~t’ then for every patl§ € paths’ﬁn(&t),
there exists a unique patfl € paths?n(sﬂt’) such thatrt (&) =
m(&') and 6%(§) = 6%(¢").

We definegZp to be an SLT(Q, gp,A) with

o
Q= {[S]N |35 € Statef.s =0 s’}

as the set of statesp 2 [s]~ as the initial stattandA as the

transition relation such thds| o, [S] € A iff there exist €
paths’ (s,8), such thatré(£) = ¢ and (&) = t. Intuitively,
represents all isomorphism classes of big-step transiti@tween
the abstracteth-states.

Lemma 9. If 2 isk-SLT thens is k-SLT.

We can now show that/, captures exactly the behavior gf¢
thus«Zp soundly over-approximates the behaviorgt

Proposition 10. For all &, y,,(8) = 8iff & —, o.
Corollary 11. For all &, if y»(&) = 0 thena' — , ©.

7.3 Refinement

Suppose the learned conjecture and the abstractipmliffer and
thatd is a separating sequence. If the following conditions are al
true:y(d) =0, 84, -0/, ando # @, then we need to refine the
abstractionzg. We want to add enough predicatesftéo evidence
infeasibility of the spurious run inZy that generates'.

The existence of a counterexample means thatis not pre-
cise enough, i.e., that it strictly over-approximatés Since our
abstraction is based on predicate abstraction and fullyigeso-
morphic representation of other components of the stagen fact
defines the strongest inductive invariapof transition relation of
Z that is expressible as a Boolean combination of the givenfset
predicates, while the input-output relation is preserveacty in
the relativized form. Assuming a complete decision procedar
the underlying theory and a predicate selection methodvwbatd
eventually build®, by the relative completeness of predicate ab-
straction [8, 31], we could generate an invariant as strang.a

Lwithout loss of generality, we can assume that the initiatests anin-
state, becaus”’ is transductive (Definition 1) and therefore cannot produce
output before reading some input. Thus, the states beferérgtin-state
are uninteresting, and can be merged into theffirstate.

It is not clear whethexy can always be constructed, and if it
can, is it independent of the number of states (or some other i
trinsic property) of thek-SLT . that is behaviorally equivalent
to Z. Itis, on the other hand, possible to construct such an in-
variant if the number of statasis known a priori, by explicitly
encoding a checking sequence [32] that distinguiskigsfrom all
other transducers up to states. Therefore, to abstract away the
complexity of such construction, we assume existence otdipr
cate selection oracle that eventually yields a®geesulting in an
abstractioneg, equivalent toZ?. We say that a predicate selection
oracle iscompletdf it is guaranteed to eventually generate a suffi-
cient set of predicates to construet, equivalent toZ?. Our main
result expresses completeness of our learning algorithative to
existence of such a complete predicate selection method.

Further on, we assume a suitable refine procedure that given a
set of predicate® and an inpu@ producing a spurious run iy
returns an augmented set, for which the spurious run is avoided
in «qy . Although generally it may be hard if not impossible to con-
struct a predicate selection method that would always yieddight
predicates for constructingp, our empirical evaluation shows that
standard heuristics work well in practice for the examplesama-
lyzed.

8. Learning

In this section, we describe th¥ algorithm. The algorithm con-
structs a table, calledbservation tablesimilarly asL*, but table
entries are path predicates and symbolic output (see BeiB),
rather than concrete sequences. The finished table can i eas
translated into &-SLT, representing a conjecture. The conjecture
is always deterministic. By checking equivalence of thejectare
and a potentially non-deterministieSLT abstraction of program
2 (Section 6.2), we either generate a concrete counterexkampl
showing how the conjecture and abstraction differ, or pribhey
are equivalent. If the counterexample is spurious (thenarogloes
not produce the same sequence of outputs as the abstragtmn)
refine the abstraction. Otherwise, the counterexamplesepis a
behavior that the conjecture failed to capture, and we réfimeon-
jecture. We proceed by describing some notational conveaie
used in this section, followed by the detailed presentatibthe
algorithm and its properties.

