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Abstract

Provably stable, distributed file sharing protocols

by

Barlas Oğuz

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Venkat Anantharam, Chair

P2P systems provide a scalable solution for distributing large files in a network. The

file is split into many chunks, and peers contact other peers to collect missing chunks

to eventually complete the entire file. The so-called ‘rare chunk’ phenomenon, where a

single chunk becomes rare and prevents peers from completing the file, is a threat to the

stability of such systems. A protocol that forces peers to download the rarest chunk in the

network first would solve this issue, however this solution requires global chunk availability

information that is not readily available. We look for a distributed approximation to this

solution. Although heuristics exist which perform well in practice, formal proofs of stability

of such systems were lacking. In this document, we demonstrate a new system based on an

approximate rare-chunk rule, allowing for completely distributed file sharing while retaining

scalability and stability. We assume non-altruistic peers and the seed is required to make

only a minimal contribution.

Professor Venkat Anantharam
Committee chair, advisor
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Chapter 1

Introduction

The marvel of peer-to-peer (P2P) networks is their scalability and robustness. Both of

these attributes are due in turn to the distributed nature of such systems. In a P2P file

sharing system such as BitTorrent [2], a large file is split into many chunks. A peer who

downloads a chunk can immediately start uploading that chunk to other peers, contributing

to the resource pool of the sharing network.

To ensure the availability of all chunks of the file at all times, at least 1 seed (who has the

complete file) is assumed to stay in the network at all times. However, in an open system,

where peers are arriving according to a random arrival process, the presence of a single

seed does not guarantee stability. It has been observed and demonstrated through various

analytical models ( [1], [3]–[5]) that if the peers contact each other and download chunks in

a purely random fashion, a single chunk might be driven to near extinction, causing peers to

stay in the system for a long time and driving the number of peers in the system to infinity.

In this scenario, the rare chunk is difficult to obtain, because there is a high probability

that the randomly contacted peer does not have it, and peers who have the rare chunk tend

to leave the system quickly since they probably already have every other chunk. Thus the

rare chunk becomes progressively rarer as new peers accumulate.

It is known that the rare chunk issue can be avoided through altruistic behavior of the

peers [1], [6]. In this model, peers who complete the file stay in the system for an additional
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random time to aid the remaining peers. It has recently been proven [7] that it is sufficient

for peers to remain in the network for a time that is on average equal to the time it takes

to download a single chunk. Unfortunately in real networks, the altruistic peer assumption

may not hold.

A similar stabilizing effect is observed if the upload capacity of the seed is large enough to

maintain a balanced chunk distribution in the system [7], [8]. However, in such scenarios, the

demand on the seed scales with the number of peers in the system, reducing the scalability

of the protocol.

In this paper, we present a new P2P file sharing protocol that is provably stable. Our

protocol is completely distributed, and fully scalable, avoiding the pitfalls of a centralized

tracker or a privileged seed. Moreover, we assume that peers who complete the down-

load leave immediately. Stability depends on a probabilistic local rule that peers follow to

approximate prioritizing the rare chunk.

We model an open system, where peers are arriving according to a Poisson process. In

our model, the current chunk profiles of all the peers in the system defines the state for a

Markov process. This is in line with the model described in [8]. In contrast with deter-

ministic fluid models such as the one used in [6], we attempt to directly prove the stability

of the dynamic system. This approach is more reassuring, as a well defined relationship

between the stability of the dynamical system and that of the fluid models is yet to be

formulated [4].

The protocol is presented in section 4.1. It is a modification of the ‘majority’ rule that

was first proposed in [9], [10], where the authors used simulations and large system limits

to argue that the rule leads to a stable system. The special 2-chunk case was studied in [4].

In section 3.4 we give a formal proof of stability for this special case within the framework

introduced in that work. Stability of this protocol for the general case, however, remains a

conjecture.

Our proposal implements a stricter rule to keep the rare chunks in the system longer,

and allows us to prove stability in general for any number of chunks and any arrival rate.
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The proof, presented in section 4.2, employs an unconventional Lyapunov function, which

is the main contribution of this paper together with the new protocol. The form of the

Lyapunov function is quite novel and might be useful in proving the stability of similar

algorithms.
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Chapter 2

BitTorrent protocol

The original BitTorrent protocol consists of a tracker and a swarm of peers. The purpose

of the tracker is to keep a list of peers and serve a list of random connections upon request.