For brevity, all sets of data and boolean expressions are ove
k-SLT input variablesvk, defined in Section 6.1. LeVt be
the infinite set of allA-variables, defined in Section 7.2. We

define a sequence-relativisation functidis; ...sn) 2 gin N

A]...s[in &> A], wherein + A is the variable substitution defined
in Section 7.2 and is either a path predicate or symbolic output.
If §is a symbolic output, the same relativisation function is ap-
plied to each individual term in the subsequence, i.¢.At; ...ty
thent[in v A] =ty [in > A]...tm[in =» A]. We define ®LVE as a
function that takes a sequence of predicates, derelatitimam by
applying the inverse of thA substitution, computes a conjunction
of derelativized predicate\;i<p (A~1(P)) |i, passes the con-
junction to a solver, and returns a concrete sequeticef input
symbolsd satisfying the conjunction such thg = ||, or L if
the conjunction is infeasible. Finally, we point out thdtejuality
(resp. inequality) checks: (resp.#) over predicates and terms in
this section are syntactic equality (resp. inequality)ckisé

2 At the cost of more complex exposition, we could use semafility
and check that output terms are equal under the guard testscSuch an
approach might allow us to learn more compa@<Ss.

2012/5/3

8.1 Definitions
>* constructs a symbolic observation table, defined as follows

Definition 12. Symbolic observation tabie a quadrupleR, S E,

T) C (BExp, BExp', BExp', BEXp x BExp — (DExpU{L,&})*),
where RC S represents a set of identified states, S (resp. E) is
prefix- (resp. suffix-) closed set of relativized path pretls, T is
atable indexed by, € S s € E containing a relativized symbolic
output. The entry at [Bp, Ps] is only the suffix of symbolic out-
put generated b)ﬁ? when processinqjﬁs, or more formally:va =
SOLVE(ﬁP ﬁs) t_ 9 (ﬁ)/\t — tp ts/\ |t3‘ ‘ﬁs| AT[ﬁPv ﬁs] :fs-
For somep € S, we define @-row in the observation table as an
E-indexed set, denotgiirow. We denote outputs generated by inqq
feasible and redundant transitions in the table_by

3

4
a

5
6
7
8
9

11

Intuitively, setR represents a set of shortest paths leading t&@
discovered states, s8D R contains exactly path predicates from
R and additionally all the sequences that extend sequenmes=r
by exactly one big-step transition. The role $fs to exercise all
the transitions in the inferred transducer. Finally,Eés the set of
distinguishing tests that distinguish different states.

The standard.* makes a conjecture when the tablecissed
which means that every sequenceStas a representative R,
or more formallyvpge S. 3r € R . p-row = r-row. We define
closedness in the same way las From a closed table, one can
construct a complete (for all states and input symbolstaiiditions
are glefined) transducer using standard techniques (ed.[4se
36]).

13
14
15

16
17
18

8.2 Algorithm

We begin by describing thelEL Rowsalgorithm that computes the
undefined entries of the table, continue with theTENDTABLE
algorithm that explores the successor states of all stégeswtred
at certain step, and end with t&é algorithm.

Algorithm 1 computes the missing entries in the table. Ifeahe
try is missing for some prefig, € Sand suffixgs € E, we first try
to compute a concrete witheddy splicing together the prefix and
the suffix. While theS (andR) sets contain path predicates that are
collected along prefixes of some feasible pathsArstarting from
the initial state, theE set contains suffixes of feasible paths. Nat-2
urally, when we arbitrarily splice prefixes and suffixes dfatent
paths, the resulting formula might be infeasible. If febesitve exe-
cutedon & using concolic execution [13, 21, 35] (Line 4) and col-
lect the predicates’and output termg) from big-step transitions.
Note that the collected predicates might differ frgy- Bs, but at
least the prefix (corresponding fi3) will always match. The out-
puts corresponding to mismatched predicates and infeapith
conditions are marked.. Lines 6-11 replace the output terms atg
positions where th@, - §s andr sequences differ syntactically. Fi- 11
nally, lines 16—17 close the table.