Each incoming peer connects to the tracker to obtain a list of ip addresses of peers to

download from. The peer maintains TCP connections for each of its neighbors (typically

25-55 connections). This results in a random graph structure which has proved to be robust

and efficient. At any one time, only a fixed number (4 in the original specification) of these

connections are said to be ‘unchoked’ (actively participating in downloading). The other

connections may be used to opportunistically alter the set of ‘unchoked’ peers.

Information about the shared file is stored in a static file. The size of the shared file, the

size of each piece, and a 20-byte hash of each piece is stored in this file. Most commonly,

the file is divided into chunks of fixed size that is a power of two, most commonly 218 = 256

Kb (BitTorrent prior to version 3.2 uses 220 = 1 Mb as default).

2.1 Chunk availability

The original BitTorrent protocol specifies that a peer broadcasts the completion of each

chunk download to each of its neighbors. This information is used to determine ‘interest’.

A download only happens if a peer is ‘interested’ in downloading from another peer and the
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connection is ‘unchoked’. The information about the availability of chunks may also be used

to determine the order in which to download chunks. Random ordering might be sufficient

most of the time, however, as discussed in the next chapter, this is insufficient to ensure

stability. A better algorithm is to download the rarest chunk. Ideally, one would like to do

this based on global information over the entire swarm. In BitTorrent, full information is

available from (around 50) neighboring peers. This has proved to be sufficient in practice,

although from the perspective of theory, the effectiveness of this protocol is open, as well

as questions regarding how large a sample one needs to ensure good performance. These

are the central questions that we will try to address in this document.

2.2 Choking - unchoking and tit-for-tat incentive mecha-

nisms

In BitTorrent, a peer ‘unchokes’ (picks) at most 4 other peers in its set of neighbors.

This set is optimized based on the upload capacities of the neighboring peers. At specified

intervals, the peer will opportunistically ‘unchoke’ a random peer in its neighbor set, and

choke the worst performing active peer. This way, the protocol aims to efficiently utilize

all upload capacity, as well as providing a tit-for-tat incentive mechanism for encouraging

the supply of more upload capacity by the peers. Here, we will not concern ourselves with

incentive mechanisms. We will model a uniform system where all peers have a fixed upload

capacity and will assume that peers cannot ‘cheat’ the protocol. Details of the choking -

unchoking mechanism of BitTorrent and its robustness properties can be found in [2]. The

BitTorrent specification can be found at bittorrent.org.
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Chapter 3

Analytic model and the rare chunk

heuristic

3.1 Model

In our model, we attempt to capture the dynamics of a basic file sharing system with

homogeneous peers. We model an open system, where peers arrive according to a Poisson

process with rate λ. Peers leave immediately upon receiving all k chunks, in other words,

peers are non-altruistic. A file is divided into k chunks, to be distributed in a P2P system.

At a Poisson rate of 1, each peer can attempt to download a chunk which they desire, by

sampling a number of other peers at random from the swarm. We assume downloads to be

instantaneous, however the Poisson model ensures that the average download rate of each

peer is capped at 1.

We seek a rule by which a peer can decide which chunk (if any) to download at each time

slot from the current sample. This rule is assumed to be a function of the peer’s current

chunk profile, and the profiles of the sampled peers. (The rule could possibly depend on

the past observations of the peer, as well as λ and k. However the rule we propose will

not depend on these.) Having decided such a rule, the dynamics of the system become well
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Figure 3.1. Instability of random chunk selection algorithm. (Reproduced from [1]).

defined and we will ask whether the resulting stochastic system is stable in the Lyapunov

sense.

3.2 Missing chunk syndrome

Consider a purely randomized rule, where at each sampling instant, a peer contacts a

single other peer and downloads a random chunk that he does not already posses. If the

contacted peer has no such chunk, the download attempt is said to have failed. Otherwise,

the peer who initiated contact adds a new chunk to his portfolio instantaneously. This

random chunk selection algorithm has been demonstrated through various analytical models

( [1], [3]–[5]) to be unstable. Figure 3.1 [1] illustrates how this instability comes about.

Note that with the random chunk selection rule, the stochastic system is Markov, with

state summarized by the current chunk profiles of each peer in the network. Consider a state

where the chunk distribution is severely unbalanced. The vast majority of peers already

have all chunks except one (so called ‘one-club’ peers in the figure), a very small number

of peers having the remaining rare-chunk (labeled as ‘infected peers’ in the figure), and a

number of normal young peers are in neither of these sets. Since the Markov process is

irreducible, there is positive probability of reaching such a state. If the peers contact each

other and download chunks in a purely random fashion, the rare chunk is difficult to obtain,

because there is a high probability that the randomly contacted peer does not have it, and
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peers who have the rare chunk tend to leave the system quickly since they probably already

have every other chunk. The normal young peers are likely to join the one-club peers before

becoming infected, and thus do not contribute in serving the rare chunk to the rest of the

network. Thus the rare chunk becomes progressively rarer as new peers accumulate.

The ‘rare chunk’ issue can be addressed by forcing peers to download the rarest chunk in

the system first. This would ensure that new peers obtain the rare chunk before becoming

‘one-club’ peers, and thus the availability of rare chunks would increase with time. Balancing

out the chunk distribution in this way stabilizes the system.

BitTorrent clients address the ‘rare chunk’ issue by forcing peers to download the rarest

chunk in the set of neighboring peers first. As explained in the last chapter, this information

is fully available. The set of neighboring peers (around 50 peers) constitutes a good chunk

of the overall population in practice, and so this is found to be a good approximation to a

global rarest-first algorithm. However, it is an open question as to whether this protocol is

stabilizing. Moreover, the performance of BitTorrent is sensitive to the number of neighbor-

ing peers, as a larger number causes more overhead due to more TCP connections and the

need to broadcast chunk availability data to all neighbors. We will show in the following

sections that sampling only 3 neighbors at random suffices for the stability of the system.

3.3 Approximate rare-chunk heuristic

A simple approximation for the global rare-chunk first rule was described in [5].

The following is assumed:

• There is always exactly 1 seed in the system (denoted by s), who has all the chunks.

• At a Poisson rate of 1, each peer can sample randomly with replacement up to 3 peers

from the current population ∪{s}. (A peer is allowed to sample itself.)

• At the time of sampling, the peer can choose to download at most 1 chunk which

it does not already have, but shows up in the sample. The download is assumed to

happen instantaneously.
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• A newly arriving peer arrives with no chunks.

Let S be the total number of peers in the system (including the seed). Note that each peer

(including the seed) can be sampled, on average, at most by three other peers per unit time.

Therefore the average upload bandwidth per peer is bounded, and does not scale with λ or

S. This is crucial for scalability.

Definition 3.3.1. A chunk in a sample of 3 peers is rare if exactly 1 peer in the sample

has that chunk. A chunk is called a match if it is contained in the sample but not in the

sampling peer’s profile.

The rare-chunk protocol dictates that at the time of sampling, the peer is allowed to

download a new chunk if and only if that chunk is a rare match. If there is more than one

such chunk in the sample, the peers downloads one of these at random. If there are no such

chunks, the attempt is skipped with no downloads taking place.

This protocol is shown to have good stability properties in simulation [9], however a

formal stability proof is missing.

3.4 A stable protocol for the two chunk case

We now present a proof of stability for a slightly modified version of this protocol, albeit

valid only for the 2-chunk case. This case was studied in [4], however a formal proof could

not be found. Let x be the number of peers with chunk 1 (excluding the seed), and y be

the number of peers with chunk 2 (excluding the seed). z is the number of peers with no

chunks. The setup is slightly different. The sampling is done on a set that is restricted to

only peers who have at least 1 chunk. Therefore, peers in z do not join the sampling pool

until they download at least 1 chunk. This model actually violates the property that the

average upload rate of peers should remain bounded, since if z >> x, y, the peers who have

chunks will need to upload to a large number of peers simultaneously. The proof for this

case is given for reference.
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It is assumed that the peers in z interpret the seed as having either chunk 1 or 2 with

equal probability, whenever it shows up in the sample.