Algorithm 2 takes a state representativé.e., a path predicate |,
that holds on the shortest path to the identified state, add fitithe
outgoing big-step transitions from that state, adding tleelisates
from those transitions t& and the entire sequencééxtended by
one transition) tdS. The only interesting part of the algorithm is°
the discovery of new transitions and the correspondingipages. 16
In the first iteration, Line 6 extends the representativaisager 17
with predicatetrue, effectively allowing the solver to produce an
arbitrary value for the last element of the concrete inpgusace.

1

3
4
5
6
-
8
9

14

3In theL* setting, one also defines thensistencyroperty, which roughly
says that if two sequencedd, B, from R are equivalent, then both states
reached byy» (SOLVE(P1)) and y» (SOLVE(P2)) must produce the same
output in the next big-step transition given the same inpuottsol. We main-
tain the consistency of our symbolic observation table yagé assuring
that each state has only one representative ifrtbet.

input and output : Observation tabl©T

1 forall the pp € S, Bs € E such that TP, Bs] is undefineddo

d:= SOLVE(Pp - Ps)
if &# 1 then
(F1) == (A(T (8)),\(6(3)))
// assert(|F| = |t|)
fsi=¢
forall the 1<i <[] do
if i > |Pp| then
if (rip ﬁs)\. _F’|. then
tsi=1s-1|;
else
| Tei=Te L
else
| // assert(Ppli =T|i)
T[ﬁpvﬁs] 32?3
else
| Tmpvﬁs] =1

// Now close the table

forall the pe Ss.t—3reR. p-row=r-row do
| R:=RUpP

ReturnOT

// New state

Algorithm 1: The ALL RowsAlgorithm.

Executing the obtained concrete sequence and collectattiqates
along the path, we identify the first big-step transitionrguared-
icate ¢s). In every following iteration, we negate a disjunction of
the predicates discovered so far, until the disjunctiorobrezs valid
(test at Line 4). All infeasible traces lead to a ghost sth&t has
one self-loop transition labeledue/ L. The algorithm creates such
a state automatically, if needed, by filling the correspngdiow
with L, as even the prefix to the ghost state is infeasible.

input and output : Observation tabl©T
forall the ¥ € Rdo // Extend all sequences from R

if -3ps €E . |PBs| = 1AT- Ps € Sthen
s:.= false
while s true do
rs:i=¢€
d:= SOLVE(T-—s)
if a= 1 then
I’3:: —S
S:=true
else
B :=A(1z(d))
// assert(|p|=|F|+1)
r's'= Plir+1
S:=SVIrg
E = EU{rs}
S:=SuU{r-rs}
OT :=FiLL Rows(OT)

ReturnOT
Algorithm 2: The EXTENDTABLE Algorithm.

Finally, Algorithm 3 infers a symbolic transducer. Lines91—
discover all the big-step transitions from the initial staind the
corresponding predicates. All the discovered predicatesadded
to theE set. In the next three lines, we extend and close the table,
producing the firsterc conjecture and the first abstractior, of
Z. The loop beginning on Line 14 checks the equivalence betwee

2012/5/3

© O N O g b~ WN PP

e
w N B O

14
15
16
17
18
19
20
21
22
23
24
25
26

the conjecture and abstraction. If they are equivalentatierithm
terminates returning the exact transducer implemente@bpth-
erwise, the counterexample is checked agaifistf it is spurious,

we refine the abstraction, otherwise, we refine the conjecitve
use Shahbaz and Groz's [36] technique for processing the-cou
terexamples adapted for our symbolic setting. First, weecbthe
predicates fron¥? along the path determined by the counterexam-
ple and discard the longest prefix that is alread$. iWe denote the
remaining suffix bygs. We add all suffixes offs to E (Line 24), to
assure thaE remains suffix closed.

int :R={¢e},S={e},E=0,T =0,i =0,s=false
result : k-SLT o4
repeat// Fill 1st row
if s& false then

| a:=randomly generated array of tyfe1]
else
a:=SOLVE(—S)

|

p:=A((rip(a))|1) // 1st pred. from path predicate
E:=EUp

Tle, pl:=A((62(2))1)