The protocol dictates the following:

• Peers in z sample 3 peers at random and download only if the sample contains a rare

chunk.

• Peers in x and y sample a single peer and download if they find a matching chunk.

Proof. Recall that the stochastic process of interest is a Markov process with state defined

by the current peers chunk profiles. Let q(x,x′) denote the entries of the generator matrix

of this Markov process. For any function on the state space,

Definition 3.4.1. The drift ∆f(x) of a function f(x) is defined as

∆f(x) =
∑
x′ 6=x

q(x,x′)(f(x′)− f(x)).

We use the following well known tool for the proof:

Theorem 3.4.2. [Foster-Lyapunov] Let L be a function on the state space with drift ∆L.

Let L ≥ 0 and let {L ≤ l} be a finite set for any finite constant l > 0. If for an ε > 0,

∆L < −ε on the set S > c, for a suitably chosen constant c, then the Markov process is

positive recurrent.

Such an L is called a Lyapunov function. For this stochastic system, we propose the

following :

L(x, y, z) = 2z + 2(x+ y + z) + (x− y)2

We calculate the drift as follows:

E[∆zn|Fn] = λ− 3(x+ 1/2)(y + 1/2)z

(x+ y + 1)2

E[∆(x+ y + z)n|Fn] = λ− x(y + 1) + y(x+ 1)

(x+ y + 1)

E[∆(x−y)2
n|Fn] = (2(x−y)+1)dX++(2(y−x)+1)dY ++(2(y−x)+1)dX−+(2(x−y)+1)dY −

11



Where

dX+ = 3(x+1/2)(y+1/2)2z
(x+y+1)3

, dY + = 3(x+1/2)2(y+1/2)z
(x+y+1)3

dX− = x(y+1)
(x+y+1) , dY − = y(x+1)

(x+y+1)

After calculations we get

E[∆(x− y)2
n|Fn] =

3(x+ 1/2)(y + 1/2)z

(x+ y + 1)2
+
x(y + 1) + y(x+ 1)

(x+ y + 1)

− 6(x− y)2(x+ 1/2)(y + 1/2)z

(x+ y + 1)3
− 2(x− y)2

(x+ y + 1)

Summing up, we get

E[∆Ln|Fn] = 4λ− 3(x+ 1/2)(y + 1/2)z

(x+ y + 1)2
− x(y + 1) + y(x+ 1)

(x+ y + 1)

− 6(x− y)2(x+ 1/2)(y + 1/2)z

(x+ y + 1)3
− 2(x− y)2

(x+ y + 1)

We will argue that this is strictly negative on the set max(x, y, z/(20λ+ 1)2) > 10λ. First

note

x(y + 1) + y(x+ 1)

(x+ y + 1)
+

2(x− y)2

(x+ y + 1)
≥ x2 + y2 + x+ y

(x+ y + 1)
≥ 1

2
max(x, y)

Omitting the third term which is negative, we have

E[∆gn|Fn] < 4λ− 3(x+ 1/2)(y + 1/2)z

(x+ y + 1)2
− 1

2
max(x, y)

One can easily verify that if max(x, y) ≥ 10λ then the last term is less than −5λ. Otherwise,

z ≥ 10λ(20λ+ 1)2, in which case the middle term is less than −7λ. In both cases, we have

a negative drift of at least λ. Theorem 3.4.2 completes the proof.

Obviously the set max(x, y, z/(20λ + 1)2) > 10λ is much larger than needed. One can

come up with a better set using the omitted term, and better bounds. However, this is not

necessary to prove stability.