S:=sVp

until s< true
(R SE,T) :=EXTENDTABLE(FILLROWSR,SE,T))
Computeer: from (R, S E,T)
Compute initialeZp of &
while true do
Let (&,0) be a separating sequence betwegnand oy
if @= ¢ then
| Returnegc
if y»(8) #0then// Spurious counterexample?
| Refiness of & on(d,0)
else
Bi=A(15(d)
Let B, be the longest prefix gb s.t. B, € S
Letps be s.t.p= Py Bs
E := EU Suffix(Ps)
(R,SE,T) :=EXTENDTABLE (FILLROWSR,SE,T))
Computeer from (RS E,T)

Algorithm 3: TheXZ* Algorithm.

8.3 Properties
First, we state the main propertiesXf, and then proceed with the

proof of relative completeness and a discussion of comiputat
complexity.

Lemma 13. Let T= (R S E,T) be a symbolic observation table.
>* preserves the following invariants:

1. Rand S (resp. E) are always prefix- (resp. suffix-) closed.

2. For everyp € S there is a uniqueé € R such thap-row= r-row.

3. For everyr € R, there are i‘,...JQ such thatvinzlris & true
and for all i, it holds thaf-r. € S.

4. The conjecturer: is closed at the end of each step.

Correctness. R represents the part of the all-path symbolic exe-
cution tree of%? on which the conjecture faithfully represents the
behaviour of%?, which is stated with the following proposition.

Proposition 14 (Bounded correctness)After each step, for all
T € R anda such thaéi = SOLVE(T), y» (&) = V. (&) holds.

Completeness. The following lemma ensures that a progress is
made after each conjecture refinement.

Lemma 15. If at some step of*, (&,0) is a separating sequence
such thaty, (&) = 6, then at the end of the step, for allsuch that
& = SOLVE(7i» (&), Vo (&) = y (&) holds.

We state our completeness result relative to the complesesfe
the predicate selection oracle.

Theorem 16 (Relative completeness)if &2 is an SLT and the
predicate selection method for refinement is complete, ffien
terminates withe/c being behaviorally equivalent t&.

Proof. First note that whenvy is single-valued, then by the sound-
ness of abstraction is in fact behaviorally equivalent t&. As
the predicate selection method is assumed to be completwijlive
eventually obtain a single-valuedy.

The equivalence check afg and.«c always returns the short-
est separating sequence (if one exists). There can be oitblyfin
many shortest separating sequences of a given length, @atiat
step such a sequence is used either to refine the conjecttioe or
refine the abstraction. Therefore, the number of conjectfiee-
ments must also be finite. |

Computational complexity. Next, we analyze the complexity of
>*. Let n be the number of states of the inferrE(BLT, k the
maximal number of outgoing big-step transitions from argtest
m the maximal length of any counterexample, anthe number
of counterexamples. There can be at mostl counterexamples,
as each counterexample distinguishes at least one state B
initialize E with k predicates|E| can grow to at most-+m(n—1).
The size ofSis at mostn- k. Thus, the table can contain at most
n-k-(k+m-n—m) = &(n-k>+m-n%k) entries. Thek factor

is likely to be small in practice, and our equivalence chegki
algorithm finds the minimal counterexample. The solver ifeda
once per each state (i.e., representativig)iand for each outgoing
transition. For each equivalence check, we might need idll
solvern? times. Thus, the total worst-case number of calls to the
solver is¢(n-k-+n?), not including the number of calls required for
abstraction refinement, which depends on the abstracthmigue
used.

9. Experimental Evaluation

We have implemented the learning partf (algorithms in Sec-
tion 8) and evaluated it on the Google AutoEscape (GA) frame-
work sanitizers, the same examples used recently by Hojainei

al. [27]. We instrumented them with a single command to denot
the line corresponding to the-state. We dropped the ValidateUrl
sanitizer, as it is effectively just a wrapper for callinfpet sanitiz-
ers. ProgramBncodeHtml andGetTags have been obtained from
the corresponding C# examples with the same name from [2I7] an
[12], respectively.