Unfortunately, the Lyapunov function used above does not work for the more general,

many-chunk case. The reasoning is as follows. The quantity z+(x+y+z) can be interpreted

as the total number of missing chunks in the system (peers in z have 2 missing chunks, peers
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in x and y have just 1). This quantity decreases by 1 every time a download happens, and

increases by 2 every time a new peer arrives. Thus the drift of this quantity can be written

as λ− r where r is the total rate of downloads. When the chunk distribution in the system

is balanced, the rate of downloads will be roughly proportional to the number of peers in

the system. Thus the drift of this function will be negative with enough peers. When the

chunk distribution is severely imbalanced (recall the missing piece syndrome), this quantity

will have positive drift that is at most λ. The (x− y)2 term however, always has negative

drift and will cause the overall drift to be negative. This is due to the following fact:

Lemma 3.4.3.

P (chunk 1 is a rare match) ≥ P (chunk 2 is a rare match)

⇐⇒

x < y.

This lemma is only true for the two chunk case, since when there are more chunks, a

chunk might become so rare that the probability of observing it 0 times in a sample of 3

may become very large. Thus more common chunks might have a higher probability of

being a ‘rare match’. This difficulty makes the general case much more complicated and

thus this protocol remains a heuristic.
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Chapter 4

A provably stable protocol

In this chapter we introduce a modified p2p protocol which can be formally proven to

be stable. The protocol is completely distributed and operates under random sampling and

the non-altruistic peer assumption. It provides stability under any arrival rate, with only

a single seed with unit upload capacity. This is the first such result under these rather

restrictive assumptions.

4.1 Common chunk protocol

Let Si = # peers who have chunk i including the seed, i ∈ {1, . . . , k}.

S0 = # peers who have no chunks.

S̄i = S − Si.

T̄i = # peers who have only chunk i missing.

Definition 4.1.1. A chunk in a sample of 3 peers is rare if exactly 1 peer in the sample

has that chunk. A chunk is called a match if it is contained in the sample but not in the

sampling peer’s profile.

We define the rule as follows:
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• Peers with no chunks sample 3 peers at random and choose to download a chunk that

is a rare match. If there is more than 1, they pick randomly among them. If there

are no rare matches, the peer skips this time slot without downloading.

• Peers who have more than zero, but less than k − 1 chunks sample only 1 peer at

random, and download a chunk at random among those that match (no rare match

required). Skip if there is no match.

• Peers who have k − 1 chunks sample 3 peers at random. Download only if every

chunk that the peer has appears at least twice in the sample, and there is a match.

Otherwise skip without downloading.

Roughly, the first item is meant to stop arriving peers from acquiring a common chunk

as their first chunk. The last item attempts to keep rare chunks from leaving the system.

This should balance out the chunk distribution in the system and provide stability.

Note that by sampling only 3 peers, we are requiring the bare minimum that allows

a majority rule. By sampling more peers, one could clearly do better, however our main

purpose here is to demonstrate that stability is possible even in this restricted setting. In

section 4.2.1, we introduce a parametric class of protocols which allow top level peers to

sample up to m other peers. The parameter m can be adjusted to get a good trade-off

between locality (availability of information) and performance. Performance comparisons

are made through simulation in chapter 5.

In this paper, we model the proposed system by a Markov process with state space X

described by the peers currently in the system and their chunk profiles. The description of

the state space is essentially identical to that in [8]. Let q(x,x′) denote the entries of the

generator matrix of this Markov process. For any function on the state space,

Definition 4.1.2. The drift ∆f(x) of a function f(x) is defined as

∆f(x) =
∑
x′ 6=x

q(x,x′)(f(x′)− f(x)).
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4.2 Proof of stability

We will split the proof into two cases according to whether λ ≤ 1
3k or λ > 1

3k . In each

case, we will show the stability of this system by demonstrating a Lyapunov function for it.

Let r be the total rate of downloads. dS+
i is the virtual rate (stochastic intensity) at

which a peer with no chunks downloads chunk i, and dS̄−i is the virtual rate at which a peer

who is lacking only chunk i downloads i and leaves the system. We will need the following

lemmas:

Lemma 4.2.1. r ≥ Sr20
6k2

where r0 =
∑

i dS
+
i .

Proof. Write S̄i = S0 + B̄i + T̄i to define B̄i. B̄i is the number of peers who lack chunk i

and have at least 1 and at most k − 2 chunks. We can write

r ≥ S0d(S0) + T̄id(T̄i) + B̄id(B̄i)

where d(.) denotes the virtual rate of downloads for an individual peer in each group. By

definition, d(S0) =
∑

i dS
+
i ≥ dS

+
j for any j. Also

d(T̄i) ≥
3T̄ 2

i Si
S3

=
T̄ 2
i

S̄2
i

3S̄2
i Si
S3

≥ T̄ 2
i

S̄2
i

dS+
i

where the last inequality follows because
3S̄2
i Si
S3 is the probability of a rare match, but

dS+
i might be smaller due to the possibility of multiple rare matches. It is left to note

d(B̄i) ≥
dS+
i

3 . To argue this, note that d(B̄i) is the total virtual rate of downloads per peer

for peers in B̄i, and a sample of chunk i is sufficient to result in a download (even if chunk

i is not chosen to be downloaded). The probability of sampling chunk i in 1 go is at least

1
3 the probability of sampling chunk i in 3 tries, which in turn at least as large as dS+

i . We

can now write

r ≥ (S0 +
1

3
B̄i)dS

+
i +

T̄ 3
i

S̄2
i

dS+
i ≥

S̄i
6
dS+

i .

Here we argue that x+ y + z = 1 =⇒ x+ y
3 + z3 ≥ 1

6 .

S̄i
S
≥ dS+

i .
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Therefore

r ≥ max
i

S(dS+
i )2

6
≥ r2

0S

6k2
.

Lemma 4.2.2.

r ≥ min
i

Si
2k3

, if S ≥ 12.

Proof. Argue as in the previous lemma that for S0, a rare match of i is sufficient for a

download. For B̄i, a simple match is sufficient and Si
S ≥

S̄2
i Si
S3 . Therefore

r ≥ (3S0 + B̄i)
S̄2
i Si
S3

+ 3
T̄ 3
i

S̄2
i

S̄2
i Si
S3
≥ 2S̄3

i Si
3S3

, for any i.

Here we argue that x+ y + z = 1 =⇒ x+ y
3 + z3 ≥ 2

9 . Since maxi S̄i ≥ S−1
k , we have the

result when S ≥ 12.

First consider the case λ ≤ 1
3k .

We propose:

L1 =
∑
i

S̄i

The drift of L is

∆L1 = kλ− r ≤ 1

3
− r.

From lemma 4.2.2, we know

r >
S̄3
i Si

2S3
, for any i.

Picking i to be the rarest chunk, we observe that r > 1
3 + ε whenever S > 3k3.

Now assume λ ≥ 1
3k .

We propose:

L = C
∑
i

S̄i︸ ︷︷ ︸
L1

+
∑
i

S

eSi
+

S

eS0︸ ︷︷ ︸
L2

where C is a constant to be chosen later.
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We will calculate the drift of L in two parts. A download of chunk i decreases S̄i by

one and leaves all other S̄j unchanged. A new arrival increases each S̄i by one. Therefore

∆L1 = kλ− r.

Also

∆L2 ≤
∑
i

λ

eSi
− λ

(
S

eS0
− S + 1

eS0+1

)
−
∑
i

S0SdS
+
i

[
1

eSi
− 1

eSi+1
+

1

eS0
− 1

eS0−1

]
+
∑
i

T̄idS̄
−
i

∑
j 6=i

(
S − 1

eSj−1
− S

eSj

)

The first two terms correspond to the the arrival of a new peer. The second term is the

drift due to a peer with no chunks downloading chunk i. The last term corresponds to the

event where a peer leaves the system after having downloaded chunk i.

The inequality is due to the fact that we omitted terms corresponding to transitions

which keep S and S0 constant, and in the last set of terms, for each individual i we ignored

the terms corresponding to Si and S0. These transactions can only decrease L2.