We patched Klee [14] with around 300 lines of code to gener-
ate symbolic relativized traces, wrote an implementatibAlgo-
rithms 1-3.2* learned 10 out of 14 examples, and the first conjec-
ture was correct on all but one benchmark (GetTags requived t
conjectures). To check the conjectures, we manually coctetl
predicate abstractions of the examples using syntactidiqgates
from the code. Such a simple heuristic was sufficient to cansa
complete predicate abstraction of programs’ control flawe pred-
icate abstraction checking took us on the order of 30 minpézs
example, but it is well known it could be automated.

We ran the experiments under Cygwin on Windows 7 64bit, run-
ning on Intel 2.8GHz Core Duo CPU with 4GB RAM. The path ex-
ploration with Klee took under 10 minutes on all examplesl e

2012/5/3

Benchmark Learned| Control Bits | Data Bits
CleanseCss
CleanseAttribute
CssUrlEscape
HtmlEscape
JsonEscape
PreEscape
UrlQueryEscape
XMLEscape
JavascriptEscape
JavascriptNumbe
PrefixLine
SnippetEscape
EncodeHtml

GetTags

|
e A e

EX
*
~
w
Ay

+ +x |

NOOOWOOOOOOo
©» 00/ 00 00 00 &> 00 00 0O 0O CO CO O 0|

W
Ay

Table 1: Experimental Results. The benchmarks Rfasuccess-
fully learned are denoted by. Benchmarks marked witfx) could

be learned iz* were extended to handle subsequential transduc-
ers. The last two columns show the size of the internal contro
and data state. We countég as 8 bits of data state. We counted
boolean variables as a single bit (e.g., for the Javasauipider
benchmark).

learning itself took under a second. In comparison, humarerx
required several hours of analysis to extract symbolicstlaners
manually [27].

The learneck-SLTs all have the lookback of zero or one, and
between one and three states, which attests to the compacihe
k-SLTs as a symbolic representation. Concrete versions esieth
sanitizers are far less compact, as the alphabets are 8itbed 6-
bit, and some benchmarks have internal state of up to 48éigs, (
GetTags).

PrefixLine is effectively ad-SLT, but it is implemented us-
ing the memchr function, and the results of these function calls
are used in guards. The remaining three sanitizers, Cléanse
tribute, JavascriptNumber and SnippetEscape, are subseaju
CleanseAttribute detects the end of the input and handieend
differently, JavascriptNumber checks validity of the ingtream
before deciding the output, and SnippetEscape outputosed|
tags from a predefined set at the end of the input. These ceuld b

learned ifz* were extended to subsequential transducers by gener-

alizing Vilar's algorithm [39] to the symbolic setting.

Although small in numbers of lines of code, sanitizers aterof
very difficult to implement correctly. Being able to autoioatly
infer a formal model of these functions, allows us to autacadly
check their properties such as idempotence, commutatauity
reversibility [27] that are important for establishing sgty of web
applications.

10. Limitations and Future Work

In this section, we discuss the main theoretical and praldtinita-
tions of Z*. The main theoretical limitation is the relative complete-
ness to the abstraction method chosen for over-approximétie
program. While the existing predicate selection heusstiorked
well for our examples, and were indeed capable of constrgidtie
strongest invariant of program’s transition relation, moesearch
is needed in this direction. We hope tlEt could help elucidat-
ing the connection between predicate selection heuriatidcom-
pleteness.

On the practical side, the specialized versiorzdfdeveloped
in this paper was expressive enough to infer symbolic tnacesc
on a number of real-world examples, thuBLTs are not expressive

10

enough to represent functions likeomLast anduptoLast [27],
which inherently require non-determinism. Learning sucerex-
pressive classes of symbolic transducers remains an opblepr.

References

[1] F. Aarts, B. Jonsson, and J. Uijen. Generating modelsfofite-state
communication protocols using regular inference with i@osion.
In ICTSS’10: Proceedings of the 22nd IFIP WG 6.1 international
conference on Testing software and systevoime 6435 ofLNCS
pages 188-204. Springer, 2010.