Since dS̄−i ≤ minj 6=i
3S2
j

S2 and T̄i ≤ Sj , ∀j 6= i, the last term satisfies∑
j

(
S − 1

eSj−1
− S

eSj

)∑
i 6=j

T̄idS̄
−
i

≤
∑
j

3(e− 1)(k − 1)
S̄3
j

S2

S

eSj
<

8k2

S
. (4.1)

We get

∆L2 <
∑
i

λ

eSi
+

λ

eS0
− λ(e− 1)S

e · eS0

+
∑
i

(e− 1)S0SdS
+
i

[
1

eS0
− 1

e · eSi

]
+

8k2

S

Since
∑

i
λ
eSi

+ λ
eS0

< (k + 1)λ, we may write

∆L <
8k2

S
+ λ+ (C + 1)kλ− Cr − λ(e− 1)S

e · eS0

+
∑
i

(e− 1)S0SdS
+
i

[
1

eS0
− 1

e · eSi

]
Now we are ready to show
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Theorem 4.2.3.

∆L < −ε

with ε > 0 and C = 108ek3 whenever S > 4Cke3Cλk2e6λk
4

.

Proof. Since we assume that 8k2

S < 1, we are left with 5 terms which can be written as

∆L < [1 + λ+ (C + 1)kλ]− Cr − λ(e− 1)S

e · eS0

+
(e− 1)S0r0S

eS0
−
∑
i

(e− 1)S0SdS
+
i

e · eSi

• If r ≥ 2kλ:

– If (e−1)S0Sr0
eS0

≥ Cr
3 : Then r0 ≤ S0

6ekeS0
by lemma 4.2.1 and r0S0 ≤

S2
0

6ekeS0
< 1

6ek .

The third and fourth terms give at most −(e−1)(λ−1/6k)S

e·eS0 , which is negative. Since

r ≥ 2kλ, we’re done.

– If (e−1)S0Sr0
eS0

< Cr
3 , we have

∆L < 1 + λ+ (C + 1)kλ− 4

3
Ckλ < −ε.

• If r < 2kλ, then by lemma 4.2.2, ∃Si∗ < 6k4λ. Since dS+
i >

3S̄2
i Si
kS3 , the last term is at

most − S0

ke6k4λ
. Here we used the bound

3(e−1)S̄2
i∗

eS2 > 1.

– If (e−1)S0Sr0
eS0

≥ Cr
3 : Then r0S0 ≤

S2
0

6ekeS0
< 1

6ek . The third and fourth terms give

at most −(e−1)(λ−1/6k)S

e·eS0 ≤ −(e−1)λS

2e·eS0 , which is negative. If S0 ≥ 3Cλk2e6k4λ, the

last term is less than −3
2Ckλ, and

∆L < 1 + λ+ (C + 1)kλ− 3

2
Ckλ < −ε.

Else S0 < 3Cλk2e6k4λ, so we would have − (e−1)λS

2e·eS0 < −2(e−1)
e Ckλ and

∆L < 1 + λ+ (C + 1)kλ− 2(e− 1)

e
Ckλ < −ε

since 2(e−1)
e > 5

4 .
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– If (e−1)S0Sr0
eS0

< Cr
3 , we can omit the second and fourth terms which add up to

(e−1)S0Sr0
eS0

− Cr < 0. Again by the same reasoning as above, if S0 ≥ 3Cλ2e6k4λ,

the last term is less than −3
2Ckλ, and

∆L < 1 + λ+ (C + 1)kλ− 3

2
Ckλ < −ε.

Else S0 < 3Cλk2e6k4λ, so we would have − (e−1)λS

e·eS0 < −2(e−1)
e Ckλ and

∆L < 1 + λ+ (C + 1)kλ− 2(e− 1)

e
Ckλ < −ε

since 2(e−1)
e > 5

4 .

It is clear that both Lyapunov functions that are used satisfy the properties of theorem

3.4.2. We conclude that the proposed system is positive recurrent for any value of λ.

4.2.1 m-sampling

The rule for the peers that have all but one chunk can be eased as follows. A peer in T̄i

samples m peers at random with replacement instead of 3. Allow a download only if each

chunk other than i is observed at least twice in the sample of m peers. This would ensure

none of the chunks which leave are rare. Sampling more peers increases the complexity

of the system (decreases locality), but allows for a more efficient search (peers could leave

earlier). One could pick m to strike a good trade-off between complexity and performance.

This parameter m can be regarded as modeling the number of neighboring peers in the

BitTorrent protocol.