R. Alur and P.éerny. Streaming transducers for algorithmic veri-
fication of single-pass list-processing programs. P@PL'11: Pro-
ceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languagegages 599-610. ACM, 2011.

R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of inter-
face specifications for java. IROPL'05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on Principles of programming
languagespages 98-109. ACM, 2005.

[4] D. Angluin. Learning regular sets from queries and ceoexamples.
Information and Computatiqrv5(2):87-106, 1987.

[5] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. M. Paradkaand
M. D. Ernst. Finding bugs in dynamic web applicationsI$$TA'08:
Proc. of the ACM/SIGSOFT International Symposium on Soétwa
Testing and Analysjpages 261-272. ACM, 2008.

[6] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Auatatic Pred-
icate Abstraction of C Programs. RLDI'01: Proc. of the ACM SIG-
PLAN 2001 Conf. on Programming Language Design and Implemen
tation, volume 36 ofACM SIGPLAN Noticespages 203-213. ACM
Press, 2001.

[7] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and esign ab-
straction for model checking ¢ programs. TACAS'01: Proceedings
of the 7th International Conference on Tools and Algorittforsthe
Construction and Analysis of Systemaslume 2031 ofLNCS pages
268-283, 2001.

[8] T. Ball, A. Podelski, and S. K. Rajamani. Relative contpiess
of abstraction refinement for software model checking. TARCAS
2002: Proceedings of the 8th International Conference ooisTand
Algorithms for the Construction and Analysis of Systerakime 2280
of LNCS pages 158-172, 2002.

[9] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons
Proofs from tests. IProceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2008leSea
WA, USA, July 20-24, 2008ages 3-14, 2008.

[10] T. Berg, B. Jonsson, and H. Raffelt. Regular inferenoe dtate
machines using domains with equality testsEASE’08: Proceedings
of the Theory and practice of software, 11th internationahference
on Fundamental approaches to software engineenofume 4961 of
LNCS pages 317-331. Springer, 2008.

[11] N. Bjgrner and M. Veanes. Symbolic transducers. TexdiriReport
MSR-TR-2011-3, Microsoft Research, 2011.

[12] N. Bjgrner, P. Hooimeijer, B. Livshits, D. Molnar, and.\Weanes.
Symbolic finite state transducers: Algorithms and appbest In
POPL'12: Proceedings of the 39th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languagé€M, 2012.

[13] C. Cadar and D. R. Engler. Execution generated testscdsew
to make systems code crash itself. $®IN'05: Proc. of the 12th
Int. SPIN Workshop on Model Checking Softwarelume 3639 of
LNCS pages 2-23. Springer, 2005.

[14] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassistedaurtdmatic
generation of high-coverage tests for complex systemsranag In
OSDI'08: Proc. of the 8th USENIX Symposium on OperatingeByst
Design and Implementatiprpages 209—-224. USENIX Association,
2008.

[15] C. Y. Cho, D. Babi¢, P. Poosankam, K. Z. Chen, E. X. Wud an
D. Song. MACE: Model-inference-assisted concolic exglorafor

[2

—

13

—

2012/5/3

protocol and vulnerability discovery. IRroceedings of the 20th
USENIX Security Symposiyug 2011.

[16] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav.t&#: Sat-
based predicate abstraction for ansi-c. TlRCAS 2005: Proceedings
of the 11th International Conference on Tools and AlgorgHor the
Construction and Analysis of Systemslume 3440 ofLNCS pages
570-574. Springer, 2005.

[17] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasaredrearning
assumptions for compositional verification. TACAS'03: Proc. of the
9th International Conf. on Tools and Algorithms for the Cioastion
and Analysis of Systemsolume 2619 ofLNCS pages 331-346.
Springer Berlin, 2003.

[18] A. J. Demers, C. Keleman, and B. Reusch. On some deeidabl
properties of finite state translationécta Informatica 17:349-364,
1982.

[19] E. Elkind, B. Genest, D. Peled, and H. Qu. Grey-box cimegk
In FORTE'06: Proceedings of the 2006 Formal Techniques for Net
worked and Distributed Systemslume 4229 olLNCS pages 420—
435. Springer, 2006.