The proof of stability generalizes to this case with little modification. In (4.1), note that

dS̄−i ≤ minj 6=i
(
m
2

)S2
j

S2 . Therefore the last term would be bounded by
(
m
2

)
8k2

3S , which can be

bounded by 1, provided we modify the bound on S in theorem 4.2.3 with
(
m
2

)
. The rest of

the proof goes through unaltered.
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Chapter 5

Performance

From a performance point of view, some aspects of the protocol may strike the reader

as inefficient. In particular, the rule for leaving the system is quite strict, and may cause

substantial delay for the peers that have all but one chunk. Consider a state where most

of the peers have a few or no chunks. A sample of 3 peers needs to contain at least 2k − 1

chunks (1 for the missing chunk, 2 each for the rest) for a peer to be able to leave the

system. Therefore a peer with k−1 chunks will need to wait in the system, until the system

becomes more saturated.

On the other hand, this ensures availability of all chunks to other peers, and reduces

starvation in the network. This rule can be interpreted as forcing a degree of altruistic

behavior and has a similar effect in terms of stability.

5.0.2 Simulations

We compare our proposed algorithm with the parameter m taking the values {3, 5, 10},

m = 3 being the original protocol proposed in section 4.1, with the rare chunk rule.

Figure 5.1 shows a system with 20 chunks and λ = 10. At time 0, only the seed is

present. We can see all four systems reaching a stable state. The total number of peers

for m = 5 and m = 10 behave roughly similar to the simple rare chunk algorithm, where
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Figure 5.1. Reaching steady state from an empty system. k = 20. λ = 10.

m = 3 hovers slightly above the others due to the stricter rule keeping peers in the system

for a longer time. The same behaviour is observed in figure 5.2, where all systems relax in a

similar manner from an initial population of 1000 peers, all of which lack the same chunk.

As reported in [4], [9], the rare chunk rule seems to provide stability despite the lack of a

conclusive proof in this direction. On the other hand, the newly proposed protocol performs

competitively (and even more so with a suitably chosen parameter m) while having the

advantage of a formal stability guarantee.

In figure 5.3, we compare the distribution of completion time for peers in each simulation.

We run each system until it looks to have stabilized, then compare the time it takes for each

new peer to leave the system. As expected, the performance of the system at stationarity

improves with parameter m, with m = 5 having roughly equal performance with the rare

chunk heuristic. Note that the common chunk protocol with m = 3 exhibits longer tails in

the completion time distribution, due to the high variability of waiting time at the top level.

Table 5.0.2 summarizes the mean and variance of the completion time of each algorithm.
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Figure 5.2. Relaxing from severe imbalance. 1000 peers all lack a single chunk at initializa-
tion. k = 20. λ = 10.

Protocol E[T] Var(T)

Rare chunk 25.6 36.4

Common chunk, m=3 30.4 114.1

Common chunk, m=5 24.9 35.2

Common chunk, m=10 22.7 25.2

Table 5.1. Mean and variance of completion time at stationarity.

Note that with 20 chunks, the theoretical minimum for the average is 20 time steps. The

data is collected from around 3000 peers that completed the file during the simulation.
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Figure 5.3. Empirical distribution of completion time at stationarity.
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Chapter 6

Conclusion

Peer-to-peer schemes such as BitTorrent have been remarkably successful in revolution-

izing the way files are spread in a network. Still, it is desirable to completely decentralize

such protocols to avoid the pitfall of a single tracker. Naive attempts at such schemes have

been plagued with the ‘rare chunk’ syndrome, which causes instability. While it has recently

been shown that relatively minor altruistic behavior or a powerful seed can stabilize such

systems, these properties are usually a luxury in real world networks.

In this paper we have demonstrated that a completely decentralized, stable peer-to-peer

network is possible, even with completely non-altruistic peers and a single seed with minimal

upload capacity. While earlier work has hinted at this result with heuristics and simulations,

it had proved difficult to come up with a provably stable scheme. Although our original

algorithm has drawbacks in terms of performance, we have suggested an improvement that

allows trading locality for performance. Our proof was easily adapted to this case, which

suggests that the methods presented here might allow for stability guarantees for other

algorithms.
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