[20] C. Flanagan and S. Qadeer. Predicate abstractionftorase verifica-
tion. In POPL'02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languageges 191-202.
ACM, 2002.

[21] P. Godefroid, N. Klarlund, and K. Sen. DART: directedt@mated
random testing. IiPLDI'05: Proc. of the ACM SIGPLAN Conf. on
Programming Language Design and Implementatipsges 213—-223.
ACM, 2005.

[22] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetalor@positional
may-must program analysis: unleashing the power of altiema In
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Pri
ciples of Programming Languages, POPL 2010, Madrid, Spzan;
uary 17-23, 2010pages 43-56, 2010.

[23] S. Graf and H. Saidi. Construction of abstract stateplgsawith
PVS. InCAV’'97: Proceedings of the 9th International Conference
on Computer Aided Verificatioolume 1254 oL NCS pages 72-83.
Springer, 1997.

[24] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori,d$. K.
Rajamani. SYNERGY: a new algorithm for property checkingn |
FSE’'06: Proc. of the 14th ACM SIGSOFT Int. Symp. on Foundatio
of Software Engineeringpages 117-127. ACM, 2006.

[25] P. Habermehl and T. Vojnar. Regular model checking gisiference
of regular languagesElectronic Notes in Theoretical Computer Sci-
ence 138:21-36, 2005.

[26] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. yLalastrac-
tion. In POPL'02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesges 58-70.
ACM, 2002.

[27] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and\¥anes. Fast
and precise sanitizer analysis with BEK. Pmoceedings of the 20th
USENIX Security Symposiyrug 2011.

[28] J. E. Hopcroft. On the equivalence and containment lprab for
context-free languagesTheory of Computing Systen3:119-124,
1969.

[29] F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Imfgrcanonical
register automata. IWMCAI'12: Proceedings of the 12th Interna-
tional Conference on Verification, Model Checking, and Fdxstin-
terpretation Springer, 2012. To appear.

[30] O. H. Ibarra. The unsolvability of the equivalence desb for &-
free NGSM's with unary input (output) alphabet and appi@a. In
SFCS'77: Proceedings of the 18th Annual Symposium on Foionda
of Computer Scienc@ages 74-81. IEEE Computer Society, 1977.

[31] R. Jhala and K. L. McMillan. A practical and complete epgch
to predicate refinement. IMACAS 2006: Proceedings of the 12th
Conference on Tools and Algorithms for the Construction/analysis
of Systemssolume 3920 ofNCS pages 459-473, 2006.

11

[32] D. Lee and M. Yannakakis. Principles and methods ofrtgsfinite
state machines-a survey.mnoc. of the IEEEvolume 84, pages 1090—
1123. IEEE Computer Society, 1996.

[33] K. L. McMillan. Lazy abstraction with interpolants. 16AV’06:
Proceedings of 18th International Conference on Computieied
Verification volume 4144 oL NCS pages 123-136. Springer, 2006.

[34] J. Oncina, P. Garcia, and E. Vidal. Learning subsetipldransducers
for pattern recognition interpretation task&EE Transactions Pattern
Analysis and Machine Intelligenc&5:448-458, May 1993.

[35] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unititesengine
for c. SIGSOFT Softw. Eng. Note30:263-272, 2005.

[36] M. Shahbaz and R. Groz. Inferring Mealy machines. FI'09:
Proc. of the 2nd World Congress on Formal Methgalsges 207-222.
Springer, 2009.

[37] S. Srivastava and S. Gulwani. Program verification gisemplates
over predicate abstraction. IALDI'09: Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and
implementationpages 223-234. ACM, 2009.

[38] G. van Noord and D. Gerdemann. Finite state transdueithspredi-
cates and identitiesGrammars 4(3):263-286, 2001.

[39] J. M. Vilar. Query learning of subsequential transdacén Proceed-
ings of the 3rd International Colloquium on Grammaticaldrénce:
Learning Syntax from Sentencesges 72-83. Springer-Verlag, 1996.

2012/5/3

